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Physics = the science of the dynamics of lifeless matter

Complexity science = the science of the dynamics of 
emergent properties

The next essential break through in science:

When statistical mechanics begins to be able to understand the 
dynamics of the emergent properties of complex systems   

                             - the brain
                             - cancer
                             - evolution
                             - sociology 
                             - . . . 

                    i.e. stat mech of non-equilibrium  
2

Friday, 23 September 2011



Micro - individual

Macro - collective

Time is in a sense an emergent property
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- Intermittency
- Stationary versus non-stationary: asymptotic versus transient
- Event distributions: power law or not
- Self-Organised Criticality
- Record dynamics
       - consider a number of systems: 
                   * thermal (spin glass)
                   * magnetic relaxation - superconductors

                   * evolutionary dynamics: model of evolutionary ecology
                   * ants
                   * earthquakes

- From micro-time to macro-time

Content
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Intermittency

t

f(t)

Rain
Earthquakes
Economic crashes
Extinction events
....

Chih-Ming Cheng, Yeh-Liang Hsu, Chang- Ming Young, Chang-Huei Wu 

Telemedicine and e-Health, Vol. 14, No. 1, pp. 55-68, January, 2008.
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Stationary versus non-stationary

Stationary: statistics independent of time

non-stationary: statistics changes with time

6

P(x,t) = P(x)

P(x,t) = P(x,time)
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Dynamics of Complex systems

Driven               versus             Relaxing  

Stationary
Self-organised 

Criticality Non-Stationary

Record Dynamics

Z. Olami, H.J.S. Feder, and K. Christensen,
Phys. Rev. Lett. 68, 1244-1247 (1992). {480}
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Event distributions: power law or not

Rain
Earthquakes
Economic crashes
Extinction events
....

log(s) s

log[P(s)] P(s)
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Self-Organised Criticality

System driving themselves (more or less) into state without characteristic 
scales in time or space.

 focus on the stationary state (occurring after some initial transient)
 slow drive
 intermittent events: “avalanches” 
 event size distribution
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Self-organised Criticality: 
     suggested as an explanation 1/f and fractals
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The sandpile: No tuning beside slow drive

Sub-critical: slope growing Super-critical: slope decreasing

z(x, y) → z(x, y)− 4
z(x± 1, y) → z(x± 1, y) + 1
z(x, y ± 1) → z(x, y ± 1) + 1

(x, y)

Bak, Tang and Wiesenfeld, PRL 59, 381 (1987) 11
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12

V. Frette, K. Christensen, A. Malthe-Sørenssen, 
J. Feder, T. Jøssang, and P. Meakin,
Avalanche Dynamics in a Pile of Rice.
Nature 379, 49-52 (1996). {264}

Later
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Self-organised Criticality: 
     suggested as an explanation 1/f and fractals

However BTW sandpile:  No 1/f as S(f) ∝ 1/f2

But deterministic lattice gas

From HJ Jensen PRL 64,1 (1990)

N(t)
Dissipation occurs
on a fractal

1/f p
ower sp

ec

Experiment on fluctuations in 
vortex density in thin film
Yeh & Kao, PRL, 53, 1590 (1984) 13
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1/f from diffusion

∂n(x, t)
∂t

= γ∇2n(x, t) and n(xB , t) = η(x0, t)

then N(t) =
∫

V
dxn(x, t)

is 1/f in any dimension.

V
xB

See e.g. 
 Grinstein, Hwa & Jensen,  Phys. Rev. A 45 R559 (1992)
 H.J. Jensen, Self-Organized Criticality, Cambridge University Press 1998.

Boundary driven BTW:

1/f for total

for  

z =
∑

i

zi

f < 1/Tmax

14
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Larger systems

But can we be sure a bulk noise term can be ignored?

L=64

L=250

15

From Master thesis
Andrea Giomette
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Self-Organised Criticality:

Paradigm well represented by e.g. the earthquake dynamics:

 Global very slow drive           gradual build up of local strain.

 Local rigidity or threshold needs to be exceeded

Abrupt short lived release of the strain  through a quake or 
avalanche

From Olami & Christensen, PRA, 46, R1720 (1992)

Constant rate of events
16
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Focus on the distribution of event sizes

Dependence
 on parameters

Dependence
 on system size

From: Olami, Feder and Christensen PRL 68, 1244 (1992) 

Power laws  
                  Criticality     
                                     Lack of scale

17
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Typically SOC models turned out to 
exhibit more complicated behaviour.

Drossel-Schwabl 

and the second moment of the distribution,

!s"!

#
s

s2n$s;%&

#
s

sn$s;%&

, $4&

which is the average size of the cluster connected to a ran-

domly chosen occupied site.

Before presenting the actual results, we first discuss the

numerical quality of the results.

A. Avoiding finite size effects

Throughout this paper we initially performed 5"106 suc-
cessful updates $as defined in Sec. II& as transient $and, there-
fore, rejected them& and the same number for producing sta-
tistics, apart from runs for calculating error bars, where only

106 updates have been used for statistics, as shown below. It

is known that the transient can be very long '6( 'note that the
time unit in Ref. '6( is expressed in our units by multiplying
it with (1/%)/)L2(, but in all cases presented the number of
initial steps seemed to be more than sufficient. Numerical

checks indicate that the cluster size distribution is very stable

against the size of the transient, i.e., even a transient that is

presumably too short produces reasonable results for n(s).

All systems have been initialized by a random indepen-

dent distribution of trees with density 0.41.

The standard deviation of the binned histogram is not

completely trivial to calculate. In particular, its computation

requires a significant amount of CPU time, and was, there-

fore, only calculated for the smaller system sizes $up to L
!8000) and in shorter runs $only 106 updates for statistics,
but 5"106 for transient&. We resorted to visual examination
for the larger systems when comparing ñ(s;% ,L) for differ-
ent system sizes. Figure 1$a& and 1$b& show the ratio of

ñ(s;% ,L) for two different system sizes. A deviation of this

ratio from 1 indicates a difference in the statistics and, there-

fore, the presence of finite size effects. Figure 1$a& shows a
typical case that we accepted as a reasonable agreement.

Here L1!4000 and L2!8000 do not seem to differ for 1/%
!2000. Figure 1$b& shows a case of finite size corrections
that we have dismissed $note the different scales in the two
graphs&. It differs from Fig. 1$a& only by L1!1000.
Figure 2 illustrates the strong agreement of ñ(s;%) at the

same value of % for the same two different sizes L as in Fig.
1$a&. The two sets of data are virtually indistinguishable, but
in this kind of plot it is also almost impossible to see a

difference between the data of L1!1000 and L2!8000, as
shown in the inset of Fig. 2. This is also the case with the

rescaled data below, and the use of very large systems

throughout this paper might, therefore, be ‘‘overcautious’’ in

avoiding finite size effects, although such large sizes are ob-

viously required for an accurate quantitative analysis of this

model. However, when it comes only to qualitative analysis,

such a judgment seems to be justified. On the other hand, an

increase in system size hardly increases the computing time

and affects ‘‘only’’ the memory requirements, which forced

us to implement the algorithm for parallel machines. The

side effect of using multiple CPUs at the same time is a

significant reduction of the simulation time especially for

large values of 1/% , a fact which compensates the complica-
tions of parallel coding.

Another indicator for the absence of finite size effects is

the scaling of the standard deviation of ): If the lattice can be
split into independent parts, i.e., if subsets of the lattice can

FIG. 1. Ratio r(s;% ,L1 ,L2)! ñ(s;% ,L1)/ ñ(s;% ,L2) with 1/%
!2000 for two pairs L1 ,L2 with error bars $standard deviation of 1;
the error bars as well as the data shown are exponentially binned&.
The data are from short runs (106 updates for statistics&. Finite size
effects have been considered negligible under the condition that

$almost all& error bars for this ratio have covered 1 $marked by a
dashed line& in the relevant range. $a& L1!4000 and L2!8000:
almost no finite size effects, the deviation from 1 is probably due to

noise. Note the fine scale of the ordinate. $b& L1!1000 and L2
!8000: Systematic, strong finite size effects for s#104. The scale
of the ordinate is five times larger than in $a&. Data of this quality
have been dismissed.

