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Abstract
The purpose of this exposition is to provide some new perspectives on conditional
inference through a notional idealised separation within the minimal sufficient statis-
tic, allowing a geometric account of key ideas from the Fisherian position. The notional
idealised separation, in terms of an ancillary statistic and what I call a maximal
co-ancillary statistic, provides conceptual insight and clarifies what is sought from
an approximate conditional analysis, where exact calculations may not be available.
A parallel framework applies in the Fisherian assessment of model adequacy. Both
aspects are discussed and illustrated geometrically through examples.

Keywords Ancillary · Conditional inference · Inferential separations · Information ·
Minimal sufficiency · Model adequacy

1 Introduction

The question of where to limit the conditioning emerges in many guises. Barndorff-
Nielsen andCox [7, p. 32] gave a simplemotivating example concerning the probability
that an individual dies of heart disease before the age of 70, a large data base of past
cases allowing estimation of the probability of interest. Relevance of such a calculation
for any new individual requires that it is conditional on intrinsic features such as sex,
smoking habits and so on. In principle, such conditioning could be extended to tens of
thousands of genetic traits but this has to be limited, otherwise a situation is reached
in which each individual is unique and uninformative about others.

The previous situation exemplifies the more tangible form of conditioning syn-
onymous with specification of a suitable regression model. Standard terminology
of conditional inference instead refers to a more abstract conditioning in which the
observed data, in combination with a model (provisionally assumed true) dictate an
abstract partitioning of the sample space to be used in inference. Cox [20] refers to the
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two types as conditioning by model formulation and technical conditioning respec-
tively. In both cases, Fisherian inferential separations, when available, specify where
to limit the conditioning to ensure relevance while avoiding degeneracy. It is these
separations and associated ideas that I aim to elucidate here, with an emphasis on
geometric insight through two notional random variables which I call the maximal
co-ancillary statistic and the maximal co-sufficient statistic. The latter terminology
expands on one used by Barber and Jansen [2], who introduced an approach for sam-
pling from the conditional distribution of an outcome variable given the realised value
of a sufficient statistic, referring to this as co-sufficient sampling. While conditioning
also plays an important role in the elimination of nuisance parameters, this is concep-
tually distinct from its core role in Fisherian inference, although the two motivations
sometimes give rise to the same operational procedures.

The only novelty in the present work comes from seeing an old problem from a
new perspective, which has some advantages of conceptualisation relative to more
algebraic approaches.

Besides some brief remarks in Sects. 2.2 and 4, no attempt is made to survey a
rather large literature on approximate conditional inference, to which important early
contributions were made, inter alia, by Efron and Hinkley [26], Barndorff-Nielsen
and Cox [6], Barndorff-Nielsen [4, 5, 18], McCullagh [38], Fraser [32, 33], Fraser and
Reid [34], and Skovgaard [43]. The account serves primarily to provide insight into
the foundations of Fisherian inference, and partly to illustrate what is sought from an
approximate analysis when exact calculations are unavailable.

2 Ancillarity andmaximal co-ancillarity

2.1 Separations within theminimal sufficient statistic

Consider a model for a vector of independent or conditionally independent random
variables Y = (Y1, . . . ,Yn), parametrised by θ and provisionally assumed true; this
is specified by the joint density function fY (y; θ) = ∏n

i=1 fYi (yi ; θ) where y =
(y1, . . . , yn) is an arbitrary evaluation point. Particularly relevant to this discussion
are models for which there is a sufficiency reduction from n to d < n. Specifically, if
s(y) is a sufficient statistic, then the joint density function at y factorises as

fY (y; θ) =
n∏

i=1

fYi (yi ; θ) = g(s(y); θ)h(y), (2.1)

showing that all information in the observed data yo relevant for inference on θ is
contained in the observed value of the sufficient statistic so = s(yo). In the remainder
of this exposition, the random variable S = s(Y ) denotes the minimal sufficient
statistic, i.e. a statistic of smallest dimension d among all those satisfying equation
(2.1).

