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The problem of conditioning



Bardorff-Nielsen and Cox, 1994, p. 32

Consider a population of individuals and an event A of inter-
est, for instance that an individual dies of heart disease before
age 70. . . . Now suppose that a series of new individuals is
drawn randomly from the population under study and for each
it is required to calculate the probability of event A . . . . If each
probability is to be relevant to the individual in question, it must
be conditional on observed relevant features, such as age, sex,
smoking habits and blood pressure. . . .
. . . Note, however, that, especially if we condition directly, we
must limit the conditioning: otherwise we would reach the po-
sition where each individual is not only unique, but also unin-
formative about other individuals . . . .



Two types of conditioning

Conditioning by model formulation: conditioning
synonymous with specification of the model.

Technical conditioning: abstract (model+data)-based
partitioning of the sample space.

Fisherian inferential separations specify where to limit the
conditioning to ensure relevance while avoiding degeneracy.
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Some definitions



Notation

Model for random variable Y parametrised
by θ and provisionally assumed true:

fY (y ; θ) =
n∏

i=1

fYi (yi ; θ)

Arbitrary evaluation point y = (y1, . . . , yn).

Sufficiency reduction, e.g. s(y) =
∑

i yi .

Observed outcome y o .

Sufficient statistic S = s(Y ).

Observed value so = s(y o).



Sufficiency reduction

All information in Y relevant for inference on
θ is encapsulated in S = s(Y ).

fY (y ; θ) =
n∏

i=1

fYi (yi ; θ) = g(s(y); θ)h(y)

Take S to be minimal sufficient, i.e. of lowest
dimension.



Minimal sufficiency

Let d be the dimension of S . Let dθ be the dimension of θ.

If d > dθ, then any estimator of θ must sacrifice information on θ by the
definition of minimal sufficiency.

A common starting point: determine a one-to-one transformation of the
minimal sufficient statistic S ∼= (θ̂,A) where A is an ancillary statistic.

(If S is minimal sufficient, then so is S ′ = (θ̂,A) ∼= S , so without loss of
generality, take S = (θ̂,A)).



The ancillary/co-ancillary separation



Separations within the minimal sufficient statistic

Likelihood function depends on the data only through S .

Realisable separation S = (θ̂,A).

Notional idealised separation S = (C(A),A).

Separates the information in S into components of
dimensions dθ and dA without loss or redundancy.



Notional idealised separation

Notional idealised separation S = (C(A),A).

Ancillary A; “maximal co-ancillary” C(A)

C(ao)
d
= S | {A = ao}.

The observed value ao = a(y o) = a(so) leaves
dθ = d − dA degrees of freedom of variation of S
consistent with the constraint a(s) = ao .

Think of C(ao) as having a distribution on the
dθ-dimensional co-ancillary manifold:

C(ao) = {s ∈ Rd : a(s) = ao} ⊂ Rd .



Ancillary statistic A

Ancillary A is defined through its properties w.r.t. θ.

Several property-based definitions have been put forward
of varying stringency (e.g. B-N & Cox, 1994, p. 38).

Idealised situation: distribution of A does not depend on θ.

That does not mean that A is irrelevant for inference on θ
(A is part of the minimal sufficient statistic).

It means that A, by itself, carries no info on the value of θ.



A vague but practically useful definition

Ancillary statistic: A is ancillary for θ if, from observation of A alone, no
information about the value of θ can in general be extracted.

This appears to be the implicit definition used by Fisher.

Formalised constructions along these lines have been proposed
e.g. Barndorff-Nielsen (1973). On M-ancillarity. Biometrika, 60, 447–455.



Relevance through conditioning

The conditioning event {A = ao} isolates
hypothetical samples for which so = (θ̂o , ao) is one
realisation, retaining only the variability in S that is
relevant for determining the horizontal position of the
normed log-likelihood function, rather than its shape,
the latter being fixed by {A = ao}.



Hypothetical replication

Inferential statements about θ inevitably involve hypothetical replication.

Two samples of the same size can produce log-likelihood functions that
differ appreciably in shape, and yet are maximized at the same point.

Example: linear regression. Relevant precision characterised by XTX , not
E(XTX ): XTX is ancillary when X is considered random.

The ancillary A separates samples of the same size according to their
information content.



An exact conditional analysis with nuisance parameters



2× 2 table in original and standardised form

0 1
failure success

0 control N0|0 N1|0 N•|0
1 treated N0|1 N1|1 N•|1

N0|• N1|• N

0 1
failure success

0 control p̂0|0 p̂1|0 p̂•|0
1 treated p̂0|1 p̂1|1 p̂•|1

p̂0|• p̂1|• 1



Degrees of freedom for 2× 2 table

0 1
failure success

0 control
1 treated

1

If the row and column totals are ignored, there are three
degrees of freedom for variation of the entries of the table:
(p̂0|0, p̂1|0, p̂0|1, p̂1|1) belong to the unit simplex in R4.



Degrees of freedom for 2× 2 table

0 1
failure success

0 control p̂•|0
1 treated p̂•|1

1

Knowledge of (one of the) row totals leaves 2 degrees of freedom for
how the table can be filled in.



