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Summary
That parametrization and sparsity are inherently linked raises the possibility that relevant 15

models, not obviously sparse in their natural formulation, exhibit a population-level sparsity after
reparametrization. In covariance models, positive-definiteness enforces additional constraints on
how sparsity can legitimately manifest. It is therefore natural to consider reparametrization maps
in which sparsity respects positive definiteness. The paper provides insight into structures on
the physically-natural scale that induce and are induced by sparsity after reparametrization. Of 20

the four structures initially uncovered, the richest can be generated, under a causal ordering,
by the joint-response graphs studied by Wermuth & Cox (2004). This connection leads to an
interpretation of approximate zeros and explains modelling implications of enforcing sparsity
after reparameterization: in effect, the relation between two variables would be declared null if
relatively direct regression effects were negligible and other effectsmanifested through long paths. 25

The Iwasawa decomposition of the general linear group, combined with the graphical-models
interpretation, points to a class of reparametrizations for the chain-graph models (Andersson
et al., 2001), with undirected and directed acyclic graphs as special cases. The insights have a
bearing on methodology, some aspects of which are developed. An extensive simulation uses the
theoretical insights to further explore regimes under which reparametrization is beneficial. 30

Some key words: Causality; Chain graphs; Graphical models; Matrix logarithm; Reparametrization; Sparsity.

1. Introduction
Sparsity, the existence of many zeros or near-zeros in some domain, plays at least two roles

in statistics, depending on context: to aid interpretation and to prevent accumulation of error
incurred through estimation of nuisance parameters. There is now a large literature concerned 35

with enforcing sparsity on sample quantities, having assumed that the corresponding population-
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level object is sparse. The present paper is concerned with the more fundamental question of
whether there are parametrizations enjoying a population-level sparsity not present to the same
extent in the original formulation. In other words, from a parametrization that is natural from a
modelling point of view, we seek a sparsity-inducing reparametrization.40

Inducement of population-level sparsity, through a traversal of parametrization space or data-
transformation space, is a relatively unexplored area. Battey (2023) unified four isolated examples
from this perspective, starting from the work on parameter orthogonalization (Cox and Reid,
1987). The development of Gaussian graphical models (e.g. Lauritzen, 1996; Cox & Wermuth,
1996) and graphical models for extremes (Engelke & Hitz, 2020) is also somewhat in this vein. In45

the same spirit, we focus on interpretation and insight at the population level, leaving for future
development the important question of how to deduce the sparsity scale empirically.

The motivating question for this paper is whether, for a broad enough class of covariance
structures, not obviously sparse in their natural parameter domain, a non-trivial sparsity-inducing
reparametrization can be deduced in which sparsity respects positive definiteness. By non-trivial,50

we mean that it is possible to discriminate more effectively on the new scale between elements
that are large and elements that are small. This rules out artificially sparse reparametrizations
such as Σ 7→ cΣ for c > 0 close to zero. Battey (2017) and Rybak & Battey (2021) provided a
proof of concept. Their position was that covariance matrices and their inverses are often nuisance
parameters, and it is therefore arguably more important that the sparsity holds to an adequate55

order of approximation in an arbitrary parametrization, than that the sparse parametrization has
interpretable zeros. An example of this type is linear discriminant analysis, where the interest
parameter is the linear discriminant. In the case of undirected Gaussian graphical models, the
precisionmatrix is the interest parameter by virtue of the interpretation ascribed to its zeros. Thus,
both aspects are of interest and are addressed here. A third and different type of situation is when60

the covariance matrix is a nuisance parameter that has a known structure up to a low-dimensional
parameter. This is common in some settings, for instance in the analysis of split-plot or Latin
square designs with block effects treated as random.

The starting point for the paper is the identification of new parametrizations in which sparsity
conveniently manifests in a vector space. For these, we uncover the structure induced on the orig-65

inal scale through zeros in the new parameter domain, as well as the converse result: that matrices
encoding such structure possess exact zeros after reparametrization. The scope is considerably
broadened through the possibility of approximate zeros, of which there may be many more in the
new parameter domain than in the original or inverse domains. An important insight is therefore
the interpretation of approximate zeros, as this explains the modelling implications of enforcing70

sparsity after reparameterization. Under a, perhaps notional, causal ordering, the relation between
two variables would be declared null if relatively direct regression effects were negligible and
other effects manifested through long paths. Section 7 unifies old and new parametrizations via
a class of matrix decompositions representing the chain graphs, allowing for both directed and
undirected edges, and recovering the four fundamental parametrizations as special cases.75

Because the population-level sparsity manifests in a vector space, any sensible estimator
exploiting the sparsity will respect positive definiteness. We present one approach with high-
dimensional statistical guarantees in §8.

2. Notation
Table 1 indicates subsets of the vector space M(p) of p × p real matrices. Most are matrix Lie80

groups with matrix multiplication as the group operation; those that are vector spaces have a
natural matrix basis. A generic vector subspace of M(p) is written V(p).
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Notation Matrix subset Basis notation
PD(p) symmetric positive definite matrices
Sym(p) symmetric matrices Bsym

D(p) diagonal matrices Bdiag

GL(p) nonsingular matrices
P(p) permutation matrices
O(p) orthogonal matrices
SO(p) special orthogonal matrices (determinant +1)
Sk(p) skew-symmetric matrices Bsk

LT(p) lower-triangular matrices Blt
LTu(p) lower-triangular with unit diagonal entries
LTs(p) strictly lower-triangular matrices Blts

Table 1: Matrix subsets of M(p).

Also extensively referenced is Conep ⊂ Sym(p), the interior of a convex cone within Sym(p)
excluding the origin, as formalized in Appendix B of the supplementary material. For the purpose
of the present paper, Conep can be thought of as the constrained set of p(p + 1)/2 elements 85

constituting the upper triangular part of a positive definite matrix.
Diagonal and lower triangular matrices with positive diagonal elements are differentiated using

the subscript +. The symbol ⊕ denotes the direct sum of two vector spaces; A ⊕ B also represents
a block-diagonal matrix with blocks A and B. The index set {1, . . . , p} is written [p]. The length
of a vector v is written dim(v) and the cardinality of a finite set A is written |A|. 90

The sets of basis matrices in Table 1 are constructed from the canonical basis vectors e1, . . . , ep
for Rp, where ei ∈ Rp is a zero vector with 1 as its ith component. Specifically Bsym :=
{B1, . . . , Bp(p+1)/2} consists of p(p − 1)/2 non-diagonal matrices ejeT

k
+ ekeT

j for j < k and p
diagonal matrices of the form ejeT

j , the latter also constituting Bdiag; Bsk := {B1, . . . , Bp(p−1)/2}

consists of skew symmetric matrices ejeT
k
− ekeT

j for j < k; Blt := {B1, . . . , Bp(p+1)/2}, consists 95

of lower triangular matrices ekeT
j , j ≤ k; andBlts := {B1, . . . , Bp(p−1)/2} consists of strictly lower

triangular matrices ekeT
j with j < k. The matrix exponential of a square matrix A is defined as

eA =
∑∞

k=0 Ak/k!. Conversely, if a matrix logarithm L of a square matrix M exists, then M = eL .
See Appendix C for existence and uniqueness conditions.

For random variables X1, X2 and X3, the statement that X1 is conditionally independent of X2 100

given X3 is notated by X1 |= X2 |X3, unconditional independence notated by X1 |= X2.

3. Reparametrization
The set Conep is, from one perspective, the natural parameter domain for parametrizing the

manifold PD(p). The question we seek to address is whether there is another parameter domain
that is less direct, but in which a population-level sparsity is present, ideally with interpretable 105

zeros or near-zeros. This is most compelling in the absence of considerable sparsity on the original
or inverse scales; in that case, the reparametrization is said to be sparsity-inducing. The problem
is initially addressed from the opposite direction, by considering the parameter domains in which
sparsity can be fruitfully represented, and then studying the form of multivariate dependencies
that are implied by exact zeros in these non-standard parametrizations. We clarify in subsequent 110
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sections the extent to which, and manner in which, a covariance or precision matrix might be
sparser after reparametrization, and the implications for estimation and interpretation.

In a sense to be clarified, a construction based on the chain graph representations of §7 subsumes
the dependence structures identified in §4 into a broader sparsity class. This ultimately points to a
class of structures in which sparsity manifests in a vector space, and that enjoy a graphical models115

interpretation on the physically natural scale when a full or partial causal ordering is present.
From an initial parameterization of PD(p), formalized in Appendix B, we study four reparame-

terizations arising from maps Conep → Rp(p+1)/2 such that sparsity in the new domain Rp(p+1)/2

respects the positive definiteness constraint on Σ. In other words, an arbitrary configuration of
zeros in the new parameter domain Rp(p+1)/2 does not violate positive definiteness of Σ or Σ−1.120

The four fundamental parametrizations discussed in this work are, with D(d) = diag(d1, . . . , dp),

α 7→ Σpd(α) := eL(α), L(α) ∈ Sym(p), α ∈ Rp(p+1)/2;
(α, d) 7→ Σo(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ Sk(p), α ∈ Rp(p−1)/2, d ∈ Rp;

α 7→ Σlt (α) := eL(α)(eL(α))T, L(α) ∈ LT(p), α ∈ Rp(p+1)/2;
(α, d) 7→ Σltu(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ LTs(p), α ∈ Rp(p−1)/2, d ∈ Rp . (1)125

That the four maps (1) are fundamental emerges from the Iwasawa decomposition of the group of
nonsingularmatrices, owing towhich the paper has an enlightening group-theoretic underpinning.
We have placed most of this discussion in the supplementary material in favour of a more broadly
accessible exposition, but we return briefly to the Iwasawa decomposition in §7.2.

For each of the four reparametrization maps, the parameter domain Rp(p+1)/2 is identified with130

a different vector space of the same dimension. These are, respectively, Sym(p), Sk(p) × D(p),
LT(p), and LTs(p) × D(p). The subscripts on Σ in the parametrizations indicate which of the
matrix sets, PD(p), SO(p), LT+(p) and LTu(p) respectively, prescribed coordinates in terms of α,
are represented as the image of the matrix exponential. In each case L(α) ∈ V(p) depends on α
through its expansion135

L(α) = α1B1 + · · · + αmBm (2)

in the canonical basis for V(p), as specified in §2. The canonical basis is part of the definition
of the reparametrization maps. Appendices B and C establish the legitimacy of the maps, this
hinging in the case of Σo and Σlt on some constraints on α or conditions on the covariance
matrices. Thus, Σpd and Σltu are favourable in this respect.

Another parametrization in which sparsity respects positive definiteness is in terms of the140

Cholesky factors themselves, rather than the matrix logarithm of the Cholesky factors. This is
related to the Σlt and Σltu parametrizations as discussed in §5. While sparsity in the Cholesky
factors has not been explicitly considered, its implications can be deduced from Wermuth &
Cox (2004). Several authors have modelled the Cholesky components in terms of covariates;
Pourahmadi (1999) appears to have started this line of enquiry.145

4. Sparsity structures of Σ(α) induced by, and inducing, exact zeros in α
Consider the matrices L ∈ V(p) ⊂ M(p) from (1), all of which can be written in terms of

a canonical basis B of dimension m as L(α) = α1B1 + · · · + αmBm. Suppose now that α =
(α1, . . . , αm) is sparse in the sense that ‖α‖0 =

∑
j I1 {αj , 0} = s∗ � m. In general, the sparsity

of L(α) = log(M) is different from the sparsity of M . However, certain sparsity structures are150

necessarily preserved in both directions, in the sense that particular arrangements of exact zeros in
M and its logarithmic transformation coincide. These structures, and the corresponding structures
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of Σ, are specified in Corollaries 1-4. One might call these zeros structural zeros: ones that are
preserved through transformation regardless of the values of the non-zero entries. There is also
the possibility of coincidental zeros in the logarithmic domain that are not present in the original 155

domain. This can be seen most easily from the Σpd parametrisation. For s∗ < p, Battey (2017)
showed that Σ = Σpd(α) is necessarily of the form

Σ =
∑
j∈A

λjojoT
j +

∑
j∈Ac

ejeT
j , ‖oj ‖0 = p − |Ac |, (3)

where (λj, oj)pj=1 are the pairs of eigenvalues of Σ andA is a set specified by the configuration of
zeros in α. The implication of (3), since the second sum only specifies unit entries in diagonal
positions corresponding to A, is that if 160

Lik =
∑
j∈A

log λjoi jok j = 0 (4)

for positions i and k such that oi j and ok j are not identically zero over j ∈ A, then the cor-
responding entry Σik is necessarily non-zero. This coincidental zero in the logarithm comes
from cancellation, as distinct from the structural zeros in the eigenvectors. Equation (4) illus-
trates clearly that nothing is lost by transforming to the matrix logarithmic domain, discarding
eigenpairs used for the calculation, and transforming back: even when coincidental zeros are 165

encountered in L = log(Σ), the corresponding entries of Σ are recovered from the ensemble.
In Gaussian graphical models, the structures expounded in Corollaries 1-4 correspond to

conditional and unconditional independencies between specific sets of variables. Since identical
patterns of zeros are present in transformed matrices, these sparsity structures, when present
in the transformed domain, imply equivalent statements about conditional and unconditional 170

independence. It is possible, however, to make additional statements from approximate zeros. We
revisit this aspect in §5 and §6.

Theorem 1 is a general result, whose application to the four cases results in Corollaries 1-4.

Theorem 1. Let M = eL ∈ M(p) where L ∈ V(p), a vector space with canonical basis B of
dimension m. The matrix L has d∗r and d∗c non-zero rows and columns, of which d∗ coincide 175

after transposition, if and only if M has p − d∗r rows of the form eT
j for some j ∈ [p], all distinct,

p − d∗c columns of the form ej , and of these, p − d∗ coincide after transposition. If M is normal,
i.e. MTM = M MT, then d∗r = d∗c = d∗.

The quantities d∗r , d∗c and d∗ are related to s∗ when α is sparse. A loose bound is max{d∗r, d∗c} ≤
2s∗, but max{d∗r, d∗c} can be considerably smaller than this, as it depends on the configuration 180

of basis elements picked out by the sparse α. Indeed, max{d∗r, d∗c} � p is possible even when
s∗ exceeds p, provided that the configuration of non-zero elements of α produces zero rows or
columns of L. Figure 1 shows an example of a structure of M established by Theorem 1. In
particular settings, where the form of V(p) is made explicit, there may be additional structure,
e.g. lower triangular, that is not reflected in Figure 1. 185

Corollaries 1 and 2 to be presented are not new. However, their proofs in Appendix G are new,
and presented in terms of the general formulation of Theorem 1.

Corollary 1. Let Σ be parametrized as Σpd(α) = eL(α) and let d < p. Then, Σpd(α) is of the
form Σ = P(Σ1 ⊕ Dp−d)PT, where P ∈ P(p) is a permutation matrix, Σ1 ∈ PD(d) and Dp−d ∈

D(p − d), if and only if L(α) = P(L1 ⊕ ∆p−d)PT, where L1 ∈ Sym(d) and ∆p−d ∈ D(p − d). 190

Corollary 1 as stated emerges from the properties of the matrix logarithm applied to block
diagonal matrices. The version of Battey (2017) gives a stronger restriction in that s∗ is required
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Fig. 1: Example of a structure of M as established in Theorem 1 with p = 10, d∗r = 7, d∗c = 8 and
d∗ = 9. The entries that are zero by Theorem 1 are light blue, those equal to one are medium
blue, and the remaining entries, whose values are unconstrained, are dark blue.

to be less than p which also reduces the rank of the matrix logarithm. In that case Dp−d and ∆p−d
from Corollary 1 are replaced by Ip−d∗ and 0p−d∗ , as reflected in (3).

Corollary 2. For an arbitrary diagonal component D = diag{d1, . . . , dp}, let Σ be195

parametrized as Σo(α) = eL(α)eD(eL(α))T. Then, Σo(α) is of the form Σ = P(Σ1 ⊕ Dp−d∗)PT,
where P ∈ P(p) is a permutation matrix, Dp−d∗ ∈ D(p − d∗) and Σ1 ∈ PD(d∗), if and only if
L(α) = P(L1 ⊕ 0p−d∗)PT, where L1 ∈ Sym(d∗).

Corollary 3. Let Σ be parametrized as Σlt (α) = eL(α)(eL(α))T. Then, Σlt (α) is of the form
Σ = VVT, where V = Ip + Θ with Θ ∈ LT+(p). The ith row of Θ is zero if and only if the ith row of200

L(α) is zero. Similarly, the jth column of Θ is zero if and only if the jth column of L(α) is zero.

