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INDUCEMENT OF POPULATION-LEVEL SPARSITY

Battey (2023): one old and three “new” examples unified
from this perspective.

Main point: in the absence of sparsity on physically-natural
scales, preliminary manoeuvres may systematically induce a
population-level sparsity on more abstract scales.

Precursor: Cox and Reid (1987).

Battey, H. S. (2023). Inducement of population-level sparsity. Canad. J. Statist. (Festschrift for Nancy Reid), 51, 760–768.

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion).

J. R. Statist. Soc. B, 49, 1–39.



INDUCEMENT OF POPULATION-LEVEL SPARSITY

Two routes: reparametrization; transformations of the data.

Research questions concern:

Traversal of parametrisation space (not parameter space)
with a view to inducing sparsity.
Traversal of data-transformation space ——– ” ——–
Understanding how structure on the physically natural scale
relates to sparsity in more abstract domains.

These questions concern structure at the population level and
do not involve a notion of a sample.

Benefits of sparsity transfer to any reasonable methodology.
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STARTING POINT

Q∗: For a given covariance matrix, not obviously sparse in any domain,
can a sparsity-inducing reparametrisation be deduced?

A∗: . . .



TWO DISTINCT TYPES OF MOTIVATION

1 The reparametrised covariance may be the interest parameter by virtue of
the interpretation ascribed to its zeros.

2 If the covariance matrix or its inverse is a nuisance parameter, a sparsity
assumption allows construction of estimators that are consistent in
relevant matrix norms when dimension exceeds sample size.

Positive definiteness enforces additional constraints on how sparsity can
legitimately manifest.



REPARAMETRISATION

Starting from the physically natural representation in terms of σ ∈ Cone(p), a constrained

space, consider reparametrisation to α ∈ Rp(p+1)/2 or (α, d) ∈ Rp(p+1)/2.
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STARTING POINT FOR ALL FOUR: THE MATRIX LOGARITHM

All four reparametrisations are based on the matrix logarithm L of a constrained matrix.

L is implicitly defined through the matrix Taylor expansion:

exp(L) =
∑∞

k=0
1
k!
Lk .

L belongs to to a vector space with a canonical basis B = {B1, . . . ,B#B}.
The unconstrained parameter α is the vector of coefficients in the basis expansion

L(α) = α1B1 + · · ·α|B|B|B|.

Sparsity in the form ‖α‖0 = s∗ < p respects positive definiteness and allows a
fruitful analysis.



FOUR INITIAL REPARAMETRISATION MAPS

With D(d) = diag(d1, . . . , dp), we consider the four maps

α 7→ Σpd(α) := eL(α), L(α) ∈ Sym(p), α ∈ Rp(p+1)/2;

(α, d) 7→ Σo(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ Sk(p), α ∈ Rp(p−1)/2, d ∈ Rp;

α 7→ Σlt(α) := eL(α)(eL(α))T, L(α) ∈ LT(p), α ∈ Rp(p+1)/2;

(α, d) 7→ Σltu(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ LTs(p), α ∈ Rp(p−1)/2, d ∈ Rp.

In each case, L belongs to a different vector space in which sparsity can conveniently be studied:

Sym(p): the symmetric matrices;

Sk(p): the skew-symmetric matrices;

LT(p): the lower triangular matrices;

LTs(p): the strictly lower triangular matrices.
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diagonal) and LTu(p) (lower triangular w/ unit diagonal).



OBJECTIVE OF THE WORK

For the new parametrisations:

Uncover structure induced on physically natural scales through
sparsity on the transformed scale;

Ascertain the converse result: that matrices encoding such structure
are sparse after reparametrisation.

Ideally ascertain an interpretation for the zeros in α.



THE SIMPLEST CASE: Σpd (Battey, 2017)

Σ = exp(L)

Σ−1 = exp(−L)

Σ, Σ−1 ∈ PD(p) :=
{
M ∈ M(p) : M = MT , M � 0

}
(open cone)

L ∈ Sym(p) :=
{
M ∈ M(p) : M = MT} (vector space).

Natural symmetric basis for Sym(p) of the form B = B1 ∪ B2:

B1 =
{
B : B = eje

T
j , j ∈ [p]

}
B2 =

{
B : B = eje

T
k + eke

T
j , j , k ∈ [p], j 6= k

}
.



THE SIMPLEST CASE: Σpd (Battey, 2017)

Sparsity of α in L(α) = α1B1 + · · ·α|B|B|B| induces structure on Σ via the eigenvectors and eigenvalues.
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Left and centre-left: simulation average of ‖γj‖0 (eigenvectors) and I{λj = 1} (eigenvalues) for 100
random logarithmically s∗-sparse covariance matrices, plotted against index j of ordered eigenvalues
(y-axis) and s∗ ∈ {1, . . . , p} (x-axis) for p = 100.

Centre right: zero (blue) and non-zero (yellow) entries of a random sparse L.

Right: zero (blue) and non-zero (yellow) entries of exp(L).
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Sparsity of α in the map α 7→ Σpd(α) has
been studied (Battey, 2017).

The map (α, d) 7→ Σo(α, d) was studied by
Rybak and Battey (2021).

The maps α 7→ Σlt(α) and (α, d) 7→ Σltu(α, d)
are new.

An encompassing formulation uncovers further
parametrisations with a statistical interpretation.
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In the four cases we characterise the structure such that structure ⇐⇒ α sparse.



A GENERAL RESULT

Consider any p-dimensional matrix M of the form M = eL, where L
belongs to a vector space (e.g. any of the four defined earlier). Let d∗r and
d∗c be the number of non-zero rows and columns of L respectively. Then:

M has p − d∗r rows of the form eT
j for some j ∈ [p], all distinct, and

p − d∗c columns of the form ej .

