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Summary. Models whose associated likelihood functions fruitfully factorise are an
important minority allowing elimination of nuisance parameters via partial likeli-
hood, an operation that is valuable in both Bayesian and frequentist inferences,
particularly when the number of nuisance parameters is not small. After some gen-
eral discussion of partial likelihood, we focus on marginal likelihood factorisations,
which are particularly difficult to ascertain from elementary calculations. We sug-
gest a systematic approach for deducing transformations of the data, if they exist,
whose marginal likelihood functions are free of the nuisance parameters. This is
based on the solution to an integro-differential equation constructed from aspects
of the Laplace transform of the probability density function, for which candidate
solutions solve a simpler first-order linear homogeneous differential equation. The
approach is generalised to the situation in which such factorisable structure is not
exactly present. Examples are used in illustration. Although motivated by infer-
ential problems in statistics, the proposed construction is of independent interest
and may find application elsewhere.

Some key words: inferential separation; marginal likelihood; matched comparisons;
method of characteristics; partial differential equations; nuisance parameters.

1. Introduction

Parametric statistical inference in models with many parameters relative to the
number of observations raises issues that are at least implicitly differential geometric.
For inference on a scalar or vector interest parameter ψ, the profile log-likelihood
function for ψ replaces nuisance parameters by their constrained maximum likelihood
estimates. The approach may give highly miscalibrated inference for ψ when the
number of nuisance parameters is large relative to the amount of information in
the sample, and considerably suboptimal inference for even moderately many such
parameters. Three broad approaches are to apply an interest-respecting orthogonal
reparameterisation, to base inference on an adjusted version of the signed-likelihood
root called r∗, or to construct a suitable partial likelihood.

Parameter orthogonalisation, proposed by Cox and Reid (1987) and based on the
solution to a set of partial differential equations, leads to higher-order accuracy of
nuisance maximum likelihood estimators in a moderate deviation range of ψ, and
thereby removes the leading-order bias term in the maximum likelihood estimator of
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ψ. This can be observed from the expansions on p.150 of Barndorff-Nielsen and Cox
(1994) on noting that parameter orthogonalisation, by definition, sets relevant blocks
of the Fisher information matrix to zero. Two asymptotically equivalent versions of
r∗ are due to Barndorff-Nielsen (1990) and Fraser (1990), the latter using implicit
conditioning on an approximately ancillary statistic. Partial likelihood, formalised to
some extent by Cox (1975), uses only part of the full likelihood function for inference
on ψ, possibly relinquishing some information. All three approaches, when available,
often yield remarkably accurate inference when the amount of information is small,
or nuisance parameters are numerous.

Cox (1975) stated five problems associated with partial likelihood, of which the first
was: “to provide constructive procedures for finding useful partial likelihoods”. The
problem remains open, and the purpose of the present paper is to provide a modest
step towards addressing it, focussing primarily on a class of matched comparison
problems. Section 2 gives a formalisation of inferential separation based on partial
likelihood, while §4 presents a version suitable for matched comparison settings.

2. Partial likelihood and inferential separation

Suppose the outcomes are realisations of random variables Y1, . . . , Yb whose joint
distribution depends on parameters (ψ, λ). The notation b in place of the more
conventional n is for consistency with the rest of the paper, in which n is the total
sample size, Yi is a vector of size m, and b = n/m represents the number of blocks of
size m. In the present section such block structure is not needed.

Consider inference on an interest parameter ψ from a parameter-based factorisation
of the full likelihood function L(ψ, λ; y) of the form

L(ψ, λ; y) = Lpa(ψ; y)Lr(ψ, λ; y). (2.1)

The factor Lpa(ψ; y) is called the partial likelihood (Cox, 1975). Ideally, little or
no information for inference on ψ is lost through relinquishment of the remainder
likelihood Lr(ψ, λ; y).

A factorisation of the form (2.1) can be induced in various ways, as is apparent from
the examples in Cox (1975). The important distinction between factorisations on the
parameter space and those on the sample space is discussed in detail by Cox and
Wermuth (1999) and Cox (2000). The present paper is concerned with factorisations
on the parameter space induced through sample-space factorisations of the marginal
and conditional types.

Let (S,R,A), where A is ancillary, be a jointly sufficient statistic for (ψ, λ) based
on Y = (Y1, . . . , Yb), where any of Yi, ψ or λ may be vectors. An ancillary statistic
need not be available. When it is, (S,R,A) is treated as minimal sufficient.

The full likelihood function for (ψ, λ) is the density function fY of Y , viewed as a
function of the parameters with y fixed at the observed value of Y :

fY (y;ψ, λ) ∝ fS,R,A(s, r, a;ψ, λ) = fA(a)fS|A(s | a;ψ, λ)fR|S,A(r | s, a;ψ, λ).

That it may be beneficial, or indeed necessary, to use only part of the likelihood
function for inference on ψ was noted by Bartlett (1936), who proposed conditional
likelihood based on fR|S,A when this quantity is free of λ. Another special case
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is fS|A(s | a;ψ, λ) = fS|A(s | a;ψ) so that one choice of Lpa(ψ; y) is fS|A(s | a;ψ).
Similarly, if

fS|A(s | a;ψ, λ) = g1(s, a;ψ)g2(s, a;ψ, λ),

a λ-free partial likelihood for ψ can be constructed as Lpa(ψ; y) = g1(s, a;ψ). In the
absence of an ancillary statistic, fS|A(s | a;ψ, λ) = fS(s;ψ, λ), and when this is free
of λ, Lpa(ψ; y) = fS(s;ψ) is called the marginal likelihood function (Fraser, 1968;
Kalbfleish and Sprott, 1970).