Corollary 4. For an arbitrary diagonal component D = diag{d1, . . . , dp}, let Σ be
parametrized as Σltu(α) = eL(α)eD(eL(α))T. Then, Σltu(α) is of the form Σ = UΨUT, where
Ψ = eD ∈ D+(p), U = Ip + Θ. The ith row of Θ is zero if and only if the ith row of L(α) is
zero. The jth column of Θ is zero if and only if the jth column of L(α) is zero.205

Zeros in α produce structured patterns of zeros in Σ and Σ−1 in parametrizations Σpd and
Σo, and structured patterns of zeros in the Cholesky factors in parametrizations Σlt and Σltu
respectively. These structures are interpreted in §5.

Although constraints on s∗ are avoided in Theorem 1, a small value, e.g. s∗ < p/2, is guaranteed
both to generate and to be implied by a simplification in the underlying conditional independence210

graph, under a notional Gaussian model. Relatively large values of s∗ can also entail graphical
reduction in many cases, in the sense of introducing conditional independence relations relative
to the saturated case. As an illustration, there are p(p + 1)/2 basis elements for L in the Σpd
parametrization. For α to induce a pattern of zeros in Σ of the type discussed in Corollary 1, L
needs to have a zero row, which requires only p zero coefficients in the basis expansion of L.215

Thus, s∗ can be as large as s∗ = p(p − 1)/2 for the structure to hold.
To make a comparison between different structures of Σ more explicit, we consider a simple

example with p = 5. For the parametrizations Σpd and Σo we set d∗ = 3, corresponding to s∗ = 6
and s∗ = 3 respectively. For Σltu we consider two cases: Σr

ltu
, for which d∗r < p, d∗c = p (this

serving as the definition of Σr
ltu

), and Σc
ltu

, for which d∗r = p, d∗c < p; in both cases s∗ = 6. The220
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(a) Σpd (b) Σo

(c) Σr
ltu

(d) Σc
ltu

Fig. 2: Structure of Σ(α) induced by sparsity of α. Zero entries are depicted by light blue, unit
entries by medium blue, and the unrestricted entries by dark blue.

quantities d∗, d∗r and d∗c are defined in Theorem 1. The resulting covariance structure is depicted
in Figure 2. If, for an arbitrary diagonal component, the map α 7→ Σltu(α) is instead replaced by
an essentially equivalent representation α 7→ Σutu(α) in terms of upper triangular matrices, the
analogous structures Σrutu(α) and Σcutu(α) are the same as for Σc

ltu
(α) and Σr

ltu
(α) respectively.

For the Σltu parametrization, Figure 2 illustrates that, unlike a Θ with zero rows, a Θ with 225

zero columns can generate a dense covariance matrix. Intuitively, for the same restriction on the
sparsity of α, the corresponding covariance matrices Σr

ltu
and Σc

ltu
should represent relationships

of similar inherent structural complexity. The following result confirms this intuition. Specifically,
Lemma 1 shows that, although Σc

ltu
might have no zeros, the sparsity restriction on α induces a

low-rank structure on a submatrix of Σc
ltu

. The existence of a low-rank structure has a statistical 230

interpretation in terms of latent variables (e.g. Fan et al, 2013).

Lemma 1. Consider a random vectorY = (Y T
1 ,Y

T
2 ,Y

T
3 )

T with covariance matrix Σ. The columns
of Θ in Corollary 4 corresponding to Y2 are zero if and only if the submatrix(

Σ11 Σ13
Σ21 Σ23

)
of Σ has rank dim(Y1).

If zeros in d are allowed, the basis coefficients of the α 7→ Σlt (α) and (α, d) 7→ Σltu(α, d) 235

parametrizations are related. To see this, write

Σlt = exp(L) exp(LT) = exp(LuD1) exp((LuD1)
T),
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where D1 ∈ D(p) and Lu ∈ LTu(p). On writing LuD1 = Ls + D1, where Ls ∈ LTs(p) contains the
strictly lower triangular part of LuD1,

Σlt = exp(L) exp(LT) = exp(Ls) exp(D1 + DT
1) exp(LT

s), (5)

by the properties of thematrix exponential, which recovers theΣltu parametrizationwith D = 2D1.
Thus if d is allowed to have zeros, there is an exact relationship between the coefficients of the240

expansion of Σltu and those of Σlt . Since the transformation Σltu provides a more convenient way
of parametrizing regression graphs, subsequent discussion focuses on Σltu. Most insights derived
for the Σltu parametrization extend directly to Σlt .

5. Sparsity under the Σltu parametrization
5.1. Causal ordering245

A familiar result interprets zeros in a precision matrix as conditional independencies under a
Gaussianity assumption. The less familiar directed graphical models have important differences,
both mathematically and conceptually. For instance, many different causal models may be com-
patible with the same structure of zeros in the precision matrix, and an undirected graph whose
associated Gaussian model has a sparse precision matrix could be appreciably less sparse in250

Σ−1 when the undirected edges are replaced by directed ones. The key factor determining this is
whether there are common response variables occurring later in the causal ordering.

Whether directed or undirected edges are more natural depends on context. The present section
is concerned with directed edges. By postulating a, perhaps notional or provisional, causal
ordering among the underlying random variables, substantive understanding can be attached to255

the interpretation of sparsity on the transformed scale. Through this route we develop insight into
the implicit assumptions involved in enforcing sparsity when it is only approximately present,
broadening the scope of the work.

5.2. The matrix logarithm and weighted causal paths
With [p] = {1, . . . , p}, let a ⊂ [p] and b = [p]\a be disjoint subsets of variable indices. As a260

consequence of a block-diagonalization identity for symmetric matrices (Cox &Wermuth, 1993;
Wermuth & Cox, 2004),

Σ =

(
Σaa Σab

Σba Σbb

)
=

(
I |a | 0
ΣbaΣ

−1
aa I |b |

) (
Σaa 0

0 Σbb.a

) (
I |a | Σ−1

aaΣab

0 I |b |

)
. (6)

The components Πb |a := ΣbaΣ−1
aa ∈ R

|b |× |a |, Σaa ∈ PD(|a|) and Σbb.a := Σbb − ΣbaΣ−1
aaΣab ∈

PD(|b|) are the so-called partial Iwasawa coordinates for PD(p) based on a two-component
partition |a| + |b| = p of p. For a statistical interpretation, let Y = (Y T

a,Y
T
b
)T be a mean-zero265

random vector with covariance matrix Σ. Then Πb |a is the matrix of regression coefficients of Ya
in a linear regression of Yb on Ya, and Σbb.a is the error covariance matrix, i.e. Yb = Πb |aYa + εb
and Σbb.a = var(εb). Applying the block-diagonalization identity recursively results in a block-
diagonalization in 1 × 1 blocks, which corresponds to the LDL decomposition of Σ inherent to
the Σltu parametrization. Specifically, Σ = UΨUT with Ψ ∈ D+(p) and270

U = Ip + Θ = (Ip − B)−1, (7)

whereΘ ∈ LTs(p) and Bi j is the regression coefficient ofYj in a regression ofYi on its predecessors
Y1, . . . ,Yi−1. Although in principle an arbitrary ordering can be chosen, it is natural to use a
postulated causal ordering, if one is available. In the corresponding representation of Y as a
directed acyclic graph with nodes Y1, . . . ,Yp, a directed edge Yj → Yi can exist only if j < i, in
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1 2 3
β2.1

β3.12

β3.21

Fig. 3: Directed acyclic graph with edge weights corresponding to regression coefficients.

which case the total effect of Yj on Yi can be expressed in terms of the regression coefficients. An 275

example gives intuition prior to a formal statement in Proposition 1.

Example 1. Consider a set of three variables (Y1,Y2,Y3). The total effect ofY1 onY3 is related to
the conditional effects through Cochran’s recursion (Cochran, 1938), also known as the trek rule,

β3.1 = β3.12 + β3.21β2.1. (8)

The coefficient β3.1 is the regression coefficient of Y1 in a regression of Y3 on Y1 only, having 280

marginalized over Y2, while β3.12 is the coefficient of Y1 in a regression of Y3 on Y1 and Y2. To
make this concrete at the population level, β3.1 is the total derivative of

f (y1, ȳ2) := E(Y3 | Y1 = y1,Y2 = ȳ2),

treating y1 and ȳ2 = ȳ2(y1) = E(Y2 | Y1 = y1) as free variables, i.e.

β3.1 =
D f (y1, ȳ2)

Dy1
=
∂ f (y1, ȳ2)

∂y1
+
∂ f (y1, ȳ2)

∂ ȳ2

d ȳ2(y1)

dy1
.

The right-hand side of (8) corresponds to tracing the effects ofY3 onY1 along two paths connecting
the nodes in a recursive system of random variables (Y1,Y2,Y3), with edge weights given by the 285

corresponding regression coefficients, as depicted in Figure 3.
A directed edge in a recursive system can exist from node j to node i only if j < i. Thus, there

are two possible paths from Y1 to Y3: Y1 → Y3 and Y1 → Y2 → Y3, which correspond to the first
and second term in (8) respectively. Let υi j(l) denote the effect ofYj onYi along all paths of length
l, specified for this three-dimensional system as 290

υ21(1) = β2.1, υ31(1) = β3.12,

υ32(1) = β3.21, υ31(2) = β3.21β2.1.

The lower-triangular matrices U and L = log(U) have the form,

U = ©­«
1 0 0
β2.1 1 0

β3.12 + β3.21β2.1 β3.21 1

ª®¬ , L = ©­«
0 0 0
β2.1 0 0

β3.12 +
β3.21β2.1

2 β3.21 0

ª®¬ . (9)

More generally, the following proposition establishes the interpretation of entries of the lower- 295

triangular matrix U and its matrix logarithm, L.

Proposition 1. Consider a parametrization Σltu(α, d) = eL(α)eD(d)(eL(α))T and let U =
exp(L(α)). Let βi. j[k] denote the regression coefficient on Yj in a regression of Yi on Yj and
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Y1, . . . ,Yk . The (i, j)th elements of U and L have the form,

Ui j =


0 if i < j,
1 if i = j,∑p−1

l=1 υi j(l) if i > j,
Li j =

{
0 if i ≤ j∑p−1

l=1
υi j (l)

l if i > j,
300

where

υi j(l) =

{∑i−1
k=j+l−1 βi.k[i−1]υk j(l − 1) if i − j ≥ l,

0 otherwise.

The entry Ui j for j < i thus corresponds to the sum of effects of Yj on Yi along all paths
connecting the two nodes, with edge weights given by regression coefficients. In contrast, Li j ,
and by extension, the corresponding coefficient in the basis expansion of L, is equal to the305

weighted sum of effects of Yj on Yi along all paths connecting the two nodes, with weights
inversely proportional to the length of the corresponding path.

Proposition 1 provides insight into the effect of logarithmic transformation relative to the iden-
tity transformation and the inverse transformation, whose resulting zeros encapsulate conditional
independencies in a Gaussian model. Specifically, the entries of B can be viewed as representing310

paths of length 1, corresponding to a complete discounting of longer paths, while U = (I − B)−1

has entries aggregating the contributions along all paths, with weights equal to one, i.e. no dis-
counting of longer paths. In between these two extremes, logarithmic transformation weights
a path of length l by a factor 1/l, as reflected in Proposition 1. Moreover, the weights in the
logarithmic transformation are such that the off-diagonal entries of log(I − B) and log((I − B)−1)315

are equal in absolute value, since log((I − B)−1) = − log(I − B). Section 5.4 discusses some of
the implications of these distinctions, following a discussion of exact zeros in §5.3.

5.3. Exact zeros
The previous discussion makes clear that there can be configurations of zeros in α that do not

produce whole rows or columns of zeros in L. In that case, no structural insights are available from320

Corollary 4, although an interpretation is still available for any exact zero of L via Proposition 1.
Corollary 5 provides the relationship between exact zeros in U and L under a causal ordering.

Corollary 5. If no directed path exists from node j to node i, j < i, then Bi j = Ui j = Li j = 0.
If Ui j = 0 or Li j = 0 for j < i, then either effects of Yj on Yi along different paths cancel, in which
case Bi j need not be zero, or there exists no directed path from j to i, in which case Bi j is zero.325

Under an assumption of no path cancellations, Corollary 5 generalizes Corollary 4 to situations
in which the configuration of zeros in α does not produce a zero row or column of L. To see this,
note that a zero jth row of Θ implies that there are no directed paths between nodes Y1, . . . ,Yj−1
andYj , while a zero ith column implies that there are no directed paths between nodeYi and nodes
Yi+1, . . . ,Yp. An example of a graph whose sparsity structure is described by Corollary 5 but not330

by Corollary 4 is depicted in Figure 4.
Unlike the sparsity structures identified in the more general Corollary 5, the sparsity patterns

described in Corollary 4 can be interpreted in terms of conditional independencies under an
additional assumption of Gaussianity.

Proposition 2. Consider a Gaussian random vector Y = (Y1, . . . ,Yp)T with zero mean and335

covariance matrix Σ = UΨUT , where U = I + Θ, Θ ∈ LTs(p) and Ψ ∈ D+. Then,
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1 2 3 4
β2.1

β3.12

β4.123

β3.21

Fig. 4: Directed acyclic graph corresponding to U and L satisfying U42 = 0 and L42 = 0.

1. If the jth column of Θ is zero, then Yj |=Yj+1, . . . ,Yp |Y1, . . . ,Yj−1. Consequently, Σ−1
ji = 0 for

i ∈ { j + 1, . . . , p}.
2. If the jth row of Θ is zero, then Yj |=Y1, . . . ,Yj−1 and Σi j = 0 for i ∈ {1, . . . , j − 1}.

For the same number of edges in a graph, the number of zeros in the Gaussian precision matrix 340

depends on the directions of the arrows relative to the configuration of arrows; no reordering of
variables can produce a sparser representation. This arises because conditioning in the interpre-
tation of precision matrices is on all variables, rather than only those that occur earlier in the
ordering. Given a pair of variables i and j, marginalization over a third variable induces an edge
between i and j if the marginalized variable is a transition node or a source node. By contrast, 345

conditioning is edge-inducing if the conditioning variable is a sink node. In a diagrammatic
representation due to Cox & Wermuth (1996), with �◦ and �◦ representing marginalization and
conditioning respectively,

i ←− �◦ −→ j, i ←− �◦ ←− j, i −→ �◦ ←− j
i ---- j, i ←− j, i ---- j .

where ---- indicates that no direction in the induced edge is implied.
These marginalization and conditioning identities also imply that U will typically be sparser in 350

the correct causal ordering than in an erroneous ordering, modulo coincidental path cancellations,
as by definition, any source or transition nodes can only be present among the conditioning sets,
and there can be no conditioning on sink nodes.

Figure 5 depicts two examples of directed graphs that are compatible with the covariance
matrices from Figure 2 (c) and (d) respectively. The indices of non-zero off-diagonal entries 355

of the corresponding lower-triangular matrices are {(3, 1), (3, 2), (5, 1), (5, 2), (5, 3), (5, 4)} and
{(2, 1), (3, 1), (4, 1), (5, 1), (4, 3), (5, 3)}. These are non-zero entries of both B andΘ, as a convergent
Taylor representation of the matrix inverse in (7) shows that if Θ has zero rows or columns, the
corresponding rows and columns of B are also zero.

Interpretation of the precision matrix is more appropriate for undirected graphs. For instance, 360

if the edges in Figure 5 (a) were undirected, it would hold that 4 |= {1, 2, 3} | 5 and Σ−1
4j would be

zero for j = 1, 2, 3. That variable 5 is a sink node, however, invalidates this result, as conditioning
on the common sink node induces an edge between variable 4 and all other variables.

5.4. Approximate zeros
By Proposition 1, the element (i, j) of L = log(U), and by extension, the corresponding coeffi- 365

cient in the basis expansion of L, is equal to the weighted sum of effects ofYj onYi along all paths
connecting the two nodes, with weights inversely proportional to the length of a given path. As a
result, in the absence of cancellations of effects along paths of different lengths, which produces
an exact zero, a logarithmic transformation reduces the contribution of long paths relative to short
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(a) Σr
ltu
(α) (b) Σc

ltu
(α)

Fig. 5: Directed acyclic graphs corresponding to the example of Figure 2. Arrows indicate directed
edges and nodes correspond to random variables.

paths in the absolute entries of the matrix. This leads to an interpretation of a near-zero as mean-370

ing that short paths between variables are associated with small conditional effects, while any
large conditional effects are mediated by a string of intermediate variables, where conditioning
is on all variables that occur earlier in the causal ordering. The approximation inherent to any
statistical algorithm that sets small values of α to zero is thus as follows: the relation between
nodes i and j < i would be declared null if relatively direct regression effects were negligible and375

other effects manifested through long paths.
All of B, U and L contain the same information in different guises, that in B being the most

easily interpretable. Once sparsity is sought, however, the sparse approximations to B, U and L
place emphasis on different aspects.

