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SUMMARY

Direct use of the likelihood function typically produces severely biased estimates when the
dimension of the parameter vector is large relative to the effective sample size. With linearly
separable data generated from a logistic regression model, the log-likelihood function asymptotes
and the maximum likelihood estimator does not exist. We show that an exact analysis for each 10

regression coefficient produces half-infinite confidence sets for some parameters when the data
are separable. Such conclusions are not vacuous, but an honest portrayal of the limitations of the
data. Finite confidence sets are only achievable when additional, perhaps implicit, assumptions
are made. Under a notional double-asymptotic regime in which the dimension of the logistic
coefficient vector increases with the sample size, the present paper considers the implications 15

of enforcing a natural constraint on the vector of logistic-transformed probabilities. We derive a
relationship between the logistic coefficients and a notional parameter obtained as a probability
limit of an ordinary least squares estimator. The latter exists even when the data are separable.
Consistency is ascertained under weak conditions on the design matrix.

Some key words: Binary responses; Complete and quasi-complete separation; Conditioning; Regression; Sufficiency. 20

1. INTRODUCTION

1.1. Background
The analysis of binary response data commonly assumes a logistic regression model for which

the distribution of response variables Y1, . . . , Yn is

pr(Yi = 1) =
ex

T
i β

∗

1 + ex
T
i β

∗ , pr(Yi = −1) = 1− pr(Yi = 1) (1)

for some unknown parameter β∗ ∈ Rp and covariates x1, . . . , xn ∈ Rp, treated as fixed. This 25

was proposed by Cox (1958) and is the unique model for binary data yielding the same simple
sufficient statistics for the regression coefficients as in a normal-theory linear model. His exact
conditional inference based on combinatorial calculations evades maximum likelihood fitting
and simultaneously achieves relevance and elimination of nuisance parameters. See Chapter 4 of
Cox (1970) or Mehta & Patel (1995) for a more explicit and general exposition than that of Cox 30

(1958).
Motivated by high-dimensional models arising in modern scientific applications, notably ge-

nomics, there has been increased interest in theoretical treatments that allow for a notional dou-
ble asymptotic regime p, n → ∞. Even prior to the genomics applications, this setting interested
Bartlett (1936, 1937), who used it to illustrate serious difficulties with maximum-likelihood- 35
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2 R. M. LEWIS AND H. S. BATTEY

based approaches and advantages of using marginal and conditional likelihood, when available.
The approach of Cox (1958) is in this vein. It has some practical limitations, notably a possible
degeneracy of the problem when covariates are continuous, and also the computational difficulty
associated with the combinatorial quantities involved, see section 3.1.

Perhaps for these reasons, the exact conditional analysis is not widely used. Instead, the pre-40

vailing approach to inference in logistic regression models, and more generally, is based on
maximum likelihood estimation and asymptotic calculations local to the null hypothesis, fol-
lowing Wald (1950). It is well-known that the resulting estimates and confidence intervals are
asymptotically calibrated when p is fixed and n is large. However there exist both practical and
theoretical difficulties with this approach, particularly in high-dimensional regimes. The first is45

that the maximum likelihood estimator does not exist if and only if the data can be separated, that
is, whenever the outcome-covariate pairs (y1, xT1 )

T , . . . , (yn, x
T
n )
T are such that yixTi β ≥ 0 for

all i and for some non-zero β ∈ Rp (Albert & Anderson, 1984). For centred Gaussian covariates,
Candès & Sur (2020) derived the liming probability that the data can be separated in terms of
the relative dimension p/n → κ and a function of the signal strength. This probability converges50

to one when κ exceeds a threshold, illustrating the difficulties encountered in high-dimensional
regimes.

Issues are also encountered when the maximum likelihood estimator exists. In the same lim-
iting setting p, n → ∞ with p/n → κ > 0, Sur & Candès (2019) showed that the maximum
likelihood estimator can be severely biased when the design matrix is treated as random with in-55

dependent and identically distributed entries. They further showed that standard error estimates
based on fixed-p maximum likelihood theory underestimate the true variability, and that the χ2

1

limiting approximation to the distribution of likelihood ratio test statistic is poor. Related work is
due to Zhao et al. (2020) who obtained similar results for Gaussian designs with arbitrary covari-
ance structures. Similar ideas have been explored in more general models by Coolen et al. (2020),60

who sought to correct the average bias in the p maximum likelihood estimates using ideas from
statistical physics, and Tang & Reid (2020), who clarified the extent to which classical higher-
order inference based on the so called r∗ statistic continues to hold under the p, n → ∞ regime.

Motivated by the issues summarised above, this work clarifies the extent to which inference
is possible in logistic regression models with separated data and proposes an alternative to max-65

imum likelihood estimation valid for these settings. We begin by studying the exact conditional
inference of Cox (1958), showing that in the presence of data separation, at least one of the ex-
act conditional confidence intervals is of infinite length in at least one direction. The results are
then extended to arbitrary exact confidence sets. Such conclusions are not vacuous and are the
best that could be hoped for without further assumptions or data. In high-dimensional regimes,70

however, it is common to make further restrictions that allow for consistent estimation of the un-
known regression parameter. We introduce an approach based on least squares that is consistent
in both the ℓ∞ and ℓ2 norms when p, n → ∞ with p < n, under weak conditions on the design
matrix. These guarantees are shown to apply to cases with separated data.

1.2. Our approach75

Our work is concerned with settings in which the true model is thought to be logistic but that
separation precludes logistic likelihood fitting. Because the sufficient statistics are the same in
logistic regression as in a notional linear in probability model, the maximum likelihood estimates
of the logistic coefficients, if they exist, are recoverable from the ordinary least squares estimates
obtained by treating the model for the probabilities as linear, as shown in Proposition 6. This80

suggests an approach to inference on the logistic coefficients based on the ordinary least squares
estimator.

Page 2 of 21

http://mc.manuscriptcentral.com/biometrika

Manuscripts submitted to Biometrika

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad065/7338235 by guest on 05 N

ovem
ber 2023



Biometrika style 3

We establish a relationship between the logistic regression coefficients and the limiting values
of the ordinary least squares estimates, and use this as a basis for componentwise estimation on
β∗. In particular, assuming the existence of a consistent estimator of Xβ∗, this typically being 85

easier to obtain than an estimate of the entries of β∗, we manipulate the least squares estimator
to obtain a corrected least square estimator whose entries converge uniformly to those of the
parameter of interest. Whilst biased, we then show that the LASSO (Tibshirani, 1996) estimate
of β∗ produces a consistent estimator of Xβ∗ when the unknown parameter is suitably sparse and
maxni=1 |xTi β∗| ≤ c1

√
log n for some c1 > 0. These conditions bound the entries of the unknown 90

parameter thereby avoiding the issues caused by separation. Asumptions of this form are natural
in high-dimensional regimes, see for example van de Geer et al. (2014).

Least-squares fitting of a linear regression model to binary data has been explored by Cox &
Wermuth (1992) and Battey et al. (2019). The latter work parameterised the linear in probability
model as 95

pr(Yi = y) = (1 + yxTi β
0)/2

under the restriction that for all data x, |xTβ0| ≤ 1. Ordinary least squares was the recommended
approach for estimating the unknown parameter β0 as this is more robust than maximum like-
lihood estimation to observations that invalidate the condition |xTβ0| ≤ 1. While there are ad-
vantages, notably of interpretation and existence of estimates, there are difficulties in treating the
linear in probability model as generative. Indeed, the restriction to data x satisfying |xTβ0| ≤ 1 100

violates McCullagh’s (2002) formal definition of a statistical model. For this reason we consider
the generative model as logistic and use a relationship between the logistic coefficients and the
probability limit of the ordinary least squares estimator to obtain a consistent estimator of the
logistic parameters.

1.3. Related work 105

To avoid the issues encountered by maximum likelihood estimation in the logistic regression
model, a number of methods have been proposed for use. When the maximum likelihood es-
timator exists, Sur & Candès (2019) introduced the Probe-Frontier method to correct the bias
and consistently estimate β∗ when p is large. Yadlowsky et al. (2021) remarked on the com-
putational difficulties involved in using the Probe-Frontier method and proposed an alternative 110

named SLOE. Both approaches rely on the existence of the maximum likelihood estimator and
so are unsuitable for settings with separated data.

When the data are separated, Firth’s (1993) bias reduced estimator has been recommended for
use, see for example Heinze & Schemper (2002). Kosmidis & Firth (2021) showed that Firth’s
(1993) estimator always exists and established an analogous result for a more general version 115

obtained by penalising the logistic log-likelihood function using a Jeffreys-prior penalty with
arbitrary tuning parameter. Additionally, when p is fixed and n → ∞, the first order asymptotic
distribution of Firth’s estimator coincides with that of the maximum likelihood estimator (Firth,
1993). It is unclear how Firth’s (1993) estimator behaves when the maximum likelihood estima-
tor does not exist and there are currently no theoretical guarantees when p, n → ∞. 120

Although not proposed with this situation in mind, maximum likelihood estimation with cer-
tain forms of penalty on β∗ ensures existence of an estimator when data are separated. Such
estimators have been shown to have low composite estimation and prediction errors with high
probability under sparsity assumptions (e.g. Duffy & Santner, 1989; van de Geer, 2008; Meier
et al., 2008; Fan & Peng, 2004), however their components are biased for β∗

j , j = 1, . . . , p. We 125

make use of this observation to construct a consistent estimator of logistic regression coefficients
using a consistent estimator of Xβ∗, the latter typically being easier to obtain. Unlike the infer-
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4 R. M. LEWIS AND H. S. BATTEY

ential procedures of van de Geer et al. (2014), Ning & Liu (2017), Ma et al. (2021), Shi et al.
(2021) and Cai et al. (2021) which entail correcting the bias of penalised estimators and require
a consistent estimator of β∗ in either the ℓ1 or ℓ2 norm, our procedure only requires that Xβ∗

130

be estimated consistently, making it applicable to a broader range of settings, see for example
Raskutti et al. (2011).

2. NOTATION AND LIKELIHOOD FRAMEWORK

Let n observations on p variables be represented as vectors x1, . . . , xn ∈ Rp, and let X ∈
Rn×p be the matrix with rows xTi . We assume throughout that X has full-rank, a condition135

that can always be checked once the data have been observed and which does not affect the
presence of separation. Let Col-Sp(X) denote the column-span of X and PX = X(XTX)−1XT

the projection matrix onto Col-Sp(X). Each element of the response vector Y = (Y1, . . . , Yn)
T ,

taking values in {−1, 1}, is assumed to be an independent random variable with distribution
given in (1). A realisation of Y is written in lower case. Define Γ ∈ Rn×n to be the diagonal140

matrix with (i, i)-th entry given by Γii = Var(Yi). Let β̂∗ be the maximum likelihood estimator
or MLE, when it exists, of β∗ and let β̂0 = (XTX)−1XTY be the ordinary least squares, or OLS,
estimator. Define β0 to be the limiting value of β̂0 as p, n → ∞ with p < n. Unless otherwise
specified, this is the notional limiting operation assumed throughout.

For a function f : R 7→ R and a vector v, we use f(v) to denote the vector with ith entry f(vi).145

The vector ℓ1, ℓ2 and ℓ∞ norms are given by ∥ · ∥1, ∥ · ∥2 and ∥ · ∥∞. If the argument is a matrix,
these refer to the matrix norms induced by the corresponding vector norms. The Frobenius norm
is written ∥ · ∥F . The minimum and maximum eigenvalues of a square matrix are written λmin(·)
and λmax(·) respectively. For a set S ⊆ Rn, the notation S⊥ refers to its orthogonal complement

S⊥ = {u ∈ Rn : uT v = 0 ∀v ∈ S}.

For a univariate random variable Z, the sub-Gaussian norm is given by150

∥Z∥ψ2 = sup
q≥1

q−1/2(E|Z|q)1/q.

3. EXACT INFERENCE WITH SEPARATED DATA

3.1. The exact conditional analysis of Cox (1958)
In the logistic regression model, the log-likelihood function at an observation y =

(y1, . . . , yn)
T is given by

ℓ(β) = log

{
exp(

∑p
j=1tjβj)∏n

i=1(1 + ex
T
i β)

}

where tj =
∑n

i=1 xijzi and zi = (yi + 1)/2 ∈ {0, 1}. Let Tj and Zi be the random versions of155

these quantities, obtained by replacing yi by Yi. When the data are separated, the log-likelihood
function asymptotes and so inference via maximum-likelihood fitting is unavailable.

Suppose that only inference on the first component β∗
1 is of interest, the other entries

β∗
2 , . . . , β

∗
p being regarded as nuisance parameters. When all entries of β∗ are of interest each

entry may be treated in turn as the single interest parameter. Cox (1958) argued that inference on160
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Biometrika style 5

β∗
1 should be based on the conditional distribution of T1 given T2, . . . , Tp given by

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) =
c(t1, . . . , tp)e

β∗
1 t1∑

u∈T1
c(u, t2, . . . , tp)e

β∗
1u

(2)

where

c(t1, . . . , tp) =
∣∣∣{z̃ ∈ {0, 1}n :

n∑
i=1

xikz̃i = tk, ∀k = 1, . . . , p
}∣∣∣

is the number of realisations of the outcome variable that produce the same observed values of
the sufficient statistics T1, . . . , Tp, and

T1 =
{∑n

i=1xi1z̃i : z̃ ∈ C1

}
, C1 =

{
z̃ ∈ {0, 1}n :

∑n
i=1 xikz̃i = tk, ∀k = 2, . . . , p

}
.

Let 165

f(v | b) = c(v, t1, . . . , tp)e
bv∑

u∈T1
c(u, t2, . . . , tp)ebu

be the conditional probability that T1 = v when β∗
1 = b, and

F1(t1 | b) =
∑

v≥t1f(v | b), F2(t1 | b) =
∑

v≤t1f(v | b)

be the conditional probabilities that T1 ≥ t1 or T1 ≤ t1. On replacing t1 by T1 in the definitions
above, Cox (1970) constructed a (1− ϑ)-level exact confidence set for β∗

1 as (β−
1 (T1), β

+
1 (T1))

where {
F1{T1 | β−

1 (T1)} = ϑ/2 if tmin < T1 ≤ tmax

β−
1 (T1) = −∞ if T1 = tmin

and 170{
F2{T1 | β+

1 (T1)} = ϑ/2 if tmin ≤ T1 < tmax

β+
1 (T1) = ∞ if T1 = tmax,

with tmin and tmax the minimum and maximum values of the set T1.
Let (β−

1 (t1), β
+
1 (t1)) be the observed confidence interval for β∗

1 . We show that the observed
value of t1 coincides with either or both of tmin and tmax when the data are linearly separable.
It follows that the exact conditional confidence interval defined above is of infinite length. When
the data are completely separated, that is, when there exists β ∈ Rp\{0} such that yixTi β > 0 175

for all i = 1, . . . , n, the interval may equal the whole real line.

