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EARLY HISTORY: A VERY SELECTIVE OVERVIEW (1/3)

D-24 K. Pearson (1900): χ2 test of independence in the 2× 2 table: subject matter
for a series of printed polemics.

D-2 Fisher (1922): likelihood, sufficiency, information, pointed out Pearson’s error.

[A statistic is sufficient for a parameter ψ if no other statistic that can be
calculated from the same sample provides additional information as to the
value of ψ]

D+1 Fisher (1925) emphasized conditioning on an ancillary statistic for recovery of
information lost by using the maximum likelihood estimate.

D+32 These ideas developed over many years culminating with Fisher (1956) and
Cox (1956, 1958a).



EARLY HISTORY: A VERY SELECTIVE OVERVIEW (2/3)

Fisher (1935):

Some, or sometimes all of the lost information may be recovered
by calculating what I call ancillary statistics, which themselves tell us
nothing about the value of the parameter, but, instead, tell us how
good an estimate we have made of it.

Ancillary statistics are only useful when different samples of the
same size can supply different amounts of information, and serve to
distinguish those which supply more from those which supply less.

If it be admitted that these marginal frequencies by themselves
supply no information on the point at issue. . .



EARLY HISTORY: A VERY SELECTIVE OVERVIEW (3/3)

Barnard (1945, 1947) put forward a test which he claimed was more powerful than
Fisher’s exact test, then withdrew the procedure.

Fisher (1956):

Professor Barnard has since then frankly avowed (1949) that further reflection
has led him to the same conclusion as Yates and Fisher, as indeed Wilson with
equal generosity had done earlier.

Yates (1984):

That this conclusion is still not accepted in many quarters, however, is very
evident from numerous recent publications. [∗]

* This is still the case. See also Brown (1990), rebutted by Fraser and Reid (1990); Buja et al. (2019), rebutted by Davison et al. (2019).
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COX (1958a). SOME PROBLEMS CONNECTED WITH STATISTICAL INFERENCE

Brought clarity to Fisher’s reasoning.

Incisive demonstration of the need for conditioning in order to
ensure scientific relevance.

Emphasized that such relevance is sometimes incompatible
with ideas of optimality that remain popular today.

By appeal to DRC’s example, Fisher’s argument for
conditioning on appropriate reference sets is hard to refute.

A first attempt to define a notion of ancillarity in the presence
of nuisance parameters.



RELATIONSHIP BETWEEN COX (1958a) AND SUBSEQUENT WORK

The question of where to limit the conditioning is a challenging one. In
the simplest setting, an arbitrarily granular choice renders each individual
uninformative about others, while too coarse a conditioning typically yields
conclusions irrelevant to the question at hand. When there are many
nuisance parameters the appropriate conditional formulation becomes
particularly elusive, although the conceptual argument for distinguishing
samples of varying degrees of information remains compelling.
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COX (1958b): AN ALTERNATIVE EXPOSITION

From the Bernoulli likelihood function, match up minimal
sufficient statistics with those of a normal-theory linear model.

Recover the logistic form as the unique model that produces
such unification and satisfies the boundary conditions.

Q. Why match up the sufficient statistics?

A.1 Simple sufficient statistics allow an exact
conditional analysis.

Ensures relevance by attaching to
conclusions the precisions actually achieved.
Eliminates nuisance parameters.

A.2 A unified theory has some aesthetic appeal.

A.2 Fisher’s exact test is recovered as a special case.

A.3 Stabilizes interpretation to some extent.



LOGISTIC REGRESSION VIA SUFFICIENCY (1/4)

The normal theory linear model has associated with it
simple sufficient statistics for the regression coefficient
vector β = (β1, . . . , βp)T and unknown error variance.
These are S = XTY , i.e. (Sj)

p
j=1 = (

∑n
i=1 xijYi )

p
j=1 and

the residual sum of squares.

Suppose now that (Yi )
n
i=1 are binary, with outcomes

encoded arbitrarily as {0, 1}. There is no floating
dispersion parameter.



LOGISTIC REGRESSION VIA SUFFICIENCY (2/4)

Parameterize the likelihood function in terms of the binomial
success probabilities (θi )

n
i=1, where “success” corresponds to yi = 1:

`(θ1, . . . , θn; y1, . . . , yn) =
∏n

i=1θ
yi
i (1− θi )(1−yi ), (yi )

n
i=1 ∈ {0, 1}n

and consider which function θi (xi ) : Rp → [0, 1] produces sufficient
statistics for the unknown parameter of the form (

∑n
i=1 xijyi )

p
j=1.