FIG. 2. The binned histogram ñ(s;% ,L) for two different values
of L and fixed % as in Fig. 1$a&. In this plot the two histograms are
virtually indistinguishable. However, note that the deviations shown

on Fig. 1$b& would also hardly be visible in this type of plot, as
shown in the inset.

BROKEN SCALING IN THE FOREST FIRE MODEL PHYSICAL REVIEW E 65 056707

056707-3

be considered as independent, the standard deviation of !
should scale like 1/L for different values of L at given 1/" .
Such a behavior can be seen in Table I, although the standard

deviation of ! could be calculated only roughly. This might
explain the slight mismatch for 1/"!32 000, L

!16 000,32 000.
For the highest values of 1/" we could not yet do the

comparison to another system, so the curve for the largest

value of 1/" in Fig. 3 is dotted, as their quality is not known.
However, it is reasonable to assume that it is not affected by

finite size effects.

B. The scaling function

Comparing the different histograms ñ(s;") for different
values of 1/" in a plot enables us not only to find the expo-
nent # , but also to find the universal function G as defined in
Eq. $1%. A rough, naive estimate of # is given by ñ(s;") fitted
against s"#, which gives a value of #*&2.1 in our case.
Plotting now ñ(s;")s#* double logarithmically should allow
us to find the ‘‘true’’ value of # by performing a data col-

lapse, i.e., choosing #* in such a way that horizontal shifts
'corresponding to the choice of the scale s0(") in the scaling
function( make all curves collapse. This is shown in Fig. 3,
where #*!2.1 was chosen so that the maxima for the second
bumps are almost equally high: denoting their position on the

abscissa for each value of " by smax("), we have chosen #*
such that

ñ„smax$"%;"…smax#* $"%&const. $5%

According to Eq. $1% the constant is simply the maximum
value of G, namely, G„smax(")/s0(")…, where the value of the
argument is, therefore, the same for all " .
The value of #* is close to $but not within the error of% the

exponent found in the literature, #!2.14(3) '3,4( (#
!2.15(2) in Ref. '16(, #!2.159(6) in Ref. '6(%, which is
shown in the same figure for comparison. However, it is

impossible to force the minima $see the down pointing marks
in Fig. 3% to the same height while maintaining the constraint
that the maxima remain aligned, i.e., these minima cannot be

a feature of the same universal scaling function. Otherwise

Eq. $1% would hold and the quantity

ñ„smin$"%;"…smin#* $"%, $6%

where smin(") denotes the position of the minima, would as-
sume the same value for all " , because they are local minima
of G, which are supposed to be the same for all " .
Since these minima cannot be included in the simple scal-

ing defined in Eq. $1%, they must be explicitly excluded by
introducing a lower cutoff, so that simple scaling supposedly

sets in only above these cutoffs, excluding especially the

minima. However, such a lower cutoff would apparently

have to diverge for 1/"→)—something that is certainly be-
yond any established concept of scaling. Even when accept-

ing this peculiar scaling behavior, a data collapse for the

second bump still seems to be unsatisfactory, as shown in

Fig. 4.

If one accepts a divergent lower cutoff of the scaling func-

tion, one has to face the fact that this would describe the

behavior of ñ in a region that becomes physically less and

less interesting in the limit 1/"→) , because the vast major-
ity of events are situated at small s and as the second bump

moves out to infinity, the scaling function hence covers a

smaller and smaller part of ñ . However, only a region of ñ ,

which covers a nonvanishing fraction of events can be physi-

cally relevant.

Concentrating now on the behavior of ñ up to the mini-

mum $see arrows pointing downwards in Fig. 3%, one finds
that this region is also badly described by a function like Eq.

$1%. First of all, the question of which region is supposedly
described by the function needs to be answered. A unique

lower cutoff and a " dependent upper cutoff needs to be

found. At first view it looks appealing to choose these two

marks such that they cover the set of data, where the curves

fall on top of each other. In this case the lower cutoff would

be 1 and the upper cutoff, snaive , would have a value smaller

FIG. 3. The rescaled and binned histogram ñ(s;")s#*, where

#*!2.10 for 1/"!125,250,500, . . . ,32 000,64 000 $as indicated%
in a double logarithmic plot. The linear size L is chosen according

to the bold printed entries in Table I and large enough to ensure

absence of finite size effects. The error bars are estimated from

shorter runs. The rightmost histogram $dotted in all figures, 1/"
!64 000) could not be cross checked by another run $see text%.
Maxima are marked by arrows pointing upwards, minima are

marked by arrows pointing downwards. The dashed lines belong to

different exponents, whose values are specified as the sum of the

slope in the diagram and #*, i.e., a horizontal line would corre-
spond to an exponent 2.1. The short dashed line represents esti-

mated exponents for different regions of the histogram $2.22 within
approximately '20,200( and 2.19 within '200,2000(%, the other ex-
ponents are from literature, namely, 2.14$3% in Refs. '3,4( and
223/91&2.45 in Ref. '12(. Since it was impossible to relate these
exponents to any property of the data, the exact position of the lines

associated with them was chosen arbitrarily.

GUNNAR PRUESSNER AND HENRIK JELDTOFT JENSEN PHYSICAL REVIEW E 65 056707

056707-4

Scaling analysis in systems with L up to 64,000

From Prussner & Jensen, PRE 65, 056707 (2002)
See also Grassberger, New J Phys 4, 17 (2002) 
                          J Phys A 26, 2081 (1993) 
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SOC supposed to self-organise to a stationary 
critical state:  

 no characteristic length scale

 no characteristic time scale
           
similar to equilibrium critical phenomena, except 
(!?!) SOC self-tune. 

Nevertheless, relation to phase transitions has been 
explored, in particular to absorbing state phase 
transitions - cf. talk by Gunnar Pruessner.   

19
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Record dynamics

20
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Record statistics 
                 -> record dynamics

http://www.frontpagemediaonline.com/
images/news/Spring View long jump.jpg
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Intermittent evolution driven by record large fluctuations

Examples:

 Spin glasses

 Models of evolutionary ecology

 Models of magnetic relaxation in superconductors

 and more

22
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Record dynamics    

the record
stochastic signal 

expo. distrib.
23
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Record dynamics    

Distribution of the number 
of records during t time 
steps independent of the 
nature of the fluctuating 
signal: 0    1    2    3  4   5   6  7   8  9  10   11  12   13    14

P1(t) =
1
t

The first out of t is the biggest

P(1,m)(t) =
1

(m− 1)t
Two records during t: one at t=1 with prob (m-1) 
& one at t=m with prob 1/t.

Two records during t 
⇓

Pn(t) ≈ (ln t)n−1

(n− 1)!
1
t

= e−λ
λn−1

(n− 1)!