Suppose that the dimension of S is d > dθ , where dθ is the dimension of θ ,
the difference in dimensions being dA = d − dθ . Then from any estimator of θ ,
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necessarily constructed from part of the minimal sufficient statistic, there must be a
complementary component of dimension dA to complete the information contained
in S, and any estimator of θ must sacrifice information on θ by the definition of
minimal sufficiency. From a given minimal sufficient statistic S, particular interest
lies in one-to-one transformations of the form S ∼= (T , A), where ∼= denotes one-
to-one equivalence, A is an ancillary statistic, in a sense to be clarified in Sect. 2.2,
and T is a one-to-one transformation of the maximum likelihood estimator. If S is
minimal sufficient, then so is S′ = (T , A) ∼= S, so without loss of generality we
take S = (T , A). In fact, in some discussions of exact and approximate conditional
inference, including that of Fisher [31], T is taken to be the maximum likelihood
estimator θ̂ , and it is conceptually helpful to keep that convention in mind, although
it raises questions over the existence and construction of the ancillary complement A.
That matter is covered to some extent in chapter 7 of Barndorff-Nielsen and Cox [7].

While S = (θ̂ , A) is an observable separation, insight is obtained through consider-
ation of a notional idealised separation S = (C(A), A), where A is the same ancillary
statistic. In the idealised separation, C(A) is not a function of A in the conventional
sense; it can be thought of as the part of the information in S not contained in A, so
that S = (C(A), A) separates the information into components of dimension dθ and
dA without loss or redundancy. The maximal co-ancillary statistic C(A) is notional
in the sense that it is typically not directly expressible in terms of the original data
even if A has an explicit representation; it is maximal in the sense that it completes
the information in S without loss. Once A = ao is observed, C(ao) has the condi-
tional distribution of S given A = ao, and this observed value ao = a(yo) = a(so)
leaves dθ = d−dA degrees of freedom of variation of S consistent with the constraint
a(s) = ao. The maximal co-ancillary C(ao) can therefore be thought of as having a
distribution on the dθ -dimensional co-ancillary manifold embedded in Rd :

C(ao) = {s ∈ R
d : a(s) = ao} ⊂ R

d . (2.2)

The geometry of conditional inference is illustrated through examples in Sect. 2.2 after
some discussion of the definition of ancillarity and the motivation for conditioning.
The considerations involved in constructing an approximate conditional analysis when
the relevant separations are not available are discussed in Sect. 4.

2.2 On the definition of ancillarity

Usage of the term ancillary statistic, even in its strictest form, has differed in the
literature in an important respect: some authors refer to any statistic as ancillary whose
distribution is free of (or depends very weakly on) the parameter θ . Other authors,
including R. A. Fisher, have included in the definition of ancillarity that the statistic
be part of the minimal sufficient statistic. Throughout this paper, the latter convention
is adopted.

Several property-based definitions of ancillarity of varying stringency have been
put forward by Barndorff-Nielsen and Cox [7, p. 38]. The idealised situation is when
the distribution of A does not depend on θ , in which case the joint density function
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factorises as

fT ,A(t, a; θ)dtda = fT |A(t | a; θ) f A(a)dtda (2.3)

showing that all the information about θ lost by using T in place of S is recovered by
conditioning on A = ao. This formulation makes it clear that A is not irrelevant for
inference on θ , rather that A, by itself, carries no information on the value of θ .

The idealised definition is too strong for most settings and is complicated by the
presence of nuisance parameters. A vague but practically useful definition, implicit
in some of the constructions used by Fisher, is to specify that A is ancillary for θ

if, from observation of A alone, no information about the value of θ can in general
be extracted. Formalised constructions along these lines have been proposed, e.g. by
Barndorff-Nielsen [3]. Other constructions have been used in connection with higher-
order approximate conditional inference via Barndorff-Nielsen’s p∗ formula [4, 5].
Skovgaard [43] discusses the accuracy of the approximation induced by second-order
relative to first-order ancillary statistics such as that of Efron and Hinkley [26].

2.3 Relevance through conditioning

The conditioning event A = ao isolates hypothetical samples for which so = (θ̂o, ao)
is one realisation, retaining only the variability in S that is relevant for determining
the horizontal position of the normed log-likelihood function �(·) − �(θ̂), rather than
its shape, the latter being fixed by A = ao. The separation thereby achieves rele-
vance without degeneracy, the broad definition of ancillarity guaranteeing an exact or
approximate decoupling of location and shape and d � n ensuring non-degeneracy.

That such a conditional analysis should be sought is not uncontroversial. Cox [14]
provided a compelling example and brought clarity to several sources of contention.
In two examples of common relevance, ancillarity is routinely invoked and rarely
questioned: the sample size n is almost always treated as non-random even when it
is not fixed in advance; in a regression context with covariate matrix X treated as
random, it is widely acknowledged that the appropriate measure of precision depends
on the observed value of XTX , rather than its expectation. Yates [45] gave a historical
account of the debate in the context of 2 × 2 tables.