PROPOSITION 1. Suppose the data are separated by some vector β ∈ Rp\{0}. If β1 > 0 then
the upper limit of the confidence interval satisfies β+

1 (t1) = ∞ and if β1 < 0 then the lower limit
of the confidence interval satisfies β−

1 (t1) = ∞. If additionally the data are completely separated
with β1 = 0, the conditional likelihood satisfies 180

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) = 1, ∀β∗
1 ∈ R

and the exact confidence interval is the trivial interval (β−
1 (t1), β

+
1 (t1)) = R.

The result above only requires existence of one such β. If the data can be separated by multiple
vectors, say β(1), β(2) ∈ Rp with β

(1)
1 < 0 < β

(2)
1 , then the result may be applied to each vector

separately to conclude that (β−
1 (t1), β

+
1 (t1)) = (−∞,∞).
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6 R. M. LEWIS AND H. S. BATTEY

In section 3.2, we show that all exact confidence sets necessarily contain infinite half intervals,185

irrespective of how they are constructed, and thus the restrictions outlined above are limitations
of the data and not the method of analysis.

3.2. Other forms of exact analysis

Define CS(1)
ϑ (T1) ⊆ R to be an arbitrary (1− ϑ)-level exact conditional confidence set for β∗

1

satisfying190

pr{β∗
1 ∈ CS(1)

ϑ (T1) | T2 = t2, . . . , Tp = tp} ≥ 1− ϑ, ∀β∗
1 ∈ R. (3)

Let CS(1)
ϑ (t1) be its observed value. The following result outlines the form of these sets in the

presence of separation.

THEOREM 1. Suppose the observed data are separated by β ∈ Rp\{0}. If β1 > 0 then there
exists B > 0 such that [B,∞) ⊆ CS(1)

ϑ (t1) and if β1 < 0 then there exists B > 0 such that
(−∞,−B] ⊆ CS(1)ϑ (t1). If additionally the data are completely separated with β1 = 0, the con-195

ditional likelihood satisfies

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) = 1, ∀β∗
1 ∈ R

and the exact confidence set is CS(1)
ϑ (t1) = R.

Similar results are obtained when an unconditional analysis is performed. This makes use of
the distribution of the response vector Y rather than the conditional distribution of T1 given
T2, . . . , Tp. Define CSϑ(Y ) ⊆ Rp to be a (1− ϑ)-level exact unconditional confidence set for200

β∗ satisfying

pr{β∗ ∈ CSϑ(Y )} ≥ 1− ϑ, ∀β∗ ∈ Rp

with observed value CSϑ(y) ⊆ Rp, and let CS(1)
ϑ (y) be the projection of CSϑ(y) onto its first

component.

THEOREM 2. Suppose the observed data are separated by β ∈ Rp\{0} and let m ∈
{0, 1, . . . , n} be the number of observations satisfying xTi β = 0. Assume ϑ < 2−m. If β1 > 0205

then there exists B > 0 such that [B,∞) ⊆ CS(1)
ϑ (y) and if β1 < 0 then there exists B > 0 such

that (−∞,−B] ⊆ CS(1)
ϑ (y). If additionally the data are completely separated by β and β1 = 0,

then CS(1)
ϑ (y) = R.

Theorems 1 and 2 show that all confidence sets with exact coverage guarantees, either condi-
tional or unconditional, contain at least one unbounded interval of the form [B,∞) or (−∞,−B]210

where B > 0. In some settings, these sets are equal to the whole real line. As a result, only lim-
ited information about the unknown parameter is available from data that are linearly separable.
The most severe setting occurs when the data can be completely separated by some β ∈ Rp\{0}
with β1 = 0, in which case there is never enough evidence to reject a null hypothesis concern-
ing only β∗

1 , whatever this might be. Even when the data can be separated but not completely215

separated, one-sided hypotheses of the form H0 : β
∗
1 > b0 or H0 : β

∗
1 < b0 for b0 ∈ R cannot

be rejected, depending on the sign of the first entry of the separating parameter. Any refinement
requires either additional data or further assumptions.
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Biometrika style 7

The non-existence of finite confidence intervals also affects estimation as, for example, it
is impossible to guarantee that an estimate of an entry of β∗ lies in a small region about the 220

unknown parameter with a pre-determined probability. Indeed, if there existed such an estimate
β̂1 of β∗

1 satisfying

pr(|β̂1 − β∗
1 | < ϵ) ≥ 1− ϑ, ∀β∗

1 ∈ R

for some ϵ > 0 and ϑ ∈ (0, 1), then [β̂1 − ϵ, β̂1 + ϵ] would be an exact (1− ϑ)-level confidence
interval for β∗

1 with bounded support. Markov’s inequality implies that the variance of any such
estimate is unbounded as a function of the unknown parameter. 225

In high-dimensional settings, restrictions on Xβ∗ are natural and often made. These justify
our approach to estimation based on least squares, to be presented in section 5, which has sta-
tistical guarantees even when the maximum likelihood estimator does not exist or exhibits poor
performance. Our results are asymptotic, allowing both the dimension p and the sample size n to
diverge simultaneously. 230

4. PRELIMINARY RESULTS

We begin by studying the limiting behaviour of the least squares estimator β̂0 in the logistic
regression model. This motivates a construction that allows consistent estimation of the logistic
coefficient of interest. Since the dimension p is allowed to grow under the notional operation
n → ∞, the limit distribution of β̂0 is not well-defined. Instead we consider the behaviour of 235

linear functions αT β̂0, where choices of particular interest are α equal to one of the canonical
basis vectors for Rp or representing simple contrasts of the entries of β̂0. Thus assume α ∈ Bd
for some d > 0 where

Bd = {α ∈ Rp : ∥α∥0 ≤ d, ∥α∥2 ≤ 1}

is the sparse ℓ2-ball of radius one in Rp. The following result shows that linear functions of the
least squares estimator converge in probability to similar functions of 240

β0 = (XTX)−1XT tanh(Xβ∗/2).

PROPOSITION 2. Define

XB =

{
X : sup

α∈Bd

∥αT (XTX)−1XT ∥22 ≤ Bn−1

}
for some constant B > 0. When d = o(n), d log(p/d)/n = o(1) and t > 0,

sup
X∈XB

pr

{
sup
α∈Bd

|αT (β̂0 − β0)| ≥ t

}
= o(1). (4)

The result in Proposition 2 is stated uniformly over all design matrices contained in the set
XB . Justification for this will be provided at a later stage. For now, it is sufficient to consider a
single design matrix satisfying ∥αT (XTX)−1XT ∥22 = O(n−1), for which it follows that 245

∥β̂0 − β0∥∞ = oP (1), p−1/2∥β̂0 − β0∥2 = oP (1)
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8 R. M. LEWIS AND H. S. BATTEY

provided the diagonal entries of (XTX/n)−1 are asymptotically bounded above under no re-
strictions on p beyond p < n. This may be seen by setting d = 1 in Proposition 2. Proposition 3
strengthens the latter result, showing that the rate of convergence in ℓ2-norm is of order p−1/2.

PROPOSITION 3. Suppose λmax{(XTX/n)−1} = O(1). Then,

p−1/2∥β̂0 − β0∥2 = OP (p
−1/2)

and when p = o(n),250

∥β̂0 − β0∥2 = oP (1).

For inference on the entries of β∗, the limiting distribution of the least squares estimator is of
interest. Proposition 4 shows that after suitable normalisation, the distribution of αT (β̂0 − β0) is
asymptotically Gaussian.

PROPOSITION 4. Let Bn = ∥αT (XTX)−1XTΓ1/2∥2 and define R ⊆ Rp to be a set satisfy-
ing255

sup
α∈R

B−1
n ∥αT (XTX)−1XT ∥∞ = o(1). (5)

Then,

sup
α∈R

sup
x∈R

∣∣∣pr{B−1
n αT (β̂0 − β0) ≤ x} − Φ(x)

∣∣∣ = o(1).

Assumption (5) arises when the quantity of interest is expressed as a sum of independent
random variables and central limit type arguments are used to derive its asymptotic distribution. It
is closely related to a Lindenberg condition. Similar assumptions are made by Huber (1973) and
Lei et al. (2018) to establish the asymptotic normality of the least squares estimator in a different260

context. To understand when this assumption holds, suppose the rows of X are independently and
identically distributed as centred, multivariate normal random variables with covariance matrix
Σ and focus on the limiting setting where p, n → ∞ with p/n → κ ∈ [0, 1) and β∗TΣβ∗ → γ2

for some γ > 0. This is a setting that will be considered further in section 7. Let R consist of the
standard basis vectors of Rp. Theorem 2.16 (Bai, 1999) shows that265

sup
α∈R

∥αT (XTX)−1XT ∥−1
2 = OP (n

1/2).

Further, maxni=1 |xTi β∗| = OP (
√
log n) and so

− log(
n

min
i=1

Γii) ≤
n

max
i=1

|xTi β∗| = OP (
√
log n).

As Bn ≥ minni=1 Γ
1/2
ii ∥αT (XTX)−1XT ∥2, a sufficient condition for the left-hand side of (5) to

be oP (1) is

sup
α∈R

∥αT (XTX)−1XT ∥∞ = oP

(
n−1/2e−c

√
logn

)
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Biometrika style 9

for all constants c > 0. Although the distribution of (XTX)−1XT is unknown, if we assume
that the entries of (XTX/n)−1XT are sub-Gaussian with bounded norm, then 270

∥αT (XTX)−1XT ∥∞ = OP (n
−1

√
log n)

= oP

(
n−1/2e−c

√
logn

)
for all c > 0 and so the condition is satisfied.

5. MAIN RESULTS

The previous results motivate a corrected least squares estimator, which is shown in the present
section to be consistent in both the ℓ∞ and scaled ℓ2 norms, and to have some predictive guar-
antees. The considerations involved in obtaining stronger inferential guarantees are also briefly 275

discussed and assessed by simulation.

5.1. The corrected least squares estimator
Section 4 showed that the probability limit of a linear function of the least squares estimator

is a linear function of β0 = f(β∗) where

f(β∗) = (XTX)−1XT tanh(Xβ∗/2).

If this function f were invertible, then a consistent estimator of each entry of β∗ could poten- 280

tially be obtained using f−1(β̂0). The function is not invertible, however we show that it can be
rewritten as

f(β∗) = ςβ∗ + δ

for some ς ∈ R and δ ∈ Rp depending only on Xβ∗. Whilst the entries of β∗ are difficult to
estimate, estimation of Xβ∗ is simpler and leads to an estimator of αTβ∗ in the form

ς̂−1αT (β̂0 − δ̂)

where ς̂ and δ̂ are estimates of ς and δ to be defined. 285

Write

tanh(Xβ∗/2) = ςXβ∗ + u+∆ (6)

where ςXβ∗ is the projection of tanh(Xβ∗/2) onto Xβ∗, u ∈ Col-Sp(X)⊥ and ∆ is the pro-
jection of tanh(Xβ∗/2) onto the subspace

Col-Sp(X) ∩ Col-Sp(Xβ∗)⊥ = {ςXβ∗ + u : ς ∈ R, u ∈ Col-Sp(X)⊥}⊥.

Such a decomposition exists uniquely because the subspaces Col-Sp(Xβ∗), Col-Sp(X) ∩
Col-Sp(Xβ∗)⊥ and Col-Sp(X)⊥ are orthogonal and span the whole of Rn. It follows that 290

ς =

{
1/2 Xβ∗ = 0
(Xβ∗)T tanh(Xβ∗/2)

∥Xβ∗∥22
Xβ∗ ̸= 0,

∆ = (PX − PXβ∗) tanh(Xβ∗/2)

where, to correspond with the definition of ς , we use the notation PXβ∗ tanh(Xβ∗/2) to mean
Xβ∗/2 when Xβ∗ is the zero vector. On definining δ = (XTX)−1XT∆,

β0 = (XTX)−1XT tanh(Xβ∗/2) = ςβ∗ + δ. (7)
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10 R. M. LEWIS AND H. S. BATTEY

Based on this observation, define the corrected least squares estimator to be

β̃∗ = ς̂−1(β̂0 − δ̂)

where ς̂ and δ̂ are given by

ς̂ =

{
1/2 η̂ = 0,
η̂T tanh(η̂/2)

∥η̂∥22
η̂ ̸= 0

δ̂ = (XTX)−1XT P̂ tanh(η̂/2),

with P̂ = PX − Pη̂ and η̂ a consistent estimator of η∗ = Xβ∗ to be discussed next.295

5.2. Assumptions
To ensure that the corrected least squares estimator may be used to estimate β∗, assumptions

are required in addition to X being full rank with p < n. Define

X(1)
B := {X ∈ Rn×p : max{ς−1, λmax{(XTX/n)−1}} ≤ B},

for a constant B > 0. This set satisfies X(1)
B ⊆ XB where XB was defined in Proposition 2.

Condition 1. the unknown parameter satisfies a) p−1/2∥β∗∥2 = O(1) or b) ∥β∗∥∞ = O(1).300

Condition 2. there exists a non-empty HB ⊆ X(1)
B such that for all t > 0,

sup
X∈HB

P{h(η̂, η∗) > t} = o(1)

where η∗ = Xβ∗ and

h(η̂, η∗) =

{
∥η̂ − η∗∥2 η∗ = 0,

max
{

∥η̂−η∗∥2
∥η∗∥2 , ∥η̂−η

∗∥2√
n

}
η∗ ̸= 0.

Condition 1 makes restrictions on the unknown parameter that avoids the issues outlined in
section 3. Part a) follows from part b), although there will be settings where only part a) is needed
and we identify these throughout. Assumptions of this form are common in high-dimensional305

regimes, for example, Condition 1 is implied when β∗ contains at most s = O(1) non-zero en-
tries of bounded magnitude, but may also hold for dense vectors.