3. Matched comparison problems

Matched comparison studies in blocks of size m represent a popular and effective
method of experimentation for the assessment of m treatment effects, of which one
typically represents a control or base treatment. Such designs entail matching b sets
of m individuals based on their intrinsic features before randomising each treatment
to one unit per block.

With m = 2 it is convenient to write (Yi)
b
i=1 = (Ti, Ci)

b
i=1 for outcomes on the

treated and untreated individuals in each of the b pairs. The distributions of Ti
and Ci are typically assumed equal up to the presence of a treatment parameter, ψ,
and known modulo a pair-specific nuisance parameter, λi. Inclusion of a nuisance
parameter per pair avoids having to specify in detail those aspects of the probabilistic
model that are not of primary subject-matter importance. The nuisance parameters
may, for example, encompass the effects of unmeasured covariates in the form λi =
h(xT

i β). It also makes the assumption of independence of Ti and Ci reasonable. There
are limitations to this approach. Notably non-constancy of the treatment effect would
not be directly detectable through consideration of all pairs simultaneously.

A key consideration is whether the nuisance parameters λ1, . . . , λb are to be treated
as realisations of random variables or as fixed arbitrary constants. Appendix A for-
malises the two formulations and argues in favour of the latter. While conceptu-
ally compelling, the analysis for fixed nuisance parameters is more challenging and
context-dependent. When available, it tends to be based on a form of partial likeli-
hood obtained from distributional factorisations on the sample space: either marginal
or conditional likelihood. Motivated by this, the present paper seeks a function s(Yi)
of the components of Yi such that the density function of Si = s(Yi) depends on ψ
but not on λi. We call Si a factorisable transformation of Yi. A function s induc-
ing such factorisable structure need not exist, raising the question of whether useful
approximate versions may be found.

For larger values of m, typically ψ = (ψ1, . . . , ψm)T represents a vector of treat-
ment effects, and we let Yi1, . . . , Yim represent the independent outcome variables
associated with each treatment in the ith block, i = 1, . . . , b.

The formulation of matched comparison problems as inducing large numbers of
nuisance parameters for inference on a scalar treatment effect was presented by Cox
(1958b), and has been discussed from various perspectives by Cox and Hinkley (1978),
Lindsay (1980,1985), Barndorff-Nielsen and Cox (1994), Sartori (2003), Kartsonaki
and Cox (2016) and Battey and Cox (2020). The following results illustrate some of
the difficulties.
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Example 1. Bartlett (1936) noted that when two random variables, Yi1 and Yi2 say,
are normally distributed of mean µi and variance σ2 for i = 1, . . . , b, the maximum
likelihood estimator of σ2 converges in probability to σ2/2.

Example 2 (Cox, 1958b). Let (Ti, Ci)
b
i=1 be independent pairs of independent binary

variables, each valued in {0, 1}, and let

pr(Ci = 1) =
eλi

1 + eλi
, pr(Ti = 1) =

eλi+ψ

1 + eλi+ψ
.

The interest parameter ψ is the logistic difference between the probabilities. Cox
(1958b) indicated the appropriate conditional analysis, while Barndorff-Nielsen and
Cox (1994, example 4.6) demonstrated difficulties with direct use of the likelihood
function for estimation of ψ, showing that the estimator converges in probability to
2ψ.

Example 3. Suppose that Ti and Ci are independently exponentially distributed of
rates λiψ and λi/ψ respectively for i = 1, . . . , b. Thus Ti and Ci have a constant
hazard ratio ψ2. A slightly different parameterisation of this example was used by
Lindsay (1980, 1985).

The likelihood equations for ψ̂ and λ̂1, . . . , λ̂b are

0 = ∇λi`(ψ̂, λ̂1, . . . , λ̂b) = 2λ̂−1i − (Tiψ̂ + Ci/ψ̂),

0 = ∇ψ`(ψ̂, λ̂1, . . . , λ̂b) = −
b∑
i=1

λ̂iTi +

b∑
i=1

λ̂iCi/ψ̂
2.

Thus, on substituting λ̂i = 2(Tiψ̂ + Ci/ψ̂)−1 into the likelihood equation for ψ̂ and

simplifying, the maximum likelihood estimator ψ̂ is the solution in ψ to

0 =
b∑
i=1

Ci/ψ − Tiψ
Ci/ψ + Tiψ

. (3.1)

Lindsay (1985) established that this estimator of the constant hazard ratio is consis-
tent and asymptotically normally distributed as n = 2b → ∞. This is in contradis-
tinction to the seemingly similar Examples 1 and 2. However, the usual estimator of
variance of ψ̂ is miscalibrated. Lindsay (1985) recommended a treatment in which
λ1, . . . , λb are regarded as independent and identically distributed random variables
from a parametric distribution of known form. Mispecification of the form can lead
to major difficulties.

We favour a transformation to Si = Ti/Ci, whose density function at s > 0 is
ψ2/(1 + ψ2s)2 producing the marginal likelihood,

Lpa(ψ; y) =
b∏
i=1

fS(si;ψ),

as a fruitful choice of partial likelihood. This is to be viewed as a function of ψ.
Since (Si)

b
i=1 are independent and identically distributed, consistency of the mar-

ginal likelihood estimator ψ̂m is expected in view of standard maximum likelihood
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theory, although verification of the usual regularity conditions is complicated by
non-existence of moments of Si. The proof of Proposition 3.1 establishes consistency
directly.

Proposition 3.1. Let ψ̂m be the marginal maximum likelihood estimator based on
the transformed random variables (Si)

b
i=1. Then ψ̂m is consistent for ψ as b→∞.

