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SUMMARY

That parametrization and sparsity are inherently linked raises the possibility that relevant
models, not obviously sparse in their natural formulation, exhibit a population-level sparsity after
reparametrization. In covariance models, positive-definiteness enforces additional constraints on
how sparsity can legitimately manifest. It is therefore natural to consider reparametrization maps
in which sparsity respects positive definiteness. The paper provides insight into structures on
the physically-natural scale that induce and are induced by sparsity after reparametrization. Of
the four structures initially uncovered, the richest can be generated, under a causal ordering,
by the joint-response graphs studied by Wermuth & Cox (2004). This connection leads to an
interpretation of approximate zeros and explains modelling implications of enforcing sparsity
after reparameterization: in effect, the relation between two variables would be declared null if
relatively direct regression effects were negligible and other effects manifested through long paths.
The Iwasawa decomposition of the general linear group, combined with the graphical-models
interpretation, points to a class of reparametrizations for the chain-graph models (Andersson
et al., 2001), with undirected and directed acyclic graphs as special cases. The insights have a
bearing on methodology, some aspects of which are developed. An extensive simulation uses the
theoretical insights to further explore regimes under which reparametrization is beneficial.

Some key words: Causality; Chain graphs; Graphical models; Matrix logarithm; Reparametrization; Sparsity.

1. INTRODUCTION

Sparsity, the existence of many zeros or near-zeros in some domain, plays at least two roles
in statistics, depending on context: to aid interpretation and to prevent accumulation of error
incurred through estimation of nuisance parameters. There is now a large literature concerned
with enforcing sparsity on sample quantities, having assumed that the corresponding population-
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2 J. RYBAK ET AL.

level object is sparse. The present paper is concerned with the more fundamental question of
whether there are parametrizations enjoying a population-level sparsity not present to the same
extent in the original formulation. In other words, from a parametrization that is natural from a
modelling point of view, we seek a sparsity-inducing reparametrization.

Inducement of population-level sparsity, through a traversal of parametrization space or data-
transformation space, is a relatively unexplored area. Battey (2023) unified four isolated examples
from this perspective, starting from the work on parameter orthogonalization (Cox and Reid,
1987). The development of Gaussian graphical models (e.g. Lauritzen, 1996; Cox & Wermuth,
1996) and graphical models for extremes (Engelke & Hitz, 2020) is also somewhat in this vein. In
the same spirit, we focus on interpretation and insight at the population level, leaving for future
development the important question of how to deduce the sparsity scale empirically.

The motivating question for this paper is whether, for a broad enough class of covariance
structures, not obviously sparse in their natural parameter domain, a non-trivial sparsity-inducing
reparametrization can be deduced in which sparsity respects positive definiteness. By non-trivial,
we mean that it is possible to discriminate more effectively on the new scale between elements
that are large and elements that are small. This rules out artificially sparse reparametrizations
such as £ - ¢X for ¢ > 0 close to zero. Battey (2017) and Rybak & Battey (2021) provided a
proof of concept. Their position was that covariance matrices and their inverses are often nuisance
parameters, and it is therefore arguably more important that the sparsity holds to an adequate
order of approximation in an arbitrary parametrization, than that the sparse parametrization has
interpretable zeros. An example of this type is linear discriminant analysis, where the interest
parameter is the linear discriminant. In the case of undirected Gaussian graphical models, the
precision matrix is the interest parameter by virtue of the interpretation ascribed to its zeros. Thus,
both aspects are of interest and are addressed here. A third and different type of situation is when
the covariance matrix is a nuisance parameter that has a known structure up to a low-dimensional
parameter. This is common in some settings, for instance in the analysis of split-plot or Latin
square designs with block effects treated as random.

The starting point for the paper is the identification of new parametrizations in which sparsity
conveniently manifests in a vector space. For these, we uncover the structure induced on the orig-
inal scale through zeros in the new parameter domain, as well as the converse result: that matrices
encoding such structure possess exact zeros after reparametrization. The scope is considerably
broadened through the possibility of approximate zeros, of which there may be many more in the
new parameter domain than in the original or inverse domains. An important insight is therefore
the interpretation of approximate zeros, as this explains the modelling implications of enforcing
sparsity after reparameterization. Under a, perhaps notional, causal ordering, the relation between
two variables would be declared null if relatively direct regression effects were negligible and
other effects manifested through long paths. Section 7 unifies old and new parametrizations via
a class of matrix decompositions representing the chain graphs, allowing for both directed and
undirected edges, and recovering the four fundamental parametrizations as special cases.

Because the population-level sparsity manifests in a vector space, any sensible estimator
exploiting the sparsity will respect positive definiteness. We present one approach with high-
dimensional statistical guarantees in §8.

2. NoTtATION

Table 1 indicates subsets of the vector space M(p) of p X p real matrices. Most are matrix Lie
groups with matrix multiplication as the group operation; those that are vector spaces have a
natural matrix basis. A generic vector subspace of M(p) is written V(p).
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Notation Matrix subset Basis notation
PD(p) symmetric positive definite matrices

Sym(p) symmetric matrices Bsym
D(p) diagonal matrices Biag
GL(p) nonsingular matrices

P(p) permutation matrices

O(p) orthogonal matrices

SO(p) special orthogonal matrices (determinant +1)

Sk(p) skew-symmetric matrices Bk
LT(p) lower-triangular matrices By,
LTu(p) lower-triangular with unit diagonal entries

LTs(p) strictly lower-triangular matrices Biss

Table 1: Matrix subsets of M(p).

Also extensively referenced is Cone;, C Sym(p), the interior of a convex cone within Sym(p)
excluding the origin, as formalized in Appendix B of the supplementary material. For the purpose
of the present paper, Cone,, can be thought of as the constrained set of p(p + 1)/2 elements
constituting the upper triangular part of a positive definite matrix.

Diagonal and lower triangular matrices with positive diagonal elements are differentiated using
the subscript +. The symbol @ denotes the direct sum of two vector spaces; A @ B also represents
a block-diagonal matrix with blocks A and B. The index set {1, ..., p} is written [p]. The length
of a vector v is written dim(v) and the cardinality of a finite set (A is written |A|.

The sets of basis matrices in Table 1 are constructed from the canonical basis vectors ey, . . ., e,
for RP, where e; € RP is a zero vector with 1 as its ith component. Specifically By, :=
{B1,..., Byp+1)/2} consists of p(p — 1)/2 non-diagonal matrices e;e; + eke; for j < k and p
diagonal matrices of the form ejeJT, the latter also constituting Byiag: Bsk := {B1, ..., Bp(p-1)2}
consists of skew symmetric matrices eje; - eke]T for j < k; By; := {Bi, ..., Bpp+1)/2}, consists
of lower triangular matrices eke/T,j < k;and By := {By, ..., By(p-1)/2} consists of strictly lower

triangular matrices ey e]T with j < k. The matrix exponential of a square matrix A is defined as

et = o AK/k\. Conversely, if a matrix logarithm L of a square matrix M exists, then M = e’

See Appendix C for existence and uniqueness conditions.
For random variables X, X, and X3, the statement that X is conditionally independent of X,
given X3 is notated by XL X,|X3, unconditional independence notated by X;1LX5.

3. REPARAMETRIZATION

The set Cone,, is, from one perspective, the natural parameter domain for parametrizing the
manifold PD(p). The question we seek to address is whether there is another parameter domain
that is less direct, but in which a population-level sparsity is present, ideally with interpretable
zeros or near-zeros. This is most compelling in the absence of considerable sparsity on the original
or inverse scales; in that case, the reparametrization is said to be sparsity-inducing. The problem
is initially addressed from the opposite direction, by considering the parameter domains in which
sparsity can be fruitfully represented, and then studying the form of multivariate dependencies
that are implied by exact zeros in these non-standard parametrizations. We clarify in subsequent
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sections the extent to which, and manner in which, a covariance or precision matrix might be
sparser after reparametrization, and the implications for estimation and interpretation.

In a sense to be clarified, a construction based on the chain graph representations of §7 subsumes
the dependence structures identified in §4 into a broader sparsity class. This ultimately points to a
class of structures in which sparsity manifests in a vector space, and that enjoy a graphical models
interpretation on the physically natural scale when a full or partial causal ordering is present.

From an initial parameterization of PD(p), formalized in Appendix B, we study four reparame-
terizations arising from maps Cone,, — RP(*1)/2 uch that sparsity in the new domain RP(+1)/2
respects the positive definiteness constraint on X. In other words, an arbitrary configuration of
zeros in the new parameter domain RP?*1/2 does not violate positive definiteness of X or T~!.

The four fundamental parametrizations discussed in this work are, with D(d) = diag(d, . . ., dp),
a Yg(a) = el@), L(a) € Sym(p), « € RPWP+D/Z,
(@,d) > Zp(a,d) := M@ P (LlanT L(a) € Sk(p), a eRPPV2 gecRP;
a I (@) = MM L(a) € LT(p), « e RPWPHD/Z

’ ltu ’ = @ ’ S ) - ’ .
(@,d) - Spu(e, d) = HDPD (N L(a) e LTs(p), aecRPP D2 geRP. (1)

That the four maps (1) are fundamental emerges from the Iwasawa decomposition of the group of
nonsingular matrices, owing to which the paper has an enlightening group-theoretic underpinning.
We have placed most of this discussion in the supplementary material in favour of a more broadly
accessible exposition, but we return briefly to the Iwasawa decomposition in §7.2.

For each of the four reparametrization maps, the parameter domain R”(?+1/2 i5 identified with
a different vector space of the same dimension. These are, respectively, Sym(p), Sk(p) x D(p),
LT(p), and LTs(p) X D(p). The subscripts on ¥ in the parametrizations indicate which of the
matrix sets, PD(p), SO(p), LT, (p) and LT,(p) respectively, prescribed coordinates in terms of «,
are represented as the image of the matrix exponential. In each case L(«) € V(p) depends on «
through its expansion

L(@) = a1B; + -+ + @By 2)

in the canonical basis for V(p), as specified in §2. The canonical basis is part of the definition
of the reparametrization maps. Appendices B and C establish the legitimacy of the maps, this
hinging in the case of X, and X;; on some constraints on @ or conditions on the covariance
matrices. Thus, X,4 and Xy, are favourable in this respect.

Another parametrization in which sparsity respects positive definiteness is in terms of the
Cholesky factors themselves, rather than the matrix logarithm of the Cholesky factors. This is
related to the Xj; and Xj;,, parametrizations as discussed in §5. While sparsity in the Cholesky
factors has not been explicitly considered, its implications can be deduced from Wermuth &
Cox (2004). Several authors have modelled the Cholesky components in terms of covariates;
Pourahmadi (1999) appears to have started this line of enquiry.

4. SPARSITY STRUCTURES OF Z(G’) INDUCED BY, AND INDUCING, EXACT ZEROS IN &

Consider the matrices L € V(p) C M(p) from (1), all of which can be written in terms of
a canonical basis B of dimension m as L(a) = a1B| + - - + &y B;. Suppose now that @ =
(@1, ..., am) is sparse in the sense that ||a|lo = 2;T{e; # 0} = s* < m. In general, the sparsity
of L(a) =log(M) is different from the sparsity of M. However, certain sparsity structures are
necessarily preserved in both directions, in the sense that particular arrangements of exact zeros in
M and its logarithmic transformation coincide. These structures, and the corresponding structures
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of X, are specified in Corollaries 1-4. One might call these zeros structural zeros: ones that are
preserved through transformation regardless of the values of the non-zero entries. There is also
the possibility of coincidental zeros in the logarithmic domain that are not present in the original
domain. This can be seen most easily from the X, parametrisation. For s* < p, Battey (2017)
showed that X = X, 4(a) is necessarily of the form

z= Z Aj0j0] + Z eie;,  lojllo = p = | A, 3)
JeEA JEAC

where (4;, oj)f: , are the pairs of eigenvalues of X and A is a set specified by the configuration of
zeros in a. The implication of (3), since the second sum only specifies unit entries in diagonal
positions corresponding to (A, is that if

Lik = Z log /leijij =0 (4)
JjeA

for positions i and k such that o;; and oy are not identically zero over j € A, then the cor-
responding entry X;; is necessarily non-zero. This coincidental zero in the logarithm comes
from cancellation, as distinct from the structural zeros in the eigenvectors. Equation (4) illus-
trates clearly that nothing is lost by transforming to the matrix logarithmic domain, discarding
eigenpairs used for the calculation, and transforming back: even when coincidental zeros are
encountered in L = log(X), the corresponding entries of X are recovered from the ensemble.

In Gaussian graphical models, the structures expounded in Corollaries 1-4 correspond to
conditional and unconditional independencies between specific sets of variables. Since identical
patterns of zeros are present in transformed matrices, these sparsity structures, when present
in the transformed domain, imply equivalent statements about conditional and unconditional
independence. It is possible, however, to make additional statements from approximate zeros. We
revisit this aspect in §5 and §6.

Theorem 1 is a general result, whose application to the four cases results in Corollaries 1-4.

THEOREM 1. Let M = & € M(p) where L € V(p), a vector space with canonical basis B of
dimension m. The matrix L has d; and d;. non-zero rows and columns, of which d* coincide
after transposition, if and only if M has p — d;: rows of the form e} for some j € [p], all distinct,
p — d;. columns of the form e;j, and of these, p — d* coincide after transposition. If M is normal,
ie. MM = MM", then d} = d} = d*.

The quantities d;:, d and d* are related to s* when « is sparse. A loose bound is max{d}, d;'} <
2s*, but max{d}, d’} can be considerably smaller than this, as it depends on the configuration
of basis elements picked out by the sparse @. Indeed, max{d;, d}} < p is possible even when
s* exceeds p, provided that the configuration of non-zero elements of @ produces zero rows or
columns of L. Figure 1 shows an example of a structure of M established by Theorem 1. In
particular settings, where the form of V(p) is made explicit, there may be additional structure,
e.g. lower triangular, that is not reflected in Figure 1.

Corollaries 1 and 2 to be presented are not new. However, their proofs in Appendix G are new,
and presented in terms of the general formulation of Theorem 1.

CorOLLARY 1. Let X be parametrized as X,q(a) = e and let d < p. Then, Zpa(a) is of the
form £ = P(Zy ® D,,_q)P", where P € P(p) is a permutation matrix, X € PD(d) and D,_g €
D(p — d), if and only if L(a) = P(L1 ® A,_q)P", where Ly € Sym(d) and A,,_q € D(p — d).

Corollary 1 as stated emerges from the properties of the matrix logarithm applied to block
diagonal matrices. The version of Battey (2017) gives a stronger restriction in that s* is required
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6 J. RYBAK ET AL.

Fig. 1: Example of a structure of M as established in Theorem 1 with p = 10, d =7, d’: = 8 and
d* = 9. The entries that are zero by Theorem 1 are light blue, those equal to one are medium
blue, and the remaining entries, whose values are unconstrained, are dark blue.

to be less than p which also reduces the rank of the matrix logarithm. In that case D),_; and A,,_4
from Corollary 1 are replaced by 1,,_g4+ and 0,4+, as reflected in (3).

CoroLLARY 2. For an arbitrary diagonal component D = diag{d,,...,d,}, let X be
parametrized as Zo() = X @ el (MO Then, T,(a) is of the form £ = P(Z; & Dy,_q+)PT,
where P € P(p) is a permutation matrix, D,_q+ € D(p — d*) and X, € PD(d"), if and only if
L(a) = P(L; & 0p_gq-)P", where Ly € Sym(d"™).

