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MOTIVATION

A large number of nuisance parameters∗.

A high-dimensional nuisance parameter.

Failure of maximum likelihood theory.

Similar issues arise in Bayesian inference.

∗Nuisance parameters are those needed to complete the specification of the probabilistic model but of no direct subject-matter concern.



SPARSITY

Existence of many zeros or near-zeros.

Two roles: (1) to aid interpretation; (2) to restrain estimation error.

This talk: interpretation is central; high-dimensional parameters are
nuisance – focus therefore on (2).

Explore the idea of systematically inducing particular forms of sparsity on
population-level quantities.

Traverse parameterisation space or transformation space with a view to
inducing sparsity.



ONE OLD AND THREE NEW EXAMPLES

RP Parameter orthogonalisation (Cox and Reid, 1987).

RP Sparsity scales in covariance estimation.

DT Construction of factorisable transformations.

DT Inference in high-dimensional regression.

The first two aim to induce sparsity through reparameterisation (RP), the last two
via transformations of the data (DT).



Example 1

Parameter orthogonalisation

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate
conditional inference (with discussion). J. Roy. Statist. Soc., B, 49, 1–39.



PARAMETER ORTHOGONALITY

ψ and λ: interest and nuisance parameters.

Let iψλ(ψ, λ) denote the corresponding block of the Fisher information matrix.
ψ and λ are said to be orthogonal if iψλ(ψ, λ) = 0. Global/local.

Implications: ML for ψ behaves “almost as if” λ was fixed at its true value λ∗.

“almost as if”: if the dimension of λ is fixed then ψ̂ − ψ̂λ∗ = Op(n−1).



PARAMETER ORTHOGONALISATION
(Cox and Reid, 1987)

Starting with a parameterisation (ψ, φ), an interest-respecting reparameterisation
(ψ, λ(ψ, φ)) is chosen to make λ orthogonal to ψ.

In other words, to induce sparsity on iψλ (population-level sparsity).

This is operationalised by solving a system of partial differential equations.

Some of the modern high-dimensional inference literature implicitly or explicitly
assumes iψλ is sparse without such preliminary manoeuvres.



Example 2

Sparsity-inducing parameterisations for covariance models

Battey, H. S. (2017). Eigen structure of a new class of structured covariance
and inverse covariance matrices. Bernoulli, 23, 3166–3177.

Rybak, J. and Battey, H. S. (2021). Sparsity induced by covariance
transformation: some deterministic and probabilistic results.
Proc. Roy. Soc. Lond. A, 477.



COVARIANCE MATRICES

Covariance matrices and their inverses are often nuisance parameters.

A sparsity assumption allows construction of estimators that are consistent in
relevant matrix norms when p(n)/n→ c > 0.

But consistency is only interesting insofar as the assumptions made are
satisfied to an adequate order of approximation.

This motivates a search for parameterisations in which the relevant covariance
models are sparse.



AN OPEN PROBLEM

Q∗: For a given (relevant) covariance model, not obviously sparse in any
domain, can a sparsity-inducing parameterisation be deduced?

A∗: . . .



STATISTICAL IMPLICATIONS OF A∗

Reparameterise to achieve maximal sparsity.

Seek a more effective and valid statistical analysis on the transformed scale by
exploiting the sparsity.

Transform the conclusions back to the scale of interest.

Hope, then prove, that the strong statistical properties are preserved after
back-transformation (Biometrika, 106, 605–617).



Q∗: For a given (relevant) covariance model, not obviously sparse in any
domain, can a sparsity-inducing parameterisation be deduced?

A∗: . . .

A proof of concept for Q∗: an illustration of the possibility of
increasing sparsity through reparameterisation.



EXAMPLE OF A NON-STANDARD PARAMETERISATION

The matrix logarithm L of a covariance matrix Σ is defined as

Σ = exp(L) =
∑∞

k=0
1
k!
Lk .

Spectral decomposition:

Σ = ΓΛΓT , Λ , diag{λ1, . . . , λp}
L = Γ∆ΓT , ∆ , diag{log(λ1), . . . , log(λp)}.

The inverse satisfies Σ−1 = exp(−L).



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Σ, Σ−1 ∈ V+
p (R) ,

{
S ∈Mp(R) : S = ST , S � 0

}
(open cone)

L ∈ Vp(R) ,
{
S ∈Mp(R) : S = ST} (vector space).

Natural symmetrised basis for Vp(R) of the form B = B1 ∪ B2:

B1 =
{
B : B = eje

T
j , j ∈ [p]

}
B2 =

{
B : B = eje

T
k + eke

T
j , j , k ∈ [p], j 6= k

}
.

By contrast, V+
p (R) does not possess a basis.

L =
∑|B|

m=1αmBm where B1, . . . ,B|B| ∈ B.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Impose sparsity on
L =

∑|B|
m=1αmBm where B1, . . . ,B|B| ∈ B.

through the basis coefficients. Specifically:

α = (α1, . . . , α|B|) satisfies ‖α‖0 = s∗ < p.