Degrees of freedom for 2× 2 table

0 1
failure success

0 control p̂•|0
1 treated p̂•|1

p̂0|• p̂1|• 1

Knowledge of row and column totals leaves 1 degree of freedom for
how the table can be filled in.



Conditioning in the 2× 2 table

0 1
failure success

0 control p̂0|0 p̂1|0 p̂•|0
1 treated p̂0|1 p̂1|1 p̂•|1

p̂0|• p̂1|• 1

Fisher argued that is it appropriate to condition on row and column
totals in the analysis, these being ancillary.

After conditioning, the values of (p̂0|0, p̂1|0, p̂0|1, p̂1|1) have a distribution
constrained to a one-dimensional subspace of the unit simplex.



Geometric exposition of Fisher’s conditional analysis

Curved manifold (Feinberg & Gilbert, 1970): the set of true multinomial probabilities
consistent with independence of the two binary variables.

Black line (co-ancillary manifold): constraint within the simplex (sample space for the
standardised table) imposed by the marginal totals p̂1|• = 0.6, p̂•|1 = 0.4.

Fisher’s analysis: based on the distribution of (p̂0|0, p̂1|0, p̂0|1, p̂1|1) constrained to the line.



An example with many nuisance parameters (Cox, 1958)

One individual from each of n pairs is randomised to treatment,
the other is the untreated control. Pairwise table:

0 1
failure success

0 control 1
1 treated 1

2

The design fixes the row totals.



Logistic model for the probabilities

Binary outcomes on n matched pairs. For the ith pair the model is

p
(i)
1|0 = pr(success | control) =

eαi

1 + eαi
, p

(i)
0|0 = 1− p

(i)
1|0

p
(i)
1|1 = pr(success | treated) =

eαi+β

1 + eαi+β
, p

(i)
0|1 = 1− p

(i)
1|1

The logistic model is intermediate between a general multinomial
representation and one in two independent binomials.



Remarks on the formulation

Allowing one nuisance parameter per pair encapsulates arbitrary
covariate dependence.

In that context, the implicit assumption is that the outcomes on
treated and untreated individuals are conditionally independent
given (unmeasured) covariates and treatment indicator.

The problem of assessing a null treatment effect (or unit odds ratio)
is broadly analogous (geometrically) to assessing independence in a
pure contingency table, but the interpretation differs considerably.



Logistic parametrisation of matched pair problem

Flat plane: subspace compatible with row totals ( 1
2
, 1
2
) from matched pair design.

Curved contours of plane contours of equal β in the logistic parametrisation
(α, β) 7→ eα+β/(1 + eα+β) = pr(success|treated).



Four possible pairwise tables

Because there are pair-specific nuisance parameters, we start by
considering n separate pairwise tables. Four possibilities:

F S
C 1 0
T 1 0

F S
C 1 0
T 0 1

F S
C 0 1
T 1 0

F S
C 0 1
T 0 1

Number of tables of each type: R00, R01, R10, R11.
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In the leftmost and rightmost tables (concordant pairs), conditioning on
column totals leaves no degrees of freedom.

In the two inner tables (discordant pairs) there remains one degree of
freedom after conditioning.
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Conditional analysis based on discordant pairs

Conditioning in the pairwise tables leads us to discard concordant pairs.

R01 tables of type
1 0
0 1

contribute
R01 0
0 R01

R10 tables of type
0 1
1 0

contribute
0 R10

R10 0

Discordant pair table:

F S
C R01 R10 m
T R10 R01 m

m m

Conditional on row and column totals m = R01 + R10

R01 ∼ Bin(m, eβ/(1 + eβ)).

Have eliminated all the nuisance parameters α1, . . . , αn.



A little more detail

Let Ti and Ci be the binary outcomes on the treated and untreated individuals respectively.

pr(Ti = 1,Ci = 0 | Ti + Ci = 1︸ ︷︷ ︸
discordant pair

) =

(
eαi+β

1+eαi+β

)(
1

1+eαi

)
(

eαi+β

1+eαi+β

)(
1

1+eαi

)
+
(

eαi

1+eαi

)(
1

1+eαi+β

) =
eβ

1 + eβ︸ ︷︷ ︸
no nuisance param



Binomial distribution on the co-ancillary manifold

Induced discrete distributions on the co-ancillary manifold C(ao) (straight line)
corresponding to β = 0 (left) and β = 2 (right) from m = 7 discordant pairs.



Two roles of conditioning

The example illustrates two roles of conditioning:

Relevance (because the conditioning statistics are
ancillary for the interest parameter in the broad sense).
Elimination of nuisance parameters.



Approximate conditional inference (1/2)

Practical implementation of conditional inference is
typically more difficult and context-dependent.

Exact conditional inference is not always available.

Can the idealised analysis be achieved approximately?

Two objects potentially requiring approximation: the
co-ancillary manifold C(ao); the distribution of C(ao)
on the (approximate) co-ancillary manifold.



