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STARTING POINT

Q∗: For a given covariance matrix, not obviously sparse in any domain,
can a non-trivial sparsity-inducing reparametrisation be deduced?

A∗: . . .



TRIVIAL VS NON-TRIVIAL REPARAMETRISATION

Q∗: For a given covariance matrix, not obviously sparse in any domain,
can a non-trivial sparsity-inducing reparametrisation be deduced?

A∗: . . .

By non-trivial we mean that we are able to discriminate more effectively on
the new scale between elements that are large and elements that are small.

Example of a trivial reparametrisation: Σ 7→ cΣ for c > 0 close to zero.



TWO DISTINCT TYPES OF MOTIVATION

1 The reparametrised covariance may be the interest parameter by virtue of
the interpretation ascribed to its zeros.

2 If the covariance matrix or its inverse is a nuisance parameter, a sparsity
assumption allows construction of estimators that are consistent in
relevant matrix norms when dimension exceeds sample size.

Positive definiteness enforces additional constraints on how sparsity can
legitimately manifest.



PROOF OF CONCEPT FOR Q∗

Possibility of increasing sparsity through reparametrisation.

One proof of concept is immediately available: covariance matrices
associated with Gaussian graphical models have no zeros as long as
the underlying conditional independence graph is connected, while the
inverse covariance matrix may have many zeros. Other examples?

Q*: For a given covariance matrix can a sparsity-inducing reparametrisation be deduced?



Sparsity-inducing reparametrisations for covariance matrices

Battey, H. S. (2017). Eigen structure of a new class of structured covariance
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Rybak, J. and Battey, H. S. (2021). Sparsity induced by covariance
transformation: some deterministic and probabilistic results.
Proc. Roy. Soc. Lond. A, 477.

Rybak, J., Battey, H. S., Bharath, K. (2025). Regression graphs and
sparsity-inducing reparametrisation, arXiv:2402.05708



NON-STANDARD PARAMETRISATION: FIRST EXAMPLE

The matrix logarithm L of a covariance matrix Σ is defined as

Σ = exp(L) =
∑∞

k=0
1
k!
Lk .

Spectral decomposition:

Σ = ΓΛΓT , Λ , diag{λ1, . . . , λp}
L = Γ∆ΓT , ∆ , diag{log(λ1), . . . , log(λp)}.

The inverse satisfies Σ−1 = exp(−L).



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Σ, Σ−1 ∈ V+
p (R) ,

{
S ∈Mp(R) : S = ST , S � 0

}
(open cone)

L ∈ Vp(R) ,
{
S ∈Mp(R) : S = ST} (vector space).

Natural symmetrised basis for Vp(R) of the form B = B1 ∪ B2:

B1 =
{
B : B = eje

T
j , j ∈ [p]

}
B2 =

{
B : B = eje

T
k + eke

T
j , j , k ∈ [p], j 6= k

}
.

By contrast, V+
p (R) does not possess a basis.

L =
∑|B|

m=1αmBm where B1, . . . ,B|B| ∈ B.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Impose sparsity on
L =

∑|B|
m=1αmBm where B1, . . . ,B|B| ∈ B.

through the basis coefficients. Specifically:

α = (α1, . . . , α|B|) satisfies ‖α‖0 = s∗ < p.

The eigenvectors and eigenvalues of Σ inherit substantial structure.



STRUCTURE INDUCED ON THE EIGENVECTORS AND EIGENVALUES OF Σ THROUGH
SPARSITY OF L
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Figure: Simulation average of ‖γj‖0 (left) and I{λj = 1} (right) for 100 random logarithmically s∗-sparse covariance

matrices, plotted against index j of ordered eigenvalues (y-axis) and s∗ ∈ {1, . . . , p} (x-axis) for p = 100.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

There is a deterministic answer. A random matrix perspective aids interpretation.

Suppose the support of α is a simple random sample of size s∗ from the index set {1, . . . , p(p + 1)/2}.

The expected number of non-unit eigenvalues of Σ = Σ(α) is approximately d∗ < p, where

d∗ = root

{
4p + p(p − 1)

2(p + 1)

[
log
( p

p − d

)
− d

2p(p − d)

]
− s∗

}
.

The corresponding eigenvectors have d∗ non-zeros in expectation.

The other eigenvectors are of the form ej .



