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ABSTRACT. The empirical Bayes approach to multiple testing, widely used in modern
statistical contexts, is frequently formulated as a two-component mixture model of the
form Fy = (1 — 0)Fy + 0F1, where Fp is standard Gaussian and F} is a completely
specified heavy-tailed distribution with the same support. For a sample of n indepen-
dent and identically distributed values X; ~ Fp, the maximum likelihood estimator
0, is asymptotically normal provided that 0 < 6§ < 1 is an interior point. This paper
investigates the large-sample behaviour for boundary points, which is entirely differ-
ent and strikingly asymmetric for § = 0 and 6 = 1. The reason for the asymmetry
has to do with typical choices such that Fy is an extreme boundary point and Fj
is usually not extreme. On the right boundary, well known results on boundary pa-
rameter problems are recovered, giving lim Py (én < 1) = 1/2. On the left boundary,
limPo (0, > 0) = 1 — 1/, where 1 < o < 2 indexes the domain of attraction of the
density ratio f1(X)/fo(X) when X ~ Fy. For a = 1, which is the most important case
in practice, we show how the tail behaviour of I governs the rate at which Py (én > 0)
tends to zero. A new limit theorem for the joint distribution of the sample maximum
and sample mean conditional on positivity establishes multiple inferential anomalies.
Most notably, given 0n, > 0, the likelihood ratio statistic has a conditional null limit
distribution G # X% determined by the joint limit theorem. We show through this
route that no advantage is gained by extending the single distribution F7 to the non-
parametric composite mixture generated by the same tail-equivalence class.

Some key words: a-stable limit law; likelihood-ratio statistic; local false discovery rate;
multiple testing; non-standard likelihood theory; regular variation; tail behaviour.

1. INTRODUCTION

Let Fjy, F} be distinct probability distributions on the same measurable space. For each
0 <6 <1, the mixture
Fp=(1-0)F,+0F, (1.1)
is also a probability distribution on the same space. In this paper, the phrase “mixture
model generated by Fy, F}” is interpreted as the set of convex combinations

conv(Fp, F1) ={Fp:0<6 <1}

in which the generators Fy, F; are the boundary points.

The model arises particularly in connection with the empirical Bayes approach to
multiple testing (Efron et al., 2001), where interest is either in evaluating the simultaneous
correctness of a set of statements concerning the same null hypothesis, or in the assessment
of different null hypotheses, at most a small number of which are false. The case in which
one of the components is standard Gaussian reflects a reduction by sufficiency to a set
of pivotal test statistics and is particularly relevant for the applications we have in mind.
The other component is typically chosen to have tails that are heavier than Gaussian, for
instance a standard Gaussian convolution corresponding to a signal plus noise model at
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the relevant site. The interpretation of site is context-specific and may refer to a genomic
locus in a genetics context or an energy level in a particle physics context. The response
at site i is treated as a draw from Fy, which means F; with probability # and F with
probability 1 — @, on account of the label being unknown.

The goal of this paper is to study the large-sample behaviour of the maximum-likelihood
estimator and related statistics when the generators have the same support and the data
are generated independently according to the boundary distribution Xy,...,X,, ~ Fp.
In that case, we write h(z) = fi(z)/fo(x) for the density ratio at z. For § = 0, the
error probability Py (én > 0) has a large-sample limit, which is strictly positive in certain
cases, and zero in other cases. It is shown in that lim Po(én > 0) is zero if and only
if the random variables h(X;) belong to the domain of attraction of the Cauchy class,
i.e., the a-stable family with index o = 1. Otherwise, if h(X;) belongs to the the domain
of attraction of any non-Cauchy class, which necessarily has index 1 < a < 2, the limit
probability 1 — a~! is strictly positive but not more than one half.

For reasons that are explained in the Cauchy class is virtually the default in
practical work with mixtures where the null generator is Gaussian and Fj is symmetric
with heavier tails. In such situations, it is of interest to characterize the rate at which the
error tends to zero. For example, if F has regularly-varying tails with index —26, i.e.,
the upper tail probability F(z) = P1(X > ) satisfies

lim Fite) 426
z—oo Fy(x)

for t > 0, then the rate is logarithmic:
Py(f, > 0) ~ ogn’

By contrast, if F} has exponential tails, e.g., — log Fy (z) ~ |z|*Y for large x and 0 < v < 1,

then
72!

(log )t =7~
Here and henceforth, Py(-) denotes the probability with respect to the null generator or
its n-fold product F°", and the regular-variation notation a(n) ~ b(n) means

- an)
A 5

Py(f, > 0) ~

=1

)

or equivalently a(n) = b(n)(1 4 o(1)) for positive functions a(n),b(n). If a, and b, are
random variables, a,, ~ b, means that the above limit holds for any realization.

The limit distribution of the likelihood ratio statistic conditional on én > ( is obtained
in §4.3] using a non-quadratic local approximation. The derivation is based on a new
limit theorem establishing a large-sample joint distribution for the sample mean and
sample maximum of a random variable in the Cauchy domain of attraction, conditional
on positivity of the sample mean.

The theoretical results derived in and §3.5|may be of interest in their own right but
here we focus on their implications in the context of the two-component mixture problem.

2. MAXIMUM LIKELIHOOD

2.1. Regularity conditions. Under the model , Xq,...,X, are independent ran-
dom variables with distribution Fy for some 0 < 8 < 1. Standard theory for maximum-
likelihood estimators tells us that, under suitable regularity conditions, n'/ 2(én —0) has
a zero-mean Gaussian limit. A principal regularity condition is that all distributions in
the model have the same support. This condition need not be satisfied by Fp, Fi, but it
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is automatic for the sub-model in which 0 < 8 < 1. Whether Fj and F; have the same
support or not, a second principal regularity condition requires 6 to be an interior point.
Otherwise, if 8 = 0, the event 6, = 0 has positive probability, so the limit distribution
cannot be Gaussian. The mixture model can therefore be regular only if the boundary
points are excluded. As discussed in from a list of further regularity conditions, there
is the possibility that more than one is violated. In the empirical Bayes formulations that
motivated the present work, infinite variance of the density ratio fi(X)/fo(X) presents
considerable challenges not covered by existing literature on boundary inference problems.

2.2. Unequal supports. For completeness, we consider briefly the case where the sup-
ports supp(Fp) and supp(F1) are not equal. The qualitative behaviour of the maximum-
likelihood estimator is conveniently illustrated by an example in which F{, is uniform on
(0,2) and Fy is uniform on (1,3). The likelihood function is

L(6) = 27(1 — 6)"00"2,

where n, is the number of sample points in the interval (r,r + 1), a realization of N,.. In
the null case Xq,..., X, ~ Fy, we have ny = 0 and

Po(0, > 0) = Po(No = 0) = 27",

Thus, 6, — 0 at an exponential rate.

The generators are said to have disjoint supports if there exist disjoint events Sy, Sy
such that Fy(Sp) = F1(S1) = 1. By modifying the preceding example so that either the
distributions have disjoint supports or supp(fo) is a subset of supp(fi), we find 0, =
with Py-probability one for every n > 1. By contrast, if supp(f1) is a proper subset of
supp(fo), we find that lim Po(6,, > 0) = 1/2.

It appears from this analysis for uniform distributions that the type-one error rate
Po(én > 0) has a large-sample limit, which is either zero or one half. This behaviour
is mirrored qualitatively in the equal-supports case, although the range of possible limits
is zero to one half, depending on the tail behaviour of the random variable h(X) =
f1(X)/fo(X). The qualitative analogue of supp(fo) C supp(f1) and supp(f1) C supp(fo)
is that fy has, respectively, lighter and heavier tails than f;. For the statistical applications
we have in mind, fo(z) = o(f1(z)) as || — oo, with fy the standard Gaussian density
function, and our discussion from onwards concerns almost exclusively that case.

2.3. Equal supports. In the standard case, the generators share a common support
and have positive densities fo(x), f1(x), so that Fy has density fo(z) = (1 — 0)fo(x) +
0 f1(z), which is linear in 6. The contribution log fs(z) to the log likelihood from a single
observation at x is strictly concave as a function of 6, and the sum ), log fg(x;) is also
strictly concave. Consequently, the maximum-likelihood estimate is either a stationary
point or a boundary point.
The log likelihood derivatives are
n

1
Zlfé)nt@hX)

" _ G h(Xi)_l 2
re) = _;(1—9%}1(&)) =0,

and I'(0) = > (h(X;) — 1), where h( ) = fi(x)/ fo(x) is the density ratio of the boundary
points. It follows that the event 6§, > 0 is the same as the event n=! 3 h(X;) > 1, where
Xi,...,X, are independently distributed as Fj. In other words, 6, > 0 if and only if the

(2.1)
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sample average of the transformed variables h(X;) exceeds its expected value

E(h(X)) = [ hia)fola dx—/fl

If A(X) has finite variance o2, then n~'/21'(0) is zero-mean Gaussian for large n, and
—n~1"(0) — o2 by the law of large numbers. In this case 6, = 0 with probability
1/2 in the large-sample limit; conditionally on 0, > 0, the random variable n'/ 20, > 0 is
distributed half-Gaussian with scale parameter o. This is the familiar boundary-parameter
result established by other authors (e.g. Chernoff, 1954; Self and Liang, 1987; Geyer,
1994). The boundary probabilities exhibit more interesting behaviours in the cases for
which h(X) does not have a finite second moment under the null model. It is those
situations that we explore here.