COROLLARY 3. Let X be parametrized as Ty (a) = e (el Then, 3;,(a) is of the form
X =VV', whereV = I, + ® with ® € LT,(p). The ith row of ® is zero if and only if the ith row of
L(a) is zero. Similarly, the jth column of © is zero if and only if the jth column of L(«) is zero.

CoroLLARY 4. For an arbitrary diagonal component D = diag{d,,...,d,}, let X be
parametrized as Tip (@) = X @eP (MO Then, Lp,,() is of the form £ = UYU", where
¥ =eP eD,(p), U=1I,+0O. The ith row of ®© is zero if and only if the ith row of L(«) is
zero. The jth column of © is zero if and only if the jth column of L(«@) is zero.

Zeros in a produce structured patterns of zeros in ¥ and X! in parametrizations 2,q and
%o, and structured patterns of zeros in the Cholesky factors in parametrizations X;; and X,
respectively. These structures are interpreted in §5.

Although constraints on s* are avoided in Theorem 1, a small value, e.g. s* < p/2, is guaranteed
both to generate and to be implied by a simplification in the underlying conditional independence
graph, under a notional Gaussian model. Relatively large values of s* can also entail graphical
reduction in many cases, in the sense of introducing conditional independence relations relative
to the saturated case. As an illustration, there are p(p + 1)/2 basis elements for L in the X,4
parametrization. For « to induce a pattern of zeros in X of the type discussed in Corollary 1, L
needs to have a zero row, which requires only p zero coefficients in the basis expansion of L.
Thus, s* can be as large as s* = p(p — 1)/2 for the structure to hold.

To make a comparison between different structures of £ more explicit, we consider a simple
example with p = 5. For the parametrizations X, 4 and X, we set d* = 3, corresponding to s* = 6
and s* = 3 respectively. For X;;,, we consider two cases: X7, for which d; < p, d’: = p (this

ltu’
serving as the definition of er .,)» and Zl“’m, for which d; = p, d < p; in both cases s* = 6. The
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@ Zpg ®) Z,

©zr, CR
Fig. 2: Structure of (@) induced by sparsity of a. Zero entries are depicted by light blue, unit
entries by medium blue, and the unrestricted entries by dark blue.

quantities d*, d;: and d. are defined in Theorem 1. The resulting covariance structure is depicted
in Figure 2. If, for an arbitrary diagonal component, the map & — X, (@) is instead replaced by
an essentially equivalent representation @ — X,,;,, (@) in terms of upper triangular matrices, the
analogous structures ¥, (@) and Xj,, () are the same as for X7 (@) and X}, (a) respectively.

For the X;;,, parametrization, Figure 2 illustrates that, unlike a ® with zero rows, a ® with
zero columns can generate a dense covariance matrix. Intuitively, for the same restriction on the
sparsity of a, the corresponding covariance matrices X;, and X should represent relationships
of similar inherent structural complexity. The following result confirms this intuition. Specifically,
Lemma 1 shows that, although X, ~might have no zeros, the sparsity restriction on « induces a
low-rank structure on a submatrix of X' . The existence of a low-rank structure has a statistical
interpretation in terms of latent variables (e.g. Fan et al, 2013).

LemMma 1. Consider a random vector Y = (Y|, Y}, YJ)" with covariance matrix X. The columns
of ® in Corollary 4 corresponding to Y, are zero if and only if the submatrix

211 213
201 23
of £ has rank dim(Y}).

If zeros in d are allowed, the basis coefficients of the @ — X (@) and (@, d) — Zju(a, d)
parametrizations are related. To see this, write

¥ = exp(L) exp(L") = exp(L, Dy) exp((L,D1)"),
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where Dy € D(p) and L,, € LT,(p). On writing L, D, = Ly + D, where Ly € LT(p) contains the
strictly lower triangular part of L, D1,

% = exp(L)exp(L") = exp(Ly) exp(D; + Dy) exp(Ly), 5

by the properties of the matrix exponential, which recovers the ¥, parametrization with D = 2D.
Thus if d is allowed to have zeros, there is an exact relationship between the coefficients of the
expansion of X;;,, and those of X;;. Since the transformation X;;,, provides a more convenient way
of parametrizing regression graphs, subsequent discussion focuses on X;;,,. Most insights derived
for the ¥;;,, parametrization extend directly to X;,.

5.  SPARSITY UNDER THE Xj;;, PARAMETRIZATION
5.1.  Causal ordering

A familiar result interprets zeros in a precision matrix as conditional independencies under a
Gaussianity assumption. The less familiar directed graphical models have important differences,
both mathematically and conceptually. For instance, many different causal models may be com-
patible with the same structure of zeros in the precision matrix, and an undirected graph whose
associated Gaussian model has a sparse precision matrix could be appreciably less sparse in
2! when the undirected edges are replaced by directed ones. The key factor determining this is
whether there are common response variables occurring later in the causal ordering.

Whether directed or undirected edges are more natural depends on context. The present section
is concerned with directed edges. By postulating a, perhaps notional or provisional, causal
ordering among the underlying random variables, substantive understanding can be attached to
the interpretation of sparsity on the transformed scale. Through this route we develop insight into
the implicit assumptions involved in enforcing sparsity when it is only approximately present,
broadening the scope of the work.

5.2. The matrix logarithm and weighted causal paths
With [p] ={1,...,p}, leta C [p] and b = [p]\a be disjoint subsets of variable indices. As a
consequence of a block-diagonalization identity for symmetric matrices (Cox & Wermuth, 1993;
Wermuth & Cox, 2004),

s = (Zaa 2ab) — ( I|a| 0 ) (Eaa 0 ) (Ilal Egclzzub) ) (6)
Xpa Zpb ZpaZan In)) \ 0 Zopa)\ O I

The components 1|, := TpaZ,)l € RIPXlal '3, e PD(|a]) and Zpp.q := Zpp — SpaZ  Zap €
PD(|b|) are the so-called partial Iwasawa coordinates for PD(p) based on a two-component
partition |a| + |b| = p of p. For a statistical interpretation, let ¥ = (Y,,Y!)" be a mean-zero
random vector with covariance matrix X. Then I, is the matrix of regression coefficients of ¥,
in a linear regression of ¥}, on Y, and X, , is the error covariance matrix, i.e. ¥, = Il |, Y, + &p
and X5 o = var(ep). Applying the block-diagonalization identity recursively results in a block-

diagonalization in 1 X 1 blocks, which corresponds to the LDL decomposition of X inherent to
the X, parametrization. Specifically, X = UYU" with ¥ € D,(p) and

U=1,+0=(l,-B)", (7)

where © € LTs(p) and B;; is the regression coefficient of ¥; in a regression of ¥; on its predecessors
Y1, ...,Y;—1. Although in principle an arbitrary ordering can be chosen, it is natural to use a
postulated causal ordering, if one is available. In the corresponding representation of Y as a
directed acyclic graph with nodes V), .. .,Y,, a directed edge ¥; — Y; can exist only if j <, in
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B3.12

o 2)
J v B3.21

Fig. 3: Directed acyclic graph with edge weights corresponding to regression coefficients.

which case the total effect of ¥; on ¥; can be expressed in terms of the regression coefficients. An
example gives intuition prior to a formal statement in Proposition 1.

Example 1. Consider a set of three variables (Y1, Y», ¥3). The total effect of ¥; on Y5 is related to
the conditional effects through Cochran’s recursion (Cochran, 1938), also known as the trek rule,

B3 = B3.12 + B3.2162.1. (®)

The coefficient £3.; is the regression coefficient of ¥; in a regression of ¥z on Y; only, having
marginalized over Y,, while 3 15 is the coefficient of ¥; in a regression of ¥3 on ¥; and ¥,. To
make this concrete at the population level, 3 ; is the total derivative of

fO,32) =E® | Y =y, T2 = )
treating y; and y, = y2(y1) = E(Y> | Y1 = y1) as free variables, i.e.

_ Df(,32) _ 95O, 52) N 0f(y1,¥2) diz()ﬁ)'

Pa Dy; dy1 0y2 dy,

The right-hand side of (8) corresponds to tracing the effects of ¥3 on Y} along two paths connecting
the nodes in a recursive system of random variables (¥}, Y3, ¥3), with edge weights given by the
corresponding regression coeflicients, as depicted in Figure 3.

A directed edge in a recursive system can exist from node j to node i only if j < i. Thus, there
are two possible paths from Y; to ¥3: ¥ — Y3 and Y] — Y> — Y3, which correspond to the first
and second term in (8) respectively. Let v;;(/) denote the effect of ¥; on ¥; along all paths of length
[, specified for this three-dimensional system as

v21(1) = Ba1, v31(1) = B3.12,
vi(1) = B3, v31(2) = B32182.1-

The lower-triangular matrices U and L = log(U) have the form,

1 0 0 0 00
U = Ba 1 0|, L= Ba.i 0 0f. )
Ba.a2+ B3.2182.1 B3 1 30+ B2 51 0

More generally, the following proposition establishes the interpretation of entries of the lower-
triangular matrix U and its matrix logarithm, L.

ProposiTION 1. Consider a parametrization Xi, (e, d) = M@ P @D (MO gnd Jer U =
exp(L(a)). Let B; jjx| denote the regression coefficient on Y; in a regression of Y; on Y, and
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10 J. RYBAK ET AL.
Yi,..., Y. The (i, j)th elements of U and L have the form,
0 : . < .’ . .
Fored 0 i i<y
Sk —U: RS Lij = Zp—l vij (D) if P>
S v if P>, =1 1 ,

where

i_l . . .
- i kli-1Vk; (L — 1 —ji>1
vg(l):{ mjoimt Piktio = D) 0=

0 otherwise.

The entry U;; for j < i thus corresponds to the sum of effects of ¥; on ¥; along all paths
connecting the two nodes, with edge weights given by regression coeflicients. In contrast, L;;,
and by extension, the corresponding coefficient in the basis expansion of L, is equal to the
weighted sum of effects of ¥; on ¥; along all paths connecting the two nodes, with weights
inversely proportional to the length of the corresponding path.

Proposition 1 provides insight into the effect of logarithmic transformation relative to the iden-
tity transformation and the inverse transformation, whose resulting zeros encapsulate conditional
independencies in a Gaussian model. Specifically, the entries of B can be viewed as representing
paths of length 1, corresponding to a complete discounting of longer paths, while U = (I — B)™!
has entries aggregating the contributions along all paths, with weights equal to one, i.e. no dis-
counting of longer paths. In between these two extremes, logarithmic transformation weights
a path of length [ by a factor 1//, as reflected in Proposition 1. Moreover, the weights in the
logarithmic transformation are such that the off-diagonal entries of log(I — B) and log(( — B)™!)
are equal in absolute value, since log((I — B)™') = —log( — B). Section 5.4 discusses some of
the implications of these distinctions, following a discussion of exact zeros in §5.3.

5.3.  Exact zeros

The previous discussion makes clear that there can be configurations of zeros in @ that do not
produce whole rows or columns of zeros in L. In that case, no structural insights are available from
Corollary 4, although an interpretation is still available for any exact zero of L via Proposition 1.
Corollary 5 provides the relationship between exact zeros in U and L under a causal ordering.

CoroLLARY 5. Ifno directed path exists from node j to node i, j < i, then B;j = U;; = L;; = 0.
IfU;j = 0or L;j = 0 for j <i, then either effects of Y; on Y; along different paths cancel, in which
case B;j need not be zero, or there exists no directed path from j to i, in which case Bj;j is zero.

Under an assumption of no path cancellations, Corollary 5 generalizes Corollary 4 to situations
in which the configuration of zeros in a does not produce a zero row or column of L. To see this,
note that a zero jth row of ® implies that there are no directed paths between nodes Vi, ..., Y|
and Y}, while a zero ith column implies that there are no directed paths between node Y; and nodes
Yii1,...,Y,. An example of a graph whose sparsity structure is described by Corollary 5 but not
by Corollary 4 is depicted in Figure 4.

Unlike the sparsity structures identified in the more general Corollary 5, the sparsity patterns
described in Corollary 4 can be interpreted in terms of conditional independencies under an
additional assumption of Gaussianity.

ProposiTiON 2. Consider a Gaussian random vector Y = (Yy,...,Y,)" with zero mean and
covariance matrix ¥ = UYUT, where U = I + ®, @ € LT(p) and ¥ € D,. Then,
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Ba.123

Fig. 4: Directed acyclic graph corresponding to U and L satisfying Usp = 0 and L4y = 0.

1. If the jth column of © is zero, then Y; 1LYy, ..., Y,|Y1,...,Y,_1. Consequently, Zj‘il =0 for

ie{j+1,...,phL
2. If'the jth row of ® is zero, then Y; 1LY, .. .Y, and Z;; = O fori € {1,...,j—1}.

For the same number of edges in a graph, the number of zeros in the Gaussian precision matrix
depends on the directions of the arrows relative to the configuration of arrows; no reordering of
variables can produce a sparser representation. This arises because conditioning in the interpre-
tation of precision matrices is on all variables, rather than only those that occur earlier in the
ordering. Given a pair of variables i and j, marginalization over a third variable induces an edge
between i and j if the marginalized variable is a transition node or a source node. By contrast,
conditioning is edge-inducing if the conditioning variable is a sink node. In a diagrammatic
representation due to Cox & Wermuth (1996), with # and [© representing marginalization and
conditioning respectively,

i«— f—j, ie—fpe—j i— Qe
i----J, i — J, i----J.

where ---- indicates that no direction in the induced edge is implied.

These marginalization and conditioning identities also imply that U will typically be sparser in
the correct causal ordering than in an erroneous ordering, modulo coincidental path cancellations,
as by definition, any source or transition nodes can only be present among the conditioning sets,
and there can be no conditioning on sink nodes.

Figure 5 depicts two examples of directed graphs that are compatible with the covariance
matrices from Figure 2 (c) and (d) respectively. The indices of non-zero off-diagonal entries
of the corresponding lower-triangular matrices are {(3,1),(3,2),(5,1),(5,2),(5,3),(5,4)} and
{(2,1),(3,1),(4,1),(5,1),(4,3),(5,3)}. These are non-zero entries of both B and ®, as a convergent
Taylor representation of the matrix inverse in (7) shows that if ® has zero rows or columns, the
corresponding rows and columns of B are also zero.

Interpretation of the precision matrix is more appropriate for undirected graphs. For instance,
if the edges in Figure 5 (a) were undirected, it would hold that 4.11.{1,2,3} | 5 and 2 would be
zero for j = 1,2, 3. That variable 5 is a sink node, however, invalidates this result, as condltlonmg
on the common sink node induces an edge between variable 4 and all other variables.