In response to the usual argument against conditioning (e.g. Brown, [12]) that condi-
tional tests lose power, the Fisherian position is that unconditional power comparisons
are irrelevant once the data have been observed, a point emphasised particularly by
Cox (e.g. [14, 19, 22]). As noted by a referee, power can be used for planning, i.e. in
specifying a sample size, although it is arguably more appropriate to set the sample
size to attain a particular unconditional standard error, which requires specification
of one parameter rather than three (a power-based calculation requires specification
of the level of the test, the distance from the null hypothesis value, and the required
unconditional power at that distance).

Birnbaum [11] highlighted an apparent paradox of conditional inference, purporting
to show that adoption of the Fisherian position invalidates the use of repeated sampling
considerations as part of the inference procedure, essentially leading to the Bayesian
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paradigm, or to other approaches that are in conformity with the likelihood principle.
Durbin [25] noted that the requirement that an ancillary statistic be part of the minimal
sufficient statistic voids the result of Birnbaum [11]. See Evans [27] and Evans and
Frangakis [28] for an extensive discussion.

2.4 The co-ancillary manifold in two exact conditional analyses

The primary role of the notional separation S = (C(A), A) is to aid geometric inter-
pretation via the maximal co-ancillary statistic C(ao), distributed on the co-ancillary
manifold C(ao) of equation (2.2). The present section provides an illustration based on
two related examples: the conditional analysis of the 2×2 contingency table, as given
by Fisher [30], and the binary matched pair analysis in the logistic parametrisation
given by Cox [15]. In neither of these examples does the exact ancillarity property
(2.3) hold: in both cases the distribution of A depends very slightly on the parameter
of interest in such a way that from observation of A alone, no information about the
value of the interest parameter θ can in general be extracted. In the second of the two
examples, n pair-specific nuisance parameters are eliminated from the analysis, which
also illustrates the second role for technical conditioning. A different exposition of
parts of this section appeared in Battey [9]; the development here emphasises the role
of the co-ancillary manifold, which is new to the present paper, and omits other details
of less fundamental importance.

Consider a 2 × 2 contingency table in original and standardised form:

0 1
failure success

0 control N0|0 N1|0 N•|0
1 treated N0|1 N1|1 N•|1

N0|• N1|• N

0 1
failure success

0 control p̂0|0 p̂1|0 p̂•|0
1 treated p̂0|1 p̂1|1 p̂•|1

p̂0|• p̂1|• 1

(2.4)

In the leftmost table, Nc|r counts the number of individuals with column outcome
c and row outcome r using the convenient coding c ∈ {0, 1} and r ∈ {0, 1}. Column
and row totals are indicated in an obvious notation, e.g. N•|r = N0|r + N1|r . The
standardised table is obtained from the original by division by N .

For concreteness, the chosen example with the two binary variables
{failure, success} and {control, treated} illustrates a situation most naturally thought
of as a binary regression in a single binary covariate. The original formulation dating
at least to Pearson [41] was a so-called pure contingency table in which the two binary
variables are on an equal footing. Conceptually, the two situations are very differ-
ent, but there are close parallels in the algebraic definitions of the primary objects
of interest. Specifically, the cross-product ratio θ = (p0|0 p1|1)/(p0|1 p1|0) used as a
measure of dependence in the pure contingency table is algebraically equal to the
odds ratio θ = (p1|1/p0|1)/(p1|0/p0|0) when one variable is treated as potentially
explanatory for the other. Here, pc|r are the probabilities associated with each pair of
binary outcomes.
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Fig. 1 The triangular pyramid is
the simplex S3 ⊂ R

4; the curved
manifold is the independence
surface in the pure contingency
table; the thick black line is the
co-ancillary manifold C(ao)

The convenience of this example for geometric visualisation is that the sample
space for the standardised table is on the scale of probabilities, a scale on which
statements concerning parameter values can also be represented. The simplex in R

4

is a three-dimensional object, allowing visualisation, and is represented in Fig. 1
by a triangular pyramid. If the row and column totals in the standardised table are
ignored, there are three degrees of freedom for variation of the entries of the table and
( p̂0|0, p̂1|0, p̂0|1, p̂1|1) belongs to the unit simplex inR4. Knowledge of one of the row
totals (and therefore both) leaves two degrees of freedom for how the entries of the
table can be filled in, while further knowledge of the column totals leaves only one.
Fisher [30] argued that it is appropriate to condition on the row and column totals in the
analysis of the 2× 2 table, these being ancillary in the broad sense of Sect. 2.2. After
conditioning, the values ( p̂0|0, p̂1|0, p̂0|1, p̂1|1), viewed as random variables, have a
distribution constrained to a one-dimensional subspace of the unit simplex.