Since components of B are the direct effects, thresholding on this scale (i.e. setting absolute380

entries below a given threshold to zero) implicitly assumes that the direct effects are the most
important to recover. Consider three variables with connections 1→ 2→ 3 and no direct edge
between 1 and 3. Suppose that edge weight 1→ 2 is very large, while that of 2→ 3 is small
and hence thresholded to zero. The effect of 1 on 3 is not reflected in the resulting thresholded
approximation to B, even though this effect may be appreciable in view of the large 1→ 2 effect.385

At the other extreme, the entries of U represent the sum of effects along all paths, in which the
information about short paths is absorbed in a composite. The cost, potentially, is a small number
of near-zeros, and recovery of distant effects, as thresholding implicitly assumes that paths of
all lengths are equally important. Consider a simplistic example in three variables to illustrate
a particular point, ignoring other aspects. These variables are “parents smoke”, “individual390

smokes”, “individual has lung cancer”. Since longer paths are not discounted, it may superficially
appear that “parents smoke” has a larger effect on “individual has lung cancer” than “individual
smokes”, as it has a positive direct effect as well as a positive indirect effect via the intermediate
variable “individual smokes”.

Thresholding on the scale of L is a compromise between these two extremes. In the first395

example we can still recover, after sparse approximation, the effect 1→ 3 that would be lost to
thresholding on the original scale, while in the second example, we can still identify “individual
smokes” as the main cause of cancer.
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Interestingly, the above conclusion bears some resemblance to a suggestion from influential
work in computer science about learning in networks. Grover & Leskovec (2016) define two types 400

of neighbourhoods of a node in a graph: one consisting of direct neighbours, and another that
involves traversing long paths in the graph. The authors argue that information from both types
should be combined, with a hyperparameter specifying the relative importance of paths. The Σltu
parametrization specifies the analogue of this hyperparameter as a discount rate on long paths,
given by the inverse path length. 405

6. Sparsity under the Σpd parametrization
6.1. Sparsity-induced structures

The ordering is immaterial for the Σpd and Σo parametrizations. The structures elucidated in
Corollaries 1 and 2 imply the same structure on the scale of the precision matrix, and therefore
correspond to conditional independencies. We do not put forward that such structures are likely 410

to hold exactly. Their purpose is instead to approximate a more complex reality, so as to aid
interpretation or limit the accumulation of estimation error in procedures like linear discriminant
analysis, where the covariance matrix is a nuisance parameter. With this in mind, §6.2 establishes
the interpretation of exact and approximate zeros under the Σpd parametrization, while §7 explains
the relevance of the Σpd parametrization in the context of chain graphs, broadening its scope. 415

6.2. Interpretation of zeros under the Σpd parametrization
The interpretation of basis coefficients in the transformation Σpd is less straightforward than

in the case of Σltu. Under additional assumptions we can recover an interpretation of zero entries
in the matrix logarithm of Σ ∈ PD(p).

Consider an undirected Gaussian graphical model for Y1, . . . ,Yp, with no self-loops. Write V = 420

Σ−1 for the precision matrix. The regression coefficients are entries of the matrix Ṽ = diag(V)−1V ,
where diag(A) denotes a diagonal matrix whose diagonal entries are equal to those of A. The
form of Ṽ is analogous to that of normalized graph Laplacian in spectral graph theory (e.g. Von
Luxburg , 2007). Let υuij(l) denote the total effect of a unit change in Yj on Yi along all paths
of length l, the superscript u in υuij(l) distinguishing this quantity for an undirected graph. As 425

comparedwith υi j(l) from §5.2, in the undirected case, a given node can be connected to all others.
The following proposition establishes the interpretation of entries of log(Σdiag(V)) = − log(Ṽ).
This result can be seen as an adaptation of Proposition 1 for undirected graphs.

Proposition 3. For a matrix Σ ∈ PD(p), let Ṽ = diag(V)−1V and Σ̃ = Σdiag(V). Then the
elements (i, j) of Σ̃ and of its matrix logarithm have the form, 430

Σ̃i j =

∞∑
l=1

υuij(l), log(Σ̃)i j = − log(Ṽ)i j =
∞∑
l=1

υuij(l)

l

if the infinite sums converge.

Unlike in Proposition 1, expressions for elements of transformed matrices in Proposition 3
involve infinite sums. As a result, Proposition 3 requires an additional assumption of convergence.
The interpretation established in Proposition 3 holds for the matrix logarithm of a suitably scaled
covariance matrix, rather than for log(Σ). However, a direct calculation yields the following result, 435

which is also implicit in Corollary 1.

Corollary 6. Assume that no cancellation of effects of Yj on Yi occurs along different paths.
Then Li j = 0 if and only if Ṽi j = 0.
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Thus, in the absence of cancellation of effects, an element (i, j) of L = log(Σ), as well as the
corresponding basis coefficient, is zero if and only if there is no path between nodes i and j. It440

is often the case, in spite of the previous sentence, that L is sparser than Σ and Σ−1 under more
general notions of sparsity. This is probed by simulation in §9.

7. Chain graphs and the Iwasawa decomposition
7.1. A unifying parametrization for chain graphs

The interpretation of (6) in terms of partial Iwasawa coordinates points, via a group-theoretic445

treatment, to an encompassing formulation. This is first developed from a statistical perspective.
Corollary 7 to be presented is a unifying result in which the interaction of sparsity on the

transformed scale with structure on the original scale is elucidated, recovering three of the results
of §3 as special cases in which connected components consist of either all undirected edges
(Corollary 1) or all directed edges (Corollaries 3 and 4).450

A graph G = (V, E) is a chain graph if it contains both directed and undirected edges, but no
semi-directed cycles (Drton & Eichler, 2006, p. 83). When two nodes v,w ∈ V are connected by
a path consisting solely of undirected edges, we say that u and w are equivalent. LetU be a set of
equivalence classes, called chain components, of this equivalence relation. Define a new graph
D = (U, E) with nodesU and edges E between chain components. Since we assume that there455

are no semi-directed cycles in G, the graph of D is a directed acyclic graph.
Chain graphs are usually characterized by the alternative Markov property (Andersson et al.,

2001), satisfied under a mean-zero Gaussianity assumption if and only if the precision matrix can
be written as

Σ
−1 = (I − BT)Ω−1(I − B), (10)

where Ω−1
uv is zero if an undirected edge (u, v) is not in the graph, and Bvu = 0 if a directed edge460

u→ v is not in the graph (Drton & Eichler, 2006). Since there exists at most one edge between
any pair of nodes, Ωuv , 0 implies Bvu = 0, and vice-versa. Every directed acyclic graph can be
represented by a triangular matrix, so we can always find a permutation matrix P ∈ P(p) such that
decomposition (10) of PΣ−1PT yields a strictly lower-triangular matrix B and a block-diagonal
matrix Ω−1. That there exists a P ∈ P(p) that simultaneously rearranges B and Ω−1 follows from465

the assumption that there is an underlying chain graph. From now onwe assume that an ordering of
variables has been chosen such that B is triangular and Ω−1 is block-diagonal. The factorization
(10) then represents the precision matrix as a product of block-diagonal and block-triangular
matrices. The block-triangular matrix captures connections between chain components, while the
block-diagonal matrix describes connections within the chain components.470

Suppose that Y ∼ N(0, Σ) is partitioned into c blocks, Y = (Y1, . . . ,Yc), where each block Yi
constitutes a chain component, that is, the variables within Yi form a connected undirected
graphical model. Let pi denote the dimension of the sub-vector Yi. The decomposition of the
precision matrix (10) implies the decomposition of Σ in terms of a block-diagonal component Ω:

Σ = TΩTT, Ω = Ω1 ⊕ Ω2 ⊕ · · · ⊕ Ωc, Ωi ∈ PD(pi), (11)

whereT = (I − B)−1 ∈ LTs(p) has diagonal blocks Ip1, . . . , Ipc . Factorization (11) can be obtained475

by successive block-triangularization of Σ, and the corresponding block-triangular transformation
can be parametrized as

(α, δ) 7→ Σbt (α, δ) := eL(α)eD(δ)(eL(α))T,
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where D(δ) = D1(δ1) ⊕ · · · ⊕ Dc(δc), Di(δi) ∈ Sym(pi), δi ∈ Rpi (pi+1)/2 and δ = (δT
1 . . . δT

c)
T.

The matrix logarithm L(α) is block-triangular with c diagonal blocks, each equal to a pi × pi
identity matrix. With pδ the dimension of δ, the dimension of α is p(p + 1)/2 − pδ . 480

That Σbt represents a unifying structure is seen on noting that when D(δ) is diagonal we recover
the parameterization Σltu(α, δ), and therefore also Σlt (α) by the discussion surrounding equation
(5). At the other extreme, when D(δ) consists of a single block of dimension p × p, we recover
Σpd(δ). The remaining parametrization Σo is not directly recoverable as a special case of Σbt ,
although there is an indirect connection because L ∈ Sk(p) can be decomposed as L = Ls − LT

s 485

with Ls ∈ LTs(p). Additional details are in Appendix E.

Corollary 7. Let Σ be parametrized as Σbt (α, δ) = eL(α)eD(δ)(eL(α))T and let d ≤ p. Then,
Σbt (α, δ) = TΩTT, and,

1. (Sparsity of DAG ): T = I + A and the ith row of A is zero if and only if the ith row of L(α) is
zero. The jth column of A is zero if and only if the jth column of L(α) is zero. 490

2. (Sparsity of chain components ): Ω is of the form Ω = PΩ(0)PT, where P is a permutation
matrix and Ω(0) = Ω(0)1 ⊕ Φp−d, where Φp−d ∈ D(p − d) and Ω(0)1 ∈ PD(d) is block-diagonal
if and only if D(δ) = P(D(0)1 ⊕ ∆p−d)P

T where D(0)1 is block-diagonal and ∆p−d ∈ D(p − d).

Since L(α) = log(T) = − log(I − B), the coefficients of log(I − B) in the appropriate basis are
equal to −α. Thus, the sparsity indices of I − B and T on the logarithmic scale coincide. In 495

contrast, no obvious relationship exists between the sparsity of I − B and T , since a zero entry
in I − B does not imply a zero entry in T , and vice versa. A similar point applies to Ω and Ω−1

since D(δ) = log(Ω) = − log(Ω−1).
A result analogous to Corollary 7 can be obtained for the precision matrix, since zero rows

and columns of L(α) and −L(α) = log(I − B) coincide. Part (1) of Corollary 7 thus describes 500

structures arising when the sparsity patterns of T and I − B coincide. For example, suppose
that the ith column of I − B is zero, that is, node i has no descendants. This is reflected on the
transformed scale by a zero ith row of L(α).

7.2. Connection to the Iwasawa decomposition of the general linear group
The parametrization Σbt represents the general form of the Iwasawa decomposition of the 505

general linear group, pertaining to the partition p1 + · · · + pc = p of p. This provides a group-
theoretic perspective on how the parametrization Σbt unifies and generalizes three of the four
parameterizations from (1), detached from any consideration of causal ordering. Appendix D
provides further discussion. The identification PD(p) � GL(p)/O(p) characterizes a positive defi-
nite matrix as a non-singular one whose ‘orthogonal component’ has been discounted. Explicitly, 510

ΣA = AT A is positive definite for every A ∈ GL(p), and left-multiplication by any orthogonal
matrix gives an equivalence class [A] = {OA : O ∈ O(p)} ⊂ GL(p) such that ΣA = VTV for any
V ∈ [A]. Relatedly, Draisma & Zwiernik (2017) identified the subgroup of GL(p) acting on Σ,
and studied corresponding equivariant estimators that preserve the chain graph property.

The group theoretic perspective provides a new way to interpret the information geometry of 515

the zero-mean multivariate Gaussian (Skovgaard, 1984). The Fisher information metric tensor
coincides with the quotient geometry of PD(p) � GL(p)/O(p) under a Riemannian metric that is
invariant to the transitive action of GL(p). Upon representing a positive definite covariance matrix
Σ in the partial Iwasawa coordinates (Σaa, ΣbaΣ−1

aa, Σbb.a), the metric is endowed with an inter-
pretation compatible with a suitable graphical model and a corresponding Σltu parametrization. 520
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8. Propagation of error and estimation
8.1. Existing results for Σpd

A question of practical relevance is whether increased sparsity on the transformed scale trans-
lates to an inferential advantage. Intuition in the case of the Σpd parametrization can be obtained
through consideration of the simplest estimator exploiting sparsity, namely the thresholding esti-525

mator of Bickel&Levina (2008a,b) applied on the transformed scale. For the Σpd parametrization,
thresholding sets to zero the entries of a pilot estimator L̂ = log Σ̂ that are below a threshold in
absolute value. Success of the approach hinges on the elementwise consistency of L̂ for L. We
are thus interested in how the estimation error Σ̂ − Σ propagates to the scale of the matrix loga-
rithm. To simplify notation and isolate the considerations involved, we outline the argument for530

a deliberately oversimplified setting, before highlighting modifications for the analysis of L̂ − L.
Consider a small perturbation of Σ, of the form Σ + εI for ε > 0, which preserves the eigen-

vectors. The argument in Appendix I shows that, using a complex-variable representation of the
matrix logarithm, the error propagates to the ( j, k)th entry on the logarithmic scale as

[log(Σ + εI) − log(Σ)]j,k = ε
∑
r,v

( 1
2πi

‰
γ

log(z)
(z − (λr + ε))(z − λv)

dz
)
ojrokv

∑̀
,s

o`rosv, (12)

where oi j denotes the ith entry of the jth eigenvector of Σ. Consider the summation over ` and s535

in (12). For r = v, ∑̀
,s

o`vosv =
∑
s

osvosv +
∑
s,`,s

o`vosv = 1

by the orthonormality identityOTO = OOT = I. For r , v, the double summation is approximately
zero by the observation that cross-products o`rosv are of order 1/p and zero on average for large
p. Subject to this last approximation, (12) simplifies to

[log(Σ + εI) − log(Σ)]j,k = ε
∑
v

( 1
2πi

‰
γ

log(z)
(z − (λv + ε))(z − λv)

dz
)
ojvokv, (13)

where the term in parenthesis is given by the sum of the residues at the two singularities,540

1
2πi

‰
γ

log(z)
(z − (λv + ε))(z − λv)

dz =
log(λv + ε) − log(λv)

λv + ε − λv
=

log(λv + ε) − log(λv)
ε

,

whose first-order Taylor expansion around ε = 0 is λ−1
v , i.e. the derivative of log λv. The pertur-

bation ε thus propagates to the scale of the matrix logarithm as

[log(Σ + εI) − log(Σ)]j,k = ε
∑
v

λ−1
v ojvokv +O(ε2) = ε[Σ−1]j,k +O(ε2),

which, as expected, is the directional derivative of the matrix logarithm at Σ in the direction εI.
Realistic pilot estimators of Σ entail perturbations of both eigenvectors and eigenvalues, and

the previous argument then requires that pilot estimators provide consistent estimates ôv of545

eigenvectors in the sense that ôT
rov →p 0 for r , v and ôT

vov →p 1. In the more general argument,
the constant ε is replaced by elements of Σ̂ − Σ in a summation on the right hand side. A more
complete development for specific pilot estimators can be found in Battey (2019), where results
are also presented for the propagation of error in the converse direction under the spectral norm,
having exploited sparsity on the scale of the matrix logarithm.550
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8.2. New results for Σltu
A broadly analogous scheme applies to estimation under a sparse Σltu parameterization.

Consider a decomposition (11), i.e. Σ = TΩTT, where Ω is block-diagonal and T is triangular.
The Σltu parametrization arises as a special case when each block contains a single variable.
When a causal ordering of variables or blocks of variables is available, a natural pilot estimator 555

for T regresses each variable on its causal predecessors, called parents, and a corresponding
pilot estimator of Ω is the sample covariance matrix of the resulting residuals. If the variables
are not generated by a causal model, pilot estimators for both T and Ω can be obtained through
an LDL decomposition of the sample covariance matrix. The resulting pilot estimators, T̂ and
Ω̂, are elementwise consistent. As in Section 8.1, sparsity on the transformed scale is exploited 560

by thresholding log(T̂) and log(Ω̂), and converting the resulting quantities back to the original
scale by applying the matrix exponential. The resulting estimators, T̃ and Ω̃, are consistent in the
spectral norm. A natural estimator of Σ is then Σ̃ = T̃Ω̃T̃T, which is also consistent in the spectral
norm. A more detailed discussion of the estimator and its properties can be found in Appendix J.

Proposition 4 establishes spectral-norm consistency of the proposed estimator under conditions 565

detailed in Appendix J. These include Condition 1, which characterizes the sparsity of L and D.