By analogy with linear regression we might consider a smaller class
of functions of the form θi (x

T
i β) : R→ [0, 1].



LOGISTIC REGRESSION VIA SUFFICIENCY (3/4)

`(θ1, . . . , θn; y1, . . . , yn) =
∏n

i=1θ
yi
i (1− θi )(1−yi ), (yi )

n
i=1 ∈ {0, 1}n

For the sufficient statistic to be a sum, either θi or (1− θi ) must contain
an exponential and these probabilities need to be equal up to the
exponential term in order that the exponential of the sum be factorable in
the likelihood. More explicitly, sufficiency of (

∑n
i=1 xijyi )

p
j=1 for β requires

θi = f (xT
i β)ex

T
i β ∈ [0, 1]

1− θi = f (xT
i β) =

θi

ex
T
i β
∈ [0, 1],



LOGISTIC REGRESSION VIA SUFFICIENCY (4/4)

Enforcing the boundary conditions leads to the logistic law:

θi =
ex

T
i β

1 + ex
T
i β
, 1− θi =

1

1 + ex
T
i β
.

The argument is symmetric and these could be defined the other
way round, as would be hoped since the coding of the binary
variables is arbitrary.



EXACT CONDITIONAL ANALYSIS (COX 1958b, 1970)

Suppose βp is the parameter of interest. The conditional distribution of
Sp =

∑n
i=1 xipYi given S1 = s1, . . . , Sp−1 = sp−1 is

pr(Sp = sp | S1 = s1, . . . , Sp−1 = sp−1) =
c(s1, . . . , sp)eβpsp∑

u c(s1, . . . , sp−1, u)eβpu
,

where c(s1, . . . , sp) is the number of possible realizations of Y1, . . . ,Yn

such that the values of S1, . . . , Sp are equal to those actually observed.

Cox (1958b) used this to construct exact confidence sets for βp.



REMARKS (1/3)

S1, . . . , Sp−1 are ancillary for βp and sufficient for β1, . . . , βp−1.

Ancillarity: if we were given only the values s1, . . . , sp−1 no conclusions could be
drawn about βp. Achieve relevance by conditioning on them.

By sufficiency, conditioning eliminates p − 1 nuisance parameter from the analysis.

Both justifications of conditioning lead to the same conclusion in this case.



REMARKS (2/3)

It is clear that absence of Newton-Raphson and maximum
likelihood fitting was deliberate. Fisher proposed Fisher scoring
(an application of Newton-Raphson) for solving ML estimating
equations in 1925. DRC was certainly aware of it in 1958.



WHY IS THE EXACT CONDITIONAL ANALYSIS BARELY USED?

A.1 Calculation of the combinatorial quantity c(s1, . . . , sp) would have
been difficult with 1950s computation.

A.2 Rigid application of Neyman-Pearson theory became widespread.



REMARKS (3/3)

Suppose as before that the outcome Y is encoded as {0, 1}. Let
θ(x) = E(Y (x)) = pr(Y (x) = 1). The logistic model is

log
θ(x)

1− θ(x)︸ ︷︷ ︸
g(θ)

= xTβ.

ηjk :=
βj
βk

=
(d/dθ)g(θ) · (∂θ(x)/∂xj)

(d/dθ)g(θ) · (∂θ(x)/∂xk)
=
∂θ(x)/∂xj
∂θ(x)/∂xk

.

Thus, ηjk specifies by how much we need to change xk in order to
have the same effect on θ as a unit change in xj , all other things
equal, and this interpretation is the same as in linear regression.

More on this presently. . .
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1968

...



1970

p.20: discussion of alternative link functions (but does not use that terminology)



FROM EARLIER

S1, . . . , Sp−1 are ancillary for βp and sufficient for β1, . . . , βp−1.

Ancillarity: if we were given only the values s1, . . . , sp−1 no conclusions could be
drawn about βp. Achieve relevance by conditioning on them.

By sufficiency, conditioning eliminates p − 1 nuisance parameter from the analysis.

Both justifications of conditioning lead to the same conclusion in this case.

The above conclusions extend to exponential families when the canonical parameter g(θ)
is modelled linearly as in Cox (1968, 1970).