In Fig. 1 the curved manifold is the set of true multinomial probabilities consistent
with independence of the two binary variables, viewed on an equal footing in a pure
contingency table, and was determined algebraically by Fienberg and Gilbert [29].
Specifically, it can be checked that with r , s ∈ [0, 1]2 and (p0|0, p1|0, p0|1, p1|1) =
(rs, r(1− s), (1− r)s, (1− r)(1− s)), the cross product ratio θ is equal to 1, which
quantifies the independence condition that the probability of every joint event is equal
to the product of the corresponding marginal events.

The black line is the co-ancillary manifold C(ao) of equation (2.2) determined by
the observed values of the ancillary statistics ao = ( p̂o1|•, p̂o•|1), which was chosen as
ao = (0.6, 0.4) for the purpose of Fig. 1. All standardised tables on the line have
the same marginal totals, where the two extremes are the tables that solve pc|r =
min{ p̂oc|•, p̂o•|r } for all combinations {c, r} ∈ {0, 1}, the other three entries of each table
being determined by the marginal totals, and two pairs among the four tables being
equal by construction. Fisher’s [30] exact conditional analysis can be thought of as
being based on the distribution of ( p̂0|0, p̂1|0, p̂0|1, p̂1|1) constrained to this line.
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Fig. 2 The flat plane is the
subspace of entries of the
standardised table compatible
with the constraint ( 12 , 1

2 ) on the
row totals implied by the
matched pair design. The curved
contours of the plane are
contours of equal β in the
logistic parametrisation
(α, β) �→ eα+β/(1 + eα+β) =
pr(success|treated), while the
vertical straight lines are
contours of equal α

The analysis can be extended to a setting of common relevance in biomedical
research through consideration of matched comparisons in binary outcomes, for-
malised by Cox [15, 16]. Given n pairs of matched individuals (e.g. monozygotic
twins, or left and right sides of the same individual, etc.) one unit from each pair is ran-
domised to receive treatment, the other being the untreated control. The pairwise table
of counts thus has row totals both equal to 1 by design. The logistic parametrisation
of the row probabilities for the i th pair are

q(i)
1|0 = pr(success | control) = eαi

1 + eαi
, q(i)

0|0 = 1 − q(i)
1|0

q(i)
1|1 = pr(success | treated) = eαi+β

1 + eαi+β
, q(i)

0|1 = 1 − q(i)
1|1,

which are converted to the scale of the standardised pairwise table with true probabili-
ties (p(i)

0|0, p
(i)
1|0, p

(i)
0|1, p

(i)
1|1) by division by 2. By the pairing, all tables resulting from the

design have row totals ( 12 ,
1
2 ), and if αi = α for all i the possibilities are constrained

to the flat plane in Fig. 2. The curved contours of the plane are contours of equal β in
the logistic parametrisation (α, β) �→ eα+β/(1+ eα+β) = pr(success|treated), while
the vertical straight lines are contours of equal α.

The logistic model with pair-specific odds at baseline is intermediate between a
generalmultinomial representation and a representation in two independent binomials.
This can be seen on noting that the pair specific-nuisance parameter αi allows arbitrary
dependence on (unmeasured) covariates, the implicit regression model specifying that
outcomes are conditionally independent given the treatment indicator and covariates.
Here, β has the interpretation of an additive treatment effect on the log-odds scale, or
equivalently θ = eβ has the interpretation of a multiplicative treatment effect on the
odds scale, where, by definition

(q(i)
1|1/q

(i)
0|1) = eαi eβ, (q(i)

1|0/q
(i)
0|0) = eαi .
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Because of the pair-specific nuisance parameters, direct analysis of a table in n
pairs of the form (2.4) does not allow inference on the parameter β of interest and
Fig. 2 does not apply without a preliminary step to be described next.

