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Regression, broadly defined.

Response variable Yi , e.g., blood pressure, disease status,
survival time, . . . .

Vector Xi of v potential explanatory variables.

Observed on units, e.g. patients, i = 1, . . . , n.

v � n, e.g. Xi arising from gene expression analysis.



Goal: scientific understanding.

Sparsity is critical for interpretability and statistical stability.

Lasso (Tibshirani, 1996): penalized LS:

Minimize ‖Y − Xβ‖2
2 + λ‖β‖1.

More generally penalized MLE.

There results a single model.

Cox, D. R. and Battey, H. S. (2017), Proc. Nat. Acad. Sci.,
114, 8592–8595: aim for a confidence set of models.
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Arrange variable indices in a k × k × k × · · · hypercube
where k ≤ 15.

Traverse the cube: rows, columns, etc. Assess each variable
several times alongside k − 1 different companions.
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Informal checks.

Test low dimensional subsets for compatibility with the data.
A “confidence set” of models.
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THREE PHASES

A reduction phase uses significance tests as an
informal guide to discarding variables.

On the reduced set, an exploratory phase
allows assessment of anomalies.

A model selection phase assesses candidate
models for their compatibility with the data.



TYPICAL OUTPUT

Model Recoded variable indices
1 1 16 3 8 - 5 - 19 - - - - - - - - - - - - -
2 1 16 3 8 - 5 - 19 - - - - - - - - - - - - 2
3 1 16 3 8 - - - - - 10 - - - - - - - - 4 - -
4 1 16 3 8 - 5 - 19 - - - - - - - - - - 4 - -
5 1 16 3 8 - 5 - - - 10 - - - - - - - - - - -
6 1 16 3 8 - 5 - 19 - - - - - - - - - - - - -
7 1 16 3 - 15 5 - - - 10 - - - - - - - - - - -
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This arose from an example with n =129 individuals: 105 with
osteoarthritis, 24 controls. v ∼ 50, 000 genetic variables.

Any choice between such models would require additional data
or subject matter expertise.



INFORMAL MOTIVATION

Write Z = (Yi ,Xi )
n
i=1.

Suppose we were to ignore computational constraints.

For every low-dimensional model m, with non-zero parameter
vector θm, identify the sufficient statistic Sm for θm.

All models compatible with the data in the sense that z is not
extreme when calibrated against the distribution of
Z |Sm = sm, should be reported as a confidence set of models,
alongside the associated confidence statements for θm.

Barndorff-Nielsen and Cox (1994). Cox and Snell (1974).



MORE ON THE REDUCTION PHASE

No restriction to perfect (hyper)cubes.

Partially balanced incomplete block designs (Yates, 1936).

A more severe reduction than marginal screening.

Prior assessment of importance.

Arrangement rerandomization.

A version of backward selection.

Computation.



Battey, H.S. and Cox, D.R. (2018),
Proc. R. Soc. Lond. A., 474:

Specify behaviour under idealized conditions.

Provide guidance on decision rules.

The goal is not to set up a procedure to
achieve pre-assigned error rates.



SOME CANDIDATE FIRST-STAGE REDUCTION STRATEGIES

Retain the single variable with highest score (lowest p-value);

Retain the two variables with highest scores;

Retain all variables, if any, whose scores exceed a threshold.

In the second stage of the procedure, the third strategy is always used.



KEY ASPECTS OF THE REDUCTION PHASE

What is the probability that a signal variable is falsely discarded?

How many of the variables ultimately suggested as potentially
important are noise variables?



A SIMPLIFYING APPROXIMATION

Analyses involving the same variable are treated as independent.

Slightly pessimistic assessment of the
proportion of correctly retained signal variables.

Slightly optimistic assessment of the number of
falsely retained noise variables.

blankSignal variables are on an equal footing (same signal strength)



Behaviour is governed largely by θ, the probability that a particular
signal variable survives reduction in any single analysis in which it
appears. This depends on the reduction strategy used.