Condition 2 ensures the existence of a design matrix X ∈ HB for some B > 0. For this matrix,

max{ς−1, λmax{(XTX/n)−1}} = O(1)

and there exists η̂ where h(η̂, η∗) = oP (1). This second statement guarantees that a consistent
estimator of η∗ = Xβ∗ is available for estimation of ς and δ. The former allows the behaviour310

of the least squares estimator to be controlled, as in Propositions 2 and 3, and limits the accumu-
lation of error when correcting the estimator using ς̂ and δ̂. It is sometimes sufficient to replace
the eigenvalue condition by a weaker one but for notational simplicity, we do not do this here.
When the rows of X are treated as independent and identically distributed observations from an
appropriate distribution and β∗ ̸= 0,315

ς−1 =
n−1

∑n
i=1(x

T
i β

∗)2

n−1
∑n

i=1 x
T
i β

∗ tanh(xTi β
∗/2)

and the weak law of large numbers may be applied to both the numerator and denominator to
deduce that ς−1 = OP (1), see Lemma S8 for details. In section 6 we identify suitable choices of
η̂ and HB that ensure Condition 2 is met.
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For most of the analysis, it will be sufficient to focus on a single X ∈ HB . However, in section
7, we consider the validity of our results in settings with separated data, focusing on the accuracy 320

of our estimator in terms of the ℓ∞-norm. As our results are asymptotic and the limiting proba-
bility of data separation has not yet been considered for fixed designs, section 7 treats the design
matrix as random. To extend our analysis to this framework, we show that consistency in terms
of the ℓ∞-norm in the fixed design setting holds uniformly over all X ∈ HB . It follows that our
estimator consistently estimates the entries of β∗ with respect to certain joint distributions for 325

X and Y , even in settings where data separation occurs with probability converging to one. For
clarity, we use pr(·) to denote the probability conditional on the observed value of the design and
prY,X(·) when considering the joint distribution. The latter only appears in section 7.

Our assumptions make no explicit restrictions on p relative to n beyond p < n. However there
may be some implicit constraints. Section 7 considers a more refined setting where p/n → κ ∈ 330

[0, 1) to evaluate the validity of our approach when the data are linearly separable.

5.3. Consistent estimation
Under the assumptions in section 5.2, the corrected least squares estimator β̃∗ is consistent,

both entry-wise and in terms of the ℓ2-norm. We refer to the latter as the composite estimation
error. This is established in Theorems 3 and 4. In light of the comments in section 5.2, consistency 335

in terms of the ℓ∞-norm is established uniformly over design matrices X ∈ HB in Theorem 3.
All other results focus on pointwise convergence.

THEOREM 3. Suppose conditions 1b) and 2 hold. For all t > 0,

sup
X∈HB

pr( sup
α∈Bd,

|αT (β̃∗ − β∗)| ≥ t) = o(1)

as p, n → ∞ with p < n and d = O(1). In particular,

sup
X∈HB

pr(∥β̃∗ − β∗∥∞ ≥ t) = o(1).

THEOREM 4. Suppose conditions 1a) and 2 hold. If there exist B,N > 0 such that X ∈ HB 340

for all n ≥ N , then,

p−1/2∥β̃∗ − β∗∥2 = oP (1)

as p, n → ∞ with p < n.

To derive these results, the estimation errors were decomposed into terms involving β̂0 − β0,
ς̂ − ς , and δ̂ − δ. The results in section 4 and Condition 2 ensure that these quantities converge
to zero in probability. 345

For the purpose of variable selection, it is the first result that is of most interest. Provided
the non-zero entries of β∗ are sufficiently large, a variable selection procedure that selects the
ŝ indices corresponding to the entries of β̃∗ with the largest magnitudes will asymptotically
prioritise signal variables over noise variables. For a more formal Wald-based test of β̃∗

j = 0
with appropriate calibration, the asymptotic distribution of the corrected least squares estimator 350

is needed.

5.4. A remark on inference
Proposition 5 provides initial insights into the limiting distribution of the corrected least

squares estimator, probed further by simulation in section 8.
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12 R. M. LEWIS AND H. S. BATTEY

PROPOSITION 5. Suppose Condition 2 holds and there exist B,N > 0 such that X ∈ HB for355

all n ≥ N . Assume α ∈ Bd with

B−1
n ∥αT (XTX)−1XT ∥∞ = o(1).

Then, under the null hypothesis H0 : α
Tβ∗ = 0,

αT (β̃∗ − β∗)

ς−1∥αT (XTX)−1XTΓ1/2∥2
= Π1 +Π2 + oP (1)

where

Π1
d→ N (0, 1) , Π2 = −ς/ς̂B−1

n αT (δ̂ − δ).

Proposition 5 shows that, up to the term Π2, the limiting distribution of a scaled version of our
estimator is standard normal. In section 8, we conduct simulations whose results suggest that Π2360

is negligible in the particular cases considered. They also suggest that a normal approximation to
the distribution of the corrected least squares estimator may be accurate even when αTβ∗ ̸= 0.
Neither observation has yet been established theoretically. Part of the difficulty arises in the term
B−1
n , which up to the quantity Γ, is of order n1/2. Then for Π2 to converge to zero in probability,

we would require365

n1/2αT (δ̂ − δ) = oP (1),

however we have only shown that

n1/2αT (δ̂ − δ) = O(∥η̂ − η∗∥2)

which is not expected to be oP (1) in high-dimensional regimes.
If a closed form approximation to the distribution of the corrected least squares estimator

cannot be derived, a bootstrap algorithm may serve to estimate p-values. This has not yet been
considered in detail, but also presents an avenue for future work.370

5.5. Prediction error
Although the primary aim was estimation of the unknown parameter, the prediction error of

the corrected least squares estimator, defined by

n−1/2∥Xβ̃∗ −Xβ∗∥2,

may be of interest. This is somewhat misleading terminology, as Xβ∗ is the vector of logistic-
transformed probabilities. Theorem 5 shows that the above quantity converges in probability to375

a value that depends on the relative dimension p/n and the signal strength.

THEOREM 5. Suppose there exist B,N > 0 such that X ∈ HB for all n ≥ N . Then,

n−1/2∥X(β̃∗ − β∗)∥2 = n−1/2ς−1∥PXΓ1/2∥F + oP (1)

when p, n → ∞ with p < n.

When p = o(n), the error is oP (1) as ∥PXΓ1/2∥F is bounded above by ∥PX∥F =
√
p. When

p/n does not converge to zero, there exist values of β∗ where the prediction error does not380

decay to zero. As a result, whilst the corrected least squares estimator may be usefully used for
estimation and variable screening, it is less suitable for inference on the logistic transforms of
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the individual probabilities. This is unproblematic as Condition 2 assumed the existence of an
alternative estimator suitable for this purpose.

Starting with an initial estimate η̂(1) of η∗, consider an iterative version of our estimator where 385

for i = 1, 2, . . .

ς̂(i) =

{
1/2 η̂(i) = 0,
(η̂(i))T tanh(η̂(i)/2)

∥η̂(i)∥22
η̂(i) ̸= 0

δ̂(i) = (XTX)−1XT {PX − Pη̂(i)} tanh(η̂
(i)/2)

β̃(i) = (β̂0 − δ̂(i))/ς̂(i), η̂(i+1) = Xβ̃(i).

In view of Theorem 5, the iterative version need not perform better than the once-corrected
version, as η̂ = Xβ̃∗ violates the convergence condition in Condition 2. This conclusion was
also checked by simulation but not reported.

6. POSSIBLE CHOICES OF η̂ 390

6.1. Maximum likelihood estimation
When the data cannot be separated, the maximum likelihood estimator exists and may be used

to correct the least-squares estimator. Proposition 6 shows that our estimator obtained by setting
η̂ to Xβ̂∗ recovers the original maximum likelihood estimator.

PROPOSITION 6. Suppose the logistic maximum likelihood estimator β̂∗ exists and let η̂ = 395

Xβ̂∗. Define

ς̂ =

{
1/2 η̂ = 0,
η̂T tanh(η̂/2)

∥η̂∥22
η̂ ̸= 0,

δ̂ = (XTX)−1XT P̂ tanh(η̂/2),

where P̂ = PX − Pη̂. Then, β̂∗ = ς̂−1(β̂0 − δ̂). That is, the corrected OLS estimator recovers
the logistic maximum likelihood estimator.

This result only serves to supply insight and is of no practical relevance. The equivalence to
maximum likelihood estimation in this setting demonstrates that the corrected OLS estimator, 400

without exploiting further assumptions, is subject to the same considerable bias as maximum
likelihood estimation. In the next section, we show that when this estimator is combined with a
version of η̂ that exploits constraints on Xβ∗, bias is substantially reduced.

6.2. Penalised regression
To operationalise β̃∗, a consistent estimator η̂ of η∗ = Xβ∗ satisfying h(η̂, η∗) = oP (1) is 405

needed. A penalised regression may be used to obtain such an estimator even when the maximum
likelihood estimator does not exist. This entails setting η̂ = Xβ̂(λ) where

β̂(λ) = argminβ∈Rp{−n−1ℓ(β) + λp(β)}, λ ≥ 0 (8)

and p : Rp → R is a penalty function that does not depend on the data but ensures a unique
maximiser exists. See Duffy & Santner (1989), Meier et al. (2008), Kosmidis & Firth (2021)
and Fan & Peng (2004) for examples including the ridge, group LASSO, Jeffrey’s-prior and 410

non-concave penalty functions respectively. Unless strong conditions are imposed on the design
matrix that limit the amount of correlation between covariates, β̂(λ) rarely provides an accurate
estimate of the individual entries of β∗, see section 8 for numerical examples. Nevertheless, under
much weaker conditions Xβ̂(λ) consistently estimates η∗. The corrected least squares estimator
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14 R. M. LEWIS AND H. S. BATTEY

that makes use of Xβ̂(λ) to estimate η∗, improves estimation of the entries of β∗ over that of415

β̂(λ).
As an example, consider the LASSO estimator that maximises (8) with p(β) = ∥β∥1. Lemma

1 in Meier et al. (2008) shows that β̂(λ) exists whenever λ > 0 and 0 <
∑n

i=1 yi < n, which
includes cases with separated data. Further, under a suitable sparsity assumption, the LASSO
estimator produces consistent predictions whenever the design matrix is contained in420

X(2)
B :=

{
X ∈ Rn×p : max

{
n

max
i=1

|xTi β∗|√
log n

,
n

max
i=1

p
max
j=1

|xij |√
log n

,
n1/21{β∗ ̸= 0}

∥Xβ∗∥2
, ϕ−2

0 (X)

}
≤ B

}
where S = {j : β∗

j ̸= 0}, s = |S|, βS is the vector with entries equal to those of β for all indices
in S and 0 otherwise, and

ϕ2
0(X) = inf

β∈Rp:βS ̸=0, ∥βSc∥1≤3∥βS∥1

∥Xβ∥22s
n∥βS∥21

.

This is established in Proposition 7.

PROPOSITION 7. Let λ = A
√

(log p log n)/n with A > 0 sufficiently large. For t > 0,

sup
X∈X(2)

B

pr{h(Xβ̂(λ), Xβ∗) > t} = o(1)

when425

se2B
√

logn
√
log p log n/nmax{1, e2B

√
logn

√
log p log n/n} = o(1).

The proof of this result closely follows the arguments in Theorem 6.4 and Lemma 6.8 in
Bühlmann & van de Geer (2011, p. 130-134). We make minor modifications to account for our
slightly weaker assumptions, see the definition of X(2)

B compared to the assumptions in Lemma
6.8 of Bühlmann & van de Geer (2011).

Proposition 7 establishes conditions under which Condition 2 is satisfied, with430

η̂ = Xβ̂(λ), HB = X(1)
B ∩ X(2)

B .

As a result, the least squares estimator, after correction by the LASSO, is consistent with respect
to both the ℓ2 and ℓ∞ norms whenever there exists B,N > 0 such that X ∈ X(1)

B ∩ X(2)
B for all

n ≥ N . We call this the OLS-LASSO estimator. In the following section, we show that when
the rows of X follow a multivariate Gaussian distribution, there exist suitable constants such the
probability that X ∈ X(1)

B ∩ X(2)
B is arbitrarily close to one for large enough sample sizes. Thus,435

the set X(1)
B ∩ X(2)

B is non-empty.

6.3. Other approaches
Any consistent estimator of η∗ = Xβ∗ can be used for correction. Thus, if β∗ is sparse, Propo-

sition 7 shows that a LASSO penalty yields an estimator with appropriate behaviour. If instead
β∗ is dense but Xβ∗ is well-approximated by a small number of left singular vectors of X , then440

it may be possible to consistently estimate η∗ using a sparse singular value decomposition of X .
We do not explore this here, although it highlights our method’s potential validity under a variety
of sparsity assumptions.
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7. RELEVANCE TO SEPARATED DATA

The applicability of our method to separated data is considered here, focusing on the OLS- 445

LASSO estimator defined in section 6.2. As no restrictions on the observed response y are made
in section 5.2, and section 6.2 only assumes 0 <

∑n
i=1 yi < n, the occurrence of separability

does not affect the existence of our estimator. To ensure that our asymptotic guarantees are also
valid, it is necessary to verify that the limiting probability of separation is non-zero. If this were
not the case, then for any t > 0, 450

pr(∥β̃∗ − β∗∥∞ ≥ t) = pr(∥β̃∗ − β∗∥∞ ≥ t, data are not separated) + oP (1)

and so consistency may be achieved irrespective of the value of the estimator when the data
are separable. The probability of data separation has not yet been studied for fixed designs and
so we adopt the random design setting introduced by Candès & Sur (2020) and summarised in
Condition 3.

Condition 3. The joint distribution of (Y,X) is given by 455

xi
i.i.d.∼ Np(0,Σ), P(Yi = 1 | xi) =

ex
T
i β

∗

1 + ex
T
i β

∗

and for some κ ∈ [0, 1) and γ2 ≥ 0,

p/n → κ, β∗TΣβ∗ → γ2

as p, n → ∞.

Let prY,X denote the probability under the joint distribution of Y and X . Candès & Sur (2020,
Theorem 2.2) show that there exists some decreasing function h(γ) where

κ > h(γ) =⇒ prY,X(data are separated) → 1

κ < h(γ) =⇒ prY,X(data are separated) → 0.

Our aim is to show that the OLS-LASSO estimator is consistent with respect to the ℓ∞-norm 460

even in these settings where the limiting probability of separation is one. For this, we also assume
Condition 4.