2.4. Position within the literature. The inferential problem for two-component mix-
tures belongs to a class of boundary problems for which an extensive literature was care-
fully surveyed by Brazzale and Mameli (2024). Appendix A.1 of that work outlines an
argument, due to Self and Liang (1987), establishing the limit distribution of the log
likelihood-ratio statistic when the true value of the parameter is on the boundary. Two
aspects of the argument are problematic when h(X) does not have finite variance under
the null distribution Fy: that the Fisher information at # = 0 is not finite, this being
the expectation of > (h(X;) — 1)%; and that a suitably rescaled version of I’(0) is not
asymptotically normally distributed. The same issues afflict the argument of Ghosh and
Sen (1985) presented in Appendix A.3 of Brazzale and Mameli (2024).

In the context of a mixture model with two unit-Gaussian components, one having
unknown mean, Bickel and Chernoff (1993) and Liu and Shao (2004) established that the
likelihood ratio statistic diverges to infinity at rate O(log(logn)) and that the asymptotic
null distribution of a suitably standardized version is of extreme-value type. The con-
clusions of the present paper are strikingly different: that the likelihood ratio statistic
converges to zero under the null model and that its conditional distribution given pos-
itivity has a limit distribution G (Theorem that is visibly close to but not exactly
X3

Gaussian-Gaussian mixtures of unequal means and equal variances lead to density
ratios h(X) that are log-linear in X and thus in the normal domain of attraction. The
extreme-value limit distribution emerges from estimation of the unknown mean parameter
in the non-null component. In recent work, Shi and Drton (2024) have studied a split-
sample version of the likelihood ratio statistic for the same mixture problem, following
the generic universal inference construction of Wasserman et al. (2020). In well-behaved
parametric problems, universal inference violates sufficiency and is inferior to a standard
likelihood-based analysis. Its advantage in the two-component mixture setting is that
sample splitting breaks some dependencies in the likelihood ratio construction, allowing
Shi and Drton (2024) to show that the asymptotic null distribution of the split-sample
likelihood ratio statistic is standard Gaussian after centering and scaling. In our case, the
source of the difficulties is different and is not evaded by sample splitting.

An important conceptual difference between the models is that the signal in Shi and
Drton (2024) is an arbitrary fixed real number corresponding to the mean of the non-
null distribution. By contrast, the signal in our formulation is a random variable whose
realizations are centered at zero and appreciably large with non-negligible probability.

Li, Chen and Marriott (2009) and Chen and Li (2009) allow two-component mixture
constructions of the form (1 — ) f(x; o) + 0f(x; A1) such that the Fisher information at
0 = 0 is not finite. However they study a different problem based on a penalized likelihood



NON-STANDARD BOUNDARY BEHAVIOUR 5

function that forces the estimate 0 away from 0 and 1. Their implicit assessment of
homogeneity is thus based on Ay = A; rather than 6 = 0.

Contrasted with Ghosh and Sen (1985), Self and Liang (1987) and Bickel and Chernoff
(1993), non-existence of second moments necessitates a radically different approach based
on the theory of a-stable limits (Gnedenko and Kolmogorov, 1954) and regular variation
(Bingham, Goldie and Teugels, 1987). From this we are able to delineate the role of tail
properties in determining the type-one error rate Py (én > 0) and the anomalous limiting
behaviour of likelihood-based statistics.

2.5. Tail behaviour for Gaussian mixtures. The motivating example for a large part
of this paper is a restricted class of two-component Gaussian mixtures in which the density
ratio h(z) is an even function that is continuous, unbounded and ultimately monotone.
Ultimate monotonicity means that to each 7 sufficiently large there corresponds a number
¢ such that

{z:h(z) >n} ={x:|z| >} (2.2)
Mills’s approximation to the Gaussian tail probability yields

Po(1X] > 9 = 228 (1+0(e2)).

On using the implicit definition ¢(&) = n~1 f1(¢),
2f1(€)

né

It follows that the asymptotic inverse relationship ¢ = h~1(n) determines the null tail
behaviour via f1(£)/€, and thereby the limit distribution of normalized sums.
Let L : R™ — R™ be a slowly-varying function, in the sense that, for all k > 0
L(kx)

lim 1) =1. (2.4)

Po(h(X) > n) =Po(|X| > &) ~26716(¢) = (2.3)

For a large class of non-null generators, including all whose density satisfies
—log fi(x) ~ [2[**L(z) (2.5)

for some 0 < k < 1, we find that £(n) ~ /2logn as n — oo. This asymptotic inverse
implies
_2fi(v2logn) 1

nv2logn  nLi(n)’

where, for every f; in the class , L, is also slowly varying. In all such cases, the
random variable h(X), or more correctly, its distribution, belongs to the Cauchy domain
of attraction with index o = 1, meaning that suitably standardized sums converge in
distribution to a random variable in the Cauchy class, discussed in

Po(h(X) > n)

3. LIMIT DISTRIBUTIONS FOR SUMS

3.1. Introduction. The results of this section are stated in terms of a generic random
variable X. This is both for notational convenience and for ease of application of the
results beyond the Gaussian mixture setting for which they were initially conceived. For
the statistical questions we have in mind, addressed in §5.3] the results are applied with
h(X) or h(X) — 1 in place of X, using the argument of
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Max skew Cauchy distribution
with log characteristic function 7
-|t] - 2i t log|t|/rT 1

Density

F1GURE 1. Density function of the maximally-skew Cauchy distribution

3.2. Stable limits. The theory of limit distributions for the sum of independent and
identically distributed random variables is tied up with stability of convolutions. Modulo
affine transformation, every distribution that has a convolution limit is associated with a
pair («, 3), and is said to be in the domain of attraction of the («, 3) stable law; in essence,
the set of Borel distributions on the real line is partitioned into equivalence classes. There
are also non-degenerate distributions that do not belong to the domain of attraction of
any stable class, for example, F'(z) ~ 1/log z.

Every stable distribution with o > 1 has a density that is strictly positive on the real
line; only in a few cases is it possible to express the density in terms of standard functions.
However, the characteristic function of every limit distribution is necessarily of the form
¥(a + bt) where

—t? (a = 2)7

logp(t) = { —Jt](1 + B sign(t) 2 log ¢ (a=1),
—|t|*(1 — iBsign(t) tan(wa/2)) (a#1).

See Bingham, Goldie and Teugels (1987, Theorem 8.3.2) for a statement of this result, or
Gnedenko and Kolmogorov (1954, chapter 34) where the sign of § is mistakenly reversed
for « # 1 (see comment 1.7 on page 253 of Zolotarev, 1986).

Note that not all («, 8)-combinations give rise to distinct distributions. In the Gaussian
case (o = 2) the last version of the log characteristic function reduces to —t2, so f3 is
immaterial and all limits are symmetric. However, limits in every other class are symmetric
only if 8 = 0.

Zolotarev (1986, section 2.5) gives the tail behaviour of the (a, 8)-limit distribution
parameterized according to the characteristic function shown above:

Pop(X >z) ~ (14 6)Car™  Pop(X <—x)~ (1= F)Coz™?,

where C, = 7 1T'(a) sin(ra/2) and C; = 7~ 1. See also Feller (1966, section XVIL6). For
B = —1, the first limit is interpreted as *P, g(X > ) — 0 as & — oo; likewise for § =1
in the second limit. Note that Cy = 0, so this characterization P 3(X > z) = o(z72) is
correct but not tight for Gaussian limits. We include a derivation of the above expression
for the tail probability when o = 1 in Appendix III.

For the two-component mixture problems considered in this paper, the class of limit
distributions that can arise is a proper subset of those listed above. First, the fact that
each summand h(X;) has finite mean implies @ > 1. Second, the fact that the random
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variables are positive implies maximal skewness with g = 1.

Pap(X <0) = %(1 - w) (3.1)

where b relates to 8 as (Zolotarev, 1986, equation 1.19)

b(a — 2
8= cot(ﬁ) tan(M)
2 o
with 8 = b =1 at the boundary of the parameter space for 8 € [—1,1]. It follows that
(3.1) reduces to 1/« for g = 1.

In the asymmetric Cauchy class, the distribution with log characteristic function
log(t) = —|t| — 2itlog |t| /7
has the maximally skew density,

1 o0
flx) == / e " cos(tz + 2tlogt/m) dt, (3.2)
T Jo
which is shown in Fig. 1. Although the summands in I’(0) have finite mean, the characteris-
tic function for a = 1 does not have a first-order Taylor expansion so the limit distribution
does not have a first moment. The left tail is sub-Cauchy and Py 1(X < 0) >~ 0.3652; the
right tail behaviour is f(z) ~ 2/(rz?) or F(z) ~ 2/(rx), where F(z) = P, 1(X > z).

3.3. Stabilizing sequences. A primary difficulty in understanding the boundary be-
havior of the MLE is finding an appropriate normalization of the sum Y ., h(X;) that
converges in distribution to a stable law. Since guidance on the construction of the stabi-
lizing sequence is opaque in the literature on stable limits, we provide some background
in this section.