Approximate conditional inference (2/2)

Two objects potentially requiring approximation: the
co-ancillary manifold C(ao); the distribution of C(ao) on
the (approximate) co-ancillary manifold.

Approximate conditional inference via the tangent
exponential model (Fraser, 1988, 1990; Fraser and Reid,
1988; Davison and Reid, 2024) seems in this vein, but. . .

Connection not immediately transparent. No preliminary
reduction by sufficiency.

The geometric underpinnings of p∗ in curved exponential
families (Barndorff-Nielsen, 1980) appear compatible.



The sufficient/co-sufficient separation



Bardorff-Nielsen and Cox, 1994, p. 29

The motivation for regarding sufficiency as important is that
it represents a separation of the information in the data into two
types, that concerned with inference about θ given the model
and that concerned with adequacy of the model. To make this
separation vivid, consider the following.

1 Suppose that the investigator observes that S = s. Then
some inference can be drawn about θ, assuming the
adequacy of the family and using in some way the
distribution of S as a function of θ.

2 Suppose in a second stage that the investigator learns
that Y = y . The additional information in the second
stage is derived in effect by observing one realization of
the conditional distribution of Y given S = s. Since this
distribution does not involve θ it can throw no additional
light on the value of θ. If, however, the observation is
extreme in some relevant sense it can throw doubt on the
adequacy of the family.



Notional idealised separation

Let d < n be the dimension of the minimal
sufficient statistic.

Notional idealised separation: Y ∼= (S ,Q(S)).

The “co-sufficient statistic” Q(so) has the
distribution of Y (or some one-to-one
transformation thereof) given S = so .

The observed value so = s(y o) leaves n − d
degrees of freedom for variation of y consistent
with the constraint s(y) = so .

Think of Q(so) as having a distribution on the
co-sufficient manifold

Q(so) = {y ∈ Rn : s(y) = so} ⊂ Rn.



The manifold Q(so) in canonical exponential family regression

Regression model for outcomes Y = (Y1, . . . ,Yn). Conditional density or
mass function at y = (y1, . . . , yn):

f (y ; xT
1 θ, . . . , x

T
n θ) = exp

[
φ−1

{
θT

n∑
i=1

xiyi −
n∑

i=1

K(xT
i θ)

}] n∏
i=1

h(yi , φ
−1),

Sufficient statistic for θ assuming φ known: S =
∑n

i=1 xiYi = XTY .



The manifold Q(so) in canonical exponential family regression

Sufficient statistic for θ assuming φ known: S =
∑n

i=1 xiYi = XTY .

The normal directions to Q(so) ⊂ Rn at y o are specified by

∂sT(y)

∂y

∣∣∣∣
y=yo

= X .

No dependence on yo , therefore Q(so) is flat and spanned by an orthogonal
basis for X⊥ = {v ∈ Rn : vTx = 0, x ∈ X}, where X = col-span(X ).



The manifold Q(so) in canonical exponential family regression

Q(so) ⊂ Rn is the (n − d)-dimensional subspace spanned by the columns
of U, a matrix of eigenvectors of the projection matrix I − X (XTX )−1XT.

UUT = I − X (XTX )−1XT, UTU = In−d .

The distribution of Q(so) on Q(so) is that induced by the distribution of
Y after projection on Q(so).

Conditioning is equivalent to projection in this example.



Linear regression with unknown dispersion

Suppose now that, in the context of a linear regression,
the dispersion parameter σ2 is unknown.

Minimal sufficient statistic S ∼= (XTY , ε̂Tε̂) where
ε̂Tε̂ = Y TUUTY is the residual sum of squares.

Previous notation needs adjusting on account of S
having been enlarged: Let W(XTy o) be the (n − dθ)-
dimensional flat manifold from the conditioning event
XTY = XTy o , the space to which W := XTY belongs.

Further conditioning ε̂Tε̂ = (ε̂Tε̂)o = (y o)TUUTy o fixes
the length of W and defines a spherical hypersurface
within W(XTy o) ⊂ Rn. This is Q(so).



Connection to maximal invariant tests (1/2)

We may equivalently consider the statistic of unit
length V := UTY /‖UTY ‖.
Then Q(so) is the (n − dθ)-dimensional unit sphere.

The statistic V is the maximal invariant used in the
invariant testing literature, and is uniformly
distributed on the surface of the unit sphere under
correct specification of the model.

A practical difficulty: all possible realisations of V
are compatible with uniformity on the sphere even
when the model assumption is violated.



Connection to maximal invariant tests (2/2)

The Fisherian falsification framework fails here without
some form of pseudo-replication (power to detect
departures from uniformity on the sphere requires at
least two observations).

Tests based on departures from the hypothesised mean
model in particular directions are essentially equivalent
to an F test of γ = 0 in the extended model
Y = Xθ + Zγ + ε (all invariant tests are functions of
the data only through the maximal invariant).



Connection to ongoing research

At least one context where specification of an alternative
direction is ideally to be avoided: post-selection inference for
confidence sets of models, crudely addressed by sample
splitting in Battey and Cox (2018). Ongoing work. . .



The end


