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SUMMARY

The analysis of binary response data commonly uses models linear in the logistic transform
of probabilities. This paper considers some of the advantages and disadvantages of simple
least squares estimates based on a linear representation of the probabilities themselves, this
in particular sometimes allowing a more direct empirical interpretation of underlying param-
eters. A sociological study is used in illustration.
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1 Introduction
The interpretation of data in the form of binary outcomes arises in many areas of science from
the primary physical and biological sciences and their application through to more directly
applied areas and the social sciences.

Two distinct themes in the analysis of binary data go back at least to the beginning of
the 20th century with the contrast between Karl Pearson who, in his biserial correlation
coefficient, treated a pair of possibly related binary variables as derived from an unobserved
bivariate normally distributed variable, and Yule who worked directly with observed propor-
tions of outcomes. When the hypothesized latent variables have a tangible interpretation,
as in quantal bioassays, the former approach is preferable, but in the present paper we con-
sider only situations in which observed proportions of outcomes are represented directly and
relations concerning them interpreted.

Suppose that for n independent individuals we observe a realization of a binary outcome
variable Yi (1 ≤ i ≤ n) taking values 1 or −1, and that for individual i there is a p × 1
vector xi of explanatory variables. A widely used representation is the linear logistic form
in which log{pr(Yi = 1)/pr(Yi = −1)} is assumed to depend linearly on xi. This leads to a
simple interpretation of regression coefficients as ratios of effects when the binary responses
are concentrated at one of the two levels but otherwise the interpretation is less direct. For a
discussion from a sociological perspective of the difficulties of interpreting logistic coefficients,
see [1] and, for a wide-ranging review, see [2].

The linear in probability model to be considered in the present paper specifies the prob-
abilities as linear functions of the explanatory variables, that is for y = −1, 1 and with xi
typically including a constant term,

pr(Yi = y) = pβ(y) = 1
2(1 + yβTxi), (1)

so that E(Yi) = βTxi. There are implicit restrictions on the parameter space, namely that
for all data x, |βTx| ≤ 1.
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If both the linear in probability and linear logistic models give adequate fit, the former has
the advantage that the linear regression coefficients have a clearer operational interpretation
in terms of numbers of individuals potentially influenced by a unit change of an explana-
tory variable. Emphasis sometimes lies on testing the significance of individual effects and
comparison of their relative magnitudes. For this, the exponential family form of the linear
logistic model [3,4] brings substantial simplification and other advantages. Furthermore, the
logistic dependence has the potential to apply over a wide range of future conditions excluded
by the positivity constraints on the linear form.

The discussion highlights a context in which maximum likelihood estimation is very sen-
sitive to aberrant observations whereas ordinary least squares is insensitive yet typically
achieves high efficiency.

A limiting case which sharply illustrates these distinctions concerns the comparison of
data (Y1, Y2) formed from counts of events from two Poisson processes of rates, say, ρ1 and
ρ1ψ or ρ1 and ρ1 + θ for the multiplicative and additive representations respectively. That
is, Y2 represents either a multiplication of the baseline rate by a constant or the addition of
a separate signal. The former model falls within the exponential family of distributions and
leads to an analysis based on a 2×2 contingency table. The second calls for a different analysis
based on large-sample maximum likelihood theory. For a further discussion concerning a
similar model for Poisson variables, see [5].

2 Inferential aspects
2.1 Second-moment theory
We now consider properties of the linear in probability model based only on first and second
moments. First we define the least squares estimate of β by projecting the vector Y =
(Y1, . . . , Yn)T orthogonally onto the space spanned by the columns of x, thus giving

β̂OLS = (xTx)−1xTY.

In the present context, x is a matrix whose ith row is xTi . The estimate is unbiased but does
not have second-moment optimality unless β = 0 because the components of Y in general do
not have equal variance. Nor is the covariance matrix of the estimates given by the standard
formulae unless β is small.

