
O. E. Barndorff-Nielsen’s approximate conditional inference

Heather Battey
Department of Mathematics, Imperial College London

Aarhus, May 29, 2024





O. E. Barndorff-Nielsen’s p∗ formula

p∗(θ̂; θ|ao) = c|ĵ |1/2e`

... ...

` = `(θ; θ̂, ao)− `(θ̂; θ̂, ao)

Not as simple as it looks...



Higher-order approximation by p∗

Under ordinary repeated sampling with sample size n

p(θ̂; θ|ao) = p∗(θ̂; θ|ao)
(
1 + O(n−3/2)

)
Approximation to the density function of the maximum
likelihood estimator of θ, conditional on an ancillary statistic.

(Holds also for second-order approximate ancillaries).



O. E. Barndorff-Nielsen’s p∗ formula

p∗(θ̂; θ|ao) = c|ĵ |1/2e`

... ...

` = `(θ; θ̂, ao)− `(θ̂; θ̂, ao)

θ̂: arbitrary evaluation point.

θ: unknown parameter of the model (assumed correctly specified).

`: log-likelihood function.

ao : observed value of an (approximate) ancillary statistic.

|ĵ |: determinant of the observed information evaluated at θ̂.
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... ...

` = `(θ; θ̂, ao)− `(θ̂; θ̂, ao)

θ̂: arbitrary evaluation point.

θ: unknown parameter of the model (assumed correctly specified).

`: log-likelihood function.

ao : observed value of an (approximate) ancillary statistic.
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A more explicit notation

fθ̂|A(t|ao ; θ)dt ' c(θ, ao)
∣∣j(t; y(t, ao))

∣∣1/2
exp
{
`(θ; y(t, ao))− `(t; y(t, ao))

}
dt

where t is an arbitrary evaluation point for the conditional density function of θ̂

and y(t, ao) is any value of y = (y1, . . . , yn) such that A(y) = ao and θ̂(y) = t.



Motivation for p∗

Exact conditional inference is compelling but:

is only available in limited settings;

even when available, typically takes great ingenuity.

p∗ is intended to apply seamlessly to any problem (caveats).



p∗ → approximate conditional inference

A “likelihood function” LMP based on a version of p∗ for nuisance
parameters is called a modified (profile) likelihood function.

In most examples where exact conditional inference is available, inference
based on LMP coincides with exact inference to higher-order accuracy in n.



The problem of conditioning



Bardorff-Nielsen and Cox, 1994, p. 32

Consider a population of individuals and an event A of inter-
est, for instance that an individual dies of heart disease before
age 70. . . . Now suppose that a series of new individuals is
drawn randomly from the population under study and for each
it is required to calculate the probability of event A . . . . If each
probability is to be relevant to the individual in question, it must
be conditional on observed relevant features, such as age, sex,
smoking habits and blood pressure. . . .
. . . Note, however, that, especially if we condition directly, we
must limit the conditioning: otherwise we would reach the po-
sition where each individual is not only unique, but also unin-
formative about other individuals . . . .



Two types of conditioning

Conditioning by model formulation: conditioning
synonymous with specification of the model.

Technical conditioning: abstract (model+data)-based
partitioning of the sample space.

Fisherian inferential separations specify where to limit the
conditioning to ensure relevance while avoiding degeneracy.
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Exact conditional inference



Notation

Model for random variable Y parametrised
by θ and provisionally assumed true:

fY (y ; θ) =
n∏

i=1

fYi (yi ; θ)

Arbitrary evaluation point y = (y1, . . . , yn).

Sufficiency reduction, e.g. s(y) =
∑

i yi .

Observed outcome y o .

Sufficient statistic S = s(Y ).

Observed value so = s(y o).



Sufficiency reduction

All information in Y relevant for inference on
θ is encapsulated in S = s(Y ).

fY (y ; θ) =
n∏

i=1

fYi (yi ; θ) = g(s(y); θ)h(y)

Take S to be minimal sufficient, i.e. of lowest
dimension.



Minimal sufficiency

Let d be the dimension of S . Let dθ be the dimension of θ.

If d > dθ, then any estimator of θ must sacrifice information on θ by
the definition of minimal sufficiency.

Starting point for p∗: determine a one-to-one transformation of the
minimal sufficient statistic S ∼= (θ̂,A) where A is an ancillary statistic.

(If S is minimal sufficient, then so is S ′ = (θ̂,A) ∼= S , so without loss
of generality, take S = (θ̂,A)).



Separations within the minimal sufficient statistic

Likelihood function depends on the data only through S .

Realisable separation S = (θ̂,A).

Notional idealised separation S = (C(A),A).

Separates the information in S into components of
dimensions dθ and dA without loss or redundancy.



Notional idealised separation

Notional idealised separation S = (C(A),A).

Ancillary A; “maximal co-ancillary” C(A)

C(ao)
d
= S | {A = ao}.

The observed value ao = a(y o) = a(so) leaves
dθ = d − dA degrees of freedom of variation of S
consistent with the constraint a(s) = ao .