A standard analysis can in principle be applied to the pairwise tables, although with
some degeneracy. Consider the four possible pairwise tables and their marginal totals:

F S

C 1 0
T 1 0

F S

C 1 0
T 0 1

F S

C 0 1
T 1 0

F S

C 0 1
T 0 1

F S

C 1
T 1
2 0

F S

C 1
T 1
1 1

F S

C 1
T 1
1 1

F S

C 1
T 1
0 2

and let R00, R01, R10, R11 denote the number of tables (i.e. number of pairs) of each
type. In the leftmost and rightmost tables (concordant pairs), conditioning on column
totals leaves no degrees of freedom for how the table can be filled in. In the two
inner tables (discordant pairs) there remains one degree of freedom after conditioning.
Conditioning in the pairwise tables thus leads us to discard concordant pairs, retaining
R01 tables of type (1, 0, 0, 1) and R10 tables of type (0, 1, 1, 0). The discordant pair
table is therefore

F S

C R01 R10 m
T R10 R01 m

m m

(2.5)

Importantly for the analysis, the joint probability that any pairwise table is of type
(1, 0, 0, 1) given that it is either of type (1, 0, 0, 1) or of type (0, 1, 1, 0) is

q(i)
0|0q

(i)
1|1

q(i)
0|0q

(i)
1|1 + q(i)

1|0q
(i)
0|1

= eβ

1 + eβ

which is free of the pair-specific nuisance parameters. It follows that a conditional
analysis using the discordant pair table (2.5) is based on the conditional distribution
of, say, R01 given the column total m, which is binomial of index m and parameter
eβ/(1+ eβ). The induced discrete distributions on the co-ancillary manifold C(ao) is
depicted in Fig. 3 for m = 7 and two different values of β.

The example illustrates two roles of conditioning: relevance, because the condi-
tioning statistics are ancillary for the interest parameter in the broad sense of Sect. 2.2;
and elimination of nuisance parameters. The latter situation only happens in particular
classes of model for which the jointly sufficient statistic for all parameters factorises
appropriately under the chosen conditioning.
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Fig. 3 The diagonal straight line on the plane is the co-ancillary manifold C(ao) specified by the column
totals in table (2.5); the shading on this line is the induced discrete distribution over entries of the standardised
table compatiblewith the constraints. This distribution is binomial of indexm = 7 andparameter eβ/(1+eβ)

for β = 0 (left) and β = 2 (right)

3 Sufficiency andmaximal co-sufficiency

3.1 The sufficiency/co-sufficiency separation

Broadly paralleling the discussion of Sect. 2 is an exposition of conditioning for the
assessment of model adequacy. From a model (2.1), parametrised by θ and provision-
ally assumed true, the relevant information for inference on θ is contained in S = s(Y ).
Provided that d < n, a portion the information in Y is not used for inference on θ

and is available for the assessment of model adequacy. The idea is implicit in some
of Fisher’s work but is set out with clarity by Barndorff-Nielsen and Cox [7, p. 29].
Specifically, if yo is extreme when calibrated against the conditional distribution of Y
given S = so, then this casts doubt on the adequacy of the model. This falsification
approach to inference is appropriate when there is no clear notion of what types of
departure from the null hypothesis are likely to arise.

In the notional idealised separation Y ∼= (S, Q(S)), Q(S) is not a function of
S in the conventional sense but Q(so) has the distribution of Y (or some one-to-
one transformation of Y ) given S = so. The maximal co-sufficient statistic Q(S)

is notional in the same sense that C(A) is, both typically being incapable of direct
expression in terms of the original data; it is maximal in the sense that it completes the
information in Y without loss once S is given. The term co-sufficient sampling was
used by Barber and Jansen [2] to describe sampling from the conditional distribution
of Y given S = so. Their work is the first serious attempt that I have seen to make
explicit use of the sufficiency/co-sufficiency separation for the assessment of model
adequacy.
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The realisation of the sufficient statistic S = s(Y ) fixes the co-sufficient manifold

Q(so) = {y ∈ R
n : s(y) = so} ⊂ R

n,

leaving n − d degrees of freedom for variation of y consistent with the constraint
s(y) = so. Thus Q(so) is a manifold of dimension n − d embedded in R

n and, once
so is observed, Q(so) is a random variable constrained to Q(so), whose distribution
is induced by that of Y .

As noted by a referee, when dθ < d themarginal distribution of an ancillary statistic
A of the form (2.3) is also available for model checking.