5.4. Approximate zeros
By Proposition 1, the element (i, j) of L = log(U), and by extension, the corresponding coeffi-
cient in the basis expansion of L, is equal to the weighted sum of effects of ¥; on ¥; along all paths
connecting the two nodes, with weights inversely proportional to the length of a given path. As a
result, in the absence of cancellations of effects along paths of different lengths, which produces
an exact zero, a logarithmic transformation reduces the contribution of long paths relative to short
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@ %], (o) (b) %7, (@)

Itu ltu

Fig. 5: Directed acyclic graphs corresponding to the example of Figure 2. Arrows indicate directed
edges and nodes correspond to random variables.

paths in the absolute entries of the matrix. This leads to an interpretation of a near-zero as mean-
ing that short paths between variables are associated with small conditional effects, while any
large conditional effects are mediated by a string of intermediate variables, where conditioning
is on all variables that occur earlier in the causal ordering. The approximation inherent to any
statistical algorithm that sets small values of a to zero is thus as follows: the relation between
nodes i and j < i would be declared null if relatively direct regression effects were negligible and
other effects manifested through long paths.

All of B, U and L contain the same information in different guises, that in B being the most
easily interpretable. Once sparsity is sought, however, the sparse approximations to B, U and L
place emphasis on different aspects.

Since components of B are the direct effects, thresholding on this scale (i.e. setting absolute
entries below a given threshold to zero) implicitly assumes that the direct effects are the most
important to recover. Consider three variables with connections 1 — 2 — 3 and no direct edge
between 1 and 3. Suppose that edge weight 1 — 2 is very large, while that of 2 — 3 is small
and hence thresholded to zero. The effect of 1 on 3 is not reflected in the resulting thresholded
approximation to B, even though this effect may be appreciable in view of the large 1 — 2 effect.

At the other extreme, the entries of U represent the sum of effects along all paths, in which the
information about short paths is absorbed in a composite. The cost, potentially, is a small number
of near-zeros, and recovery of distant effects, as thresholding implicitly assumes that paths of
all lengths are equally important. Consider a simplistic example in three variables to illustrate
a particular point, ignoring other aspects. These variables are “parents smoke”, “individual
smokes”, “individual has lung cancer”. Since longer paths are not discounted, it may superficially
appear that “parents smoke” has a larger effect on “individual has lung cancer” than “individual
smokes”, as it has a positive direct effect as well as a positive indirect effect via the intermediate
variable “individual smokes”.

Thresholding on the scale of L is a compromise between these two extremes. In the first
example we can still recover, after sparse approximation, the effect 1 — 3 that would be lost to
thresholding on the original scale, while in the second example, we can still identify “individual
smokes” as the main cause of cancer.
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Interestingly, the above conclusion bears some resemblance to a suggestion from influential
work in computer science about learning in networks. Grover & Leskovec (2016) define two types
of neighbourhoods of a node in a graph: one consisting of direct neighbours, and another that
involves traversing long paths in the graph. The authors argue that information from both types
should be combined, with a hyperparameter specifying the relative importance of paths. The Z;;,,
parametrization specifies the analogue of this hyperparameter as a discount rate on long paths,
given by the inverse path length.

6. SPARSITY UNDER THE X,q PARAMETRIZATION
6.1. Sparsity-induced structures

The ordering is immaterial for the X,4 and X, parametrizations. The structures elucidated in
Corollaries 1 and 2 imply the same structure on the scale of the precision matrix, and therefore
correspond to conditional independencies. We do not put forward that such structures are likely
to hold exactly. Their purpose is instead to approximate a more complex reality, so as to aid
interpretation or limit the accumulation of estimation error in procedures like linear discriminant
analysis, where the covariance matrix is a nuisance parameter. With this in mind, §6.2 establishes
the interpretation of exact and approximate zeros under the X, ; parametrization, while §7 explains
the relevance of the X, ; parametrization in the context of chain graphs, broadening its scope.

6.2. Interpretation of zeros under the X,q parametrization

The interpretation of basis coefficients in the transformation X, is less straightforward than
in the case of Zj;,,. Under additional assumptions we can recover an interpretation of zero entries
in the matrix logarithm of £ € PD(p).

Consider an undirected Gaussian graphical model for V1, . . ., Y,,, with no self-loops. Write V =
>~! for the precision matrix. The regression coefficients are entries of the matrix V = diag(V)~'V,
where diag(A) denotes a diagonal matrix whose diagonal entries are equal to those of A. The
form of V is analogous to that of normalized graph Laplacian in spectral graph theory (e.g. Von
Luxburg , 2007). Let v;‘j(l) denote the total effect of a unit change in ¥; on Y; along all paths
of length [, the superscript u in v:.‘j(l) distinguishing this quantity for an undirected graph. As
compared with v;;(/) from §5.2, in the undirected case, a given node can be connected to all others.
The following proposition establishes the interpretation of entries of log(Zdiag(V)) = —log(V).
This result can be seen as an adaptation of Proposition 1 for undirected graphs.

ProposiTION 3. For a matrix X € PD(p), let V = diag(V)™'V and £ = Zdiag(V). Then the
elements (i, j) of X and of its matrix logarithm have the form,
(o] oo UM(Z)
- - - ij
Sy = ) D log®); = ~log(V)yj = ) —

=1 =1

if the infinite sums converge.

Unlike in Proposition 1, expressions for elements of transformed matrices in Proposition 3
involve infinite sums. As a result, Proposition 3 requires an additional assumption of convergence.
The interpretation established in Proposition 3 holds for the matrix logarithm of a suitably scaled
covariance matrix, rather than for log(X). However, a direct calculation yields the following result,
which is also implicit in Corollary 1.

CoroLLARY 6. Assume that no cancellation of effects of Y; on Y; occurs along different paths.
Then L;j = 0 if and only if V;; = 0.
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Thus, in the absence of cancellation of effects, an element (i, j) of L =1log(X), as well as the
corresponding basis coefficient, is zero if and only if there is no path between nodes i and j. It
is often the case, in spite of the previous sentence, that L is sparser than £ and £~ under more
general notions of sparsity. This is probed by simulation in §9.

7. CHAIN GRAPHS AND THE IWASAWA DECOMPOSITION

7.1. A unifying parametrization for chain graphs

The interpretation of (6) in terms of partial Iwasawa coordinates points, via a group-theoretic
treatment, to an encompassing formulation. This is first developed from a statistical perspective.

Corollary 7 to be presented is a unifying result in which the interaction of sparsity on the
transformed scale with structure on the original scale is elucidated, recovering three of the results
of §3 as special cases in which connected components consist of either all undirected edges
(Corollary 1) or all directed edges (Corollaries 3 and 4).

A graph G = (V, E) is a chain graph if it contains both directed and undirected edges, but no
semi-directed cycles (Drton & Eichler, 2006, p. 83). When two nodes v, w € V are connected by
a path consisting solely of undirected edges, we say that u and w are equivalent. Let U be a set of
equivalence classes, called chain components, of this equivalence relation. Define a new graph
D = (U, E) with nodes U and edges & between chain components. Since we assume that there
are no semi-directed cycles in G, the graph of D is a directed acyclic graph.

Chain graphs are usually characterized by the alternative Markov property (Andersson et al.,
2001), satisfied under a mean-zero Gaussianity assumption if and only if the precision matrix can
be written as

> = -BYQ (I -B), (10)

where Q! is zero if an undirected edge (u, v) is not in the graph, and B,,, = 0 if a directed edge
u — v is not in the graph (Drton & Eichler, 2006). Since there exists at most one edge between
any pair of nodes, Q,,,, # 0 implies B,,, = 0, and vice-versa. Every directed acyclic graph can be
represented by a triangular matrix, so we can always find a permutation matrix P € P(p) such that
decomposition (10) of PL~!PT yields a strictly lower-triangular matrix B and a block-diagonal
matrix Q~'. That there exists a P € P(p) that simultaneously rearranges B and Q™! follows from
the assumption that there is an underlying chain graph. From now on we assume that an ordering of
variables has been chosen such that B is triangular and Q! is block-diagonal. The factorization
(10) then represents the precision matrix as a product of block-diagonal and block-triangular
matrices. The block-triangular matrix captures connections between chain components, while the
block-diagonal matrix describes connections within the chain components.

Suppose that ¥ ~ N(0, X) is partitioned into ¢ blocks, ¥ = (¥1,...,Y.), where each block ¥;
constitutes a chain component, that is, the variables within ¥; form a connected undirected
graphical model. Let p; denote the dimension of the sub-vector ¥;. The decomposition of the
precision matrix (10) implies the decomposition of X in terms of a block-diagonal component Q:

> =TQT", Q=060 @ -0 Q,, Q; € PD(p;), (11)

where T = (I — B)™! € LT(p) has diagonal blocks Iy, ..., I, .Factorization (11) can be obtained
by successive block-triangularization of X, and the corresponding block-triangular transformation
can be parametrized as

(@,8) — Zpe(, 8) := M@ PO (llanT
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where D(6) = D1(6) @ - -- ® Dc(8;), Di(6;) € Sym(p;), 6; € RPiPi+D/2 and 6 = (67 ... o).
The matrix logarithm L(«a) is block-triangular with ¢ diagonal blocks, each equal to a p; X p;
identity matrix. With ps the dimension of &, the dimension of « is p(p + 1)/2 — ps.

That X, represents a unifying structure is seen on noting that when D(6) is diagonal we recover
the parameterization X, (c, 6), and therefore also X;;(@) by the discussion surrounding equation
(5). At the other extreme, when D(6) consists of a single block of dimension p X p, we recover
Z,a(0). The remaining parametrization X, is not directly recoverable as a special case of X,
although there is an indirect connection because L € Sk(p) can be decomposed as L = Ly — L]
with L € LT¢(p). Additional details are in Appendix E.

COROLLARY 7. Let T be parametrized as Zp;(a, 8) = eX@ePO) (N and let d < p. Then,
Tpi(a, 8) = TQT", and,

1. (Sparsity of DAG): T = I + A and the ith row of A is zero if and only if the ith row of L(«a) is
zero. The jth column of A is zero if and only if the jth column of L(«a) is zero.

2. (Sparsity of chain components): Q is of the form Q = PQOP", where P is a permutation
matrix and Q©) = Q(lo) ® ©,_gq, where ®,,_4 € D(p — d) and Q(lo) € PD(d) is block-diagonal
if and only if D(6) = P(D(IO) ® Ap_q)P" where DEO) is block-diagonal and A,,_4 € D(p — d).

Since L(a) = log(T) = —log(I — B), the coeflicients of log(/ — B) in the appropriate basis are
equal to —a. Thus, the sparsity indices of / — B and T on the logarithmic scale coincide. In
contrast, no obvious relationship exists between the sparsity of / — B and T, since a zero entry
in I — B does not imply a zero entry in T, and vice versa. A similar point applies to Q and Q!
since D(8) = log(Q) = —log(Q™!).

A result analogous to Corollary 7 can be obtained for the precision matrix, since zero rows
and columns of L(«) and —L(a) = log(I — B) coincide. Part (1) of Corollary 7 thus describes
structures arising when the sparsity patterns of 7" and I/ — B coincide. For example, suppose
that the ith column of I — B is zero, that is, node i has no descendants. This is reflected on the
transformed scale by a zero ith row of L(«).

7.2.  Connection to the Iwasawa decomposition of the general linear group

The parametrization X, represents the general form of the Iwasawa decomposition of the
general linear group, pertaining to the partition p; + - - - + p. = p of p. This provides a group-
theoretic perspective on how the parametrization X; unifies and generalizes three of the four
parameterizations from (1), detached from any consideration of causal ordering. Appendix D
provides further discussion. The identification PD(p) = GL(p)/O(p) characterizes a positive defi-
nite matrix as a non-singular one whose ‘orthogonal component’ has been discounted. Explicitly,
¥4 = ATA is positive definite for every A € GL(p), and left-multiplication by any orthogonal
matrix gives an equivalence class [A] = {OA : O € O(p)} € GL(p) such that X4 = V'V for any
V € [A]. Relatedly, Draisma & Zwiernik (2017) identified the subgroup of GL(p) acting on Z,
and studied corresponding equivariant estimators that preserve the chain graph property.

The group theoretic perspective provides a new way to interpret the information geometry of
the zero-mean multivariate Gaussian (Skovgaard, 1984). The Fisher information metric tensor
coincides with the quotient geometry of PD(p) = GL(p)/O(p) under a Riemannian metric that is
invariant to the transitive action of GL(p). Upon representing a positive definite covariance matrix
¥ in the partial Iwasawa coordinates (X,g, Shalil Xbb.a), the metric is endowed with an inter-

aa’

pretation compatible with a suitable graphical model and a corresponding X;;,, parametrization.
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8. PROPAGATION OF ERROR AND ESTIMATION
8.1.  Existing results for Lpq

A question of practical relevance is whether increased sparsity on the transformed scale trans-
lates to an inferential advantage. Intuition in the case of the X, ; parametrization can be obtained
through consideration of the simplest estimator exploiting sparsity, namely the thresholding esti-
mator of Bickel & Levina (2008a,b) applied on the transforpled scale. For the X, ; parametrization,
thresholding sets to zero the entries of a pilot estimator L = log X that are below a threshold in
absolute value. Success of the approach hinges on the elementwise consistency of L for L. We
are thus interested in how the estimation error 3 — X propagates to the scale of the matrix loga-
rithm. To simplify notation and isolate the considerations involved, we outline the argument for
a deliberately oversimplified setting, before highlighting modifications for the analysis of L — L.

Consider a small perturbation of Z, of the form X + &I for £ > 0, which preserves the eigen-
vectors. The argument in Appendix I shows that, using a complex-variable representation of the
matrix logarithm, the error propagates to the (j, k)th entry on the logarithmic scale as

1
[log(Z + &l) — IOg(Z)]j,k =& Z(ZLJTI é G- igij))(z — /lv)dZ)Oerkv Z O¢r Osv, (12)

l,s

where o;; denotes the ith entry of the jth eigenvector of . Consider the summation over £ and s

in (12). Forr = v,
Zot’vosv = Zosvosv + Z 0¢v0sy = 1

l,s N s,{#s

by the orthonormality identity OO = OO™ = I.Forr # v, the double summation is approximately
zero by the observation that cross-products o¢;, 05, are of order 1/p and zero on average for large
p- Subject to this last approximation, (12) simplifies to

[log(S + £1) — log(®)|jx = & Z(% 9% — (ﬂvligg))(z - /lv)dz)ojvokv, (13)

where the term in parenthesis is given by the sum of the residues at the two singularities,

RS 7§ log(z) dr = log(4, + &) —log(4y) _ log(4, + &) —log(4y)
mi ) i- e+ e)z-A)  Ate-A pa .

whose first-order Taylor expansion around & = 0 is A, !, i.e. the derivative of log A,.. The pertur-
bation & thus propagates to the scale of the matrix logarithm as

[log(Z + &1) — log(D)]jx = & )| A, 0jv0ry + O(e%) = &[Z7]j i + O(&?),
v

which, as expected, is the directional derivative of the matrix logarithm at X in the direction 1.

