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Statistical models

Provisional base for scientific understanding.

Aspects of core scientific interest are often relatively securely
specified in terms of a small number of interpretable parameters.

Other aspects may be chosen somewhat arbitrarily, typically on
the basis of mathematical convenience.

Prospect of misspecification in the nuisance component is high.



A motivating example



Treatment effects and block effects

Matched pairs. One individual from each pair chosen at random to
receive a treatment, the other is the control.

Outcomes (Yi1,Yi0) exponentially distributed of rates γiψ and γi/ψ.

Treatment param. ψ; n nuisance parameters γ1, . . . , γn encapsulate
arbitrary dependence on (perhaps unmeasured) covariates. Semipara.



Treating pair effects as fixed

If γ1, . . . , γn are treated as fixed arbitrary constants they can be
eliminated from the analysis by taking ratios Zi = Yi1/Yi0.

Density function: fZ (z ;ψ) =
ψ2

(1 + ψ2z)2
no dependence on γi .

This is what I would do, but . . .



Treating pair effects as random

An alternative approach treats pair-specific parameters as random.

Convenient choice of distribution in previous example, e.g. gamma.

A lengthy calculation (Battey and Cox, 2020) shows that ψ̂ is consistent
in spite of arbitrary misspecification of the distribution for (γi )

n
i=1.



Questions

How sensitive is this conclusion to the formulation of the model?

Can the response distribution be changed?

Can the parametrisation be changed?

Can the assumed distribution on γ1, . . . , γn be changed?

Is there identifiable structure in the model that led to consistency
of the MLE for the interest parameter?

Results for general models specialised to particular cases.



Motivation and scope

Provide insight into the structure of inference at the population level under
misspecification.

Reference to the unsolved nature of the question being addressed, e.g.:

[. . . ] if the model is misspecified there is no guarantee that the
estimator will be consistent or even close to the true value.

Evans and Didelez (2024+). Parametrising and simulating from causal models
(with discussion). J. R. Statist. Soc. B, to appear.



Misspecification: early history



Cox (1961, 1962)

Parametric model to be fitted: m′(y ; θ), y = (y1, . . . , yn)

True model m(y).

MLE θ̂ →p θ
0
m, where θ0

m solves

Em[∇θ logm′(Y ; θ)]θ=θ0
m

= 0.

Equivalently θ0
m minimizes with respect to θ the

Kullback-Leibler divergence

ˆ
m(y) log

{
m(y)

m′(y ; θ)

}
dy .

Asymptotic variance given by the “sandwich formula”.

Tests of separate families (assumes one is correct).



Elaboration and development

Huber (1967): regularity conditions etc.

White (1982): identifiability of θ0
m; tests of misspec.



The inferential target

This talk: the inferential target has a stable interpretation in
the true model and the fitted model. Other aspects are needed
to complete the specification: these might be misspecified.



Formalisation

Battey, H. S. and Reid, N. (2024). On the role of parametrisation in models with a
misspecified nuisance component. arXiv:2402.05708



Misspecified nuisance component

True density function m for outcomes parametrised in terms
of an interest parameter β with true value β∗.

Assumed model m′: same interpretable interest parameter β;
misspecified in other ways; notional nuisance parameter α.

Log-lik for fitted model: `(β, α) = logm′(y ;β, α);
(β, α) ∈ B ×A. Maximisation: (β̂, α̂)→p (β0

m, α
0
m) solves

Em[∇(β,α)`(β
0
m, α

0
m)] = 0.

Misspecification: no value of α ∈ A gives back m.



The inferential target

Our inferential target is β∗, not (β0
m, α

0
m) to which

the classical literature applies.

What structure implies that β∗ = β0
m for any m?

Ideally would like to be able to check this without
knowledge of m or α0

m.



Parameter m-orthogonality

Definition. Let ∇2
βα`(β, α) denote the cross-partial derivative of

the log-likelihood function. The parameter β is said to be
m-orthogonal to the notional parameter α if Em[∇2

βα`(β, α)] = 0.

Notation. B ⊥m A: global m-orthogonality;
B ⊥m α local m-orthogonality at α for any β;
β ⊥m A and local m-orthogonality at β for any α.

Geometrically. The stronger property ∇2
βα`(β, α) = 0 is an

absence of torsion; the true model m trivially plays no role.
Em[∇2

βα`(β, α)] = 0 ⇒ any torsion is not systematic when data are
generated from m.