Proof. The marginal likelihood equation for ψ̂m is

1 =
2

b

b∑
i=1

ψ̂2
mSi

1 + ψ̂2
mSi

. (3.2)

A strong law of large numbers implies that, for any κ > 0,

1

b

b∑
i=1

κ2Si
1 + κ2Si

→a.s.
κ2{(κ− ψ)(κ+ ψ) + 2ψ2(logψ − log κ)}

(κ2 − ψ2)2
.

Thus in the limit as b→∞, ψ̂m satisfies

1 =
2ψ̂2

m{(ψ̂m − ψ)(ψ̂m + ψ) + 2ψ2(logψ − log ψ̂m)}
(ψ̂2

m − ψ2)2
. (3.3)

The right hand side of (3.3) is 1 only in the limit as ψ̂m → ψ. �

It follows directly from the consistency established in Proposition 3.1 that (ψ̂m −
ψ){−`′′pa(ψ̂)}1/2 is asymptotically standard normally distributed, and similarly for
the likelihood ratio statistic based on the marginal likelihood.

Conditional likelihood is available and fruitful in the matched comparison context
if (Ti, Ci) can be transformed bijectively to new variables, (Si, Ri) say, such that
the conditional density function of each Si given Ri = ri depends on ψ but not
on λi. When available, this situation is typically easy to detect from inspection
of the log-likelihood function, as it only requires identifying Ri = r(Ti, Ci) as a
sufficient statistic for λi. The statistic Si can then be chosen based on convenience
of calculating the conditional density, provided that the transformation (Ti, Ci) →
(Si, Ri) is bijective.

Deducing a function Si = s(Ti, Ci) that gives a suitable marginal likelihood as
in Example 3 is considerably more difficult and, to our knowledge, a systematic
construction has not been attempted.

4. A systematic construction of marginal likelihood

For ease of exposition the case of m = 2 is discussed first, suppressing the pair
index i on λi and (Ti, Ci) except when it is necessary to be explicit.

To establish a transformation (T,C) → (S,R), write the transformation equa-
tions as s = s(t, c), and r = r(t, c). Since the transformation is assumed bijective,
the inverse equations are t = t(s, r) and c = c(s, r). A transformation satisfying
fS(s;ψ, λ) = fS(s;ψ) is sought, using only the joint probability density or mass
function of T and C, denoted by fT,C(t, c;ψ, λ). The probability function of an
arbitrary transformed random variable S = s(T,C) is expressible in terms of this
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either by specifying the Jacobian matrix of the transformation, or by using Laplace
transforms. The latter is found to be more convenient. Thus consider

fS(s;ψ, λ) =
1

2πi

∫ τ+i∞

τ−i∞
exp{zs(t, c)}Tλ(s, z)dz, (4.1)

where s : R2 → R, τ is anywhere in the interval of convergence of the moment gen-
erating function of S and Tλ(s, z) is the Laplace transform,

Tλ(s, z) =

∫ ∞
−∞

∫ ∞
−∞

exp{−zs(x, y)}fT,C(x, y;ψ, λ)dxdy, z ∈ C.

Since (4.1) may only depend on λ through Tλ, Battey and Cox (2020) suggested
choosing the function s(t, c) to make Tλ independent of λ, identically in z, ψ and λ.
It is in fact sufficient by Cauchy’s theorem (e.g. Whittaker and Watson, 1927, §5) that
independence be achieved only at points z of singularity, but this is more difficult and
inconsequential unless the analytic continuation of the moment generating function
of S has a singularity at zero, as will become clear from the discussion below.

A function s delivering independence of λ is sought by differentiating Tλ partially
with respect to λ and solving the resulting integral equation for s(t, c), identically in
z, ψ, and λ. This equation is

∂

∂λ

∫ ∞
−∞

∫ ∞
−∞

exp{−zs(t, c)}fT,C(t, c;ψ, λ)dtdc = 0. (4.2)

Depending on the support of the distributions of T and C, the range of integration
may be restricted.

The partial differential operator can be interchanged with the integral sign by
Leibniz’s theorem but it is more fruitful to first apply a change of variables from (t, c)
to (w, v), say, chosen such that all dependence on λ is transferred from fT,C(t, c;ψ, λ)
to s(w, v;ψ, λ). The conditions required for this are that fT,C(t, c;ψ, λ) is expressible
as

fT,C(t, c;ψ, λ) = κ
dw(t)

dt

dv(c)

dc
g{w(t, ψ, λ), v(c, ψ, λ), ψ}, (4.3)

where κ is a constant and g depends on λ only through the bijective functions
w(t;ψ, λ) and v(c;ψ, λ). Assuming this is satisfied, (4.2) is

∂

∂λ

∫
V

∫
W

exp[−zs{t(w,ψ, λ), c(v, ψ, λ)}]g(w, v, ψ)dwdv = 0. (4.4)

By Leibniz’s theorem, the chain rule and positivity of g, a sufficient and necessary
condition for s to solve the nonlinear double integral equation (4.4) for any z 6= 0 is
that it solves the first-order linear homogeneous differential equation:

∂

∂λ
s{t(w;ψ, λ), c(v;ψ, λ)} = 0 (4.5)

for all permissible w and v, i.e. all values for which the corresponding values of t
and c are in the support of fT,C for values of ψ and λ in their respective parameter
spaces. Thus, provided (4.3) is satisfied, any solution to (4.5) is a solution to (4.2)
identically in ψ, λ and z 6= 0. If no parameter-free solution to (4.5) exists, there may
still be a parameter-dependent solution, as discussed in §7.1.
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In contrast to the original problem (4.2), established solution strategies are avail-
able for (4.5), either exact if an analytic solution exists, or approximate. The prob-
abilistic model fT,C may supply additional information to aide solution.