Of these, p − d∗ coincide after transposition.

If M is normal, i.e. MTM = MMT, then d∗r = d∗c = d∗.



EXAMPLE STRUCTURE OF M = eL

Figure: Example of a structure of M as as described on the last slide with p = 10, d∗r = 7, d∗c = 8
and d∗ = 9. Zero, unit and unconstrained entries are light, medium and dark blue respectively.

The specific vector spaces of interest impose additional constraints.



INTERPRETATION OF SPARSITY-INDUCED STRUCTURES

In terms of the structure induced on the original scale by sparsity of L(α),
α 7→ Σpd(α) and α 7→ Σltu(α) represent two extremes. . .



BACKGROUND: BLOCK DIAGONALISATION

With [p] = {1, . . . , p}, let a ⊂ [p] and b = [p]\a be disjoint subsets of variable indices.
As a consequence of a block-diagonalisation identity for symmetric matrices (Cox and
Wermuth, 1993, 2004),

LΣLT =

(
Iaa 0

−ΣbaΣ−1
aa Ibb

)(
Σaa Σab

Σba Σbb

)(
Iaa −Σ−1

aa Σab

0 Ibb

)
=

(
Σaa 0
0 Σbb.a

)
,

so that Σ can be written in terms of Πb|a := ΣbaΣ−1
aa ∈ R|b|×|a|, Σaa ∈ PD(|a|),

Σbb.a := Σbb − ΣbaΣ−1
aa Σab ∈ PD(|b|).

These are known in some quarters as the partial Iwasawa coordinates for PD(p) based
on a two-component partition |a|+ |b| = p of [p].

This holds independently of any distributional assumptions on the underlying RVs.



BACKGROUND: INTERPRETATION OF BLOCKS

Let Y = (Y T
a ,Y

T
b )T be a mean-centred random vector with covariance matrix Σ, Πb|a

is the matrix of regression coefficients of Ya in a linear regression of Yb on Ya and Σbb.a

is the residual covariance matrix, i.e. Yb = Πb|aYa + εb and Σbb.a = var(εb).

The entries of Πb|a encapsulate dependencies between each variable in b and those of a,
conditional on other variables in a, but marginalizing over the remaining variables in b.



BACKGROUND: MARGINALISATION AND CONDITIONING

Assume now that Y is Gaussian.

Marginalization over a variable in b, indicated by �◦, induces an edge between i and j
if the marginalized variable is a transition node or a source node.

i ←− �◦ −→ j , i ←− �◦ ←− j ,

i ---- j , i ←− j .

By contrast, if i and j are separated by a sink node in a, then conditioning on such a
node, indicated by �◦ , is edge inducing, with no direction implied.

i −→ �◦ ←− j ,

i — j .



Σltu FROM RECURSIVE BLOCK-TRIANGULARISATION

With |b| = 1, recursively apply the identity

Σ =

(
Σaa Σab

Σba Σbb

)
=

(
Iaa 0

ΣbaΣ−1
aa Ibb

)(
Σaa 0
0 Σbb.a

)(
Iaa Σ−1

aa Σab

0 Ibb

)
.

This leads to the representation Σltu = UeDUT based on p blocks of size 1× 1 where
the general form of U = eL ignoring sparsity is

U =


1 0 0 0
β2.1 1 0 0
β3.1 β3.21 1 0
β4.1 β4.21 β4.3[2] 1

 , (1)

where for j < i , Uij = βi.j[j−1] is the coefficient on Yj in a linear regression of Yi on
Y1, . . . ,Yj . This is not new: it is implicit in Cox and Wermuth (1993, 2004).



THE ENTRIES OF U IN Σltu = UeDUT

Cochran’s (1938) formula (stated here for three variables):

β3.1 = β3.12 + β3.21β2.1.

The total effect decomposes into a sum of partial effects.

For more than three variables, the total effect of variable j on variable i is the sum of
effects along all directed paths connecting the two nodes.



STRUCTURE INDUCED ON U = eL BY SPARSITY OF L

Zeros in L via sparsity ‖α‖0 = s∗ induce zero columns of the strictly lower-triangular
matrix U − I .

Suppose that U − I has a zero jth column. This implies that for every i > j , the only
source or transition nodes connecting i and j are in the conditioning sets [j − 1]
(otherwise dependence is induced through marginalization), and that there are no
sink nodes among these conditioning variables (as conditioning on sink-nodes is
edge-inducing).



STATISTICAL INTERPRETATION OF α in Σltu(α)

Recall Cochran’s (1938) formula for three variables:

β3.1 = β3.12 + β3.21β2.1

The total effect decomposes into a sum of partial effects.

For more than three variables, the total effect of variable j on variable i is
the sum of effects along all directed paths connecting the two nodes.

The coefficient α has an interpretation in terms of a length-weighted sum
of effects, with the weight inversely proportional to the length of the path.



EXACT VS APPROXIMATE ZEROS

Until now we have focused on exact zeros.

The interpretation of α provides an interpretation for approximate zeros
and thereby clarifies the modelling implications of enforcing sparsity after
reparametrisation:

In effect the relation between two variables would be declared null if
relatively direct regression effects were negligible and other effects
manifested through long paths.



FURTHER PARAMETRISATIONS

The paper discusses further parametrisations for which
α 7→ Σpd(α) and α 7→ Σltu(α) represent the extreme cases.

The resulting structures corresponds to the chain graph
models (Andersson et al., 2001).
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