Condition 4. a) The unknown parameter satisfies ∥β∗∥∞ = O(1) and ∥β∗∥0 = O(n1/2−ξ) for
some ξ ∈ (0, 1/2), and b) there exist constants λmin, σmax > 0 such that

λmin(Σ) > λmin,
p

max
j=1

Σjj ≤ σmax.

For every κ ∈ [0, 1) and γ ≥ 0, there exist choices of Σ and β∗ satisfying the conditions 465

above. For example, let β∗ ∈ Rp have exactly one non-zero entry taking the value γ > 0 and
let Σ = (1/4)11T + (3/4)Ip×p. Thus, Condition 4 makes no further restriction on the limiting
probability of separation.

Proposition 8 shows that in this random design setting, the corrected least squares estimator
is consistent. If κ is sufficiently large compared to γ, then consistency is achieved alongside 470

separation.
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16 R. M. LEWIS AND H. S. BATTEY

PROPOSITION 8. Suppose Conditions 3 and 4 hold with γ, κ > 0. Let β̃∗ be the OLS-LASSO
estimator. Then, for all t > 0

prY,X(∥β̃∗ − β∗∥∞ ≥ t) = o(1).

In particular, when κ > h(γ),

prY,X(∥β̃∗ − β∗∥∞ < t, data are separated) → 1.

Similar results are expected to hold for other quantities of interest, for example the composite475

estimation error, although we do not derive a result of this form. Instead, given our preference
for conditional analyses, we highlight the importance of characterising the limiting probability
of separation for fixed designs to ensure similar guarantees can also be provided in these settings.

8. NUMERICAL PERFORMANCE

Results of extensive numerical experimentation are reported in the supplementary material. In480

section 4.1, different versions of the corrected least squares estimators were obtained from vari-
ous estimators of η∗ = Xβ∗. For each estimator, error rates were examined as a function of the
sample size n when p, n → ∞ with p/n kept constant. Cases with separated data were included.
The results show that both the component-wise and composite estimation errors converged to
zero, whilst the prediction error remained stable at a non-zero value, coinciding with the analysis485

in section 5. The small-sample performance was analysed in section 4.2 of the supplementary
material, where the average composite estimation and prediction errors of the corrected least
squares estimators were recorded in multiple contexts, keeping n fixed. The results were com-
pared to those of the maximum likelihood and Firth’s (1993) estimator.

The remainder of this section fixes n = 700 and p = 70 and provides a comparison to other490

available methods. Based on the results in section 4.1 of the supplementary material, we focus
on the SCAD (Fan & Li, 2001) correction to the least squares estimator, denoted OLS-SCAD, as
it outperformed other corrections. The following four approaches were also considered: a SCAD
penalised regression (Fan & Li, 2001), Firth’s bias-reduced estimator (Firth, 1993), the despar-
sified LASSO (van de Geer et al., 2014) and the LSW estimator (Cai et al., 2021). The first495

comparison serves to illustrate bias removal from penalised estimators. Other penalties were ex-
amined and exhibited similar performance, therefore the results are not reported. The methods of
van de Geer et al. (2014) and Cai et al. (2021) also aim to remove bias from penalised estimators
in high-dimensional settings, although data separation was not explicitly considered.

The data were generated as defined in section 7, with the rows of X sampled independently500

from a p-dimensional multivariate Gaussian distribution with mean zero and covariance matrix
Σ to be specified. The outcome Y was generated from a logistic regression model with log-odds
equal to Xβ∗. The following three examples were considered:

Example 1. The covariance matrix and parameter vector were given by

Σij =


1 if i = j,

0.95 if {i, j} = {1, 2},
0.5 otherwise,

β∗
i =


1 if i = 1, 3

−1 if i = 2

0 otherwise,

to ensure the presence of a pair of highly correlated signal variables with small marginal corre-505

lation with the response.
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Example 2. The covariance matrix and parameter vector were given by

Σij =


1 if i = j,

0.95 if {i, j} = {1, 4},
0.5 otherwise,

β∗
i =

{
1 if i = 1, 2, 3

0 otherwise,

to ensure the presence of a signal variable that is highly correlated with a noise variable.

Example 3. The covariance matrix and parameter vector were given by

Σij =


1 if i = j,

0.95 if {i, j} = {1, 2},
0.5 otherwise,

β∗
i =

{
1 if i = 1, 2, 3

0 otherwise.

to ensure the presence of a pair of highly correlated signal variables with equal signal strength. 510

Due to the dependence structure among the covariates, these scenarios exemplify situations
where the individual entries of β∗ are difficult to estimate accurately. In R = 500 Monte Carlo
replications, we obtained the aforementioned estimates of β∗. To probe the inferential capabilities
beyond point estimation, for all except the SCAD penalised regression, we also computed 95%
confidence intervals for β∗

1 and β∗
4 , the former corresponding to a signal variable and the latter 515

to a noise variable. Motivated by the results in section 5.4, we defined a ϑ-level test for the
hypothesis H0 : α

Tβ∗ = b0 based on the least squares estimator of the form

Ψ(Y ;ϑ, α) =

{
0 if |T | ≤ z1−ϑ/2,

1 if |T | > z1−ϑ/2,
T =

αT β̃∗ − b0

ς̂−1∥αT (XTX)−1XT Γ̂1/2∥2
(9)

where z1−ϑ/2 is the (1− ϑ/2) quantile of the N(0, 1) distribution and Γ̂ is the diagonal ma-
trix with entries Γ̂ii = 1− tanh2(η̂i/2) for i = 1, . . . , n. Approximate confidence intervals were
constructed by inverting this test. No guarantees have been provided for this construction to date, 520

the numerical results serve only to gain insights into the relevance of the term Π2 in Proposition
5. The R functions cv.ncvreg, logistf, lasso.proj in the hdi package and LF in the
SIHR package were used to compute the estimates and confidence intervals. As ncvreg neces-
sarily includes an intercept term whereas lasso.proj does not, we fitted all models without
an intercept except SCAD. This is likely to marginally favour the SCAD and OLS-SCAD results. 525

The left column of Figure 1 shows the average estimated signal strength of entries 1-6 of
β∗ for each example. The right column shows the distribution of estimates of β∗

1 obtained via
SCAD and OLS-SCAD. The results show that OLS-SCAD was able to correct the bias in the
SCAD estimates. In Example 1, the SCAD estimate of β∗ failed to accurately characterise the
two signal variables that were only weakly marginally related to the response variable, whereas 530

OLS-SCAD was able to estimate all signal strengths accurately. In Example 2, the estimates of
the highly correlated noise and signal variables were less biased for OLS-SCAD than for SCAD.
This was because SCAD estimated the signal strength of the second signal variable to be zero in
a non-negligible portion of cases. Finally, in Example 3, SCAD often assigned most of the signal
strength corresponding to the two highly correlated signal variables to a single signal variable, 535

whereas OLS-SCAD spread the signal more evenly across the two variables. The other three
estimators performed similarly to OLS-SCAD in terms of estimation.

Whilst the examples show that OLS-SCAD is able to estimate the effects of signal variables
with improved accuracy over the estimator obtained directly via SCAD, it is often the case that
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(c) Example 3

Fig. 1: Left column: average estimated signal strengths of entries 1-6 of β∗ in each example
obtained using OLS-SCAD (black), SCAD penalised regression (orange), Firth’s estimator (red),
desparsified LASSO (blue) and LSW (green). Error bars show one estimated standard deviation.
True signal strengths are marked with black crosses. Right column: histogram of estimates of β∗

1

obtained via OLS-SCAD (black) and SCAD penalised regression (orange) for the second signal
variable in each example. The black dashed line represents the true signal strength.
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Method |I| pr(β∗
i ∈ I) |I| pr(β∗

i ∈ I) pr(0 /∈ I)
(null variable) (signal variable)

Ex. 1 OLS-SCAD 0.49 (0.01) 0.94 (0.24) 1.14 (0.02) 0.94 (0.24) 0.93 (0.26)
FIRTH 0.50 (0.01) 0.94 (0.24) 1.19 (0.03) 0.94 (0.23) 0.93 (0.26)

DLASSO 0.44 (0.01) 0.95 (0.21) 0.81 (0.01) 0.81 (0.39) 0.97 (0.17)
LSW 0.54 (0.02) 0.97 (0.16) 1.28 (0.05) 0.96 (0.20) 0.84 (0.37)

Ex.2 OLS-SCAD 1.39 (0.04) 0.97 (0.18) 1.36 (0.04) 0.95 (0.21) 0.83 (0.37)
FIRTH 1.42 (0.05) 0.96 (0.20) 1.45 (0.05) 0.96 (0.19) 0.80 (0.40)

DLASSO 0.99 (0.03) 0.92 (0.27) 1.00 (0.03) 0.95 (0.21) 0.99 (0.11)
LSW 2.55 (0.47) 0.98 (0.13) 2.76 (0.72) 0.99 (0.09) 0.26 (0.44)

Ex. 3 OLS-SCAD 0.63 (0.02) 0.96 (0.20) 1.45 (0.04) 0.96 (0.20) 0.76 (0.43)
FIRTH 0.64 (0.02) 0.95 (0.21) 1.53 (0.06) 0.96 (0.19) 0.76 (0.43)

DLASSO 0.55 (0.01) 0.98 (0.15) 1.07 (0.03) 0.92 (0.27) 0.96 (0.20)
LSW 1.44 (0.28) 0.99 (0.10) 3.67 (0.92) 0.99 (0.09) 0.09 (0.29)

Table 1: Average length, |I|, coverage probability, pr(β∗
i ∈ I), and power, pr(0 ∈ I), of the

confidence intervals obtained via the corrected OLS estimator (OLS-SCAD), Firth’s method
(FIRTH), desparsified LASSO (DLASSO) and Cai et al.’s approach (LSW). Standard errors are
given in brackets.

the latter has smaller cumulative estimation and prediction error, particularly when p is large and 540

β∗ is sparse. This is because the corrected versions of the OLS estimator are not sparse and so
error is accumulated across all entries of the parameter vector.

Table 1 shows the average length and coverage probability of the confidence intervals. The
power is also recorded. No intervals were obtained for SCAD due to the bias and highly non-
Gaussian distribution of its estimates observed in Figure 1. The intervals obtained from OLS- 545

SCAD and Firth’s approach performed similarly and moderately better than the other two ap-
proaches, with OLS-SCAD producing slightly shorter intervals than Firth’s approach on average
for a coverage close to 95%. The LSW method produced the largest confidence intervals, result-
ing in uninformative intervals that contained both zero and the true non-zero signal strength in
a large number of cases. The desparsified LASSO produced the shortest intervals, however this 550

sometimes resulted in coverage probabilities substantially below the nominal level 0.95.

9. DISCUSSION

9.1. Extension to cases with p ≥ n

A limitation of our analysis is that corrections of the least squares estimator can only be used
for inference in settings with p < n. The result is nevertheless relevant in the sparse p > n set- 555

ting. For instance, in Cox & Battey (2017) a large number of low-dimensional regressions are
fitted, the motivation being that if a variable is causal, its explanatory power is, to a certain ex-
tent, preserved regardless of which other variables are included. Indeed, the original motivation
for studying the problem of the present paper came from the difficulties in applying logistic re-
gression in the context of Cox & Battey (2017) due to separable data. The corrected least squares 560

estimator may be used as an alternative to logistic regression in this context.
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20 R. M. LEWIS AND H. S. BATTEY

9.2. Extensions to other models
Beyond its relevance to settings with separated data, there are additional benefits of the new

approach that may be of interest beyond the logistic regression model. The method converts an
estimation and inferential problem on the entries of β∗ to a predictive one on Xβ∗, the latter565

typically being easier to solve without assuming strong conditions on the design matrix. As a
result, the performance is favourable even in settings where covariates are highly correlated in
sample. The numerical results of section 8 exhibit this most clearly, providing examples where
a penalised regression estimator fails to accurately characterise the entries of the unknown pa-
rameter, yet when this estimator is used alongside the least squares estimator, the performance is570

improved.
Another favourable aspect is the method’s adaptability to different forms of sparsity. In our

analysis, sparsity is only assumed to ensure that a LASSO penalised regression produces a con-
sistent estimator of Xβ∗. However, by making use of an alternative estimator of Xβ∗, there is
considerable flexibility in the form that this assumption takes. This was briefly outlined in sec-575

tion 6.3. It would be of interest to determine whether a version of the corrected least squares
estimator can be used with similar benefits in other models.

SUPPLEMENTARY MATERIAL

The supplementary file contains proofs of the theoretical results stated in the main paper and
additional numerical simulations.580
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SUMMARY

This supplementary file contains proofs of the theoretical results and additional simulations.

1. PROOFS OF MAIN RESULTS

Proof of Proposition 1. The confidence interval for β∗1 is unbounded above when t1 is the 10

maximum element of the set T1 and unbounded below when t1 is the minimum. The result
follows from Lemmas S1 and S2. □

Proof of Theorem 1. The case where the data are completely separated and β1 = 0 follows
directly from Lemma S2. Now consider the case where β1 > 0 and suppose for a contradiction
that ∀B > 0, there exists bB ≥ B with bB /∈ CS

(1)
ϑ (t1). When the data can be separated by β 15

with β1 > 0, Lemma S1 says the observation t1 is the maximum value in the set T1. Hence,
when β∗ = (bB/β1)β for some B > 0,

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) =
1

1 +
∑

u∈T1\{t1}
c(u,t2,...,tp)
c(t1,...,tp)

eβ
∗
1 (u−t1)

=
1

1 +
∑

u∈T1\{t1}
c(u,t2,...,tp)
c(t1,...,tp)

ebB(u−t1)

→ 1,

as B → ∞. In particular, there exists B > 0 such that when β∗ = (bB/β1)β,

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) ≥ ϑ. (S1)

We will reach a contradiction by showing that this probability is also strictly less than ϑ. By
definition, CS(1)

ϑ (T1) satisfies 20

pr{β∗1 ∈ CS
(1)
ϑ (T1) | T2 = t2, . . . , Tp = tp} ≥ 1− ϑ, ∀β∗1 ∈ R.

