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Abstract. The empirical Bayes approach to multiple testing, widely used in modern

statistical contexts, is frequently formulated as a two-component mixture model of the

form Fθ = (1 − θ)F0 + θF1, where F0 is standard Gaussian and F1 is a completely
specified heavy-tailed distribution with the same support. For a sample of n indepen-

dent and identically distributed values Xi ∼ Fθ, the maximum likelihood estimator

θ̂n is asymptotically normal provided that 0 < θ < 1 is an interior point. This paper

investigates the large-sample behaviour for boundary points, which is entirely differ-
ent and strikingly asymmetric for θ = 0 and θ = 1. The reason for the asymmetry

has to do with typical choices such that F0 is an extreme boundary point and F1

is usually not extreme. On the right boundary, well known results on boundary pa-

rameter problems are recovered, giving limP1(θ̂n < 1) = 1/2. On the left boundary,

limP0(θ̂n > 0) = 1 − 1/α, where 1 ≤ α ≤ 2 indexes the domain of attraction of the
density ratio f1(X)/f0(X) when X ∼ F0. For α = 1, which is the most important case

in practice, we show how the tail behaviour of F1 governs the rate at which P0(θ̂n > 0)

tends to zero. A new limit theorem for the joint distribution of the sample maximum
and sample mean conditional on positivity establishes multiple inferential anomalies.

Most notably, given θ̂n > 0, the likelihood ratio statistic has a conditional null limit

distribution G 6= χ2
1 determined by the joint limit theorem. We show through this

route that no advantage is gained by extending the single distribution F1 to the non-
parametric composite mixture generated by the same tail-equivalence class.

Some key words: α-stable limit law; likelihood-ratio statistic; local false discovery rate;
multiple testing; non-standard likelihood theory; regular variation; tail behaviour.

1. Introduction

Let F0, F1 be distinct probability distributions on the same measurable space. For each
0 ≤ θ ≤ 1, the mixture

Fθ = (1− θ)F0 + θF1 (1.1)

is also a probability distribution on the same space. In this paper, the phrase “mixture
model generated by F0, F1” is interpreted as the set of convex combinations

conv(F0, F1) = {Fθ : 0 ≤ θ ≤ 1}
in which the generators F0, F1 are the boundary points.

The model (1.1) arises particularly in connection with the empirical Bayes approach to
multiple testing (Efron et al., 2001), where interest is either in evaluating the simultaneous
correctness of a set of statements concerning the same null hypothesis, or in the assessment
of different null hypotheses, at most a small number of which are false. The case in which
one of the components is standard Gaussian reflects a reduction by sufficiency to a set
of pivotal test statistics and is particularly relevant for the applications we have in mind.
The other component is typically chosen to have tails that are heavier than Gaussian, for
instance a standard Gaussian convolution corresponding to a signal plus noise model at
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the relevant site. The interpretation of site is context-specific and may refer to a genomic
locus in a genetics context or an energy level in a particle physics context. The response
at site i is treated as a draw from Fθ, which means F1 with probability θ and F0 with
probability 1− θ, on account of the label being unknown.

The goal of this paper is to study the large-sample behaviour of the maximum-likelihood
estimator and related statistics when the generators have the same support and the data
are generated independently according to the boundary distribution X1, . . . , Xn ∼ F0.
In that case, we write h(x) = f1(x)/f0(x) for the density ratio at x. For θ = 0, the

error probability P0(θ̂n > 0) has a large-sample limit, which is strictly positive in certain

cases, and zero in other cases. It is shown in §3 that limP0(θ̂n > 0) is zero if and only
if the random variables h(Xi) belong to the domain of attraction of the Cauchy class,
i.e., the α-stable family with index α = 1. Otherwise, if h(Xi) belongs to the the domain
of attraction of any non-Cauchy class, which necessarily has index 1 < α ≤ 2, the limit
probability 1− α−1 is strictly positive but not more than one half.

For reasons that are explained in §2.5, the Cauchy class is virtually the default in
practical work with mixtures where the null generator is Gaussian and F1 is symmetric
with heavier tails. In such situations, it is of interest to characterize the rate at which the
error tends to zero. For example, if F1 has regularly-varying tails with index −2δ, i.e.,
the upper tail probability F̄1(x) = P1(X > x) satisfies

lim
x→∞

F̄1(tx)

F̄1(x)
= t−2δ

for t > 0, then the rate is logarithmic:

P0(θ̂n > 0) ∼ δ

log n
.

By contrast, if F1 has exponential tails, e.g., − log F̄1(x) ∼ |x|2γ for large x and 0 < γ < 1,
then

P0(θ̂n > 0) ∼ γ 2γ

(log n)1−γ
.

Here and henceforth, P0(·) denotes the probability with respect to the null generator or
its n-fold product F⊗n0 , and the regular-variation notation a(n) ∼ b(n) means

lim
n→∞

a(n)

b(n)
= 1,

or equivalently a(n) = b(n)(1 + o(1)) for positive functions a(n), b(n). If an and bn are
random variables, an ∼ bn means that the above limit holds for any realization.

The limit distribution of the likelihood ratio statistic conditional on θ̂n > 0 is obtained
in §4.3 using a non-quadratic local approximation. The derivation is based on a new
limit theorem establishing a large-sample joint distribution for the sample mean and
sample maximum of a random variable in the Cauchy domain of attraction, conditional
on positivity of the sample mean.

The theoretical results derived in §3.4 and §3.5 may be of interest in their own right but
here we focus on their implications in the context of the two-component mixture problem.

2. Maximum likelihood

2.1. Regularity conditions. Under the model (1.1), X1, . . . , Xn are independent ran-
dom variables with distribution Fθ for some 0 ≤ θ ≤ 1. Standard theory for maximum-

likelihood estimators tells us that, under suitable regularity conditions, n1/2(θ̂n − θ) has
a zero-mean Gaussian limit. A principal regularity condition is that all distributions in
the model have the same support. This condition need not be satisfied by F0, F1, but it
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is automatic for the sub-model in which 0 < θ < 1. Whether F0 and F1 have the same
support or not, a second principal regularity condition requires θ to be an interior point.

Otherwise, if θ = 0, the event θ̂n = 0 has positive probability, so the limit distribution
cannot be Gaussian. The mixture model can therefore be regular only if the boundary
points are excluded. As discussed in §2.4, from a list of further regularity conditions, there
is the possibility that more than one is violated. In the empirical Bayes formulations that
motivated the present work, infinite variance of the density ratio f1(X)/f0(X) presents
considerable challenges not covered by existing literature on boundary inference problems.

2.2. Unequal supports. For completeness, we consider briefly the case where the sup-
ports supp(F0) and supp(F1) are not equal. The qualitative behaviour of the maximum-
likelihood estimator is conveniently illustrated by an example in which F0 is uniform on
(0, 2) and F1 is uniform on (1, 3). The likelihood function is

L(θ) = 2−n(1− θ)n0θn2 ,

where nr is the number of sample points in the interval (r, r + 1), a realization of Nr. In
the null case X1, . . . , Xn ∼ F0, we have n2 = 0 and

P0(θ̂n > 0) = P0(N0 = 0) = 2−n.

Thus, θ̂n → 0 at an exponential rate.
The generators are said to have disjoint supports if there exist disjoint events S0, S1

such that F0(S0) = F1(S1) = 1. By modifying the preceding example so that either the

distributions have disjoint supports or supp(f0) is a subset of supp(f1), we find θ̂n = 0
with P0-probability one for every n ≥ 1. By contrast, if supp(f1) is a proper subset of

supp(f0), we find that limP0(θ̂n > 0) = 1/2.
It appears from this analysis for uniform distributions that the type-one error rate

P0(θ̂n > 0) has a large-sample limit, which is either zero or one half. This behaviour
is mirrored qualitatively in the equal-supports case, although the range of possible limits
is zero to one half, depending on the tail behaviour of the random variable h(X) =
f1(X)/f0(X). The qualitative analogue of supp(f0) ⊆ supp(f1) and supp(f1) ⊆ supp(f0)
is that f0 has, respectively, lighter and heavier tails than f1. For the statistical applications
we have in mind, f0(x) = o(f1(x)) as |x| → ∞, with f0 the standard Gaussian density
function, and our discussion from §2.5 onwards concerns almost exclusively that case.

2.3. Equal supports. In the standard case, the generators share a common support
and have positive densities f0(x), f1(x), so that Fθ has density fθ(x) = (1 − θ)f0(x) +
θf1(x), which is linear in θ. The contribution log fθ(x) to the log likelihood from a single
observation at x is strictly concave as a function of θ, and the sum

∑
i log fθ(xi) is also

strictly concave. Consequently, the maximum-likelihood estimate is either a stationary
point or a boundary point.

The log likelihood derivatives are

l′(θ) =

n∑
i=1

h(Xi)− 1

1− θ + θh(Xi)

l′′(θ) = −
n∑
i=1

( h(Xi)− 1

1− θ + θh(Xi)

)2
≤ 0,

(2.1)

and l′(0) =
∑

(h(Xi)− 1), where h(x) = f1(x)/f0(x) is the density ratio of the boundary

points. It follows that the event θ̂n > 0 is the same as the event n−1
∑
h(Xi) > 1, where

X1, . . . , Xn are independently distributed as F0. In other words, θ̂n > 0 if and only if the
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sample average of the transformed variables h(Xi) exceeds its expected value

E(h(X)) =

∫
h(x)f0(x) dx =

∫
f1(x) dx = 1.

If h(X) has finite variance σ2, then n−1/2l′(0) is zero-mean Gaussian for large n, and

−n−1l′′(0) → σ2 by the law of large numbers. In this case θ̂n = 0 with probability

1/2 in the large-sample limit; conditionally on θ̂n > 0, the random variable n1/2θ̂n > 0 is
distributed half-Gaussian with scale parameter σ. This is the familiar boundary-parameter
result established by other authors (e.g. Chernoff, 1954; Self and Liang, 1987; Geyer,
1994). The boundary probabilities exhibit more interesting behaviours in the cases for
which h(X) does not have a finite second moment under the null model. It is those
situations that we explore here.

