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Recently, Cox and Battey (2017 Proc. Natl Acad. Sci.
USA 114, 8592-8595 (doi:10.1073/pnas.1703764114))
outlined a procedure for regression analysis when
there are a small number of study individuals and
a large number of potential explanatory variables,
but relatively few of the latter have a real effect.
The present paper reports more formal statistical
properties. The results are intended primarily to guide
the choice of key tuning parameters.

1. Introduction

We consider studies of dependence in which there are
relatively few individuals on each of which a large
number of potential explanatory variables are measured.
Genetic microarray experiments are a prime example.
For progress, an implicit or explicit assumption of
sparsity is required, namely that the great majority of the
explanatory variables have no effect. We call explanatory
variables with an effect on response signal variables, and
those with no effect noise variables.

Powerful procedures for analysis emanate from the
lasso [1] (for a discussion of the mathematical aspects,
see [2]). They aim to uncover a single small set of
signal variables effective for prediction. It is possible,
however, that many different choices of explanatory
variables are essentially equally effective and have
quite different subject-matter implications. Cox & Battey
[3] outline a different approach aiming to specify
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those small sets of potential signal variables that give essentially the same fit; choice between
different sets requires either more data or specific subject-matter information. Their procedure
also allowed informal checks standard in much statistical work, such as those for nonlinearity,
interaction or anomalous individuals.

In the present paper, we outline a probabilistic base for such an analysis. The emphasis is
on how the procedure would perform under various idealized scenarios, as such providing
guidance on the choice of key tuning parameters. The focus is on two key aspects at each stage
and in the overall process of analysis. What is the probability that a signal variable is falsely
discarded? How many of the variables ultimately suggested as potentially important are in fact
noise variables? Our objective is essentially to calibrate the analytical procedure by specifying
its behaviour under idealized conditions, not to set up a procedure to achieve preassigned
error rates.

The ideas involved apply rather generally, for example, to likelihood-based fitting of logistic
models for binary data.

2. Broad outline of procedure

Suppose that v variables are to be assessed for their explanatory power for a response variable. It
is assumed that v is roughly k¢ for k < 15 and d a small positive integer. In the method as outlined
by Cox & Battey [3], the indices of these variables are arranged in a k x k x k cube for d =23 or
k x k x k x k hypercube for d =4, etc. Sets of variables are then selected for test k at a time by
traversing the cube by rows, columns, etc. Every variable thus has associated with it d sets of
(k — 1) companion variables from each time the traversal of the cube passes through that variable.
The explanatory power of each variable is assessed alongside its d sets of companions and, on the
basis of those analyses, variables are either discarded or retained according to a suitable decision
rule. For instance, a variable might be retained if it is among the two most significant in at least
d/2 of the d analyses in which it appears.

This is repeated with successively lower dimensional hypercubes until ideally fewer than 20
variables remain on which informal diagnostic checks are then performed.

The final phase of the analysis is to find small subsets of variables among the augmented
set of retained variables and any square or interaction terms suggested at the informal
phase. See Cox & Battey [3] for a more detailed description of the exploratory and subset
selection phases.

3. Specification

At the ith stage of the process, let there be respectively vg; signal variables and wvy; noise
variables. In the specific example below, i=0,1,2. Thus of the vgy signal variables initially
present, vsy are chosen at the end for detailed study. Given vgg, the numbers of signal variables
chosen at the first and second stage have binomial distributions with parameters 651 and 65> =
0510521, where, in particular, 0sp1 is the conditional probability, given that a specific signal
variable is chosen at the first stage, that it is chosen again at the second stage. A different
specification is needed for the noise variable because, initially at least, there are a large number
of them. In particular, the vy; have Poisson distributions with means uy;. We write ¢n21 =
un2/un1 for the probability that a noise variable retained after step 1 is still retained at
step 2.

A summary of the properties of a two-stage procedure is thus provided by sy and unp, the
probability that a signal variable is retained and the expected number of noise variables not
rejected.