Condition 1. Assume that L ∈ U(ql, sl(p)) ∩ LTs(p) and D ∈ U(qω, sω(p)) ∩ PD(p), where
ql, qω ∈ [0, 1], sl(p)/p→ 0, sω(p)/p→ 0 and

U(q, s(p)) =
{

A ∈ M(p) : max
i

p∑
j=1
|Ai j |

q = s(p)
}
. (14)

Proposition 4. Suppose that the tuning parameters of equations (J.4) and (J.8) of Appendix J 570

satisfy τl � (n−1 log p)1/2 and τω � sl(p)2(n−1 log p)(3/2−ql )(1−qω ). Under Condition 1 and Con-
ditions J.1-J.4 of Appendix J.2, with ϕ ≥ 1/2, the estimator Σ̃ = T̃Ω̃T̃T of Σ = TΩTT satisfies

‖Σ̃ − Σ‖2 = Op

(
max{rt, rω}

)
,

where

rt = sl(p)2(n−1 log p)3/2−ql, rω = sω(p)sl(p)2−2qω (n−1 log p)(3/2−ql )(1−qω ).

An important question concerns the implications of misspecification of the causal ordering.
Although this would annul the interpretation of §5, the role of the causal ordering in Proposition 575

4 is via the degree of sparsity present, which is reflected in the rates in Proposition 4. Thus, to
the extent that the conditions are still satisfied, Proposition 4 remains valid.

9. Some numerical insights
9.1. Approximate sparsity in the four logarithmic domains

The prospect of routinely inducing sparsity through logarithmic transformation under the four 580

maps (1) is only realistic under a notion of approximate sparsity that allows for slight departures
from zero. Simulations in Appendix K give an indication of how approximate sparsity in the
four logarithmic domains associated with Σpd, Σo, Σlt and Σltu transfers to a commensurate
notion of approximate sparsity in the inverse domain, this being the most widely used parameter
domain in which to perform sparse estimation. Tables K.1-K.4 of Appendix K also compare the 585

performance of thresholding estimators on the different scales, suggesting in all cases except Σo
that exploiting sparsity on the most sparse scale, i.e. the logarithmic scale under the relevant
parametrization, transfers substantial benefits to estimation of Σ−1. In the case of Σo, the simple
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thresholding approach of Appendix K appears too simplistic, presumably owing to the constraints
on α needed to make the parametrization injective.590

9.2. Exploration of sparsity regimes
In §9.1, the matrices on the transformed scale were sparse by construction. We now investigate

whether the logarithmic transformation can be useful in less idealized situations.
Consider a Gaussian directed acyclic graph with covariance matrix Σ = (I − B)−1D−1(I −

BT)−1. When B contains many zeros or near-zeros, Σ is also likely to be sparse, and the estimator595

Σ̂τ of Bickel & Levina (2008b) would be a natural choice. Sparsity of Σ typically decreases both
as the number of non-zero elements of B increases, and as the magnitude of non-zero entries
(the weights of directed edges) becomes large. This follows from Proposition 1, whereby the
entry (i, j) of the matrix (I − B)−1 corresponds to the sum of effects of node i on node j along
all paths connecting the two nodes. As the number, or magnitude, of non-zero edge weights600

increases, cumulative effects inevitably increase. Although a similar phenomenon is expected for
L = − log(I − B), Proposition 1 suggests that the sparsity of L should decrease more slowly, due
to the discounting of longer paths. Eventually, as the number of entries of B below a threshold
increases, or as the absolute value of these entries increase, we expect a strong accumulation of
effects on variables ordered last, as these will have the largest number of incoming paths. Since605

the number of possible paths increases exponentially with the number of nodes, the accumulation
of effects can cause entries of Σ to be unbounded.

There are thus three regimes. When the edge matrix B is sparse or its non-zero entries have
small absolute values, thresholding in the original domain will typically yield better results. As
the number of non-zero entries of B increases, or the edge weights increase, thresholding in the610

logarithmic domain is expected to be advantageous. With a further decrease in the sparsity of B
or increase in the edge weights, there is no approximate sparsity in either domain.

To verify this empirically, we compared the performance of thresholding on the original and
logarithmic scales under theΣltu parametrization, for different values of edgeweights and different
levels of sparsity for B. Specifically, we took D as the identity matrix and generated an edgematrix615

B by randomly selecting a prespecified percentage of its entries, and assigning a fixed value ε > 0
to those entries. Positivity of ε avoids cancellations of effects along different paths. For each
covariance matrix, we generated a sample of size n = 150 from the corresponding multivariate
normal distribution and constructed thresholding estimates on the scales of interest, following
the recommendation of Bickel & Levina (2008b) for selecting the threshold τ. Specifically, a620

sample covariance matrix was estimated on two disjoint subsets of the data, of size n/3 and
2n/3. The estimate Σ̃ based on the larger sample was treated for the purpose of tuning as
the target covariance matrix. Thresholding was applied to the matrix estimated on the smaller
sample, yielding a sparse estimate Σ̄τ . The threshold was then chosen to minimize the relative
`2-norm error, ‖Σ̃ − Σ̄τ ‖2/‖Σ̃‖2 across 5 random splits. The final estimate Σ̂τ was based on the625

selected threshold and the full sample. The same procedure, with the obvious modifications, was
used to select the threshold used for sparse estimation on the logarithmic scale under the Σltu
parametrization, resulting in estimates Ûτ of U and Ûτ D̂ÛT

τ of Σ.
Results in Figure 6 (a) show that thesholding on the original scale outperforms thresholding

on the logarithmic scale under the Σltu parametrization for high levels of sparsity of B and small630

values of ε , while the opposite is true for medium levels of sparsity and ε . For large values,
the covariance matrix is highly non-sparse and neither sparsity scale is suitable. The standalone
performance of Ûτ D̂ÛT

τ and Σ̂τ is shown in Figures 6 (b) and (c). Results indicate that when
Ûτ D̂ÛT

τ outperforms Σ̂τ it is due both to the poorer performance of the latter estimate and
improved performance of the former. The performance of Ûτ D̂ÛT

τ exhibits a sharp transition as635
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Fig. 6: Relative `2 errors (a, b and c) and relative `1 row norms (d) for different combinations of
ε (y-axis) and levels of sparsity of B, measured by the percentage of non-zero entries (x-axis).
Pixels are median values over 100 simulations with n = 150, p = 100 for different combinations
of ε (y-axis) and levels of sparsity of B, measured by the percentage of non-zero entries (x-axis).

the sparsity of B decreases and ε increases. This may suggest that the logarithmic transformation
is detrimentally distorting for very sparse covariance matrices. Since the sparsity conditions for
thresholding are closely related to row-wise norms, we show in Figure 6 (d), for comparison to
(a), the ratio of maximum `1 row norm of the two matrices, defined for A ∈ M(p) as

r(A) = max
i∈{2,...,p}

i−1∑
j=1
|Ai j |. (15)

In order to make the metric comparable for lower-triangular and symmetric matrices, r(A) only 640

considers the entries of A below the diagonal. The contours of equal r(L)/r(Σ) in (b) closely
resemble those of the relative errors in (a). We probe this relationship further in Figure K.4 of
Appendix K.1. The performance of ÔτΛ̂ÔT

τ and exp(L̂τ) relative to Σ̂τ is shown in Figure 7.
Interestingly, the pattern of relative behaviour mirrors that of Ûτ D̂ÛT

τ .
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τ − Σ‖2/‖Ûτ D̂ÛT
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Fig. 7: Relative `2 errors for different combinations of ε (y-axis) and levels of sparsity of B,
measured by the percentage of non-zero entries (x-axis). Each entry corresponds to the ratio of
median errors over 100 Monte Carlo simulations with n = 150 and p = 100.

Sample size n
Estimator 30 50 100
Σ̂τ 60% (6.4%) 62.6% (5.2%) 66.9% (7.7%)

exp(L̂τ ) 64.5% (3.7%) 66.8% (3.6%) 70.6% (2.5%)
Ûτ D̂ÛT 65.5% (3.1%) 67.3% (3.6%) 69.7% (2.4%)

Table 2: Median (standard deviation) accuracy over 20 simulations using arrhythmia dataset.

9.3. Classification of leukemia and arrhythmia patients645

We assessed the use of the new sparsity scales for classification of leukemia and arrhythmia
patients from high-dimensional observations. The details are described in Appendix L. For
leukemia patients (p = 3571), the results show a slight improvement in accuracy, from median
of 95.5% on the original scale to 97.7% for Σltu transformation. However, the difference is
insignificant, with standard deviations of errors around 5%. For arrhythmia patients (p = 164),650

we observe an improvement in performance for a range of sample sizes, as shown in Table 2.
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10. Closing discussion
The work has uncovered insights into the interpretation of sparsity on non-standard scales,

identifying situations in which an assumption of sparsity might be more reasonable on a trans-
formed scale. Open questions concern how one might test for sparsity across several different 655

scales, or find the best sparsity scale empirically. The work also points to the development of more
sophisticated estimators than those used in the simulations of §9, perhaps in the vein of Zwiernik
(2025), who proposed an elegant formulation covering constraints in the Σpd parametrization.
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A. Matrix groups 20

The following concepts from group theory are relevant to parts of the exposition and proofs. The action
of a group G on a set X is a continuous map G × X → X, (g, x) → gx. The orbit [x] of x ∈ X is the
equivalence class {gx : g ∈ G}, and the set of orbits X/G := {[x] : x ∈ X} is a partition of X known
as the quotient of X under the action of G. A group action is said to be transitive if between any pair
x1, x2 ∈ X there exists a g ∈ G such that x2 = gx1; in other words, orbits of all x ∈ X coincide. The subset 25

Gx = {g ∈ G : gx = x} of G that fixes x is known as the isotropy group of x and if Gx equals the identity
element for every x, the group action is said to be free.

For every subgroup H ⊂ G we can consider the (right) coset, or the quotient, G/H = {Hg : g ∈ G}
consisting of equivalence classes of g, where g̃ ∼ g if hg̃ = g for some h ∈ H. For groups G that act
transitively on X , the map X → G/G0 is a bijection, where G0 is the isotropy group of the identity 30

element.
A group G that is also a differential manifold is a Lie group. Lie groups thus enjoy a rich structure given

by both algebraic and geometric operations. The tangent space at the identity element, denoted by g, has
a special role in that, together with the group operation, it generates the entire group, i.e. every element
g ∈ G can be accessed through elements of g and the group operation. It is referred to as the Lie algebra 35

and is a vector subspace of the same dimension as the group. Relevant to the matrices introduced in §2,
we have:

C© 0000 Biometrika Trust
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(i) If G = GL(p) with matrix multiplication as the group action, then g = M(p).
(ii) If G = O(p) or SO(p) with matrix multiplication as the group action, then g = Sk(p), the set of skew-

symmetric matrices.40

(iii) If G = LT+(p) with matrix multiplication as the group action, then g is the set LT(p) of lower triangular
matrices.

(iv) If G = LTu(p) with matrix multiplication as the group action, then g is the set LTs(p) of lower triangular
matrices with zeros along the diagonal.

(iv) If G = PD(p) with logarithmic addition as the group action (Arsigny et al., 2017) then g = Sym(p).45

When G is a matrix Lie group, the usual matrix exponential can be related to the map expo : g→ G such
that expo(A) = eA. Properties of expo (e.g., injectivity) will depend on that of the matrix exponential,
and hence on the topology of G. If G is compact and connected then e is surjective. If it is injective in
a small neighbourhood around the origin in g, then it bijective. Since G is also a differentiable manifold,
a geometric characterization of the matrix exponential e is that it will coincide with the Riemannian50

exponential map under a bi-invariant Riemannian metric on G.
A good source of reference for matrix groups is Baker (2001).

B. Formalized definition of reparametrization
Let vec : Sym(p) → Rp2 be the vectorization map taking a symmetric matrix to a p2-dimensional

column vector. Define the half-vectorization map55

vech : Sym(p) → Rp(p+1)/2, vech(x) := A vec(x),

where the matrix

A :=
∑
i≥ j

(ui j ⊗ eT
j ⊗ eT

i ) ∈ R
p(p+1)/2×p2

picks out the upper triangular part of the vectorization, and ui j is a p(p + 1)/2-dimensional unit vector
with 1 in position ( j − 1)p + i − j( j − 1)/2 and 0 elsewhere. Its inverse

Rp(p+1)/2 3 x 7→ vech−1(x) := (vech(Ip)T ⊗ Ip)(Ip ⊗ x) ∈ Sym(p)

exists through the Moore-Penrose inverse of A. Let

Conep :=
{
σ ∈ Rp(p+1)/2 :

〈
vech−1(σ)y, y

〉
> 0, y ∈ Rp

}
,

be a constrained setwithinRp(p+1)/2. The definition ofConep implicitly engenders an injective parametriza-60

tion

f : Conep → Sym(p), f (σ) = vech−1(σ),

with image f (Conep) = PD(p) ⊂ Sym(p). Since PD(p) is open in Sym(p), with respect to f it is a
parametrized submanifold of Sym(p).

A reparametrization of PD(p) corresponds to an injective map h : N → Sym(p) from a domain N
with non-singular derivative such that there is a diffeomorphism ψ : N → Conep with h = f ◦ ψ. The65

derivative condition ensures that N is of dimension p(p + 1)/2. The two parametrizations f and h are said
to be equivalent since f (Conep) = h(N) = PD(p), and h is a reparametrization of f (and vice versa). The
commutative diagram in the left half of Figure B.1 illustrates the type of reparametrization used in this
paper.

In contrast, the statistical model or manifold is determined via an injective map g : PD(p) →
{
PΓ : Γ ∈70

PD(p)
}
that maps a covariance matrix Γ to a parametric probability measure PΓ on some sample space.

Every Σ is obtained from unique points in Conep and N , and the statistical model given by g is impervious
to reparametrization of the manifold PD(p). Reparametrization of the statistical model amounts to applying
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N Conep

PD(p)
{
PΓ : Γ ∈ PD(p)

}
ψ

h
f

g

Fig. B.1: The map h is a reparameterization of PD(p) initially parameterized using f . In contrast,
map g parametrizes a statistical manifold of parametric probability measures.

a diffeomorphism PD(p) → PD(p) such that correspondences Γ 7→ PΓ change but not the image g(PD(p)).
This form of reparametrization is not considered in the present work. 75

Amatrix Σ ∈ PD(p)with respect to the parametrization f is sparse if σ ∈ Conep is sparse. On the other
hand, the structure of sparsity in Σ with respect to the domain N depends on the map h and how N is
prescribed coordinates. We will use sparsity to refer to the domain or to the range of a parametrization
interchangeably, with context disambiguating the two.

C. Legitimacy of the four maps from Section 3 80

Consider first the Σpd parametrization. Starting from the natural parametrization σ 7→ f (σ) = Σ, where
σ ∈ Conep , the same Σ is reached via the more circuitous route σ 7→ e ◦ bsym ◦ φpd(σ) involving the
composition of three maps (see the upper left panel of Figure C.2). This composition consists of a
diffeomorphism φpd : Conep → Rp(p+1)/2 that takes σ to α, a bijective map bsym : Rp(p+1)/2 → Sym(p)
that maps α ∈ Rp(p+1)/2 to the symmetric matrix L(α) via the expansion (2) in the canonical basis Bsym, 85

and the matrix exponential e : Sym(p) → PD(p). The legitimacy of this parametrization is ensured by
Propositions C.2 and C.3 below.

The second parameterization Σo is also not new: this was considered by Rybak & Battey (2021) who
applied the matrix logarithm to O in the spectral decomposition Σ = OΛOT, where O ∈ O(p) is an or-
thonormal matrix of eigenvectors and Λ = eD ∈ D+(p) is a diagonal matrix of corresponding eigenvalues. 90

Without loss of generality Rybak & Battey (2021) took the representation in which O ∈ SO(p) and con-
sidered the map log : SO(p) → Sk(p), yielding a different vector space from that in Σpd in which to study
sparsity. Allowance for additional sparsity via d = diag(D) can be easily incorporated and corresponds
to further structure. The composition of three maps described in Figure 1 (top right) consists of a map
φo : Conep → Rp(p+1)/2, a map bsk from (α, d) to D(d) and L(α) via (2) in the canonical basis Bsk , and 95

the matrix exponential e : Sk(p) → PD(p) and e : D(p) → D+(p). The situation regarding invertibility of
the maps is more nuanced than for Σpd , owing to the non-uniqueness of the decomposition Σ = OΛOT

and multivaluedness of the matrix logarithm of O ∈ SO(p). For the purpose of the present paper, the
implications are negligible, as we can make the parametrization injective under some conditions in Σ. This
is clarified in Proposition C.4. 100

The situation is analogous for the two new reparametrization maps Σlt and Σltu , depicted in the
bottom row of Figure C.2. The constructions can alternatively be expressed in terms of upper triangular
matrices with analogous parametrizations Σut and Σutu and there are no substantive differences in the
conclusions of section 4 and section 5. As with Σo, invertibility of Σlt is not guaranteed without further
constraints, since e : LT(p) → LT+(p) is not injective, while the Σltu parametrization enjoys invertibility 105

without any restrictions on the parameter domain (Proposition C.4). The so-called LDL decomposition
of Σ is Σ = UΨUT, U ∈ LTu(p) where Ψ = eD ∈ D+(p). Analogously to the previous cases, the matrix
logarithm log : LTu(p) → LTs(p) is applied to U and represented in the canonical basis Bltu .
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bsym

φpd

vech−1

eL

α σ

L ∈ LT(p) PD(p) 3 Σ

blt

φlt

vech−1

eL (eL )T
110
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Fig. C.2: Reparametrization maps for Σpd (top left), Σo (top right), Σlt (bottom left), and Σltu
(bottom right).