Using the chain rule, the partial differential equation (4.5) can be written

∂s{t(w,ψ, λ), c(v, ψ, λ)}
∂t

∂t(w,ψ, λ)

∂λ
+
∂s{t(w,ψ, λ), c(v, ψ, λ)}

∂c

∂c(v, ψ, λ)

∂λ
= 0.

More compactly, with a(t, c) := a(t, c;λ, ψ) = ∂t(w,ψ, λ)/∂λ and b(t, c) := b(t, c;λ, ψ) =
∂c(v, ψ, λ)/∂λ,

a(t, c)
∂s(t, c)

∂t
+ b(t, c)

∂s(t, c)

∂c
= 0. (4.6)

This is a standard form of partial differential equation to which the method of char-
acteristics applies. See e.g., Courant and Hilbert (1966, Chapter 2).

The approach extends naturally to m > 2, although in that case bijectivity of the
map implies that s has up to (m− 1) components and the analogue of (4.1) is

fS(s;ψ, λ) =
1

2πi

∫ τ+i∞

τ−i∞
· · ·
∫ γ+i∞

γ−i∞
exp{z1s1 + · · ·+ zm−1sm−1}Tλ(s, z)dz1 · · · dzm−1,

(4.7)
where, reintroducing subscripts for clarity and assuming the components Yi1, . . . , Yim
are independent, Tλ(s, z) is∫ ∞
−∞
· · ·
∫ ∞
−∞

exp{−z1s1 − · · · − zm−1sm−1}
∏
j

fYij (yij ;ψj , λi)dyi1, . . . , dyim. (4.8)

The generalisation of (4.3) is that fYij (yij ;ψj , λi) can be written as

fYij (yij ;ψj , λi) = cij
dvij(yij)

dyij
gij{vij(yij ;ψj , λi), ψj}, (4.9)

where cij is a constant and gij only depends on λi through the bijective function
vij(yij ;ψj , λi).

In principle, these ideas extend beyond matched comparison problems, by replacing
(Ti, Ci)

b
i=1 from the previous discussion by pairs of observations (Yi, Y1)

n
i=2, say, where

Y1, . . . , Yn are outcome variables whose distribution possibly depends on covariates
x1, . . . , xn ∈ Rp. There are connections to maximal invariants used in the theory of
invariant tests. Indeed, a referee has pointed out that Example 3 is a location model
after a log transformation, from which it is clear that differences on the log-scale
eliminate the nuisance parameter, and that this must be related to the existence of
a maximal invariant, or maximal ancillary statistic for (λ1, . . . , λb).

Several examples clarify these ideas.

5. Matched comparison examples

Example 4. Suppose that Ti and Ci are independently exponentially distributed of
rates λiψ and λi/ψ respectively for i = 1, . . . , b. Example 3 shows that a factorisable
transformation exists in the form Si = Ti/Ci. The motivation for the present paper
was that this should be recoverable from a seamless application of theory.



8 H. S. BATTEY, D. R. COX†, AND SU HYEONG LEE

Equation (4.2) is, on treating each pair separately and suppressing the subscript
on λ,

0 =
∂

∂λ

∫ ∞
0

∫ ∞
0

exp{−zs(t, c)}
{
λ2 exp(−λψt) exp(−λc/ψ)

}
dtdc (5.1)

=

∫ ∞
0

∫ ∞
0

exp{−zs(t, c)}
{

2λ− λ2(ψt+ c/ψ)
}

exp(−λψt) exp(−λc/ψ)dtdc.

Integration shows that s(t, c) = t/c verifies equation (4.2). The goal is to recover this
transformation using a strategy that does not require s(t, c) to be known a priori.

Following the recommendation above, change variables in equation (5.1) to w =
λψt and v = λc/ψ. The volume element transforms as dtdc = (ψλ)−1(λ/ψ)−1dwdv =
λ−2dwdv so that equation (5.1) is

0 =
∂

∂λ

∫ ∞
0

∫ ∞
0

exp[−zs{w/(λψ), ψv/λ}] exp{−(w + v)}dwdv. (5.2)

Dependence on λ has been transferred to the bivariate function s for which a solution
to (5.2) is required. Interchanging the partial differential operator with the integrals
shows that a solution to (5.2) is that of the first order linear partial differential
equation

∂

∂λ
s{t(w,ψ, λ), c(v, ψ, λ)} = 0, (5.3)

where t(w,ψ, λ) = w/(λψ) and c(v, ψ, λ) = ψv/λ, and for the purpose of this argu-
ment, w and v should be treated as fixed. Equation (5.3) specifies that s : R2 → R
must be constant identically in v, w and ψ as a function of λ. Thus, {s(t, c) =
(t/c)k = (ψ−2w/v)k : k 6= 0} is an equivalence class of solutions to (5.3), suggesting
(Ti, Ci) 7→ {(Ti/Ci), A} as a suitable transformation, where A represents any statistic
that makes the transformation bijective, for instance A = Ti, A = Ci or A = TiCi.

Example 5. Example 4 easily extends to triplets, quadruplets etc. With Xi1, Xi2

and Xi3 exponentially distributed of rates λiψ1, λiψ2 and λi respectively, the only
change to the previous derivations is that s is a function of three variables, which
are, on omitting triplet subscripts, x1 = w1/(λψ1), x2 = w2/(λψ2) and x3 = w3/λ.
The equation to be solved is thus (cf equation (4.6))

a(x1, x2, x3)
∂s(x1, x2, x3)

∂x1
+b(x1, x2, x3)

∂s(x1, x2, x3)

∂x2
+c(y1, y2, y3)

∂s(y1, y2, y3)

∂x3
= 0,

say, where a(x1, x2, x3) = ∂x1(w1, ψ1, λ)/∂λ = −x1/λ, b(x1, x2, x3) = ∂x2(w2, ψ2, λ)/∂λ =
−x2/λ and c(x1, x2, x3) = ∂x3(w3, λ)/∂λ = −x3/λ. There are multiple solutions.
Among those yielding a bijective map from (x1, x2, x3) to (s1, s2, r) are s1(x1, x2, x3) =
x1/x3, s2(x1, x2, x3) = x2/x3 and r = x3.