We now study these in order to compare different strategies of analysis.
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4. Some reduction strategies

We compare three possible approaches to each analysis of the first stage reduction. Thus, we may

— take the single variable with highest score (most significant);
— take the two variables with highest scores; and
— take all those variables, if any, whose scores exceed a threshold.

Significance tests based on the Wald, score or likelihood ratio statistics are natural choices. The
former does, however, have the disadvantage of not being parameterization invariant.

In a set of k variables chosen at random for test, the number of signal variables has a Poisson
distribution of mean kvgyg/v, where v =vgy + vng and vgg is assumed modest, and hence has
two or more signal variables with probability approximately kzvgO /(2v?). This is small for the
situations to be considered and does not affect the qualitative comparison of procedures. It is,
therefore, ignored in later calculations.

Itis convenient to phrase the initial discussion in terms of significance tests and their associated
p-values. For noise variables, these are uniformly distributed on (0,1), and for signal variables
their density can be modelled as (1 — y)x™7, where 0 <y < 1.

In the following calculations of the probability () that the jth procedure listed above chooses
the signal variable, it is convenient to use Stirling’s formula in the form that for large k and fixed
a the ratio I'(k + a)/ I" (k) is close to k“.

If only the most significant out of k is chosen, the probability that the signal variable is taken is

A r dx(1—y)x Y1 —xf1= M, (4.1)
0 K=y
after simplifying by Stirling’s formula. Note that the Gamma function is close to 1 over the range
of interest. If y =0, there is no distinction between signal and noise variables and the notional
signal variable is selected with probability 1/k, that is, essentially at random.
If now we take the two most significant values out of k, then 2@ =D 4 @D where

1
9@ =J dx(k — Dx(1 — p)x7 (1 — x)*2),
0

This is approximately
A=re-y
That is, approximately, @D /91 =1 — . The difference between #? and ¥ is maximized at
approximately yy = (logk — 1)/ logk, at which @D js I'{(log =1/ logk) (figure 1).
If we were to set a critical level at «, then the corresponding probability for a signal is

o
5 = J 1—ypx7Vdyr=a'"7,
0

so that the equalities 9 =91 and #©® =@ are achieved for any y by setting, respectively,
a=k1r2—y)/A-"x~k1and

a=kHr@-y@- ke - i,

This shows that strategy 3 with « = 1/k and strategy 1 are equivalent as this choice also makes
w® =M, By contrast, (2 — VA=Y S 2 forall0<y <1, meaning that, for the same probability
of selecting a signal variable, strategy 3 necessarily selects more noise variables than strategy 2
and, therefore, is strictly inferior.

In replacing the second strategy by the first, un1 and consequently un» are reduced by roughly
a factor of four independently of y. However, the penalties of including noise variables are mainly
incidental in view of the exhaustive search over models that must later take place. The associated
computational burdens are reasonable unless unp» is, for example, 20 or more, and so strategy 2
would normally be preferred for its higher 0g1.
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Figure 1. Exact and approximate values of 9" () and 1 *" (b) over y € (0, 1) for k = 10. (Online version in colour.)

The probability Géfl) that the jth procedure retains a signal variable through the first stage is
Géll) =913 4 3902(1 — 90) and so, approximately,

o — 62 = (1 — )& 3[3(y = 3k + (7 + (y — 5 IK'] <0, 43)

with equality at y =1, is the reduction in survival probability of signal variables from replacing
the second procedure by the first. Here we have approximated by treating analyses in which the
same variable appears as independent. The difference (4.3) is approximately

1+ 3logk{l —e(1 + 2logk) + logk}
(elogk)? !

(4.4)

at the point of maximum distinction y =y, and as the slowest decaying term in (4.4) is of the
order of 1/(¢? logk) this shows the potential advantages of strategy 2 over strategy 1 to decrease
only very slowly with k.