2.4. Position within the literature. The inferential problem for two-component mix-
tures belongs to a class of boundary problems for which an extensive literature was care-
fully surveyed by Brazzale and Mameli (2024). Appendix A.1 of that work outlines an
argument, due to Self and Liang (1987), establishing the limit distribution of the log
likelihood-ratio statistic when the true value of the parameter is on the boundary. Two
aspects of the argument are problematic when h(X) does not have finite variance under
the null distribution F0: that the Fisher information at θ = 0 is not finite, this being
the expectation of

∑
(h(Xi) − 1)2; and that a suitably rescaled version of l′(0) is not

asymptotically normally distributed. The same issues afflict the argument of Ghosh and
Sen (1985) presented in Appendix A.3 of Brazzale and Mameli (2024).

In the context of a mixture model with two unit-Gaussian components, one having
unknown mean, Bickel and Chernoff (1993) and Liu and Shao (2004) established that the
likelihood ratio statistic diverges to infinity at rate O(log(log n)) and that the asymptotic
null distribution of a suitably standardized version is of extreme-value type. The con-
clusions of the present paper are strikingly different: that the likelihood ratio statistic
converges to zero under the null model and that its conditional distribution given pos-
itivity has a limit distribution G (Theorem 4.1) that is visibly close to but not exactly
χ2
1.

Gaussian-Gaussian mixtures of unequal means and equal variances lead to density
ratios h(X) that are log-linear in X and thus in the normal domain of attraction. The
extreme-value limit distribution emerges from estimation of the unknown mean parameter
in the non-null component. In recent work, Shi and Drton (2024) have studied a split-
sample version of the likelihood ratio statistic for the same mixture problem, following
the generic universal inference construction of Wasserman et al. (2020). In well-behaved
parametric problems, universal inference violates sufficiency and is inferior to a standard
likelihood-based analysis. Its advantage in the two-component mixture setting is that
sample splitting breaks some dependencies in the likelihood ratio construction, allowing
Shi and Drton (2024) to show that the asymptotic null distribution of the split-sample
likelihood ratio statistic is standard Gaussian after centering and scaling. In our case, the
source of the difficulties is different and is not evaded by sample splitting.

An important conceptual difference between the models is that the signal in Shi and
Drton (2024) is an arbitrary fixed real number corresponding to the mean of the non-
null distribution. By contrast, the signal in our formulation is a random variable whose
realizations are centered at zero and appreciably large with non-negligible probability.

Li, Chen and Marriott (2009) and Chen and Li (2009) allow two-component mixture
constructions of the form (1− θ)f(x;λ0) + θf(x;λ1) such that the Fisher information at
θ = 0 is not finite. However they study a different problem based on a penalized likelihood
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function that forces the estimate θ̂ away from 0 and 1. Their implicit assessment of
homogeneity is thus based on λ0 = λ1 rather than θ = 0.

Contrasted with Ghosh and Sen (1985), Self and Liang (1987) and Bickel and Chernoff
(1993), non-existence of second moments necessitates a radically different approach based
on the theory of α-stable limits (Gnedenko and Kolmogorov, 1954) and regular variation
(Bingham, Goldie and Teugels, 1987). From this we are able to delineate the role of tail

properties in determining the type-one error rate P0(θ̂n > 0) and the anomalous limiting
behaviour of likelihood-based statistics.

2.5. Tail behaviour for Gaussian mixtures. The motivating example for a large part
of this paper is a restricted class of two-component Gaussian mixtures in which the density
ratio h(x) is an even function that is continuous, unbounded and ultimately monotone.
Ultimate monotonicity means that to each η sufficiently large there corresponds a number
ξ such that

{x : h(x) > η} = {x : |x| > ξ}. (2.2)

Mills’s approximation to the Gaussian tail probability yields

P0(|X| > ξ) =
2φ(ξ)

ξ

(
1 +O(ξ−2)

)
.

On using the implicit definition φ(ξ) = η−1f1(ξ),

P0(h(X) > η) = P0(|X| > ξ) ∼ 2ξ−1φ(ξ) =
2f1(ξ)

η ξ
. (2.3)

It follows that the asymptotic inverse relationship ξ = h−1(η) determines the null tail
behaviour via f1(ξ)/ξ, and thereby the limit distribution of normalized sums.

Let L : R+ → R+ be a slowly-varying function, in the sense that, for all k > 0

lim
x→∞

L(kx)

L(x)
= 1. (2.4)

For a large class of non-null generators, including all whose density satisfies

− log f1(x) ∼ |x|2κL(x) (2.5)

for some 0 ≤ κ < 1, we find that ξ(η) ∼
√

2 log η as η → ∞. This asymptotic inverse
implies

P0(h(X) > η) ∼ 2f1(
√

2 log η)

η
√

2 log η
∼ 1

η L1(η)
,

where, for every f1 in the class (2.5), L1 is also slowly varying. In all such cases, the
random variable h(X), or more correctly, its distribution, belongs to the Cauchy domain
of attraction with index α = 1, meaning that suitably standardized sums converge in
distribution to a random variable in the Cauchy class, discussed in §3.2.

3. Limit distributions for sums

3.1. Introduction. The results of this section are stated in terms of a generic random
variable X. This is both for notational convenience and for ease of application of the
results beyond the Gaussian mixture setting for which they were initially conceived. For
the statistical questions we have in mind, addressed in §5.3, the results are applied with
h(X) or h(X)− 1 in place of X, using the argument of §2.5.
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Figure 1. Density function of the maximally-skew Cauchy distribution

3.2. Stable limits. The theory of limit distributions for the sum of independent and
identically distributed random variables is tied up with stability of convolutions. Modulo
affine transformation, every distribution that has a convolution limit is associated with a
pair (α, β), and is said to be in the domain of attraction of the (α, β) stable law; in essence,
the set of Borel distributions on the real line is partitioned into equivalence classes. There
are also non-degenerate distributions that do not belong to the domain of attraction of
any stable class, for example, F̄ (x) ∼ 1/ log x.

Every stable distribution with α ≥ 1 has a density that is strictly positive on the real
line; only in a few cases is it possible to express the density in terms of standard functions.
However, the characteristic function of every limit distribution is necessarily of the form
ψ(a+ bt) where

logψ(t) =


−t2 (α = 2),
−|t|

(
1 + iβ sign(t) 2

π log |t|
)

(α = 1),
−|t|α

(
1− iβ sign(t) tan(πα/2)

)
(α 6= 1).

See Bingham, Goldie and Teugels (1987, Theorem 8.3.2) for a statement of this result, or
Gnedenko and Kolmogorov (1954, chapter 34) where the sign of β is mistakenly reversed
for α 6= 1 (see comment I.7 on page 253 of Zolotarev, 1986).

Note that not all (α, β)-combinations give rise to distinct distributions. In the Gaussian
case (α = 2) the last version of the log characteristic function reduces to −t2, so β is
immaterial and all limits are symmetric. However, limits in every other class are symmetric
only if β = 0.

Zolotarev (1986, section 2.5) gives the tail behaviour of the (α, β)-limit distribution
parameterized according to the characteristic function shown above:

Pα,β(X > x) ∼ (1 + β)Cαx
−α; Pα,β(X < −x) ∼ (1− β)Cαx

−α,

where Cα = π−1Γ(α) sin(πα/2) and C1 = π−1. See also Feller (1966, section XVII.6). For
β = −1, the first limit is interpreted as xαPα,β(X > x)→ 0 as x→∞; likewise for β = 1
in the second limit. Note that C2 = 0, so this characterization P2,β(X > x) = o(x−2) is
correct but not tight for Gaussian limits. We include a derivation of the above expression
for the tail probability when α = 1 in Appendix III.

For the two-component mixture problems considered in this paper, the class of limit
distributions that can arise is a proper subset of those listed above. First, the fact that
each summand h(Xi) has finite mean implies α ≥ 1. Second, the fact that the random
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variables are positive implies maximal skewness with β = 1.

Pα,β(X < 0) =
1

2

(
1− b(α− 2)

2

)
, (3.1)

where b relates to β as (Zolotarev, 1986, equation I.19)

β = cot
(πα

2

)
tan
(πb(α− 2)

α

)
,

with β = b = 1 at the boundary of the parameter space for β ∈ [−1, 1]. It follows that
(3.1) reduces to 1/α for β = 1.

In the asymmetric Cauchy class, the distribution with log characteristic function

logψ(t) = −|t| − 2it log |t|/π

has the maximally skew density,

f(x) =
1

π

∫ ∞
0

e−t cos(tx+ 2t log t/π) dt, (3.2)

which is shown in Fig. 1. Although the summands in l′(0) have finite mean, the characteris-
tic function for α = 1 does not have a first-order Taylor expansion so the limit distribution
does not have a first moment. The left tail is sub-Cauchy and P1,1(X < 0) ' 0.3652; the
right tail behaviour is f(x) ∼ 2/(πx2) or F̄ (x) ∼ 2/(πx), where F̄ (x) = P1,1(X > x).

3.3. Stabilizing sequences. A primary difficulty in understanding the boundary be-
havior of the MLE is finding an appropriate normalization of the sum

∑n
i=1 h(Xi) that

converges in distribution to a stable law. Since guidance on the construction of the stabi-
lizing sequence is opaque in the literature on stable limits, we provide some background
in this section.

Let F be the cumulative function of a distribution on the positive real line, and let
F̄ (x) = 1 − F (x) be the right-tail probability. In order that F belong to the domain of
attraction of a stable law with index 0 < α < 2, it is necessary and sufficient that the tail
be regularly varying, i.e.,

F̄ (x) ∼ 2Cα
xαL(xα)

(3.3)

for large x and some slowly-varying function L. This is a re-statement of a special case
of Theorem 2 from section 35 of Gnedenko and Kolmogorov (1954). The slow-variation
factor in (3.3) is expressed in the form L(xα) rather than L(x) or 1/L(x) as this simplifies
the scaling sequence (3.7). For the moment, the choice of constant is immaterial, but the
particular choice

Cα = π−1Γ(α) sin(πα/2), (3.4)

matching the right tail of the limit distribution, will subsequently be convenient.
Let X1, . . . , Xn be independent and identically distributed with distribution F in the

domain of attraction of some stable law with index 0 < α ≤ 2. Then there exist deter-
ministic stabilizing sequences An, Bn such that

1

Bn

n∑
i=1

Xi −An

has the stable limit distribution Pα,β with index α. The skewness coefficient |β| ≤ 1
is a balance between the two tails: if the support of F is bounded below, then β = 1.
For α = 2, the scaling coefficients are Bn ∝ n1/2. Otherwise, for 0 < α < 2, they are
determined by the condition

lim
n→∞

nF̄ (Bnx) = 2Cαx
−α, (3.5)
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for each x > 0 (Gnedenko and Kolmogorov, 1954, section 35). Some partial intuition
for why equation (3.5) determines the scaling sequence {Bn} is that convergence to the
stable limit, in terms of the characteristic function g of the original random variables, is
equivalent to

e−iAntg(t/Bn)n → ψ(t), n→∞.