Let F' be the cumulative function of a distribution on the positive real line, and let
F(x) = 1 — F(x) be the right-tail probability. In order that F belong to the domain of
attraction of a stable law with index 0 < « < 2, it is necessary and sufficient that the tail
be regularly varying, i.e.,

2C,

x L(x®)
for large x and some slowly-varying function L. This is a re-statement of a special case
of Theorem 2 from section 35 of Gnedenko and Kolmogorov (1954). The slow-variation
factor in is expressed in the form L(z®) rather than L(z) or 1/L(x) as this simplifies
the scaling sequence (|3.7). For the moment, the choice of constant is immaterial, but the
particular choice

F(z) ~ (3.3)

C, = 7 'T(a) sin(ra/2), (3.4)
matching the right tail of the limit distribution, will subsequently be convenient.
Let X1,...,X, be independent and identically distributed with distribution F' in the
domain of attraction of some stable law with index 0 < o < 2. Then there exist deter-
ministic stabilizing sequences A,,, B, such that

1 n
—Yx,- 4
Bn; K3 n

has the stable limit distribution P, s with index a. The skewness coefficient || < 1
is a balance between the two tails: if the support of F' is bounded below, then 8 = 1.
For o = 2, the scaling coefficients are B,, o n'/2. Otherwise, for 0 < o < 2, they are
determined by the condition

lim nF(B,z) =2C,z~ %, (3.5)

n—oo



8 HEATHER BATTEY, PETER MCCULLAGH, AND DANIEL XIANG

for each z > 0 (Gnedenko and Kolmogorov, 1954, section 35). Some partial intuition
for why equation determines the scaling sequence {B,} is that convergence to the
stable limit, in terms of the characteristic function g of the original random variables, is
equivalent to

e~ Mntg(t/B,)" — ah(t), n — oo.

Since t/B,, — 0 for fixed t, it follows that the behaviour of g near zero is key to solving
for B,. By the inversion formula for characteristic functions, the behavior of g near the
origin manifests in the tail behaviour of F. Conditions (3.3]) and (3.5]) imply

B B
lim —2n = iy 22n

n— o0 L(B%:L‘O‘) n—oo L(BO‘)

To calculate B, it suffices to invert the asymptotic relation BnL(an) ~ 1, where Bn =
B2 /n. This is achieved through the de Bruijn conjugate L' (de Bruijn, 1959), which is a
slowly varying function defined (up to an asymptotic equivalence) by the condition,

L(zL'(z))LY(z) ~ LT (zL(z))L(z) ~ 1, (3.6)

as  — oo. The condition B,L(nB,) ~ 1 implies that B, ~ L'(n), which defines the
scaling sequence up to asymptotic equivalence as

B, ~ (nL(n))'/°. (3.7)

For a proof of equation , see Theorem 1.5.13 of Bingham, Goldie and Teugels
(1987). Conjugation is an involution LT ~ L, which is also a group inverse under the
compositional operation discussed in Appendix I. For the moment, it suffices to remark
that if L(n) ~ K(logn)” for any real v and K > 0, then LT(n) ~ 1/L(n). In general,
however, the conjugate is not equivalent to the reciprocal, and the conjugate of a functional
product is not the product of the conjugates.

For 1 < a < 2, the distribution F in has a finite mean u, and the footnote to
Theorem 2 in section 35 of Gnedenko and Kolmogorov (1954) gives the centering sequence
A,, = nu/B,, which implies that

(X w)
" i=1

has the stable limit distribution f%l discussed in the preceding section. It follows from
(3.1) that the exceedance event X, > u has a large-sample limit probability
lim P(X, > p) =P,1(e >0)=1-1/q, (3.8)
n—oo
where ¢ is a random variable with distribution P, ;. This limit is strictly positive, but
not more than one half. The case 0 < o < 1 does not arise in mixture models and is
not discussed here. The single remaining case o = 1 is a little more complicated because
A, # nu/B, even if the mean is finite. The development in shows that it is also the
most important case for Gaussian mixture models.

3.4. Stabilizing sequences for Cauchy limits. The main limit theorems for the boundary-
parameter problem considered in this paper are developed here and in They may be
of standalone interest, and may have other applications.

In order for a distribution F with tail probability F(x) = 2C;/(zL(z)) to have a finite
mean, it is necessary and sufficient that the tail contribution be finite. Integration by
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parts gives

/ T pdF(x) = TR(T)+ / " Pa) da,

T T

201 & dx
= L 0 | i o

For example, L(z) = (logz)'*9 suffices for finiteness only if § > 0. While both terms tend
to zero for large T, the second term is dominant.

For a = 1, the scaling sequence is B, ~ nL'(n). Finiteness of the mean implies
L(n) — oo, and hence B,/n ~ LT(n) — 0 as n — oo. The centering sequence given
explicitly in the footnote to Theorem 2 of Gnedenko and Kolmogorov (1954) is

Ay ~nSlogy(1/B,,) ~ n/sin(x/Bn) dF (z). (3.9)

where Sc¢ denotes the imaginary part of ¢. See also equation (6) in Chow and Teugels
(1979). We now find an approximation for this sine-integral for a broad class of functions
L(x), conveniently parametrized in order to recover several important cases arising in
Gaussian mixture models.

Theorem 3.1. Let F be a finite-mean distribution on the positive real line whose tail is
F(z) ~ 2C1/(zL(x)), where C; = 1/7 and the slowly varying function L(z) admits the
parametrization

L(x) = (Bologz)*FlelPrlog ) (3.10)
for By > 0. Finiteness of the mean implies either 7 > 0 and 0 < v < 1, or 8; = 0 and
d > 0. With the convention that v = 0 when 3; = 0 and 0° = 0, the sine-integral for large

T =1/t is,
R t (logT)t=7 t(logT)=

tx)dF = ut—K, t 0

/0 Sln( LL') (LL') K 8,7,8 L(T) +o L(T) ’ ‘ | — U,

where 1 is the mean, Ks ., 5, = 2C1/(8]7) for 7,81 > 0, and K5, = 2C1 /6.

Remark 3.1. The form F(z) = 2C;/(xL(z)) implies by that F' belongs to the
domain of attraction of the (maximally skew) Cauchy distribution. The parametriza-
tion of the slowly varying function L(z) is an encompassing form recovering many
important examples as special cases; see

Proof. The argument detailed in Appendix II shows that the dominant component of the
sine-integral for small ¢ is

/Ooosin(tx)dF(@ = tu—t/%ooxdF(xHO(L(tT))’
= tN*ZOlt/T ngx)+O(L(tT)>7

where the remainder is of smaller order than the second term.
For 81 = 0, the second part is a straightforward integral

/°° dr /OO dx B 1 _logT
v L) Jp x(Bologz)+t — Bod (BologT)? — SL(T)
For 1,v > 0, the transformation v = (8 logx)” gives rise to a gamma-tail integral

[T L LA e BTN
(

v @(Bologz) 1 By BT Jis 10a 1) By L(T)
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Corollary 3.1. For a distribution satisfying the conditions of Theorem [3.1] the centering

sequence (3.9) is

nu n(log B, )~
A, = g 5 MO8 T 460
n = B, Kem T I,y o)
p (log B,)'

GO M,ﬁlm(l +o(1)),

1 _
= Ty K56, (logn)' 77 (1 +0(1)).
The third line follows from the definition of the de Bruijn conjugate in (3.6)).

Corollary 3.2. For a distribution satisfying the conditions of Theorem the distribu-
tion of the sample average for large n is

X, — H 1—

Ty —Ks5.8,(logn) "7 + e+ 0y(1),
where ¢ has the Cauchy limit with skewness = 1. Given the right-tail behaviour of the
limit distribution,

P(X,, > i) ~ Zngl,Bl (logn)* !/,

which tends to zero at rate 8] y(logn)7~1 if 81,7 > 0, or §/logn if 31 = 0.

3.5. Joint distribution of (X,,, Xmy)- In we consider the conditional distribution of
the likelihood ratio statistic, conditional on positivity of 0,,, for which we need the following
theorem concerning the joint distribution of the sample average and the maximum order
statistic X ().

Theorem 3.2. Let F be a zero-mean distribution with support (—1, 00) and tail satisfying
the conditions of Theorem 3.1, and let X;,..., X, be an iid sample from F. Let T, =
B,|A,| = Ks 5, Bn(logn)!=7, where B, = n/L(n) and A, is given in Corollary
Given X,, > 0, the conditional limit distribution of (X, X(;)) is such that

nXy X U 1
T, ' T, 1-U'1-U)’
where U is uniform on (0,1). It follows that nX, /T, ~ T}, /(nX,) is conditionally self-

reciprocal, the ratio nX, /X (n) ~ U is conditionally uniform, and the support of the joint
distribution degenerates to the line X(,)/T;, — nX,/T, —1— 0.

Remark 3.2. The unconditional scaling factor for both n.X,, and X(n) is By, so (nX,/B,—
Ay, X(ny/By) has a joint limit distribution, which has been studied by Chow and Teugels
(1979) in this setting. However, the conditioning event X,, > 0 has probability O(B,,/T},)
tending to zero, so the joint limit distribution does not determine the limit of conditional
distributions. Theorem implies that n.X,, > T}, and X (n) > (1 + €)T,, are asymptoti-
cally equivalent events for each € > 0.