A less general but more conventional formulation is to assume a normal theory linear model.
Define A to be signal strength multiplied by the square root of the sample size. The values of #¥)
are then

D = Jq’:(x — A 1(x) dx,

9@ — p® 4 J(k — Dp(x — AP 2(x)P(—x) dx,
9O =p(A — k™),

where ¢(x) and @(x) are the standard normal probability density and cumulative distribution
function at x, respectively. The threshold in the third strategy is, by convention, calibrated as
the upper quantile «* of the standard normal distribution. We thereby approximate #() and
92D 2 (k- 1) [olx— A)PK2(x)@(—x) dx and show that the two formulations are qualitatively
equivalent.

The integral in ¥ is negligible over R~ for A > 0 and over R* is of the form of a generalized
Laplace integral for A fixed, that is,

Joo g(x, v) exp{vh(x,v)} dx, (4.5)
0

where g(x, v) is uniformly bounded in x as v — oo and & has a single maximum, x¢(v), which
varies with v. Specifically we take g(x) = ¢(x — A), v=k — 2 and h(x, v) =log @ (x) + log ®(—x)/v.
The integral ¥ is thus approximable by the method of Laplace (e.g. [4, pp. 60-65]). The
idea in outline is that, for large v, by far the greatest contribution to the integral comes from
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Figure 2. () Exact and approximate values of 1 ®" as functions of A for k = 10; (b) 9*" as a function of A for k =10in
the normal theory formulation and in the p-value formulation with 17 = {cosh(A) — 1} /cosh(A). (Online version in colour.)

a neighbourhood of xg. The integral is evaluated by expanding ¢ and & in a neighbourhood of
x = xo, leading to

1/2
93 = (k — 1)g(xo, A) exp{h(xo, v)v} {_h(ioiﬂv)v} +0 (%) , (4.6)
where the symbol ' denotes the partial derivative with respect to the first argument. It is
customary when constructing Laplace integrals to define & such that its maximum is independent
of v. This is not possible here as, without the contribution of the ®(—x) term, / has no sharp
maximum. That the form in (4.5) is permissible is discussed by Copson [5, pp. 42-47].
The second derivative at x is

2 2
1 (x,v) = (%) {M} e {‘p(—x)"ﬂ“p(")}

@ (—x)P (x)v (D (—x)P(x)}2v

and the unique maximizer xy of & satisfies

1 1
0000|555~ s | @
Let %o 2 —@1(1/k). As @ (%) = (k — 1)/k =1+ O(k 1), we have xo ~ %, leading to
W (xg, v) ~ —¢? {<p (%) } k, (k— o), (4.8)

and an asymptotic approximation to #2 is
V)= 1 gxo— A)
Kk p{o~1(1/k)}

k
=2n(kk;7_&)d)(A)exp {—A(D_l (%)} (k= o0). (4.10)

(4.9)

Equation (4.9) has a unique maximum at Ag(k) = —@~1(1/k) of
1 N2 k=1 —

Figure 2a shows the accuracy of the approximation (4.9) for k = 10.

The qualitative implications of the normal theory formulation are equivalent to those of the
formulation in terms of p-values. For instance, at A = 0, which corresponds to y = 0, equation (4.9)
is \/@(k — 1)k~+1D) This is 1/k to two decimal places for k sufficiently large. If y is redefined as
y ={cosh(A) — 1}/cosh(A), then equation (4.2) has a unique maximum at sechfl(l /logk), which,
like Ag(k), is a very slowly growing function of k. Figure 2b shows the approximation in equation
(4.2) as a function of A with y redefined as described. Any mapping A +> g(A) such that g: RT —
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(0,1) is monotonically increasing with g(0) =0 and g(x) ~ 1 for x > 4 gives essentially the same
qualitative conclusions.