Since t/Bn → 0 for fixed t, it follows that the behaviour of g near zero is key to solving
for Bn. By the inversion formula for characteristic functions, the behavior of g near the
origin manifests in the tail behaviour of F̄ . Conditions (3.3) and (3.5) imply

lim
n→∞

nB−αn
L(Bαnx

α)
= lim
n→∞

nB−αn
L(Bαn )

= 1.

To calculate Bn, it suffices to invert the asymptotic relation B̃nL(nB̃n) ∼ 1, where B̃n :=
Bαn/n. This is achieved through the de Bruijn conjugate L† (de Bruijn, 1959), which is a
slowly varying function defined (up to an asymptotic equivalence) by the condition,

L(xL†(x))L†(x) ∼ L†(xL(x))L(x) ∼ 1, (3.6)

as x → ∞. The condition B̃nL(nB̃n) ∼ 1 implies that B̃n ∼ L†(n), which defines the
scaling sequence up to asymptotic equivalence as

Bn ∼ (nL†(n))1/α. (3.7)

For a proof of equation (3.6), see Theorem 1.5.13 of Bingham, Goldie and Teugels
(1987). Conjugation is an involution L†† ∼ L, which is also a group inverse under the
compositional operation discussed in Appendix I. For the moment, it suffices to remark
that if L(n) ∼ K(log n)γ for any real γ and K > 0, then L†(n) ∼ 1/L(n). In general,
however, the conjugate is not equivalent to the reciprocal, and the conjugate of a functional
product is not the product of the conjugates.

For 1 < α ≤ 2, the distribution F in (3.3) has a finite mean µ, and the footnote to
Theorem 2 in section 35 of Gnedenko and Kolmogorov (1954) gives the centering sequence
An = nµ/Bn, which implies that

1

Bn

n∑
i=1

(Xi − µ)

has the stable limit distribution Pα,1 discussed in the preceding section. It follows from
(3.1) that the exceedance event X̄n > µ has a large-sample limit probability

lim
n→∞

P(X̄n > µ) = Pα,1(ε > 0) = 1− 1/α, (3.8)

where ε is a random variable with distribution Pα,1. This limit is strictly positive, but
not more than one half. The case 0 < α < 1 does not arise in mixture models and is
not discussed here. The single remaining case α = 1 is a little more complicated because
An 6= nµ/Bn even if the mean is finite. The development in §2.5 shows that it is also the
most important case for Gaussian mixture models.

3.4. Stabilizing sequences for Cauchy limits. The main limit theorems for the boundary-
parameter problem considered in this paper are developed here and in §3.5. They may be
of standalone interest, and may have other applications.

In order for a distribution F with tail probability F̄ (x) = 2C1/(xL(x)) to have a finite
mean, it is necessary and sufficient that the tail contribution be finite. Integration by
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parts gives ∫ ∞
T

x dF (x) = T F̄ (T ) +

∫ ∞
T

F̄ (x) dx,

=
2C1

L(T )
+ 2C1

∫ ∞
T

dx

xL(x)
.

For example, L(x) = (log x)1+δ suffices for finiteness only if δ > 0. While both terms tend
to zero for large T , the second term is dominant.

For α = 1, the scaling sequence (3.7) is Bn ∼ nL†(n). Finiteness of the mean implies
L(n) → ∞, and hence Bn/n ∼ L†(n) → 0 as n → ∞. The centering sequence given
explicitly in the footnote to Theorem 2 of Gnedenko and Kolmogorov (1954) is

An ∼ n= logψ(1/Bn) ∼ n
∫

sin(x/Bn) dF (x). (3.9)

where =c denotes the imaginary part of c. See also equation (6) in Chow and Teugels
(1979). We now find an approximation for this sine-integral for a broad class of functions
L(x), conveniently parametrized in order to recover several important cases arising in
Gaussian mixture models.

Theorem 3.1. Let F be a finite-mean distribution on the positive real line whose tail is
F̄ (x) ∼ 2C1/(xL(x)), where C1 = 1/π and the slowly varying function L(x) admits the
parametrization

L(x) = (β0 log x)δ+1e(β1 log x)γ (3.10)

for β0 > 0. Finiteness of the mean implies either β1 > 0 and 0 < γ < 1, or β1 = 0 and
δ > 0. With the convention that γ = 0 when β1 = 0 and 00 = 0, the sine-integral for large
T = 1/|t| is,∫ ∞

0

sin(tx) dF (x) = µt−Kδ,γ,β1

t (log T )1−γ

L(T )
+ o

(
t(log T )1−γ

L(T )

)
, |t| → 0,

where µ is the mean, Kδ,γ,β1
= 2C1/(β

γ
1 γ) for γ, β1 > 0, and Kδ,0,0 = 2C1/δ.

Remark 3.1. The form F̄ (x) = 2C1/(xL(x)) implies by (3.3) that F belongs to the
domain of attraction of the (maximally skew) Cauchy distribution. The parametriza-
tion (3.10) of the slowly varying function L(x) is an encompassing form recovering many
important examples as special cases; see §4.1.

Proof. The argument detailed in Appendix II shows that the dominant component of the
sine-integral for small t is∫ ∞

0

sin(tx) dF (x) = tµ− t
∫ ∞
T

x dF (x) +O

(
t

L(T )

)
,

= tµ− 2C1t

∫ ∞
T

dx

xL(x)
+O

(
t

L(T )

)
,

where the remainder is of smaller order than the second term.
For β1 = 0, the second part is a straightforward integral∫ ∞

T

dx

xL(x)
=

∫ ∞
T

dx

x (β0 log x)δ+1
=

1

β0δ (β0 log T )δ
=

log T

δL(T )
.

For β1, γ > 0, the transformation u = (β1 log x)γ gives rise to a gamma-tail integral∫ ∞
T

e−(β1 log x)γ dx

x(β0 log x)δ+1
=

1

β1γ

βδ+1
1

βδ+1
0

∫ ∞
(β1 log T )γ

uδ/γ−1e−u ∼ (β1 log T )1−γ

β1γ L(T )
.

�



10 HEATHER BATTEY, PETER MCCULLAGH, AND DANIEL XIANG

Corollary 3.1. For a distribution satisfying the conditions of Theorem 3.1, the centering
sequence (3.9) is

An =
nµ

Bn
−Kδ,γ,β1

n(logBn)1−γ

BnL(Bn)
(1 + o(1)),

=
µ

L†(n)
−Kδ,γ,β1

(logBn)1−γ

L†(n)L(nL†(n))
(1 + o(1)),

=
µ

L†(n)
−Kδ,γ,β1(log n)1−γ(1 + o(1)).

The third line follows from the definition of the de Bruijn conjugate in (3.6).

Corollary 3.2. For a distribution satisfying the conditions of Theorem 3.1, the distribu-
tion of the sample average for large n is

X̄n − µ
L†(n)

= −Kδ,γ,β1
(log n)1−γ + ε+ op(1),

where ε has the Cauchy limit with skewness β = 1. Given the right-tail behaviour of the
limit distribution,

P(X̄n > µ) ∼ 2K−1δ,γ,β1
(log n)γ−1/π,

which tends to zero at rate βγ1 γ(log n)γ−1 if β1, γ > 0, or δ/ log n if β1 = 0.

3.5. Joint distribution of (X̄n, X(n)). In §4.3 we consider the conditional distribution of

the likelihood ratio statistic, conditional on positivity of θ̂n, for which we need the following
theorem concerning the joint distribution of the sample average and the maximum order
statistic X(n).

Theorem 3.2. Let F be a zero-mean distribution with support (−1,∞) and tail satisfying
the conditions of Theorem 3.1, and let X1, . . . , Xn be an iid sample from F . Let Tn =
Bn|An| = Kδ,γ,β1

Bn(log n)1−γ , where Bn = n/L(n) and An is given in Corollary 3.1.
Given X̄n > 0, the conditional limit distribution of (X̄n, X(n)) is such that(

nX̄n

Tn
,
X(n)

Tn

)
∼
(

U

1− U
,

1

1− U

)
,

where U is uniform on (0, 1). It follows that nX̄n/Tn ∼ Tn/(nX̄n) is conditionally self-
reciprocal, the ratio nX̄n/X(n) ∼ U is conditionally uniform, and the support of the joint

distribution degenerates to the line X(n)/Tn − nX̄n/Tn − 1→ 0.

Remark 3.2. The unconditional scaling factor for both nX̄n andX(n) isBn, so (nX̄n/Bn−
An, X(n)/Bn) has a joint limit distribution, which has been studied by Chow and Teugels

(1979) in this setting. However, the conditioning event X̄n > 0 has probability O(Bn/Tn)
tending to zero, so the joint limit distribution does not determine the limit of conditional
distributions. Theorem 3.2 implies that nX̄n > εTn and X(n) > (1 + ε)Tn are asymptoti-
cally equivalent events for each ε > 0.

To prove the theorem, we first state a technical lemma that relates the sample mean
to the sample maximum in the event where the latter is unusually large.

Lemma 3.1. Let X1, . . . , Xn
iid∼ F , where F̄ (x) ∼ 2C1/(xL(x)) satisfies the conditions of

Theorem 3.1, and let Bn, Tn be defined as in Theorem 3.2. For any fixed y > 0, conditional
on X(n) > yTn, we have

nX̄n

Tn
=
X(n) +

∑
k≥1X(n−k)

Tn
∼
X(n)

Tn
− 1 + op(1). (3.11)
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Consequently, for any fixed y > 1

lim
n→∞

P
(
X̄n > 0 | X(n) > yTn

)
= 1,

so that P(X̄n > 0, X(n) > yTn) ∼ P(X(n) > yTn) as n→∞.

Proof. Let X(n−k) be the kth order statistic with X(n+1) = ∞. Since the transformed
variables F (X1), . . . , F (Xn) are independent uniform, the joint distribution of the top
order statistics is such that successive differences of the probability-integral transformed
values have exactly the same distribution as successive spacings of the top k + 1 of n
independent uniform order statistics, i.e.

n{F̄ (X(n−r))− F̄ (X(n−r+1))}0≤r≤k
(d)→ (e0, . . . , ek),

where e0, . . . , ek are independent unit exponential variables, whose distribution approxi-
mates that of the spacings among the top k + 1 uniform order statistics, for large n and
k � n. Since u := F̄ (x) ∼ 2C1/(xL(x)) for large x implies xL(x) ∼ 2C1/u, and since the
property L†(xL(x))L(x) ∼ 1 implies L(x) ∼ 1/L†(2C1/u), the inverse function inherits
the asymptotic behaviour

F̄−1(u) ∼ (2C1/u) L†(2C1/u), (u→ 0).