⇓
with λ = ln t

log 
Poisson

P2(t) =
t∑

m=2

1
(m− 1)t

≈ ln t

t

24
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 Poisson process in logarithmic time

 Mean and variance

     

  Rate of records constant as function of ln(t)

  Rate decreases 

  Non-stationary 1/f fluctuations

〈Q〉 ∝ ln t and 〈(Q− 〈Q〉)2〉 ∝ ln t

exponentially distributed

Record dynamics    

∝ 1/t

25

τ = ln(tk)− ln(tk−1) = ln(tk/tk−1)
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Relevance     
When systems initially are in a state of high 
(generalised) internal strain & stress 

Examples:
 magnetic relaxation in superconductors
 relaxing spin glass 
 evolutionary ecology
 hungry ants
 Omiri after shock law                            

Anderson, Jensen, Oliveira & Sibani, Compelxity, 10, 49 (2004) 

26

Friday, 23 September 2011



 Magnetic Relaxation 

in 

Type II Superconductor 
  

with Nicodemi, Oliveira, Sibani
27

Record dynamics

Friday, 23 September 2011



Type II Superconductor Magnetic Relaxation Experiment

Left: Civale et al. PRL 65, 1164 (1990)   
Riht: Kaiser et al. J Cryst    Growth 85, 593 (1987)

Melt processed YBCOYBCO

Un-irradiated

Proton irradiated

c axis

ab plane 

28
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Restricted Occupancy Model

  Monte Carlo Kawasaki dynamics on stack of coarse 

  grained superconducting planes  

x

For 2D, zero temp.deterministic lattice gas see Jensen: PRL 64, 3103 (1990)
For 2D, zero temp. cellular automaton see Bassler & Paczuski: PRL 81, 3761 (1998)

n(x, , y, z, t) = ni ≤ nc ∼ Bc2

29
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ROM 
Hamiltonian

Here 

M. Nicodemi and H.J. Jensen, Equilibrium and off-equilibrium dynamics in a model for vortices in superconductors. 
Phys. Rev. B 65 144517 (2002).
H.J. Jensen and M. Nicodemi, Memory effects in repsonse functions of driven vortex matter, Europhys. Lett. 57 348 (2002).
M. Nicodemi and H. J. Jensen, Aging and memory phenomena in magnetic and transport properties of vortex matter, J. Phys. A 34 8425 (2001).
H.J. Jensen and M. Nicodemi, Off equilibrium glassy properties of vortex creep in superconductors. Europhysics Lett. 54 566 (2001)
M. Nicodemi and H.J. Jensen, Creep of superconducting vortices in the limit of vanishing temperature: A fingerprint of off equilibrium dynamics. Phys. Rev. 
Lett. 86 4378-4381 (2001).
M. Nicodemi and H.J. Jensen, Off equilibrium magnetic properties in a system of repulsive particles for vortices in superconductors, 
J. Phys. A. 34 L11 (2001).
H.J. Jensen and M. Nicodemi Second magnetisation peak relaxation in a model for vortices in superconductors. 
Physica C 341-348 1065-1066 (2000)

30
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ROM: Temperature  independent creep

31
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Realisations of record dynamics
ROM: Temperature  independent creep

32
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Further evidence 

The cumulative distribution of the log waiting times. 
Comparison with exponential distribution.

33
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Number of vortices in the bulk as function of time

34
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Quake statistics and the total number vortices 
entering.

35
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The magnetic creep rate: 

comparison with experiment

From Oliveira, Jensen, Nicodemi & Sibani PRB 71, 104526 (2005)

Experim. data from
(a) Civale et al. 
     PRL 65, 1164 (1990)

(b) Kaiser et al. J Cryst   
     Growth 85, 593 (1987)

(a) (b)

36
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          Spin Glass

  

with Sibani
37

Record dynamics
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Spin glass
Microscopic magnetic moments – or spins – coupled together 
with random coupling constants. 

The Hamiltonian:

H = −1
2

∑

ij

JijSi · Sj where Si, Sj = ±1

38
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Spin glass
Quench from high temperature:

     time < 0:  T = high

     time > 0:  T = very low  

           t1                                   t2                                         t3                     time
39
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Spin glass: heat transfer

      Protocol: Quench from high temp. at time t= 0.

                     Measure heat transfer, H,  between spin  

                     glass and reservoir during time interval

• If                  Gaussian p(H)

• If                   exponential tail

                       

40
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Spin glass: heat transfer

From Sibani & Jensen, EPL 69, 563 (2005) 41
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Break ?

42
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Adaptation

Tangled Nature

 

43

Record dynamics
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What next:

• Motivation

• The Tangled Nature Model

• Phenomenology

44
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It is interesting to contemplate a tangled bank, 
clothed with many plants of many kinds, with birds 
singing on the bushes, with various insects flitting 
about, and with worms crawling through the damp 
earth, and to reflect that these elaborately constructed 
forms, so different from each other, and dependent upon 
each other in so complex a manner, have all been 
produced by laws acting around us. 

Why Tangled Nature ?
Last paragraph to the Origin of Species 

45
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Evolutionary ecology:

 Interacting organisms + Evolution           Evolving bio-net

 Each type will see an ever changing environment

Focus on system level properties
      

 stability
 mode of evolution
 nature of the adaptation
 ecological characteristics: SAD, SAR, Connectance,... 

 

Henrik Jeldtoft Jensen                                                     Imperial College London46
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 Motivation - Lifetimes

☻Lifetime of taxa                                                  

kk 

k  

 

K

Fossil record: 
Frequency distribution 
of lifetimes of marine 
genus.

From:

Newman and Sibani, 
Proc. Roy. Soc. B. 266, 
1593 (1999) 

Henrik Jeldtoft Jensen                                                 Imperial College London47
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 Motivation - Tempo and mode

☻Time dependent extinction rate                                                  

Fossil record: 
Decreasing extinction 
rate.

From:

Newman and Sibani, 
Proc. Roy. Soc. B. 266, 
1593 (1999) 

48
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 Motivation - Ecology

 ☻Species area relation                                                  

Bird species versus area; 
Czech Republic. 

From:

A Stizling and D Storch

Ecol. Lett. 7, 60 (2004)

Henrik Jeldtoft Jensen                                                 Imperial College London49
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Model

Collaborators:       
Simon Laird, Daniel Lawson, Paul Anderson, Kim Christensen, 
Matt Hall, Simone A di Collobiano, Paolo Sibani, Dominic, Jones

50
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Interaction and co-evolution

The Tangled Nature model
•  Individuals reproducing in type space

•  Your success depends on who you are amongst

Type - S

n(S)= Number of individuals 

Type - S

n(S)= Number of individuals 

51
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Definition
 
 Individuals      

   , where   

     and   

                                                                                      L= 3     
       Dynamics – a time step

            Annihilation
             Choose indiv. at random, remove with
             probability  

Henrik Jeldtoft Jensen                                                 Imperial College London
52
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Reproduction:

   ►  Choose indiv. at random
  ►  Determine
                                            
 

                                              

occupancy at the location    

Henrik Jeldtoft Jensen                                                 Imperial College London
53
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The coupling matrix J(S,S’)

  Either consider J(S,S’) to be uncorrelated 

  or to vary smoothly through type space
  

  and sparse or dense  

How Tangled is Nature? A Model of Evolutionary Ecology
Paul Anderson and Henrik Jeldtoft Jensen

Department of Mathematics, Imperial College London, South Kensington campus, London SW7 2AZ, United Kingdom

Introduction

An important characteristic of an ecosystem is the set of all interactions
between the various individuals. Organisms may influence each other in
many ways and it is difficult to monitor and quantify most relationships
except for the most obvious. Here, we look at the effect of different levels
of connectivity between species within the framework of a simple model of
ecosystem assembly and evolution: the Tangled Nature model [1, 2, 3].
All work presented in this poster appears in [4]. We compare the early
and late time connectivity and cluster properties of ecosystems evolving
in two differently connected spaces: genotypes influence either a small or
a large number of other genotypes.

The Model and Methods

↪→An individual is represented by a vector Sα = (Sα
1 , Sα

2 , ..., Sα
L) in the

genotype space S, where the “genes” Sα
i may take the values ±1, i.e.

Sα denotes a corner of the L-dimensional hypercube. We take L = 20.
The evolutionary dynamics determines whether a genotype is occupied
or not. The total number of occupied sites is called the diversity.