5. Relative severity of each stage

We now consider the relative advantages of

— a mild first stage and severe second stage
— a severe first stage and a mild second stage,

where, for clarity of exposition, ‘mild” and ‘severe” are associated with the same quantitative
values in both versions. In particular, let 1 > ¥ > 91, > 0, where ¥y and 9, are the probabilities
that a signal variable is retained in a single analysis of a mild and severe reduction, respectively.
Let GSI%L and Qé‘ZH denote the overall survival probabilities of the first and the second of these
procedures, respectively. To demonstrate that

o8 = w3 + 3031 — v)}OP + 2001 — D))
> (0F + 307 (1 — oL} + 20u(1 — vn)) =653,

or equivalently
P2 — On) - Iu{tn3 — 29n)
9L2—-91)  o{vL@-29}’

suppose for a contradiction that

u _ 2=0n) B=201) _ v — UL
9 T 2—91) 3—29y) 6 — {39 +293(2 — 91)} ’
The supremum of 39, + 29y(2 — ¥1) is 5, attained only in the limit as ¥;, - 9y — 1. But 5 <6 —
U1, because 91, < 1 and so equation (5.1) implies
9 _
LIS Sl L
UL UL UL

a contradiction, and we conclude that GSHzL > Gé“zH That is, the first procedure gives a higher

probability of a signal variable being retained than the second. The same argument shows that
the first procedure results also in a higher probability of noise variables being retained.

(.1)

6. Asimple example

The performance of various stages of the procedure may be investigated as follows. Generate
n =107 replicates of v =103 variables from a normal distribution of zero mean and covariance
matrix PYP~!, where P is a permutation matrix and ¥ is an identity matrix with one diagonal
block replaced by a correlation matrix of dimension vgy 4+ vcp and equal correlation p. For each
replicate, vgy of the vsp + vcp correlated variables is multiplied by a constant signal and added,
together with standard normal noise. Conditional on a realization xs of the vgg signal variables,
the resulting response variable is then normally distributed of mean yTxs and unit variance,
where y is a vgg vector of constants. Arrange the indices of the v variables in a 10 x 10 x 10 cube.
The rows, the columns, etc. of the cube form 3k% = 300 sets, each of k = 10 variables. Reduction is
performed by taking the top two scoring variables in each analysis in the first stage and by taking
all those exceeding the threshold of a 0.1% level test in the second stage. Finally, find small subsets
of variables that give adequate fit using a likelihood ratio test against the comprehensive model.

Summaries estimated from 500 Monte Carlo replications are reported in table 1. The general
conclusion is that such correlation slightly degrades the probability of a signal variable being
retained and increases the number of false models not rejected. The comprehensive model in
the likelihood ratio test is taken as the model with all variables retained through the reduction
phase. Having been selected in the light of the data, it achieves a better fit to the data than an
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Table 1. S is the true set of signal variables, Sis the set of variables surviving the reduction phase, M is the set of low-dimensional models whose likelihood ratio test against the comprehensive model is not
rejected at the 1% level. Empirical standard errors in parenthesis.

prS € M) E|IM\S|

Sr:g—irf’e' full sample split sample full sample split sample full sample split sample
1 1 0.9 1 1.00(0.04) 1.00 (0.00) 1.00(0.00) 0.57(0.50) 0.99(0.08) 6.8 (9.0) 157 (30.0)
............................................... 0906096(021)074(044)045(050)074(044)131(256)
e o fo T T T S : 00(000) ................... 100(004) .................... 055(050)098(013) ........................................................ 106(498)
e [ fo T e Toe (019) ................... o (043) .................... 041( 049) .................. 076(043) ........................................................ 0 (278) ......
G o bo T : 00(006) ................... 098(013) .................... 067(047)097(016) ........................................................ 684(108) .....
e o by T e 093(026) .................. 073(045) .................... 048(050)072(045) ........................................................ 398(902)
G o fo e : 00(000) ................... 099(008) .................... 062(049)099(012) ........................................................ 122(300) .....
e R Jo T e 095(022) ................... 076(043) .................... 038(049)075(043) ........................................................ 947(206)
e o b R : 00(000) .................. 100(004) ................... 095(021)098(013) ....................................................... 105(143) ......

L e by T 099(009) .................. 095(022) .................... 088(033)095(023) ......................................................... 182(255) ......

L [ fo e : 00(000) ................... 100(000) .................... 096(019)099(009) ....................................................... 154(261) .....