Now since nF̄ (X(n))
(d)→ e0 and

F̄−1(e0/n) ∼ (2C1n/e0) L†(2C1n/e0) ∼ 2C1

e0
nL†(n) ∼ 2C1Bn/e0,

it follows that X(n)/Bn
(d)→ 2C1/e0. Similarly, since nF̄ (X(n−k))

(d)→ e0+ · · ·+ek, we obtain

F̄−1((e0 + · · ·+ ek)/n) ∼ 2C1Bn
e1 + · · ·+ ek

(3.12)

which implies X(n−k)/Bn
(d)→ 2C1/(e0 + · · ·+ ek).

If X(n) > yTn for some y > 0, then e0 is unusually small compared with e1, e2, . . .,
so that e0 + · · · + ek ∼ e1 + · · · + ek. It follows that the conditional distribution of
X(n−1), X(n−2), . . . given X(n) > yTn is approximately the same as the unconditional
distribution of X(n), X(n−1), . . . . In that event, Corollary 3.2 implies

nX̄n = X(n) +
∑
k≥1

X(n−k) ∼ X(n) − Tn +Op(Bn), (3.13)

which implies (3.11). For y > 1, Bn = o(Tn) implies

P(nX̄n > 0 | X(n) > yTn)→ 1.

�

Proof of Theorem 3.2. For U ∼ Uniform(0, 1),

P
(

U

1− U
> x,

1

1− U
> y

)
= min

{
1

1 + x
,

1

y

}
, y > 1, x > 0.

By the last line of Lemma 3.1, we have

P
(
nX̄n

Tn
> x,

X(n)

Tn
> y

∣∣∣ X̄n > 0

)
∼ P

(
nX̄n

Tn
> x

∣∣∣ X(n)

Tn
> y, X̄n > 0

) P
(
X(n)/Tn > y

)
P(X̄n > 0)

.

For any fixed y, the tail property of F̄ implies

P(X(n) > yTn) ∼ nF̄ (yTn) ∼ 2C1Bn
yTn

,
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and Corollary 3.2 implies P(X̄n > 0) ∼ 2C1Bn/Tn. It follows that for any fixed y,

lim
n→∞

P(X(n)/Tn > y)

P(X̄n > 0)
→ 1

y
. (3.14)

Since X(n)/Tn > y for y > 1 implies X̄n > 0 with probability 1 in the limit, we have

P
(
nX̄n

Tn
> x

∣∣∣ X(n)

Tn
> y, X̄n > 0

)
∼ P

(
nX̄n

Tn
> x

∣∣∣ X(n)

Tn
> y

)
.

Lemma 3.1 implies that, conditional on X(n) > yTn,

nX̄n

Tn
=
X(n) +

∑
k≥2X(n−k+1)

Tn
∼
X(n)

Tn
− 1 + op(1),

so the previous expression is, by the argument leading to (3.14),

P
(
nX̄n

Tn
> x

∣∣∣ X(n)

Tn
> y

)
∼ P

(
X(n)

Tn
> 1 + x

∣∣∣ X(n)

Tn
> y

)
→

{
y

1+x if 1 + x > y

1 otherwise.

Together with (3.14), this proves the claim. �

4. Implications for inference in the two-component Gaussian mixture
model

4.1. Left-boundary behaviour induced by the tail of f1. We start by considering in
Example 4.1 non-null generators that depart only slightly from Gaussianity in the relevant
sense. Typical choices in practice are closer to Examples 4.2 and 4.3, and result in density
ratios whose distributions belong to the domain of attraction of the Cauchy family. These
require the more elaborate theory of §3.4.

Example 4.1. Let ν > −1, and suppose that the non-null generator has density

f1(x) ∝ |x|νφ(x),

so that h(x) ∝ |x|ν is even. For ν 6= 0, both boundary points are extreme.
Ultimate monotonicity requires ν > 0, in which case h(x) > η is equivalent to |x| >

const η1/ν . In that case, the tail behaviour of the density ratio is

− logP0(h(X) > η) ' const η2/ν + L(η),

where L is slowly varying. It follows that all moments exist and h(X) belongs to the

domain of attraction of the normal distribution. Thus, limP0(θ̂n > 0) = 1/2 by the
discussion of §2.3.

For −1 < ν < 0, the ratio h(x) ∝ |x|ν is monotone decreasing in |x|, so condition (2.2)
is not satisfied. However, the tail behaviour can be found by a simpler argument:

P0(h(X) > η) = P0

(
|X| < const η1/ν

)
∼ const η1/ν .

In other words, the tail is regularly varying with index α = −1/ν > 1. In this case, h(X)

belongs to the normal domain of attraction only if ν ≥ −1/2, in which case limP0(θ̂n >
0) = 1/2. Otherwise, if −1 < ν < −1/2, the behaviour is nonstandard and the limit is

limP0(θ̂n > 0) = 1− 1/α = 1 + ν.

Example 4.2. In a continuation of Example 4.4, consider a Gaussian mixture with f1
the standard Cauchy density function. The density ratio h(x) ∼ constx−2ex

2/2 is not
monotone in |x|, but it is monotone for |x| > 1, and thus ultimately monotone according
to (2.2). The equation h(ξ) = η has an asymptotic solution

1
2ξ

2 = log η + o(log η),
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Figure 2. Simulated probabilities P(θ̂n > 0) based on 2×104 replicates,

where θ̂n estimates θ in the model (1 − θ)N(0, 1) + θF1, where F1 is
standard Cauchy (left) and standard Laplace (right).

so that ξ−1f1(ξ) ∼ (2 log η)−3/2/π, and the tail approximation (2.3) is

P0(h(X) > η) ∼ 2

πη (2 log η)3/2
.

This is of the form in Theorem 3.1 with (β0, β1, δ, γ) = (2, 0, 1/2, 0), leading by Corollary
3.2 to the conclusion that

P0(θ̂n > 0) ∼ 1

2 log n
.

Example 4.3. Consider a Gaussian mixture in which the non-null generator has regularly
varying tails according to (2.5) with tail index 0 ≤ κ < 1. Then h(·) is ultimately
monotone, and the equation h(ξ) = η has asymptotic solution

ξ2 = 2 log η + (log η)κL((2 log η)1/2) + o((log η)κ).

For κ < 1, the composition f1(ξ(η)) is slowly-varying as a function of η, and the tail
approximation (2.3) is

P0(h(X) > η) ∼ 2f1(ξ(η))

η ξ(η)
∼ 2cκe

−(2 log η)κ

η
√

2 log η
,

where cκ is a normalizing constant. This is of the form in Theorem 3.1 with (β0, β1, δ, γ) =
(2/(cκπ)2, 2,−1/2, κ), leading by Corollary 3.2 to the conclusion that

P0(θ̂n > 0) ∼ 2κκ

(log n)1−κ
.

In particular, for the Laplace distribution f1(x) = 1
2e
−|x|, κ = 1/2 and the convergence

rate is (
√

2 log n)−1.

The conclusions of Examples 4.2 and 4.3 are compared with simulated probabilities in
Figure 2.

4.2. Parametrization for two-component mixtures. When the data are generated
by Pθ for the right boundary point θ = 1, the standard asymptotics apply. The purpose
of this section is to provide intuition for why the left boundary behavior is different from
the right, and why the latter follows from existing results.
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There may exist alternative values of the mixture parameter θ < 0 or θ > 1 in (1.1)
such that fθ remains a valid probability density. Consider the set of all such θ, for which
the extreme points are

θmin := min
{
θ : fθ ≥ 0 and

∫
fθ(x) dx = 1

}
θmax := max

{
θ : fθ ≥ 0 and

∫
fθ(x) dx = 1

}
.

When f1 has heavier tails than f0, the extreme points typically satisfy θmin = 0 and
θmax > 1, and the original model {fθ : 0 ≤ θ ≤ 1} is a strict subset of the extended model

{(1− ρ)f0 + ρfθmax
: 0 ≤ ρ ≤ 1}. (4.1)

The extended model was considered by various authors (see, e.g. Genovese and Wasserman
(2004) and Patra and Sen (2016)) in a multiple testing context. Patra and Sen (2016)
noted that when f1 ≥ cf0 for some constant c > 0, some of the probability mass in f1 can
be re-assigned to the null component without changing the density of the overall mixture.
To address this non-identifiability issue, they define

α0 := inf{γ ∈ (0, 1] : (Fθ − (1− γ)F0)/γ is a cdf},
which is the smallest mixture weight for the non-null component that is consistent with
the marginal cdf Fθ. In the current setting, α0 corresponds to ρ in model (4.1).

The extension (4.1) of the parameter space for θ is illustrated for two Gaussian mixture
problems in Examples 4.4 and 4.5 below.

Example 4.4. Let f0(x) = φ(x) be the standard Gaussian distribution, and let f1(x) be
the standard Cauchy distribution. Then fθ has a density

(1− θ)φ(x) + θf1(x) = φ(x)(1− θ + θh(x)),

where h(x) = f1(x)/φ(x) is the density ratio. The positivity condition fθ ≥ 0 implies

θ(h(x)− 1) ≥ −1

for all x, θ. On the subset for which h(x) ≥ 1, this implies the lower bound

θmin = sup
x:h(x)>1

−1

h(x)− 1
= 0, (4.2)

which is zero since h is unbounded as x→∞. On the subset for which h(x) ≤ 1, positivity
implies the upper bound

θmax = inf
x:h(x)<1

1

1− h(x)
=

1

1− h(1)
' 2.9218. (4.3)

The density fθmax
is illustrated in Figure 3.

As depicted in Figure 3, the level set {x : h(x) ≤ 1} is a symmetric interval, approxi-
mately |x| ≤ 1.85, while the minimum in (4.3) occurs at x = ±1, and a local maximum
h(0) ' 0.7979 at x = 0. This is only partly typical for applied work in certain domains.
The following example illustrates a broad family of symmetric distributions for which h is
convex and the minimum occurs at the origin, implying θmax = 1/(1− h(0)).