↪→ For simplicity, an individual is removed from the system with a con-
stant probability pkill per time step.

↪→The probability that an individual reproduces, poff , is controlled by
a weight function H(Sα, t) related to its interactions with other sites.
Reproduction is asexual and mimics fission: two individuals are pro-
duced with the parent being killed.

↪→ Each gene of the offspring has a fixed probability of mutating per time
step, pmut. 500 individuals are placed randomly on the network to
start the simulation.

↪→A time step consists of one annihilation attempt followed by one re-
production attempt. One generation consists of N(t)/pkill time steps,
which is the average time taken to kill all currently living individuals.
Generation time is used throughout.

We are interested in the effect of changing the background connectivity,
θ. This determines the probability that any two sites are interacting. If
they are, then the strength of the interaction is given by Jab = J(Sa,Sb),
a number between −1 and +1. All connections are calculated at t = 0.
Thus the network properties at any given time depend on which sites
are occupied. Interactions between other genotypes can be explored by
mutations away from the current site.

Our main results are explained in the figures. We consider two val-
ues for θ: 1

200 (low θ) and 1
4 (high θ), and three time values: t = 500

(primal time), t = 5000 (early time) and t = 500000 (late time). An
ensemble of 500 runs for low and high θ were run on a cluster of under-
graduate machines left running overnight and at weekends.

The degree and strength distribution plots below show results from the
simulation and the null hypothesis. For this, the number of individuals
at a given time was read in from the simulation and these were then
thrown down at random on to the network with the constraint that the
diversity was the same. This provides a check on whether any trends are
real or just illusions created by an expanding diversity.

Other features of the Tangled Nature model include a punctuated dy-
namic as shown below — where the network spends long periods in a
so-called quasi-Evolutionary Stable Strategy (q-ESS) terminated by hec-
tic rearrangements of genotype space until a new q-ESS is found — and
the appearance of quasi-species [5].
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Conclusion

Our most important results are that non-trivial temporal evolution of the
network properties of an ecosystem and a realistic form for the species
abundance are only seen if the genotype space is well connected. This
is interpreted here as meaning that an occupied genotype is likely to
interact with many other (potentially occupied) genotypes. No evolution
at the level of ecosystems can occur in a world where most genotypes
have very little influence on other organisms. It is easy to overlook the
importance of the entire network of interactions when dealing with small
communities of organisms on a macroscopic scale, but easier to visualise
with colonies of billions of bacteria.

From our results, it is tempting to speculate that the observed degree
of diversity, complexity and adaptation of living matter may be directly
related to a high level of interdependence between organisms. Hence,
Darwin’s entangled bank may be a particularly useful image to keep in
mind when studying the evolution of large collections of individuals.

References
[1] Kim Christensen, Simone A. di Collobiano, Matt Hall, and Henrik J. Jensen. Tangled Nature: A

Model of Evolutionary Ecology. J. theor. Biol., 216:73–84, 2002.

[2] Matt Hall, Kim Christensen, Simone A. di Collobiano, and Henrik J. Jensen. Time-dependent ex-
tinction rate and species abundance in a tangled-nature model of biological evolution. Phys. Rev. E,
66(011904):1–10, 2002.

[3] Simone A. di Collobiano, Kim Christensen, and Henrik J. Jensen. The tangled nature model as an
evolving quasi-species model. J. Phys. A: Math. Gen., 36:883–891, 2003.

[4] Paul Anderson and Henrik Jensen. Network properties, species abundance and evolution in a model of
evolutionary ecology. submitted to Proceedings of the Royal Society B. Pre-print at cond-mat/0307114.

[5] Manfred Eigen, John McCaskill, and Peter Schuster. Molecular Quasi-Species. J. Phys. Chem.,
92:6881–6891, 1988.

Acknowledgements
We are extremely grateful to G. Pruessner for extensive help with the development of the parallelised
code and the poster itself. A. Thomas helped provide computer support. Thanks as well to Drs. K.
Christensen, S. di Collobiano and M. Hall who have contributed so much to Tangled Nature. P. Anderson
thanks EPSRC for research funding.

Further information
More information can be found in the papers cited above and at H. J. Jensen’s webpage:
http://www.ma.imperial.ac.uk/∼hjjens. Please send e-mail to h.jensen@imperial.ac.uk.

Results

unoccupied site.
Links are deactivated

positive interaction

negative interaction

Not all sites are occupied. There are several isolated species, in the sense that
they are not interacting with anyone. Most sites are in two-clusters. These act as
building blocks for larger groups. They are usually plugged together by mutants.
Large clusters do not persist and the mutually positive two-clusters are the only
long-living structures. There is no tendency to form larger clusters at later times.
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Degree Distribution for Low Species Connectivity

The degree distribution shifts out at later
times due to an increased diversity but does
not evolve away from the null model since iso-
lated sites are over represented in the null case.
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Strength of Interactions for Low Species Connectivity

A change from the null model is seen, but
this is not due to any fundamental change in
cluster structure but rather the eventual dom-
inance of mutually positive two-clusters.
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Species Abundance Distribution for Low Species Connectivity

The species abundance distribution (SAD) is skewed to the right at later times as
the heavily populated two-clusters flourish. Thus patches of clusters do not

produce the log-normal form expected from field studies.

Low connectivity → unrealistic SAD

Not all sites are occupied. Notice how all nodes are connected in one giant cluster
and there are no isolated species. With such a high background connectivity, all
occupied sites belong to one cluster at all time steps, although an individual species
may only be interacting with a few other genotypes. In the simulation, the nodes
sit on the corners of a 220 dimensional hypercube.
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The degree distribution shifts out at later
times due to an increased diversity but, as for
the low connectivity case, does not evolve away
from the null model.
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A definite shift towards more positive interac-
tions occurs. This is what drives the increas-
ing diversity and is non-trivial since all sites
are tangled together in one giant cluster.
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Species Abundance Distribution for High Species Connectivity

The species abundance distribution (SAD) evolves and becomes a closer fit to a
log-normal at later times. Thus the single cluster of highly interdependent

genotypes produces a similar SAD to those observed by ecologists.

High connectivity → realistic SAD
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Dynamics:  
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Complex dynamics:
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Jumping through collective adaptation space: quake driven 
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Macro dynamics - the transitions
Non correlated

   

Graph courtesy to Matt 
Hall
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decease. The fitness poff ðSa; tÞ of individuals at a
position Sa depends on the occupancy n(Sb, t) of
all the sites Sb with which site Sa is connected
through couplings Jab. Accordingly, a small
perturbation in the occupancy at one position
is able to disturb the balance between poff ðS; tÞ
and pkill on connected sites. In this way, an
imbalance at one site can spread as a chain
reaction through the system, possibly affecting a
global reconfiguration of the genotypical com-
position of the population.

Dynamical Behaviour

We consider two different types of popula-
tions: (1) a purely asexual population and (2) a
purely sexual population.

ASEXUAL REPRODUCTION

In this subsection, we discuss the model when
all reproduction is assumed to be asexual.

INITIATION

Let us consider the initiation of the model.
First, we place the entire population N(0) at a
randomly chosen location S* in genome space.
The H-function in eqn (2) will be given by
H(S*,0)=#mN(0) since n(S)=0 for SaS* and
J(S*, S*)=0. If no mutations can occur the
population will remain confined at the location
S* and the size of the population n(S*, t) will
according to eqn (4) approach the value

N$ ¼
1

m
ln

1# pkill

pkill

! "

:

Mutations do occur, however, and the popula-
tion will migrate away from the original location
S* into the surrounding region of genome space.
In Fig. 2, we show a cladogram indicating the
evolution of the first 110 generations. During
this initial period, the newly invaded positions
are only occupied for a few generations (in-
dicated by the short horizontal lines in Fig. 2).
After this period of rapid changes, a relatively
stable configuration is achieved, and the occu-
pied positions to the right in Fig. 2 indicate that
the system has entered its first q-ESS.