To prove the theorem, we first state a technical lemma that relates the sample mean
to the sample maximum in the event where the latter is unusually large.
Lemma 3.1. Let Xq,..., X, ig F, where F(z) ~ 201 /(zL(z)) satisfies the conditions of
Theorem[3.1] and let By, T}, be defined as in Theorem[3.2] For any fixed y > 0, conditional
on X,y > yTy,, we have
nXo X+ 21 X)X

= - ~ = oy (1). (3.11)
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Consequently, for any fixed y > 1
lim P (X, >0 X4, >yTs) =1,

n—o0

so that P(X,, > 0, X(,) > yT;,) ~ P(X(,y) > yT,,) as n — oc.

Proof. Let X(,_y) be the kth order statistic with X(,;1) = oo. Since the transformed
variables F'(X1),...,F(X,) are independent uniform, the joint distribution of the top
order statistics is such that successive differences of the probability-integral transformed
values have exactly the same distribution as successive spacings of the top k 4+ 1 of n
independent uniform order statistics, i.e.

- = d
n{F(X () = F(X(norsn))bosrsh 3 (€0r-- - en),

where e, ..., e; are independent unit exponential variables, whose distribution approxi-
mates that of the spacings among the top k + 1 uniform order statistics, for large n and

k < n. Since u := F(x) ~ 2C1/(xL(x)) for large x implies xL(x) ~ 2C /u, and since the
property LT(xL(x))L(z) ~ 1 implies L(z) ~ 1/LT(2C;/u), the inverse function inherits
the asymptotic behaviour

F~Y(u) ~ (2Cy Ju) LT(2C) /u), (u — 0).
Now since nF(X(,)) @ eo and

_ 2
F_l(eo/n) ~ (2C1n/eg) LT(2Cln/eo) ~ Q nLT(n) ~ 2C1 By, /eo,
€

it follows that X ,)/B, @ 2C1 /eg. Similarly, since nF(X(n_k)) (EQ eg+- -+ ek, we obtain

= 2C(l Bn

F~(eg+---4ex)/n) ~ EE—— (3.12)

which implies X(,,_x)/Bn (EQ 2C1/(eg + -+ + ep).

If X,y > yT, for some y > 0, then ey is unusually small compared with ej,ea, ...,
so that eg + -+ e, ~ e1 + --- + e,. It follows that the conditional distribution of
Xn-1), X(n-2),--- given X,y > yT,, is approximately the same as the unconditional
distribution of X (), X(,—1),.... In that event, Corollary implies

nX, =X + Z Xin—k)y ~ Xn) = T + Op(Bn), (3.13)
E>1
which implies (3.11). For y > 1, B, = o(T},) implies
]P’(an >0 | X(n) > yTn) — 1.

Proof of Theorem[3.3. For U ~ Uniform(0, 1),

P v >z 1 > = min 1 l >1,x2>0
1-v-"1-v"Y) " 1+z’y)’ vy=5 ’

By the last line of Lemma [3.1] we have

P ) 'Xn ~P ‘ ,Xn —_— -
(Tn > T >y >O> <Tn > T >y >0 P(X, > 0)

For any fixed v, the tail property of ' implies
2C1 B,
yT,

]P(X(n) > yTn) ~ nF(yTn) ~
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and Corollary [3.2] implies P(X,, > 0) ~ 2C1B,,/T},. It follows that for any fixed y,
P(X () /Th > 1
fm T/ T >y) 1 (3.14)
n—oo  P(X, >0) Y
Since X(,,)/T,, >y for y > 1 implies X,, > 0 with probability 1 in the limit, we have
nX, Xn) - nX, Xn)
iy ‘ S ~P ) Zm .
(Tn >z T >y >0> (Tn >z T, >y

Lemma implies that, conditional on X,y > yT},,

nXy _ X+ 2z Xkt X

T, T, T,
so the previous expression is, by the argument leading to (3.14)),

nX, X(n) X(n) X(n) 4 ifl+x>y
P > ‘ >y | ~P|l—=>1+ ’ >y | — e
( T, v T, y) ( T, * T, 4 1 otherwise.

-1 + Op(l)v

Together with (3.14)), this proves the claim. O

4. IMPLICATIONS FOR INFERENCE IN THE TWO-COMPONENT (GAUSSIAN MIXTURE
MODEL

4.1. Left-boundary behaviour induced by the tail of f;. We start by considering in
Example [f:I]non-null generators that depart only slightly from Gaussianity in the relevant
sense. Typical choices in practice are closer to Examples[4.2)and [£:3] and result in density
ratios whose distributions belong to the domain of attraction of the Cauchy family. These
require the more elaborate theory of

Example 4.1. Let v > —1, and suppose that the non-null generator has density

fi(@) oc [a]”p(x),
so that h(z) o |x|” is even. For v # 0, both boundary points are extreme.
Ultimate monotonicity requires v > 0, in which case h(xz) > 7 is equivalent to |z| >
constn'/¥. In that case, the tail behaviour of the density ratio is

—log Po(h(X) > n) ~ const n*/¥ + L(n),

where L is slowly varying. It follows that all moments exist and h(X) belongs to the
domain of attraction of the normal distribution. Thus, limPy(6, > 0) = 1/2 by the

discussion of
For —1 < v < 0, the ratio h(x) o |z|” is monotone decreasing in |z|, so condition (2.2))
is not satisfied. However, the tail behaviour can be found by a simpler argument:

Po(h(X) > n) =Po(|X| < const 171/”) ~ const /.

In other words, the tail is regularly varying with index & = —1/v > 1. In this case, h(X)
belongs to the normal domain of attraction only if ¥ > —1/2, in which case lim Po(én >
0) = 1/2. Otherwise, if —1 < v < —1/2, the behaviour is nonstandard and the limit is
lmPy(f, >0)=1—-1/a=1+w.

Example 4.2. In a continuation of Example consider a Gaussian mixture with f;
the standard Cauchy density function. The density ratio h(z) ~ const 727" /2 is not
monotone in |z|, but it is monotone for |z| > 1, and thus ultimately monotone according
to . The equation h(£) = n has an asymptotic solution

$&% =logn + o(logn),
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FIGURE 2. Simulated probabilities P(én > 0) based on 2 x 10* replicates,
where 6,, estimates 6 in the model (1 — 8)N(0,1) + 0F;, where Fy is
standard Cauchy (left) and standard Laplace (right).

so that €1 f1(€) ~ (2logn)~3/2/m, and the tail approximation ([2.3) is
2
mn (2logn)3/2°

This is of the form in Theorem with (5o, 81,9,7) = (2,0,1/2,0), leading by Corollary
B2l to the conclusion that

Po(h(X) >n) ~

A 1
Py(6,, > 0)

~ 2logn’

Example 4.3. Consider a Gaussian mixture in which the non-null generator has regularly
varying tails according to (2.5)) with tail index 0 < k < 1. Then h(:) is ultimately
monotone, and the equation h(§) = n has asymptotic solution

& = 2logn + (logn)"L((2logn)"/?) + o((log n)").
For k < 1, the composition fi(£(n)) is slowly-varying as a function of 1, and the tail
approximation (2.3)) is
2f1(E(n) _ 2ce” Blogn)”

ném) ~ ny/Zlogn

where ¢, is a normalizing constant. This is of the form in Theoremwith (Bo, B1,0,7) =
(2/(cxm)?,2,—1/2, k), leading by Corollary to the conclusion that

25K

(logn)'=+"

Po(h(X) >n) ~

Po(én > 0) ~

In particular, for the Laplace distribution fi(z) = 2e~1*l, k = 1/2 and the convergence
rate is (v/2logn)~!.

The conclusions of Examples [£.2] and [£.3] are compared with simulated probabilities in
Figure

4.2. Parametrization for two-component mixtures. When the data are generated
by Py for the right boundary point § = 1, the standard asymptotics apply. The purpose
of this section is to provide intuition for why the left boundary behavior is different from
the right, and why the latter follows from existing results.
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There may exist alternative values of the mixture parameter < 0 or § > 1 in (1.1
such that fy remains a valid probability density. Consider the set of all such 6, for which
the extreme points are

/- min{@:ngOand/fg(x)dle}
Omax = max{@:fgannd/fg(x)daczl}.

When f; has heavier tails than fj, the extreme points typically satisfy 6, = 0 and
Omax > 1, and the original model {fy : 0 < 6 < 1} is a strict subset of the extended model

{(L=p)fo+ pfonm :0<p <1} (4.1)
The extended model was considered by various authors (see, e.g. Genovese and Wasserman
(2004) and Patra and Sen (2016)) in a multiple testing context. Patra and Sen (2016)
noted that when f; > cfy for some constant ¢ > 0, some of the probability mass in f; can
be re-assigned to the null component without changing the density of the overall mixture.
To address this non-identifiability issue, they define
ap :=inf{y € (0,1] : (Fp — (1 — ) Fp)/~ is a cdf},

which is the smallest mixture weight for the non-null component that is consistent with
the marginal cdf Fy. In the current setting, o corresponds to p in model .

The extension of the parameter space for @ is illustrated for two Gaussian mixture
problems in Examples [4.4] and below.