Realistic pilot estimators of X entail perturbations of both eigenvectors and eigenvalues, and
the previous argument then requires that pilot estimators provide consistent estimates 0, of
eigenvectors in the sense that 6,0, —,, 0 forr # v and 6}0, —, 1. In the more general argument,
the constant € is replaced by elements of £ — X in a summation on the right hand side. A more
complete development for specific pilot estimators can be found in Battey (2019), where results
are also presented for the propagation of error in the converse direction under the spectral norm,
having exploited sparsity on the scale of the matrix logarithm.
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8.2.  New results for Xy,

A broadly analogous scheme applies to estimation under a sparse X;, parameterization.
Consider a decomposition (11), i.e. £ = TQT", where Q is block-diagonal and T is triangular.
The %, parametrization arises as a special case when each block contains a single variable.
When a causal ordering of variables or blocks of variables is available, a natural pilot estimator
for T regresses each variable on its causal predecessors, called parents, and a corresponding
pilot estimator of Q is the sample covariance matrix of the resulting residuals. If the variables
are not generated by a causal model, pilot estimators for both 7 and Q can be obtained through
an LDL decomposition of the sample covariance matrix. The resulting pilot estimators, 7" and
Q, are elementwise consistent. As in Section 8.1, sparsity on the transformed scale is exploited
by thresholding log(7") and log(Q), and converting the resulting quantities back to the original
scale by applying the matrix exponential. The resulting estimators, 7 and €, are consistent in the
spectral norm. A natural estimator of X is then £ = TQT™, which is also consistent in the spectral
norm. A more detailed discussion of the estimator and its properties can be found in Appendix J.

Proposition 4 establishes spectral-norm consistency of the proposed estimator under conditions
detailed in Appendix J. These include Condition 1, which characterizes the sparsity of L and D.

Condition 1. Assume that L € U(q;, s1(p)) N LTs(p) and D € U(gw, S, (p)) N PD(p), where
qi: 9o € [0, 1], s1(p)/p — 0, sw(p)/p — 0 and

P
Ug, 5(p)) = {A € M(p) : max )" |4;j|7 = s(p>}. (14)
j=1

ProposiTion 4. Suppose that the tuning parameters of equations (J.4) and (J.8) of Appendix J
satisfy 7 < (n~" log p)'/? and 7., = s1(p)*(n~" log p)®3/2~4)(1-qw), Under Condition I and Con-
ditions J.1-J.4 of Appendix J.2, with ¢ > 1/2, the estimator £ = TQT" of * = TQT" satisfies

I£ - 2, = Op (max{r;, ro,}),
where

ro=s(py(n™ og p) PN,y = 50 (p)si(p) 72 (n” " log p) 32174,

An important question concerns the implications of misspecification of the causal ordering.
Although this would annul the interpretation of §5, the role of the causal ordering in Proposition
4 is via the degree of sparsity present, which is reflected in the rates in Proposition 4. Thus, to
the extent that the conditions are still satisfied, Proposition 4 remains valid.

9. SOME NUMERICAL INSIGHTS

9.1. Approximate sparsity in the four logarithmic domains

The prospect of routinely inducing sparsity through logarithmic transformation under the four
maps (1) is only realistic under a notion of approximate sparsity that allows for slight departures
from zero. Simulations in Appendix K give an indication of how approximate sparsity in the
four logarithmic domains associated with X,4, Z,, Xj; and X, transfers to a commensurate
notion of approximate sparsity in the inverse domain, this being the most widely used parameter
domain in which to perform sparse estimation. Tables K.1-K.4 of Appendix K also compare the
performance of thresholding estimators on the different scales, suggesting in all cases except Z,,
that exploiting sparsity on the most sparse scale, i.e. the logarithmic scale under the relevant
parametrization, transfers substantial benefits to estimation of X~!. In the case of Z,, the simple
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thresholding approach of Appendix K appears too simplistic, presumably owing to the constraints
on a needed to make the parametrization injective.

9.2.  Exploration of sparsity regimes

In §9.1, the matrices on the transformed scale were sparse by construction. We now investigate
whether the logarithmic transformation can be useful in less idealized situations.

Consider a Gaussian directed acyclic graph with covariance matrix £ = (I - B)"'D~!1(I -
B™)~!. When B contains many zeros or near-zeros, X is also likely to be sparse, and the estimator
%, of Bickel & Levina (2008b) would be a natural choice. Sparsity of 2 typically decreases both
as the number of non-zero elements of B increases, and as the magnitude of non-zero entries
(the weights of directed edges) becomes large. This follows from Proposition 1, whereby the
entry (i, j) of the matrix (I — B)™! corresponds to the sum of effects of node i on node j along
all paths connecting the two nodes. As the number, or magnitude, of non-zero edge weights
increases, cumulative effects inevitably increase. Although a similar phenomenon is expected for
L = —log(I — B), Proposition 1 suggests that the sparsity of L should decrease more slowly, due
to the discounting of longer paths. Eventually, as the number of entries of B below a threshold
increases, or as the absolute value of these entries increase, we expect a strong accumulation of
effects on variables ordered last, as these will have the largest number of incoming paths. Since
the number of possible paths increases exponentially with the number of nodes, the accumulation
of effects can cause entries of X to be unbounded.

There are thus three regimes. When the edge matrix B is sparse or its non-zero entries have
small absolute values, thresholding in the original domain will typically yield better results. As
the number of non-zero entries of B increases, or the edge weights increase, thresholding in the
logarithmic domain is expected to be advantageous. With a further decrease in the sparsity of B
or increase in the edge weights, there is no approximate sparsity in either domain.

To verify this empirically, we compared the performance of thresholding on the original and
logarithmic scales under the X;;,, parametrization, for different values of edge weights and different
levels of sparsity for B. Specifically, we took D as the identity matrix and generated an edge matrix
B by randomly selecting a prespecified percentage of its entries, and assigning a fixed value € > 0
to those entries. Positivity of € avoids cancellations of effects along different paths. For each
covariance matrix, we generated a sample of size n = 150 from the corresponding multivariate
normal distribution and constructed thresholding estimates on the scales of interest, following
the recommendation of Bickel & Levina (2008b) for selecting the threshold 7. Specifically, a
sample covariance matrix was estimated on two disjoint subsets of the data, of size n/3 and
2n/3. The estimate £ based on the larger sample was treated for the purpose of tuning as
the target covariance matrix. Thresholding was applied to the matrix estimated on the smaller
sample, yielding a sparse estimate X,. The threshold was then chosen to minimize the relative
£r-norm error, ||£ — £.|l2/||Z]l> across 5 random splits. The final estimate 3. was based on the
selected threshold and the full sample. The same procedure, with the obvious modifications, was
used to select the threshold used for sparse estimation on the logarithmic scale under the %,
parametrization, resulting in estimates U, of U and UTDUE of X.

Results in Figure 6 (a) show that thesholding on the original scale outperforms thresholding
on the logarithmic scale under the X;;,, parametrization for high levels of sparsity of B and small
values of €, while the opposite is true for medium levels of sparsity and €. For large values,
the covariance matrix is highly non-sparse and neither sparsity scale is suitable. The standalone
performance of ﬁTDAUE and ¥, is shown in Figures 6 (b) and (c). Results indicate that when
UTDAUE outperforms 2. it is due both to the poorer performance of the latter estimate and
improved performance of the former. The performance of U, DU exhibits a sharp transition as
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Fig. 6: Relative £, errors (a, b and c) and relative ¢; row norms (d) for different combinations of
€ (y-axis) and levels of sparsity of B, measured by the percentage of non-zero entries (x-axis).
Pixels are median values over 100 simulations with n = 150, p = 100 for different combinations
of € (y-axis) and levels of sparsity of B, measured by the percentage of non-zero entries (x-axis).

the sparsity of B decreases and € increases. This may suggest that the logarithmic transformation
is detrimentally distorting for very sparse covariance matrices. Since the sparsity conditions for
thresholding are closely related to row-wise norms, we show in Figure 6 (d), for comparison to
(a), the ratio of maximum ¢; row norm of the two matrices, defined for A € M(p) as

i—1
A) = Asil. 15
r(A) ,-e?z[f?.’fp};l ijl (15)

In order to make the metric comparable for lower-triangular and symmetric matrices, »(A) only
considers the entries of A below the diagonal. The contours of equal r(L)/r(X) in (b) closely
resemble those of the relative errors in (a). We probe this relationship further in Figure K.4 of
Appendix K.1. The performance of O;AOT and exp(L.) relative to £ is shown in Figure 7.
Interestingly, the pattern of relative behaviour mirrors that of leﬁUZ .
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Fig. 7: Relative ¢, errors for different combinations of € (y-axis) and levels of sparsity of B,
measured by the percentage of non-zero entries (x-axis). Each entry corresponds to the ratio of
median errors over 100 Monte Carlo simulations with n = 150 and p = 100.

Sample size n
Estimator 30 50 100
o 60% (6.4%)  62.6% (5.2%) 66.9% (7.7%)
exp(Ly)  64.5% (3.7%) 66.8% (3.6%)  70.6% (2.5%)
U:D0"  65.5% (3.1%) 67.3% (3.6%)  69.7% (2.4%)

Table 2: Median (standard deviation) accuracy over 20 simulations using arrhythmia dataset.

045 9.3. Classification of leukemia and arrhythmia patients
We assessed the use of the new sparsity scales for classification of leukemia and arrhythmia
patients from high-dimensional observations. The details are described in Appendix L. For
leukemia patients (p = 3571), the results show a slight improvement in accuracy, from median
of 95.5% on the original scale to 97.7% for X, transformation. However, the difference is
e insignificant, with standard deviations of errors around 5%. For arrhythmia patients (p = 164),
we observe an improvement in performance for a range of sample sizes, as shown in Table 2.
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10. CLOSING DISCUSSION

The work has uncovered insights into the interpretation of sparsity on non-standard scales,
identifying situations in which an assumption of sparsity might be more reasonable on a trans-
formed scale. Open questions concern how one might test for sparsity across several different
scales, or find the best sparsity scale empirically. The work also points to the development of more
sophisticated estimators than those used in the simulations of §9, perhaps in the vein of Zwiernik
(2025), who proposed an elegant formulation covering constraints in the X, ; parametrization.
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A. MATRIX GROUPS

The following concepts from group theory are relevant to parts of the exposition and proofs. The action
of a group G on a set X is a continuous map G X X — X, (g, x) — gx. The orbit [x] of x € X is the
equivalence class {gx : g € G}, and the set of orbits X/G := {[x] : x € X} is a partition of X known
as the quotient of X under the action of G. A group action is said to be transitive if between any pair
X1, X2 € X there exists a g € G such that x, = gxy; in other words, orbits of all x € X coincide. The subset
G, ={g € G: gx = x} of G that fixes x is known as the isotropy group of x and if G equals the identity
element for every x, the group action is said to be free.

For every subgroup H C G we can consider the (right) coset, or the quotient, G/H = {Hg : g € G}
consisting of equivalence classes of g, where & ~ g if hg = g for some h € H. For groups G that act
transitively on X, the map X — G/Gy is a bijection, where Gy is the isotropy group of the identity
element.

A group G that is also a differential manifold is a Lie group. Lie groups thus enjoy a rich structure given
by both algebraic and geometric operations. The tangent space at the identity element, denoted by g, has
a special role in that, together with the group operation, it generates the entire group, i.e. every element
g € G can be accessed through elements of g and the group operation. It is referred to as the Lie algebra
and is a vector subspace of the same dimension as the group. Relevant to the matrices introduced in §2,
we have:
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(i) If G = GL(p) with matrix multiplication as the group action, then g = M(p).
(i) If G = O(p) or SO(p) with matrix multiplication as the group action, then g = Sk(p), the set of skew-

symmetric matrices.

(iii) If G = LT, (p) with matrix multiplication as the group action, then g is the set LT(p) of lower triangular

matrices.

(iv) If G = LT,(p) with matrix multiplication as the group action, then g is the set LT¢(p) of lower triangular

matrices with zeros along the diagonal.

s (iv) If G = PD(p) with logarithmic addition as the group action (Arsigny et al., 2017) then g = Sym(p).
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When G is a matrix Lie group, the usual matrix exponential can be related to the map expo : g — G such
that expo(A) = e. Properties of expo (e.g., injectivity) will depend on that of the matrix exponential,
and hence on the topology of G. If G is compact and connected then e is surjective. If it is injective in
a small neighbourhood around the origin in g, then it bijective. Since G is also a differentiable manifold,
a geometric characterization of the matrix exponential e is that it will coincide with the Riemannian
exponential map under a bi-invariant Riemannian metric on G.

A good source of reference for matrix groups is Baker (2001).

B. FORMALIZED DEFINITION OF REPARAMETRIZATION

Let vec : Sym(p) — RP” be the vectorization map taking a symmetric matrix to a p>-dimensional
column vector. Define the half-vectorization map

vech : Sym(p) — RP?P*D/2 vech(x) := A vee(x),
where the matrix

A= Z(uij ®ej®e;)€ RP(P+D/2xp

i>)

picks out the upper triangular part of the vectorization, and u;; is a p(p + 1)/2-dimensional unit vector
with 1 in position (j — 1)p +i — j(j — 1)/2 and 0 elsewhere. Its inverse

RPPD/2 5 x s vech™ (x) := (vech(l,)" ® 1,)(I, ® x) € Sym(p)
exists through the Moore-Penrose inverse of A. Let

Cone,, := {0' e RPPDZ: (vech™ (0)y,y) > 0, y € RP},

be a constrained set within RP?+1/2_ The definition of Cone,, implicitly engenders an injective parametriza-
tion

f : Cone, — Sym(p), f(o) = vech™ (o),

with image f(Cone,) = PD(p) C Sym(p). Since PD(p) is open in Sym(p), with respect to f it is a
parametrized submanifold of Sym(p).

A reparametrization of PD(p) corresponds to an injective map 4 : N — Sym(p) from a domain N
with non-singular derivative such that there is a diffeomorphism ¢ : N — Cone,, with h = f o . The
derivative condition ensures that N is of dimension p(p + 1)/2. The two parametrizations f and # are said
to be equivalent since f(Cone,,) = h(N) = PD(p), and 4 is a reparametrization of f (and vice versa). The
commutative diagram in the left half of Figure B.1 illustrates the type of reparametrization used in this
paper.

In contrast, the statistical model or manifold is determined via an injective map g : PD(p) — {Pr :Te
PD(p)} that maps a covariance matrix I" to a parametric probability measure Pr on some sample space.
Every X is obtained from unique points in Cone, and N, and the statistical model given by g is impervious
to reparametrization of the manifold PD(p). Reparametrization of the statistical model amounts to applying
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N L Cone,
h
\ \Lf

PD(p) —— {Pr: T € PD(p)}

Fig. B.1: The map £ is a reparameterization of PD(p) initially parameterized using f. In contrast,
map g parametrizes a statistical manifold of parametric probability measures.

a diffeomorphism PD(p) — PD(p) such that correspondences I' +— Pr change but not the image g(PD(p)).
This form of reparametrization is not considered in the present work.

A matrix £ € PD(p) with respect to the parametrization f is sparse if o € Cone,, is sparse. On the other
hand, the structure of sparsity in X with respect to the domain N depends on the map /# and how N is
prescribed coordinates. We will use sparsity to refer to the domain or to the range of a parametrization
interchangeably, with context disambiguating the two.

C. LEGITIMACY OF THE FOUR MAPS FROM SECTION 3

Consider first the X,,4 parametrization. Starting from the natural parametrization o — f(o) = Z, where
o € Conep, the same X is reached via the more circuitous route o + e o bsym © Ppa(c) involving the
composition of three maps (see the upper left panel of Figure C.2). This composition consists of a
diffeomorphism ¢, : Cone, — RPP*D/2 that takes o to @, a bijective map byy,, : RPP+D/2 — Sym(p)
that maps a € RP'? +1/2 (0 the symmetric matrix L(a) via the expansion (2) in the canonical basis By,
and the matrix exponential e : Sym(p) — PD(p). The legitimacy of this parametrization is ensured by
Propositions C.2 and C.3 below.