FROM EARLIER

Let θ(x) = E(Y (x)) = pr(Y (x) = 1). The logistic model is

log
θ(x)

1− θ(x)︸ ︷︷ ︸
g(θ)

= xTβ.

ηjk :=
βj
βk

=
(d/dθ)g(θ) · (∂θ(x)/∂xj)

(d/dθ)g(θ) · (∂θ(x)/∂xk)
=
∂θ(x)/∂xj
∂θ(x)/∂xk

.

Thus, ηjk specifies by how much we need to change xk in order to have
the same effect on θ as a unit change in xj , all other things equal, and this
interpretation is the same as in linear regression.

The above conclusion extends to exponential families when the canonical
parameter g(θ) is modelled linearly as in Cox (1968, 1970).
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COX (1972): MAIN CONNECTION TO THE FOREGOING

Inferential separations enable elimination of the baseline hazard function,
an infinite-dimensional nuisance parameter (Nancy Reid’s lecture).



ARE THE LOGISTIC AND PH MODELS COMPATIBLE?

Suppose that lifetimes are generated from a distribution with
proportional hazards but that we only observe the
{alive, dead} = {0, 1} indicator at the end of the study. Let βL and
βH be the coefficient vectors (without intercept) in the logistic
regression and PH models respectively.

Q. Is the logistic model compatible with the PH model in the
sense that βL = βH?



ARE THE LOGISTIC AND PH MODELS COMPATIBLE?

A. No. Logistic and proportional odds (McCullagh, 1980) are compatible. PH is compatible with a
double logarithmic transform of the survival probabilities:

log[− log{1− θ(x)}]︸ ︷︷ ︸
g(θ)

= constant + xTβH

g(θ) does not lead to simple sufficient statistics for βH in the dichotomized model.

A more flexible extension of Cox’s (1968, 1970) canonical exponential family regression models
sacrifices the simple sufficient statistics and the possibility for exact conditional analysis.

This extension is the class of Generalized Linear Models (Nelder and Wedderburn, 1972).



CLOSELY RELATED DEVELOPMENTS (1/4)

Generalized linear models (Nelder and Wedderburn, 1972) followed
quite directly. Emphasised maximum likelihood fitting by the
Newton-Raphson algorithm. Based on the full likelihood function.



CLOSELY RELATED DEVELOPMENTS (2/4)

A body of work sought to achieve the appropriate conditioning approximately,
beyond exponential family canonical form, e.g.

Fraser (1964). Local conditional sufficiency. JRSSB.
Barndorff-Nielsen and Cox (1979). Edgeworth and saddle-point approximations
with statistical applications (with discussion). JRSSB
Cox (1980). Local ancillarity. Biometrika
Barndorf-Nielsen (1983). On a formula for the distribution of the maximum
likelihood estimator. Biometrika
McCullagh (1984). Local sufficiency. Biometrika
Cox and Reid (1987). Parameter orthogonality and approximate conditional
inference (with discussion). JRSSB
Fraser and Reid (1988). On conditional inference for a real parameter: a
differential approach on the sample space. Biometrika
Barndorff-Nielsen (1990). Approximate interval probabilities. JRSSB
Fraser (1990). Tail probabilities from observed likelihoods. Biometrika



CLOSELY RELATED DEVELOPMENTS (3/4)

Sufficiency provides a separation of the information in the data into
that relevant for inference on the parameters of a given model, and
that relevant for assessing model adequacy.

On the basis of this, Cox (1968) emphasised the construction of
confidence sets of models: all low-dimensional subsets of variables
that are statistically indistinguishable at an arbitrary threshold.

This was emphasised repeatedly, e.g. Cox and Snell (1974, 1989),
Cox (1995), Cox and Battey (2017).



CLOSELY RELATED DEVELOPMENTS (4/4)

Parameter-based factorisation of the likelihood function:

L(ψ, λ; y) = Lpa(ψ; y)Lr(ψ, λ; y).

Base inference for ψ on Lpa(ψ; y), thereby eliminating λ.

Ideally, little or no information for inference on ψ is lost
through relinquishment of the remainder likelihood Lr(ψ, λ; y).

Constructive procedure for finding factorisable transformations
or approximately factorisable transformations.



(Photo credit: Christiana Kartsonaki). Clockwise from anterior:
Christiana Kartsonaki, Nanny Wermuth, Ruth Keogh, David Cox, Heather Battey



THE END