Example 4.4. Let fo(z) = ¢(x) be the standard Gaussian distribution, and let fi(x) be
the standard Cauchy distribution. Then fy has a density

(1= 0)p(x) + 0f1(z) = ¢(x)(1 - 0 + Oh(x)),
where h(z) = f1(z)/¢(x) is the density ratio. The positivity condition fp > 0 implies
O(h(z) —1) > -1
for all ,0. On the subset for which h(x) > 1, this implies the lower bound
-1
Omin = sup ——— =
z:h(z)>1 h(m) -1

which is zero since h is unbounded as @ — co. On the subset for which h(x) < 1, positivity
implies the upper bound

0, (4.2)

0 inf L L
max — m =

x:h(z)<1 1 — h(l’) 1-— h(l)
is illustrated in Figure

~ 2.9218. (4.3)

The density fy

max

As depicted in Figure [3] the level set {z: h(z) < 1} is a symmetric interval, approxi-
mately |z| < 1.85, while the minimum in occurs at * = £1, and a local maximum
h(0) ~ 0.7979 at = 0. This is only partly typical for applied work in certain domains.
The following example illustrates a broad family of symmetric distributions for which h is
convex and the minimum occurs at the origin, implying 0y,.x = 1/(1 — h(0)).

Example 4.5. Signal-plus-noise model: Let Fy = N(0,1), let G be a symmetric distri-
bution on R, and let F; = G x Fy be the convolution with density

L) = o) /R =2 G (d);

hy) = f1(9)/6(y) /}R e=*/? cosh(yz) G(dx).
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FIGURE 3. The density function fy is symmetric and trimodal with
zero density at 1 when f; is standard Cauchy and fj is standard normal.
It is an extreme point relative to N(0,1) in the sense of (4.1).

Symmetry of G implies that h(-) is a positive combination of cosh-functions, and hence
that h(:) is symmetric and convex with a minimum at the origin. Provided that G # dy,
the minimum is unique, and the value h(0) = [ e=*"/2 G(dx) is strictly less than one. The
argument used in Example implies Opmin = 0 and Opax = 1/(1 — h(0)) > 1 for every
symmetric convolution F; = G x N(0,1). The upper extremity Fy_._ has zero density at
the origin.

max

That fy and f; are respectively extreme and non-extreme boundary points of the ex-
tended model leads to the notably asymmetric boundary behaviour of the maximum
likelihood estimator 6,, when the data are independent draws from Fy and F} respectively.
Since the density ratio h(X) = fo(X)/f1(X) has finite variance, it follows from classical
results in the literature on boundary inference problems (see for an overview) that
the error probability Py(6, < 1) tends to 1/2 as n — oo. The behaviour under Fy is
non-standard because § = 0 is an extreme boundary point. As a result, the boundary
behaviour ]P’O(én > 0) is characterized by the tail probability of h(X) induced by the upper
tail of fi (see and §2.5).

If the non-null component F; = N(0,1) x G is a convolution with a symmetric signal
distribution G, then F} has tails at least as heavy as those of G. We formalize this claim
below.

Proposition 4.1. Suppose G is a symmetric distribution about zero with density g(z).
If g(z) is regularly varying, then the standard normal convolution with density

miy) = [ 6l ~ 2)g(a)da
is regularly varying with the same index. If —log g(x) is regularly varying with index 2k,

then
logm(y) > —|y[**L(y)

for some slowly varying L. Furthermore, if x < 1, then —logm(y) is regularly varying
with index 2k.

Proof. First suppose g(z) is regularly varying with index v > 0, i.e.
g(x) ~ 2" L(z)
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for some slowly varying L(z) as © — co. Then for large y > 0 the convolution satisfies
miy) = [ gty - yole)dc

= / g(y — e)g(e)de + O(e™¥/?) ~ g(y)
lel<vE

since y—e = y(14+0(1)) over the range of the integral. Now suppose — log g(x) is regularly
varying with index 2x. By Jensen’s inequality,

logm(y) > / o(c) log gy — e)de = — / ly — eP*L{y — )6 (e)de.

Making the same restriction to |¢| < ,/y as in the previous case and letting y — oo,
we obtain the result. The proof that the inequality is tight when x < 1 is recorded in
Appendix IV. (]

It follows from the above result that if G has tails satisfying , then so does the
convolution G x N(0,1). Therefore, the distribution of the density ratio under the null
remains in the Cauchy domain of attraction, implying that the type 1 error rates derived
in Corollary apply to the case where the non-null generator is a signal-plus-Gaussian
noise convolution.

4.3. Likelihood-ratio statistic. The likelihood-ratio statistic for testing 8 = 0 is

n
Ap =2 log(1+ 0, (h(X;) - 1)).
i=1
Our goal here is to establish the asymptotic null distribution, particularly the conditional
distribution given 6,, > 0.

The conventional arguments based on Taylor expansion (see Appendices A.1 and A.3 of
Brazzale and Mameli, 2024) do not apply because the rth log-likelihood derivative at zero
is equal to (=1)" "1 (r — !> (h(X;) — 1)", where (h(X;) — 1)" belongs to the domain
of attraction of the stable law with index 1/r. The first derivative does not have a finite
variance, so there is no concept of Fisher information. Higher-order derivatives do not
have an expectation, and are strongly dependent. Nevertheless, one series of simulations
shown in the right panel of Figure 4 suggests that the asymptotic null distribution given
én > 0 is close to nnxi where the Bartlett factor x,, — 1 tends to one. This section offers
an explanation and a derivation of the correct limit distribution, which is not x7 in the
setting of Theorem [3.1

Theorem 4.1. Let Xy, ..., X, be independent standard Gaussian, let h(X;) > 0 be in the
domain of attraction of the maximally skew Cauchy law, and let G(-) be the cumulative
distribution function whose uth quantile is
G (u) = —2u—2log(l —u) =2) u'/r. (4.4)
r>2

Then, the conditional limit distribution of the likelihood-ratio statistic is

li_>m Po(An <z | Ap > 0) = G(z).

Remark 4.1. The limit distribution is not dissimilar to x?. Both densities behave like
2~ 1/2 near the origin. The first four cumulants of x? are 1, 2, 8, and 96, while those of G
are 1, 7/3, 32/3, and 3194/45. However, for X ~ G, the log density of X'/2 has a Taylor

expansion
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which is essentially linear for x < 1, while the corresponding half-normal log density
log(2/m)/2 — 2%/2 is exactly quadratic and negative at zero. The difference between
22g(2?) and the degree-4 Taylor approximation is less than 1% for z < 3.

Proof. For notational simplicity we set Z = h(X) — 1 ~ F'| so that F' is in the Cauchy
domain of attraction with zero mean, and Theorem applies. Given Z,, > 0, we
construct an approximation for [(-) and its derivatives 1) (0) = (=1)"~!(r — 1)!S,., where

n
Sr:Z;ZT > Lty = Ziy T 2 Zin-r-

k>0 k>1

Both nZ,, and Z(n) are conditionally O,(T},), while the conditional distribution of Zn-1), L(n-2); - -

is asymptotically the same as the unconditional distribution of Z(,, Z(,_1),. ... Since Z]
is in the domain of attraction of the stable law with index 1/r, the scaling constant is B,

and we have
TLX Z(n) r= 1,
~ ) = ];Z(" k)~ { O,(B?) r>1
It follows that S, = Z7,) (1 + 0p(1)) for r > 2.
Consider the log-likelihood function

0) = _Zlog{(l —0) fo(Xs) + 0£1(X:)},

whose first two derivatives are given in (2.1]). A first-order Taylor expansion around zero
gives the local approximation

1(0) =log(1+ 0Z(n)) + 6(S1 — Z(n)), (4.5)

where, in the Taylor expansion, we have substituted Z(, for S; in the expression for I'(0),
and added and subtracted log(1 + 0Z,)) = 0Z(,) + O(6?). The approximation satisfies
1(0) — 1(6) = 0,(1) for § = O(T; ') owing to the form of the higher derivatives at zero.

Theorem (3.2} - shows that R = .51 /Z(n is less than one with high probability for large n,
in which case [ has a maximum at 6 nZny = R/(1—R). In that case R = HZ(n)/(lJrHZ(n))
and the approximate likelihood-ratio statistic

20(0) = —2R —2log(1 — R) =2Y R*/k = A, +0,(1) (4.6)

k>2
is a monotone function of R. Theorem [3.2] also shows that the limit distribution of R
given Z,, > 0 is uniform on (0, 1), implying that A,, ~ G in the limit. d

Figure 4 shows a histogram of R and the Bartlett-adjusted likelihood ratio statis-
tic (A, /kn)'/? using the exact likelihood and the exact maximum in the Gauss-Cauchy
mixture model restricted to 2000 out of 74058 samples for which Z, > 0. For this
model, L(z) = (2logz)?/? is the slow-variation function, B,, ~ n/(2logn)3/? and T), ~
47~ B,, logn. For the simulation, n = 107, &,, = 1.0170 is the sample average, and R > 1
in 31 cases. The sample cumulant ratios ko/2 and k3/8 for A, /i, compared with x?
are 1.160 and 1.346, which are surprisingly close to the theoretical limit values 7/6 and
4/3 respectively. The new limit density is shown on the same square-root scale, together
with the half-normal density for comparison. While the difference between the two dis-
tributions is not large, the histogram clearly favours G. A standard 20-bin y2-test gives
X? = 40.02 for the x? distribution, and X? = 15.22 for G.