In particular, this inequality should hold for β∗1 = bB . But β∗1 = bB /∈ CS
(1)
ϑ (t1) by assumption,

and so when β∗ = (bB/β1)β,

pr(T1 ̸= t1 | T2 = t2, . . . , Tp = tp) ≥ pr{β∗1 ∈ CS
(1)
ϑ (T1) | T2 = t2, . . . , Tp = tp}

≥ 1− ϑ (S2)

C⃝ 2021 Biometrika Trust
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by definition of the confidence set. Inequalities (S1) and (S2) cannot both hold, and so we reach
a contradiction. It follows that there exists B > 0 such that [B,∞) ⊆ CS

(1)
ϑ (t1). A similar ar-

gument establishes the case where β1 < 0. □25

Proof of Theorem 2. The proof closely follows the ideas in the proof of Theorem 1. Suppose
β1 > 0 and suppose for a contradiction that ∀B > 0, there exists bB ≥ B with bB /∈ CS

(1)
ϑ (y).

When β∗ = (bB/β1)β for some B > 0,

pr(Y = y) =
n∏
i=1

1

1 + e−(bB/β1)yix
T
i β

= 2−m
∏

i:xTi β ̸=0

1

1 + e−(bB/β1)|xTi β|

→ 2−m,

as B → ∞. In particular, there exists B > 0 such that when β∗ = (bB/β1)β

pr(Y = y) ≥ 2−m − (2−m − ϑ) = ϑ. (S3)

However, by definition, CSϑ(Y ) satisfies30

pr{β∗ ∈ CSϑ(Y )} ≥ 1− ϑ, ∀β∗ ∈ Rp

and so this inequality should hold for β∗ = (bB/β1)β. But for this choice of β∗, β∗1 /∈ CS
(1)
ϑ (y)

by construction and so β∗ /∈ CSϑ(y). It follows that,

pr(Y ̸= y) ≥ pr{β∗ ∈ CSϑ(Y )} ≥ 1− ϑ (S4)

by definition of the confidence set. Inequalities (S3) and (S4) cannot both hold and so we reach
a contradiction. Thus, there exists B > 0 such that [B,∞) ⊆ CS

(1)
ϑ (y). A similar argument

establishes the case where β1 < 0.35

Now assume the data are completely separated by β with β1 = 0 and suppose for a contradic-
tion that there exists b ∈ R with b /∈ CS

(1)
ϑ (y). Define cϑ and c satisfying

cϑ = max

{
0, log

(
ϑ1/n

1− ϑ1/n

)}
, c =

cϑ + |b|maxni=1 |yixi1|
minni=1 |xTi β|

.

Complete separation ensures c is well-defined. Consider β∗T = cβT + (b, 0, . . . , 0). By defini-
tion of the confidence interval and the fact that b /∈ CS

(1)
ϑ (y),

pr(Y ̸= y) ≥ pr{β∗ ∈ CSϑ(Y )} ≥ 1− ϑ.

However,40

pr(Y = y) =
n∏
i=1

1

1 + e−yix
T
i β

∗

=
n∏
i=1

1

1 + e−c|x
T
i β|−yixi1b

≥
(

1

1 + e−cϑ

)n
≥ ϑ
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by definition of c and cϑ. Thus, we have reached a contradiction and so CS(1)
ϑ (y) = R. □

Proof of Proposition 2. Fix t > 0. By Lemma S3, for all ϵ > 0 there exists a set Nϵ,d ⊆ Bd of
cardinality at most {

(2 + ϵ)ep

ϵd

}d
such that for all possible matrices X ,

pr

{
sup
α∈Bd

|αT (β̂0 − β0|) ≥ t

}
≤ pr

{
max
α̃∈Nϵ,d

|α̃T (β̂0 − β0|) ≥ t(1− ϵ)

}

≤
{
(2 + ϵ)ep

ϵd

}d
max
α̃∈Nϵ,d

pr
{
|α̃T (β̂0 − β0|) ≥ t(1− ϵ)

}
where we have applied a union bound to obtain the last inequality. Let ε = Y − E(Y ) and write 45

α̃T (β̂0 − β0) =
n∑
i=1

viεi

where vi = α̃T (XTX)−1xi. The random variables εi lie in the range [−2, 2] and hence, are
sub-Gaussian with ∥εi∥ψ2 ≤ 2. As they are also independent, α̃T (β̂0 − β0) is sub-Gaussian with
∥α̃T (β̂0 − β0)∥ψ2 bounded above by(

n∑
i=1

v2i

)1/2

= ∥α̃T (XTX)−1XT ∥2

up to a constant. Then, there exist constants C, c1, c2 > 0 not depending on t such that for all
X ∈ XB 50

pr

{
sup
α∈Bd

|αT (β̂0 − β0|) ≥ t

}
≤ C

{
(2 + ϵ)ep

ϵd

}d
max
α̃∈Nϵ,d

exp

{
−c1t2(1− ϵ)2

∥α̃T (XTX)−1XT ∥22

}
≤ C exp

{
−c2t2(1− ϵ)2n+ d log (Cϵp/d)

}
for some constant Cϵ depending only on ϵ. By assumption, this bound converges to zero as
n→ ∞ and so the result follows. □

Proof of Proposition 3. The estimation error can be written as ∥β̂0 − β0∥2 = ∥Aε∥2 where
A = (XTX)−1XT and ε = Y − E(Y ) consists of independent and centred sub-Gaussian ran-
dom variables with maxni=1 ∥εi∥ψ2 ≤ 2. Using the Hanson–Wright inequality (Theorem 6.2.1 in 55

Vershynin (2018)), for any t ≥ 0,

pr
{∣∣∥Aε∥22 − E(∥Aε∥22)

∣∣ ≥ t
}
≤ 2exp

(
−cmin

{
t2

∥ATA∥2F
,

t

∥ATA∥2

})
for some constant c > 0. Note,

∥ATA∥2F ≤ p∥ATA∥22.

Further, ∥ATA∥22 = λmax{(XTX)−2}. Thus for any t > 0,

pr
{∣∣∥Aε∥22 − E(∥Aε∥22)

∣∣ ≥ t
}
≤ 2exp

[
−cmin

{
t2n2

λmax{(XTX/n)−1}2p
,

tn

λmax{(XTX/n)−1}

}]
.
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As p < n and λmax{(XTX/n)−1} = O(1), the right hand side is o(1) and so

∥Aε∥22 − E(∥Aε∥22) = op(1).

As60

E(∥Aε∥22) = tr(ΓATA)
≤ ∥A∥2F
≤ p∥A∥22
≤ p/nλmax{(XTX/n)−1}

the expectation is asymptotically bounded and so ∥Aε∥22 = Op(1). When p = o(n), the expecta-
tion is o(1) and so ∥Aε∥22 = op(1). □

Proof of Proposition 4. Let ε = Y − E(Y ) and write

B−1
n αT (β̂0 − β0) =

n∑
i=1

B−1
n vi(α)εi

where vi(α) = αT (XTX)−1xi. Each term B−1
n vi(α)εi is an independent random variable with

zero mean and variance bounded above by one. Define65

Λn(α) =
n∑
i=1

E{|B−1
n vi(α)εi|21{|B−1

n vi(α)εi| ≥ 1}}

ln(α) =
n∑
i=1

E{|B−1
n vi(α)εi|31{|B−1

n vi(α)εi| < 1}}.

By Theorem 5.8 in Petrov (1995, p. 154), there exists some absolute constant A > 0 such that

sup
x∈R

∣∣∣pr{B−1
n αT (β̂0 − β0) ≤ x} − Φ(x)

∣∣∣ ≤ A{Λn(α) + ln(α)}.

As εk is a bounded random variable and B−1
n maxni=1 |vi(α)| = o(1) uniformly over α ∈ R, the

event maxi=1,...,n |B−1
n vi(α)εi| < 1 has probability one when n is large enough. Thus,

sup
α∈R

Λn(α) = o(1).

Further,

ln(α) ≤
n∑
i=1

B−3
n |vi(α)|3E(|εi|3) ≤ 2B−1

n
n

max
i=1

|vi(α)|

as |εi| ≤ 2 and
∑n

i=1B
−2
n |vi(α)|2E(ε2i ) = 1. Then70

sup
α∈R

ln(α) = o(1)

and so the result follows. □
Proof of Theorem 3. Fix t > 0. For ξ < 1, define Aξ be the event that h(η̂, η∗) ≤ ξ. By defi-

nition of HB ,

sup
X∈HB

pr(Acξ) = o(1). (S5)
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Our aim is to show that for appropriately chosen ξ,

sup
X∈HB

pr

{
sup
α∈Bd

|αT (β̃∗ − β∗)| ≥ t | Aξ

}
= o(1), (S6)

in which case the result follows from 75

sup
X∈HB

pr

{
sup
α∈Bd

|αT (β̃∗ − β∗)| ≥ t

}
≤ sup

X∈HB

pr

{
sup
α∈Bd

|αT (β̃∗ − β∗)| ≥ t | Aξ

}
+ sup
X∈HB

pr(Acξ).

Assume the event Aξ holds and recall that β∗ = ς−1(β0 − δ) and β̃∗ = ς̂−1(β̂0 − δ̂). Then,

sup
α∈Bd

|αT (β̃∗ − β∗)| ≤ Π1 +Π2 +Π3

where

Π1 = sup
α∈Bd

ς̂−1|αT (β̂0 − β0)|

Π2 = sup
α∈Bd

ς̂−1|αT (δ̂ − δ)|

Π3 = sup
α∈Bd

∣∣ς̂−1 − ς−1
∣∣ |αT (β0 − δ)|.

By Lemmas S5 and S6, and our assumptions, there exist constants C,N > 0 such that when
X ∈ HB ,

|ς̂ − ς| ≤ Cξ, sup
α∈Bd

|αT (δ̂ − δ)| ≤ Cξ

and when n ≥ N , 80

max{d, ∥β∗∥∞} ≤ C.

As ς−1 ≤ B when X ∈ HB , it follows that when ξ is small enough,

ς̂−1 ≤ 1

ς − Cξ
≤ 1

B−1 − Cξ
,

and

|ς̂−1 − ς−1| ≤ |ς̂−1ς−1||ς̂ − ς| ≤ BCξ

B−1 − Cξ
.

On choosing

ξ < min

{
1, (BC)−1min

{
t

3 + t
,

t

t+ 3C2B

}}
it follows that Π2 < t/3 and Π3 < t/3 when n ≥ N , where we have used the fact that αT (β0 −
δ) = ςαTβ∗ ≤ d∥β∗∥∞ ≤ C2. Thus, for n ≥ N , 85

sup
X∈HB

pr(Π2 ≥ t/3 | Aξ) = sup
X∈HB

pr(Π3 ≥ t/3 | Aξ) = 0.
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Further, by Proposition 2 and equation (S5),

sup
X∈HB

pr(Π1 ≥ t/3 | Aξ) ≤
supX∈HB

pr{supα∈Bd
|αT (β̂0 − β0)| ≥ t(B−1 − Cξ)/3}

1− supX∈HB
pr(Acξ)

= o(1).

Applying a union bound,

sup
X∈HB

pr

{
sup
α∈Bd

|αT (β̃∗ − β∗)| ≥ t | Aξ

}
≤

3∑
i=1

sup
X∈HB

pr(Πi ≥ t/3 | Aξ) = o(1)

and so the result in (S6) follows. □
Proof of Theorem 4. The estimation error may be bounded by

∥β̃∗ − β∗∥2 = ∥ς̂−1(β̂0 − δ̂)− ς−1(β0 − δ)∥2
≤ |ς̂−1 − ς−1∥|β0 − δ∥2 + |ς̂−1|(∥β̂0 − β0∥2 + ∥δ̂ − δ∥2).

Consider each of the terms. By Lemma S5 and the assumption that ς−1 = O(1), we have ς̂−1 =90

OP (1) and |ς̂−1 − ς−1| = oP (1). Also, ∥β0 − δ∥2 = ς∥β∗∥2 = O(
√
p) by assumption and the

fact that ς ≤ 1/2. For the second term, Proposition 3 shows that

∥β̂0 − β0∥2 = op(
√
p).

By the proof of Lemma S6,

∥δ̂ − δ∥2 ≤ ∥(XTX)−1XT ∥2∥(PX − Pη̂) tanh(η̂/2)− (PX − Pη∗) tanh(η
∗/2)∥2

= O{h(η̂, η∗)}
= oP (1).

Combining results, we conclude that p−1/2∥β̃∗ − β∗∥2 = oP (1). □

Proof of Proposition 5. Recall that β∗ = ς−1(β0 − δ) and β̃∗ = ς̂−1(β̂0 − δ̂). The statistic of95

interest may then be decomposed as

αT (β̃∗ − β∗)

ς−1∥αT (XTX)−1XTΓ1/2∥2
= Π1 +Π2 +Π3 +Π4 (S7)

where

Π1 =
αT (β̂0 − β0)

∥αT (XTX)−1XTΓ1/2∥2

Π2 = − ς
ς̂

{
αT (δ̂ − δ)

∥αT (XTX)−1XTΓ1/2∥2

}

Π3 =

(
ς

ς̂
− 1

)
αT (β̂0 − β0)

∥αT (XTX)−1XTΓ1/2∥2

Π4 =

(
ς

ς̂
− 1

)
αT (β0 − δ)

∥αT (XTX)−1XTΓ1/2∥2
.

By Proposition 4, Π1 converges in distribution to a standard normal random variable. By as-
sumption ς−1 = O(1), and so applying Lemma S5, we have ς − ς̂ = oP (1) and ς̂−1 = OP (1).
Combining this with Proposition 4, it follows that Π3 = oP (1). Under the null hypothesis100

H0 : α
Tβ∗ = 0, we have Π4 = 0 and so the result follows. □
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Proof of Theorem 5. By definition,

n−1/2∥X(β̃∗ − β∗)∥2 = n−1/2∥ς̂−1X(β̂0 − δ̂)− ς−1X(β0 − δ)∥2
and so we can write

|∥Π1∥2 − ∥Π2 +Π3 +Π4∥2| ≤ n−1/2∥X(β̃∗ − β∗)∥2 ≤ ∥Π1∥2 + ∥Π2 +Π3 +Π4∥2
where

Π1 = n−1/2ς−1X(β̂0 − β0)

Π2 = n−1/2(ς̂−1 − ς−1)X(β̂0 − β0)

Π3 = −n−1/2(ς−1 − ς̂−1)X(β0 − δ)

Π4 = −n−1/2ς̂−1X(δ̂ − δ).