APPROXIMATION ERROR
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WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Suppose the support of α is a simple random sample of size s∗ from the index set {1, . . . , p(p + 1)/2}.
The resulting Σ is of the form

ID*

10.0°

Dense p.d. 
symmetricP PT =

Ip-D* where E[D*]=d*

Σ =
⎬

where P is a permutation matrix. The same structure holds for deterministic logarithmically sparse
covariance matrices but the dimension of the identity block is less explicit.



WHAT STRUCTURE IS INDUCED ON Σ THROUGH SPARSITY OF L?

Indicator of non-zero entries for:

Left: one realisation of a random sparse L;

Centre: the corresponding matrix exponential Σ = exp(L)

Right: the thresholded version T (Σ) = {Σij I(|Σij | ≥ 1)}.

Yellow entries represent non-zeros. Blue entries represent zeros.



A MORE NUANCED SUMMARY

A sparse L with s∗ = ‖α‖0 < p necessarily has more exact zeros than Σ and Σ−1.

Neither Σ nor Σ−1 with the specified structure can have more exact zeros than L.

For a randomly generated Σ with the specified structure, however, L = log(Σ) will
contain the same number of exact zeros as Σ with probability 1. Any practical
advantages are thus more likely to arise in the form of approximate zeros.



QUESTIONS

Other sparsity-inducing reparametrisations.

Interpretation of a zero (exact or approximate) in the logarithmic domain.

Connections to graphical structure and zeros in precision matrix.

Propagation of estimation errors between scales.



Regression graphs and sparsity-inducing reparametrisations

arXiv:2402.09112

Joint work with Jakub Rybak and Karthik Bharath.



FOUR REPARAMETRISATION MAPS

With D(d) = diag(d1, . . . , dp), we consider the four maps

α 7→ Σpd(α) := eL(α), L(α) ∈ Sym(p), α ∈ Rp(p+1)/2;

(α, d) 7→ Σo(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ Sk(p), α ∈ Rp(p−1)/2, d ∈ Rp;

α 7→ Σlt(α) := eL(α)(eL(α))T, L(α) ∈ LT(p), α ∈ Rp(p+1)/2;

(α, d) 7→ Σltu(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ LTs(p), α ∈ Rp(p−1)/2, d ∈ Rp.

In each case, L belongs to a different vector space in which sparsity can conveniently be studied:

Sym(p): the symmetric matrices;

Sk(p): the skew-symmetric matrices;

LT(p): the lower triangular matrices;

LTs(p): the strictly lower triangular matrices.



FOUR REPARAMETRISATION MAPS
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The subscripts on Σ indicate which of the matrix sets are represented as the image of the exponential
map: PD(p) (positive definite), SO(p) (special orthogonal), LT+(p) (lower triangular, w/ positive
diagonal) and LTu(p) (lower triangular w/ unit diagonal).



FOUR REPARAMETRISATION MAPS

With D(d) = diag(d1, . . . , dp), we consider the four maps
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(α, d) 7→ Σltu(α, d) := eL(α)eD(d)(eL(α))T, L(α) ∈ LTs(p), α ∈ Rp(p−1)/2, d ∈ Rp.

Sparsity of α in the map α 7→ Σpd(α) was
presented a few slides earlier (Battey, 2017).

The map (α, d) 7→ Σo(α, d) was studied by
Rybak and Battey (2021).

The maps α 7→ Σlt(α) and (α, d) 7→ Σltu(α, d)
are new and have a graphical interpretation.

There is an encompassing formulation.
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OBJECTIVES

To provide insight into how sparsity interacts with these parametrisations.

Not to advocate any particular sparsity scale, but to clarify, to the extent
feasible, the implications of choosing it.



MATRIX DECOMPOSITIONS

The parametrisations correspond to matrix-logarithmic
transformation following different matrix decompositions.

Σpd : no preliminary decomposition.

Σo : spectral decomposition.

Σlt : Cholesky decomposition.

Σltu: LDL decomposition.



Σpd Σo Σr
ltu Σc

ltu

Structure of Σ(α) induced by sparsity of α. Zero entries are light blue, unit entries

are medium blue, unrestricted entries are dark blue.



SOME REMARKS ON THE PREVIOUS FIGURE

The structure depicted is that of PΣPT for some permutation matrix P.

P reflects the arbitrary ordering of variables.

Σr
ltu and Σc

ltu are induced by two configurations of 6 non-zero entries in α ∈ R10.

Σc
ltu is completely dense on the original scale, but sparse after reparametrisation.