The eigenvectors and eigenvalues of Σ inherit substantial structure.



STRUCTURE INDUCED ON THE EIGENVECTORS AND EIGENVALUES OF Σ THROUGH
SPARSITY OF L
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Figure: Simulation average of ‖γj‖0 (left) and I{λj = 1} (right) for 100 random logarithmically s∗-sparse covariance

matrices, plotted against index j of ordered eigenvalues (y-axis) and s∗ ∈ {1, . . . , p} (x-axis) for p = 100.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

There is a deterministic answer. A random matrix perspective aids interpretation.

Suppose the support of α is a simple random sample of size s∗ from the index set {1, . . . , p(p + 1)/2}.

The expected number of non-unit eigenvalues of Σ = Σ(α) is approximately d∗ < p, where

d∗ = root

{
4p + p(p − 1)

2(p + 1)

[
log
( p

p − d

)
− d

2p(p − d)

]
− s∗

}
.

The corresponding eigenvectors have d∗ non-zeros in expectation.

The other eigenvectors are of the form ej .



APPROXIMATION ERROR
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WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Suppose the support of α is a simple random sample of size s∗ from the index set {1, . . . , p(p + 1)/2}.
The resulting Σ is of the form

ID*

10.0°

Dense p.d. 
symmetricP PT =

Ip-D* where E[D*]=d*

Σ =
⎬

where P is a permutation matrix. The same structure holds for deterministic logarithmically sparse
covariance matrices but the dimension of the identity block is less explicit.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Indicator of non-zero entries for:

Left: one realisation of a random sparse L;

Centre: the corresponding matrix exponential Σ = exp(L)

Right: the thresholded version T (Σ) = {Σij I(|Σij | ≥ 1)}.

Yellow entries represent non-zeros. Blue entries represent zeros.

A sparse L typically corresponds to an appreciably less sparse Σ.



REMARKS AND OPEN PROBLEMS

The deterministic version is an if and only if result.

The same structure holds on Σ−1 as on Σ.

Two other qualitatively similar examples and an encompassing formulation.

Seek the most appropriate sparsity scale. Analytically? Empirically?

An empirical approach: parameterise a path through parameterisation space and
estimate the sparsity scale, similarly to Box-Cox.



Example 3

Construction of factorisable transformations

Battey, H. S. and Cox, D. R. (2020). High-dimensional nuisance parameters: an
example from parametric survival analysis. Information Geometry, 3, 119–148.

Battey, H. S., Cox, D. R. and Lee, S. (2023). On partial likelihood and the
construction of factorisable transformations. Information Geometry, to appear.



SIMPLE MOTIVATING EXAMPLES

Given n pairs of twins, one twin from each pair is chosen at random to receive a treatment. A
response (e.g. recovery time, blood pressure) is measured on the treated twin and control twin
and written (Ti ,Ci ) for i = 1, . . . , n.

Goal: estimate the treatment effect ψ. There are pair-specific nuisance parameters λ1, . . . , λn.

Misleading estimates of ψ are obtained unless problem-specific manoeuvres are applied.

Eliminate n nuisance parameters: if Ti and Ci are exponentially distributed of rates λi + ψ and
λi − ψ the conditional density of Ti at t, given si = ti + ci is

2ψe−2ψt

1− e−2ψsi
(does not depend on λi ).

Eliminate n nuisance parameters: if Ti and Ci are exponentially distributed of rates λiψ and
λi/ψ the marginal density of Si = Ti/Ci at s is

ψ2

(1 + ψ2s)2
(does not depend on λi ).



REMARKS ON THE EXAMPLES

Easy examples. Inferential separations/group structure.

Nuisance parameters can be eliminated exactly only in special cases.

The goal is not to solve specific simple problems, but to reach the correct
answer by a seamless application of theory.

Hope: a general theory that covers exact cases can be applied to more
difficult problems to approximately eliminate nuisance parameters.



A SYSTEMATIC ROUTE TO THE ELIMINATION OF NUISANCE PARAMETERS

Solve a PDE to find a transformation of the data that eliminates the nuisance
parameters in cases where an exact solution is available.

Details omitted. In solving the PDE, population-level sparsity is induced.

Cox and Reid (1987): operates on the parameter space, reduces the role of nuisance
parameters but does not eliminate them.

Present approach operates on the sample space. Induces a stronger form of sparsity
than Cox and Reid (1987).



Example 4

Inference in high-dimensional regression

Battey, H. S. and Reid, N. (2023). On inference in high-dimensional
regression. J. Roy. Statist. Soc., B, 85, 149-175.



INFERENCE IN HIGH-DIMENSIONAL REGRESSION

Apply similar ideas in high-dimensional regression problems, i.e. eliminate
nuisance parameters to the extent feasible using transformations of the data.

Inference on regression parameters will be embedded within the inferential
framework of confidence sets of models.



INFERENCE IN HIGH-D LINEAR REGRESSION: NOTATION

n observations from a linear regression model. In matrix notation:

Y = Xβ + ε = xvβv + X−vβ−v + ε.