The second parameterization X, is also not new: this was considered by Rybak & Battey (2021) who
applied the matrix logarithm to O in the spectral decomposition ¥ = OAO™, where O € O(p) is an or-
thonormal matrix of eigenvectors and A = ¢? € D, (p) is a diagonal matrix of corresponding eigenvalues.
Without loss of generality Rybak & Battey (2021) took the representation in which O € SO(p) and con-
sidered the map log : SO(p) — Sk(p), yielding a different vector space from that in X,,; in which to study
sparsity. Allowance for additional sparsity via d = diag(D) can be easily incorporated and corresponds
to further structure. The composition of three maps described in Figure 1 (top right) consists of a map
¢, : Cone, — RPWPHD/2 a map by from (o, d) to D(d) and L(«) via (2) in the canonical basis By, and
the matrix exponential e : Sk(p) — PD(p) and e : D(p) — D.(p). The situation regarding invertibility of
the maps is more nuanced than for X,,, owing to the non-uniqueness of the decomposition X = OAO"
and multivaluedness of the matrix logarithm of O € SO(p). For the purpose of the present paper, the
implications are negligible, as we can make the parametrization injective under some conditions in X. This
is clarified in Proposition C.4.

The situation is analogous for the two new reparametrization maps X;; and X, depicted in the
bottom row of Figure C.2. The constructions can alternatively be expressed in terms of upper triangular
matrices with analogous parametrizations X,; and X,;, and there are no substantive differences in the
conclusions of section 4 and section 5. As with Z,, invertibility of X;; is not guaranteed without further
constraints, since e : LT(p) — LT, (p) is not injective, while the X;;,, parametrization enjoys invertibility
without any restrictions on the parameter domain (Proposition C.4). The so-called LDL decomposition
of £ is T = UYU", U € LT,(p) where ¥ = e € D,(p). Analogously to the previous cases, the matrix
logarithm log : LT(p) — LTs(p) is applied to U and represented in the canonical basis By;,, .
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@ ¢pd o (a9 d) ( b0 (oa
\Lbsym lvech’] lbskl lvech’l
L esym(p) —<3 PD(p) > = LoD (el
Y b L,D € Sk(p) X D(p) ———— PD(p) > £
yi
@ T o (a’ d) N Piru o
\Lbl t \Lvech’ 1 \Lb it u\L \Lvech’ 1
EL(eL)T eLeD(eL)T
LeLT(p) ——— PD(p)> X L, D € LTs(p) x D(p) ——L 5 pD(p) > =

Fig. C.2: Reparametrization maps for X, (top left), X, (top right), X;; (bottom left), and X,
(bottom right).

Proposition C.1 establishes existence of the maps ¢, introduced above.
ProposiTioN C.1. The convex set Coney, is diffeomorphic to RP (p+1)/2,

Proof. The set PD(p) is a symmetric space of dimension p(p + 1)/2 of noncompact type and can thus has
nonpositive (sectional) curvature when equipped with a Riemannian structure (Helgason, 2001). The map
vech™! : Cone, — PD(p) is injective, and we can thus pullback the metric from PD(p) to Cone,, making
it non-positively curved. The set Cone,, is simply connected and complete, and by the Cartan-Hadamard
theorem (Helgason, 2001) it is diffeomorphic to RPP+1)/2, O

The inverses ¢, ' determine precisely how sparsity in a or (a, d) manifests in a point in the convex cone,
and thus, quite straightforwardly, in the covariance matrix X(«). However, they are difficult to determine
in closed form. The maps X, prescribe a path from « to X(«) (and similarly for (e, d)) and can be viewed
as suitable surrogates, but need not be diffeomorphisms even when injectivity is guaranteed.

Injectivity of X,4, X, Zj; and X, hinge on injectivity of the matrix exponential, and uniqueness of
eigen, Cholesky and LDL decompositions for the latter three. We first consider the matrix exponential.

Propositions C.2 and C.3 describe conditions for existence and uniqueness of the matrix logarithm,
which affect invertibility of the four reparametrizations in §3.

ProposiTioN C.2 (CULVER (1966)). Let M € M(p). There exists an L € M(p) such that M = e if and
only if M € GL(p) and each Jordan block of M corresponding to a negative eigenvalue occurs an even
number of times.

ProposiTiON C.3 (CULVER (1966)). Let M € M(p) and suppose that a matrix logarithm exists. Then
M = el has a unique real solution L if and only if all eigenvalues of M are positive and real, and no
elementary divisor (Jordan block) of M corresponding to any eigenvalue appears more than once.

Proposition C.2 covers all four logarithm maps log : PD(p) — Sym(p), log : SO(p) — Sk(p), log :
LT.(p) — LT(p) and log : LT (p) — LTs(p). Conditions that ensures uniqueness in Proposition C.3 are
satisfied only by log : PD(p) — Sym(p) and log : LT,(p) — LTs(p). A geometric version of the sufficient
condition (“if" part) in Proposition C.3 claims uniqueness if M lies in the ball B;,(1) := {X € M(p) :
|IX = I,|l» < 1} around I,,, where || X||> is the spectral norm of X. This provides a sufficient (not necessary)
condition to ensure that log(expY) =Y.

Relatedly, perhaps more appropriate from the perspective of reparametrization of PD(p), are conditions
that ensure injectivity of the matrix exponential e : M(p) — GL(p). As a consequence of Proposition C.3, e
is injective when restricted to Lie subalgebras Sym(p) and LTs(p), but not LT(p) and Sk(p). The geometric
version of the sufficient condition in Proposition C.3 then asserts that the matrix exponential is injective
when restricted to the ball By(In2) := {L € M(p) : ||L||» < In2} around the origin 0 (zero matrix) within
M(p) (e.g. Baker, 2001, Proposition 2.4). This provides a sufficient (not necessary) condition to ensure that
exp(log X) = X. The condition is close to being necessary for e : Sk(p) — SO(p) and e : LT(p) — LT, (p).
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For example, e : Sk(p) — SO(p) with p = 2 maps

01 0 2nn
2nnBy = 2nn (_1 0) = (—27rn 0 ), nez

to the identity Ip; thus, X,((27, d)) = Z,((4n, d)) for any fixed d € R?. The issue arises because skew-
symmetric matrices of the form considered comprise the kernel of e : Sk(p) — SO(p). We see that
|27 B1||> > In2 and thus violates the sufficient condition.

Moving on to the decompositions, the following proposition elucidates on conditions that ensure
injectivity of the four maps from §3 and legitimize them as reparametrizations of PD(p).

ProposiTion C.4.
(i) The maps @ — Zpq(a) and a — Ly, are injective on RP(P+D/2,

(iii) Assume that the elements of d are distinct. The map (a, d) — X, (a, d) is injective when « is restricted
to N, c RPP=VI2 sych that the image b (N, x RP) € Bo(In2) x D(p) within Sk(p) x D(p), and upon
choosing ORPT for a particular permutation P € P(p) of and combination of signs R € D(p) N O(p)
for the columns of O and a permutation PAPT of elements of A, where bgy is as in §3.

(ii) The map a — () is injective when restricted to Nj; € RPP*VI2 sych that the image by (Ny;) €
Bo(In2) within LT(p), where by, is as in §3.

Proof. Injectivity of X,4 follows from Proposition C.3. It is well-known that the Cholesky and LDL
decompositions as used in the definitions of X;; and Zj;,, respectively are unique (Golub & Van Loan,
2013). Uniqueness of the LDL decomposition also stems from uniqueness of the Iwasawa decomposition of
GL(p) (Terras, 1988) through the identification PD(p) = GL(p)/O(p). The maps L(e) — %@ (e@)T and
(L(@), D(d)) > @ PN gre thus injective. When combined with injectivity of the exponential
map e : LTy — LT, from Proposition C.4, the parameterization X;;,, is injective.

The situation concerning uniqueness of the eigen decomposition ¥ = OAOT is involved, even after
restriction to a subset of Sk(p) that renders the exponential e : Sk(p) — SO(p) injective. First note that
O € SO(p) under our parameterization using the exponential map. Then, observe that ORR"ARR™O™ =
OAO" for any R € SO(p), and thus pairs (OR, R"AR) map to the same X for every R € SO(p) for which
RTAR = A, since OR € SO(p). Indeed, {R € SO(p) : R"AR = A} fixes A and is the isotropy subgroup
SO(p)a in SO(p) (see Supplementary Material A). In addition to SO(p), , another source of indeterminacy
comes from permutations OP and PAPT, with P € P(p) and |P| = 1 so that P € SO(p). Put together, this
implies that every pair (ORP, PAP™) maps to the same X as long as R € SO(p)x and P € SO(p).

The situation can be salvaged if the positive elements of A are all distinct so that SO(p)a reduces to
the set D(p) N SO(p) of diagonal rotation matrices with +1 entries (Grossier et al., 2021, Theorem 3.3).
In this case, the map 7 : SO(p) x D,(p) — PD(p) is a 2P~ p! covering map with fibers 7~!(X) consisting
of matrices obtained by p! permutations of elements of A, and a similar permutation of eigenvectors of Z,
and 2P~! matrices in the set D(p) N SO(p) of diagonal matrices mentioned above with unit determinant,
which determine signs of the eigenvectors of X; there are 2P~! such diagonal matrices and not 2” owing
to the unit determinant constraint.

Uniqueness can be ensured upon identifying a global cross section S, € SO(p) x D.(p) that picks out
one element from every fiber such that 77! (X) N S, is a singleton for every = € PD(p). For example, S,, can
be defined by selecting a particular permutation PAPT and ORP of the eigenvalues and eigenvectors of X
(e.g., elements of A arranged in a decreasing order); since R € D(p) N SO(p), a fixed rule for choosing signs
of the eigenvectors determines a unique R. Then, S, contains pairs (ORP", PAPT) for a fixed permutation
P € SO(p). The cross section S, is bijective with the quotient (SO(p) x D.(p))/~ under the equivalence
relation ~ that identifies any two pairs (O, A) that map to the same X.

The proof for injectivity of X;; follows upon noting that the exponential map e : LT(p) — LT, (p) is
injective when restricted to the given ball within LT(p). This completes the proof.
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6 J. RYBAK ET AL.

D. THE IwaAsaAwA DECOMPOSITION OF GL(p) AND ITS LIE ALGEBRA

The matrix X"X is positive definite for every X € GL(p), and the map X + X'X is invariant to the
action (X, O) — OX for O € O(p) of the orthogonal group. A positive definite matrix S can be transformed
to any other under the transitive action

(X,S) > XSX", X €GL(p), S € PD(p)

of GL(p), and PD(p) is hence a homogeneous space: a differentiable manifold with a transitive differen-
tiable action of GL(p). For example, between any pair Sj, S> € PD(p) the invertible matrix X = Szl/ 251_1/ 2
transforms S; to S> under the above action. The orthogonal group O(p) is the stabilizer of X = I, and fixes
X € GL(p), and we thus obtain the identification with GL(p) via the group isomorphism

PD(p) = GL(p)/O(p),

where GL(p)/O(p) is the set of equivalence classes [X] := {OX : O € O(p)} or orbits of elements X €
GL(p). The benefit with this representation of PD(p) lies in the use of the Iwasawa decompositions of
the group GL(p), and its lie algebra M(p), to define new parametrizations of PD(p); the decomposition of
GL(p) corresponds to the LDL decomposition of GL(p).

The Iwasawa decomposition of X € GL(p) determines a unique triple (O, D, U) € O(p) X D+(p) X LTy(p)
such that X = ODU (see e.g. Terras, 1988, Ch. 4). Since DU is lower triangular with positive diagonal
entries, we also recover the well-known QR decomposition. From the Iwasawa decomposition we have
XX = UD?>U" € PD(p), and we recover the unique LDL decomposition of the positive definite matrix
X"X (Golub & Van Loan, 2013). Additionally, the Iwasawa decomposition into O(p), D.(p) and LT,(p) at
the group level (GL(p)) has a corresponding decomposition of the Lie algebra of GL(p):

M(p) = Sk(p) & D(p) & LTs(p), (D.1
where Sk(p), D(p) and LT(p) are the Lie algebras of O(p), D.(p) and LT,(p), respectively.

E. UNIFICATION OF THE FOUR FUNDAMENTAL PARAMETRIZATIONS

The four parametrizations considered in this work are based on the Iwasawa decomposition of GL(p)
and its Lie algebra M(p), since the matrices L(a) and D(d) are elements of the Lie algebras in (D.1).
The map @ +— Xy (@) is based on the sum LT (p) & D(p) of two constituent Lie subalgebras from (D.1),
which coincides with another Lie subalgebra LT(p) of M(p) consisting of all lower triangular matrices. The
parametrization X, represents a full use of the Iwasawa decomposition (D.1).

The parameterization X, relates to the Iwasawa decomposition via the Cartan decomposition (Terras,
1988, p.268) of the the Lie algebra M(p) of GL(p):

M(p) = Sk(p) ® Sym(p),

which at the group level corresponds to the singular value decomposition of an invertible matrix. By further
decomposing the symmetric part of the Cartan decomposition, the Iwasawa decomposition represents a
refinement. In other words, since every L € Sym(p) can be decomposedas L = Lg + L} + D for Lg € LT¢(p)
and D € D(p), we have that

Sym(p) = LTs(p) ® D(p).

The identification PD(p) = GL(p)/O(p) implies that the orthogonal component of GL(p) is ignored in X4,
and the Lie algebra Sk(p) of the orthogonal group O(p) containing the skew-symmetric parts of GL(p) is
thus unused.

The X, parametrization, on the other hand, uses the Lie algebras Sk(p) and D(p) in (D.1). However,
since every skew symmetric L € Sk(p) can be decomposed as L = Ly — LT with L € LTs(p), the Lie
algebra Sk(p) can be generated from the Lie algebra LT(p), and thus links the parameterization X, with
the Iwasawa decomposition of GL(p).
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F. CHANGE OF BASIS
A change of a matrix basis 8 = {By, ..., B4} is achieved by the action of a nonsingular W € GL(p) as
WBW = {(WB W™, ... ,WByW'}. The group GL(p) acts equivariantly on the map ¥; o; B; - () =
eZi%Bi since VAW = WeAW! for every A € M(p) and W € GL(p). Hence,

eV E ABIWT — X Bl = Wx(a)W,

may belong to PD(p) depending on the W chosen. The four maps X4, X0, Zis, X1, are thus well-defined
only upon fixing a basis 8 for the considered Lie subalgebra.

G. PRrOOFSs FOR SECTION 4
G.1. Preliminary lemmas

LemMA G.1 (AXLER, 2015). Let V be a real inner-product space andletT : V — V be a linear operator
on V with matrix representation M = M(T). The following are equivalent: (i) M is normal; (ii) there
exists an orthonormal basis of V such that M = OBO™" where O is orthogonal and the blocks of the
block-diagonal matrix B are either 1 x 1 or 2 x 2 of the form

a-b cosf —siné
(b a) _p(sinH cos@)' G.D
where a,b € R, b >0, p > 0and 0 € [0,2n]. Each 1 X 1 block A is an eigenvalue of M, and for each 2 x 2
block (G.1), a + bi and a — bi are eigenvalues of M.