Similarly for Σlt (not depicted).



Some formal statements



A GENERAL RESULT

Consider any p-dimensional matrix M of the form M = eL, where L
belongs to a vector space (e.g. any of the four defined earlier). Let d∗r and
d∗c be the number of non-zero rows and columns of L respectively. Then:

M has p − d∗r rows of the form eT
j for some j ∈ [p], all distinct, and

p − d∗c columns of the form ej .

Of these, p − d∗ coincide after transposition.

If M is normal, i.e. MTM = MMT, then d∗r = d∗c = d∗.

Zero rows and columns of L are likely to arise when s∗ = ‖α‖0 � p.
Probabilistic statements can be made when the positions of non-zero
entries are picked totally at random.



EXAMPLE STRUCTURE OF M = eL

Figure: Example of a structure of M as as described on the last slide with p = 10, d∗r = 7, d∗c = 8
and d∗ = 9. Zero, unit and unconstrained entries are light, medium and dark blue respectively.

The specific vector spaces of interest impose additional constraints.



THE MAP α 7→ Σpd(α)

Corollary

The image of the map α 7→ Σpd(α) = eL(α) is logarithmically sparse in the sense that
‖α‖0 = s∗ in the basis representation for L(α) if and only if Σ is of the form

Σ = PΣ(0)PT, where P ∈ P(p) is a permutation matrix and Σ(0) = Σ
(0)
1 ⊕ Ip−d∗ with

Σ
(0)
1 ∈ PD(d∗) of maximal dimension, in the sense that it is not possible to find another

permutation P ∈ P(p) such that the dimension of the identity block is larger than p − d∗.



THE MAP α 7→ Σo(α)

Corollary

The image of the map α 7→ Σo(α) = eL(α)eD(eL(α))T is logarithmically sparse in the sense
that ‖α‖0 = s∗ in the basis representation for L(α) if and only if Σ is of the form

Σ = PΣ(0)PT, where P ∈ P(p) is a permutation matrix and Σ(0) = Σ
(0)
1 ⊕ Dp−d∗ , where

Dp−d∗ ∈ D(p − d∗) and Σ
(0)
1 ∈ PD(d∗) is of maximal dimension, in the sense that it is

not possible to find another permutation P ∈ P(p) such that the dimension of the
diagonal block is larger than p − d∗.



THE MAP α 7→ Σlt(α)

Corollary

The image of the map α 7→ Σlt(α) = eL(α)(eL(α))T is logarithmically sparse in the sense
that ‖α‖0 = s∗ in the basis representation for L(α) if and only if Σ is of the form
Σ = VV T, where V = Ip + Θ and Θ ∈ LT+(p) has p − d∗r zero rows and p − d∗c zero
columns, of which p − d∗ coincide.



THE MAP α 7→ Σltu(α)

Corollary

The image of the map α 7→ Σltu(α) = eL(α)eD(eL(α))T is logarithmically sparse in the
sense that ‖α‖0 = s∗ in the basis representation for L(α) if and only if Σ is of the form
Σ = UΨUT, where Ψ = eD ∈ D+(p), U = Ip + Θ and Θ ∈ LTs(p) has p − d∗r zero rows
and p − d∗c zero columns, of which p − d∗ coincide.



QUESTIONS OF INTERPRETATION

Interpretation of α and zeros in α.

Exact zeros vs approximate zeros.

Interpretation of the structure in Σ induced
by/inducing a sparse α in α 7→ Σ(α).



Background to Σltu interpretation:

causal ordering



CONTRAST: DIRECTED/UNDIRECTED GRAPHS

Multiple causal models compatible with the same structure of zeros in Σ−1.

An undirected graph whose associated Gaussian model has a sparse Σ−1 could be
appreciably less sparse in Σ−1 when the undirected edges are replaced by directed ones.

The key factor determining this is whether there are common response variables
occurring later in the causal ordering.

Other parametrisations are more appropriate.



CONTRAST: DIRECTED/UNDIRECTED GRAPHS

Multiple causal models compatible with the same structure of zeros in Σ−1.

An undirected graph whose associated Gaussian model has a sparse Σ−1 could be
appreciably less sparse in Σ−1 when the undirected edges are replaced by directed ones.

The key factor determining this is whether there are common response variables
occurring later in the causal ordering.

Other parametrisations are more appropriate.



CONTRAST: COMMON RESPONSE/COMMON SOURCE VARIABLES

More later. . .