Example 4.5. Signal-plus-noise model: Let F0 = N(0, 1), let G be a symmetric distri-
bution on R, and let F1 = G ? F0 be the convolution with density

f1(y) = φ(y)

∫
R
eyx−x

2/2G(dx);

h(y) = f1(y)/φ(y) =

∫
R
e−x

2/2 cosh(yx)G(dx).
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Figure 3. The density function fθmax
is symmetric and trimodal with

zero density at ±1 when f1 is standard Cauchy and f0 is standard normal.
It is an extreme point relative to N(0, 1) in the sense of (4.1).

Symmetry of G implies that h(·) is a positive combination of cosh-functions, and hence
that h(·) is symmetric and convex with a minimum at the origin. Provided that G 6= δ0,

the minimum is unique, and the value h(0) =
∫
e−x

2/2G(dx) is strictly less than one. The
argument used in Example 4.4 implies θmin = 0 and θmax = 1/(1 − h(0)) > 1 for every
symmetric convolution F1 = G ? N(0, 1). The upper extremity Fθmax

has zero density at
the origin.

That f0 and f1 are respectively extreme and non-extreme boundary points of the ex-
tended model (4.1) leads to the notably asymmetric boundary behaviour of the maximum

likelihood estimator θ̂n when the data are independent draws from F0 and F1 respectively.
Since the density ratio h(X) = f0(X)/f1(X) has finite variance, it follows from classical
results in the literature on boundary inference problems (see §2.4 for an overview) that

the error probability P1(θ̂n < 1) tends to 1/2 as n → ∞. The behaviour under F0 is
non-standard because θ = 0 is an extreme boundary point. As a result, the boundary

behaviour P0(θ̂n > 0) is characterized by the tail probability of h(X) induced by the upper
tail of f1 (see §2.3 and §2.5).

If the non-null component F1 = N(0, 1) ? G is a convolution with a symmetric signal
distribution G, then F1 has tails at least as heavy as those of G. We formalize this claim
below.

Proposition 4.1. Suppose G is a symmetric distribution about zero with density g(x).
If g(x) is regularly varying, then the standard normal convolution with density

m(y) =

∫
φ(y − x)g(x)dx

is regularly varying with the same index. If − log g(x) is regularly varying with index 2κ,
then

logm(y) ≥ −|y|2κL(y)

for some slowly varying L. Furthermore, if κ < 1, then − logm(y) is regularly varying
with index 2κ.

Proof. First suppose g(x) is regularly varying with index ν > 0, i.e.

g(x) ∼ xνL(x)
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for some slowly varying L(x) as x→∞. Then for large y > 0 the convolution satisfies

m(y) =

∫
g(y − ε)φ(ε)dε

=

∫
|ε|<√y

g(y − ε)φ(ε)dε+O(e−y/2) ∼ g(y)

since y−ε = y(1+o(1)) over the range of the integral. Now suppose − log g(x) is regularly
varying with index 2κ. By Jensen’s inequality,

logm(y) ≥
∫
φ(ε) log g(y − ε)dε = −

∫
|y − ε|2κL(y − ε)φ(ε)dε.

Making the same restriction to |ε| < √y as in the previous case and letting y → ∞,
we obtain the result. The proof that the inequality is tight when κ < 1 is recorded in
Appendix IV. �

It follows from the above result that if G has tails satisfying (2.5), then so does the
convolution G ? N(0, 1). Therefore, the distribution of the density ratio under the null
remains in the Cauchy domain of attraction, implying that the type 1 error rates derived
in Corollary 3.2 apply to the case where the non-null generator is a signal-plus-Gaussian
noise convolution.

4.3. Likelihood-ratio statistic. The likelihood-ratio statistic for testing θ = 0 is

Λn = 2

n∑
i=1

log(1 + θ̂n(h(Xi)− 1)).

Our goal here is to establish the asymptotic null distribution, particularly the conditional

distribution given θ̂n > 0.
The conventional arguments based on Taylor expansion (see Appendices A.1 and A.3 of

Brazzale and Mameli, 2024) do not apply because the rth log-likelihood derivative at zero
is equal to (−1)r−1(r − 1)!

∑n
i=1(h(Xi)− 1)r, where (h(Xi)− 1)r belongs to the domain

of attraction of the stable law with index 1/r. The first derivative does not have a finite
variance, so there is no concept of Fisher information. Higher-order derivatives do not
have an expectation, and are strongly dependent. Nevertheless, one series of simulations
shown in the right panel of Figure 4 suggests that the asymptotic null distribution given

θ̂n > 0 is close to κnχ
2
1, where the Bartlett factor κn → 1 tends to one. This section offers

an explanation and a derivation of the correct limit distribution, which is not χ2
1 in the

setting of Theorem 3.1.

Theorem 4.1. Let X1, . . . , Xn be independent standard Gaussian, let h(Xi) ≥ 0 be in the
domain of attraction of the maximally skew Cauchy law, and let G(·) be the cumulative
distribution function whose uth quantile is

G−1(u) = −2u− 2 log(1− u) = 2
∑
r≥2

ur/r. (4.4)

Then, the conditional limit distribution of the likelihood-ratio statistic is

lim
n→∞

P0(Λn ≤ x | Λn > 0) = G(x).

Remark 4.1. The limit distribution is not dissimilar to χ2
1. Both densities behave like

x−1/2 near the origin. The first four cumulants of χ2
1 are 1, 2, 8, and 96, while those of G

are 1, 7/3, 32/3, and 3194/45. However, for X ∼ G, the log density of X1/2 has a Taylor
expansion

log
(
2xg(x2)

)
= −2x

3
− 5x2

36
− 23x3

810
− 31x4

6480
+O(x5),
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which is essentially linear for x < 1, while the corresponding half-normal log density
log(2/π)/2 − x2/2 is exactly quadratic and negative at zero. The difference between
2xg(x2) and the degree-4 Taylor approximation is less than 1% for x < 3.

Proof. For notational simplicity we set Z = h(X) − 1 ∼ F , so that F is in the Cauchy
domain of attraction with zero mean, and Theorem 3.2 applies. Given Z̄n > 0, we
construct an approximation for l(·) and its derivatives l(r)(0) = (−1)r−1(r− 1)!Sr, where

Sr =

n∑
i=1

Zri =
∑
k≥0

Zr(n−k) = Zr(n) +
∑
k≥1

Zr(n−k).

Both nZ̄n and Z(n) are conditionallyOp(Tn), while the conditional distribution of Z(n−1), Z(n−2), . . .
is asymptotically the same as the unconditional distribution of Z(n), Z(n−1), . . .. Since Zri
is in the domain of attraction of the stable law with index 1/r, the scaling constant is Brn,
and we have

Sr − Zr(n) =
∑
k≥1

Zr(n−k) =

{
nX̄n − Z(n) r = 1,
Op(B

r
n) r > 1.

It follows that Sr = Zr(n)(1 + op(1)) for r ≥ 2.

Consider the log-likelihood function

`(θ) =

n∑
i=1

log{(1− θ)f0(Xi) + θf1(Xi)},

whose first two derivatives are given in (2.1). A first-order Taylor expansion around zero
gives the local approximation

l̃(θ) = log(1 + θZ(n)) + θ(S1 − Z(n)), (4.5)

where, in the Taylor expansion, we have substituted Z(n) for S1 in the expression for l′(0),

and added and subtracted log(1 + θZ(n)) = θZ(n) + O(θ2). The approximation satisfies

l(θ)− l̃(θ) = op(1) for θ = O(T−1n ) owing to the form of the higher derivatives at zero.
Theorem 3.2 shows that R = S1/Z(n) is less than one with high probability for large n,

in which case l̃ has a maximum at θ̃nZ(n) = R/(1−R). In that case R = θ̃Z(n)/(1+θ̃Z(n)),
and the approximate likelihood-ratio statistic

2l̃(θ̃) = −2R− 2 log(1−R) = 2
∑
k≥2

Rk/k = Λn + op(1) (4.6)

is a monotone function of R. Theorem 3.2 also shows that the limit distribution of R
given Z̄n > 0 is uniform on (0, 1), implying that Λn ∼ G in the limit. �

Figure 4 shows a histogram of R and the Bartlett-adjusted likelihood ratio statis-
tic (Λn/κ̂n)1/2 using the exact likelihood and the exact maximum in the Gauss-Cauchy
mixture model restricted to 2000 out of 74058 samples for which Z̄n > 0. For this
model, L(x) = (2 log x)3/2 is the slow-variation function, Bn ∼ n/(2 log n)3/2 and Tn ∼
4π−1Bn log n. For the simulation, n = 107, κ̂n = 1.0170 is the sample average, and R > 1
in 31 cases. The sample cumulant ratios k2/2 and k3/8 for Λn/κ̂n compared with χ2

1

are 1.160 and 1.346, which are surprisingly close to the theoretical limit values 7/6 and
4/3 respectively. The new limit density is shown on the same square-root scale, together
with the half-normal density for comparison. While the difference between the two dis-
tributions is not large, the histogram clearly favours G. A standard 20-bin χ2-test gives
X2 = 40.02 for the χ2

1 distribution, and X2 = 15.22 for G.
Analogous simulations for the Gauss-Laplace mixture give virtually identical results for

the likelihood-ratio statistic, though with κ̂n = 0.9566. However, the fraction of R-values
greater than one was 249/2000, or 12%, consistent with a (log n)−1/2 convergence rate.
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Figure 4. Histogram of R = nZ̄n/Z(n) (left) and (2l(θ̂n)/κ̂n)1/2 (right)
for two thousand simulations of the Gauss-Cauchy mixture model with
n = 107 observations restricted to samples for which Z̄n > 0.

The argument used in the proof of Theorem 4.1 suggests that the rate of convergence of
Λn to G might be (log n)−1/2 or perhaps (log n)−1, but the simulations suggest a faster
rate, particularly after Bartlett correction.

The local approximation (4.5) and ensuing argument is valid for any iid problem with
a boundary at zero provided that the log likelihood derivative is a sum of zero mean
random variables in the Cauchy domain of attraction. There may therefore be other
statistical problems besides the two-component mixture problem in which the conditional
limit distribution (4.4) arises; the only difficulty in establishing that l(θ)− l̃(θ) = op(1), as
the adequacy of the approximation (4.5) depends on the behaviour of higher derivatives,
which is context specific.