In fact
var(β̂OLS) = Σβ = (xTx)−1 − (xTx)−1xT∆x(xTx)−1, (2)

where ∆ = diag(xTi β)2. One simple and often satisfactory estimate of the covariance matrix
of β̂OLS is to replace ∆ by ∆̂ in which β is replaced by β̂OLS.

A more elaborate second moment approach is to replace β̂OLS by a weighted least squares
estimate β̂WLS in which var(Yi) is estimated as 1 − (xTi β̂OLS)2. Since 1 − (xTi β)2 is not
bounded away from zero, weighted least squares is inappropriate as a general method.

The calculation of approximate confidence intervals and significance tests may be based
on the asymptotic normality of β̂OLS.

2.2 Maximum likelihood estimation
The log likelihood corresponding to (1) is

`(β) =
∑

log(1 + xTi βYi) (3)

provided that for all i, −1 < xTi β < 1. We return to the relevance of this condition later. A
stationary value of the log likelihood occurs where∑ xiYi

1 + xTi β̂MLYi
= 0.
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If 1/(1 + a) is expanded as 1− a and higher terms neglected, that is the regression assumed
small, the least squares estimate β̂OLS is recovered.

There is a strong argument for using ordinary least squares rather than maximum likeli-
hood in this context despite sufficiency of pβ̂ML

under model (1). In the present context the
two estimators are virtually equivalent in terms of their efficiency, while maximum likelihood
suffers extreme fragility, as explained below.

There is the following expansion of the second derivative of `(β), valid for small xTi β,

∇ββ`(β) = −
∑ xix

T
i Y

2
i

(1 + xTi βYi)2 = −
∑

xix
T
i {1− 2xTi βYi + 3(xTi β)2}+O{(xTi β)3}.

Here ∇ββ denotes the matrix of second partial derivatives with respect to β. On taking
expectations, an approximation to the asymptotic variance of the maximum likelihood esti-
mator is obtained as {xT (I + ∆)x}−1. For comparison to (2), it is more convenient to work
with {xT (I−∆)−1x}−1, which is a lower bound for {xT (I + ∆)x}−1. Using the geometric
series expansion (I−∆)−1 = I + ∆ + ∆2 + · · · = I + Υ, say, and the formula

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1, (4)

we write, with A = xTx, B = I and C = xTΥx in (4) and M = {I + (xTΥx)(xTx)−1}−1,

var(β̂ML) = (xTx)−1{I−M(xTΥx)(xTx)−1}. (5)

Because M ≺ I, where the notation A ≺ B means that A− B is a negative definite matrix,
the inflation in variance from using β̂OLS rather than β̂ML is

(xTx)−1{(M − I)xT∆x(xTx)−1 +MxT (Υ−∆)x(xTx)−1} ≺ (xTx)−1xT (Υ−∆)x(xTx)−1.

Write δi = βTxi. From the geometric series we deduce that

Υ−∆ = diag{δ4
1/(1− δ2

1), . . . , δ4
n/(1− δ2

n)}.

Thus var(β̂OLS)− var(β̂ML) = O(n−1 max{δ4
i /(1− δ2

i )}), showing that the loss in efficiency
is typically very small.

On the other hand, from the perspective of formal likelihood theory even one individual
out of range, in the sense that |βTxi| > 1, would refute the parameter value in question.
That is, maximum likelihood is extremely sensitive in the present context to observations
measured with error or drawn from a model even slightly different from that postulated.
Ordinary least squares is by contrast relatively unaffected by such anomalies.

2.3 Interpretation of analysis
The interpretation of the regression coefficients in the linear in probability model is similar
to that in a normal theory linear regression model. Let x∗ and x∗∗ be two different vectors of
covariate information, differing by 1 unit in variable j and otherwise the same. The number
of positive outcomes is S =

∑
i Zi where Zi = (Yi + 1)/2. Therefore the hypothetical change

in E(S) for a hypothetical replacement of m individuals who differ by one unit in the jth
component but are otherwise the same is

m∑
i=1
{E(Zi | x∗)− E(Zi | x∗∗)} = mβj/2.