Think of C(ao) as having a distribution on the
dθ-dimensional co-ancillary manifold:

C(ao) = {s ∈ Rd : a(s) = ao} ⊂ Rd .



Ancillary statistic A

Ancillary A is defined through its properties w.r.t. θ.

Several property-based definitions have been put forward
of varying stringency (e.g. B-N & Cox, 1994, p. 38).

Idealised situation: distribution of A does not depend on θ.

That does not mean that A is irrelevant for inference on θ
(A is part of the minimal sufficient statistic).

It means that A, by itself, carries no info on the value of θ.



A vague but practically useful definition

Ancillary statistic: A is ancillary for θ if, from observation of A alone,
no information about the value of θ can in general be extracted.

This appears to be the implicit definition used by Fisher.

Formalised constructions along these lines have been proposed e.g.
Barndorff-Nielsen (1973). On M-ancillarity. Biometrika, 60, 447–455.



Relevance through conditioning

The conditioning event {A = ao} isolates
hypothetical samples for which so = (θ̂o , ao) is one
realisation, retaining only the variability in S that is
relevant for determining the horizontal position of the
normed log-likelihood function, rather than its shape,
the latter being fixed by {A = ao}.



Hypothetical replication

Inferential statements about θ inevitably involve hypothetical replication.

Two samples of the same size can produce log-likelihood functions that
differ appreciably in shape, and yet are maximized at the same point.

Example: linear regression. Relevant precision characterised by XTX , not
E(XTX ): XTX is ancillary when X is considered random.

The ancillary A separates samples of the same size according to their
information content.



An exact conditional analysis with nuisance parameters



2× 2 table in original and standardised form

0 1
failure success

0 control N0|0 N1|0 N•|0
1 treated N0|1 N1|1 N•|1

N0|• N1|• N

0 1
failure success

0 control p̂0|0 p̂1|0 p̂•|0
1 treated p̂0|1 p̂1|1 p̂•|1

p̂0|• p̂1|• 1



Degrees of freedom for 2× 2 table

0 1
failure success

0 control
1 treated

1

If the row and column totals are ignored, there are three
degrees of freedom for variation of the entries of the table:
(p̂0|0, p̂1|0, p̂0|1, p̂1|1) belong to the unit simplex in R4.



Degrees of freedom for 2× 2 table

0 1
failure success

0 control p̂•|0
1 treated p̂•|1

1

Knowledge of (one of the) row totals leaves 2 degrees of freedom for
how the table can be filled in.



Degrees of freedom for 2× 2 table

0 1
failure success

0 control p̂•|0
1 treated p̂•|1

p̂0|• p̂1|• 1

Knowledge of row and column totals leaves 1 degree of freedom for
how the table can be filled in.



Conditioning in the 2× 2 table

0 1
failure success

0 control p̂0|0 p̂1|0 p̂•|0
1 treated p̂0|1 p̂1|1 p̂•|1

p̂0|• p̂1|• 1

Fisher argued that is it appropriate to condition on row and column
totals in the analysis, these being ancillary.

After conditioning, the values of (p̂0|0, p̂1|0, p̂0|1, p̂1|1) have a distribution
constrained to a one-dimensional subspace of the unit simplex.



Geometric exposition of Fisher’s conditional analysis

Curved manifold (Feinberg & Gilbert, 1970): the set of true multinomial probabilities
consistent with independence of the two binary variables.

Black line (co-ancillary manifold): constraint within the simplex (sample space for the
standardised table) imposed by the marginal totals p̂1|• = 0.6, p̂•|1 = 0.4.

Fisher’s analysis: based on the distribution of (p̂0|0, p̂1|0, p̂0|1, p̂1|1) constrained to the line.



An example with many nuisance parameters (Cox, 1958)

Used by Barndorff-Nielsen (1983) to illustrate the behaviour of
modified profile likelihood in an extreme example.

One individual from each of n pairs is randomised to treatment,
the other is the untreated control. Pairwise table:

0 1
failure success

0 control 1
1 treated 1

2

The design fixes the row totals.



Logistic model for the probabilities

Binary outcomes on n matched pairs. For the ith pair the model is

p
(i)
1|0 = pr(success | control) =

eαi

1 + eαi
, p

(i)
0|0 = 1− p

(i)
1|0

p
(i)
1|1 = pr(success | treated) =

eαi+β

1 + eαi+β
, p

(i)
0|1 = 1− p

(i)
1|1

The logistic model is intermediate between a general multinomial
representation and one in two independent binomials.



Logistic parametrisation of matched pair problem

Flat plane: subspace compatible with row totals ( 1
2
, 1

2
) from matched pair design.

Curved contours of plane contours of equal β in the logistic parametrisation
(α, β) 7→ eα+β/(1 + eα+β) = pr(success|treated).