4.4. Predictive activity rate. Suppose we reject the global null Xi ∼ P0 in favor of a
two-component mixture with extreme component f1, as if we knew the data were drawn
from a latent variable model:

Ai ∼ Bernoulli(θ)

Xi | Ai ∼ fAi i = 1, . . . , n
(4.7)

independently, concluding that θ > 0. Then it becomes natural to ask which observa-
tions arose from the f1 component. To answer this question, we may compute for each
observation Xi the local activity rate, defined

Pθ(Ai = 1 | Xi) := θf1(Xi)/f(Xi),

which measures for each observation how likely it is to be a draw from f1 in the hierarchical
model (4.7). In this section, we derive the asymptotic null distribution of the local activity
rate for the observation with largest absolute value.

Given an estimate of θ, the fitted or predictive activity rate for unit i is

Pθ̂n(Ai = 1 | Xi) :=
θ̂nf1(Xi)

(1− θ̂n)f0(Xi) + θ̂nf1(Xi)
=

θ̂nh(Xi)

1− θ̂n + θ̂nh(Xi)
. (4.8)

If θ̂n = 0, the fitted local activity rate is zero for every unit: every unit is deemed to have

a null or negligible signal. Given θ̂n > 0, the maximum predicted activity rate is

θ̂nh(Xmax)

1− θ̂n + θ̂nh(Xmax)
= R+ op(1)
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where Xmax is the maximum absolute sample value, and R := nZ̄n/Z(n), where Zi :=
h(Xi). According to Theorem 3.2, R is uniformly distributed on (0, 1) in the large-sample

limit when θ = 0. In this case, we also have θ̂n = 0 with probability tending to 1. That
is, the type 1 error of the MLE for testing the global null H0 : θ = 0 tends to zero, and

conditionally on the type 1 error event {θ̂n > 0}, the smallest fitted activity rate is an
asymptotically valid p-value for testing H0. We record this implication as a corollary of
Theorem 3.2 and Theorem 4.1 below.

Corollary 4.1. Consider the decision rule that rejects H0 : θ = 0 if the largest local
activity rate exceeds 1 − α. Then the conditional probability that some unit is declared
active or non-null at level α is equal to α in the large-sample limit. In other words,

lim
n→∞

P0

(
min

i=1,...,n
Pθ̂n(Ai = 0 | Xi) ≤ α

∣∣∣ θ̂n > 0

)
= α,

for any α ∈ [0, 1] where

Pθ̂n(Ai = 0 | Xi) :=
1− θ̂n

1− θ̂n + θ̂nh(Xi)
.

Proof. Following the proof of Theorem 4.1, we have R = θ̂nh(Xmax)/(1 + θ̂nh(Xmax)).

Together with Theorem 3.2, which implies that h(Xmax)→∞ and θ̂n → 0 in probability

conditionally on θ̂n > 0, we have

θ̂nh(Xmax)

1− θ̂n + θ̂nh(Xmax)
= R× 1 + θ̂nh(Xmax)

θ̂nh(Xmax)
× θ̂nh(Xmax)

1− θ̂n + θ̂nh(Xmax)

= R×

(
1− θ̂n

1 + θ̂nh(Xmax)

)−1
= R (1 + op(1)).

It follows that the complement is also Uniform(0, 1) distributed asymptotically, conditional

on θ̂n > 0. �

4.5. Wald and Rao statistics. The conventional Wald and Rao statistics for testing
θ = 0 are

θ̂(i(θ̂))1/2, and
l′(0)

i(0)1/2
,

where l(θ) is the log likelihood function and i(θ) is the Fisher information. Technically
speaking, the Rao statistic does not exist in the mixture setting because i(0) is not finite.
For present purposes, however, we substitute −l′′(θ) for i(θ) in both.

Given θ̂ > 0, the approximate likelihood in section 4.3 implies

l̃′(θ) =
Z(n)

1 + θZ(n)
+ nZ̄n − Z(n),

Z(n)θ̃ = R/(1−R),

−l̃′′(0) = Z2
(n),

−l̃′′(θ̃) = Z2
(n)(1−R)2 = (Z(n) − nZ̄n)2,

where R = nZ̄n/Z(n). It follows that the modified Wald and Rao statistics are

θ̃(−l̃′′(θ̃))1/2 =
R

(1−R)Z(n)
Z(n)(1−R) = R

l̃′(0)

(−l̃′′(0))1/2
=

nZ̄n
Z(n)

= R.
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In other words, the two statistics are conditionally equivalent given θ̂ > 0, both uni-
formly distributed on (0, 1). The squared statistics are not approximately the same as
the likelihood-ratio statistic, although all three are asymptotically equivalent in the sense
that each is a monotone function of R. Conventional standard normal approximations are
incorrect.

5. Composite mixtures

5.1. Definition. A composite Gaussian mixture is a family of distributions

{Fθ = (1− θ)F0 + θF1 : 0 ≤ θ ≤ 1, F1 ∈ F}

in which F0 = N(0, 1). The non-null distributions belong to some specified non-empty
family F , which need not be convex. Models of this type have been considered by Efron et
al. (2001), Patra and Sen (2016). In the modern style, these are invariably nonparametric
in the counter-semantic sense that F is not a finite-dimensional manifold.

The emphasis in this section is on composite mixtures arising in the signal-detection
setting where each distribution is necessarily a Gaussian convolution Fθ = N(0, 1)?P with
some symmetric signal distribution P . This condition is sufficient to ensure that each Fθ
has a bounded continuous density fθ(x) ≤ φ(0), and hence that each distribution in F
also has a bounded continuous density. Also, under suitable conditions (Proposition 4.1),
the tails of Fθ are similar to those of P .

5.2. Equivalence classes. Let F1, F2 be two symmetric distributions having bounded
continuous densities such that the ratio has a finite non-zero limit:

lim
x→∞

f1(x)

f2(x)
= K. (5.1)

Then h1(x) ∼ Kh2(x), where hr(x) = fr(x)/φ(x) is the density ratio arising in the
elementary mixture model (1 − θ)φ(x) + θfr(x). On the assumption that h1(X) (and
hence also h2(X)), belongs to the Cauchy domain of attraction, it follows that

1

B1,n

∑(
h1(Xi)− 1

)
= A1,n + ε1 + op(1),

1

B2,n

∑(
h2(Xi)− 1

)
= A2,n + ε2 + op(1),

where the stabilizing sequences satisfy

B1,n ∼ KB2,n, A2,n ∼ A1,n, T1,n ∼ KT2,n.

If θ̂1,n > 0, with high P0-probability h1(X(n)) > T1,n implying h2(X(n)) > T2,n, and hence

θ̂2,n > 0 with high probability. Moreover, given θ̂1,n > 0, the ratios satisfy

1

h1(X(n))

∑(
h1(Xi)− 1

)
=

1

h2(X(n))

∑(
h2(Xi)− 1

)
+ op(1).

It follows that the likelihood-ratio statistics Λ1,n,Λ2,n are asymptotically equal:

lim
n→∞

P0

(
|Λ1,n − Λ2,n| > ε

∣∣∣ θ̂n > 0
)

= 0

for every ε > 0. For example, if f1, f2 are Student t distributions on ν degrees of freedom
with scale parameters σ1, σ2, then (5.1) is satisfied with K = (σ1/σ2)ν , implying that the

likelihood ratio statistics are asymptotically equal given θ̂n > 0.
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5.3. Implications. The first implication is as follows. Let E(F1) be the set of distribu-
tions that are tail-equivalent to F1 in the sense of (5.1), let Λn(F1) be the likelihood-

ratio statistic in the elementary mixture conv(F0, F1), and let Λn(F̂ ) be the maximized

likelihood-ratio statistic over θ and over the class E(F1). Given that θ̂n > 0, the difference

Λn(F )− Λn(F1) is op(1) for an arbitrary F in E(F1). This implies that Λn(F̂ )− Λn(F1)
is op(1) so that the conditional distribution of the maximized likelihood-ratio statistic is

lim
n→∞

P0(Λn(F̂ ) < x | θ̂n > 0) = G(x).

From the perspective of statistical modelling and testing, no advantage is gained by ex-
tending the single distribution F1 to the nonparametric composite mixture with F =
E(F1).

The second implication is that the conditional limit distribution of the maximized

likelihood-ratio statistic Λn(F̂ ) given θ̂n > 0, may depend on the topology of the quo-
tient space F/E , i.e., the space of equivalence classes. In particular, if F/E is a finite-
dimensional manifold of dimension d, the limit distribution Gd may depend on d. Other-
wise, F plays no role in the limit distribution.

There are some parallels between tail-equivalence as defined by (5.1), and sparse-
equivalence as defined by McCullagh and Polson (2018). Signal distributions P and
P ′ within the same sparse-equivalence class are statistically indistinguishable based on
observations from the convolutions P ? N(0, 1) and P ′ ? N(0, 1), and have the same
sparsity implications in the relevant statistical sense. Formally, two signal distributions
P, P ′ are termed sparse-equivalent if their normalized exceedance measures are equal:
H(dx) = H ′(dx). Two sparse signals having exceedance measures H 6= H ′ give rise to
mixtures that are tail-equivalent in the sense of (5.1) if the tail ratio has a finite non-zero
limit H(x+)/H ′(x+) ∼ K. Thus sparse equivalence is finer than tail equivalence. Sparse
equivalence is relevant for identifiability of mixtures generated by Gaussian convolution
with a sparse signal; tail equivalence is relevant in the present setting where the focus is
exclusively on the boundary behaviour of the likelihood-ratio and related statistics.

5.4. Example. For 0 < ν < 2, let ζν(x) be the inverse-power zeta-function defined in
McCullagh and Polson (2018) and expressed as a convergent power series

ζν(x) =
ν(2− ν)

Γ(2− ν/2)

∞∑
r=1

2r−2Γ(r − ν/2)x2r

(2r)!
.

The product ψν(x) = φ(x)ζν(x) is the density of a symmetric bimodal distribution
Ψν whose tails are regularly-varying with index −ν. For purposes of likelihood max-
imization, it is convenient to extend the model by continuity to the upper boundary:
ζ2(x) = limν→2 ζν(x) = x2 and ψ2(x) = x2φ(x).

One crucial feature of this family is that ψν(X) belongs to the skew-Cauchy domain
of attraction in all cases except ν = 2, which belongs to the Gaussian domain. In the
non-null sparse-signal-plus-noise setting, the maximum of the likelihood tends to occur
near the upper boundary ν = 2 only if the signal has finite variance; otherwise, if the
variance is not finite, the maximum occurs at an interior point with high probability. To
understand this phenomenon, observe that if Qσ is symmetric with atoms at ±σ, the
convolution Qσ ? N(0, 1) has density

1
2φ(x− σ) + 1

2φ(x+ σ) = φ(x) e−σ
2/2 cosh(σx),

= φ(x)
(
1− σ2/2 + σ2x2/2 + o(σ2)

)
.