Example 6. An extension of Example 4 to which the appropriate transformation is
not already known has Ti and Ci Weibull distributed of shape α and rate parameters
λiψ and λi/ψ respectively. Thus there is one nuisance parameter per pair and another
shared over all pairs. The appropriate change of variables is to w = λψtα and



9

v = (λ/ψ)cα so that the analogue of equation (5.2) is

0 =
∂

∂λ

∫ ∞
0

∫ ∞
0

exp(−zs[{w/(λψ)}1/α, {ψv/λ}1/α]) exp{−(w + v)}dwdv.

A transformation to eliminate both α and λ would need to solve the pair of simulta-
neous partial differential equations

aλ(t, c)
∂s(t, c)

∂t
+ bλ(t, c)

∂s(t, c)

∂c
= 0,

aα(t, c)
∂s(t, c)

∂t
+ bα(t, c)

∂s(t, c)

∂c
= 0,

where aλ(t, c) = −t/αλ, bλ(t, c) = −c/αλ, aα(t, c) = −t log(t)/α, bα(t, c) = −c log(c)/α.
There is clearly no such solution. The transformation s(t, c) = t/c eliminates λ, which
is to be favoured over elimination of α because each pair of observations introduces
a pair-specific λi. The transformed random variables (Si)

b
i=1 = (Ti/Ci)

b
i=1 are inde-

pendent and identically distributed with probability density function

fS(s;ψ, α) =
αψ2sα−1

(1 + ψ2sα)2
, s > 0. (5.4)

To assess whether it is possible to also eliminate α, consider a pair of these trans-
formed random variables, Si and Sj , say. The density function of a transformation
u(si, sj) satisfies

fU (u;ψ, α) =
1

2πi

∫ τ+i∞

τ−i∞
exp{zu(si, sj)}Tα(u, z)dz,

where

Tα(u, z) =

∫ ∞
0

∫ ∞
0

exp{−zu(x, y)}fSi,Sj (x, y;ψ, α)dxdy,

and analogously to before we seek a solution to (∂/∂α)Tα(u, z) = 0. It does not
seem possible to specify a change of variables from (si, sj) to (w, v) such that the
dependence on α is transferred from

fSi,Sj (si, sj ;ψ, α) =
αψ2sα−1i

(1 + ψ2sαi )2
αψ2sα−1j

(1 + ψ2sαj )2
, si > 0, sj > 0,

to u{si(w,ψ, α), sj(v, ψ, α)}. In other words, the analogue of equation (4.9) appears
to be violated for this relatively complicated form of fS(s;ψ, α) given in equation
(5.4).

The following example, although artificial and having an obvious solution, serves
as a reassuring illustration that the distributions involved need not belong to the
exponential family.
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Example 7. Suppose that Ti and Ci are independently Cauchy distributed of loca-
tion λi and shape ψ, the interest parameter. In the notation of §4,

Tλ(s, z) =

∫ ∞
−∞

∫ ∞
−∞

exp{−zs(t, c)} 1

πψ

{
1 +

(
t− λ
ψ

)2}−1{
1 +

(
c− λ
ψ

)2}−1
dtdc

=
1

π2

∫ ∞
−∞

∫ ∞
−∞

exp{−zs(ψw + λ, ψv + λ)} dwdv

(1 + w2)(1 + v2)
,

where we have used a change of variables to w = (t− λ)/ψ and v = (c− λ)/ψ. The
function s : R2 → R must be constant identically in v, w and ψ as a function of λ
showing that any λ-free function of (t− c) = ψ(w − v) is a solution to (4.5).

6. Further examples

The strategy extends beyond the block structure of the previous examples, or
equivalently to settings with b blocks of size one or a single block of size n.

Example 8. . Let Y1, . . . , Yn be exponentially distributed with means E(Yi) =
λ exp(xT

i ψ) for covariates xi ∈ Rp. A simplified version of this example was studied
by Cox and Reid (1987) from a different perspective. For an arbitrary pair (Yi, Y1),
say:

Tλ(s, z) =

∫ ∞
−0

∫ ∞
−0

exp{−zs(λ exp(xT
i ψ)wi, λ exp(xT

1ψ)w1)} exp{−(w + v)}dwidw1,

where we have used a change of variable from yi to wi = λ−1 exp(−xT
i ψ)yi. The

differential equation to be solved in s(yj , y1) is

0 =
∂s{yi(wi, λ, ψ), y1(w1, λ, ψ)}

∂λ

= wi(yi, ψ, λ) exp(xT
i ψ)

∂s(yi, y1)

∂yi
+ w1(y1, ψ, λ) exp(xT

1ψ)
∂s(yi, y1)

∂y1
,

for which solutions are of the form {s(yi, y1) = (yi/y1)
k : k 6= 0}. Thus, inference

based on (Yi/Y1)
n
i=1 is free of the nuisance parameter λ.

Example 9. Cox (1972, §11) discussed accelerated life models as convincing alter-
natives to proportional hazards representations in some contexts. One convenient
parametric form, particularly when censoring is present, is the log-logistic model
(e.g. Davison, 2003, p.190), which has a potentially non-monotonic hazard function.
Let Yi be a log-logistic random variable with shape parameter β > 0, determining
monotonicity or otherwise, and scale parameter αi = λ exp(xT

i ψ) for λ > 0. The
density function of Yi is given by

(β/αi)(y/αi)
β−1

(1 + (y/αi)β)2
, y > 0.