We have also studied simulations started out
from an initial population spread out over many
randomly chosen positions in genome space.
Most of these initially occupied positions rapidly
become extinct. In this way, the diversity in
genome space passes through a ‘‘bottleneck’’
before the population starts to migrate out into
genome space from one or a few positions which
were able to pass through the bottleneck. From
then on, the evolution of the ecology behaves in
the same way as when started out from one
single position in genome space.

LONG TIME BEHAVIOUR

Now, we turn to a discussion of the nature of
the long time dynamics of the model. The model
consists of a variable number of co-evolving
individuals all subject to the same physical
environment. An individual’s ability to thrive

Fig. 2. The initial diversification from a single position
in genome space. The system is initialized at time t=0 with
500 identical individuals and allowed to develop autono-
mously. Time is plotted horizontally. Similar to ordinary
cladograms different genotypes are located at different
vertical positions. Vertical lines represent parentages.
Horizontal lines starts at the time a genotype is created
and stops when the genotype becomes extinct. The system
mutates away from the initial location, which becomes
extinct relatively quickly. After 34 branchings the system
finds a stable configuration and enters the first q-ESS (see
Figs 3 and 4).
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Too large mutation rate prevents qEES to 
establish.

Mean field analysis:

Collobiano, Christensen and Jensen, J Phys A 36, 883, (2003)

na(t + 1) = na(t) +
na(t)

∑′
a na′(t)

[pa
off (t)(2p0 − 1)− pkill]

Number of individuals on site a 

∆na = +1p2
o + (−1)(1− P0)2 = 2p0 − 1

⇓

p0 = (1− pmut)L
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Assume steady state, time average and use

〈 na(t)
∑′

a na′(t)
pa

off (t)〉 = 〈 na(t)
∑′

a na′(t)
〉〈pa

off (t)〉

then we obtain

pq =
pkill

2(1− pmut)L − 1
for the on average off-spring probability for those site which are 
able to counterbalance the kill by off-spring production. 
Leading to a corresponding weight function H for the wild-types in 
the q-ESS
 
Hq = ln(

pq

1− pq
) = ln(

pkill

2(1− pmut)L − 1− pkill
)

In the hectic states we assume the a simple balance between reproduction and killing 

poff = pkill

or Hhectic = ln(
pkill

1− pkill
)
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Hq = ln(
pq

1− pq
) = ln(

pkill

2(1− pmut)L − 1− pkill
)Hhectic = ln(

pkill

1− pkill
)

A hectic transition can only develop into a q-ESS if hectic peak overlaps with q-EES 
peak

Hhectic + αk ≥ Hq
We assume width of hectic peak proportional 
to with of distribution of J given by k
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α is used as fitting parameter

q-ESS region

No q-ESS region

=1/k
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Dynamics - correlations:  
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FIG. 2:

This is shown more clearly in figure 4 where the average behaviour of two models with different
offspring functions is shown, one with the usual fermi function, and one with a simple linear relation,
maintaining the same slope at H=0, and cutting off at P=0 and P=1. The average population of the
standard model is shown to increase logarithmically, whereas the linear model displays no obvious
trend. This raises further questions - why is there a logarithmic increase in the standard case? And
why do we observe a slowing down in the rate of transitions?

IV. DISCUSSION

Connection to ecology. Connecting ecological principles to microscopic level. Eg mutual information. Not easily
done experimentally. Value of these sorts of models. Simplicity of model implies generic properties of ecosystems.

Robustness of model. No interactions imposed (the system chooses the interactions). Correlations do not change
qualitative behaviour. Bias comes from convexity of offspring function. Why this offspring function? Is it biologically
justified? No but mathematically justified (asymptotes imply convex and concave regions).

Why is record dynamics generic. Statistics seen in wide variety of contexts - eg spin glasses, ants, ... Minimal
requirements for RD - barriers and fluctuations. Link with observed decrease in fluctuations of replication rate.

Outlook: Response theory - system response to perturbations. Negative perturbations has minor effects but pos
gives big changes??
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This is shown more clearly in figure 4 where the average behaviour of two models with different
offspring functions is shown, one with the usual fermi function, and one with a simple linear relation,
maintaining the same slope at H=0, and cutting off at P=0 and P=1. The average population of the
standard model is shown to increase logarithmically, whereas the linear model displays no obvious
trend. This raises further questions - why is there a logarithmic increase in the standard case? And
why do we observe a slowing down in the rate of transitions?

IV. DISCUSSION

Connection to ecology. Connecting ecological principles to microscopic level. Eg mutual information. Not easily
done experimentally. Value of these sorts of models. Simplicity of model implies generic properties of ecosystems.

Robustness of model. No interactions imposed (the system chooses the interactions). Correlations do not change
qualitative behaviour. Bias comes from convexity of offspring function. Why this offspring function? Is it biologically
justified? No but mathematically justified (asymptotes imply convex and concave regions).

Why is record dynamics generic. Statistics seen in wide variety of contexts - eg spin glasses, ants, ... Minimal
requirements for RD - barriers and fluctuations. Link with observed decrease in fluctuations of replication rate.

Outlook: Response theory - system response to perturbations. Negative perturbations has minor effects but pos
gives big changes??

I =
∑

J1,J2

P (J1, J2) log[
P (J1, J2)

P (J1)P (J2)
]

73

Friday, 23 September 2011



  

 

Time evolution of
    Distribution of active coupling strengths

    Non correlated

Comparisons with this will reveal whether the network is
really evolving, or the results are just by-products of
increasing diversity. Simulated data is always shown as a
dotted line and random data as a continuous line.

3. Results

3.1. Connectivity

We study the temporal evolution of the network
connectivity in the space of occupied positions for
different y values. Note that the hard-wired configura-

tion of couplings JðSa;SbÞ between all 220 positions in
genotype space is determined at t ¼ 0 and remains
constant. The network of occupied sites will nevertheless
change with time and so the network properties at any
given time depend on which genotypes are inhabited.
Interactions between other sites can be explored by
mutations away from the occupied sites. The degree
distributions in Fig. 2 show the number of genotypes
having x active interactions.

The leftmost pair of curves represents primal time, the
next, early time and the rightmost late time. Considering
only the simulation data for now, a clear shift to a
greater number of active links is seen in the high y case,
whilst a slight change occurs for low y: The difference
between early and late time is bigger than that between
early and primal time. The degree of a site is equal to the
number of direct interactions it has with all other
occupied sites. This explains why any particular site in
the low y runs only has at most nine and usually only
one or two direct interactions. The data is summed up
over the entire ensemble.

How much of this shift is due to a genuine change in
network connectivity? For high y; the null model data
shows that there is very little difference between evolving
the network and throwing individuals down randomly.
Low y appears to show a change. However, any site that
does not interact with any others will die very quickly
in a simulation. If for any instant in time geno-
type positions are chosen by chance, such a low
connectivity will give a disproportionate number of
isolated genomes that would be forbidden by the
dynamics. There is no fair way to simulate this effect,
but it can be seen that the differences between the time
curves in the random and simulated runs is similar and
thus the network connectivity does not evolve for either
value of y:
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Fig. 2. Degree histograms. Top: Degree histogram for y ¼ 0:005:
Bottom: y ¼ 0:25: Solid lines, random; dotted lines, simulation. From
the left, the pairs of curves are for t ¼ 500; 5000 and 500,000. At later
times, the number of active links increases for both the simulation and
random data.
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Fig. 3. Interaction distributions. Top: Distribution of interaction
strengths between individuals for y ¼ 0:005: Bottom: y ¼ 0:25: Inset:
Entire distribution. Solid lines, random; crosses, simulation at t ¼ 500;
dotted lines, simulation at t ¼ 500; 000: All plots are normalized so
that their area is one. For high y; a significant increase in positive
interactions is seen. For low y; a change is seen but for trivial reasons.