Background to Σltu interpretation:

Iwasawa coordinates



BLOCK DIAGONALISATION

With [p] = {1, . . . , p}, let a ⊂ [p] and b = [p]\a be disjoint subsets of variable indices.
As a consequence of a block-diagonalisation identity for symmetric matrices (Cox and
Wermuth, 1993, 2004),

LΣLT =

(
Iaa 0

−ΣbaΣ−1
aa Ibb

)(
Σaa Σab

Σba Σbb

)(
Iaa −Σ−1

aa Σab

0 Ibb

)
=

(
Σaa 0
0 Σbb.a

)
,

so that Σ can be written in terms of Πb|a := ΣbaΣ−1
aa ∈ R|b|×|a|, Σaa ∈ PD(|a|),

Σbb.a := Σbb − ΣbaΣ−1
aa Σab ∈ PD(|b|).

These are known in some quarters as the partial Iwasawa coordinates for PD(p) based
on a two-component partition |a|+ |b| = p of [p].

This holds independently of any distributional assumptions on the underlying RVs.



INTERPRETATION OF BLOCKS

Let Y = (Y T
a ,Y

T
b )T be a mean-zero random vector with covariance matrix Σ, Πb|a is

the matrix of regression coefficients on Ya in a linear regression of Yb on Ya and Σbb.a

is the error covariance matrix, i.e. Yb = Πb|aYa + εb and Σbb.a = var(εb).

The entries of Πb|a encapsulate dependencies between each variable in b and those of a,
conditional on other variables in a, but marginalising over the remaining variables in b.



Σltu interpretation



Σltu FROM RECURSIVE BLOCK-DIAGONALISATION

With |b| = 1, recursively apply the identity

Σ =

(
Σaa Σab

Σba Σbb

)
=

(
Iaa 0

ΣbaΣ−1
aa Ibb

)(
Σaa 0
0 Σbb.a

)(
Iaa Σ−1

aa Σab

0 Ibb

)
.

This leads to the representation Σ = UΨUT based on p blocks of size 1× 1 where the
general form of U = eL ignoring sparsity is

U =


1 0 0 0
β2.1 1 0 0
β3.1 β3.21 1 0
β4.1 β4.21 β4.3[2] 1

 . (1)

Notation: e.g. β4.21 is the coefficient on Y2 in a linear regression of Y4 on Y1 and Y2.
This is not new: it is implicit in Cox and Wermuth (1993, 2004).



INTERPRETATION OF ENTRIES OF U IN Σltu = UΨUT

Three variables (Y1,Y2,Y3). The total effect of Y1 on Y3 is related
to the conditional effects through Cochran’s formula:

β3.1 = β3.12 + β3.21β2.1.

Notation.

β3.1: regression coefficient on Y1 in a regression of Y3 on Y1

only, having marginalised over Y2.

β3.12: coeffient on Y1 in a regression of Y3 on Y1 and Y2.



POPULATION-LEVEL DEFINITION OF COEFFICIENTS

The coefficient β3.1 is the total derivative of

f (y1, ȳ2) := E(Y3 | Y1 = y1,Y2 = ȳ2),

treating y1 and ȳ2 = ȳ2(y1) = E(Y2 | Y1 = y1) as free variables, i.e.

β3.1 =
Df (y1, ȳ2)

Dy1
=
∂f (y1, ȳ2)

∂y1︸ ︷︷ ︸
β3.12

+
∂f (y1, ȳ2)

∂ȳ2︸ ︷︷ ︸
β3.21

dȳ2(y1)

dy1︸ ︷︷ ︸
β2.1

.



INTERPRETATION OF ENTRIES OF U IN Σltu = UΨUT

The right hand side of Cochran’s formula:

β3.1 = β3.12 + β3.21β2.1.

corresponds to tracing the effects of Y3 on Y1 along two paths
connecting the nodes in a system of random variables (Y1,Y2,Y3),
with edge weights given by the corresponding regression coefficients.

1 2 3
β2.1

β3.12

β3.21



MARGINALISATION AND CONDITIONING

Marginalisation, indicated by �◦, induces an edge between i and j if the marginalised
variable is a transition node or a source node.

i ←− �◦ −→ j , i ←− �◦ ←− j ,

i ---- j , i ←− j .

By contrast, if i and j are separated by a sink node, then conditioning on such a
node, indicated by �◦ , is edge inducing, with no direction implied.

i −→ �◦ ←− j ,

i — j .