Analogous simulations for the Gauss-Laplace mixture give virtually identical results for
the likelihood-ratio statistic, though with &, = 0.9566. However, the fraction of R-values
greater than one was 249/2000, or 12%, consistent with a (logn)~/? convergence rate.
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FIGURE 4. Histogram of R =nZ,/Z) (left) and (21(0,,)/fen)"/? (right)
for two thousand simulations of the Gauss-Cauchy mixture model with
n = 107 observations restricted to samples for which Z, > 0.

The argument used in the proof of Theorem suggests that the rate of convergence of
A, to G might be (logn)~/2 or perhaps (logn)~!, but the simulations suggest a faster
rate, particularly after Bartlett correction.

The local approximation and ensuing argument is valid for any iid problem with
a boundary at zero provided that the log likelihood derivative is a sum of zero mean
random variables in the Cauchy domain of attraction. There may therefore be other
statistical problems besides the two-component mixture problem in which the conditional
limit distribution arises; the only difficulty in establishing that 1() —1(0) = 0,(1), as
the adequacy of the approximation depends on the behaviour of higher derivatives,
which is context specific.

4.4. Predictive activity rate. Suppose we reject the global null X; ~ Py in favor of a
two-component mixture with extreme component fi, as if we knew the data were drawn
from a latent variable model:
A; ~ Bernoulli(f)

Xz‘Alwf.A1 i=1,...,n
independently, concluding that 8 > 0. Then it becomes natural to ask which observa-
tions arose from the f; component. To answer this question, we may compute for each
observation X; the local activity rate, defined

Po(A; = 1] X;) :=0f1(Xy)/ f(Xy),

which measures for each observation how likely it is to be a draw from f; in the hierarchical
model . In this section, we derive the asymptotic null distribution of the local activity
rate for the observation with largest absolute value.

Given an estimate of 6, the fitted or predictive activity rate for unit 7 is

0 f1(Xi) 0.0
(1= 0n) fo(Xi) + 0nfr(Xs) 10, +0,h(X;)
If 6,, = 0, the fitted local activity rate is zero for every unit: every unit is deemed to have
a null or negligible signal. Given 6,, > 0, the maximum predicted activity rate is
b1 (X ima)
1— 0, + 0,7 (Xnax)

(4.7)

Py (Ai=1]X,):= (4.8)

=R+ o0,(1)
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where X« is the maximum absolute sample value, and R := nZ, /Z(n), where Z; :=
h(X;). According to Theorem R is uniformly distributed on (0,1) in the large-sample
limit when 6 = 0. In this case, we also have 6,, = 0 with probability tending to 1. That
is, the type 1 error of the MLE for testing the global null Hy : 8 = 0 tends to zero, and
conditionally on the type 1 error event {, > 0}, the smallest fitted activity rate is an
asymptotically valid p-value for testing Hy. We record this implication as a corollary of
Theorem [3.2] and Theorem E.1] below.

Corollary 4.1. Consider the decision rule that rejects Hy : 8 = 0 if the largest local
activity rate exceeds 1 — a. Then the conditional probability that some unit is declared
active or non-null at level « is equal to « in the large-sample limit. In other words,

lim Py (_min P, (Ai:O|Xi)<a‘én>0> = q,
n—00 1=1,...,n "

for any « € [0, 1] where

1—40,
1— 0, 4 0,h(X;)

Py (A= 0] X;) =

Proof. Following the proof of Theorem u, we have R = énh(XmaX)/(l + énh(XmaX)).
Together with Theorem which implies that h(Xax) — 00 and 6,, — 0 in probability
conditionally on 6,, > 0, we have
0 h( X max 1+ 0, h(Xinax 0 h( X max
Kma) o 1 Ouh(Knas) (Xinas)

1- én + énh(Xmax) énh(Xmax) 1- én + énh(Xmax)

b, o
=R x (1_1—1—9Anh(Xmax)> =R (14 0p(1)).

It follows that the complement is also Uniform(0, 1) distributed asymptotically, conditional
on én > 0. O

4.5. Wald and Rao statistics. The conventional Wald and Rao statistics for testing
0 =0 are

I'(0)
i(O)l /27
where [(0) is the log likelihood function and () is the Fisher information. Technically
speaking, the Rao statistic does not exist in the mixture setting because ¢(0) is not finite.
For present purposes, however, we substitute —I"(6) for i(6) in both.

Given 6 > 0, the approximate likelihood in section 4.3 implies

0(i(0))/2, and

I'(0) Hzgg(n) +1Zn — Zin),
Zwf = R/(1-R),
_z//(o) = Z(Qny
~1"(0) = Z{y(1 - R)® = (Zn) —nZa)?,
where R = nZ,/Z ). It follows that the modified Wald and Rao statistics are
AT = gz A - B)= R
7(0) nZy,

. = =R.
(=1"(0)1/2 Zn)
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In other words, the two statistics are conditionally equivalent given 6 > 0, both uni-
formly distributed on (0,1). The squared statistics are not approximately the same as
the likelihood-ratio statistic, although all three are asymptotically equivalent in the sense
that each is a monotone function of R. Conventional standard normal approximations are
incorrect.

5. COMPOSITE MIXTURES
5.1. Definition. A composite Gaussian mixture is a family of distributions
{F9:(179)F0+0F1 :0<0<1, Iy Ef}

in which Fy = N(0,1). The non-null distributions belong to some specified non-empty
family F, which need not be convex. Models of this type have been considered by Efron et
al. (2001), Patra and Sen (2016). In the modern style, these are invariably nonparametric
in the counter-semantic sense that F is not a finite-dimensional manifold.

The emphasis in this section is on composite mixtures arising in the signal-detection
setting where each distribution is necessarily a Gaussian convolution Fp = N(0,1)xP with
some symmetric signal distribution P. This condition is sufficient to ensure that each Fy
has a bounded continuous density fy(z) < ¢(0), and hence that each distribution in F
also has a bounded continuous density. Also, under suitable conditions (Proposition ,
the tails of Fy are similar to those of P.

5.2. Equivalence classes. Let F}, F; be two symmetric distributions having bounded
continuous densities such that the ratio has a finite non-zero limit:

lim L)
z—o0 fo(x)
Then hy(z) ~ Kho(x), where h.(x) = f.(x)/¢(x) is the density ratio arising in the

elementary mixture model (1 — §)¢(x) + 0f-(z). On the assumption that hy(X) (and
hence also hq(X)), belongs to the Cauchy domain of attraction, it follows that

- K. (5.1)

1

5o (XD = 1) = Auuter o))
1

32 Z(hQ(XZ) - ].) = AQ,n + 135} + Op(].)7

where the stabilizing sequences satisfy
Bl,n ~ KBZ,n7 A2,n ~ Al,nv Tl,n ~ KTQ,Wu

If HALn > 0, with high Po-probability hi (X)) > T1,, implying ho(X(,)) > 15, and hence
9/\27” > (0 with high probability. Moreover, given él,n > 0, the ratios satisfy

hl()l((n)) > (X)) —1) = W 37 (ha(X3) = 1) + 0,(1).

It follows that the likelihood-ratio statistics Ay, As , are asymptotically equal:

lim P0<|A1’n — A27n| > €
n—00

én>0):o

for every € > 0. For example, if f1, fo are Student ¢ distributions on v degrees of freedom
with scale parameters o1, 09, then (b.1)) is satisfied with K = (01/02)", implying that the
likelihood ratio statistics are asymptotically equal given 6,, > 0.
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5.3. Implications. The first implication is as follows. Let £(F}) be the set of distribu-
tions that are tail-equivalent to F; in the sense of , let A, (F7) be the likelihood-
ratio statistic in the elementary mixture conv(Fy, F1), and let A, (F) be the maximized
likelihood-ratio statistic over 6 and over the class £(F}). Given that 6,, > 0, the difference
An(F) = A, (Fy) is 0p(1) for an arbitrary F in £(Fy). This implies that A,,(F) — A, (Fy)
is 0p(1) so that the conditional distribution of the maximized likelihood-ratio statistic is

lim Po(An(F) < | 6, > 0) = G(x).

From the perspective of statistical modelling and testing, no advantage is gained by ex-
tending the single distribution F; to the nonparametric composite mixture with F =
E(FY).

The second implication is that the conditional limit distribution of the maximized
likelihood-ratio statistic An(ﬁ‘ ) given 6, > 0, may depend on the topology of the quo-
tient space F/E&, i.e., the space of equivalence classes. In particular, if F/€ is a finite-
dimensional manifold of dimension d, the limit distribution G4 may depend on d. Other-
wise, F plays no role in the limit distribution.

There are some parallels between tail-equivalence as defined by , and sparse-
equivalence as defined by McCullagh and Polson (2018). Signal distributions P and
P’ within the same sparse-equivalence class are statistically indistinguishable based on
observations from the convolutions P x N(0,1) and P’ x N(0,1), and have the same
sparsity implications in the relevant statistical sense. Formally, two signal distributions
P, P’ are termed sparse-equivalent if their normalized exceedance measures are equal:
H(dz) = H'(dz). Two sparse signals having exceedance measures H # H' give rise to
mixtures that are tail-equivalent in the sense of if the tail ratio has a finite non-zero
limit H(z")/H'(z") ~ K. Thus sparse equivalence is finer than tail equivalence. Sparse
equivalence is relevant for identifiability of mixtures generated by Gaussian convolution
with a sparse signal; tail equivalence is relevant in the present setting where the focus is
exclusively on the boundary behaviour of the likelihood-ratio and related statistics.