Proposition C.1 establishes existence of the maps φ• introduced above.

Proposition C.1. The convex set Conep is diffeomorphic to Rp(p+1)/2.

Proof. The setPD(p) is a symmetric space of dimension p(p + 1)/2 of noncompact type and can thus has115

nonpositive (sectional) curvature when equipped with a Riemannian structure (Helgason, 2001). The map
vech−1 : Conep → PD(p) is injective, and we can thus pullback the metric from PD(p) to Conep making
it non-positively curved. The set Conep is simply connected and complete, and by the Cartan-Hadamard
theorem (Helgason, 2001) it is diffeomorphic to Rp(p+1)/2. �

The inverses φ−1
• determine precisely how sparsity in α or (α, d)manifests in a point in the convex cone,120

and thus, quite straightforwardly, in the covariance matrix Σ(α). However, they are difficult to determine
in closed form. The maps Σ• prescribe a path from α to Σ(α) (and similarly for (α, d)) and can be viewed
as suitable surrogates, but need not be diffeomorphisms even when injectivity is guaranteed.

Injectivity of Σpd, Σo, Σlt and Σltu hinge on injectivity of the matrix exponential, and uniqueness of
eigen, Cholesky and LDL decompositions for the latter three. We first consider the matrix exponential.125

Propositions C.2 and C.3 describe conditions for existence and uniqueness of the matrix logarithm,
which affect invertibility of the four reparametrizations in §3.

Proposition C.2 (Culver (1966)). Let M ∈ M(p). There exists an L ∈ M(p) such that M = eL if and
only if M ∈ GL(p) and each Jordan block of M corresponding to a negative eigenvalue occurs an even
number of times.130

Proposition C.3 (Culver (1966)). Let M ∈ M(p) and suppose that a matrix logarithm exists. Then
M = eL has a unique real solution L if and only if all eigenvalues of M are positive and real, and no
elementary divisor (Jordan block) of M corresponding to any eigenvalue appears more than once.

Proposition C.2 covers all four logarithm maps log : PD(p) → Sym(p), log : SO(p) → Sk(p), log :
LT+(p) → LT(p) and log : LTu(p) → LTs(p). Conditions that ensures uniqueness in Proposition C.3 are135

satisfied only by log : PD(p) → Sym(p) and log : LTu(p) → LTs(p). A geometric version of the sufficient
condition (“if" part) in Proposition C.3 claims uniqueness if M lies in the ball BIp (1) := {X ∈ M(p) :
‖X − Ip ‖2 < 1} around Ip , where ‖X ‖2 is the spectral norm of X . This provides a sufficient (not necessary)
condition to ensure that log(expY ) = Y .

Relatedly, perhaps more appropriate from the perspective of reparametrization of PD(p), are conditions140

that ensure injectivity of the matrix exponential e : M(p) → GL(p). As a consequence of Proposition C.3, e
is injective when restricted to Lie subalgebras Sym(p) and LTs(p), but not LT(p) and Sk(p). The geometric
version of the sufficient condition in Proposition C.3 then asserts that the matrix exponential is injective
when restricted to the ball B0(ln 2) := {L ∈ M(p) : ‖L‖2 < ln 2} around the origin 0 (zero matrix) within
M(p) (e.g. Baker, 2001, Proposition 2.4). This provides a sufficient (not necessary) condition to ensure that145

exp(log X) = X . The condition is close to being necessary for e : Sk(p) → SO(p) and e : LT(p) → LT+(p).
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For example, e : Sk(p) → SO(p) with p = 2 maps

2πnB1 = 2πn
(

0 1
−1 0

)
=

(
0 2πn
−2πn 0

)
, n ∈ Z

to the identity I2; thus, Σo((2π, d)) = Σo((4π, d)) for any fixed d ∈ R2. The issue arises because skew-
symmetric matrices of the form considered comprise the kernel of e : Sk(p) → SO(p). We see that
‖2πB1‖2 > ln 2 and thus violates the sufficient condition. 150

Moving on to the decompositions, the following proposition elucidates on conditions that ensure
injectivity of the four maps from §3 and legitimize them as reparametrizations of PD(p).

Proposition C.4.

(i) The maps α 7→ Σpd(α) and α 7→ Σltu are injective on Rp(p+1)/2.

(iii) Assume that the elements of d are distinct. The map (α, d) 7→ Σo(α, d) is injective when α is restricted 155

to No ⊂ R
p(p−1)/2 such that the image bsk(No × R

p) ⊆ B0(ln 2) × D(p) within Sk(p) × D(p), and upon
choosing ORP> for a particular permutation P ∈ P(p) of and combination of signs R ∈ D(p) ∩ O(p)
for the columns of O and a permutation PΛP> of elements of Λ, where bsk is as in §3.

(ii) The map α 7→ Σlt (α) is injective when restricted to Nlt ⊂ R
p(p+1)/2 such that the image blt (Nlt ) ⊆

B0(ln 2) within LT(p), where blt is as in §3. 160

Proof. Injectivity of Σpd follows from Proposition C.3. It is well-known that the Cholesky and LDL
decompositions as used in the definitions of Σlt and Σltu respectively are unique (Golub & Van Loan,
2013). Uniqueness of the LDL decomposition also stems from uniqueness of the Iwasawa decomposition of
GL(p) (Terras, 1988) through the identification PD(p) � GL(p)/O(p). The maps L(α) 7→ eL(α)(eL(α))T and
(L(α),D(d)) 7→ eL(α)eD(d)(eL(α))T are thus injective. When combined with injectivity of the exponential 165

map e : LTs → LTu from Proposition C.4, the parameterization Σltu is injective.
The situation concerning uniqueness of the eigen decomposition Σ = OΛOT is involved, even after

restriction to a subset of Sk(p) that renders the exponential e : Sk(p) → SO(p) injective. First note that
O ∈ SO(p) under our parameterization using the exponential map. Then, observe that ORRTΛRRTOT =

OΛOT for any R ∈ SO(p), and thus pairs (OR, RTΛR) map to the same Σ for every R ∈ SO(p) for which 170

RTΛR = Λ, since OR ∈ SO(p). Indeed, {R ∈ SO(p) : RTΛR = Λ} fixes Λ and is the isotropy subgroup
SO(p)Λ in SO(p) (see Supplementary Material A). In addition to SO(p)Λ, another source of indeterminacy
comes from permutations OP and PΛPT, with P ∈ P(p) and |P | = 1 so that P ∈ SO(p). Put together, this
implies that every pair (ORP, PΛPT) maps to the same Σ as long as R ∈ SO(p)Λ and P ∈ SO(p).

The situation can be salvaged if the positive elements of Λ are all distinct so that SO(p)Λ reduces to 175

the set D(p) ∩ SO(p) of diagonal rotation matrices with ±1 entries (Grossier et al., 2021, Theorem 3.3).
In this case, the map π : SO(p) × D+(p) → PD(p) is a 2p−1p! covering map with fibers π−1(Σ) consisting
of matrices obtained by p! permutations of elements of Λ, and a similar permutation of eigenvectors of Σ,
and 2p−1 matrices in the set D(p) ∩ SO(p) of diagonal matrices mentioned above with unit determinant,
which determine signs of the eigenvectors of Σ; there are 2p−1 such diagonal matrices and not 2p owing 180

to the unit determinant constraint.
Uniqueness can be ensured upon identifying a global cross section So ⊂ SO(p) × D+(p) that picks out

one element from every fiber such that π−1(Σ) ∩ So is a singleton for every Σ ∈ PD(p). For example, So can
be defined by selecting a particular permutation PΛPT and ORP of the eigenvalues and eigenvectors of Σ
(e.g., elements ofΛ arranged in a decreasing order); since R ∈ D(p) ∩ SO(p), a fixed rule for choosing signs 185

of the eigenvectors determines a unique R. Then, So contains pairs (ORPT, PΛPT) for a fixed permutation
P ∈ SO(p). The cross section So is bijective with the quotient (SO(p) × D+(p))/∼ under the equivalence
relation ∼ that identifies any two pairs (O,Λ) that map to the same Σ.

The proof for injectivity of Σlt follows upon noting that the exponential map e : LT(p) → LT+(p) is
injective when restricted to the given ball within LT(p). This completes the proof. 190
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D. The Iwasawa decomposition of GL(p) and its Lie algebra
The matrix XT X is positive definite for every X ∈ GL(p), and the map X 7→ XT X is invariant to the

action (X,O) → OX forO ∈ O(p) of the orthogonal group. A positive definite matrix S can be transformed
to any other under the transitive action

(X, S) → XSXT, X ∈ GL(p), S ∈ PD(p)

of GL(p), and PD(p) is hence a homogeneous space: a differentiable manifold with a transitive differen-195

tiable action of GL(p). For example, between any pair S1, S2 ∈ PD(p) the invertible matrix X = S1/2
2 S−1/2

1
transforms S1 to S2 under the above action. The orthogonal group O(p) is the stabilizer of X = Ip and fixes
X ∈ GL(p), and we thus obtain the identification with GL(p) via the group isomorphism

PD(p) � GL(p)/O(p),

where GL(p)/O(p) is the set of equivalence classes [X] := {OX : O ∈ O(p)} or orbits of elements X ∈
GL(p). The benefit with this representation of PD(p) lies in the use of the Iwasawa decompositions of200

the group GL(p), and its lie algebra M(p), to define new parametrizations of PD(p); the decomposition of
GL(p) corresponds to the LDL decomposition of GL(p).

The Iwasawadecomposition of X ∈ GL(p) determines a unique triple (O,D,U) ∈ O(p) × D+(p) × LTu(p)
such that X = ODU (see e.g. Terras, 1988, Ch. 4). Since DU is lower triangular with positive diagonal
entries, we also recover the well-known QR decomposition. From the Iwasawa decomposition we have205

XT X = UD2UT ∈ PD(p), and we recover the unique LDL decomposition of the positive definite matrix
XT X (Golub & Van Loan, 2013). Additionally, the Iwasawa decomposition into O(p), D+(p) and LTu(p) at
the group level (GL(p)) has a corresponding decomposition of the Lie algebra of GL(p):

M(p) = Sk(p) ⊕ D(p) ⊕ LTs(p), (D.1)

where Sk(p), D(p) and LTs(p) are the Lie algebras of O(p), D+(p) and LTu(p), respectively.

E. Unification of the four fundamental parametrizations210

The four parametrizations considered in this work are based on the Iwasawa decomposition of GL(p)
and its Lie algebra M(p), since the matrices L(α) and D(d) are elements of the Lie algebras in (D.1).
The map α 7→ Σlt (α) is based on the sum LTs(p) ⊕ D(p) of two constituent Lie subalgebras from (D.1),
which coincides with another Lie subalgebra LT(p) of M(p) consisting of all lower triangular matrices. The
parametrization Σltu represents a full use of the Iwasawa decomposition (D.1).215

The parameterization Σpd relates to the Iwasawa decomposition via the Cartan decomposition (Terras,
1988, p.268) of the the Lie algebra M(p) of GL(p):

M(p) = Sk(p) ⊗ Sym(p),

which at the group level corresponds to the singular value decomposition of an invertible matrix. By further
decomposing the symmetric part of the Cartan decomposition, the Iwasawa decomposition represents a
refinement. In otherwords, since every L ∈ Sym(p) can be decomposed as L = Ls + LT

s + D for Ls ∈ LTs(p)220

and D ∈ D(p), we have that

Sym(p) = LTs(p) ⊕ D(p).

The identification PD(p) � GL(p)/O(p) implies that the orthogonal component of GL(p) is ignored in Σpd ,
and the Lie algebra Sk(p) of the orthogonal group O(p) containing the skew-symmetric parts of GL(p) is
thus unused.

The Σo parametrization, on the other hand, uses the Lie algebras Sk(p) and D(p) in (D.1). However,225

since every skew symmetric L ∈ Sk(p) can be decomposed as L = Ls − LT
s with Ls ∈ LTs(p), the Lie

algebra Sk(p) can be generated from the Lie algebra LT(p), and thus links the parameterization Σo with
the Iwasawa decomposition of GL(p).
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F. Change of basis
A change of a matrix basis B = {B1, . . . , Bd} is achieved by the action of a nonsingular W ∈ GL(p) as 230

WBW−1 := {W B1W−1, . . . ,W BdW−1}. The group GL(p) acts equivariantly on the map
∑

j αjBj 7→ Σ(α) =

e
∑

j αjBj , since eWAW−1
= WeAW−1 for every A ∈ M(p) and W ∈ GL(p). Hence,

eW (
∑

j αjBj )W
−1
= We

∑
j αjBjW−1 = WΣ(α)W−1,

may belong to PD(p) depending on the W chosen. The four maps Σpd, Σo, Σlt, Σltu are thus well-defined
only upon fixing a basis B for the considered Lie subalgebra.

G. Proofs for Section 4 235

G.1. Preliminary lemmas
Lemma G.1 (Axler, 2015). Let V be a real inner-product space and letT : V→ V be a linear operator

on V with matrix representation M = M(T). The following are equivalent: (i) M is normal; (ii) there
exists an orthonormal basis of V such that M = OB̃O−1 where O is orthogonal and the blocks of the
block-diagonal matrix B̃ are either 1 × 1 or 2 × 2 of the form 240(

a −b
b a

)
= ρ

(
cos θ − sin θ
sin θ cos θ

)
. (G.1)

where a, b ∈ R, b > 0, ρ > 0 and θ ∈ [0, 2π]. Each 1 × 1 block λ is an eigenvalue of M , and for each 2 × 2
block (G.1), a + bi and a − bi are eigenvalues of M .

The representation G.1 in terms of polar coordinates is convenient for subsequent calculations involving
the matrix logarithm.

Lemma G.2. Let M ∈ M(p) be a normal matrix. The matrix logarithm L, if it exists, takes the form 245

OBO−1, where O ∈ O(p) is orthonormal and B is block diagonal with blocks of the form described in
Lemma G.1.

Proof. By Lemma G.1, M = OB̃O−1, where O ∈ O(p) is orthonormal and B̃ is block diagonal. Let λ
be an eigenvalue of M . From Proposition C.2, existence of a logarithm requires that any negative real
eigenvalues have associated with them an even number of blocks. By Lemma G.1 negative eigenvalues 250

appear in 1 × 1 blocks, since 2 × 2 blocks correspond to complex conjugate pairs of eigenvalues. It
follows that the matrix logarithm of a normal matrix exists if and only if negative eigenvalues have
even multiplicity, in which case, we can without loss of generality construct blocks of size 2 × 2 for a
negative eigenvalue λ of the form B̃λ = λI2 = −|λ |I2. Then log(B̃λ) = log{(|λ |I2)(−I2)}, and since I2 and
−I2 commute, log(B̃λ) = log(|λ |I2) + log(−I2), where 255

log(−I2) = π

(
0 −1
1 0

)
.

Thus

log(B̃λ) =
(
log |λ | −π
π log |λ |

)
,

which is of the form in Lemma G.1. For 2 × 2 blocks B̃C corresponding to complex conjugate pairs of
eigenvalues of M , a similar argument together with

log
(
cos θ − sin θ
sin θ cos θ

)
=

(
0 −θ
θ 0

)
shows that

log(B̃C) =
(
log ρ −θ
θ log ρ

)
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which is also of the form of Lemma G.1. �260

Lemma G.3. Let M = eL ∈ M(p). Then M is normal if and only if L is normal.

Proof. Suppose that L is normal, that is LTL = LLT. By the Jordan decomposition L = QJQ−1, nor-
mality of L implies normality of J. The matrix exponential M = exp(L) = Q exp(J)Q−1 is normal if
and only if exp(J)T exp(J) = exp(J) exp(J)T. Two general properties of the matrix exponential are that
for matrices A, B ∈ M(p) such that AB = BA, exp(A)T = (exp(A))T and exp(A) exp(B) = exp(A + B). Thus265

exp(JT) exp(J) = exp(J + JT) = exp(J) exp(JT) showing that M is normal. The converse statement follows
by Lemmas G.1 and G.2. �

Lemma G.4 (Weierstrass’s M-test, e.g. Whittaker and Watson, 1965, p.49). Let Sk(x) = s1(x) +
· · · + sk(x) be a sequence of functions such that, for all x within some region R(x), Sk(x) ≤ Tk = t1 + · · · +
tk , where (tj)j∈N are independent of x and Tk is a positive convergent sequence. Then Sk(x) converges to270

some limit, S(x) say, uniformly over R(x).