3.2 The co-sufficient manifold in canonical exponential family regression

Consider a canonical exponential family regression model for outcomes Y =
(Y1, . . . ,Yn), for which the conditional density or mass function at y = (y1, . . . , yn)
given covariate vectors x1, . . . , xn is given by

f (y; xT
1θ, . . . , xT

nθ) = exp
[
φ−1

{
θT

n∑

i=1

xi yi −
n∑

i=1

K (xTi θ)
}] n∏

i=1

h(yi , φ
−1),

The minimal sufficient statistic is S = ∑n
i=1 xiYi = XTY , where each xi has the same

dimension dθ as θ and X is the n × dθ matrix (treated as non-random) with xT
i as its

i th row. In this setting d = dθ and there no ancillary statistic as defined in Sect. 2.2.
The normal directions to Q(so) ⊂ R

n at yo are specified by the matrix of gradient
vectors

∂sT(y)

∂ y

∣
∣
∣
∣
y=yo

= X ,

and since there is no dependence on yo, the co-sufficient manifoldQ(so) ⊂ R
n is flat.

It is spanned by an orthogonal basis for X⊥ = {v ∈ R
n : vTx = 0, x ∈ X }, where X

is the column space of the n × d matrix of covariate data. This basis may be taken,
for instance, as the n − d columns of the matrix U of eigenvectors of the projection
In − X(XTX)−1XT. By construction, these satisfy UU T = In − X(XTX)−1XT and
U TU = In−d .

3.3 Linear regression with unknown dispersion

Suppose now that, in the context of a normal-theory linear regression model, the
dispersion parameter σ 2 is unknown. The minimal sufficient statistic is then S ∼=
(XTY , ε̂Tε̂) where ε̂Tε̂ = Y TUU TY is the residual sum of squares. The notation of
Sect. 3.2 needs adjusting on account of the sufficient statistic having been enlarged.
Let W(XTyo) denote the (n − dθ )-dimensional flat manifold derived above from the
conditioning event XTY = XTyo. This is the space to whichW := U TY belongs. The
additional conditioning on ε̂Tε̂ = (ε̂Tε̂)o = yoTUU Tyo fixes the length of W , thereby
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defining a spherical hypersurface withinW(XTyo). The co-sufficient manifoldQ(so)
is a hypersphere when viewed as embedded withinW(XTyo), i.e. it has one dimension
missing from the ambient space (recall that d = dθ +1). SinceW(XTyo) is a (n−dθ )-
dimensional subspace ofRn ,Q(so) is a (n−d)-dimensional subspace ofRn , as stated
in Sect. 3.1.

For the purpose of assessing the adequacy of a model that includes as covariates
the columns of X it is equivalent to consider the statistic Q := U TY/‖U TY‖ of unit
length, in which caseQ(so) is the (n − d)-dimensional unit sphere. The statistic Q is
the maximal invariant used in the invariant testing literature, which can be shown to
be uniformly distributed on the surface of the unit sphere under correct specification
of the model. A direct derivation of this result can be found in the supplementary
material of Battey and McCullagh [10] but the result is well known and also follows
from the stochastic representation of elliptically symmetric randomvariables [13, The-
orem 1]. A difficulty in using this result in practice, is that all possible realisations
of Q are consistent with uniformity on the sphere, even when the model assump-
tion is violated. If the distribution of Q is to be used directly, this points to some
form of pseudo-replication as the means for exploiting the sufficiency/co-sufficiency
separation within the Fisherian falsification framework, for instance, by constructing
Q1(so1 ), . . . , Qm(som) from m equally sized partitions of the data such that n/m > d.
These m statistics are then independently uniformly distributed on the unit sphere in
(n/m) − d dimensions under the null hypothesis.

Tests based ondepartures from the hypothesisedmeanmodel in particular directions
are essentially equivalent to an F test ofγ = 0 in the extendedmodelY = Xθ+Zγ +ε,
all invariant tests being functions of the data only through the maximal invariant
(e.g. Lehmann, [36]). There is, however, at least one context where specification of
an alternative direction is ideally to be avoided: that of the construction of confidence
sets of models in high-dimensional regression ([8, 21]). In that setting, a preliminary
reduction from p � n potential explanatory variables to v < n means that an assess-
ment of the adequacy of a model based on a low-dimensional subset of these variables
cannot legitimately be based on a standard comparison to the encompassing model in
v variables. For instance, a likelihood ratio or F test rejects too often in hypothetical
repeated use due to the comparison model having been selected in the light of the data.
It seems desirable to develop a falsification approach based on the null distribution of
Q(so) or related quantities such as Q1(so1 ), . . . , Qm(som).