By Lemma S7, ∥Π1∥2 converges in probability to n−1/2ς−1∥PXΓ1/2∥F . We now show that 105

∥Π2 +Π3 +Π4∥2 = op(1) by showing that the individual terms are op(1). By Lemma S5 and
the assumption that ς−1 = O(1), it follows that |ς̂−1 − ς−1| = oP (1). As the projection matrix
PX has rank p,

n−1/2∥PXΓ1/2∥F ≤ n−1/2∥PX∥F = (p/n)1/2 ≤ 1,

and so by Lemma S7,

n−1/2∥X(β̂0 − β0)∥2 = n−1/2∥PXΓ1/2∥F + oP (1) = OP (1).

Then, ∥Π2∥2 = oP (1). For Π3, X(β0 − δ) = ςXβ∗ = ςη∗ by definition, and 110

n−1/2ς∥η∗∥2 =
η∗T tanh(η∗/2)√

n∥η∗∥2
≤ ∥ tanh(η∗/2)∥2√

n
≤ 1.

Thus, ∥Π3∥2 = oP (1). Finally, ς̂−1 = OP (1) as ς−1 = O(1). By the proof of Lemma S6

n−1/2∥X(δ̂ − δ)∥2 = n−1/2∥(PX − Pη̂) tanh(η̂/2)− (PX − Pη∗) tanh(η
∗/2)∥2

= O{h(η̂, η∗)},

and so ∥Π4∥2 = oP (1). Thus the terms Π2, Π3 and Π4 are all oP (1), and so the result follows.□
Proof of Proposition 6. The maximum likelihood estimator satisfies

β̂∗ = argmax
β∈Rp

n∑
i=1

{(Yi + 1

2

)
xTi β − log (1 + ex

T
i β)
}
.

Taking derivatives,

0 =
n∑
i=1

(
Yi + 1

2
− ex

T
i β̂

∗

1 + ex
T
i β̂

∗

)
xi

=
XTY

2
−

n∑
i=1

(ex
T
i β̂

∗ − 1)xi

2(1 + ex
T
i β̂

∗
)

=
1

2

{
XTY −XT tanh(Xβ̂∗/2)

}
and so 115

β̂0 = (XTX)−1XTY = (XTX)−1XT tanh(Xβ̂∗/2). (S8)
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Write

tanh(Xβ̂∗/2) = ς̂Xβ̂∗ + u+ ∆̂

where u ∈ Col-Sp(X)⊥, ς̂ is defined in the statement of the proposition and ∆̂ = (PX −
PXβ̂∗) tanh(Xβ̂

∗/2). Then, by (S8),

β̂0 = ς̂ β̂∗ + δ̂,

and so the result follows by inverting this relationship. □
Proof of Proposition 7. Deferred to section 3 of the supplementary material. □120

Proof of Proposition 8. Throughout this proof, we will use prY |X(·), prY,X(·) and prX(·) to
denote the probabilities under the conditional distribution of Y given X , the joint distribution of
Y and X , and the marginal distribution of X . Fix t1, t2 > 0. Our aim is to show that there exists
N > 0 such that

prY,X(∥β̃∗ − β∗∥∞ ≥ t1) ≤ t2, ∀n ≥ N.

Define HB = X(1)
B ∩ X(2)

B for every B > 0. Lemmas S8-S11 show that there exist B,N1 > 0125

such that

prX(X ∈ HB) > 1− t2/2, ∀n > N1. (S9)

We focus on this choice ofB from now on. When s = ∥β∗∥0 = O(n1/2−ξ), Proposition 7 shows
that for all t1 > 0,

sup
X∈HB

prY |X{h(Xβ̂(λ), Xβ∗) > t1} = o(1).

Further ∥β∗∥∞ = O(1) as ∥β∗∥∞ ≤ ∥β∗∥2 and

∥β∗∥22 =
β∗Tβ∗

β∗TΣβ∗
× (β∗TΣβ∗) ≤ β∗TΣβ∗

λmin
= O(1)

by assumption. Applying Theorem 3, there exists N2 such that130

sup
X∈HB

prY |X(∥β̃∗ − β∗∥∞ ≥ t1) ≤ t2/2, ∀n ≥ N2. (S10)

Let N = max{N1, N2} and assume n ≥ N . Then, by (S9) and (S10),

prY,X(∥β̃∗ − β∗∥∞ ≥ t1) ≤
∫
X∈HB

prY |X(∥β̃∗ − β∗∥∞ ≥ t1)dF (X) + prX(X /∈ HB)

≤ t2

where F is the distribution function ofX . The first result follows. To obtain the second statement,
let E be the event that the data (Y,X) are separated. Candès & Sur (2020) showed that pr(E)
converges to one in the setting of interest. So,

prY,X(∥β̃∗ − β∗∥∞ < t1, E) ≥ prY,X(∥β̃∗ − β∗∥∞ < t1) + prY,X(E)− 1

which converges to one. □135

2. PROOFS OF ADDITIONAL RESUTLS

LEMMA S1. Suppose the observed data are separated by β ∈ Rp\{0}. If β1 > 0 then t1 is
the largest element in the set T1. If β1 < 0 then t1 is the smallest element in the set T1.
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Proof. Fix z̃ = (z̃1, . . . , z̃n)
T ∈ C1, let A = {i : zi ̸= z̃i} denote the set of indices where z

and z̃ differ, and let ỹi = 2z̃i − 1. Then, for all k ̸= 1, 140

n∑
i=1

xikzi =
n∑
i=1

xikz̃i ⇐⇒
n∑
i=1

xikyi =
n∑
i=1

xikỹi

⇐⇒
∑
i∈A

xikyi =
∑
i∈A

xikỹi

⇐⇒
∑
i∈A

xikyi = −
∑
i∈A

xikyi

⇐⇒
∑
i∈A

xikyi = 0.

As yixTi β ≥ 0 for all i = 1, . . . , n,

0 ≤
∑
i∈A

yix
T
i β

=

p∑
k=1

βk
∑
i∈A

yixik

= β1
∑
i∈A

yixi1 (S11)

by the arguments above and the definition of C1. Consider possible cases for β1. When β1 > 0,
inequality (S11) implies

∑
i∈A yixi1 ≥ 0. Then

n∑
i=1

xi1zi −
n∑
i=1

xi1z̃i =

n∑
i=1

(yi − ỹi)xi1/2

=
∑
i∈A

yixi1

≥ 0

and so it follows that
∑n

i=1 xi1zi ≥
∑n

i=1 xi1z̃i. As z̃ was arbitrary, the result holds for all z̃ ∈
C1 and so t1 =

∑n
i=1 xi1zi is the largest element of the set T1. When β1 < 0, we must have 145∑

i∈A yixi1 ≤ 0. The result follows analogously, this time showing that t1 is the smallest element
of the set T1. □

LEMMA S2. Suppose the observed data are completely separated by β ∈ Rp\{0}. If β1 = 0
then t1 is the unique element of the set T1 and

pr(T1 = t1 | T2 = t2, . . . , Tp = tp) = 1, ∀β∗ ∈ Rp.

Proof. Using the notation and results in Lemma S1, when the data are separated and β1 = 0 it 150

must hold that

yix
T
i β = 0, ∀i ∈ A

by (S11). This establishes the fact z and z̃ ∈ C1 can only differ at indices i where xTi β = 0.
When the data are completely separated, xTi β > 0 for all i = 1, . . . , n. Thus, C1, and hence T1,
contains a unique element. It follows that the conditional probability is equal to one for all values
of the unknown parameter. □ 155
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LEMMA S3. Let Bd = {α ∈ Rp : ∥α∥0 ≤ d, ∥α||2 ≤ 1}. For any ϵ > 0, there exists Nϵ,d ⊆
Bd such that

sup
α∈Bd

|αT (β̂0 − β∗)| ≤ (1− ϵ)−1 max
α̃∈Nϵ,d

|α̃T (β̂0 − β∗)|

and

|Nϵ,d| ≤
{
(2 + ϵ)ep

ϵd

}d
.

Proof. The following arguments closely resemble those in Appendix A.4 of Fan et al. (2018).
For a set S̃ ⊆ {1, . . . , p} of size d, define B(S̃) = {α ∈ Rp : support(α) ⊆ S̃, ∥α∥2 ≤ 1} and160

Nϵ(S̃) ⊆ B(S̃) to be an ϵ-net (see Definition 4.2.1 in Vershynin (2018)) of B(S̃) of minimum
size. Write

Bd =
⋃

S̃⊆{1,...,p}
|S̃|=d

B(S̃), Nϵ,d =
⋃

S̃⊆{1,...,p}
|S̃|=d

Nϵ(S̃)

where Nϵ,d is an ϵ-net of Bd satisfying

|Nϵ,d| ≤
(
p

d

)(
1 +

2

ϵ

)d
≤
{
(2 + ϵ)ep

ϵd

}d
by Lemma 4.2.13 in Vershynin (2018) and equation (A.12) in Fan et al. (2018). For any α ∈
B(S̃), there exists α̃ ∈ Nϵ(S̃) such that ∥α− α̃∥2 ≤ ϵ and the support of α− α̃ is a subset of S̃.165

So,

|αT (β̂0 − β∗)| ≤ |(α− α̃)T (β̂0 − β∗)|+ |α̃T (β̂0 − β∗)|
≤ ϵ sup

a∈B(S̃)
|aT (β̂0 − β∗)|+ max

α̃∈Nϵ(S̃)
|α̃T (β̂0 − β∗)|.

In particular,

sup
α∈B(S̃)

|αT (β̂0 − β∗)| ≤ (1− ϵ)−1 max
α̃∈Nϵ(S̃)

|α̃T (β̂0 − β∗)|

≤ (1− ϵ)−1 max
α̃∈Nϵ,d

|α̃T (β̂0 − β∗)|.

By taking the maximum over all sets S̃ and noting that the upper bound does not depend on S̃,
the result follows. □

LEMMA S4. Define170

f(x) =

{
tanh(x)

x x ̸= 0

1 x = 0.

Then for any x ∈ R,

1− x2

3 + x2
≤ f(x) ≤ 1

Proof. The result holds for the case x = 0 by inspection. When x ̸= 0, it is sufficient to con-
sider x > 0 as f is even. As the functions − tanh(x) and (3 + x2) tanh(x) are convex over
the positive real line, they may be bounded below by the linear terms in their respective Taylor
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expansions. It follows that 175

− tanh(x) ≥ −x, (3 + x2) tanh(x) ≥ 3x

and so
3x

3 + x2
≤ tanh(x) ≤ x

which establishes the result. □
LEMMA S5. Let

h1(η̂, η
∗) =

{
∥η̂ − η∗∥2, η∗ = 0,
∥η̂−η∗∥2
∥η∗∥2 , η∗ ̸= 0.

Then there exists a universal constant C > 0 not depending on X such that

|ς̂ − ς| ≤ Cmax{h1(η̂, η∗), h21(η̂, η∗)}.

Proof. Define f(x) as in Lemma S4. When η∗ = 0, 180

|ς̂ − ς| =
∣∣∣∣∑n

i=1 η̂
2
i {f(η̂i/2)− 1}
2∥η̂∥22

∣∣∣∣ ≤ ∥η̂∥44
24∥η̂∥22

≤ ∥η̂∥22
24

where we have used Lemma S4 to bound |f(η̂i/2)− 1| by η̂2i /12. When η∗ ̸= 0, we have
|ς̂ − ς| ≤ Π1 +Π2 +Π3 where

2Π1 =

∣∣∣∣∣
n∑
i=1

η̂2i f(η̂i/2)

∣∣∣∣∣
∣∣∣∣ 1

∥η̂∥22
− 1

∥η∗∥22

∣∣∣∣
2Π2 =

∑n
i=1 |η̂i| |η̂if(η̂i/2)− η∗i f(η

∗
i /2)|

∥η∗∥22

2Π3 =

∑n
i=1 η

∗
i f(η

∗
i /2)|η̂i − η∗i |

∥η∗∥22
.

Using the Cauchy-Schwartz inequality and the fact that f(η̂i/2) ≤ 1,

2Π1 ≤
∣∣∣∣∥η∗∥22 − ∥η̂∥22

∥η∗∥22

∣∣∣∣
=

∣∣∣∣∥η∗∥2 − ∥η̂∥2
∥η∗∥2

∣∣∣∣ (∥η∗∥2 + ∥η̂∥2
∥η∗∥2

)
≤
(
∥η∗ − η̂∥2
∥η∗∥2

)(
2 +

∥η∗ − η̂∥2
∥η∗∥2

)
and

2Π3 ≤
∑n

i=1 |η∗i ||η̂i − η∗i |
∥η∗∥22

≤ ∥η̂ − η∗∥2
∥η∗∥2

.

The function xf(x/2) = 2 tanh(x/2) is Lipschitz continuous with constant one and so, 185

2Π2 ≤
∑n

i=1 |η̂i||η̂i − η∗i |
∥η∗∥22

≤
(
1 +

∥η∗ − η̂∥2
∥η∗∥2

)(
∥η̂ − η∗∥2
∥η∗∥2

)
.

The result follows on combining the bounds. □
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LEMMA S6. Let

h2(η̂, η
∗) =

{
n−1/2∥η̂ − η∗∥2, η∗ = 0,

n−1/2∥η̂ − η∗∥2
(
1 + ∥η̂−η∗∥2

∥η∗∥2

)
, η∗ ̸= 0.

Then there exists a constant C > 0 such that for all X ∈ X(1)
B ,

sup
α∈Bd

|αT (δ̂ − δ)| ≤ CB1/2h2(η̂, η
∗).

Proof. For α ∈ Bd,

|αT (δ̂ − δ)| ≤ ∥αT (XTX)−1XT ∥2∥(PX − Pη̂) tanh(η̂/2)− (PX − Pη∗) tanh(η
∗/2)∥2.

By definition of X(1)
B ,190

sup
α∈Bd

∥αT (XTX)−1XT ∥22 ≤ n−1λmax{(XTX/n)−1} ≤ Bn−1.

As the largest eigenvalue of a projection matrix is one and tanh(·) is Lipschitz continuous with
constant one,

∥PX{tanh(η̂/2)− tanh(η∗/2)}∥2 ≤ ∥ tanh(η̂/2)− tanh(η∗/2)∥2 ≤ ∥η̂ − η∗∥2/2.