Lemma G.5. For A ∈ M(p), define ψ(A) =
∑∞

k=0 Ak/(k + 1)!. Then for any operator norm ‖ · ‖op, pro-
vided that ‖A‖op is bounded, ‖ψ(A)‖op ≤ ‖ exp(A)‖op. Additionally, ψ(A) ∈ GL(p) for any A ∈ M(p).

Proof. Let ψk(A) =
∑k

n=0 An/(n + 1)! and let r ≥ 0 be such that ‖A‖op ≤ r . Since the operator norm is
subadditive and submultiplicative275

‖ψk(A)‖op ≤
k∑

n=0

‖An‖op

(n + 1)!
≤

k∑
n=0

‖A‖nop
n!
≤

k∑
n=0

rn

n!
→ er

as k →∞. Lemma G.4 applies with Sk(A) = ‖ψk(A)‖op.
For the second statement, it suffices by the Jordan decomposition of A to show that ψ̃(λ) , 0 where

λ ∈ C is an eigenvalue of A and ψ̃(x) =
∑k

n=0 xn/(n + 1)! for x ∈ C. For λ = 0, ψ(λ) = 1 by definition,
whereas for z ∈ C, z , 0, ψ(z) = (ez − 1)/z , 0. �

Lemma G.6. Consider M = eL ∈ M(p) where L ∈ V(p), a vector space with canonical basis B of280

dimension m. The matrix M is logarithmically sparse in the sense that L = L(α) = α1B1 + · · · + αmBm,
Bj ∈ B with ‖α‖0 = s∗ if and only if M = PM̃PT, where P ∈ P(p) is a permutation matrix and

M̃ =
(

O11 0
0 Iq

) (
C11 C12
0 Iq

) (
OT

11 0
0 Iq

)
, (G.2)

where q ≥ p − d∗r and O11 ∈ O(p − q), C11 ∈ M(p − q). Moreover, if M is normal, C11 is also normal and
C12 = 0 in (G.2).

Proof. Suppose first that M = eL is logarithmically sparse. By definition, L has p − d∗r zero rows. Thus,285

there exists a permutation matrix P such that the last p − d∗r rows of PT LP are zero. Thus write PLP> as a
partitioned matrix with upper blocks L1, L2 of dimensions d∗r × d∗r and d∗r × p − d∗r , the remaining blocks
being zero. From the definition of a matrix exponential,

ePLP> =

(
exp(L1)

∑∞
k=0 Lk

1 L2/(k + 1)!
0 Ip−d∗r

)
which is of the form given in equation (G.2) with O11 = Id∗r . The result follows since ePLP> = PeLP>.

To prove the reverse direction, we need to construct L such that,290

exp(L) =
(
O11C11OT

11 O11C12
0 I

)
, L =

(
A B
0 0

)
, (G.3)

where the number of zero rows of L is greater or equal to p − d∗r . Let Γ1 = O11C11OT
11 and Γ2 = O11C12.

Set A = log(Γ1), which exists by assumption since eigenvalues of Γ1 are eigenvalues of M̃ . By the matrix
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Taylor series expansion of the matrix exponential,

exp(L) =

(
Γ1

∑∞
k=0

Ak

(k+1)! B
0 I

)
. 295

It thus remains to be shown that
∑∞

k=0
Ak

(k+1)! B = Γ2 some d∗r × p − d∗r matrix B. Let ψ(A) =
∑∞

k=0
Ak

(k+1)! .
By Lemma G.5, ψ(A) is invertible, and we can take B = ψ(A)−1Γ2. Note that the matrix logarithm of M̃ is
not unique. However, for a real eigenvalue λ of M̃ , the logarithm of the Jordan block Jk(λ) has periodicity
i2πqI, q ∈ Z (Culver, 1966). Thus, for λ = 1, every real matrix L, L = log(M̃) will have the form (G.3) in
the sense of the last p − d∗r rows being equal to canonical basis vectors, with a non-zero diagonal element. 300

The result follows by observing that for M = PM̃PT, log(M) = PLPT. �

Lemma G.7. Let M ∈ M(p). With M = eL and L ∈ V(p) ⊂ M(p), a vector space of dimension m, let
M = QJQ−1 be a real Jordan decomposition of M (e.g. Horn and Johnson, 2012, p. 202) and letA ⊂ [p]
denote the set of indices for columns ofQ corresponding to eigenvectors whose eigenvalues are not equal to
one. Thus, the cardinality |Ac | of the complementary set is the geometric multiplicity of the unit eigenvalue 305

of M , and |A| = p − |Ac |. The dimension of A satisfies |A| ≤ max{d∗r , d∗c}.

Proof. Suppose that |A| ≤ d∗r . Since rank(L) = rank(LT), the geometric multiplicities of the unit
eigenvalues of M and MT are equal. Thus, |A| ≤ d∗c and therefore |A| ≤ max{d∗r , d∗c}.

To prove that |A| ≤ d∗r , consider the real Jordan decomposition M = QJQ−1. Let qj denote the jth
column of Q. We show that span{qj : j ∈ Ac} = ker(L) by establishing containment on both sides. Let 310

v ∈ span{qj : j ∈ Ac}. Then there exist coefficients βj ∈ R such that

Lv =
∑
j∈Ac

βjLqj =
∑
j∈Ac

βjQ log(J)Q−1qj =
∑
j∈Ac

βjQ log(J)ej = 0

where the final equality follows since λj = 1 for all j ∈ Ac , so the jth diagonal entry of log(J) is zero. It
follows that span{qj : j ∈ Ac} ⊆ ker(L)..

For the converse containment, suppose for a contradiction that there exists v ∈ ker(L) such that v <
span{qj : j ∈ Ac}. Since Q has full rank, its columns are linearly independent and there exist coefficients 315

β1, . . . , βp , each in R such that v = β1q1 + · · · + βpqp . Since qj ∈ ker(L) for j ∈ Ac by the previous
argument,

0 = Lv =
∑
j∈A

βjLqj =
∑
j∈A

βjQ log(J)ej .

By definition of A, Jj j , 1 for any j ∈ A, thus the equality Lv = 0 implies βj = 0 for all j ∈ A, a
contraction, since the columns Q log(J)ej , j ∈ A are linearly independent. �

For normal matrices in M(p), i.e. those satisfying MT M = M MT, d∗r = d∗c and Lemma G.7 recovers 320

Lemma 2.1 of Battey (2017) and Proposition 3.1 of Rybak and Battey (2021).

G.2. Proof of Theorem 1
Proof. From Lemma G.6, p − d∗r rows of M are of the canonical form eT

j , and since zero columns of
L are zero rows of LT, it is also true by Lemma G.6 applied to MT that p − d∗c columns of M are of
canonical form ej . If d∗ rows and columns of M are of the canonical form, then M = P(V ⊕ Ip−d∗ )PT, 325

where P ∈ P(p) and V ∈ M(d∗). The matrix logarithm of M is L = P(log(V) ⊕ 0p−d∗ )PT. The converse
direction follows by applying the exponential map to L = P(log(V) ⊕ 0p−d∗ )PT and invoking Lemma G.6
in the converse direction. �
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G.3. Proof of Lemma 1
Proof. Consider a randomvector (Y T

1 ,Y
T

2 ,Y
T

3 )
T with a covariancematrix Σ. By the assumptions of Lemma330

1

Σ =
©­«

A 0 0
B I 0
C 0 D

ª®¬ ©­«
AT BT CT

0 I 0
0 0 DT

ª®¬ = ©­«
AAT ABT ACT

BAT BBT + I BCT

CAT CBT CCT + DDT

ª®¬ =: ©­«
Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

ª®¬ ,
where the matrices A and D are lower triangular with unit entries on the diagonal. Then,

Σ23 − Σ21Σ
−1
11 Σ13 = BCT − BAT(AAT)−1 ACT = 0,

since A is full-rank by definition. Consider a submatrix335

Σbc |a =

(
Σ23 Σ21
Σ13 Σ11

)
=

(
I Σ21Σ

−1
11

0 I

) (
Σ23 − Σ21Σ

−1
11 Σ13 0

0 Σ11

) (
I 0

Σ−1
11 Σ13 I

)
.

Since Σ11 is invertible, and for any two matrices M , N , with compatible dimensions rank(MN) ≤
min{rank(M), rank(N)}, the result follows. �

H. Proofs for Sections 5 and 6
H.1. Preliminary lemmas340

Lemma H.8. Let βi. jk denote a regression coefficient of Yj in a regression of Yi on Yj and Yk . Let υi j(l)
denote the effect of Yj on Yi along all paths of length l in a recursive directed acyclic graph. Then,

υi j(l) =

{∑i−1
k=j+l−1 βi.k[i−1]υk j(l − 1) if i − j ≥ l,

0 otherwise.

Proof Proof of Lemma H.8. We use proof by induction. Consider l = 1 and take any pair (i, j) such that
i ≥ j + 1. Then, υi j(1) = βi. j[i−1] as claimed. Now consider l > 1. Every path from node j to node i can345

be decomposed into a path of length l − 1 from j to node k for some k ∈ { j + 1, . . . , i − 1} and a path
with length one from k to i. The total effect of Yj on Yi along such a path is equal to βi.k[i−1]υk j(l − 1).
The total effect along all paths of length l is the sum of single paths over all nodes k ∈ { j + 1, . . . , i − 1},
which yields the result. �

Lemma H.9. Let βi.k[p]\{i } denote a coefficient of Yk in a regression of Yi on Y1, . . . ,Yi−1, Yi+1, . . . ,Yp .350

Let υuij(l) denote the total effect of a unit change in Yj on Yi along all paths of length l in an undirected
graphical model with edge weights given by regression coefficients. Then,

υuij(l) =
∑
k,i

βi.k[p]\{i }υ
u
k j(l − 1), βi.k[p]\{i } = −Vi j/Vii .

Proof. The proof is analogous to that of Lemma H.8. The only difference is that an edge can exist
between any pair of nodes (i, j), i , j and the effect of Yj on Yi is given by a regression coefficient355

βi. j[p]\{i } = −Ṽi j = −Vi j/Vii (Lauritzen, 1996). �

H.2. Proofs of main results
Proof Proof of Proposition 1. For an arbitrary partitionY = (Y T

a,Y
T
b
)T, let Σ−1 be partitioned accordingly

as

Σ
−1 =

(
Σaa Σab

Σba Σbb

)
.360

The block upper-triangular decomposition takes the form,

Σ
−1 = ΥΓΥT =

(
Iaa Σab(Σbb)−1

0 Ibb

) (
Σaa.b 0

0 Σbb

) (
Iaa 0

(Σbb)−1Σba Ibb

)
,
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where Σaa.b = Σaa − Σab(Σbb)−1Σba. Then,

U−1 = ΥT =

(
Iaa 0

−(Σbb)−1Σba Ibb

)
.

The matrix of regression coefficients of Yb in a regression of Ya on Yb is equal to (Σbb)−1Σba (Wermuth & 365

Cox, 2004), which is the negative non-zero off-diagonal block of U−1.
By partitioning Σ−1 recursively until Υ is upper-triangular, we obtain that the ith row of U−1 contains

minus the regression coefficients ofYi onY1, . . . ,Yi−1. Let Ū = I − ΥT. Then, Ū ∈ LTs(p) and Ūi j = βi. j[i−1]
for j < i, i.e., the element (i, j) of Ū equals the coefficient of Yj in a regression of Yi on Y1, . . . ,Yi−1. Then,

U = (I − Ū)−1 = I +
p−1∑
j=1

Ū j, (H.1) 370

where we used that, for a nilpotent matrix N of degree k, (I + N)−1 = I +
∑k−1

j=1 (−1)jN j . The result for Ui j

follows from (H.1).
Using the properties of the matrix logarithm,

L = log(U) = log[(I − Ū)−1] = − log(I − Ū) =
p−1∑
k=1

Ūk

k
,

which establishes the claim about Li j . � 375

Proof Proof of Proposition 3. The matrix Ṽ has entries

Ṽi j =

{
−βi. j[p]\{i } for i , j,
1 for i = j .

Thus, the element (i, j) of matrix I − Ṽ is equal to the effect of Yj on Yi along a path of length one. Since
(I − Ṽ)l = (I − Ṽ)(I − Ṽ)l−1, the element (i, j) of (I − Ṽ)l is equal to the effect of Yj on Yi along all paths
of length l. Provided that the sum on the right hand side converges, the power expansion of the matrix 380

inverse and logarithm gives

Σ̃ = Ṽ−1 =

∞∑
k=0
(I − Ṽ)k

log(Σ̃) = log(Ṽ−1) =

∞∑
k=0

(−1)k+1

k
(I − Ṽ)k

Proof Proof of Lemma 2. The result follows from a power series expansion of matrix inverse, Lemma
1, and Proposition 2.1 and Corollary 2.2 of Uhler (2019). � 385

I. Derivation of equation (12)
A version of the following derivation appears in Battey (2019). The argument is more complicated than

is necessary for the oversimplified case presented here, but the representation is helpful for showing the
considerations involved in the generalisation.

A function f of a p × p matrix A satisfies (Kato, 1976, p.44) 390

f (A) =
1

2πi

‰
γA

f (z)(zI − A)−1dz, (I.1)

where I is the identity matrix and γA is a simple closed curve lying in the region of analyticity of f and
enclosing all the eigenvalues of A in its interior.
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From (I.1), the error on the scale of the matrix logarithm is

log(Σ + εI) − log(Σ) =
1

2πi

(‰
γε

log(z)(zI − (Σ + εI))−1dz −
‰
γ

log(z)(zI − Σ)−1dz
)
,

where γε must enclose γ by positivity of ε. Then provided that the eigenvalues of Σ are bounded away
from zero, γε can be chosen so as not to cross the imaginary axis and the previous display simplifies to395

log(Σ + εI) − log(Σ) =
1

2πi

‰
γε

log(z){(zI − (Σ + εI))−1 − (zI − Σ)−1}dz (I.2)

=
ε

2πi

‰
γε

log(z)(zI − (Σ + εI))−1(zI − Σ)−1dz

by Cauchy’s theorem, where we have used that A−1 − B−1 = A−1(B − A)B−1 for invertible matrices A and
B, where B − A = εI. Let Σ = OΛOT be the spectral decomposition of Σ, where O have orthonormal
columns o1, . . . , op and Λ = diag{λ1, . . . , λp}. Then (zI − Σ)−1 = O(zI − Λ)−1OT and similarly for the
expression involving Σ + εI. It follows that the ( j, k)th entry of the difference in log transformations is

[log(Σ + εI) − log(Σ)]j,k = ε
∑
r,v

( 1
2πi

‰
γ

log(z)
(z − (λr + ε))(z − λv)

dz
)
ojrokv

∑̀
,s

o`rosv, (I.3)

which is equation (12).400

J. Estimation under the sparse Σltu parametrization
J.1. Construction of estimator

Recall the notation Σltu = TΩT , L = log(T) = − log(I − B) and D = log(Ω).We are primarily interested
in situations where L and D are sparse. The guarantee that is typically sought for high-dimensional
covariance estimators is consistency in the spectral norm under a notional double-asymptotic regime in405

dimension p = p(n) and sample size n. Different approaches and asymptotic regimes might be considered,
giving for instance, faster rates of convergence with slower permissible scaling of p with n, or vice versa.
Here we show one possible estimator and derive its convergence rates in spectral norm, under the scaling
log p/n→ 0. The theoretical properties are detailed in section J.2 and proved in section J.4.

The broad scheme involves constructing pilot estimators of the relevant quantities which have an410

elementwise consistency property, before exploiting sparsity on the transformed scale to obtain guarantees
in the stronger norm. Suppose that T̃ and Ω̃ are estimators of T and Ω that have exploited sparsity on the
transformed scale, and have been shown to be consistent in spectral norm. A natural estimator of Σ is then
Σ̃ = T̃Ω̃T̃T, which is also consistent in spectral norm.

In order to construct T̃ and Ω̃, pilot estimators T̂ = (I − B̂)−1 and Ω̂ are needed that are consistent in an415

elementwise sense. From these, let L̂ = − log(I − B̂) and D̂ = log(Ω̂). The simplest way to exploit sparsity
of L and D is to use a thresholding operator (Bickel & Levina, 2008b), which sets entries of L̂ and D̂ to
zero if their absolute values are below a specified threshold. The spectral-norm consistent estimators T̃
and Ω̃ are then obtained by defining T̃ := exp(L̃) and Ω̃ := exp(D̃), where L̃ and D̃ are the thresholded
versions of L̂ and D̂.420

To construct elementwise-consistent estimators B̂ and Ω̂, note that (10) from the main text implies,

(I − B)X ∼ N(0,Ω).