Solutions to the differential equation associated with an arbitrary pair (Yi, Y1) are
of the form {s(yi, y1) = (yi/y1)

k : k 6= 0}, again showing that inference based on
(Yi/Y1)

n
i=1 is free of the nuisance parameter λ.
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7. Extending applicability

The previous analysis was limited by two aspects: that the marginal likelihood
factorisation is not universally valid and indeed may only hold in rather special cases,
such as models built on transformation groups; secondly, the requirement (4.3), which
arises from the solution strategy for (4.2). It seems likely that applicability of the
ideas of §4 can be extended, and we outline some possible routes to this.

7.1. Perturbed factorisations. Existence of a marginal likelihood factorisation can
be relaxed by supposing that such a factorisation is approximately valid, with the
factor purported to depend only on ψ in fact depending weakly on λ. If this more gen-
eral condition is satisfied, λ can be replaced by an arbitrary value without materially
affecting inference for ψ.

The relaxation can be incorporated by specifying that the right hand side of (4.5)
is not exactly zero but rather a slowly varying function, h say, of λ. In the context
of §4, the resulting equation is

∂

∂λ
s{t(w,ψ, λ), c(v, ψ, λ)} = h(λ), (7.1)

and since h(λ) is unknown, one approach is to expand it locally around a base point,
λ0, leading to the approximation

∂

∂λ
s{t(w,ψ, λ), c(v, ψ, λ)} = a(t, c)

∂s(t, c)

∂t
+ b(t, c)

∂s(t, c)

∂c

= κ+ ε1(λ− λ0) + ε2(λ− λ0)2,

where κ is a constant, ε1 and ε2 are small and, as explained in §4, a(t, c) = ∂t(w;ψ, λ)/∂λ
and b(t, c) = ∂c(v;ψ, λ)/∂λ. This is now a first-order linear inhomogenous differential
equation that can, in principle, be solved by the method of characteristics when κ,
λ0, ε1 and ε2 are treated as known. Provided that the limit of the resulting solution
as ε1, ε2 → 0 is operational for small (λ− λ0), this specifies a transformation that is
approximately factorisable in the earlier sense.

An alternative, simpler, route is to seek a solution to the original homogeneous
equation (∂/∂λ)s{t(w,ψ, λ), c(v, ψ, λ)} = 0, acknowledging that the transformation
s(t, c) will in general depend on the unknown parameters. If such a solution depends
on ψ only, the distribution of s(T,C;ψ) is free of λ at the true value of ψ. This
leads to a procedure for constructing confidence sets for ψ analogous that proposed
by Bartlett (1936) in the context of conditional likelihood. Specifically, any ψ0 for
which the sample of suitably standardised statistics s(t, c;ψ0) is consistent with its
theoretical distribution, assuming ψ0 = ψ, constitutes a confidence set for ψ.

In reducing or eliminating dependence on the nuisance parameter, it is possible that
dependence on the interest parameter is also weakened to the extent that marginal
likelihood is ineffective. This is a limitation of the procedure which needs to be
checked for.

Example 10. Let Ti and Ci for i = 1, . . . , b be independently exponentially dis-
tributed of means µi−ψ and µi+ψ respectively, or equivalently of rates λi/(1−λiψ)
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Figure 1. Plot of equation (7.2) as a function of λ for ψ = 0.5 (left),
ψ = 0.25 (right), and for the specified values of s.

and λi/(1+λiψ), where −1 < λiψ < 1. There is no obvious choice of partial likelihood
function.

Dropping subscripts, the appropriate change of variables is to w = tλ/(1 − λψ)
and v = cλ/(1 + λψ), therefore

a(t, c) :=
∂t(w;ψ, λ)

∂λ
= − w

λ2
=

t

λ(1− λψ)
,

b(t, c) :=
∂c(v;ψ, λ)

∂λ
= − v

λ2
=

c

λ(1 + λψ)
.

A set of solutions to the resulting homogeneous equation,

t

λ(1− λψ)

∂s(t, c)

∂t
+

c

λ(1 + λψ)

∂s(t, c)

∂c
= 0,

is {s(t, c) = (c/tβ)k : k 6= 0}, where β = (1 − λψ)/(1 + λψ), and it is convenient to
take k = 1. The transformation depends on the unknown parameters λ and ψ, and
T/C provides a crude estimate of β so that C/T T/C is one candidate transformation.

Instead consider a leading order Taylor series expansion around ψλ = 0. This gives
s(t, c) ≈ s̃(t, c) = c/t. Thus s̃(t, c) = c/t is the parameter-free transformation whose
marginal density function depends only weakly on λ provided that ψλ is small. The
latter condition is not unreasonable because the formulation requires −1 < ψλ < 1.

However, direct calculation shows that the density function of S̃ = C/T is deter-
mined by the product ψλ as

fS̃(s;ψ, λ) =
1− (ψλ)2

{1 + s+ ψλ(1− s)}2
, s > 0. (7.2)

Thus, although the transformation has been effective in approximately eliminating
dependence on λ for any given ψ, as illustrated in Figure 1, a partial likelihood
function based on (7.2) caries information only about the product ψλ. We have
found instead an approximately ancillary statistic for (ψ, λ). Further discussion of
this example is in §8.
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7.2. Other solution strategies for the integro-differential equation (4.2). A
further limitation of the proposal in §4 is the requirement (4.3). This arises from the
solution strategy for (4.2) in terms of a partial differential equation. In developing
the ideas from §4, we considered several other solution strategies. While we were
unable to fully operationalise them, it seems valuable to report them here as possible
routes for further exploration. We illustrate these ideas in the context of Example 4.