β is of dimension p � n and sparse: ‖β‖0 = s � n.

Treat each entry of β in turn as the interest parameter βv .



APPROXIMATE ORTHOGONALISATION

Seek Av that makes the vth column of AvX as orthogonal as possible to its
other columns. Write:

AvY = AvXβ + Avε

Ỹ v = X̃ vβ + ε̃v

If the orthogonalisation is successful, a simple linear regression of Ỹ v on x̃v
v (the

vth column of X̃ v ) estimates βv without bias (as in a factorial experiment).



APPROXIMATE ORTHOGONALISATION

Choose Av to minimise an observable upper bound on the squared bias plus
variance of the resulting estimator.

Rewriting in terms of qv = AvTAvxv produces a simple unconstrained
optimization problem:

argmin
q∈Rn

(qT xv )−2qT (In + X−vX
T
−v )q.

Such qv have an exact analytic form, facilitating analysis and comparison.



APPROXIMATE ORTHOGONALISATION

Exact analytic form for qv :

qv = a(In + X−vX
T
−v )−1xv , a ∈ R\{0}.

The resulting OLS estimator is β̃v = (qT
v xv )−1qT

v Y , with bias bv to be quantified.

The optimization induces population-level sparsity on the notional Fisher
information matrix; β̃v exploits this sparsity.



BRIEF COMMENTS

No penalization, therefore no need to standardize columns of X .

The procedure is calibrated.

In a special case, connections to other work can be made.

A key difference from earlier work is that we induce (do not assume)
population-level sparsity on the notional Fisher information matrix. In
this sense the approach is closer to Cox and Reid (1987), although it is
operationally very different.
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18 - - * * - - - - - - - - - - - * - - - - - *
19 - - - - - - - - * - - * - * * * - - - - - -
20 - - * - - * - * - - - - - - - - - - - - - -
21 - - - - - - - - * - - - - * * * - - - - - -
22 - - - - - - - - * - - - - * - - - - - * * -
23 - - - - - - - - * - - - - * - - * - - - - *
24 - - - * * - - - * * - - - - - * - - - - - -
25 - - * * - - - - - * - - - - - * - - - - - *
26 - - - - - - - - * - - - - * - - * * - - - -
27 - - - - * * - * - * - - - - - - - - - - - -
28 - - - - - - - - * - - * - * * - - * - - - -
29 - - - * - - - - * - - * - - - - - * - - - *
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31 - - - * - - - - * - - * - - - - - - - * - *
32 - - - - - - - - * - - - - * * - * - - - - *
33 - - - * * - - - * - * - - - - * - - - - - -
34 - - * * - - - - - * - - - * - * - - - - - -

Usage as an adjunct and refinement to
confidence set of models (Cox and
Battey, 2017; Battey and Cox, 2018).

If several or many models fit the data
equivalently well, an arbitrary choice
among them is fine for prediction but is
likely to be misleading for scientific
understanding.

Should aim to report all statistically
indistinguishable well-fitting models.



SUMMARY

For inference on an interest parameter in the presence of a high-dimensional
nuisance parameter, the estimation error associated with the nuisance parameter
needs to be restrained.

A common approach is to assume the nuisance parameter array is sparse.

I have presented examples of recent work with a recurring theme: seek
reformulations that induce population-level sparsity in non-standard domains.

Parameter orthogonalisation (Cox and Reid, 1987) can also be formulated in this way.



The talk was based on:

Battey, H. S. (2023). Inducement of population sparsity. Canadian J. Statist. (Festschrift in honour of Nancy Reid), to appear.

synthesising:

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion).
J. Roy. Statist. Soc., B, 49, 1–39.

Battey, H. S. (2017). Eigen structure of a new class of structured covariance and inverse covariance matrices. Bernoulli, 23,
3166–3177.

Battey, H. S. and Cox, D. R. (2020). High-dimensional nuisance parameters: an example from parametric survival analysis.
Information Geometry, 3, 119–148.

Battey, H. S. and Reid, N. (2023). On inference in high-dimensional regression. J. Roy. Statist. Soc., B, 85, 149–175.

Battey, H. S., Cox, D. R. and Lee, S. (2023). On partial likelihood and the construction of factorisable transformations.
Information Geometry, to appear.

Also mentioned but not discussed:

Rybak, J. and Battey, H. S. (2021). Sparsity induced by covariance transformation: some deterministic and probabilistic
results. Proc. Roy. Soc. Lond. A, 477.

Battey, H. S. (2019). On sparsity scales and covariance matrix transformations. Biometrika, 106, 605–617.

Battey, H. S. and Cox, D. R. (2018). Large numbers of explanatory variables: a probabilistic assessment.
Proc. Roy. Soc. London A, 474.

Cox, D. R. and Battey, H. S. (2017). Large numbers of explanatory variables, a semi-descriptive analysis.
Proc. Nat. Acad. Sci., 114, 8592–8595.