The representation G.1 in terms of polar coordinates is convenient for subsequent calculations involving
the matrix logarithm.

Lemma G.2. Let M € M(p) be a normal matrix. The matrix logarithm L, if it exists, takes the form
OBO™!, where O € O(p) is orthonormal and B is block diagonal with blocks of the form described in
Lemma G.1.

Proof. By Lemma G.1, M = OBO™!, where O € O(p) is orthonormal and B is block diagonal. Let A
be an eigenvalue of M. From Proposition C.2, existence of a logarithm requires that any negative real
eigenvalues have associated with them an even number of blocks. By Lemma G.1 negative eigenvalues
appear in 1 x 1 blocks, since 2 X 2 blocks correspond to complex conjugate pairs of eigenvalues. It
follows that the matrix logarithm of a normal matrix exists if and only if negative eigenvalues have
even multiplicity, in which case, we can without loss of generality construct blocks of size 2 x 2 for a
negative eigenvalue A of the form B; = A, = —|A|L. Then log(B,) = log{(|A|)(~1)}, and since I, and
—I, commute, log(B,) = log(|1|15) + log(~1,), where

log(-h)=n (0 _l) .
Thus

et = (21 ).

7 log|Ad|

which is of the form in Lemma G.1. For 2 x 2 blocks B¢ corresponding to complex conjugate pairs of
eigenvalues of M, a similar argument together with

cosf —sing) (0 -6
%2\sine  cosd] {6 0

~ lo -0
log(Bc) = ( 6 log p)

shows that
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which is also of the form of Lemma G.1. O
LemMa G.3. Let M = e € M(p). Then M is normal if and only if L is normal.

Proof. Suppose that L is normal, that is LTL = LL". By the Jordan decomposition L = QJQ~!, nor-
mality of L implies normality of J. The matrix exponential M = exp(L) = Q exp(J)Q~! is normal if
and only if exp(J)" exp(J) = exp(J)exp(J)". Two general properties of the matrix exponential are that
for matrices A, B € M(p) such that AB = BA, exp(A)" = (exp(A))" and exp(A) exp(B) = exp(A + B). Thus
exp(JT) exp(J) = exp(J + JT) = exp(J) exp(JT) showing that M is normal. The converse statement follows
by Lemmas G.1 and G.2. O

Lemma G.4 (WEIERSTRASS’S M-TEST, E.G. WHITTAKER AND WATSON, 1965, p.49). Let Si(x) = s1(x) +
-+ + 5k(x) be a sequence of functions such that, for all x within some region R(x), Sp(x) < Tp =t; +--- +
tx, where (t;)jen are independent of x and Ty, is a positive convergent sequence. Then Si(x) converges to
some limit, S(x) say, uniformly over R(x).

Lemma G.5. For A € M(p), define y(A) = ¥, AR /(k + 1)\. Then for any operator norm || - llop, pro-
vided that ||Al|op is bounded, ||y(A)llop < || exp(A)llop. Additionally, y(A) € GL(p) for any A € M(p).

Proof. Let y(A) = 1:1:0 A" /(n+ 1)! and let r > 0 be such that ||A||p < r. Since the operator norm is
subadditive and submultiplicative

1AM <& 1Al
WAl < Y o <
n=0 ' n

=0

n k
I3 r
p < — e
n.
n=0

|
n!

as k — oco. Lemma G.4 applies with S;(A) = || (A)]lop-

For the second statement, it suffices by the Jordan decomposition of A to show that (1) # 0 where
A € C is an eigenvalue of A and J/(x) = Z]:l:O x"/(n+ 1)! for x € C. For 4 =0, ¢(1) = 1 by definition,
whereas for z € C, z £ 0, ¥(z) = (e* - 1)/z # 0. O

Lemma G.6. Consider M = e* € M(p) where L € V(p), a vector space with canonical basis B of
dimension m. The matrix M is logarithmically sparse in the sense that L = L(a@) = 1By + - -+ + & B,
B;j € B with ||allo = s* if and only if M = PMP", where P € P(p) is a permutation matrix and

-~ _ (011 0)[Cii Cp2\ (O], O

() ©2
where g > p —d: and Oy € O(p — q), C11 € M(p — q). Moreover, if M is normal, Cy; is also normal and
Cip =0in(G.2).

Proof. Suppose first that M = e’ is logarithmically sparse. By definition, L has p — d; zero rows. Thus,
there exists a permutation matrix P such that the last p — d;* rows of P LP are zero. Thus write PLPT as a
partitioned matrix with upper blocks L, L, of dimensions d;' X d;: and d; X p — dy, the remaining blocks
being zero. From the definition of a matrix exponential,

oPLPT _ [exp(L1) 2 LiLy/(k +1)!
0 Ip-a;

which is of the form given in equation (G.2) with Oy = I;:. The result follows since ePLPT = pelpT,
To prove the reverse direction, we need to construct L such that,
OHC(;IOL 011C12)’ I = (A B)’

(G.3)

exp(L) = ( i 00

where the number of zero rows of L is greater or equal to p — d;;. Let I'; = OHC“O{1 and I = 01,Cys.
Set A = log(I';), which exists by assumption since eigenvalues of I'; are eigenvalues of M. By the matrix
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Taylor series expansion of the matrix exponential,

oo Ak
exp(L) = (FOI Zi=0 WB

It thus remains to be shown that Z,‘:’zo ﬁB = I’ some d; X p — d; matrix B. Let Y (A) = ZZ":O (,(ATkl),
By Lemma G.5, y(A) is invertible, and we can take B = y(A)~'T,. Note that the matrix logarithm of M is
not unique. However, for a real eigenvalue A of M, the logarithm of the Jordan block Ji (1) has periodicity
i2rnql, q € Z (Culver, 1966). Thus, for 1 = 1, every real matrix L, L = log(M) will have the form (G.3) in
the sense of the last p — d* rows being equal to canonical basis vectors, with a non-zero diagonal element.

The result follows by observing that for M = PMP", log(M) = PLP". O

LemMa G.7. Let M € M(p). With M = e* and L € V(p) € M(p), a vector space of dimension m, let
M = QJQ7! be a real Jordan decomposition of M (e.g. Horn and Johnson, 2012, p. 202) and let A C [p]
denote the set of indices for columns of Q corresponding to eigenvectors whose eigenvalues are not equal to
one. Thus, the cardinality | A€ | of the complementary set is the geometric multiplicity of the unit eigenvalue
of M, and |A| = p — |AC|. The dimension of A satisfies |A| < max{d}, d}}.

Proof. Suppose that |A| < d;. Since rank(L) = rank(L"), the geometric multiplicities of the unit
eigenvalues of M and M" are equal. Thus, |A| < d and therefore |A| < max{d}, d}}.

To prove that |A| < d7, consider the real Jordan decomposition M = QJQ~!. Let q; denote the jth
column of Q. We show that span{q; : j € A°} = ker(L) by establishing containment on both sides. Let
v € span{g; : j € A°}. Then there exist coefficients §; € R such that

Lv=)" BLg= ), BQlog(/)0 'qj = ) BQlog(J)e; =0

JjeAc JjeAC JjeAc

where the final equality follows since A; = 1 for all j € A€, so the jth diagonal entry of log(/) is zero. It
follows that span{g; : j € A} C ker(L)..

For the converse containment, suppose for a contradiction that there exists v € ker(L) such that v ¢
span{q; : j € A°}. Since Q has full rank, its columns are linearly independent and there exist coefficients
Bi,...,Bp, each in R such that v = Bi1q1 +--- + Bpqp. Since g; € ker(L) for j € A€ by the previous
argument,

0="Lv= ) BiLg = ). BQlog(J)es.

JEA JjeA

By definition of A, J;; # 1 for any j € A, thus the equality Lv = 0 implies §; = 0 for all j € A, a
contraction, since the columns Q log(J)e;, j € A are linearly independent. O

For normal matrices in M(p), i.e. those satisfying M"M = MM", d’ = d} and Lemma G.7 recovers
Lemma 2.1 of Battey (2017) and Proposition 3.1 of Rybak and Battey (2021).

G.2. Proof of Theorem 1
Proof. From Lemma G.6, p — d; rows of M are of the canonical form eJT, and since zero columns of
L are zero rows of LT, it is also true by Lemma G.6 applied to M" that p — d columns of M are of
canonical form e;. If d* rows and columns of M are of the canonical form, then M = P(V & Ip_d*)PT,
where P € P(p) and V € M(d*). The matrix logarithm of M is L = P(log(V) ® 0,_4-)P". The converse
direction follows by applying the exponential map to L = P(log(V) & 0,,_4-)P" and invoking Lemma G.6
in the converse direction. U
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G.3. Proof of Lemma 1
Proof. Consider arandom vector (Y, Y.\, Y.1)" with a covariance matrix X. By the assumptions of Lemma

2°73
1
A0 O0\[AT BT CT AAT AB” ACT Zi 2 213
2=|BIO0 0 I 0 |=|BA" BB +1 BCT = 221222223,

COD/\O 0 D" CA" CB" CC"+ DD" 231 X32 233
where the matrices A and D are lower triangular with unit entries on the diagonal. Then,
Y03 — 20127/ 213 = BC" — BA"(AA")'ACT = 0,
since A is full-rank by definition. Consider a submatrix

s = 203 21| _ 1327 (223 = 2012213 O I 0
bela 213 211 0 1 0 211 21_11213 Il

Since X;; is invertible, and for any two matrices M, N, with compatible dimensions rank(MN) <
min{rank(M), rank(N)}, the result follows. 0

H. PROOFs FOR SECTIONS 5 AND 6
H.1. Preliminary lemmas

Lemma H.8. Let B; jx denote a regression coefficient of Y; in a regression of Y; on'Y; and Y. Let v;;(l)
denote the effect of Y; on Y; along all paths of length | in a recursive directed acyclic graph. Then,

i—1 . . .
. i (1 —1 — 7> l’
Uij(l) _ {Zk:j+[_1 Bl.k[l ]]Uk]( ) if i—-j=

0 otherwise.

Proof Proof of Lemma H.8. We use proof by induction. Consider / = 1 and take any pair (i, j) such that
i > j+ 1. Then, v;;(1) = B; jji-1] as claimed. Now consider / > 1. Every path from node j to node i can
be decomposed into a path of length / — 1 from j to node k for some k € {j +1,...,i — 1} and a path
with length one from & to i. The total effect of ¥; on Y; along such a path is equal to S; xi-1jvk,; (I — 1).
The total effect along all paths of length [ is the sum of single paths over all nodes k € {j + 1,...,i — 1},
which yields the result. g

Lemma H.9. Let B; kp)\ (i} denote a coefficient of Yy in a regression of Y; on Y1, ..., Y1, Yir1,.. ., Yp.
Let v:.‘j(l) denote the total effect of a unit change in Y; on Y; along all paths of length | in an undirected
graphical model with edge weights given by regression coefficients. Then,

vl = Zﬂi.k[p]\{i}v;:j(l =1, Bikipngy = =Vij/ Vi
i

Proof. The proof is analogous to that of Lemma H.8. The only difference is that an edge can exist
between any pair of nodes (i, j), i # j and the effect of ¥; on ¥; is given by a regression coefficient
ﬁl][p]\{l} = _Vij = _VlJ/V” (Lauritzen, 1996). O

H.2. Proofs of main results
Proof Proof of Proposition 1. For an arbitrary partition ¥ = (¥, Y,))", let >~ be partitioned accordingly

as
2_1 B yaa zah
- Zba be .

The block upper-triangular decomposition takes the form,

o1 - Iaa Eab(zbb)—l zaa.b 0 Iaa 0
=T = ( 0 Ipp 0 xbb (be)‘lzb“ Inp |’
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where £4¢-0 = yaa — 3ab(gbb)=lgba Then,

=1 _ T _ Iaa 0
U =71 = (_(zbb)—lzba sl

The matrix of regression coefficients of ¥, in a regression of ¥, on ¥}, is equal to (£?)~1£¢ (Wermuth &
Cox, 2004), which is the negative non-zero off-diagonal block of U~".

By partitioning ™! recursively until ( is upper-triangular, we obtain that the ith row of U~! contains
minus the regression coefficients of ¥; on i, ..., Y;-y. Let U = I — Y". Then, U € LTs(p) and U;; = B; ji-1)
for j < i,1i.e., the element (i, j) of U equals the coefficient of ¥; in a regression of ¥; on V1, .. ., ¥;_;. Then,

p-1
U=(1-0)" =1+ZU", (H.1)
j=1

where we used that, for a nilpotent matrix N of degree k, (I + N)™! = I + Z;:ll (=1Y N/. The result for U;;
follows from (H.1).
Using the properties of the matrix logarithm,

p-1 ok
L =log(U) =log[(I - U) '] = —log(I - U) = Z -
k=1

which establishes the claim about L;;. O

Proof Proof of Proposition 3. The matrix V has entries

7. = {-ﬁi.j[p]\{i} for i#j,
ij = . .
1 for i=j.

Thus, the element (i, j) of matrix I — V is equal to the effect of Y; on Y; along a path of length one. Since
(I-V) =1 -V)I-V)!, the element (i, j) of (I — V)! is equal to the effect of ¥; on ¥; along all paths
of length /. Provided that the sum on the right hand side converges, the power expansion of the matrix
inverse and logarithm gives

$=v1= Z(I— V)
k=0

(_1)k+1

(7\k
(1)

log(2) = log(V™!) = Z
k=0

Proof Proof of Lemma 2. The result follows from a power series expansion of matrix inverse, Lemma
1, and Proposition 2.1 and Corollary 2.2 of Uhler (2019). O

I. DERIVATION OF EQUATION (12)

A version of the following derivation appears in Battey (2019). The argument is more complicated than
is necessary for the oversimplified case presented here, but the representation is helpful for showing the
considerations involved in the generalisation.

A function f of a p X p matrix A satisfies (Kato, 1976, p.44)

f(A) = L f2)(zl — A dz, (L1)

2mi YA

where [ is the identity matrix and 4 is a simple closed curve lying in the region of analyticity of f and
enclosing all the eigenvalues of A in its interior.
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From (I.1), the error on the scale of the matrix logarithm is

log(Z + £I) — log(X) = % ( 515 log(z)(zI — (2 + &) 'dz - yglog(z)(zl -3 ldz|,
Ye Y

where y. must enclose y by positivity of &. Then provided that the eigenvalues of X are bounded away
from zero, vy, can be chosen so as not to cross the imaginary axis and the previous display simplifies to

log(Z + £I) — log(X) = zim y§ log(2){(z] = (Z + &))" = (zI - %) "}dz 1.2)
Ye

= zi log(2)(zl — (= + &))"\ (21 - =) dz
Tl Ye

by Cauchy’s theorem, where we have used that A=! — B! = A=!(B — A)B~! for invertible matrices A and
B, where B— A = gl. Let £ = OAOT be the spectral decomposition of X, where O have orthonormal
columns oy, ...,0, and A = diag{1y,...,4,}. Then (z] — Y)~! = 0(z1 - A)™'O" and similarly for the
expression involving X + £1. It follows that the (j, k)th entry of the difference in log transformations is

1 1
[log(S + &I) — log(2)]jx = aZ(z—m yé G igg))(z — )dz)ojrokv > 0005, (13)
r v ls

r,v

which is equation (12).