7.2.1. Change of variables after differentiation under the integral sign. A re-expression
of the second equation in (5.1), in which the differentiation has been performed under
the integral sign, is

0 =

∫ ∞
0

exp(−λc/ψ)

[∫ ∞
0

exp{−zs(t, c)}{2λ− λ2(ψt+ c/ψ)} exp(−λψt)dt
]
dc.

(7.3)
Thus any s(t, c) that makes the function in square brackets orthogonal to exp(−λc/ψ)
identically in λ, ψ and z, also solves (5.1).

By changing variables to x =
√
c, (7.3) is

0 =

∫ ∞
−∞

exp(−λx2/ψ)

2x

[∫ ∞
0

exp{−zs(t, x2)}{2λ− λ2(ψt+ x2/ψ)} exp(−λψt)dt
]
dx.

and any s(t, x2) that makes the term in square brackets an even function, identically
in z, ψ and λ satisfies the equation, because exp(−λx2/ψ) is an even function and
1/2x is odd.

7.2.2. Hilbert-Schmidt orthogonalisation after differentiation under the integral sign.
From any linearly independent functions f0, . . . , fK , orthogonal functions φ0, . . . , φK
can be constructed as described by Szëgo (1967, Chapter II) or Whittaker and Watson
(1965, §11.6). Thus, in view of (7.3), set

φ0(c) = f0(c) = exp(−λc/ψ).

For any κ 6= 1, f1(c) = exp(−λκc/ψ) := f
(κ)
1 (c) is linearly independent of f0, and a

family of functions φ
(κ)
1 , orthogonal to φ0 can be constructed as (Szëgo 1967, Chapter

II)

φ
(κ)
1 (c) = (D0D

(κ)
1 )−1/2D

(κ)
1 (c), (7.4)

where D0 := 〈f0, f0〉, and

D
(κ)
1 (c) := 〈f0, f0〉f (κ)1 (c)− 〈f0, f (κ)1 〉f0(c),

D
(κ)
1 := 〈f0, f0〉〈f (κ)1 , f

(κ)
1 〉 − 〈f0, f

(κ)
1 〉

2,

and for any pair of functions f and g, each in L2(a, b), 〈f, g〉 =
∫ b
a f(x)g(x)dx.

For any κ > 0, with the f0 and f
(κ)
1 defined above,

〈f0, f (κ)1 〉 =

∫ ∞
0

exp(−λc/ψ) exp(−λκc/ψ)dc = ψ/(λ+ κλ),

〈f (κ)1 , f
(κ)
1 〉 =

∫ ∞
0

exp(−λκc/ψ) exp(−λκc/ψ)dc = ψ/(2κλ),
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and (f0, f0) = ψ/(2λ). Thus

(D0D
(κ)
1 )−1/2 =

2
√

2κ1/2(κ+ 1)λ3/2

(κ− 1)ψ3/2
,

and using equation (7.4),

φ
(κ)
1 (c) =

√
2κλ(κ+ 1)

(κ− 1)ψ1/2
exp(−λκc/ψ)− 2

√
2κλ

(κ− 1)ψ1/2
exp(−λc/ψ).

It can be checked by integration that
∫∞
0 φ0(c)φ

(κ)
1 (c)dc = 0. It follows that a family

of solutions to (7.3) are the functions s(t, c) that solve

φ
(κ)
1 (c) =

∫ ∞
0

exp{−zs(t, c)}{2λ− λ2(ψt+ c/ψ)} exp(−λψt)dt.

7.2.3. Stein operators. Consider operators AQ, which characterize a distribution Q
in the sense that

EQ(AQf)(X) = 0 ∀f ∈ F ⇐⇒ X ∼ Q, (7.5)

where F is the space of smooth and bounded functions. Stein (1972) showed that for
Q the standard normal distribution, the operator AQ is (AQf)(x) = f ′(x) − xf(x).
For Q an exponential distribution of rate ρ, the corresponding AQ is (Luk, 1994),

(AQf)(x) = (1− ρx)f ′(x) + xf ′′(x). (7.6)

Let w(c;ψ, λ) denote the function in square brackets in (7.3). Since (7.5) is a complete
characterisation of Q, any function w satisfying (7.3) also satisfies

(ψ/λ)w(c;ψ, λ) = (1− λc/ψ)f ′(c) + cf ′′(c)

for some smooth and bounded function f , and so the equation to be solved for s(t, c),
identically in z, λ and ψ, is

(1− λc/ψ)f ′(c; z, λ, ψ) + cf ′′(c; z, λ, ψ)

= λψ−1
∫ ∞
0

exp{−zs(t, c)}{2λ− λ2(ψt+ c/ψ)} exp(−λψt)dt

for any convenient choice of f ∈ F .

8. Reducing the role of nuisance parameters through other routes

While complete elimination of nuisance parameters is typically highly effective
when available, other routes to reducing their role may sometimes be more fruitful.

Rather than seeking a transformation whose distribution is free of the nuisance
parameters, we may instead seek one whose expectation is free of them, a more
modest goal, leading to empirical averages as point estimators. In principle this
should be easier to operationalise in a systematic way than complete elimination
from the distribution of the transformation, although we have not obtained a unifying
formulation. The variance of this point estimator in general depends on the nuisance
parameters, and the challenge is then to find an accurate estimate of the composite,
thereby evading separate estimation of each one.
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Example 11. Suppose that Ti and Ci are as in Example 10. Then

ψ̂ :=
1

2b

b∑
i=1

(Ci − Ti)→p
1

2b

b∑
i=1

E(Ci − Ti) = ψ

is a consistent point estimator as n→∞. The variance of ψ̂, unsurprisingly, depends
on all b nuisance parameters. In particular

var(ψ̂) =
ψ2

2b
+

1

2b2

b∑
i=1

1

λ2i
.