Relevance of parameter m-orthogonality

Immediate: β∗ = β0
m ⇐⇒ Em[∇β`(β∗, α0

m)] = 0︸ ︷︷ ︸
C0

.

But we don’t know α0
m or m.

A first general result:
Em[∇β`(β∗, α0

m)] = 0 is equivalent to
(Em[∇β`(β∗, α)] = 0 ∀α ∈ A)︸ ︷︷ ︸

C1.1

if and only if β∗ ⊥m A︸ ︷︷ ︸
C1.2

.

C1.1 and C1.2 imply C0 and therefore consistency of β̂.
In some classes of models C1.1 & C1.2 can be
guaranteed for any m through suitable parametrisation.



A weaker requirement

Suppose C1.2 fails, i.e. β∗ 6⊥m A.

Second result: (iββgβ + iβαgα = 0 ∀α ∈ A) =⇒ β∗ = β0
m.

Scalar case: (iααgβ + iβαgα = 0 ∀α ∈ A) =⇒ β∗ = β0
m

where i = i(β∗, α) = Em[−∇2
(β,α)`(β

∗, α)](
iββ iβα

iαβ iαα

)
=

(
iββ iβα
iαβ iαα

)−1

.

gβ := gβ(β∗, α) = Em[∇β`(β∗, α)],

gα := gα(β∗, α) = Em[∇α`(β∗, α)].



Examples

A class of natural examples involve misspecified random effects distributions.

There are also many examples where parameter m-orthogonality arises due
to a parameter cut: these are relatively easy cases, although the conclusion
may not have been obvious without having the structure made clear.

Examples of neither form. . .



Matched comparison and balanced two-group problems

Outcomes (Yi1,Yi0)ni=1 on treated and untreated individuals.
Distributions parametrised by treatment effect ψ and pair-effect γi (drop
subscript) belong to a transformation model under the action of
g = gψ ∈ G .

ψ-symmetric parametrization: density functions f1, f0 related by

fU(u; γ)du = f1(gu; gγ)d(gu) = f0(g−1u; g−1γ)d(g−1u)

for some g ∈ G . In other words, g−1Y1
d
= U and gY0

d
= U, where the

distribution of U is of “standardised form”.

For any assumed mixing distribution over γ parametrised by α ∈ A, and
for any true mixing distribution, conditions C1.1 and C1.2 are satisfied.



Some less abstract applications

(Yi1,Yi0)ni=1 exponentially distributed. Symmetric parametrisation γiψ and
γi/ψ. Treat γi as random with any parametric distribution. Regardless of
the assumed and true random effects distribution, ψ̂ →p ψ

∗.

Extends to the symmetric parametrisation of Weibull and gamma, with
treatment effect multiplicative on the rate.

In location families the symmetric parametrisation is in the means γi + ψ,
and γi − ψ.

(Other relevant groups? Theory OK for rotation models but this class of
examples seems a bit contrived (??))



Unbalanced two-group problems

Let (Yij1)
rj1
i=1 and (Yij0)

rj0
i=1 be observations within the jth stratum for

treated and untreated individuals respectively. Unbalanced rj1 6= rj0.

Reduce by sufficiency within treatment groups and strata: Sj1 and Sj0.



Stratified two-group Poisson problem with unbalanced strata

Conditionally on γj , Yij1 and Yij0 are Poisson distributed counts of rates
γjψ
∗ and γj/ψ

∗, then Sj1 and Sj0 are sums of these counts and are
Poisson distributed of rates rj1γjψ

∗ and rj0γj/ψ
∗.

rj1 and rj0 reflect the number of patients at risk in each group; (γj)
m
j=1 is

a stratum-specific nuisance parameter.

Fitted model treats (γj)
m
j=1 as gamma distributed: ψ̂ →p ψ

∗ under any
random effects distribution with the same mean.



Evans and Didelez (2024) JRSSB discussion paper

Marginal structural model in a ‘frugal parametrisation’.

Nuisance parameters enter through the propensity score.

E&D model has a parameter cut, implying parameter
m-orthogonality when the propensity score is misspecified.

The proof of E&D’s main theorem implicitly establishes the
remaining condition. See HB discussion of E&D.



The end