0 100000 200000 300000 400000 500000

Time

150

200

250

300

M
ax

im
u
m

 c
lu

st
er

 s
iz

e

Fig. 4. Maximum cluster size. Maximum cluster size across all
realisations for y ¼ 0:005: Solid line, random; dotted line, simulation.
Clusters produced by the simulation are larger than those produced in
a history-independent network.

P.E. Anderson, H.J. Jensen / Journal of Theoretical Biology 232 (2005) 551–558554

Low connectivity

High connectivity

From Anderson & Jensen
J Theor Biol. 232, 551 (2005)
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From Laird & Jensen, Ecol Compl. 3, 253 (2006) 
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Time evolution of
    Species abundance distribution  

    Non Correlated

              Low connectivity                High connectivity

From Anderson & Jensen
J Theor Biol. 232, 551 (2005)

Until recently (Krause et al., 2003), there has been
little evidence of this clustering or compartmentalization
in nature (Pimm and Lawton, 1980). Krause et al.
indicate that compartments may have been overlooked
in several well-known food webs, and may well play an
important role. In the Tangled Nature model, whilst
clustering is inevitable at t ¼ 0 when individuals are
randomly thrown down due to the low underlying
connectivity, it could have been the case that the
dynamics found a large, interconnected cluster that
existed in the bare network. Clearly this does not
happen and compartments remain. This further adds to
the evidence that the low y case is ecologically
unrealistic. Even the Krause et al. study finds only two
compartments in a 45 taxa ecosystem, as opposed to the
mass of isolated, tiny compartments seen in Tangled
Nature.

3.4. Species abundance

The Species Abundance Distribution or SAD is
important in characterizing ecosystems. It is the
proportion of species that contain r individuals. We
define a species as one site in genotype space. Ideally, we
would like to use a coarse-grained definition more likely
to reflect real ecologies, where species are defined as
groups of points in genotype space echoing the
genotypic cluster species definition introduced by Mallet
(1995). Since the maximum number of genotypes in our
model is only around 106 anyway, the single site species
approach is more appropriate. This is perhaps not so
unreasonable since any two gene sequences differ by at
least 5%; since L ¼ 20: We have been able to extend the
initial results obtained in Hall et al. (2002) and can
consider the evolution of the SAD for high and low y
integrated across all 500 runs, as seen in Fig. 5. The

larger ensembles allow enough statistics for illuminating
conclusions to be drawn. Note that the null model is
absent since when individuals are sprinkled randomly
across the living sites, there is no tendency for
accumulation on any particular site, so the individuals
follow a multinomial distribution.

The key result of this paper is that only high y leads to
a SAD similar to those observed in nature. Low y is
skewed by its heavily populated two-clusters. The plots
for high y show the log-normal form observed in many
real ecosystems and in other ecological models (McKane
et al., 2000; Hubbell, 2001). They appear to become
more log-normal as time increases with the dip between
four and eight individuals falling, even though the
diversity is rising. Hence, the SAD is evolving. From
this, it seems that the high y case structures itself more
like a real ecosystem than low y; whose SAD develops a
sharper peak as the two-clusters become densely
occupied. The single cluster of highly interdependent
genotypes produces a reasonable SAD that cannot be
formed by patches of isolated clusters.

Thus the abstract parameter y; which cannot be
measured in a simple way in real systems, is directly
linked to the easily observed SAD. We recall that low
values of y correspond to a world in which different
species, or types, are able to influence only a small
number of other species. High values of y correspond to
the situation where different types may have an impact
on the vitality of a large number of other species.

The initial descent in both curves from the global
peak at r ¼ 1 is due to the large number of sites with
only one occupant. In nature, sampling difficulties
would mean that these sites would not be detected so
this first aspect is not seen or is at least much smaller in
observed SADs. (It is particularly marked for our model
since we use each site as one species and do not coarse-
grain.) But the second peak does correspond well to
results from the field, though it should be pointed out
that the proportion of all sites with more than two
individuals is only about 30% in each case. However,
this is sufficient to detect the evolution of the SAD. It
should also be remembered that whilst stochasticity is an
important effect when the number of individuals is small
(as it is in any one run), we integrate across 500 runs and
so the second peak is a real effect and not just due to
fluctuations.

We note that recent studies of a simplified version of
the Tangled Nature model described in Rikvold and
Zia (2003a,b); Zia and Rikvold (2004) found no
temporal evolution of the statistics of the model. The
reason for this may be that they use a relatively short
genome length L ¼ 13 together with a very substantial
simulation time of order 107 generations. We have
observed previously that the time to reach a stationary
state explodes with genome length (Christensen et al.,
2002).
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The evolved degree distribution  
 Correlated

Exponential becomes 1/k in limit of vanishing mutation rate

0 5 10 15 20 25
Degree, k

1e-05

0.0001
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P(
k)

D=29
D=26
D=19
Binomial, D=29

Figure 1: Degree distributions for the Tangled Nature model simulations. Shown are ensemble
averaged data taken from all networks with diversity, D = {19, 26, 29} over 50 simulation runs
of 106 generations each. The exponential forms are highlighted by comparison with a binomial
distribution of D = 29 and equivalent connectance, C!0.145 to the simulation data of the same
diversity.

a greater degree of resilience to random species extinctions. The stability arguments
are certainly valid but it may actually be the case that the distributional forms appear
as a consequence of the internal dynamics. When we perform simulations with random
inheritance the degree distributions revert back to binomial form. This implies that
the correlations are an essential requirement for constructing our exponential networks.
To support this theory we shall now present a network model that produces a range of
non-binomial distributions through correlated dynamics, without any form of selection.

4 Network evolution model

We consider a system with a fixed number of species, D, each defined by generalised
interactions with subsets of the other system members. Self-connections are excluded here
and as the interaction types are not explicitly considered, the connections are regarded
as undirected. This represents a simplified species interaction network that, in principle,
embodies interaction types such as mutualism in addition to the usual food-web based
predator-prey relationships. As a result, the networks we consider here are not expected to
assume non-cyclic tree structures nor the stratified trophic levels associated with resource
flow.

We now initiate dynamics representing extinction and correlated speciation with the
constraint of an invariant species number. Newly speciated members are seen to super-
sede extinct members without any implication of cause nor effect. This invariance of
the species number can be treated as a consequence of a carrying capacity and whilst
simplistic is a reasonable approximation to an ecosystem. At a timestep, we randomly

5

From Laird & Jensen, Ecol. Model. In Press
See also Laird & Jensen, EPL, 76, 710 (2006)
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The evolved connectance  
 Correlated
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Figure 4: Plot of ensemble-averaged mean connectances, < C > against species diversity. Error
bars represent the standard error. The lower dotted line marks the null system connectance,
CJ = 0.05, which the evolved systems clearly surpass. The overlaid functional form is that given
by Eq.(8) using the correct background connectance, CJ = 0.05 and with a value of, s = 5.5 for
the selection parameter.

underlying point remains valid. Selection is driving the system to higher edge numbers
and equivalently higher connectances. But as we increase the number of nodes in our
subnetwork the probability of achieving a given connectance diminishes, resulting in a
decreasing functional form. If we compare Eq.(8) to the ensemble data acquired from the
Tangled Nature model we see that the form is qualitatively appropriate, Fig.(4). With
a background connectance of CJ = 0.05, the value used in the simulations, the fit is
good but not ideal. The simulation networks presented exponential-like degree distribu-
tions though so a formulation based upon binomial networks could be responsible for this
deviation at higher diversities.