Every symmetric distribution P is a Qσ scale mixture. If P has finite variance σ2, then
P ?N(0, 1) has exactly the same first-order small-σ expansion as Qσ. In other words, every



22 HEATHER BATTEY, PETER MCCULLAGH, AND DANIEL XIANG

symmetric finite-variance convolutional perturbation P ?N(0, 1) is first-order equivalent to
the top mixture (1− θ+ θx2)φ(x) with θ = σ2/2. In that sense, the class of finite-variance
signals is reduced to a single mixture representative Ψ2.

The following theorem addresses the left-boundary behaviour of likelihood-based sta-
tistics for a composite mixture that includes a subset of the distributions Ψν .

Theorem 5.1. Let 0 < τ ≤ 2 be given, and let θ̂n, ν̂n be the maximum-likelihood estimate
in the composite mixture with F = {Ψν : 0 < ν ≤ τ}. Then, the large-sample boundary
behaviour is as follows:

P0(θ̂n > 0) ∼
{
τ/(2 log n) τ < 2,
1/2 τ = 2;

lim
n→∞

P0(ν̂n = τ | θ̂n > 0) = 1;

lim
n→∞

P0(Λn ≤ x2 | θ̂n > 0) =

{
G(x2) τ < 2,
1− 2Φ̄(x) τ = 2.

Remark 5.1. At the critical boundary θ = 0, the parameter ν is indeterminate, which

is a type of singularity that occurs in many non-regular problems. For θ̂n > 0, the
mixture likelihood has its maximum at the upper extremity ν̂ = τ with high P0-probability
because these are the distributions that are closest to Gaussian in the natural metric.
The limit behaviour for the composite mixture follows from the top elementary mixture
(1− θ)φ+ θψτ .

Proof. Let θ̂ν denote the maximum likelihood estimator of θ at a particular value of

ν. Thus, θ̂n = θ̂ν̂ , where ν̂ = ν̂n is the maximum likelihood solution. The proof will

establish containment on both sides of Eν̂ = {θ̂ν̂ > 0} and Eτ = {θ̂τ > 0} modulo subsets
of asymptotic probability 0 under P0, i.e.

lim
n→∞

P0(Eν̂\Eτ ) = lim
n→∞

P0(Eτ\Eν̂) = 0.

Since ψν(x) ∼ Kν/x
ν+1 for large x and ν < 2, we have

ζν(x) =
ψν(x)

φ(x)
∼
√

2πex
2/2Kν

xν+1
,

and from the argument of §2.5, the density ratio satisfies

P0(ζν(X) > η) ∼ 2ψν(
√

2 log η)

η
√

2 log η
∼ 2Kν

η (2 log η)ν/2+1
.

Although the constants do not matter in this argument, we write the above upper prob-
ability, for consistency with §3, in the form F̄ (η) ∼ 2C1/ηL(η). Thus, from Corollary
3.1,

L(η) = (2 log η)ν/2+1/(πKν) ∼ 1/L†(η)

Bn ∼ nL†(n) ∼ nπKν

(2 log n)ν/2+1
,

An ∼ −4 log n/(πν),

Tn = Bn|An| ∼
2nKν

ν(2 log n)ν/2
.

For sufficiently large n, Appendix V shows that θ̂n > 0 is equivalent to

lim
θ→0

d

dθ
`(θ; ν̂(θ)) = lim

θ→0

n∑
i=1

(ζν̂(θ)(Xi)− 1) > 0, (5.2)

where `(θ; ν̂(θ)) is the profile log-likelihood function.



NON-STANDARD BOUNDARY BEHAVIOUR 23

In view of this expression, consider the event n−1
∑
ζν(Xi) > 1, which corresponds to

θ̂ν > 0 for a given ν. For large n, this is equivalent to ζν(X(n)) > λTn for some λ > 1, by
Theorem 3.2 and ultimate monotonicity of ζν . The condition ζν(X(n)) > λTn is equivalent
to

X2
(n) > 2 log(TnX

1+ν
(n) ) + const.

= 2 log n− ν log(2 log n)− 2 log ν + 2(1 + ν) logX(n) + const.

= 2 log n+ ν(2 logX(n) − log(2 log n))− 2 log ν + 2 logX(n) + const. (5.3)

It follows from calculus that the right hand side above is non-increasing in ν over the
interval

0 < ν ≤
(

log
X(n)√
2 log n

)−1
(5.4)

and is otherwise increasing. Since τ ≤ 2, it suffices to show that, conditionally on θ̂n >
0, X(n)/

√
2 log n is bounded above by a sequence tending to 1, implying that (5.3) is

decreasing in ν over (0, τ ]. To this end, define

ω := min{x > 0 : x2 ≥ 2 log n+ ν(2 log x− log(2 log n))− 2 log ν + 2 log x}.

First, we claim that for sufficiently large n, ω ≤
√

2 log n+ 1.01 log(2 log n). Indeed, plug-

ging x =
√

2 log n+ 1.01 log(2 log n) into the condition defining ω, we see it is satisfied:

2 log n+ ν[log(2 log n+ 1.01 log(2 log n))− log(2 log n)]− 2 log ν + log(2 log n) + o(1)

∼ 2 log n+ (1 + o(1)) log(2 log n) ≤ x2 = 2 log n+ 1.01 log(2 log n),

for n larger than a universal constant. Next, we will show that for some c > 0,

P0(X(n) >
√

2 log n+ c log log n | X(n) > ω)→ 0.

Since ω ≤
√

2 log n+ 1.01 log(2 log n), the left hand side above is bounded by

≤
P0(X(n) >

√
2 log n+ c log log n)

P0(X(n) >
√

2 log n+ 1.01 log(2 log n))
→ 0,

which follows from Mills’s ratio, for any c > 1.01, since X(n) is a maximum of n iid

standard normal random variables. This shows that conditional on θ̂n > 0, we have
X(n) ≤

√
2 log n+ c log log n with probability tending to 1, so that the right hand side

of (5.4) diverges to +∞. Since the threshold is decreasing as a function of ν, the set of

ν-values for which θ̂ν is positive, i.e., the set of ν-values for which ζν(X(n)) > Tn, must
be an upper interval (ν0, τ ], which is empty if the threshold for λ = 1 is not exceeded at
ν = τ . Thus, for sufficiently large n, Eτ implies Eν̂ . Conversely, given that the threshold
is exceeded on the event Eν̂ , the approximate likelihood-ratio statistic (4.6) is a monotone
function of the ratio

1

1−R
'
h(X(n))

Tn
'
√

2πeX
2
(n)/2

2nX(n)

(
2 log n

X2
(n)

)ν/2
× ν.

For large n and X2
(n) ∼ 2 log n, the ratio increases linearly as a function of ν, which implies

ν̂ = τ whenever θ̂n > 0. For sufficiently large n, Eν̂ implies Eτ , and Eτ implies Eν̂ , thus
the events are asymptotically equal under P0. For τ < 2, and by continuity for τ ≤ 2, the
boundary behaviour is governed by the top elementary mixture with ν = τ . �

Corollary 5.1. The same argument applies if we replace F with the set of Student t
distributions on ν ≤ τ degrees of freedom with scale parameter σ. In this one-dimensional
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composite mixture, σ is fixed, τ < ∞ is any positive real number, and the limit behav-
ior exhibits no discontinuity at τ = 2 or elsewhere. Section 5.2 implies that the scale
parameter is nugatory for boundary behaviour. This argument fails for τ =∞.

Reproducibility. Code to reproduce all figures in the paper can be found at:
https://www.ma.imperial.ac.uk/ hbattey/BMX.html.

Appendices

Appendix I: De Bruijn group. The de Bruijn group is the set (SV, �) of slowly-
varying functions together with the non-commutative binary operation (L1 � L2)(x) =
L1(x)L2(xL1(x)). To see that this is an associative function SV 2 → SV , observe that

(L1 � (L2 � L3))(x) = L1(x)× (L2 � L3)(xL1(x)),

= L1(x)× L2(xL1(x))× L3(xL1(x)L2(xL1(x)));

((L1 � L2) � L3)(x) = (L1 � L2)(x)× L3(x(L1 � L2)(x)),

= L1(x)× L2(xL1(x))× L3(xL1(x)L2(xL1(x))),

= (L1 � (L2 � L3))(x).

Associativity implies that the triple product is well-defined by the pairwise products. The
identity element: L � 1 = 1 � L = L is the unit constant function. If it exists, the inverse
is a slowly-varying function L† such that (L � L†)(x) = (L† � L)(x) = 1 for all x > 0.
Since slow variation is a characterization of the limiting behaviour for large x, it says little
about the behaviour for general x beyond continuity or measurability. Thus, the existence
of an inverse is not guaranteed. Nevertheless, the following theorem suffices for present
purposes.

Theorem A.1 (de Bruijn, 1959). To each L ∈ SV there corresponds a function L† ∈ SV,
satisfying L(x)L†(xL(x)) = L†(x)L(xL†(x)) = 1 for all x sufficiently large.

Proof. Theorem 1.5.13 of Bingham, Goldie and Teugels (1987) proves existence in the
sense of equivalence. Theorem 1.8.9 proves existence as stated above, i.e., for all x suffi-
ciently large. �

Although the product xL(x) is ultimately monotone, it is not necessarily monotone for
small x. Thus, SV contains functions for which no group inverse exists (as a function
(0,∞) → (0,∞)). The theorem states that an asymptotic inverse exists, which implies
that the set of equivalence classes (SV , �)/∼ is a group. For the most part, it is the
group of equivalence classes that is of interest here. However, we always work with a
representative element.

Appendix II: Approximation of the sine-integral. Let F be the cumulative function
of a finite-mean distribution on the positive real line, and let F̄ (x) = 1/(xL(x)) be the
right-tail probability. Since L(λx)/L(x) → 1 uniformly in λ as x → ∞, the derivative
xL′(x)/L(x) (with respect to λ at λ = 1) tends to zero. Hence

dF (x) = −dF̄ (x) =

(
1 +

xL′(x)

L(x)

)
dx

x2L(x)
∼ dx

x2L(x)
.