Four possible pairwise tables

Because there are pair-specific nuisance parameters, we start by
considering n separate pairwise tables. Four possibilities:

F S
C 1 0
T 1 0

F S
C 1 0
T 0 1

F S
C 0 1
T 1 0

F S
C 0 1
T 0 1

Number of tables of each type: R00, R01, R10, R11.
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In the leftmost and rightmost tables (concordant pairs), conditioning on
column totals leaves no degrees of freedom.

In the two inner tables (discordant pairs) there remains one degree of
freedom after conditioning.
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Conditional analysis based on discordant pairs

Conditioning in the pairwise tables leads us to discard concordant pairs.

R01 tables of type
1 0
0 1

contribute
R01 0
0 R01

R10 tables of type
0 1
1 0

contribute
0 R10

R10 0

Discordant pair table:

F S
C R01 R10 m
T R10 R01 m

m m

Conditional on row and column totals m = R01 + R10

R01 ∼ Bin(m, eβ/(1 + eβ)).

Have eliminated all the nuisance parameters α1, . . . , αn.



Binomial distribution on the co-ancillary manifold

Induced discrete distributions on the co-ancillary manifold C(ao) (straight line)
corresponding to β = 0 (left) and β = 2 (right) from m = 7 discordant pairs.



Approximate conditional inference



Two broad situations

Data are realisations of Y = (Y1, . . . ,Yn).

Likelihood L(θ; y o) = L(θ; so) = L(θ; (to , ao)).

Joint density at arbitrary y:

pr(Y ∈ [y , y + dy)) = fY (y ; θ)dy

Two situations

No reduction from n to d < n:
change variables y → (t, a).

Reduction y 7→ s(y) ∈ Rd d < n:
change variables s → (t, a).



Setting 1: no reduction (1/2)

Typical when θ is a location parameter of a location family.

t is of dimension dθ
a is of dimension n − dθ.

fY (y ; θ)dy = fY (y(t, a); θ)|Jy→(t,a)|dt1 · · · dtdθda1 · · · dan−dθ

Condition on A = ao by dividing by the marginal density of A at
ao . Obtained by integrating out t1, . . . tdθ .



Setting 1: no reduction (2/2)

Fisher (1934): take T = θ̂ and “configuration statistic” A.

fT |A(t|ao ; θ)dt = c(a)
fY (y(t, ao); θ)

fY (y(t, ao); t)
dt

This is a special case of p∗ in a more explicit notation.

OB-N notation: p∗(θ̂; θ|ao) = c|ĵ |1/2e`

` = `(θ; θ̂, ao)− `(θ̂; θ̂, ao)



Setting 2: reduction by sufficiency (1/2)

Simplest example: canonical exponential family

fY (y ; θ)dy = exp
{ n∑

i=1

s(yi )
Tθ − nκ(θ)

} n∏
i=1

f0(yi )dyi

Minimal sufficient statistic s(y) =
∑

i s(yi ). No ancillary statistic.

Density of sum approximated by inversion of characteristic function.

Duality between canonical parameter space Θ ⊂ Rd and parameter
space S ⊂ Rd for ES (also sample space for S) is the bridge
between S and θ̂ needed to specify the Jacobian.



Setting 2: reduction by sufficiency (2/2)

Curved exponential family. Single observation case:

fY (y ;ψ)dy = exp
{
s(y)Tθ(ψ)− κ(θ(ψ))

} n∏
i=1

f0(yi )dyi

Dimension of ψ is smaller than that of s (dψ < d).

Ancillary complement A of dimension dA = d − dψ.

Varying ψ ∈ Ψ defines a dψ-dimensional differentiable
manifold ΘΨ in Θ. Duality between Θ and S means that
to ΘΨ there corresponds a differentiable manifold SΨ in S .

Duality is the bridge between S and θ̂ needed for Jacobian.



Duality

Barndorff-Nielsen (1978), Information and Exponential Families, Ch. 9.

Barndorff-Nielsen (1980). Conditionality resolutions. Biometrika, 67, 293–310.

Barndorff-Nielsen and Cox (1994), pp. 66–70. Esp. Fig. 2.1.



Validity of p∗ in general models

This is more difficult to ascertain and was proved by:

Skovgaard (1990). On the density of minimum contrast
estimators. Biometrika, 18, 779–789.



Construction of A

Volume 67, issue 2 of Biometrika, especially Barndorff-Nielsen
(1980). Conditionality resolutions. Biometrika, 67, 293–310.

Skovgaard (1990). On the density of minimum contrast
estimators. Biometrika, 18, 779–789 (especially pp. 787–788).

Barndorff-Nielsen and Cox (1994). Inference and Asymptotics,
pp. 226–235.

Barndorff-Nielsen and Wood (1998). On large deviations and
choice of ancillary for p∗ and r∗. Bernoulli, 4, 35–63.



A version of p∗ for nuisance parameters

The most interesting examples have θ = (ψ, λ), where λ
is a nuisance parameter.

A version of p∗ for nuisance parameters leads to modified
profile likelihood and higher-order inference based on r∗.
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