6 Discussion

We have shown here that the exponential degree distributions of the correlated Tangled
Nature model may be attributed to dynamical rather than selective processes. Our
network evolution model dynamics generate distributions ranging from binomial through
exponential to power-law which encompasses the Tangled Nature model results and many
of the forms observed in real ecological systems. In the case of the power law distribution
our exponent γ!1 compares well with the low values associated with ecological networks
that take power law form. The network dynamics are appropriate given the type of system
but the model is idealised and ignores other determining factors, such as migration. The
random introduction of species acts to decorrelate the system so future work would need
to take account of such wider considerations.

Several theories have been proposed to explain the inverse relationship between con-

10

From Laird & Jensen, Ecol Compl. 3, 253 (2006) 

〈C〉 =
# Edges

# Possible Edges
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Connectance  
4.3. Network properties CHAPTER 4.

Figure 4.11: Field data showing connectance versus diversity for a variety of eco-
logical systems. Data is taken from articles by Montoya et al [18] and Williams et
al [19] mostly representing the same ecosystems. The connectances of the original
articles have been doubled to make their measures consistent with the connectance
definition in this thesis (see text).

4.3.2 May-wigner criterion for ecosystem stability

It was a commonly held view that the stability of an ecological network was en-

hanced by increased complexity. There are many notions of complexity [73], but

here we primarily mean the connectance. The perception was that the larger num-

ber of interaction paths between species acts to dampen any natural fluctuations or

environmentally-sourced perturbations. This seemed reasonable and is intuitive if we

think of the concurrent effects of the feedback loops as being averaged out. This

intuition can be misleading though. If we consider, as an approximation, that the

interaction effects occur as random normally distributed fluctuations each identically

distributed and independent then the dampening viewpoint is inappropriate. The

volatility of these fluctuations is measured by the standard deviation of the normal

distribution. As the summed effects of multiple sources of the fluctuations leads to

a variance which is a sum of the individual variances we have an overall standard
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Degree Distribution
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Degree distribution: Exponential, except in limit where 1/k. 

Node model
Species level

Tangled Nature IBM
 Reproducing individuals forming species in type space

Remove node with
all its edges

Copy with 
probabilities

Pp

Pe

Pn

83

Friday, 23 September 2011



Self-consistent Mean Field Degree 
Dynamics 
Resulting evolution equation for degree  distribution 

nk(t + 1) = nk(t) − nk(t)
D

+ 〈k〉nk+1 − nk

D

+ [Pe〈k〉 + Pn(D − 1 − 〈k〉)]nk−1 − nk

D

+ Pp
nk−1

D
+ (1 − Pp)

nk

D

Removed node

Adjacent node looses an edge

Adjacent gains
an edge

Daughter node
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n(k) = n(0) exp[−k/k0]

We can do better - full Fokker-Planck - see
H..J. Jensen, Emergence of Network Structure in Models of Collective Evolution and Evolutionary 
Dynamics. Royal Soc. Proc. A 464, 2207-2217 (2008).

nk(t + 1) = nk(t) − nk(t)
D

+
Pp + (Pe − Pn)〈k〉 + pn〈n〉

D
[nk−1(t) − nk(t)].

k0 →∞ as Pn → 0
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Connectance
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Effect of adaptation on 
connectance
Underlying type space is a binomial net - place a sub-net of size D

Some regions of this space will, due to fluctuations, locally have an above 
average conenctance. It is beneficial for the evolved configurations to 
enter into these regions  
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With increasing size, D, of the adapted sub-net;  it becomes 
increasingly difficult to confine the sub-net to within the above 
average regions 

Increasing D
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Effect of selection on connectance 
Consider a binomial net of size D and 
connectance C (= edge probability).

Assume that adapted sub-net is located in a region of the master-
network in which the total number of edges E is larger than the 
global average.

Estimate this increase as
 
 
E = 〈E(D,C)〉 + sσ(D,C)

= EmC + s[EmC(1 − C)]
1
2

Fluctuations in 
E

Max,i.e., Em=D(D-1)

Fraction
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Effect of selection on connectance
 
The resulting estimate for the connectance, E/Em, of the adapted 
sub-net 
 

CAdap = C + s

[
C(1− C)

Em

] 1
2

= C + s

[
2C(1− C)
D(D − 1)

] 1
2

.

Qualitative agreement with simulations of Tangled 
Nature model
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The evolved connectance  
 Correlated Tangled Nature Simulations

Simon Laird91
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Species Area Relation
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Species area relation:

Dispersion by 
random walk

The introduction of space has many implications for the
model. In the non-spatial case, there were two timescales:
the average lifetime of an individual, and the average
lifetime of a q-ESS, which increased slowly with time. In
the spatial case, we have a third timescale: the time taken
for information of a transition to be transmitted to the
other side of the system. As this occurs only through
transitions at all intermediate lattice points, this can be
very long, much longer than the simulation time. Another
complication is that average q-ESS lifetime now depends
strongly on the state of neighbouring lattice points, as
migrants from different q-ESSs are disruptive but migrants
from similar q-ESSs can actually stabilize a possible
transition. Thus, time averaging is not possible in large
systems, and collecting data on the SAD becomes very
difficult. We therefore focus on calculating the SAR: that
is, the relationship between the number of species found in
an area and the size of the area. We distinguish between the
two size measures: the scale as the sub-area measurement
of a system with size X.

SARs come in many forms, depending on the measuring
system used. Specifically, quoting Scheiner, 2003, there are
three main properties: ‘(1) the pattern of quadrats or
areas sampled (nested, contiguous, non-contiguous, or
island); (2) whether successively larger areas are con-
structed in a spatially explicit fashion or not; and (3)
whether the curve is constructed from single values or
mean values’. We obtain nested, successive, mean-value
data. Thus, for all scales, measurement squares are
contained within a larger scales’ measurement square, no
shapes other than square are considered and we are
averaging over all possible measuring squares from a
specific scale. Scheiner (2003) and Tjørve (2003) discuss the
implications for this.

Approximate SAR power-laws are often encountered in
real systems at ‘medium’ scales: that is, for areas that are
smaller than the continent/land-mass that they are found
on, but large enough to obtain a reasonable sample. Good
examples are plant species in Surrey, UK (Rosenzweig,
1995, p. 9) or bird species in the Czech Republic (Šizling
and Storch, 2004). When looking at other scales different

SARs can be obtained; the distinction between scales is one
that varies with environment and habitat types, and many
functional forms of SAR can be found somewhere. A
general rule (Rosenzweig, 1995, p. 277) is that inter-
provincial relations follow power-law SARs with exponent
larger than intra-provincially; islands inside a province will
also have a larger exponent than the whole province itself
(thus having smaller diversities). A single run in our model
corresponds to a single isolated province as it is spatially
homogenous and self-contained.
A specific instance of our model will not have any real

world equivalent, as we have selected genotype space
interactions and our initial position in it randomly.
However, averages over our model should correspond to
(large and thus self-averaging) real systems for which our
assumptions are approximately valid, as we are effectively
averaging over the possible realizations of genotype space.
Any real world system that does not conform to this
average will be affected by an effect not modelled here—for
example, the geography or resource distribution may be an
important factor.
Real systems have z-values between 0.15 and 0.4

depending on the details of the system (Rosenzweig,
1995). Fig. 3 illustrates real SAR data from Hertfordshire
plants and shows a sample simulation SAR. Both describe
a power-law as are they are linear in log–log space,
logS ¼ z logAþ log a, hence the slope of this line (the z-
value) is the major controlling factor in how quickly
diversity grows with area. For example purposes, we have
chosen the area of a lattice point arbitrarily as 0.4 ha.
However, the true size of a lattice point in our model is not
well defined as the TaNa model implicitly assumes all
species are of equal spatial extension. Hence, we are now
concerned only with the scaling relation: the form of the
SAR being close to a power-law and the value of the
exponent in that power-law.
As each run is a separate instance with its own

evolutionary history, the diversity and z-value variation
between runs is high unless the size is much larger than the
species range; however, the power-law rule holds for all
instances.
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Fig. 3. (a) SARData for Hertfordshire plants taken from Rosenzweig et al. (1995, Fig. 2.2) plotted with simulated data, assuming 1 lattice point is a 0.4 ha
plot ðpmove ¼ 0:025Þ evolved for 40 000 generations. (b) Simulated, evolved SAR plotted for varying pmove from 0:001 to 0:009 (in steps of 0:002); the
shape and start point remains the same, with only the exponent changing.