We first split the integrand into two parts, sin(tx) = tx + (sin tx − tx), and split the
range into disjoint intervals (0, T ) and (T,∞), where T = 1/|t| is large. Then∫ ∞

0

sin(tx) dF (x) = tµ+

∫ T

0

(sin tx− tx) dF (x) +

∫ ∞
T

(sin(tx)− tx) dF (x), (.5)

https://www.ma.imperial.ac.uk/~hbattey/codeBMX.html
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where µ is the mean. The first integrand is bounded by | sin(tx)− tx| ≤ |t|3x3 for x ≤ T ,
so the contribution from the interval (0, T ) is bounded by

|t|3
∫ T

0

x3 dF (x) = |t|3
∫ T

0

x3
(

1 +
xL′(x)

L(x)

) dx

x2L(x)
,

∼ |t|3
∫ T

0

x3
dx

x2L(x)
,

≤ |t|3T T

L(T )
=

1

TL(T )
.

Since | sin(tx)| ≤ 1, the first part of the second integral in (.5) has the same bound:∣∣∣ ∫ ∞
T

sin(tx) dF (x)
∣∣∣ ≤ ∫ ∞

T

dF (x) = F̄ (T ) =
1

TL(T )
.

It follows that ∫ ∞
0

sin(tx) dx = tµ− t
∫ ∞
T

x dF (x) +O

(
t

L(T )

)
,

= tµ− t
∫ ∞
T

dx

xL(x)
+O

(
t

L(T )

)
.

Appendix III: Calculation of the asymmetric Cauchy density. By the Fourier
inversion formula of the characteristic function for α = 1 and |β| ≤ 1, the asymmetric
Cauchy density f(x) in Fig. 1 is

f(x) =
1

π

∫ ∞
0

e−t cos(tx+ 2βt log t/π)dt.

Substitute u = gx(t) := t(1 + 2β
πx log t), which is increasing over (exp(−πx2β ),∞). As x > 0

becomes large, the integral over the interval (0, exp(−πx2β )) is exponentially small in x, and

may be ignored:∫ ∞
0

e−t cos(xgx(t))dt =

∫ ∞
exp(−πx2β )

e−t cos(xgx(t))dt+O
(
e−

πx
2β
)
,

=

∫ ∞
0

e−g
−1
x (u) cos(xu)

1

1 + 2β log g−1
x (u)

πx + 2β
πx

du+O
(
e−

πx
2β
)
,

where g−1x : (0,∞) → (exp(−πx2β ),∞) is the inverse map for the substitution. From here

on, we ignore the exponentially small remainder term. It is easy to check that

u

1 + 2β
πx log u

< g−1x (u) < u,

from which it follows that the integral is

=

∫ √x
e
− x

log x

e−u cos(xu)
1

1 + 2β log u
πx + 2β

πx

du(1 + o(1)) +O
(
e−
√
x
)
,

where o(1) means a term that goes to zero as x→∞. Then the above is

∼
∫ √x
e
− x

log x

e−u cos(xu)

(
1− 2β log u

πx

)
du

=

∫ √x
e
− x

log x

e−u cos(xu)du− 2β

πx

∫ √x
e
− x

log x

e−u cos(xu) log(u)du.
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Now using cos(xu) = Re(eixu), the above expression becomes

=

∫ √x
e
− x

log x

e−uRe(eixu)du− 2β

πx

∫ √x
e
− x

log x

e−uRe(eixu) log(u)du

= Re

(
1

1− ix

∫ √x(1−ix)
e
− x

log x (1−ix)
e−vdv

)
− Re

(
2β

πx

∫ √x
e
− x

log x

e−u(1−ix) log(u)du

)
.

The first term gives

Re

(
1

1− ix

∫ √x(1−ix)
e
− x

log x (1−ix)
e−vdv

)
∼ Re

(
1

1− ix

)
=

1

1 + x2
.

The second term is

= −Re

(
2β

πx

∫ √x(1−ix)
e
− x

log x (1−ix)

e−v(log(v)− log(1− ix))

1− ix
dv

)
= O(x−3 log x) +

2β

πx
Re

(
1

1− ix

∫ √x(1−ix)
e
− x

log x (1−ix)
e−vi sin−1

(
−x√

1 + x2

)
dv

)
︸ ︷︷ ︸

(∗)

,

since 1− ix = (1 + x2)1/2ei sin
−1(−x/

√
1+x2). Finally, note that the above term (∗) is equal

to

=
2β

πx
Re

(
1 + ix

1 + x2

∫ √x(1−ix)
e
− x

log x (1−ix)
e−vi sin−1

(
−x√

1 + x2

)
dv

)
∼ 2β

πx
· π

2x
=

β

x2
.

To summarize, we have shown that for large x > 0,

f(x) ∼ 1

πx2
+

β

πx2
=

1 + β

πx2
,

which implies F̄ (x) ∼ (1 + β)/(πx) for the right tail. For x < 0,

f(x) =
1

π

∫ ∞
0

cos(tx+ 2βt log t/π)dt =
1

π

∫ ∞
0

cos(t|x| − 2βt log t/π)dt,

so the argument above implies that as x→ −∞,

f(x) ∼ 1− β
πx2

,

and F (x) ∼ (1− β)/(π|x|).

Appendix IV: Proof of Proposition 4.1. Suppose F1 = N(0, 1)?G, with G symmetric
about zero with density function g having exponential index 2κ ∈ (0, 2) in the sense that:

− log g(x) = |x|2κL(x)

for some slowly varying function L(x). Then the Gaussian convolution φ?g has exponential
tail index 2κ.

Proof. Let y > 0 and β := 2κ. The convolution density m(y) = φ ? g is

m(y) =

∫
g(y − ε)φ(ε)dε

=

∫
|ε|<yβ/2

exp(−|y − ε|βL(y − ε))φ(ε)dε+O(e−y
βL1(y))
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for some slowly varying L1. Since β < 2, we have y − ε = y(1 + o(1)) as y →∞, so that

|y − ε|β = yβ |1− ε/y|β ≥

{
yβ(1− βε/y) if β > 1

yβ(1− βε/y + β(β − 1)(ε/y)2) if β < 1,

for y sufficiently large. It follows that, over the range of the integral, we have

|y − ε|β ≥ yβ − βεyβ−1 + o(y2β−2).

This implies m(y) is bounded by

e−y
βL(y(1+o(1)))

∫
|ε|<yβ/2

e−βεy
β−1(1+Cy2β−2/(εyβ−1))L(y(1+o(1)))φ(ε)dε+O(e−y

βL1(y))

for some constant C > 0. Now since |y2β−2/(εyβ−1)| = |yβ−1/ε| ≥ yβ/2−1 → 0, the above
reduces to

m(y) ≤ e−y
βL(y(1+o(1)))

∫
|ε|<yβ/2

e−βεy
β−1L2(y)φ(ε)dε+O(e−y

βL1(y)),

for some slowly varying function L2(y). The formula Eε∼N(0,1)(e
tε) = et

2/2 implies

m(y) ≤ e−y
βL(y(1+o(1)))eβ

2y2β−2L2(y)
2/2 +O(e−y

βL1(y)).

Finally, β < 2 implies

yβL(y(1 + o(1))) + β2y2β−2L2(y)2/2 = yβL3(y)

for some slowly varying L3(y), from which it follows that

− logm(y) ≥ yβL3(y).

A similar argument yields − logm(y) ≤ yβL4(y) for some slowly varying L4(y), which
implies

L3(y) ≤ − logm(y)

yβ
≤ L4(y),

so that − logm(y)
yβ

is also slowly varying, completing the proof.

�

Appendix V: Derivation of equation (5.2). For a log-likelihood function of the form

`(θ, ν) =

n∑
i=1

log
(
(1− θ)f0(Xi) + θf1(Xi; ν)

)
,

the profile log-likelihood derivative is

d

dθ
`(θ; ν̂(θ)) =

n∑
i=1

(h(Xi; ν̂(θ))− 1) + θt(Xi; ν̂(θ))

1 + θ(h(Xi; ν̂(θ))− 1)
, (.6)

where h(x; ν) = f1(x/ν)/f0(x) and

t(x; ν̂(θ)) =
1

f0(x)

∂f1(x; ν̂(θ))

∂ν̂

dν̂(θ)

dθ
. (.7)

and for any given θ, ν̂(θ) solves

F (θ, ν̂(θ)) :=
∂`(θ, ν)

∂ν

∣∣∣∣
ν=ν̂(θ)

= 0.

Total differentiation of this equation F (θ, ν̂(θ)) = 0 gives

dν̂(θ)

dθ
= − jνθ(θ, ν̂(θ))

jνν(θ, ν̂(θ))
, (.8)
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where jνθ(θ, ν̂(θ)) and jνν(θ, ν̂(θ)) are the cross and double derivatives of the joint log-
likelihood function evaluated at (θ, ν̂(θ)), given in the present context of f1(x; ν) =
ψν(x) ∼ Kν/|x|ν+1 by

jνθ(θ, ν̂(θ)) =

n∑
i=1

dψν(Xi)

dν

∣∣∣∣
ν=ν̂(θ)

, jνν(θ, ν̂(θ)) = θ

n∑
i=1

d2ψν(Xi)

dν2

∣∣∣∣
ν=ν̂(θ)

,

where

ψ′ν(x) :=
dψν(x)

dν
∼ K ′ν −Kν log |x|

|x|ν+1

ψ′′ν (x) :=
d2ψν(x)

dν2
∼ K ′′ν − 2K ′ν log |x|+Kν(log |x|)2

|x|ν+1
.

On substituting (.8) in (.6) via (.7), and on making the replacement f0(x) = φ(x), the
profile log-likelihood derivative is

d

dθ
`(θ; ν̂(θ)) =

n∑
i=1

(ζν̂(θ)(Xi)− rν̂(θ)(Xi)− 1)

1 + θ(ζν̂(θ)(Xi)− 1)
, (.9)

where

rν̂(θ)(Xi) =
ψ′ν̂(θ)(Xi)

φ(Xi)

∑n
j=1 ψ

′
ν̂(θ)(Xj)∑n

j=1 ψ
′′
ν̂(θ)(Xj)

∼
Kν̂(θ) log |Xi|
|Xi|ν̂(θ)+1φ(Xi)

( ∑n
j=1Kν̂(θ) log |Xj |/|Xj |ν̂(θ)+1∑n

j=1Kν̂(θ)(log |Xj |)2/|Xj |ν̂(θ)+1

)
→P0 0, (n→∞).

Taking the limit of (.9) as θ → 0 gives (5.2). �
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