Edge inducement: an independence statement that applies in the true graph no longer holds in all
distributions that are generated over the new graph.



PRECISION MATRICES AND SINK NODES

If edges were undirected: 4 |= {1, 2, 3} | 5 and Σ−1
4j = 0 for j = 1, 2, 3.

Directed edges: conditioning on common sink node 5 (implicit in interpretation of Σ−1)
induces an edge between variable 4 and all other variables.



INTERPRETATION OF ENTRIES OF U IN Σltu = UΨUT

Let υij(`) denote the effect of Yj on Yi along all paths of length `, specified for
the three-dimensional example as

υ21(1) = β2.1, υ31(1) = β3.12,

υ32(1) = β3.21, υ31(2) = β3.21β2.1.

The lower-triangular matrices U and L = log(U) have the form,

U =

 1 0 0
υ21(1) 1 0

υ31(1) + υ31(2) υ32(1) 1

 , L =

 0 0 0
υ21(1) 0 0

υ31(1) + υ31(2)
2

υ32(1) 0

 .



INTERPRETATION OF α IN THE Σltu PARAMETRISATION

For a given diagonal matrix eD , the Σltu parametrisation is

α 7→ Σltu(α) = eL(α)eD(eL(α))T.

Entry Lij and the corresponding coefficient α is equal to the weighted sum of
effects of Yj on Yi along all paths connecting the two nodes, with weights
inversely proportional to the length of the corresponding path.



THE POSSIBILITY OF DIFFERENT SPARSITY ON DIFFERENT SCALES

U =

 1 0 0
β2.1 1 0

β3.12 + β3.21β2.1 β3.21 1

 , L =

 0 0 0
β2.1 0 0

β3.12 + β3.21β2.1
2

β3.21 0

 .

The possibility of increasing sparsity (exact or approximate zeros) through
reparametrisation comes either from cancellation (exact or approximate), or
from the different weightings of path effects.



WEIGHTING

Let B be the matrix whose entry Bij is the regression coefficient on Yj in a
regression of Yi on Yj and on its other causally-ordered predecessors.

Entries of B represent paths of length 1, i.e. zero weights on longer paths.

Entries of U = (I − B)−1 aggregate contributions along all paths, with
weights equal to one, i.e. no discounting of longer paths.

L = log(U) weights a path of length ` by a factor of 1/`.



INTERPRETATION OF NEAR-ZEROS IN THE LOG DOMAIN UNDER Σltu

Interpretation of a near-zero entry Lij : short paths from j to i are associated with
small conditional effects, while any large effects are mediated by a string of
intermediate variables, where conditioning is on all variables that occur earlier in
the causal ordering.



APPROXIMATION INHERENT TO THRESHOLDING ON THE LOG SCALE

The approximation inherent to any statistical algorithm that sets small values of
α to zero is thus as follows: the relation between nodes i and j < i would be
declared null if relatively direct regression effects are negligible and other effects
manifest through long paths.



COMPARISON OF THRESHOLDING ON DIFFERENT SCALES

Three candidates for thresholding:

B, U = (I − B)−1 and L = log(U).

Contain the same information in different guises, B being the most interpretable.
Once sparsity is sought, the sparse approximations to B, U and L place emphasis on
different aspects.



COMPARISON OF THRESHOLDING ON DIFFERENT SCALES

B: Thresholding retains large direct effects.

U: Entries are sums of effects along all paths. Direct effects are absorbed in a composite.

Thresholding assumes paths of all lengths are equally important.

Potential implication: small number of near-zeros, and recovery of distant effects.

L: Thresholding retains large composite effects weighted by path length.



NUMERICAL EXPLORATION OF SPARSITY REGIMES

Data from Gaussian DAG with
covariance Σ = (I − B)−1Ψ(I − B)−1.

Generate B by assigning value ε > 0 to
a randomly selected prespecified
percentage of entries. Other entries 0.

Threshold on different scales. Tuning
parameter chosen by cross validation.

r(A) measures (lack of) sparsity in
metric used in thresholding literature.

Similar results for thresholding on scale
of L = log(Σ).
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OPEN QUESTIONS

How one might test for sparsity across different scales.

How to choose the sparsity scale empirically: e.g. traversal of
parametrization space through convenient parametrized paths.

More sophisticated estimators, e.g. in the vein of elegant work
by Zwiernik (2025).



Thank you for your attention
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