D. Lawson, H.J. Jensen / Journal of Theoretical Biology 241 (2006) 590–600596

From Lawson & Jensen, J Theo. Biol. 241, 590 (2006) 

Henrik Jeldtoft Jensen                                                 Imperial College London

x plant data from Hertfordshire, see 
ML Rosenzweig, Species Diversity in Space and Time,
Cambridge University Press, 1995
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Diversity and Interaction 
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Diversity and interaction
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Diversity and interaction

From Lawson, Jensen & Kaneko, J Theo. Biol. 243, 299 (2006) 96
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Origin of threshold in k:
A balance between inter-species and intra-species
Interaction.
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Variation in the 
environment 
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Variation in the external conditions

Manipulate µ
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Variation in the external conditions
Graph 
courtesy to 
Matt Hall
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Variation in mutation rate
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Variation in the external conditions
Graph 
courtesy 
to 
Matt Hall
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Extinction of single types
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Variation in the external conditions

Graph 
courtesy 
to 
Matt Hall
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Variation in the external conditions

Graph 
courtesy to 
Matt Hall
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The individual in ever evolving surroundings:

 Collective system level adaptation towards     
     mutualistic biased webs of interactions   

 Macro-Evolution through intermittent transitions
 

 Type space properties -> network charateristics

Henrik Jeldtoft Jensen                                                     Imperial College London106
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Tangled Economy
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Use correlated J(S1,S2)
Consider S to label economical entities, say companies of capital C(S,t)

Dynamics:
Define Pgain(S, t) =

exp[H(S, t)]
1 + exp[H(S, t)]

With probability

let
J+(S) =

∑
S′ J(S,S′)θ[J(S,S′)]

J−(S) =
∑

S′ J(S,S′)θ[−J(S,S′)]

C(S, t + 1) = C(S, t)(1 + cg
J+(S)
JTot(S)

)

C(S, t + 1) = C(S, t)(1 + cl
J−(S)
JTot(S)

)With probability 1− Pgain(S, t)

Pgain(S, t) :

:
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Comparison between data and model:
Volume as GDP

In model

GDP(t) =
∑

S

C(S, t)

David Robalino, 
MSci Thesis

109
Friday, 23 September 2011



Comparison between data and model:
Growth rate

David Robalino, 
MSci Thesis
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Comparison between data and model:
Size of companies

David Robalino, 
MSci Thesis111
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Comparison between data and model:
Company age

David Robalino, 
MSci Thesis
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Comparison between data and model:
Number of companies

David Robalino, 
MSci Thesis
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Ant colonies

 

On ants: TO Richardson , EJH Robinson, AB Sendova-Franks,

           NR Franks, E Arcaute, K Christensen
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Ant colonies

Time

No. of ants in nest

t1 t2 t3 t4
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Ant colonies

Henrik Jeldtoft Jensen, Imperial College London 

T.O. Richardson, E.J.H. Robinson, K. Christensen, H.J. Jensen, N.R. Franks and A.B. Sendova-Franks, Record Dynamics in Ants, PloS One, 5, e9621 (2010).
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Ant colonies

Henrik Jeldtoft Jensen, Imperial College London 117
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Earthquakes 

The quakes are instantaneous on the time scale 
of the driving.

 
         after shocks relaxation under fixed 
         boundary conditions

         Omori 1/t independent of ‘everything’
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Earthquakes shocks - aftershocks
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Figure 5. Seismic decay rates of stacked sequences for several magnitude intervals of the mainshocks,

for the period from 1932 to 2003 when using the first declustering technique.

From Ouillon and Sornette
Magnitude-depended Omori law,  J Geophys Res 111, B04306 (2005)
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Record dynamics    

The implicit nature of the relevant 
configuration/state space

B1

B2

B3

B1 ! B2 ! B3
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Record dynamics    

Questions:

Which fluctuating quantity undergoes records?  

or in other words: the events are related to which 
records?
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Consequences of record dynamics.

  Statistics of quake times independent of

  underlying “noise mechanism”.

• Magnetic relaxation: temperature independent  
                               creep rate

• Spin glass: exponential tails

• Biology: same intermittent dynamics in micro- as in 
             macro-evolution - only different scales. 

             Decreasing extinction rate. 
• Ants: don’t really know yet!

• Earthquakes: Omori law ! ? ! 
122
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Conclusion 

 Generic dynamics of complex systems is often:
• Non-stationary

• Intermittent record dynamics  -  “quakes”

• Rate of activity ~ 1/t

• Stationary Poisson as function of  log(t)

123

  

 and some times it is:
• stationary

• Intermittent avalanches - SOC (?)
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Thank you

Slides can be down loaded from 

http://www2.imperial.ac.uk/~hjjens/
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Onset of synchronization

Micro to macro time
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Topics:
   > topology and synchronisation
       > on static networks
       > on evolving networks
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Synchronization and the topology of networks

dθi

dt
= ω +

∑

j

Kij sin(θi − θj) i = 1, 2, ..., N

128

Kuramoto model

i

j
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Synchronization and the topology of networks
Arenas, Diaz-Guilera and Perez-Vicente Phys. Rev. Lett. 96, 114102 (2006)

dθi

dt
= ω +

∑

j

Kij sin(θi − θj) i = 1, 2, ..., N

z1 + z2 + z3 = Ztot
130

Rank the eigenvalues of the 
Laplacian Matrix

0 ≤ λ1 ≤ λ2... ≤ λN

Linearised Kuramoto
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Synchronization and the topology of networks

Arenas, Diaz-Guilera and Perez-Vicente Phys. Rev. Lett. 96, 114102 (2006)

dθi

dt
= ω +

∑

j

Kij sin(θi − θj) i = 1, 2, ..., N

z1 + z2 + z3 = Ztot

Ztot = 18
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Fireflies - The Movie 

BBC - Trails of Life132
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θi

θi(t + δt) = θi(t) + δt[ωi +
∑

j

Kij sin(θj(t)− θi(t))]

Kij =
L(j)
r2
ij

L(j) = increasing with synch of cluster j
133
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xi
t+1 = (1− c)f(xi

t) + c
N∑

j=1

wij
t f(xj

t )

f(x) = ax(1− x)

wij
t+1 =

[1 + δg(xi
t, x

j
t )]w

ij
t∑N

q=1[1 + δg(xi
t, x

q
t )]w

iq
t

g(x, y) = 1− 2|x− y|

Ito-Kaneko model

Ito and Kaneko, PRL 88, 028701, (2001) and PRE 67, 046226 (2003)135
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Onset of synchronisation near the O/D border

Benköe and Jensen, J Phys, A, 43 165102 (2010)

Simple description:
Synch events proportional to the 
rate with which two units “collide”

Nsynch(t)
dt

= k(N −Nsynch(t))2

⇓

Nsynch(t) = N − 1
1/N + kt

136
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Conclusion

Dynamics closely related to topological 
structure

  > macroscopic temporal patterns reflect 
    underlying (dynamical) spatial structure  
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Thank you

Slides can be down loaded from 

http://www2.imperial.ac.uk/~hjjens/
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