For a chain component c, let pa(c) denote the set of parent nodes of c. Then,

Xc |Xpa(c) = N(BcXpa(c),Ωc). (J.1)

The factorization of joint density implies factorization of the parameter space (see also Drton & Eichler,
2006). As a result, we can estimate Bc and Ωc separately for each chain component. From now on we425

omit the subscript c to simplify the notation. Equation (J.1) suggests estimating B by regressing each node
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on its parents, which yields an elementwise-consistent estimator B̂. The estimator Ω̂ can be obtained as a
sample covariance matrix of residuals for all nodes in a given chain component (see equation (J.1)). For
this, we can use estimates of regression coefficients B̂ or alternatively, a version B̃ that exploits any sparsity
on the transformed scale. Both result in an elementwise-consistent estimator of Ω, although B̃ offers some 430

advantage in high-dimensional settings.

J.2. Theoretical guarantees
For an m × m matrix M , let ‖M ‖max = maxi, j |Mi, j |, where Mi, j denotes an entry (i, j) of M , and

‖M ‖2 = sup‖w ‖2=1 ‖Mw‖2. The largest eigenvalue of M is denoted by λmax(M). The size of a random
vector X is denoted by |X |. The set of parent nodes of node i and chain component c are denoted, 435

respectively, by pa(i) and pa(c). Let Σ̂ be a sample covariance matrix of X . For two sets of indices, s1,
s2 ⊆ [p], let Σ̂s1,s2 be the matrix obtained by selecting rows s1 and columns s2 of Σ̂.

The results presented in this section are valid under a weaker assumption of sub-Gaussian rather than
Gaussian distributions.

Condition J.1. For every chain component c, Xc |Xpa(c) is sub-Gaussian with a variance proxy σ2
ε . 440

In addition, we assume that the covariance matrix Σ of X satisfies conditions J.2 and J.3.

Condition J.2. The quantities ‖Σ‖max, ‖Σ−1‖max, ‖L‖2 and ‖Ω‖2 are bounded as n, p→∞.

Condition J.3. The sequence of smallest eigenvalues of Σ̂ is bounded away from zero as p→∞.

Equation J.1 suggests estimating the ith row of B, denoted by βi , by regressing Xi on Xpa(i). Lemma
J.10 establishes elementwise consistency of the resulting estimator, β̂i , which implies the consistency of 445

B̂ = (β̂1, . . . , β̂p)T.

Lemma J.10. Let Xj = Xpa(j)β + ε, where Xj ∈ R
n, Xpa(j) ∈ R

n×|pa(j) | , β ∈ R |pa(j) | and ε = (ε1, . . . , εn)
is sub-Gaussian with zero mean and variance proxy σ2

ε . Then,

max
j∈[p]
‖ β̂ j − β j ‖max = Op((log p/n)1/2).

We now seek an estimator L̂ of L that inherits the elementwise consistency of B̂. As discussed in Section 450

5, the element (i, j) of the matrix logarithm of T corresponds to the effects of node i on node j along all
directed paths connecting the two nodes. The following condition assumes that there is some length, say
l∗, such that effects along paths of longer length are negligible when weighted inversely by the path length.

Condition J.4. There exists l∗ ∈ N, such that for any pair of nodes (i, j), j < i,
∑p

l=l∗+1
1
l δi | j(l) =

C(log p/n)ϕ/(2(ϕ+1)) for ϕ > 0, where δi | j(l) denotes the sum of effects of node j on node i along all 455

paths of length l.

Since L = − log(I − B), a natural way of exploiting Condition J.4 is to approximate the matrix logarithm
by a truncated power expansion of order l∗. Specifically, for a matrix A, define a truncated matrix logarithm
of the lth order as

log |l(A) :=
l∑

k=1
(−1)k+1 (A − I)k

k
460

and let L̂ = − log |l∗ (I − B̂). Lemma J.11 establishes elementwise consistency of L̂ under Condition J.4.

Lemma J.11. Let B̂ be an estimator of B such that ‖B̂ − B‖max = Op((n−1 log p)1/2). Assume that
Condition J.4 holds. Then,

‖ L̂ − L‖max = Op

(
(n−1 log p)1/2

)
. (J.2)

Simulations presented in Section J.3 suggest that the assumptions of Lemma J.11 are not necessary for
bound (J.2) to hold. In particular, the rate of convergence in (J.2) is valid also for L̂ = − log(I − B̂) and in 465

the absence of Condition J.4.
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We now use the elementwise-consistent estimator L̂ to construct an estimator L̃ of L consistent in the
spectral norm. The key assumption to achieve consistency in a high-dimensional regime is that of sparsity.
Specifically, assume that matrix L belongs to a sparse class of matrices, as stated in Condition 1, which
generalizes the notion of sparsity used in most of the main paper by allowing approximate zeros. Thus,470

L = log(T) ∈
{

L ∈ LTs(p) : max
i

p∑
j=1
|Li j |

ql = sl(p)
}
,

where 0 ≤ ql ≤ 1 and sl(p)/p→ 0. The estimator L̃ is obtained by elementwise thresholding of L̂. In
particular, for a p × p matrix A, an elementwise thresholding operator T(A), introduced by Bickel &
Levina (2008b), has the form,

T(A)i j = T(Ai j) = Ai j I1{|Ai j | > τ}. (J.3)

Thus, L̃ has the form,475

L̃ = T(L̂), T(L̂)i j = L̂i j I1{| L̂i j | > τl}. (J.4)

Under Condition 1, the following result follows from Theorem 1 in Bickel & Levina (2008b).

Corollary 1. Suppose that L ∈ U(ql, sl(p)) and ‖ L̂ − L‖max = Op(rn,p). Let τl � rn,p in (J.4). Then,
‖ L̃ − L‖2 = Op

(
sl(p)r

1−ql
n,p

)
as n, p→∞.

The consistency of L̃ is sufficient to obtain an spectral-norm consistent estimator of T , as shown in480

Lemma J.12.

Lemma J.12. Let B̃ = I − exp(−L̃T) and T̃ = exp(L̃). Then,

‖B − B̃‖2 ≤ exp(λmax(LTL))‖L − L̃‖2 exp(‖L − L̃‖2),

‖T − T̃ ‖2 ≤ exp(λmax(LTL))‖L − L̃‖2 exp(‖L − L̃‖2).

A direct consequence of Lemma J.12 is that thresholding in the transformed domain yields an `2-norm485

consistent estimator of regression coefficients β, which constitute the rows of B.

Corollary 2. Let β̃i and βi denote the ith row of B̃ and B respectively. Then,

‖βi − β̃i ‖2 ≤ exp(λmax(LTL))‖L − L̃‖2 exp(‖L − L̃‖2).

Lemma J.12, together with Corollary 1 and Lemma J.11 imply that

‖T − T̃ ‖2 = Op

(
sl(p)

(
n−1 log p

) (1−ql )/2)
. (J.5)

Since Ω is positive-definite, a spectral-norm consistent estimator Ω̃ can be obtained using the approaches490

of Battey (2019) or Zwiernik (2025). The former requires an elementwise-consistent estimator ofΩ. Given
an estimator B̄ of B, let Ω̂ denote a sample covariance matrix of residuals for a chain component c. Lemma
J.13 establishes elementwise consistency of Ω̂.

Lemma J.13. Assume Condition J.2 holds. Let B̄ denote an estimator of B.

1. If ‖B − B̄‖2 = Op(rβ(n, p)) then,495

‖Ω̂ −Ω‖max = Op

(
r2
β(n, p)

√
log ρpa

n
+

√
log ρ

n

)
, (J.6)

2. If ‖B − B̄‖max = Op(rβ(n, p)) then,

‖Ω̂ −Ω‖max = Op

(
ρ2
par2

β(n, ρ)

√
log ρpa

n

)
, (J.7)



Supplementary material 15

where ρpa = maxi∈c |Xpa(i) |, ρ = |Xc | and c denotes a chain component.

If the size of chain components grows at the same rate as p, ρ � p and ρpa � p, under conditions of
Lemma J.10, the rate of convergence in (J.6) is more advantageous than in (J.7). This suggests using B̃
rather than B̂ to obtain the residual covariance matrix Ω̂, which yields, 500

‖Ω̂ −Ω‖max = Op

(
sl(p)2(n−1 log p)3/2−ql + (n−1 log p)1/2

)
= Op

(
sl(p)2(n−1 log p)3/2−ql

)
,

where we have assumed that the first term dominates the convergence rate. Let

Ω̃ = exp(T (log(Ω̂))), T(Ω̂)i j = Ω̂i j I1{|Ω̂i j | > τω}. (J.8)

Then, under Condition 1, for τω � sl(p)2(n−1 log p)1/2, Theorem 2 of Battey (2019) implies, 505

‖Ω − Ω̃‖2 = Op

(
sω(p)sl(p)2−2qω (n−1 log p)(3/2−ql )(1−qω )

)
, (J.9)

where sω(p)/p→ 0 and 0 ≤ qω ≤ 1.
Given estimators T̃ and Ω̃, the estimator of the covariance matrix Σ can be obtained by Σ̃ = T̃Ω̃T̃T.

Proposition 4 in the paper establishes the spectral-norm consistency of Σ̃ as p, n→∞, provided that
log p/n→ 0.

In the absence of a causal ordering of variables, a natural pilot estimator of T is a triangular matrix 510

obtained by the LDL decomposition of Σ̂. Since T = (I − B)−1, we can use the proof strategy used to
establish the elementwise consistency of the matrix logarithm above. Specifically, under Condition J.5, an
elementwise consistency of a truncated matrix inverse, defined for a matrix A as A−1

|l
:=

∑l
k=1(−1)k+1 Ak

is established by Lemma J.14 below.

Condition J.5. There exists l∗ ∈ N, such that for any pair of nodes (i, j), j < i,
∑p

l=l∗+1 δi | j(l) = 515

C(log p/n)ϕ2/(2(ϕ2+1)) for ϕ2 > 0, where δi | j(l) denotes the sum of effects of node j on node i along
all paths of length l.

Lemma J.14. Let B̂ be an estimator of B such that ‖B̂ − B‖max = Op((n−1 log p)1/2). Assume that
Condition J.5 holds and let T̄ = (I − B̂)−1

|l
. Then,

‖T̄ − T ‖max = Op

(
(n−1 log p)1/2

)
. (J.10)

Simulations presented in Figure 3 suggest that Condition J.14 and the restriction to a truncated inverse 520

are not necessary for Lemma J.14 to hold. This suggests that the rate (log p/n)1/2 is also valid for a pilot
estimator T̂ = (I − B̂)−1 , which corresponds to the triangular matrix obtained by the LDL decomposition
of the sample covariance matrix.

J.3. Simulations
Lemma J.11 shows that Condition J.4 is sufficient to establish elementwise convergence of L̂, where 525

L̂ = − log |l∗ (I − B̂). Using simulations, we now compare the rate of convergence of ‖ L̄ − L‖max, L̄ =
− log(I − B̂), and ‖B̂ − B‖max in the absence of Condition J.4. The results, presented in Figure J.3 (a),
suggest that Condition J.4 is not necessary for the equation (J.2) to hold. In addition, Lemma J.11 holds
when L̂ is replaced by L̄. An analogous analysis is performed to assess the necessity of Condition J.5
for the validity of Lemma J.14 in Figure J.3 (b), which compares the rate of convergence of ‖T̄ − T ‖max, 530

T̄ = (I − B̂)−1, and ‖B̂ − B‖max.
For each simulation, Σ = OΛOT, where O is an orthogonal matrix obtained by a QR decomposition of

a p × p matrix with iid standard normal entries, and elements of Λ are drawn from a gamma distribution
with a shape parameter k and a scale parameter v.
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(b) ‖T̄ − T ‖max

Fig. J.3: Average elementwise errors ‖B̂ − B‖max (solid lines), ‖ L̄ − L‖max (dotted lines, left plot)
and ‖T̄ − T ‖max (dotted lines, right plot) for 100 simulations for each n, with p = n/10.

J.4. Proofs of results in Appendix J.2535

Proof of Lemma J.10. The estimation error for the ith element of β̂ j has the following form,

∆
j
i ≡ β̂

j
i − β

j
i = eTi (X

T
pa(j)Xpa(j))

−1XT
pa(j)ε.

Since ε is sub-Gaussian, ∆j
i is a linear combination of sub-Gaussian random variables. Thus, ∆j

i is
sub-Gaussian with a variance proxy ‖eTi (X

T
pa(j)Xpa(j))

−1XT
pa(j)‖

2
2σε . Now,

‖eTi (X
T
pa(j)Xpa(j))

−1XT
pa(j)‖

2
2 = eTi (X

T
pa(j)Xpa(j))

−1ei = v̂ar(pa( j))−1
ii /(n − 1).540

Under Condition J.3 the maximum eigenvalue of v̂ar(pa( j))−1 is upper-bounded. By the definition of the
operator norm, for any column ν of v̂ar(pa( j))−1 we have ‖ν‖2 ≤ M . By the Cauchy-Schwartz inequality
|νk | = |〈ek, ν〉| ≤ ‖ν‖2 ≤ M , where νk is the kth entry of ν and ek is a canonical basis vector with
kth element equal to one. Thus, maxi, j∈[p] v̂ar(pa( j))−1

ii ≤ M for some constant M . Hence, E exp(∆j
i ) ≤

exp(v̂ar(pa( j))−1
ii σ

2
ε/2(n − 1)) ≤ exp(Mσ2

ε/2n) for every i, j ∈ [p]. Then,545

P(|∆
j
i | ≥ t) ≤ 2 exp

(
−

nt2

2Mσ2
ε

)
.

On setting t = (2Mσ2
ε log(2p2/δ)/n)1/2 we obtain

P

(
|∆i | ≥

(
2Mσ2

ε log(2p2/δ)

n

)1/2)
≤ 2 exp

(
−

nt2

2Mσ2
ε

)
=

δ

p2 .

The union bound gives

P
(

max
j∈[p]
‖ β̂ j − β j ‖∞ ≥ t

)
≤

p∑
j=1

p∑
i=1
P(|∆

j
i | ≥ t) ≤ δ.550

Hence, for any δ ∈ (0, 1),

P

(
max
j∈[p]
‖ β̂ j − β j ‖∞ ≥

(
2Mσ2

ε log(2p2/δ)

n

)1/2)
≤ 1 − δ.

�
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Proof of Lemma J.11. Let rβ(n, p) , (n−1 log p)
κ

2(κ+1) . Recall that δi | j(l) denotes the total effect of node j
on node i along all paths of length l. Specifically, let S( j, i, l) be a set of subsets of indices { j + 1, . . . , i − 1} 555

of length l − 2. For each s ∈ S( j, i, l), denote the corresponding indices by s1 < s2 < . . . < sl−2. Then, for
each l, δk |i(l) has the form,

δk |i(l) =
∑

s∈S(j,i,l)

γi |sl−1γj |s1

l−2∏
v=1

γsv+1 |sv ,

where γt,v denotes a regression coefficient of Xv from regression of Xt on X1, . . . , Xv .
Now consider, 560

∆( j, i, s) =
��γi,slγj |s1

l−2∏
v=1

γsr+1 |sr − γ̂i,sl γ̂j |s1

l−2∏
v=1

γ̂sv+1 |sv

��.
This expression has the form

��∏l
v=1 av −

∏l
t=1 cl

�� with |av − cv | = Op(rβ(p, n)). Let Av =
∏v

i=1 av and
Cv =

∏v
i=1 cv . Then, by the triangle inequality,

|Av+1 − Cv+1 | = |av+1 Av − cv+1Cv |

≤ |Av | |av+1 − cv+1 | + |cv+1 | |Av − Cv |. 565

Applying the inequality recursively we obtain |Av+1 − Cv+1 | = Op((v + 1)rβ(n, p)). Thus, ∆( j, i, s) =
Op(lrβ(n, p)), which represents an estimation error for a single path of length l connecting nodes i
and j. By the binomial theorem there are 2i−j−2 directed paths between i and j. Then,

‖ log |l∗ (I − B) − log |l∗ (I − B̂)‖max = Op(2l
∗−2rβ(n, p)).

As a result, 570

‖ log(I − B) − log |l∗ (I − B̂)‖max = Op

(
rβ(n, p)

)
+max

i, j

p∑
l=l∗+1

1
l
|∆( j, i, s)|.

By Condition J.4,

max
i, j

p∑
l=l∗+1

1
l
|∆( j, i, s)| = Op

(
(n−1 log p)ϕ

)
.

The result follows since ϕ ≥ 1/2. �

Proof of Corollary 1. Except for the change in the object being thresholded, the proof is that of Theorem 575

1 in Bickel & Levina (2008b). �

Proof of Lemma J.12. Consider B − B̃ = exp(−L) − exp(−T (L̂)). By Corollary 6.2.32 in Horn & Johnson
(1994),

‖B − B̃‖2 = ‖ exp(−L) − exp(−T (L̂))‖2 ≤ ‖L − T(L̂)‖2 exp(‖L‖2) exp(‖L − T(L̂)‖2).