A referee has pointed out that Q being uniform on the sphere does not in itself
invalidate its use for model checking. Informal checks for the exclusion of a covariate
are often based on systematic departures of residuals (or standardised residuals, which
are closely related to Q) from total randomness. However, this seems to require a
relatively clear idea of which variables might have been excluded from the model
and, in the context of the previous paragraph, leads back to the difficulties highlighted
there. If the regression mean model is correctly specified and the only departures to
be assessed are from independent and identically distributed normal errors, then k-
statistics can be constructed based on the least squares residuals and compared to the
relevant cumulants under correct specification of the model. McCullagh ([39], chapter
4.7) discusses unbiased estimation of residual cumulants from k-statistics. See also
Anscombe [1], Cox and Snell [23], McCullagh and Pregibon [40].
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4 Brief remarks on approximate conditional inference

This note sought to elucidate two types of notional idealised analyses from a geo-
metric point of view and thereby provide insight into the foundations of Fisherian
inference. The practical implementation of such ideas is typically more difficult and
context-dependent, as illustrated in Sect. 2.4. The idea that one might achieve the
idealised conditional analyses approximately led to a sizeable literature on approx-
imate conditional inference. Section2 of the present note emphasises that there are
two objects potentially requiring approximation: the co-ancillary manifold C(ao), and
the distribution of C(ao) on the (approximate) co-ancillary manifold. Approximate
conditional inference via the tangent exponential model (Fraser, [32, 33]; Fraser and
Reid, [34]) seems positioned towards this, although the connection is not immediately
transparent because there is no preliminary reduction to a minimal sufficient statistic.
By conditioning on a statistic of larger dimension than A when a minimal sufficiency
reduction S = (T , A) of dimension d < n is available, conditioning on A = ao is
implicit, so relevance is certainly achieved. The implicit definition of the co-ancillary
manifold is analogous except insofar that it is viewed as a dθ -dimensional manifold
embedded in R

n rather than in R
d . It is not immediately clear, however, whether the

additional constraints may produce some degeneracy in the induced distribution, and
whether the resulting inference may depend on the data in ways other than through
the minimal sufficient statistic. The latter question was raised by Skovgaard [44] in
his discussion of Fraser [35] and rebutted in the rejoinder. See Davison and Reid [24]
for an exposition closest in spirit to that of the present work; note however that the
definition of ancillarity used there differs from that used here and in general captures
the information in A and in Q(S). The geometric underpinnings of the p∗ formula in
curved exponential families [4] appear compatible with the discussion of Sect. 2.

5 Closing discussion

The broad definition of ancillarity in Sect. 2.2 and implicit in Sect. 2.4 was deliberately
vague: A, part of the minimal sufficient statistic, is ancillary for θ if, from observation
of A alone, no information about the value of θ can in general be extracted. When
dθ < d there might be many such statistics under consideration. Lloyd [37] raised the
possibility that an exactly distribution-constant statistic may be virtually ineffectual at
discriminating informative samples from uninformative ones, while a statistic whose
distribution depends slightly on the parameter can be highly effective in this role.
On the other hand, when some dependence on the parameter of interest is permitted
in the definition of ancillarity, there is the possibility that, in some regions on the
parameter space, appreciable information is discarded through conditioning. Senn
([42], p. 298) discusses a situation of this kind in the context of a pure 2 × 2 table.
Correspondingly, the discarding of concordant pairs in the matched comparison study
has been questioned on the grounds that a large number of such pairs is superficially
suggestive of a null effect.

Many aspects of the choice between ancillary statistics are covered in the recent
work of Evans and Frangakis [28]. In the Fraser and Reid work from Sect. 4 there is no
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explicit construction of an ancillary statistic and the conditioning is achieved approxi-
mately through projection, which is unique to the order of approximation considered.
It is not immediately clear how the implicit definition fits into the discussion of Evans
and Frangakis [28].

The present paper, while offering some geometric insight, does not obviously lead
to any resolutions regarding the choice of ancillary statistics. It may be that a single
formalised notion of ancillarity is too restrictive to apply seamlessly across all situ-
ations and that some flexibility and scientific judgement is needed when it comes to
operationalising the broad ideas in specific contexts.
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