J. ESTIMATION UNDER THE SPARSE Xj;;, PARAMETRIZATION
J.1. Construction of estimator

Recall the notation ¥, = TQT, L = log(T) = —log(I — B) and D = log(Q). We are primarily interested
in situations where L and D are sparse. The guarantee that is typically sought for high-dimensional
covariance estimators is consistency in the spectral norm under a notional double-asymptotic regime in
dimension p = p(n) and sample size n. Different approaches and asymptotic regimes might be considered,
giving for instance, faster rates of convergence with slower permissible scaling of p with n, or vice versa.
Here we show one possible estimator and derive its convergence rates in spectral norm, under the scaling
log p/n — 0. The theoretical properties are detailed in section J.2 and proved in section J.4.

The broad scheme involves constructing pilot estimators of the relevant quantities which have an
elementwise consistency property, before exploiting sparsity on the transformed scale to obtain guarantees
in the stronger norm. Suppose that 7 and Q are estimators of 7' and Q that have exploited sparsity on the
transformed scale, and have been shown to be consistent in spectral norm. A natural estimator of X is then
S = TQT™, which is also consistent in spectral norm.

In order to construct 7 and Q, pilot estimators 7 = (I — B)™! and Q are needed that are consistent in an
elementwise sense. From these, let L. = —log(I — B) and D = log(Q). The simplest way to exploit sparsity
of L and D is to use a thresholding operator (Bickel & Levina, 2008b), which sets entries of I and D to
zero if their absolute values are below a specified threshold. The spectral-norm consistent estimators 7'
and Q are then obtained by defining 7 := exp(L) and Q := exp(D), where L and D are the thresholded
versions of L and D.

To construct elementwise-consistent estimators B and Q, note that (10) from the main text implies,

(I-B)X ~ N(,Q).
For a chain component c, let pa(c) denote the set of parent nodes of ¢. Then,
Xe |Xpa(c) = N(BcXpa(c), Qc)- J.D

The factorization of joint density implies factorization of the parameter space (see also Drton & Eichler,
2006). As a result, we can estimate B. and . separately for each chain component. From now on we
omit the subscript ¢ to simplify the notation. Equation (J.1) suggests estimating B by regressing each node
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on its parents, which yields an elementwise-consistent estimator B. The estimator ) can be obtained as a
sample covariance matrix of residuals for all nodes in a given chain component (see equation (J.1)). For
this, we can use estimates of regression coefficients B or alternatively, a version B that exploits any sparsity
on the transformed scale. Both result in an elementwise-consistent estimator of Q, although B offers some
advantage in high-dimensional settings.

J.2.  Theoretical guarantees

For an m x m matrix M, let ||M||max = max; ; |M; ;|, where M;; denotes an entry (i, j) of M, and
IMll2 = supy,,,=1 [IMwll2. The largest eigenvalue of M is denoted by Amax(M). The size of a random
vector X is denoted by |X|. The set of parent nodes of node i and chain component ¢ are denoted,
respectively, by pa(i) and pa(c). Let £ be a sample covariance matrix of X. For two sets of indices, s,
s2 C [p], let 251 s, be the matrix obtained by selecting rows s and columns s, of 3.

The results presented in this section are valid under a weaker assumption of sub-Gaussian rather than
Gaussian distributions.

Condition J.1. For every chain component ¢, X..|Xpa(c) is sub-Gaussian with a variance proxy a2,
In addition, we assume that the covariance matrix X of X satisfies conditions J.2 and J.3.

Condition J.2. The quantities ||Z|lmax» | =" lmax» || L|]2 and ||Q]|> are bounded as n, p — oco.

Condition J.3. The sequence of smallest eigenvalues of 3 is bounded away from zero as p — co.

Equation J.1 suggests estimating the ith row of B, denoted by ', by regressing X; on Xpa(i)- Lemma
J.10 establishes elementwise consistency of the resulting estimator, 37, which implies the consistency of

=B ...,

Lemma J.10. Let X; = X,,4(j)B + &, where X; € R", X,4(j) € R™IPe g e RIPPD gnd & = (g, . . ., &)
is sub-Gaussian with zero mean and variance proxy 0'3. Then,

max |37 = B lmax = Op((log p/n)'/?).
Jjelp]

We now seek an estimator L of L that inherits the elementwise consistency of B. As discussed in Section
5, the element (i, j) of the matrix logarithm of T corresponds to the effects of node i on node j along all
directed paths connecting the two nodes. The following condition assumes that there is some length, say
I*, such that effects along paths of longer length are negligible when weighted inversely by the path length.

Condition J.4. There exists [* € N, such that for any pair of nodes (i, ), j <1, 1 al 16 () =
C(log p/n)?!/@+D) for ¢ > 0, where d;1;(1) denotes the sum of effects of node j on node i along all
paths of length /.

Since L = —log(I — B), a natural way of exploiting Condition J.4 is to approximate the matrix logarithm
by a truncated power expansion of order /*. Specifically, for a matrix A, define a truncated matrix logarithm
of the /th order as

! k
log(4):= Y (- A
k=1

andlet L = — log ;- (1 - B). Lemma J.11 establishes elementwise consistency of L under Condition J.4.

Lemma J.11. Let B be an estimator of B such that ||B — Bllmax = 0,,((n‘1 log p)'/?). Assume that
Condition J.4 holds. Then,

I ~ Lllmax = Op (0" log p)'7?). J.2)

Simulations presented in Section J.3 suggest that the assumptions of Lemma J.11 are not necessary for
bound (J.2) to hold. In particular, the rate of convergence in (J.2) is valid also for L = —log(/ — B) and in
the absence of Condition J.4.
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We now use the elementwise-consistent estimator L to construct an estimator L of L consistent in the
spectral norm. The key assumption to achieve consistency in a high-dimensional regime is that of sparsity.
Specifically, assume that matrix L belongs to a sparse class of matrices, as stated in Condition 1, which
generalizes the notion of sparsity used in most of the main paper by allowing approximate zeros. Thus,

Jj=1

p
L = log(T) € {L € LTo(p) - max ) | Ly | = sl(p)},

where 0 < ¢; < 1 and s;(p)/p — 0. The estimator L is obtained by elementwise thresholding of L. In
particular, for a p X p matrix A, an elementwise thresholding operator 7 (A), introduced by Bickel &
Levina (2008b), has the form,

T(A)j = T(Ajj) = AijI{|A;j] > T} J.3)
Thus, L has the form,
L=7(), T(i)ij = I:[j]I{|I:ij| > 11} J.4
Under Condition 1, the following result follows from Theorem 1 in Bickel & Levina (2008b).

CoROLLARY 1. Suppose that L € U(qy, s;(p)) and ||L — L||max = Op(rn,p). Let 1p < 1y p in (1.4). Then,
~ 1-
IL = Llla = Op (s1(p)rap") as n, p — .

The consistency of L is sufficient to obtain an spectral-norm consistent estimator of 7', as shown in
Lemma J.12.

Lemma J.12. Let B =1 —exp(-L") and T = exp(L). Then,
1B = Bll2 < exp(Amax(L"L)||L = L]l exp(||L = L|2),
IT = Tll2 < exp(Amax(LLYIIL = Ll exp(|IL = Lll).

A direct consequence of Lemma J.12 is that thresholding in the transformed domain yields an {;-norm
consistent estimator of regression coeflicients 5, which constitute the rows of B.

COROLLARY 2. Let B! and B! denote the ith row of B and B respectively. Then,
18" = B'll2 < exp(Amax(L'LYIIL = L2 exp(IIL = Lll2).

Lemma J.12, together with Corollary 1 and Lemma J.11 imply that
3 B (1-qp)/2
IT = 7ll2 = Opsu(p) (1™ 10gp) " ): (1.5)

Since Q is positive-definite, a spectral-norm consistent estimator € can be obtained using the approaches
of Battey (2019) or Zwiernik (2025). The former requires an elementwise-consistent estimator of Q. Given
an estimator B of B, let Q denote a sample covariance matrix of residuals for a chain component ¢. Lemma
J.13 establishes elementwise consistency of Q.

Lemma J.13. Assume Condition J.2 holds. Let B denote an estimator of B.

1. If||B-Bl, = O, (rg(n, p)) then,

A log p lo
€2 = Qllmax = O (rgm, p)\/ = \/ 2P ) (1.6)

n

2. If|IB - E”max = Op(rﬁ(n,p)) then,

) J.7

. log ppa
1€ = Qllmax = Op (p,%.ar;(n, p) —")
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where ppq = MaXiee | Xpa)l, p = | Xc| and c denotes a chain component.

If the size of chain components grows at the same rate as p, p < p and pp, < p, under conditions of
Lemma J.10, the rate of convergence in (J.6) is more advantageous than in (J.7). This suggests using B
rather than B to obtain the residual covariance matrix €2, which yields,

12 = Qllmax = Op (5122 log p)>4 + (1™ log p)'?)
= 0, (s1(p)(n™" 10g p¥>71 ).
where we have assumed that the first term dominates the convergence rate. Let
Q = exp(T (log(Q)),  T(Q)ij = Qi H|Q;] > 70} (J.8)

Then, under Condition 1, for 7, < s;(p)*(n~! log p)'/?, Theorem 2 of Battey (2019) implies,
192 001 = 0 s (4 g pf 1011, 19)

where s, (p)/p = 0and 0 < g, < 1.

Given estimators 7" and Q, the estimator of the covariance matrix X can be obtained by £ = TQT™".
Proposition 4 in the paper establishes the spectral-norm consistency of ¥ as p, n — oo, provided that
logp/n — 0.

In the absence of a causal ordering of variables, a natural pilot estimator of T is a triangular matrix
obtained by the LDL decomposition of £. Since T = (I — B)~!, we can use the proof strategy used to
establish the elementwise consistency of the matrix logarithm above. Specifically, under Condition J.5, an
elementwise consistency of a truncated matrix inverse, defined for a matrix A as A‘_l1 = Zi:l (—1)k+1 4k
is established by Lemma J.14 below.

Condition J.5. There exists [* € N, such that for any pair of nodes (i, j), j <1, f:l*+1 6 (1) =

C(log p/n)#>/2¢2+1) for ¢, > 0, where d;1;(I) denotes the sum of effects of node j on node i along
all paths of length /.

Lemma J.14. Let B be an estimator of B such that ||B — B|lmax = OP((n" log p)'/?). Assume that
Condition J.5 holds and let T = (I — 3)(11. Then,

IT = Tllmax = Op ((n"" log p)'/?). (J.10)

Simulations presented in Figure 3 suggest that Condition J.14 and the restriction to a truncated inverse
are not necessary for Lemma J.14 to hold. This suggests that the rate (log p/n)'/? is also valid for a pilot
estimator 7' = (I — B)~! , which corresponds to the triangular matrix obtained by the LDL decomposition
of the sample covariance matrix.

J.3.  Simulations

Lemma J.11 shows that Condition J.4 is sufficient to establish elementwise convergence of L, where
L= —log;.(1 - B). Using simulations, we now compare the rate of convergence of ||L — L|lmax, L =
—log(I — B), and ||B — B||max in the absence of Condition J.4. The results, presented in Figure J.3 (a),
suggest that Condition J.4 is not necessary for the equation (J.2) to hold. In addition, Lemma J.11 holds
when L is replaced by L. An analogous analysis is performed to assess the necessity of Condition J.5
for the validity of Lemma J.14 in Figure J.3 (b), which compares the rate of convergence of ||T — T'||max»
T = (- é)_l’ and ”é = Bllmax-

For each simulation, £ = OAOT, where O is an orthogonal matrix obtained by a QR decomposition of
a p X p matrix with iid standard normal entries, and elements of A are drawn from a gamma distribution
with a shape parameter k and a scale parameter v.
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Fig. J.3: Average elementwise errors |B = Bl|max (solid lines), || L — L||max (dotted lines, left plot)
and ||T — T ||max (dotted lines, right plot) for 100 simulations for each n, with p = n/10.

J.4.  Proofs of results in Appendix J.2

Proof of Lemma J.10. The estimation error for the ith element of 3/ has the following form,
i — A i _ T(yT ~1yT
A =B B =e (Xpagi) Xpa(i)) ™ Xpa()®-

Since ¢ is sub-Gaussian, Af is a linear combination of sub-Gaussian random variables. Thus, Af is

sub-Gaussian with a variance proxy ”eiT(Xg;(j)Xpa(i))_IX;;(;) ||220'5. Now,

le? (X Xoat) ™ X0 = € (XE ) Xoa) e = Sab(pal)z /n = 1).

Under Condition J.3 the maximum eigenvalue of var(pa(j))~' is upper-bounded. By the definition of the
operator norm, for any column v of var(pa(j))~' we have ||v|| < M. By the Cauchy-Schwartz inequality
[vi| = [{ex, V)| < |Iv|lo < M, where vy is the kth entry of v and e is a canonical basis vector with
kth element equal to one. Thus, max; ;e[,] var(pa( j))l.‘l.1 < M for some constant M. Hence, Eexp(A{ ) <
exp(\TaTr(pa(j))l.‘ilof/Z(n — 1)) < exp(Mo2/2n) for every i, j € [p]. Then,

(A 2 1) <2 ( ”ﬂ)
2 < ex _ .
! P 2Mo?

On setting t = (2M o2 log(2p?/8)/n)'/? we obtain

2M a2 log(2p%/6)\'/? 12 5
ﬂMAZ«_zgﬂiij))szm%_" )z_ﬂ
n 2Mo2 p?

The union bound gives

p
ZP(|A§| > 1) < 6.

i=1

P(maxuﬁf — Bl = r) <
Jelp] £

P
Jj=1

Hence, for any ¢ € (0, 1),

2M a2 log(2p%/6)\ /2
rfgog(p/)) )31—5.
n

I%MM@—QMZ(
€[p]
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Proof of Lemma J.11. Let rg(n, p) £ (n'log p)ﬁ. Recall that 6;|;(/) denotes the total effect of node j
on node i along all paths of length /. Specifically, let S(J, i, /) be a set of subsets of indices {j + 1,...,i — 1}
of length [ — 2. For each s € S(J,i,1), denote the corresponding indices by s; < s < ... < s;-2. Then, for
each [, 6 ;(I) has the form,

-2
Sk = D5 Vats it | [ Ysveatsns
s€S(J,i,0) v=1
where 7y, ,, denotes a regression coefficient of X,, from regression of X; on X, ..., X,.
Now consider,
-2 -2
A(j, i, 8) = |'yl',Sl Yilsi l_l Yseailsr = Vi Vjlsi 1_[ Vsvarlso |-
v=1 v=1

This expression has the form |Hf}=1 a, — Hi:l cl| with |a, —¢,| = O,(rg(p, n)). Let A, = []}_, a, and
C, = [1;_, ¢v. Then, by the triangle inequality,
|Avi1 = Coi1l| = lav41Ay — cpi1Gy
< |Avllaysr = cvstl + levrl|Ay = Gyl
Applying the inequality recursively we obtain |A,,i — Cyi1] = Op((v + Drg(n, p)). Thus, A(j,i,s) =

Op(Irg(n, p)), which represents an estimation error for a single path of length / connecting nodes i
and j. By the binomial theorem there are 2/~/~2 directed paths between i and j. Then,

log . (I = B) = log ;- (I = B)llmax = Op(2" 2rg(n, p)).
As a result,

P

A ..
I og(Z = B) ~10gy-(1 = B)llmax = Op (rp(n,p) + max > 1A i;5)I
o l=l 41

By Condition J .4,

P
1. _
max > 2|AGE )| = Op((n" log p)?).
oA !