However, since

1

b

b∑
i=1

TiCi →p
1

b

b∑
i=1

E(TiCi) =
1

b

b∑
i=1

1

λ2i
− ψ2,

a consistent estimator of the variance of ψ̂ is

σ̂2 :=
1

2b2

b∑
i=1

TiCi +
ψ̂2

b
→p

ψ2

2b
+

1

2b2

b∑
i=1

1

λ2i
.

Although there are compelling reasons for preferring likelihood-ratio inference in
low dimensions, Example 10 is a case for which direct use of the likelihood is not
recommended, and for which partial likelihood may be infeasible, while a pivotal
quantity (ψ̂−ψ)/σ̂ can be derived from simple algebraic operations. Following Wald
(1950), confidence sets can in principle be constructed from this quantity, although
its approximate normality requires investigation, as the usual regularity conditions
do not hold.

In Example 11 the original nuisance parameters are neither estimated nor elimi-
nated. Instead, an implicit reparametrisation is performed, producing a scalar com-
posite nuisance parameter. Accumulation of estimation error from multitudinous
nuisance parameters is thereby avoided. This points to a more general strategy, in
principle applying even when p > n, in which transformations are sought to make
the problem depend on the interest parameter and, at most, a small set of one-
dimensional summaries of the original nuisance parameters.

9. Closing remarks

In an earlier related paper (Battey and Cox, 2020) we closed with some open
problems having a differential geometrical bearing. The first of these questioned
whether a connection could be established between data-based transformations for
the elimination of nuisance parameters via marginal or conditional likelihood, and
the interest-respecting reparameterisations of Cox and Reid (1987). The following
remarks are informal.

Fraser (1964) made a connection between the sample and parameter spaces through
the notion of a local location model. The parameterised distribution function FY (y; θ)
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of Y , say, is viewed a function of both y and the parameter θ. Let ε be a quantile
defined by F (yε(θ); θ) = ε. Then

0 =
∂F (yε(θ); θ)

∂yε

∂yε(θ)

∂θ
+
∂F (yε; θ)

∂θ
,

and since ε is arbitrary
∂y(θ)

∂θ
= −∂F (y; θ)/∂θ

f(y; θ)
.

The exposition in Fraser (1964) is different.
These ideas have been fruitfully employed in the development of the tangent ex-

ponential model, starting with Fraser (1988) and Fraser and Reid (1988). Davison
and Reid (2022) provide summaries from a different perspective with more detailed
accounts of the historical development.

We close with an acknowledgement of the limitations of this work. The strategy
we sought to follow was to start from some examples for which we already knew
the answer and to find a general theory that recovers those answers. Where the
paper falls short is in its extension of this theory to other structures, raising two
possibilities: either that we have not taken full advantage of our ideas, or that they
are less general than we would hope. Which of these possibilities is true can only be
ascertained after further attempts at development, possibly along the lines of §7.

Appendix A. Treating nuisance parameters as fixed or random

The next two paragraphs follow an exposition due to Lindsay (1980). Let (Y,A)
denote the common Borel space for the independent random variables Y1, . . . , Yb.
For each i, Yi has a parametric density function f(y;ψ, λi) with respect to σ-finite
measure on (Y,A), known up to ψ and λi, where (ψ, λi) is assumed to belong to
the Cartesian product parameter space Θ = Ψ × Λ so that ψ and λi are variation

independent. Let
∏b
i=1(ψ, λi) denote the measure on (Yb,Ab) induced by (Y1, . . . , Yb).

A key consideration is whether the nuisance parameters λ1, . . . , λb are treated
as realisations of random variables or as fixed arbitrary constants. Lindsay (1980)
formalised the distinction by introducing the mixture model

f(y;ψ,Q) =

∫
f(y;ψ, λ)dQ(λ),

say, whose induced measure on (Yb,Ab) is denoted by (ψ,Q)b. Let δ(λ) be the prob-
ability measure assigning mass 1 to {λ}. Lindsay (1980) noted that the parameter
space Θ can be embedded in

Θ∗ := {(ψ,Q) : ψ ∈ Ψ, Q ∈ Q}

provided that the space of probability measures Q is sufficiently rich to include each
of δ(λ1), . . . , δ(λb). In practice, Q is typically taken as a parametric family, although
Kiefer and Wolfowitz (1956) allowed an infinite-dimensional Q under some regularity
conditions.
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This raises important conceptual issues that go to the foundations of modelling.
While, in principle, Θ ⊆ Θ∗ when Q is unrestricted, to treat λ1, . . . , λb as being
drawn from a non-degenerate distribution rather than as fixed unknown constants
is an extra assumption whose implications may be minor or considerable depending
on context. A more extreme version of essentially the same problem is the weighing
machine example of Cox (1958a).

The random effects formulation, if it is to be believed, has the appealing feature
that ψ and Q together capture stable aspects of the system and are therefore relevant
for predicting future observations. For scientific understanding via ψ, lack of stability
of the model with respect to the nuisance parameters λ1, . . . , λb is immaterial except
insofar as it might affect inference on ψ. For the matched comparison studies that
motivate the present paper, whereby ψ represents a treatment effect and λ1, . . . , λb
capture block-specific effects, the conceptual motivation for treating these as fixed
unknown constants seems strong and leads, at least in principle, to an answer free of
assumptions about the inter-block variation.
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