By the definition of the spectral norm, ‖L‖2 = λmax(LTL). Similarly, since T = exp(L), 580

‖T − T̃ ‖2 = ‖ exp(L) − exp(T (L̂))‖2
≤ ‖L − T(L̂)‖2 exp(‖L‖2) exp(‖L − T(L̂)‖2),

where the inequality follows from Corollary 6.2.32 in Horn & Johnson (1994). �

Proof of Lemma J.13. For a chain component c, let E = Xc − BXpa(c) and Ê = Xc − B̂Xpa(c). Then,
Ω̂ = v̂ar(E) and 585

var(E) = var(Xc) − var(BXpa(c)).
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Using the triangle inequality and the equality above,

‖v̂ar(E) − var(E)‖max = ‖(v̂ar(Xc) − v̂ar(B̂Xpa(c))) − (var(Xc) − var(BXpa(c)))‖max (J.11)
= ‖v̂ar(Xc) − var(Xc)‖max + ‖v̂ar((B̂ − B)Xpa(c))‖max + ‖v̂ar(BXpa(c)) − var(BXpa(c))‖max. (J.12)

By Lemma A.3 in Bickel & Levina (2008a), ‖v̂ar(Xc) − var(Xc)‖max = Op(
√

log ρc/n). Now consider the590

second term in (J.12) and let X i
pa(c) denote the ith sample of Xpa(c).

v̂ar((B̂ − B)Xpa(c)) =
1

n − 1

n∑
i=1
(B − B̂)X i

pa(c)X
i
pa(c)(B − B̂)T (J.13)

= (B − B̂)

(
1

n − 1

n∑
i=1

X i
pa(c)X

i
pa(c)

)
(B − B̂)T (J.14)

= (B − B̂)v̂ar(Xpa(c))(B − B̂)T. (J.15)

Let [A]i j denote an element (i, j) of matrix A. Then, from equation (J.15),595

|[v̂ar(B̂Xpa(c) − BXpa(c))]i j | = |[(B − B̂)v̂ar(Xpa(c))(B − B̂)T]i j |

=

���� |pa |∑
l=1

|pa |∑
k=1
(B − B̂)il v̂ar(Xpa(c))lk(B − B̂)jk

����
≤ ‖v̂ar(Xpa(c))‖max

���� |pa |∑
l=1
(B − B̂)il

�������� |pa |∑
k=1
(B − B̂)jk

����
≤ ‖v̂ar(Xpa(c))‖max

( |pa |∑
l=1
(B − B̂)2il

)1/2 ( |pa |∑
k=1
(B − B̂)2jk

)1/2

= ‖v̂ar(Xpa(c))‖max‖∆̂i ‖2‖∆̂j ‖2600

where ∆̂i denotes an ith row of B − B̂. The elementwise consistency of the covariance matrix, together
with Condition J.2, the spectral-norm consistency of B̂ and the triangle inequality imply,

‖v̂ar((B̂ − B)Xpa(c))‖max = Op

(
rβ(n, p)2 + rβ(n, p)2

√
log ρpa/n

)
.

To upper-bound the third term in equation (J.12) note that

‖v̂ar(BXpa(c)) − var(BXpa(c))‖max = max
i j

��[v̂ar(BXpa(c)) − var(BXpa(c))]i j
��605

where BXpa(c) is sub-Gaussian with zero mean. Thus, we can upper-bound this term using the elementwise
consistency of the covariance matrix estimator, which yields

‖v̂ar(BXpa(c)) − var(BXpa(c))‖max = Op(
√

log ρc/n).

Overall, we obtain,

‖v̂ar(E) − var(E)‖max = Op

(
rβ(n, p)2 + rβ(n, p)2

√
log ρpa/n +

√
log ρc/n

)
,610

which establishes the first claim in Lemma J.13. The proof for the second claim is identical, except for the
upper bound for the second term in (J.12), which we address now. The proof is similar to that of Bickel &
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Levina (2008a). By Cauchy-Schwartz inequality and the fact that v̂ar(Xpa(c))lk ≤ v̂ar(Xpa(c))ll v̂ar(Xpa(c))kk ,

|[v̂ar((B̂ − B)Xpa(c))]i j | = |[(B − B̂)v̂ar(Xpa(c))(B − B̂)T]i j |

= |

|pa |∑
l=1

|pa |∑
k=1
(B − B̂)il v̂ar(Xpa(c))lk(B − B̂)jk | 615

≤

( |pa |∑
l=1
|(B − B̂)il |

)2
v̂ar(Xpa(c))ll

≤ ρ2
pa‖v̂ar(Xpa(c))‖max

(
max
il
|Bil − B̂il |

)2

�

J.5. Proof of Proposition 4
Recall the inequality, 620

‖A1 A2 A3 − C1C2C3‖2

≤

3∑
j=1
‖Aj − Cj ‖2

∏
k,j

‖Ck ‖2 +

3∑
j=1
‖Cj ‖2

∏
k,j

‖Ak − Ck ‖2 +

3∏
j=1
‖Aj − Cj ‖2.

Let A1 = AT
3 = T̃ , C1 = CT

3 = T , A2 = Ω̂ and C2 = Ω
−1. Let rt and rω denote the convergence rates of T̃

and Ω̂ respectively. In particular, ‖T̃ − T ‖2 = Op(rt ) and ‖Ω̂ −Ω‖2 = Op(rω). Then,

‖Σ̂ − Σ‖2 ≤ 2rt ‖T ‖2‖Ω‖2 + rω ‖T ‖22 + 2rtrω ‖T ‖2 + r2
t ‖Ωc ‖

2
2 + r2

t rω .

The result follows from equations (J.5) and (J.9). � 625

K. Simulation results for §9.1
A notion of approximate sparsity that allows for slight departures from zero is, for any matrix A,

sτ(A) =
∑
i, j<i

I1 (|Ai j | > τ). (K.1)

This replaces elements by 1 and 0 according to their values relative to τ, and thus is more suitable than
(14) for comparison across scales.

For each of the four parametrizations of (1), we explore the extent to which L is sparser than Σ−1
630

according to equation (K.1), and the implications for estimation. For tables K.1–K.4, random matrices L
of dimension p = 60 were generated using the appropriate basis in equation (2) by randomly drawing s∗/2
entries of α from a uniform distribution on [−4,−2], s∗/2 entries from a uniform distribution on [2, 4] and
m − s∗ entries from a uniform distribution on [−0.01, 0.01], where m is the number of elements in the basis.
The resulting matrix L was converted to the relevant matrix space PD(p), SO(p), LT(p) or LTu(p) by taking 635

the matrix exponential. The positive diagonal entries needed to complete the specification for the Σo and
Σltu parametrizations were drawn from an exponential distribution of rate ρ. In producing the simulations
of this section, we have used R functions to implement the LDL, Cholesky, and LU decompositions, mainly
to avoid the complications arising from pivoting operations used in the corresponding implementations in
Matlab. 640

The estimation error in non-trivial matrix norms is most relevant when the matrix object is a nuisance
parameter, and the numerical results presented here are motivated by that setting. Since it is usually the
precision matrix that is the nuisance parameter in procedures of multivariate analysis, rather than the
covariance matrix, we focus on estimation of Σ−1.
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Estimator E
s∗ ‖E−Σ−1 ‖•

‖Σ−1 ‖•
sτ(Σ−1) Σ̂−1

τ exp(−L̂τ)
6 • = 2 45.6 0.561 0.203
6 • = F 45.6 0.503 0.187
10 • = 2 54.7 0.551 0.214
10 • = F 54.7 0.504 0.197
20 • = 2 94.3 0.540 0.215
20 • = F 94.3 0.505 0.202
40 • = 2 436 0.496 0.231
40 • = F 436 0.477 0.221
Largest std. err. 130 0.189 0.076

Table K.1: Simulation averages of sτ(Σ−1) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the Σpd parametrization.

For each of 200 simulation replicates, n = 200 p-dimensional random vectors were generated from a645

mean-zero normal distribution with covariance matrix as specified above. Three estimators of the precision
matrix were compared in terms of their average estimation errors in the spectral and Frobenius norms.

The simplest type of estimator exploiting sparsity sets entries of a preliminary estimate to zero if they
are below a threshold τ. For the four parametrizations of equation (1), the simplest preliminary estimate
is the matrix logarithm of the relevant sample quantity, constructed from the eigen-, Cholesky, or LDL650

decomposition of the sample covariance matrix. The matrix logarithm was computed using the algorithm
of Al-Mohy & Higham (2012), whose implementation is part of Matlab’s standard distribution and R’s
expm package. Let L̂τ denote the thresholded estimator on the logarithmic scale, so that an estimator of Σ−1

under the Σpd parametrization is exp(−L̂τ) and the analogous quantities for the other three parametrizations
are Ôτ = exp(L̂τ) ∈ SO(p), V̂τ = exp(L̂τ) ∈ LT(p) and Ûτ = exp(L̂τ) ∈ LTu(p), from which an estimator of655

Σ−1 is constructed in the obvious way. A comparable estimator based on an assumption of sparsity directly
on the inverse scale is Σ̂−1

τ , the inverse sample covariance matrix thresholded at τ. In all cases, the threshold
τ = 1 was used as the level below which entries were set to zero, implying that sτ(L) from equation (K.1)
is s∗ by the simulation design. The estimator Σ̂−1

τ typically violates positive definiteness, which may or
may not be problematic, depending on context. The results for the three parametrizations are reported in660

Tables K.1–K.4.
For the Σo parametrization, an additional step checked whether the matrix of orthonormal eigenvectors

Ô of the sample covariance matrix was special orthogonal, and if not, converted it to special orthogonal by
multiplying the first row of Ô by minus one. This step ensures that the matrix logarithm is skew-symmetric
and real-valued.665

Thresholding on the logarithmic scale was justified by Battey (2019) under the Σpd parametrization,
and in Proposition 4 under the Σltu parametrization. We have not in these simulations attempted to
optimize tuning constants, and it is likely that the results could be improved through a data-adaptive
tuning, nevertheless, several of the results suggest a benefit from exploiting sparsity on the logarithmic
scale as opposed to on the inverse scale.670

The performance of ÔτΛ̂
−1ÔT

τ , as reported in Table K.2, is relatively poor, suggesting that the thresh-
olding approach is too simplistic for this case. One issue concerns the constraints on α needed to make
the Σo parametrization injective (see Proposition C.4), which are not naturally accommodated by the
thresholding estimator. Another aspect is the distortion of the distribution of matrix entries by the matrix
logarithm, and its possible effect on the estimation error, which has not been formally studied for the Σo675

parametrization. Rybak & Battey (2021) noted a different estimator that does not involve taking matrix
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Estimator E
s∗ ρ ‖E−Σ−1 ‖•

‖Σ−1 ‖•
sτ(Σ−1) Σ̂−1

τ ÔτΛ̂
−1ÔT

τ

6 2 • = 2 91.3 0.561 1.264
6 2 • = F 91.3 0.540 1.451
6 4 • = 2 132 0.565 1.281
6 4 • = F 132 0.551 1.469
10 2 • = 2 91.7 0.599 1.305
10 2 • = F 91.7 0.561 1.467
10 4 • = 2 131 0.604 1.308
10 4 • = F 131 0.571 1.480
20 2 • = 2 110 0.597 1.340
20 2 • = F 110 0.564 1.521
20 4 • = 2 155 0.602 1.355
20 4 • = F 155 0.576 1.539
Largest standard error 96.2 0.205 0.328

Table K.2: Simulation averages of sτ(Σ−1) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the Σo parametrization.

Estimator E
s∗ ‖E−Σ−1 ‖•

‖Σ−1 ‖•
sτ(Σ−1) Σ̂−1

τ (V̂τV̂T
τ )
−1

6 • = 2 42.6 0.590 0.148
6 • = F 42.6 0.508 0.129
10 • = 2 50.4 0.581 0.147
10 • = F 50.4 0.514 0.131
20 • = 2 74.5 0.551 0.164
20 • = F 74.5 0.516 0.153
40 • = 2 162 0.503 0.203
40 • = F 162 0.481 0.191
Largest std. err. 47.7 0.198 0.112

Table K.3: Simulation averages of sτ(Σ−1) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the Σlt parametrization.

logarithms of sample quantities and that accommodates constraints on α. The formal implementation and
theoretical justification of that approach requires major work not taken up here.

K.1. Additional Figures for §9.2
The simulation setting is that described in §9.2 of the main text. Figure K.4 explores the relationship 680

between the relative performance of the two sparse estimators and their relative row norms, as quantified
by equation (15) of the main text. Specifically, Figure K.4 (B) shows that the metrics r(Σ) and r(L) are
closely related. Thus, when r(L) is low, so is r(Σ). Thresholding Σ̂ yields a significantly lower `2 error
when the ratio r(L)/r(Σ), and r(Σ), are either large, or very small, while Ûτ D̂ÛT

τ seems advantageous for
medium values of r(L)/r(Σ), as depicted in Figure K.4 (A). 685



22 J. Rybak et al.

Estimator E
s∗ ρ ‖E−Σ−1 ‖•

‖Σ−1 ‖•
sτ(Σ−1) Σ̂−1

τ (Ûτ D̂ÛT
τ)
−1

6 2 • = 2 90.7 0.526 0.405
6 2 • = F 90.7 0.503 0.372
6 4 • = 2 130 0.527 0.405
6 4 • = F 130 0.506 0.373
10 2 • = 2 110 0.547 0.431
10 2 • = F 110 0.520 0.396
10 4 • = 2 157 0.548 0.425
10 4 • = F 157 0.522 0.392
20 2 • = 2 163 0.548 0.482
20 2 • = F 163 0.514 0.448
20 4 • = 2 235 0.548 0.486
20 4 • = F 235 0.514 0.453
Largest standard error 83.2 0.189 0.310

Table K.4: Simulation averages of sτ(Σ−1) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the Σltu parametrization.
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Fig. K.4: (a) `2 error ratio ‖Ûτ D̂ÛT
τ − Σ‖2/‖Σ̂τ − Σ‖2 (left-axis, blue) and r(Σ) (right axis, black)

plotted against the ratio r(L)/r(Σ). (b) Maximum row-sum of L versus maximum row sum of the
lower-triangular part of Σ. Each point in both plots corresponds to a median over 100 simulations,
with n = 150, p = 100, for each combination of ε and percentage of non-zero entries of B.

L. Application to leukemia and arrhythmia data
The data (Efron & Hastie, 2016, §19.1) consist of 3571 features for 72 patients. Of these, 47 have

acute lymphoblastic leukaemia and 25 have acute myeloid leukemia. We used linear discriminant analysis
with the sample covariance matrix replaced by a thresholded estimator on each of the scales considered
in the paper, in order to assess the ultimate classification performance. Since the estimator exp(L̂τ)690

requires the sample covariance matrix to be positive definite, which fails to hold if n < p, we replace Σ̂
by Σ̂ + δp,ndiag(Σ̂), where δp,n = (log(p)/n)1/2; this choice was justified by Battey (2019). For estimators
Σ̂τ , ÔτΛ̂

−1ÔT
τ and Ûτ D̂ÛT

τ we considered both Σ̂ and Σ̂ + δp,ndiag(Σ̂) as pilot estimators, and report the
higher of the two accuracy rates in Table L.5.
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The accuracy rates were obtained by randomly splitting the sample into two sets, consisting of 50 and 695

22 patients respectively, the smaller subset serving as a hold-out for testing classification performance on
the basis of the larger training set. To select a threshold, the larger subset is itself split into a training (80%)
and a validation set (20%) ten times. For each method, we select a threshold that minimizes validation error
over the ten splits. The final classifier is estimated using all 50 patients and its out-of-sample performance
is calculated using the hold-out sample. The procedure is repeated 50 times, which results in a set of 50 700

out-of-sample accuracy rates for each method. Results are reported in Table L.5.

Test error Σ̂τ ÔτΛ̂
−1ÔT

τ exp(L̂τ) Ûτ D̂ÛT
τ

Median 95.5% 95.5% 95.5% 97.7%
s. e. 6.3% 4.0% 4.5% 5.1%

Table L.5: Median and standard error of accuracy scores on a hold-out dataset. Calculated over
50 randomly chosen test sets.

The Arrhythmia dataset from the UCI Machine Learning Repository (Guvenir et al. , 1997) has 452
observations, each representing a different patient. There are 16 classes, one representing normal ECG, the
remaining ones corresponding to different types of arrhythmia. We convert this to a binary classification
problem by pooling all arrhythmia classes together. The resulting dataset consists of 245 healthy patients, 705

and 207 patients with arrhythmia. We omit categorical features with fewer than 10 categories, resulting in
164 explanatory variables.

The accuracy was calculated using the same approach as for leukemia data, based on 20 different splits
of the data into a training and a hold-out set. The thresholding hyperparameter was chosen using a five-fold
cross-validation. 710
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