If there are binary covariates, it is natural to code them as {−1, 1}, in which case division of
two is not needed because a unit change in the level corresponds to a numerical difference of
two units.

If, upon fitting the linear in probability model, it is found that the number of least squares
fitted values xTi β̂OLS outside [−1, 1] is appreciably larger than could be attributed to chance
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under the linear in probability model, some doubt would be cast upon the plausibility of the
model. The expected number out of range, assuming that the linear in probability model
is valid for all observations, is λ =

∑
i pr(|xTi β̂OLS| > 1) =

∑
i pi where, by the asymptotic

normality of β̂OLS − β,

pi ' Φ
{ −1 + βTxi√

(xTi Σβxi)

}
+ Φ

{ −1− βTxi√
(xTi Σβxi)

}
(n→∞).

Thus a predicted number of out of range values is an estimate of λ, obtained by replacing β
and Σβ by estimates in the expression for each pi. A crude lower bound on the variance of the
sum, R, of out of range values is λ, obtained by incorrectly assuming that R is approximately
Poisson distributed for large n. The variance of R is larger than λ due to dependence between
the summands, induced by β̂OLS. In particular,

var(R) =
∑
ipi(1− pi) +

∑
i 6=j{pr(|β̂TOLSxi| > 1, |β̂TOLSxj | > 1)− pipj}. (6)

Write

Zi = (β̂OLS − β)Txi√
(xTi Σβxi)

, zi = 1− βTxi√
(xTi Σβxi)

,

so that Zi and Zj are bivariate normally distributed of zero means, unit variances and
correlation coefficient

ρij = xTi Σβxj√
(xTi Σβxi)

√
(xTj Σβxj)

.

Then pr(|β̂TOLSxi| > 1, |β̂TOLSxj | > 1) is the sum of the quadrant probabilities,

pr(Zi > zi, Zj > zj) = Φ(−zi)
∫ ∞
zi

Φ
{

ρijs− zj√
(1− ρ2

ij)

}
φ(s)ds,

pr(Zi < −zi, Zj < −zj) = Φ(−zi)
∫ −zi

−∞
Φ

{
−zj + ρijs√

(1− ρ2
ij)

}
φ(s)ds,

pr(Zi > zi, Zj < −zj) = Φ(−zi)
∫ ∞
zi

Φ
{
−zj − ρijs√

(1− ρ2
ij)

}
φ(s)ds,

pr(Zi < −zi, Zj > zj) = Φ(−zj)
∫ ∞
zj

Φ
{
−zi − ρijs√

(1− ρ2
ij)

}
φ(s)ds.

While there is no closed form expression for these, close approximations are obtained by
replacing the conditional expectations of the functions of interest by the corresponding func-
tions of the conditional expectations, with approximation error established by Taylor series
expansion. Depending on the signs of zi, zj and ρij , the approximation so obtained might be
improved by interchanging the roles of zi and zj on the right hand side of the above display.
For a further discussion, see [6].

3 Socio-economic inequalities in educational attainment
We use US data from the National Longitudinal Study of Youth (1979), a nationally-
representative longitudinal study of people aged 14–22. Our binary outcome, coded as
{−1, 1}, specifies whether the individual enrolled in a four-year-degree-granting institution
for at least one year. There are five potential explanatory variables. Ability is measured as
the respondent’s score on the Armed Forces Qualifying Test, administered to all respondents
in the 1981 wave of the survey. Family income in childhood is measured as the log of total
net family income in 1979. All respondents identified themselves as male or female but race
was measured via interviewer observation, and we here limit our sample to those respondents
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who were classified as black or non-black and non-Hispanic. Finally, we include an indicator
of whether respondents were living with at least one parent at the time of the first survey.