5.4. Example. For 0 < v < 2, let (,(x) be the inverse-power zeta-function defined in
McCullagh and Polson (2018) and expressed as a convergent power series

L v(2-v) =27 (r —v/2) 2
“@) = =09 2 (2r)! '

r=1
The product ¥, (x) = &(x)¢,(x) is the density of a symmetric bimodal distribution
W, whose tails are regularly-varying with index —v. For purposes of likelihood max-
imization, it is convenient to extend the model by continuity to the upper boundary:
Co(z) = lim, 5 ¢, (2) = 22 and ¥y (x) = 2%¢(x).

One crucial feature of this family is that 1, (X) belongs to the skew-Cauchy domain
of attraction in all cases except v = 2, which belongs to the Gaussian domain. In the
non-null sparse-signal-plus-noise setting, the maximum of the likelihood tends to occur
near the upper boundary v = 2 only if the signal has finite variance; otherwise, if the
variance is not finite, the maximum occurs at an interior point with high probability. To
understand this phenomenon, observe that if @), is symmetric with atoms at +o, the
convolution @, x N(0,1) has density

0@ —0)+id(x+o) = ¢z e /2 cosh(oz),
= ¢(x) (1 —0?/2+ %2 /2 + 0(02)).

Every symmetric distribution P is a @, scale mixture. If P has finite variance o2, then
P%N(0,1) has exactly the same first-order small-o expansion as Q.. In other words, every
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symmetric finite-variance convolutional perturbation PxN (0, 1) is first-order equivalent to
the top mixture (1 — 60+ 6022)¢(x) with § = 02/2. In that sense, the class of finite-variance
signals is reduced to a single mixture representative Ws.

The following theorem addresses the left-boundary behaviour of likelihood-based sta-
tistics for a composite mixture that includes a subset of the distributions ¥,,.

Theorem 5.1. Let 0 < 7 < 2 be given, and let én, U, be the maximum-likelihood estimate
in the composite mixture with F = {¥,: 0 < v < 7}. Then, the large-sample boundary
behaviour is as follows:

A 7/(2logn T <2,
Poln > 0) ~ {1;5 =) r=2;

lim Po(0n =7 |0, >0) = 1;

. { G(x2)7 T <2,
=\ 1-28() =2

Remark 5.1. At the critical boundary 8 = 0, the parameter v is indeterminate, which
is a type of singularity that occurs in many non-regular problems. For 6, > 0, the
mixture likelihood has its maximum at the upper extremity 7 = 7 with high Pyg-probability
because these are the distributions that are closest to Gaussian in the natural metric.
The limit behaviour for the composite mixture follows from the top elementary mixture

(1-0)+ 0.

Proof. Let 0, denote the maximum likelihood estimator of 6 at a particular value of
v. Thus, 0, = HA,;, where 7 = 1, is the maximum likelihood solution. The proof will
establish containment on both sides of & = {0; > 0} and &, = {#, > 0} modulo subsets
of asymptotic probability 0 under Py, i.e.

nh—>nolo Po(gl;\gT) = nh—>H;o PO ((‘:T\g[,) =0.
Since 9, (z) ~ K, 2"+ for large x and v < 2, we have
) Bela) VIR VE,
T () zvtt
and from the argument of the density ratio satisfies

2¢y (v/21og n) 2K,
PO(CV(X) >77)N n /;QIOgU ~ 17(210g77)”/2+1'

Although the constants do not matter in this argument, we write the above upper prob-
ability, for consistency with in the form F(n) ~ 2Cy/nL(n). Thus, from Corollary

B.1l

L(n) = (2logn)"/**/(xK,) ~1/L1(n)

N t nrkK,

Bn nlL (n) (2 log ’I’L)V/2+1 )
A, ~ —4dlogn/(mv),
T, = By|Ay| __2nK,
v(2logn)v/2
For sufficiently large n, Appendix V shows that 0, > 0 is equivalent to
. d . o =
lim —¢(6;7(6)) = lim ;(Ca(e) (X;) = 1) >0, (5.2)

where ¢(0;0(9)) is the profile log-likelihood function.
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In view of this expression, consider the event n=! > ¢, (X;) > 1, which corresponds to
6, > 0 for a given v. For large n, this is equivalent to (,(X(,)) > AT, for some A > 1, by
Theorem [3.2|and ultimate monotonicity of ¢,. The condition ¢, (X(,)) > AT}, is equivalent
to

X, > 2log(T, X 1" + const,
= 2logn — rvlog(2logn) — 2logv + 2(1 + v) log X,y + const.
= 2logn + v(2log X,y — log(2logn)) — 2log v + 2log X, + const. (5.3)
It follows from calculus that the right hand side above is non-increasing in v over the
interval

-1
0<v<|log Xy (5.4)
- v2logn

and is otherwise increasing. Since 7 < 2, it suffices to show that, conditionally on 6, >
0, X(n)/v/2logn is bounded above by a sequence tending to 1, implying that (5.3)) is
decreasing in v over (0, 7]. To this end, define

w:=min{z > 0: 2% > 2logn + v(2logz — log(2logn)) — 2logv + 2log x}.

First, we claim that for sufficiently large n, w < \/2 logn 4+ 1.01log(2logn). Indeed, plug-

ging x = y/2logn + 1.01log(2log n) into the condition defining w, we see it is satisfied:
2logn + v[log(2logn + 1.011log(2logn)) — log(2logn)] — 2logv + log(2log n) + o(1)
~2logn + (1 +o(1))log(2logn) < x? = 2logn + 1.01 log(2log n),

for n larger than a universal constant. Next, we will show that for some ¢ > 0,

Po(X ) > V/2logn + cloglogn | Xny >w) — 0.

Since w < \/2 logn + 1.011log(2logn), the left hand side above is bounded by

Po(X(n) > v2logn + cloglogn)
" Po(X() > v/2logn + 1.011og(2log n))

which follows from Mills’s ratio, for any ¢ > 1.01, since X,) is a maximum of n iid

?

standard normal random variables. This shows that conditional on én > 0, we have
Xmy < v2logn + cloglogn with probability tending to 1, so that the right hand side
of diverges to +o00. Since the threshold is decreasing as a function of v, the set of
v-values for which 6, is positive, i.e., the set of v-values for which ¢, (X(,)) > T, must
be an upper interval (vg, 7], which is empty if the threshold for A = 1 is not exceeded at
v = 7. Thus, for sufficiently large n, &, implies £,. Conversely, given that the threshold
is exceeded on the event &£;, the approximate likelihood-ratio statistic is a monotone
function of the ratio

1 h(X(ny) SmeXim /2 2logn v/2 o
~ ~ v.
1-R T, 2nX () X(Qn)

For large n and X (Qn) ~ 2logn, the ratio increases linearly as a function of v, which implies

» = 7 whenever 6, > 0. For sufficiently large n, & implies &;, and &, implies &;, thus
the events are asymptotically equal under Py. For 7 < 2, and by continuity for 7 < 2, the
boundary behaviour is governed by the top elementary mixture with v = 7. (I

Corollary 5.1. The same argument applies if we replace F with the set of Student ¢
distributions on v < 7 degrees of freedom with scale parameter ¢. In this one-dimensional
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composite mixture, ¢ is fixed, 7 < co is any positive real number, and the limit behav-
ior exhibits no discontinuity at 7 = 2 or elsewhere. Section [5.2] implies that the scale
parameter is nugatory for boundary behaviour. This argument fails for 7 = oc.

Reproducibility. Code to reproduce all figures in the paper can be found at:
https://www.ma.imperial.ac.uk/ hbattey /BMX.html.

APPENDICES

Appendix I: De Bruijn group. The de Bruijn group is the set (SV,o) of slowly-
varying functions together with the non-commutative binary operation (L; ¢ L9)(z) =
Lyi(x) Ly(zL1(z)). To see that this is an associative function SV? — SV, observe that

(Ll <& (L2 < L3))($(}) = Ll(m) X (LQ < L3)($L1($)),
= Ll(x) X LQ((ELl(iL')) X Lg({ELl(.’E)LQ(IELl(I'))),
((L1<>L2)<>L3)(I) = (L1<>L2)(l‘) X L3(Z‘(L1 OLQ)(I)),

= Ll(l‘) X LQ(J?Ll(l‘ ) X Lg(l‘Ll(Q?)LQ(.ﬁLl(.ﬁ))),
= (Ll <& (L2 <& L3))(£L’)

Associativity implies that the triple product is well-defined by the pairwise products. The
identity element: L o1 =1¢ L = L is the unit constant function. If it exists, the inverse
is a slowly-varying function L' such that (Lo LY)(z) = (LT o L)(z) = 1 for all = > 0.
Since slow variation is a characterization of the limiting behaviour for large x, it says little
about the behaviour for general = beyond continuity or measurability. Thus, the existence
of an inverse is not guaranteed. Nevertheless, the following theorem suffices for present
purposes.