L [ fo T e : 00(000) ................... 098(014) .................... 090(031)097(017) ......................................................... 807(120) ......

e o b Y : 00(000) ................... 100(004) .................... 096(019)099(011) ......................................................... 303(317) .......
s 3 09 06 0’0H) 09803 091028) 091029) 090030  m6®) 430 (405)
S e fo e 100(000) ................... : 00(000) ................... 100(004) .................... 098(015)099(011)00(04) .................... 413(799) .....
L o fo o 100(004) ................... : 00(000) ................... 096(019) .................... 092(028)095(021)36(55) ...................... 217(325) ......
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arbitrary model embedding the one to be tested and so the probability of the true model being
accepted, conditional on it having been retained, is lower than the nominal coverage probability
of the likelihood ratio test. A simple way to recover the conditional nominal coverage is to split the
sample. Table 1 reports the improvement in coverage probability and the associated increase in the
number of false models not rejected from using 70 observations for reduction and the remaining
30 to construct the final set of low-dimensional models.

7. Discussion
(@) On the choice of k

The combinatorial arrangements used are essentially the partially balanced incomplete block
designs introduced 80 years ago in the context of plant breeding trials [6]. Our treatment has
thus taken k as determined a priori, preferably below 15. An alternative would be to draw random
sets of size k for each variable, leaving the choice of k undetermined. The argument against too
large a value of k is that the precision of the resulting estimates is degraded by the correlations
induced when there are many correlated variables among those selected for test.

The following is a simplistic formulation outlining the effect of k on the estimated standard
errors and ignoring other aspects.

Suppose Zi,...,Z; have zero mean, unit variance and are weakly correlated with average
correlation p. Then the ratio of the variance of ITZ, an estimated effect, to that assuming
independence is approximately 1 — 5 + 5(Z1;)? /Eliz.

The worst case is where, if the correlations are all of the same sign, the [; are approximately
equal and the ratio becomes 1+ (k —1)p. Thus, the calculation of standard errors assuming
independence is not unduly distorted so long as this ratio does not exceed 2, that is, the average
correlation does not exceed about 1/k. If correlations of the order 0.05-0.1 are likely to be present,
k of the order 10-20 is a reasonable choice, justifying the choice described here and in the previous

paper.

(b) Arrangement randomization

Strong reassurance of the security of one’s conclusions is given if, upon re-randomization of the
arrangement of the variable indices in the cube, the outcome is relatively stable. An unstable
outcome would most likely indicate that too severe a reduction has been used. The probabilistic
properties set forth in §4 guarantee robustness to re-randomization under idealized conditions
provided that the decision rules used are not too severe, and empirical experience with microarray
data supports this for continuous responses. Some applications with binary outcome require
caution. In particular, when v is very large, there may be an appreciable number of relatively
low-dimensional sets of variables perfectly predicting the outcome. If a set of variables forms
such a separating hyperplane, then so does any larger set. The likelihood would, in such a case,
be theoretically unbounded and consequently all sets of k variables containing a primitive set of
separating variables would be retained, leading to too mild a reduction.

The special features of the procedure with binary responses will not be explored in the present
paper. Note, however, that agreement of the outcome with the lasso solution should not be
expected with binary responses for the reasons outlined by Cox & Battey [3].

(c) Further remarks

The analysis discussed in the paper is intended to be largely exploratory. The object of the formal
probabilistic discussion is to calibrate the procedure to show how it performs under idealized
conditions. It is not aimed to justify an explicit probabilistically based assessment, such as a
confidence coefficient, attached to a specific analysis. To develop such an assessment, a Bayesian
analysis might be considered. For this, meaningful prior probabilities have to be attached to key
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unknown features, such as the true number of signal variables. A flat or so-called indifference
prior would in this case be inappropriate in that it would put overwhelming probability on large
values; a Poisson prior distribution of modest mean might be more suitable. Aspects describing
the correlation structure of errors also need explicit formulation. At this stage of the work, we
have not followed that route.

Data accessibility. This article has no additional data. The procedure as described in §2 and the previous paper
is implemented in the R package 'HCmodelSets’, written by H. H. Hoeltgebaum and available on the
Comprehensive R Archive Network.
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