Further, there exists some constant C > 0 such that

∥Pη̂ tanh(η̂/2)− Pη∗ tanh(η
∗/2)∥2 = ∥ς̂ η̂ − ςη∗∥2

≤ |ς̂|∥η̂ − η∗∥2 + |ς̂ − ς|∥η∗∥2
= Cn1/2h2(η̂, η

∗)

by Lemma S5 and the fact that |ς̂| ≤ 1/2. The result follows on combining these inequalities. □
LEMMA S7. For any X ∈ Rn×p of rank p < n, the prediction error of the OLS estimator195

satisfies

n−1/2∥X(β̂0 − β0)∥2 = n−1/2∥PXΓ1/2∥F + oP (1)

as p, n→ ∞ with p < n.
Proof. The unscaled prediction error can be written as ∥X(β̂0 − β0)∥2 = ∥PXε∥2 where

ε = Y − E(Y ) consists of independent and centred sub-Gaussian random variables with
maxni=1 ∥εi∥ψ2 ≤ 2. The expected prediction error is200

E{∥X(β̂0 − β0)∥22} = tr(ΓPX) = ∥PXΓ1/2∥2F
and so by the Hanson–Wright inequality (Theorem 6.2.1 in Vershynin (2018)), for any t > 0,

pr
{∣∣∣∥X(β̂0 − β0)∥22 − ∥PXΓ1/2∥2F

∣∣∣ ≥ tn
}
≤ 2exp

(
−Cmin

{
t2n2

∥PX∥2F
,

tn

∥PX∥2

})
for some universal constant C > 0. As PX is a projection matrix of rank p, ∥PX∥2F = p and
∥PX∥2 = 1. Thus, as p ≤ n,

pr
{∣∣∣∥X(β̂0 − β0)∥22 − ∥PXΓ1/2∥2F

∣∣∣ ≥ tn
}
= o(1)

and so the result follows. □
LEMMA S8. Suppose Conditions 3 and 4 hold with γ > 0. Then, ς−1 = OP (1).205
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Proof. Recall that

ς =

{
(Xβ∗)T tanh(Xβ∗/2)

∥Xβ∗∥22
, Xβ∗ ̸= 0

1/2, Xβ∗ = 0.

By the weak law of large numbers and the assumption that E{(xT1 β∗)2} → γ2,

(Xβ∗)T tanh(Xβ∗/2)

n

p→ E(V ),
∥Xβ∗∥22

n

p→ γ2

where V = (xT1 β
∗) tanh(xT1 β

∗/2). As V is a non-negative random variable,

E(V ) ≥ tanh(1/2)pr(|xT1 β∗| ≥ 1) = 2 tanh(1/2)[1− Φ{(β∗TΣβ∗)−1/2}].

When γ > 0, this is bounded away from zero by a constant for large enough sample sizes. Fur-
ther, E(V ) ≤ 1/2. Using Slutsky’s Theorem, ς

p→ γ−2E(V ) and so ς−1 = OP (1). □ 210

LEMMA S9. Suppose Conditions 3 and 4 hold with κ ∈ (0, 1). Then,

λmax{(XTX/n)−1} = OP (1).

Proof. The matrix X has the same distribution as the matrix ZΣ1/2 where each row of Z is
an independent sample from the distribution Np(0, I). Then,

λmin(X
TX/n)

d
= n−1λmin(Σ

1/2ZTZΣ1/2)

> λmin(Z
TZ/n)λmin(Σ)

> λmin(Z
TZ/n)λmin.

The lower bound converges to a positive constant in probability as p, n→ ∞ with p/n→ κ ∈
(0, 1) by Theorem 2.16 (Bai, 1999). As 215

λmax{(XTX/n)−1} = λ−1
min(X

TX/n)

the result follows. □
LEMMA S10. Suppose Conditions 3 and 4 hold with γ > 0. Then,

n
max
i=1

|xTi β∗| = OP (
√
log n),

n
max
i=1

p
max
j=1

|xij | = OP (
√
log n),

and when β∗ ̸= 0,

∥Xβ∗∥−1
2 = OP (n

−1/2).

Proof. By assumption, xTi β
∗ ∼ N(0, β∗TΣβ∗) and so xTi β

∗ is sub-Gaussian with norm
bounded by (β∗TΣβ∗)1/2 up to a constant. Then, there exist constants C, c1, c2 > 0 such that, 220

pr(
n

max
i=1

|xTi β∗| > c1
√

log n) ≤ Cn exp

(
− c2 log n

β∗TΣβ∗

)
→ 0

provided c1 is large enough as β∗TΣβ∗ → γ2. It follows that maxni=1 |xTi β∗| = OP (
√
log n).

We know that xij ∼ N(0,Σjj) for j ∈ {1, . . . , p}. Thus, xij is sub-Gaussian with norm
bounded by Σ

1/2
jj up to a constant. Then, there exist constants C, c1, c2 > 0 such that

pr(
n

max
i=1

p
max
j=1

|xij | > c1
√
log n) ≤ Cnp exp

(
−c2 log n

Σjj

)
→ 0
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provided c1 is large enough as maxpj=2Σjj is bounded. It follows that maxni=1maxpj=1 |xij | =
OP (

√
log n).225

Finally by the weak law of large numbers, ∥Xβ∗∥22/n
p→ γ2 and so ∥Xβ∗∥−1

2 =

OP (n
−1/2). □

LEMMA S11. Suppose λmax{(XTX/n)−1} = O(1). Then ϕ20(X) = O(1).
Proof. For a vector β ∈ Rp, let βS be the vector with entries equal to those of β for all indices

in S and 0 otherwise. The Cauchy-Schwartz inequality implies ∥βS∥21 ≤ s∥βS∥22. Then,230

∥Xβ∥22s
n∥βS∥21

≥ ∥Xβ∥22
n∥β∥22

≥ λmin(X
TX/n)

whenever β ̸= 0. Thus,

ϕ−2
0 (X) ≤ λ−1

min(X
TX/n)

where the upper bound is of O(1). □

3. THE LASSO ESTIMATOR OF Xβ∗

In this section, we prove Proposition 7, establishing that the LASSO estimator of Xβ∗

satisfies the requirement in Condition 2. The arguments closely follow those in Theorem235

6.4 in Bühlmann & van de Geer (2011, p. 130-133). Define Zi = (Yi + 1)/2 and R̂(β) =
1
n

∑n
i=1[log{1 + exp(xTi β)} − Zix

T
i β] and R(β) = E{R̂(β)}. For a set S, let βS be the vector

with entries equal to those of β for all indices in S and 0 otherwise. Let s = ∥β∗∥0 and xj denote
the j-th column of X . Recall the index i is reserved for indexing rows of X . Define Eλ to be the
event that240

∥XT ε∥∞ ≤ 2nλ

where ε = Y − E(Y ).
LEMMA S12. There exist universal constants C, c > 0 such that,

inf
X∈X(2)

B

pr(Eλ) > 1− Cp exp{−cnλ2/(B2 log n)}.

Proof. Let Sj =
∑n

i=1 εixij . As εi = Yi − E(Yi) ∈ [−2, 2], these random variables are in-
dependent and sub-Gaussian with ∥εi∥ψ2 ≤ 2. It follows that Sj is sub-Gaussian with norm
bounded by ∥xj∥2 ≤ B

√
n log n up to a universal constant when X ∈ X(2)

B . Using a union245

bound, there exist universal constants C, c > 0 such that

sup
X∈X(2)

B

pr(Ecλ) = sup
X∈X(2)

B

pr
(
∪pj=1 {|Sj | > 2nλ}

)
≤ Cp exp{−cnλ2/(B2 log n)}

and so the result follows. □
LEMMA S13. Suppose β∗ = 0. For all X ∈ X(2)

B and t > 0,

pr(∥Xβ̂(λ) −Xβ∗∥2 ≥ t) ≤ pr(Ecλ).

Proof. By definition of β̂(λ),

R̂(β̂(λ)) + λ∥β̂(λ)∥1 ≤ R̂(β∗) + λ∥β∗∥1.
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On the event Eλ we have (2n)−1∥XT ε∥∞ ≤ λ and so 250

R(β̂(λ))−R(β∗) ≤ (2n)−1εTX(β̂(λ) − β∗) + λ∥β∗∥1 − λ∥β̂(λ)∥1
≤ λ∥β∗ − β̂(λ)∥1 + λ∥β∗∥1 − λ∥β̂(λ)∥1.

By the triangle inequality,

R(β̂(λ))−R(β∗) ≤ 2λ∥β∗∥1 = 0

and so Xβ̂(λ) = Xβ∗. It follows that

pr(∥Xβ̂(λ) −Xβ∗∥2 ≥ t) ≤ pr(Ecλ)

for all t > 0. □
LEMMA S14. Suppose maxni=1 |xTi β| ≤ c1

√
log n and maxni=1 |xTi β∗| ≤ c2

√
log n. Then,

R(β)−R(β∗) ≥ ∥Xβ −Xβ∗∥22
8nemax{c1,c2}

√
logn

.

Proof. Using a Taylor expansion, there exists βv = vβ + (1− v)β∗ with v ∈ [0, 1] such that 255

R(β)−R(β∗) =
1

2n

n∑
i=1

(β − β∗)Txi

{
ex

T
i βv

(1 + ex
T
i βv)2

}
xTi (β − β∗).

By assumption,

|xTi βv| ≤ v|xTi β|+ (1− v)|xTi β∗| ≤ max{c1, c2}
√

log n

and so

ex
T
i βv

(1 + ex
T
i βv)2

≥ emax{c1,c2}
√

logn

(1 + emax{c1,c2}
√

logn)2
≥ e−max{c1,c2}

√
logn/4

where the last line follows because (3ex + 1)(ex − 1) ≥ 0 for all x ≥ 0. It follows that

R(β)−R(β∗) ≥ ∥Xβ −Xβ∗∥22
8nemax{c1,c2}

√
logn

and so the result is obtained. □
LEMMA S15. Let λ = A

√
(log p log n)/n with A > 0, β∗ ̸= 0, B > 0 and suppose 260

se2B
√

logn
√
log p log n/n = o(1).

There exists N > 0, such that when X ∈ X(2)
B and n ≥ N ,

Eλ/6 =⇒ n−1∥Xβ∗ −Xβ̂(λ)∥22 ≤
768A2e4B

√
logns log p log n

nϕ20(X)
.

Proof. Define

M∗/6 = 32ϕ−2
0 (X)se2B

√
lognλ.

Let β̃ = tβ̂(λ) + (1− t)β∗ where

t =
M∗

M∗ + ∥β̂(λ) − β∗∥1
.
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By convexity of the logistic log-likelihood and the ℓ1-norm,

R̂(β̃) + λ∥β̃∥1 ≤ t{R̂(β̂(λ)) + λ∥β̂(λ)∥1}+ (1− t){R̂(β∗) + λ∥β∗∥1}
≤ R̂(β∗) + λ∥β∗∥1.

Then, with ε = (ε1, . . . , εn)
T where εi = Yi − E(Yi),265

R(β̃)−R(β∗) + λ∥β̃∥1 ≤ (2n)−1εTX(β̃ − β∗) + λ∥β∗∥1.

By definition of β̃, ∥β̃ − β∗∥1 ≤M∗. So, on the event Eλ/6,

R(β̃)−R(β∗) + λ∥β̃∥1 ≤ λM∗/6 + λ∥β∗∥1.

Recall S = {j : β∗j ̸= 0}. Then, as ∥β̃∥1 = ∥β̃S∥1 + ∥β̃Sc∥1,

R(β̃)−R(β∗) + λ∥β̃Sc∥1 ≤ λM∗/6 + λ∥β∗∥1 − λ∥β̃S∥1
≤ λM∗/6 + λ∥β∗ − β̃S∥1. (S12)

First suppose λ∥β∗ − β̃S∥1 ≤ λM∗/6. Then,270

R(β̃)−R(β∗) + λ∥β̃ − β∗∥1 = R(β̃)−R(β∗) + λ∥β̃Sc∥1 + λ∥β̃S − β∗S∥1
≤ λM∗/6 + 2λ∥β̃S − β∗∥1
≤ λM∗/2. (S13)

Let δ = β∗ − β̃. If λ∥β∗ − β̃S∥1 > λM∗/6, then by equation (S12),

λ∥δSc∥1 = λ∥β̃Sc∥1
≤ λM∗/6 + λ∥β∗ − β̃S∥1
< 2λ∥δS∥1

and so by definition of ϕ20(X),275

∥β∗ − β̃S∥21 ≤
∥X(β∗ − β̃)∥22s

nϕ20(X)
.

Combining this with equation (S12), we have

R(β̃)−R(β∗) + λ∥β̃ − β∗∥1 = R(β̃)−R(β∗) + λ∥β̃Sc∥1 + λ∥β̃S − β∗S∥1
≤ λM∗/6 + 2λ∥β̃S − β∗∥1

≤ λM∗/6 +
2λ∥X(β∗ − β̃)∥2s1/2√

nϕ0(X)
. (S14)

As ∥β̃ − β∗∥1 ≤M∗ and maxi,j |xij | ≤ B
√
log n by assumption,280

∥X(β∗ − β̃)∥∞ ≤ n
max
i=1

n∑
j=1

|xij∥β∗j − β̃j | ≤ BM∗√log n
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and so, ∥Xβ̃∥∞ ≤ B(M∗ + 1)
√
log n ≤ 2B

√
log n for n large enough. The last inequality fol-

lows because M∗ = o(1) under the assumptions of this lemma. By Lemma S14,

2λ∥X(β∗ − β̃)∥2s1/2√
nϕ0(X)

≤ 4
√
2eB

√
lognλs1/2

ϕ0(X)
×
√
R(β̃)−R(β∗)

≤ 32e2B
√

lognλ2s

ϕ20(X)
+
R(β̃)−R(β∗)

4

where the last inequality follows because ab ≤ a2 + b2/4 for all a, b ∈ R. Combining this with
equation (S14),

R(β̃)−R(β∗) + λ∥β̃ − β∗∥1 ≤ λM∗/6 +
32e2B

√
lognλ2s

ϕ20(X)
+
R(β̃)−R(β∗)

4
.

Rearranging, we obtain, 285

3

4
{R(β̃)−R(β∗)}+ λ∥β̃ − β∗∥1 ≤ λM∗/6 +

32e2B
√

lognλ2s

ϕ20(X)
≤ 2λM∗/6. (S15)

In particular, using this and equation (S13), we find ∥β̃ − β∗∥1 ≤M∗/2 and so ∥β̂(λ) − β∗∥1 ≤
M∗. The desired result can then be obtained by repeating the arguments with β̃ replaced by β̂(λ).
In particular, replacing β̃ with β̂(λ) in equations (S13) and (S15) yields

R(β̂(λ))−R(β∗) ≤ λM∗/2.