~—

Theorem A.1 (de Bruijn, 1959). To each L € SV there corresponds a function LT € SV,
satisfying L(z) LT (vL(x)) = LT(z)L(zLt(x)) = 1 for all x sufficiently large.

Proof. Theorem 1.5.13 of Bingham, Goldie and Teugels (1987) proves existence in the
sense of equivalence. Theorem 1.8.9 proves existence as stated above, i.e., for all  suffi-
ciently large. (I

Although the product zL(x) is ultimately monotone, it is not necessarily monotone for
small . Thus, SV contains functions for which no group inverse exists (as a function
(0,00) = (0,00)). The theorem states that an asymptotic inverse exists, which implies
that the set of equivalence classes (SV,¢)/~ is a group. For the most part, it is the
group of equivalence classes that is of interest here. However, we always work with a
representative element.

Appendix II: Approximation of the sine-integral. Let F be the cumulative function
of a finite-mean distribution on the positive real line, and let F(z) = 1/(xL(x)) be the
right-tail probability. Since L(Ax)/L(z) — 1 uniformly in A as x — oo, the derivative
aL'(x)/L(z) (with respect to A at A = 1) tends to zero. Hence

J:L’(x)) de dr
L(z) )22L(z) 22L(x)’

dF(z) = —dF(z) = (1 +

We first split the integrand into two parts, sin(tz) = tz + (sintz — tz), and split the
range into disjoint intervals (0,7") and (T, 00), where T = 1/|t| is large. Then

/0 sin(tx) dF' (z) = tp + /0 (sintx — tx) dF(z) + /T (sin(tx) — tx) dF(z), (.5)
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where y is the mean. The first integrand is bounded by |sin(tx) — tz| < [¢[323 for z < T,
so the contribution from the interval (0,T") is bounded by

|t|3/OTa73 dF(z) = |t|3/OTa:3(1+ xLL(/g))x;zaEx),

~ |t|3/Tx3 du
o 22L(x)’

T 1
tPT——— = ——.
< Mo = 7o
Since |sin(tx)| < 1, the first part of the second integral in (.5) has the same bound:

‘/TOO sin(tx) dF(ac)‘ < /T°° dF(z) = F(T) = TLl(T)'

/Ooosin(tx)dsc _ tu—t/TooxdF(a:Ho(L(tT)),

t“‘téfxga>+O(L&v)

Appendix III: Calculation of the asymmetric Cauchy density. By the Fourier
inversion formula of the characteristic function for & = 1 and |8| < 1, the asymmetric
Cauchy density f(z) in Fig. 1 is

It follows that

1 (oo}
flx)= 7/ e ' cos(tx + 2Bt logt/7)dt.
T Jo
Substitute u = g, (t) :=t(1 + % log t), which is increasing over (exp(—33),00). As x>0
becomes large, the integral over the interval (0, exp(—%)) is exponentially small in z, and

may be ignored:

| et eostogtinat= [~ eostaga ()it + 0 ),
0 e

xp(—55)

o0 —1 1 T
= e 9 (W cos(zu) — du+O(e”27),
~/0 1+ wbgﬂiiw(“) + %

where g7 1 : (0,00) = (exp(—Z%),00) is the inverse map for the substitution. From here
92 ; p(—%5), p

on, we ignore the exponentially small remainder term. It is easy to check that

—1
T+ Zlogu <9, (u) <u,
from which it follows that the integral is
Ve 1
_ / ¢ cos(an) gy du(1 + o(1)) + O(e77),

T Togx
™ T

where o(1) means a term that goes to zero as x — co. Then the above is

vz
~ / . e “cos(zu) (1 - 2510gu) du

- log T T

VT 28 VT
= / . e “cos(zu)du — —/ . e “cos(zu) log(u)du.
e T™r e logz

T Togx
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Now using cos(zu) = Re(e™®*), the above expression becomes

s
Tog x

= Re( , / . e‘“dv) — Re(ﬁ / | eTullmim) log(u)du>.
1 -z Je 06w (1—in) T J, Togw

The first term gives

Re< . / . e”dv) NRe< - > = 5
I —ix Jo a7 (1—ia) 11— 1+

The second term is

:_Re<26 /ﬁﬂ—”) e~ (log(v) — log(1 — iz)) dv)

™

NG ) 28 vz ]
:/ e “Re(e"™)du — —/ . e “Re(e"™)log(u)du
€ T E_m

710?:(1_i£) 1—x

O(zlog z) + 25Re< ! /ﬁ(lm “isi 1( 7 )d >
= T T —_— " e "18sIn — v,
& T 11—z eiﬁ(lfix) V14 2

()

since 1 — iz = (14 22)Y/2¢isin” ' (==/V1+2%)  Finally, note that the above term (x) is equal

to
28 (g (VEOTE 26 © B
= —Re e Yisin —|dv |~ — — = —.
T L+a? [ etz (1—ig) V1+ 22 mr 2x 22

To summarize, we have shown that for large = > 0,

f@) ~ g b Dy = 2D

wx2 a2 rx2’

which implies F(z) ~ (1 + 8)/(wz) for the right tail. For x < 0,

1 [ 1 [
flz) = f/ cos(tx + 2Bt logt/m)dt = f/ cos(t|x| — 2Btlogt/7)dt,
™ Jo T Jo
so the argument above implies that as * — —oo0,
1-p
f(x) ~ 2

and F(x) ~ (1 = f)/(r|z|).

Appendix IV: Proof of Proposition Suppose F; = N(0,1)xG, with G symmetric
about zero with density function g having exponential index 2« € (0,2) in the sense that:

—logg(z) = |2|*"L(x)

for some slowly varying function L(x). Then the Gaussian convolution ¢xg has exponential
tail index 2k.

Proof. Let y > 0 and § := 2k. The convolution density m(y) = ¢ x g is
m(y) = /g(y —€)¢(e)de

= / exp(—|y — e’ L(y — €))¢(e)de + O(e’yBLl(y))
le|<yf/?
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for some slowly varying L;. Since 8 < 2, we have y — e = y(1 + 0(1)) as y — o0, so that
vy’ (1= Be/y) if § > 1
yP(L = Be/y+B(B-1)(e/y)?) B <1,
for y sufficiently large. It follows that, over the range of the integral, we have
ly—el” > y” = Bey® ! +o(y? 7).
This implies m(y) is bounded by

ly—cl’ =y° 1 —¢e/y|® > {

e~ ¥’ L(y(1+0(1))) / e A’ T OV T2 /(e T Ly (o) g (2)de + O (e~ L W)
le|<yP/2

for some constant C' > 0. Now since |y?#~2/(ey®~1)| = |y®~' /e| > P/~ — 0, the above
reduces to

m(y) < e—yﬁL(y(HO(l)))/ e B’ L) () de + O(e ¥ W),
le]<yh/2

for some slowly varying function Ly(y). The formula E. (o 1)(e') = et’/? implies
mly) < e~V Ly(1+0(1))) B2y* "2 La(y)?/2 O(e—y‘*Ll(y)).
Finally, 8 < 2 implies
v L(y(1+o(1))) + B*y*"?La(y)*/2 = v Ls(y)
for some slowly varying Ls(y), from which it follows that
—logm(y) > y”Ls(y)-
A similar argument yields —logm(y) < y’L4(y) for some slowly varying L4(y), which
implies
—logm(y)
yP

so that 71%;”(9) is also slowly varying, completing the proof.

Ls(y) < < La(y),

([l
Appendix V: Derivation of equation (5.2). For a log-likelihood function of the form

£0,v) = Zlog((l —0)fo(Xi) + 0/1(Xs;v)),

the profile log-likelihood derivative is
d, Z (h(Xs; 2(6)) — 1) + 04(Xi; 7(9))

w0 O = L T o sy - ) (6)
where h(z;v) = fi(z/v)/ fo(z) and
Hw; 9(0)) = foix) of 1(2;”(9) ) dfi(;). (7)
and for any given 6, 7(6) solves
F(8,(0)) = aeg}ey,u) e 0.

Total differentiation of this equation F'(6,(0)) = 0 gives

9 Gu(8,0(0) )
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where j,0(6,2(0)) and j,,(0,(0)) are the cross and double derivatives of the joint log-
likelihood function evaluated at (0,7(6)), given in the present context of fi(x;v) =
() ~ K, /|x["*! by

Gue(0,000) =Y dy (Xi)

4>y,
T , Jul(0, —92 1/)

i=1 v=0(0) v=0(0)
where
di, (x) K. — K, log |z]
! = — ~ P ————— R
1%(35) . dV |z|l/+l
() = TVl Ky — 2K} log |«| + K, (log]a)?
v T dl/2 |$‘V+1

On substituting in via (7), and on making the replacement fy(z) = ¢(z), the
profile log-likelihood derivative is

e (Goo)(Xi) — o) (X3) — 1)
5(9 p(0)) =>_ T 0Ge (X0 =T (.9)

do

i=1
where
r (X) o y(@)( )Z] lqizjy(e)( )
o) (Xi) =
( ) (b(X’L) Z] 1#’,,(9 ( )

Ky log|Xi| ([ 271 Kooy log | X;| /| X7+ p 0, (1 50)
X PO G(X) \ Y7, Kooy (log [ X;[)2/] X, @1 ) 750 '

Taking the limit of as 6 — 0 gives (5.2)). O
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