As is common with extensive observational data, some observations on explanatory vari-
ables are missing, as shown in Table 1. Because we are concerned with the dependence of
outcome on explanatory variables, individuals with missing outcome are treated as uninfor-
mative about that dependence. A sensitivity analysis examined how the regression coefficients
of interest changed when rather extreme assignments were made to the three explanatory
variables with missing values, treating binary variables as all at one or other extreme and
continuous variables as at their upper and lower quartile. The levels used were 68.33 and
17.28 for the Armed Forces Qualifying Test score and 10.00 and 8.79 for the logarithm of
family income when the individual was in childhood. Estimates from the eight patterns of
missingness are in Table 2. While there is some dependence on the missing values, that de-
pendence is very minor and without qualitative impact on the conclusions of the analysis. If
a larger number of explanatory variables have missing values the sensitivity analysis should
be based on a suitable fraction of the two-level factorial system of potential missing values,
allowing estimation of main effects from missingness [7, §12.2].

The sensitivity analysis used here may be contrasted with procedures of multiple impu-
tation based on the untestable assumption that observations are missing at random.

covariate description sample range per cent missing
x1 gender {1 = male,−1 = female} 0
x2 AFQT score percentage (0− 100) 4.3
x3 log income continuous (3.00− 11.23) 51.2
x4 race {1 = black,−1 = non-black/non-Hispanic} 0
x5 lives with parent {1 = yes,−1 = no} 5.1

Table 1: summary of data.

An informal preliminary analysis involved tests for interactions and inspection of interac-
tion plots. None was strongly suggested. Table 2 reports least squares estimates of regression
coefficients and their estimated standard errors from a model with main effects for the five
explanatory variables.

The suggestion is that hypothetically increasing the number of males and correspondingly
reducing the number of females in the population by m units, say, would correspond to a 6–7
per cent of m decrease in the expected number of individuals receiving higher education, all
other things equal. The coefficient of the race variable is similarly interpreted, the sugges-
tion being that in a hypothetical population, demographically equivalent to the one under
study except for having m more black children than white children, the expected number of
individuals experiencing the positive outcome would be 22–23 per cent higher.

It is suggested, all other things being equal, that a 1 per cent increase in family income,
i.e., an increase of 0.01 in log family income, would correspond to a 0.02–0.03 per cent increase
in the expected number of positive outcomes and that a 1 per cent increase in ability, to the
extent that it can be measured by the Armed Forces Qualifying Test score, would correspond
to a 1 per cent increase. An absolute change at the bottom of the income scale has a
relatively greater effect than the same absolute change at the top. Finally, accounting for
other factors, individuals living with someone other than one of their parents are perhaps
slightly more likely to experience the positive outcome, although the evidence for this is
rather weak.

In the above interpretation of the estimated coefficients on the continuous variables,
division by 2 is needed, as described in §2.3. Division by 2 is not needed for the three binary
explanatory variables because they are coded as {−1, 1}.

The last two columns of Table 2 show the actual and predicted number of least squares
fitted values xTi β̂OLS that are outside [−1, 1]. The individuals whose fitted values are out of
range are almost all at the two edges of the sample space for the Armed Forces Qualifying
Test score.
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Least squares estimates of regression coefficients (estimated standard errors) number predicted