Using Lemma S14, this implies that

∥Xβ∗ −Xβ̂(λ)∥22
n

≤ 4e2B
√

lognλM∗

and the result is obtained by replacing M∗ and λ by their defined values. 290

Proof of Proposition 7. By Lemmas S12 and S13, when β∗ = 0,

sup
X∈X(2)

B

pr{h(Xβ̂(λ), Xβ∗) > t} = sup
X∈X(2)

B

pr(∥X(β̂(λ) − β∗)∥2 > t)

≤ sup
X∈X(2)

B

pr(Ecλ)

= o(1)

as long as A is large enough. Now suppose β∗ ̸= 0. Then,

sup
X∈X(2)

B

pr{h(Xβ̂(λ), Xβ∗) > t} ≤ sup
X∈X(2)

B

pr{n−1/2∥X(β̂(λ) − β∗)∥2max{B, 1} > t}.

Let

fn = e4B
√

logns log p log n/n
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satisfying fn = o(1) by assumption. Combining Lemmas S12 and S15, there exist positive con-
stants N,C1, C2, c1 > 0 such that when n ≥ N ,295

sup
X∈X(2)

B

pr
(
n−1∥Xβ̂(λ) −Xβ∗∥22 > t2max{B, 1}−2

)
≤ sup

X∈X(2)
B

pr
(
n−1∥Xβ̂(λ) −Xβ∗∥22 > C1fn

)
≤ sup

X∈X(2)
B

pr(Ecλ/6)

≤ C2 exp{−(c1A
2 − 1) log p}.

This probability also converges to zero when A is large enough and so the result follows. □

4. FURTHER NUMERICAL PERFORMANCE

4.1. Asymptotic performance
In this section, we consider the asymptotic performance of the corrected least square estima-

tor by observing how various error rates behave as p, n→ ∞ with p/n = κ. Data were gener-300

ated based on the distribution in Condition 3 of the main paper to ensure that cases with and
without data separation were included in the study. This placed focus on the pair (γ, κ) where
γ = E{(xTi β∗)2} and κ = p/n. The values γ = 3 and κ ∈ {0.1, 0.5} were chosen for our analy-
sis. Based on the work of Candès & Sur (2020), data separation occurs with probability converg-
ing to zero when κ = 0.1 and γ = 3, whereas this probability converges to one when κ = 0.5.305

The design matrix X was generated as consisting of n observations on p variables with
n ∈ {100, 200, . . . , 1000} and p = κn. Excluding the intercept term, the covariates correspond-
ing to a given observation were generated from a p− 1 dimensional multivariate normal distri-
bution with mean zero and covariance matrix Σ = ρ11T + (1− ρ)I with ρ = 0.5. The response
variable Y was generated from a logistic regression model with logarithmic odds given by Xβ∗.310

The parameter β∗ had exactly s = 5 randomly chosen non-zero entries with equal signal strength.
The intercept term always had a non-zero effect. To guarantee γ = 3, each non-zero entry of β∗

was set to approximately 0.90.
For each sample size, various corrections to the least squares estimator were obtained by mak-

ing use of a variety of estimates of η∗. The first was the oracle estimator that made use of the true315

value of η∗. This is unavailable in practice but serves as a useful reference point. The predictor η∗

was also estimated using the ridge (Hoerl & Kennard, 1970), LASSO (Tibshirani, 1996), SCAD
(Fan & Li, 2001) and MCP (Zhang, 2010) penalised regressions. Additionally, a logistic regres-
sion was fitted using only the left singular vectors ofX corresponding to the largest r̂ eigenvalues
of XTX where r̂ = argmaxj≤20λj/λj+1 and λ1 ≥ · · · ≥ λp are the eigenvalues of XTX . This320

approach is referred to as SVD based on its relation to the singular value decomposition of X . In
R = 500 repetitions, a new randomly generated response variable was generated and the average
composite estimation and prediction errors were recorded. For a chosen null and signal variable,
the estimated signal strength of each estimator was also obtained. The results are given in Figure
S1.325

We also considered the average behaviour of the test defined in (9) of the original paper with
ϑ = 0.05, b0 = 0 and α equal to one of the standard basis vectors. The proportion of times the
null hypothesis was rejected for the chosen null and signal value were recorded to examine the
Type I error and power. The results are given in Figure S2. For the chosen null variable, Figure
S3 shows the ordered p-values 2{1− Φ(|T |)} plotted against their theoretical expectation under330

a uniform distribution.
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Fig. S1: Average performance of the corrected least squares estimator for various values of n
and s = 5. The left column corresponds to κ = 0.1 and the right column to κ = 0.5. Various
corrections to the OLS estimator were used: oracle (black), LASSO (red), ridge regression (blue),
SVD (green), SCAD (orange), MCP (purple). The dashed lines in the bottom two rows denote
the true signal strength. Error bars represent empirical standard errors.
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Fig. S2: Average Type I error and power of the test ψ(Y ; 0.05, α) for various values of n, s = 5
and α equal to a standard basis vector. The left column corresponds to κ = 0.1 and the right
column to κ = 0.5. Various estimators of η were used: oracle (black), LASSO (red), ridge re-
gression (blue), SVD (green), SCAD (orange), MCP (purple). Error bars represent empirical
standard errors.

The results show that the composite estimation error decreased as a function of n. On the other
hand, the prediction error remained relatively stable at a non-zero value which coincides with the
analysis in section 5.5. The average biases of the corrected least squares estimators were often
close to zero for null variables. For signal variables, the bias increased slightly for the ridge,335

LASSO and SVD estimators, but remained small for the oracle, SCAD and MCP estimators. All
estimators controlled the Type-I error close to the intended level of 0.05. The power of the test
increased with the sample size and for large enough sample sizes, was very close to one. The
plots displayed in Figure S3 show that the distribution of the p-values under the null hypothesis
was in close agreement with a uniform distribution.340

The simulations were repeated, this time allowing s = ⌊n1/3⌋ to grow with the sample size.
By definition of γ and the form of β∗, this altered the signal strength as a function of n, and so
the average estimated signal strength was replaced by the average estimation error β̃∗i − β∗i . The
results are shown in Figures S4, S5 and S6 . They closely resemble the case with s fixed.
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(b) n = 100, κ = 0.5
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(c) n = 1000, κ = 0.1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Expectation of ordered p−values

O
rd

er
ed

 p
−v

al
ue

s

(d) n = 1000, κ = 0.5
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(e) n = 3000, κ = 0.1
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(f) n = 3000, κ = 0.5

Fig. S3: Plots of the ordered p-values 2{1− Φ(|T |)} against their theoretical expectation under
the null hypothesis H0 : β

∗
j = 0 when s = 5. Various estimators of η∗ were used to compute

T : oracle (black), LASSO (red), ridge regression (blue), SVD (green), SCAD (orange), MCP
(purple).
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Fig. S4: As in Figure S1 with s = ⌊n1/3⌋.
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Fig. S5: As in Figure S2 with s = ⌊n1/3⌋.
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(a) n = 100, κ = 0.1
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(b) n = 100, κ = 0.5
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(c) n = 1000, κ = 0.1
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(d) n = 1000, κ = 0.5

Fig. S6: As in Figure S3 with s = ⌊n1/3⌋.
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κ γ ρ Statistic ML Firth’s ML OLS-Oracle OLS-LASSO OLS-Ridge OLS-SVD OLS-SCAD OLS-MCP

0.1 3 0.5 P(exists) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Est. Err. 0.27 (0.13) 0.20 (0.07) 0.19 (0.05) 0.17 (0.03) 0.17 (0.03) 0.18 (0.05) 0.19 (0.05) 0.20 (0.08)

Pred. Err. 0.52 (0.31) 0.37 (0.14) 0.30 (0.07) 0.41 (0.08) 0.40 (0.08) 0.33 (0.08) 0.35 (0.09) 0.37 (0.16)
0.1 3 0.9 P(exists) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Est. Err. 0.69 (0.39) 0.53 (0.21) 0.52 (0.13) 0.36 (0.10) 0.36 (0.09) 0.53 (0.15) 0.45 (0.17) 0.49 (0.14)
Pred. Err. 0.55 (0.46) 0.37 (0.17) 0.29 (0.07) 0.41 (0.07) 0.40 (0.08) 0.36 (0.12) 0.34 (0.12) 0.33 (0.10)

0.1 8 0.5 P(exists) 0.78 (0.42) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Est. Err. 0.35 (0.32) 0.15 (0.07) 0.10 (0.03) 0.18 (0.03) 0.20 (0.01) 0.15 (0.02) 0.16 (0.18) 0.14 (0.06)

Pred. Err. 0.92 (0.98) 0.36 (0.27) 0.17 (0.04) 0.56 (0.09) 0.61 (0.03) 0.42 (0.07) 0.43 (0.59) 0.38 (0.18)
0.1 8 0.9 P(exists) 0.62 (0.49) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Est. Err. 0.91 (0.84) 0.43 (0.31) 0.24 (0.07) 0.20 (0.04) 0.19 (0.03) 0.27 (0.07) 0.24 (0.07) 0.21 (0.03)
Pred. Err. 1.25 (1.57) 0.44 (0.44) 0.16 (0.04) 0.49 (0.11) 0.54 (0.06) 0.28 (0.11) 0.37 (0.16) 0.59 (0.02)

0.5 3 0.5 P(exists) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Est. Err. NA 0.37 (0.21) 0.35 (0.05) 0.22 (0.03) 0.22 (0.02) 0.27 (0.03) 0.26 (0.05) 0.27 (0.04)

Pred. Err. NA 0.94 (0.51) 0.84 (0.08) 0.65 (0.05) 0.65 (0.05) 0.69 (0.05) 0.69 (0.10) 0.70 (0.08)
0.5 3 0.9 P(exists) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Est. Err. NA 0.70 (0.19) 0.94 (0.12) 0.60 (0.08) 0.62 (0.08) 0.98 (0.14) 0.72 (0.12) 0.76 (0.11)
Pred. Err. NA 0.65 (0.08) 0.64 (0.06) 0.56 (0.05) 0.56 (0.05) 0.70 (0.10) 0.56 (0.06) 0.56 (0.05)

0.5 8 0.5 P(exists) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Est. Err. NA 0.13 (0.01) 0.19 (0.03) 0.12 (0.01) 0.13 (0.01) 0.15 (0.02) 0.13 (0.02) 0.13 (0.02)

Pred. Err. NA 0.79 (0.01) 0.39 (0.06) 0.65 (0.08) 0.69 (0.05) 0.57 (0.04) 0.50 (0.09) 0.50 (0.09)
0.5 8 0.9 P(exists) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Est. Err. NA 0.21 (0.03) 0.54 (0.11) 0.27 (0.03) 0.28 (0.04) 0.49 (0.09) 0.36 (0.09) 0.26 (0.03)
Pred. Err. NA 0.79 (0.01) 0.39 (0.06) 0.57 (0.11) 0.58 (0.07) 0.44 (0.12) 0.45 (0.14) 0.66 (0.01)

Table S1: The proportion of times an estimator exists, P(exists), as well as the average composite estimation error, Est. Err, and average pre-
diction error, Pred. Err., are given for various estimators of β∗ when n = 100. The sample standard deviation is given in brackets. The columns
named MLE and Firth ML correspond to the maximum likelihood estimator and Firth’s bias-reduced estimator (Firth, 1993) respectively. The
other columns correspond to estimators obtained from corrected versions of the least squares estimator. The Oracle version uses the true value
to estimate η∗, the other five estimators use Ridge regression, LASSO, SVD, SCAD and MCP estimators of η∗.
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4.2. Small-sample performance345

The finite sample performance of our estimator was tested by computing average composite
estimation and prediction errors in various settings with n fixed. The data were generated as in
section 4.1 with n = 100, ρ ∈ {0.5, 0.9}, and γ ∈ {3, 8}. The parameter β∗ consisted of exactly
s = 5 randomly chosen non-zero entries with equal and positive signal strength. In this case, we
allowed the intercept effect to be zero in some cases.350

For each combination of parameter values,R = 100 Monte Carlo replications were performed
where the design matrix was kept fixed but a new random response variable was sampled each
time. In each repetition, multiple estimators of β∗ were obtained. The first was the usual logistic
maximum likelihood estimator. We also calculated Firth’s bias-reduced estimator (Firth, 1993).
The others were corrections to the least squares estimator obtained by using the oracle, LASSO,355

ridge, SVD, SCAD and MCP estimators of η̂. The results are given in Table S1. For each estimate
β̂ of β∗, the proportion of times the estimator existed, the average relative composite estimation
error ∥β̂ − β∗∥2/(

√
p∥β∗∥2) and the average relative prediction error ∥X(β̂ − β∗)∥2/∥Xβ∗∥2

were recorded as well as the standard errors for these quantities over replications. The estima-
tion error was divided by

√
p∥β∗∥2 to make the entries of Table S1 comparable on account of360

the varying dimension p and signal strength. Note that in some cases the maximum likelihood
estimator did not exist and so the errors for the maximum likelihood estimator were averaged
only over the simulations that returned a solution.

The results show that the corrected least squares estimators perform favourably in compari-
son to the maximum likelihood estimator and Firth’s (1993) estimator, both in cases with and365

without data separation. This was most evident for the prediction error. In view of Theorem 5,
this suggests that Firth’s estimator may produce inconsistent predictions when κ ̸= 0. A more
formal analysis of Firth’s estimator in high-dimensional settings is required to establish this the-
oretically. Comparing the various corrections to the least-squares estimator, the LASSO version
performed the best in terms of estimation error, often out-performing even the oracle estimator.370

This is possible as the oracle estimator obtains β∗ exactly from β0, but it may not be the best
correction of the estimator β̂0. Increasing the sample size severely increased the time required
to compute Firth’s estimator whilst the times required to compute the corrected least squares
estimators were less affected.

We also obtained the Probe-Frontier correction (Sur & Candès, 2019) although omitted the375

results from Table S1. This gave very similar results to those obtained using Firth’s estimator
when the maximum likelihood estimator existed but provided no estimate when the data was
separated. It was also considerably more computationally demanding. SLOE (Yadlowsky et al.,
2021) may be used to reduce the computational burden, although SLOE is also unavailable when
the data is separated and so is omitted from this study.380
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