The result follows since ¢ > 1/2. O

Proof of Corollary 1. Except for the change in the object being thresholded, the proof is that of Theorem
1 in Bickel & Levina (2008b). (]

Proof of Lemma J.12. Consider B — B = exp(~L) — exp(=7(L)). By Corollary 6.2.32 in Horn & Johnson
(1994),

1B = Bll2 = [l exp(~L) — exp(-T (L)l2 < |IL = T(L)ll2 exp(||LIl2) exp(l|L = T(L)]l2).
By the definition of the spectral norm, ||L||z = Amax(L"L). Similarly, since T = exp(L),
IT = Tl = || exp(L) — exp(T (L))l
< IL = T (L)l exp(IL|l) exp(lI L = T(L)]l2),
where the inequality follows from Corollary 6.2.32 in Horn & Johnson (1994). (]

Proof of Lemma J.13. For a chain component c, let & = X, — BXp(c) and E=X. - EXpa(c). Then,
Q = var(&) and

var(&E) = var(X) — var(BXpy(c))-
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Using the triangle inequality and the equality above,

IVai(&) — var(E)|lmax = I(Var(Xe) — Var(BXpu(c))) — (var(Xe) — var(BXpa(c)))llmax J.11)
= |[Var(X.) — var(X;)|lmax + ||\72Tr((1§ - B)Xpa(c))”max + ”\Ta\r(BXpa(c)) - Var(BXpa(c))”max~ J.12)

so By Lemma A.3 in Bickel & Levina (2008a), [[Var(X.) — var(X.)|lmax = Op(y/log p./n). Now consider the
second term in (J.12) and let Xéa(c) denote the ith sample of X, ().

Tar(B - B)Xpu(c)) = —Z<B B)X! o XL (B = B)' (1.13)
=(B- B) Z Lo X | B=B) (J.14)
=(B- é)var( Xpa(c))(B = B)". (1.15)

ss  Let [A];; denote an element (i, j) of matrix A. Then, from equation (J.15),

|[Vat(BXpa(c) — BXpaie)lij| = [[(B — B)Vat(Xpa(e))(B — B)';j1

|pal lpal . )
Z(B — B)ivar(Xpa(c))ik (B — B)jk

=1 k=1

lpal . lpal A
< 158 Xpage)llma| Y (B = BYa|| Y (B = B
=1 k=1
|pal . |pal
< ”@(Xpa(c‘))”max(Z(B - B),‘ ) (Z(B - )
600 = V@t (Xpae) lmax 1A 12114112

where A; denotes an ith row of B — B. The elementwise consistency of the covariance matrix, together
with Condition J.2, the spectral-norm consistency of B and the triangle inequality imply,

||var((B B)X, a(c))”mdx =0, (r,B(n P) + r,B(n p) \IIngpa/n)-

To upper-bound the third term in equation (J.12) note that

605 ”\73}(BXpa(c)) - Var(BXpa(c))”max = n}?xl[@(BXpa(c)) - Var(BXpa(c))]ij|

where BXp,4(c) is sub-Gaussian with zero mean. Thus, we can upper-bound this term using the elementwise
consistency of the covariance matrix estimator, which yields

”‘Ta\r(BXpa(c)) - Var(BXpa(c))”max = Op(ylog pc/n).

Opverall, we obtain,

610 [Var(&E) — var(E)|lmax = Oy V,B(na P)Z + I’B(I’l, p)ZVIOg ppa/” + v/log ,OC/I’l) s

which establishes the first claim in Lemma J.13. The proof for the second claim is identical, except for the
upper bound for the second term in (J.12), which we address now. The proof is similar to that of Bickel &
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Levina (2008a). By Cauchy-Schwartz inequality and the fact that Var(Xpa(c))ik < Var(Xpa(e))uvar(Xpace) k-

|[Var((B — B)Xpa(e))ij| = |[(B = B)Var(Xpu(c))(B = B)'1;j1

lpal |pal

=1 >\ > (B = B)uvar(Xpaic) (B — Byl

=1 k=1
lpal 2

< (Z (B - B)ill) var(Xpa(e)
=1

~ 2
< PRl X llmax (max | Bis = B

J.5. Proof of Proposition 4
Recall the inequality,

|A1A2A3 — C1 GGl

3 3 3
< M4 =Gl [ [ICkl+ D G | [ 1Ak = Cellz + | [ 114 = Gl
j=1 Jj=1 j=1

k#j k#j

Let A; = Ag =T,C = C3T =T, A = Q and C, = QL. Let r; and r,, denote the convergence rates of T
and Q respectively. In particular, ||T — 7|, = O,(ry) and Q- Q, = Op(rw). Then,

I£ -2l < 27 ITNQIR + 7o ITIE + 217w IT1 + 1715 + 177

The result follows from equations (J.5) and (J.9). U

K. SIMULATION RESULTS FOR §9.1

A notion of approximate sparsity that allows for slight departures from zero is, for any matrix A,

se(4) = > M(|Ay] > 7). (K.1)

ij<i

This replaces elements by 1 and 0 according to their values relative to 7, and thus is more suitable than
(14) for comparison across scales.

For each of the four parametrizations of (1), we explore the extent to which L is sparser than X!
according to equation (K.1), and the implications for estimation. For tables K.1-K.4, random matrices L
of dimension p = 60 were generated using the appropriate basis in equation (2) by randomly drawing s* /2
entries of @ from a uniform distribution on [—4, —2], s* /2 entries from a uniform distribution on [2, 4] and
m — s* entries from a uniform distribution on [-0.01, 0.01], where m is the number of elements in the basis.
The resulting matrix L was converted to the relevant matrix space PD(p), SO(p), LT(p) or LTy(p) by taking
the matrix exponential. The positive diagonal entries needed to complete the specification for the ¥, and
Y, parametrizations were drawn from an exponential distribution of rate p. In producing the simulations
of this section, we have used R functions to implement the LDL, Cholesky, and LU decompositions, mainly
to avoid the complications arising from pivoting operations used in the corresponding implementations in
Matlab.

The estimation error in non-trivial matrix norms is most relevant when the matrix object is a nuisance
parameter, and the numerical results presented here are motivated by that setting. Since it is usually the
precision matrix that is the nuisance parameter in procedures of multivariate analysis, rather than the
covariance matrix, we focus on estimation of 1
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Estimator E

s B w5 exp(-Lo)
6 =2 45.6 0.561 0.203
6 e=F 45.6 0.503 0.187
10 =2 54.7 0.551 0.214
10 e=F 54.7 0.504 0.197
20 =2 94.3 0.540 0.215
20 e=F 94.3 0.505 0.202
40 =2 436 0.496 0.231
40 e=F 436 0.477 0.221
Largest std. err. 130 0.189 0.076

Table K.1: Simulation averages of s, (X~!) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the X, ; parametrization.

For each of 200 simulation replicates, n = 200 p-dimensional random vectors were generated from a
mean-zero normal distribution with covariance matrix as specified above. Three estimators of the precision
matrix were compared in terms of their average estimation errors in the spectral and Frobenius norms.

The simplest type of estimator exploiting sparsity sets entries of a preliminary estimate to zero if they
are below a threshold 7. For the four parametrizations of equation (1), the simplest preliminary estimate
is the matrix logarithm of the relevant sample quantity, constructed from the eigen-, Cholesky, or LDL
decomposition of the sample covariance matrix. The matrix logarithm was computed using the algorithm
of Al-Mohy & Higham (2012), whose implementation is part of Matlab’s standard distribution and R’s
expm package. Let L. denote the thresholded estimator on the logarithmic scale, so that an estimator of £~
under the ¥, ; parametrization is exp(—L.) and the analogous quantities for the other three parametrizations
are O; = exp(L;) € SO(p), V; = exp(L;) € LT(p) and U, = exp(L;) € LT,(p), from which an estimator of
27! is constructed in the obvious way. A comparable estimator based on an assumption of sparsity directly
on the inverse scale is fl; I the inverse sample covariance matrix thresholded at 7. In all cases, the threshold
7 = 1 was used as the level below which entries were set to zero, implying that s-(L) from equation (K.1)
is s* by the simulation design. The estimator ﬁ; I typically violates positive definiteness, which may or
may not be problematic, depending on context. The results for the three parametrizations are reported in
Tables K.1-K.4.

For the X, parametrization, an additional step checked whether the matrix of orthonormal eigenvectors
O of the sample covariance matrix was special orthogonal, and if not, converted it to special orthogonal by
multiplying the first row of O by minus one. This step ensures that the matrix logarithm is skew-symmetric
and real-valued.

Thresholding on the logarithmic scale was justified by Battey (2019) under the X4 parametrization,
and in Proposition 4 under the Xj, parametrization. We have not in these simulations attempted to
optimize tuning constants, and it is likely that the results could be improved through a data-adaptive
tuning, nevertheless, several of the results suggest a benefit from exploiting sparsity on the logarithmic
scale as opposed to on the inverse scale.

The performance of OT/A\‘IOAE, as reported in Table K.2, is relatively poor, suggesting that the thresh-
olding approach is too simplistic for this case. One issue concerns the constraints on o needed to make
the X, parametrization injective (see Proposition C.4), which are not naturally accommodated by the
thresholding estimator. Another aspect is the distortion of the distribution of matrix entries by the matrix
logarithm, and its possible effect on the estimation error, which has not been formally studied for the %,
parametrization. Rybak & Battey (2021) noted a different estimator that does not involve taking matrix
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Estimator E

-1 A P A
5 p ||ﬁ£71 ”.H. ST(Z—I) 27—_1 OTA—I OI
6 2 e=2 91.3 0.561 1.264
6 2 e=F 91.3 0.540 1.451
6 4 e=2 132 0.565 1.281
6 4 e=F 132 0.551 1.469
10 2 e=2 91.7 0.599 1.305
10 2 e=F 91.7 0.561 1.467
10 4 e=2 131 0.604 1.308
10 4 e=F 131 0.571 1.480
20 2 e=2 110 0.597 1.340
20 2 e=F 110 0.564 1.521
20 4 e=2 155 0.602 1.355
20 4 e=F 155 0.576 1.539

Largest standard error ~ 96.2 0.205 0.328

Table K.2: Simulation averages of s-(X~!) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the X, parametrization.

Estimator E

-1 = P
§* ||ﬁ£71 ||_”. ST(Z—I) Z;l A V:)_l
6 e=2 42.6 0.590 0.148
6 e=F 42.6 0.508 0.129
10 =2 50.4 0.581 0.147
10 e=F 50.4 0.514 0.131
20 =2 74.5 0.551 0.164
20 e=F 74.5 0.516 0.153
40 =2 162 0.503 0.203
40 e=F 162 0.481 0.191

Largest std. err.  47.7 0.198 0.112

Table K.3: Simulation averages of s (X~!) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the X;; parametrization.

logarithms of sample quantities and that accommodates constraints on «. The formal implementation and
theoretical justification of that approach requires major work not taken up here.

K.1. Additional Figures for §9.2

The simulation setting is that described in §9.2 of the main text. Figure K.4 explores the relationship
between the relative performance of the two sparse estimators and their relative row norms, as quantified
by equation (15) of the main text. Specifically, Figure K.4 (B) shows that the metrics r(X) and r(L) are
closely related. Thus, when r(L) is low, so is #(Z). Thresholding ¥ yields a significantly lower £, error
when the ratio r(L)/r(X), and r(X), are either large, or very small, while UTDUTT seems advantageous for
medium values of r(L)/r(X), as depicted in Figure K.4 (A).
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Estimator E

¢ EEZL w51 (0,601
6 2 =2 90.7 0.526 0.405
6 2 e=F 90.7 0.503 0.372
6 4 =2 130 0.527 0.405
6 4 e=F 130 0.506 0.373
10 2 =2 110 0.547 0.431
10 2 e=F 110 0.520 0.396
10 4 =2 157 0.548 0.425
10 4 e=F 157 0.522 0.392
20 2 =2 163 0.548 0.482
20 2 e=F 163 0.514 0.448
20 4 =2 235 0.548 0.486
20 4 e=F 235 0.514 0.453
Largest standard error ~ 83.2 0.189 0.310

Table K.4: Simulation averages of s-(X~!) and the relative estimation errors for estimators exploit-
ing an assumption of sparsity on the inverse and logarithmic scales under the ¥;;,, parametrization.
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Fig. K.4: (a) £, error ratio ||lA]TﬁlA]E —2|l/112+ — Z||> (left-axis, blue) and r(X) (right axis, black)
plotted against the ratio r(L)/r(X). (b) Maximum row-sum of L versus maximum row sum of the
lower-triangular part of X. Each point in both plots corresponds to a median over 100 simulations,
with n = 150, p = 100, for each combination of € and percentage of non-zero entries of B.

L. APPLICATION TO LEUKEMIA AND ARRHYTHMIA DATA

The data (Efron & Hastie, 2016, §19.1) consist of 3571 features for 72 patients. Of these, 47 have
acute lymphoblastic leukaemia and 25 have acute myeloid leukemia. We used linear discriminant analysis
with the sample covariance matrix replaced by a thresholded estimator on each of the scales considered
in the paper, in order to assess the ultimate classification performance. Since the estimator exp(L.)
requires the sarnple covariance matrix to be positive definite, which fails to hold if n < p, we replace &
by 24 Sp, ndiag(2), where Op.n = (log(p)/ n)'/2; this choice was Justlﬁed by Battey (2019). For estimators
2., O-A" 1OT and U, DUT we considered both 3 and £ + Op, 1diag(2) as pilot estimators, and report the
higher of the two accuracy rates in Table L.5.
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The accuracy rates were obtained by randomly splitting the sample into two sets, consisting of 50 and
22 patients respectively, the smaller subset serving as a hold-out for testing classification performance on
the basis of the larger training set. To select a threshold, the larger subset is itself split into a training (80%)
and a validation set (20%) ten times. For each method, we select a threshold that minimizes validation error
over the ten splits. The final classifier is estimated using all 50 patients and its out-of-sample performance
is calculated using the hold-out sample. The procedure is repeated 50 times, which results in a set of 50
out-of-sample accuracy rates for each method. Results are reported in Table L.5.

Test error 3, O:A7'0" exp(L;) U.DU!
Median 95.5% 95.5% 95.5%  97.7%
S. €. 6.3% 4.0% 4.5% 5.1%

Table L.5: Median and standard error of accuracy scores on a hold-out dataset. Calculated over
50 randomly chosen test sets.

The Arrhythmia dataset from the UCI Machine Learning Repository (Guvenir et al. , 1997) has 452
observations, each representing a different patient. There are 16 classes, one representing normal ECG, the
remaining ones corresponding to different types of arrhythmia. We convert this to a binary classification
problem by pooling all arrhythmia classes together. The resulting dataset consists of 245 healthy patients,
and 207 patients with arrhythmia. We omit categorical features with fewer than 10 categories, resulting in
164 explanatory variables.

The accuracy was calculated using the same approach as for leukemia data, based on 20 different splits
of the data into a training and a hold-out set. The thresholding hyperparameter was chosen using a five-fold
cross-validation.
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