x2 x3 x5 β̂0 β̂1 β̂2 β̂3 β̂4 β̂5
out of number
range out of range

L H H −1.51 (0.13) −0.061 (0.0092) 0.0201 (0.00031) 0.064 (0.011) 0.224 (0.011) −0.034 (0.011) 394 396
L H L −1.51 (0.13) −0.062 (0.0092) 0.0202 (0.00031) 0.063 (0.014) 0.223 (0.011) −0.021 (0.010) 383 388
L L H −1.32 (0.12) −0.060 (0.0092) 0.0202 (0.00031) 0.048 (0.014) 0.222 (0.011) −0.038 (0.011) 384 391
L L L −1.31 (0.12) −0.061 (0.0092) 0.0203 (0.00031) 0.046 (0.014) 0.221 (0.011) −0.025 (0.011) 377 384
H H H −1.57 (0.13) −0.065 (0.0093) 0.0198 (0.00033) 0.068 (0.014) 0.225 (0.011) −0.028 (0.011) 444 441
H H L −1.57 (0.13) −0.067 (0.0094) 0.0198 (0.00032) 0.066 (0.014) 0.223 (0.011) −0.011 (0.010) 434 436
H L H −1.45 (0.13) −0.065 (0.0094) 0.0198 (0.00033) 0.059 (0.014) 0.224 (0.011) −0.034 (0.012) 451 450
H L L −1.44 (0.13) −0.066 (0.0094) 0.0199 (0.00033) 0.056 (0.014) 0.222 (0.011) −0.017 (0.011) 453 443
max absolute 0.23 0.0061 0.00050 0.022 0.0040 0.026difference

Table 2: sensitivity analysis of least squares estimates and their estimated standard errors from replacing all missing values
of xj by high and low levels. The estimated standard errors are obtained by replacing ∆ by ∆̂ in equation (2). The sample
size is 9043.
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While the numerical values of the coefficient estimates from a linear logistic model are
not comparable to those from a linear in probability model, the ratios of these coefficients are
remarkably similar. The code for verifying this statement and the analysis of §3 is available
as outlined in the data accessibility statement.

4 Discussion
As with other statistical methods care is needed especially when relatively complex data are
involved. In the present context a reasonable approach for general use is to base the analysis
on β̂OLS with the improved estimate of its covariance matrix, given by (2). Examination of
model adequacy should include a check of the number of fitted values outside [−1, 1]. Do such
values form a rationally identifiable subgroup to be analysed separately? Does their omission
or exclusion materially affect the conclusions? Does the number of anomalous observations
suggest major change to the whole analysis? A large number of anomalous observations may
suggest that a model linear on the logit scale would be more appropriate.

From the perspective of formal likelihood theory even one individual out of range would
refute the parameter value in question in the linear in probability model. Thus the paper
illustrates an empirical context in which the formal optimality of maximum likelihood es-
timates is achieved only at the cost of extreme fragility. A formally slightly less efficient
method is much to be preferred.

Data accessibility statement. The data and code used in the example, together with
further details about the data source, can be accessed from the Royal Society’s repository:
https://rs.figshare.com.
Authors’ contributions. H.S.B, D.R.C and M.V.J. designed the research, performed the
research and wrote the paper.
Acknowledgement. We thank the referees for constructive comments.
Funding statement. The work was supported by the UK Engineering and Physical Sciences
Research Council under grant number EP/P002757/1 and by the Russell Sage Foundation
and the Andrew W. Mellon Foundation Fellowship at the Center for Advanced Study in the
Behavioral Sciences, Stanford University.
Competing interests. The authors confirm that there are no competing interests.

REFERENCES

[1] Breen, R., Bernt Karlson, K. and Holm, A. (2018), Interpreting and understanding logits,
probits, and other nonlinear probability models. Ann. Rev. Sociol., 44, 39–54.

[2] Agresti, A. (1990). Categorical data analysis. New York: Wiley.

[3] Cox, D. R. (1958). The regression analysis of binary sequences (with discussion).
J. R. Statist. Soc. B, 20, 215–242.

[4] Cox, D. R. (1958). Two further applications of a model for binary regression. Biometrika,
45, 562–565.

[5] Davison, A. C. and Sartori, N. (2008). The Banff challenge: statistical detection of a
noisy signal. Statist. Sci. 23, 354–364.

[6] Cox, D. R. and Wermuth, N. (1991), A simple approximation for bivariate and trivariate
normal integrals. International Statistical Review 59, 363–269.

7

https://rs.figshare.com


[7] Cox, D. R. (1958). Planning of Experiments. New York: Wiley.

8


	Introduction
	Inferential aspects
	Second-moment theory
	Maximum likelihood estimation
	Interpretation of analysis

	Socio-economic inequalities in educational attainment
	Discussion