In a set of k variables chosen at random for test, the number of
signal variables has a Poisson distribution of mean a , kvS0/v .

lim
a→0

1− e−a(1 + a)

1− e−a
= 0.

So θ ∼ ϑ for small a, where ϑ is the survival probability conditioned
on the event that there is exactly one signal variable in the set.

A similar argument applies for a modest number of noise variables
correlated with signal variables.



SOME ANALYSIS OF FIRST-STAGE REDUCTION

To avoid distributional assumptions on the response variable we
frame the discussion in terms of p-values.

For noise variables these are uniformly distributed on (0, 1).

For signal variables, we model their density as (1− γ)x−γ ,
0 < γ < 1.



STRATEGY 1

ϑ(1) = pr{signal beats best of (k − 1) noise}

= (1− γ)

∫ 1

0
dx(1− x)k−1x−γ

= (1− γ)
Γ(1− γ)Γ(k)

Γ(1− γ + k)
≈ Γ(2− γ)/k1−γ .

Γ(·) is close to one over the range of interest. If γ = 0 the notional
signal variable is selected w.p. 1/k, i.e. at random.



STRATEGY 2

ϑ(2) = pr(signal among 2 most significant) = ϑ(1) + ϑ(2.1), where

ϑ(2.1) = pr(signal comes second)

=

∫ 1

0
dx(k − 1)(1− x)k−2x(1− γ)x−γ

≈ (1− γ)Γ(2− γ)/k1−γ .

ϑ(2) − ϑ(1) is negligible for γ close to 1. If γ = 0, ϑ(2) = 2/k .



APPROXIMATION ERROR

Exact

Approx
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Figure: Exact and approximate values of ϑ(1) (left) and ϑ(2.1)

(right) over γ ∈ (0, 1) for k = 10.



STRATEGY 3

If we set a critical level α, then

ϑ(3) =

∫ α

0
dx(1− γ)x−γ = α1−γ .



COMPARISON OF STRATEGIES

Choose α to equalize survival probabilities of signal variables
and compare expected number of retained noise variables.

Stategies 1 and 3 are equivalent at this α.

2 dominates 3, i.e. strategy 3 selects more noise variables on
average for the same probability of selecting a signal variable.

Strategy 2 increases number of retained noise variables by
roughly a factor of four over strategy 1.



A DIFFERENT FORMULATION

Instead of p-values, formulate as normal-theory linear model
with signal strength ∆.

Approximation of the integrals that define ϑ(j), j = 1, 2, 3
leads to qualitatively the same conclusions, e.g., for large k ,

ϑ(2.1) ' 2π
(k − 1)k

kk+1
φ(∆) exp{−∆Φ−1(1/k)}

∆ = 0 (equivalent to γ = 0), ϑ(2.1) ≈ k−1 for large k .
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Figure: Exact and approximate values of ϑ(1) (left) and ϑ(2.1)

(right) as functions of ∆ for k = 10.



QUALITATIVE COMPARISON OF FORMULATIONS

normal theory

mapped Stirling approx

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

Figure: ϑ(2.1) as a function of ∆ in the Gaussian formulation and
in the p-value formulation with γ = {cosh(∆)− 1}/ cosh(∆).



THE FINAL PHASE: “CONFIDENCE SETS” OF MODELS

Sets comprise all low-dimensional subsets that pass a LR
test against the comprehensive model.

Post-selection inference. Sample splitting.

Conditional coverage guaranteed in normal theory and
asymptotically valid for ML.



ESTABLISHING UNCONDITIONAL COVERAGE

(a) Subject to a constraint on E|Ŝ|, what is pr(S ⊆ Ŝ)?

(b) Subject to a lower bound on pr(S ⊆ Ŝ), what is E|Ŝ|?
(c) Same questions for undertuned lasso.



A SIMPLE EXPERIMENT

In each of 500 Monte Carlo replications:

Generate n = 102 replicates of v = 103 variables from a
N(0,PΣP−1), P a permutation matrix.

Σ is an identity matrix with one diag block replaced by a
correlation matrix of dim vS0 + vC0 and equal correlation ρ.



A SIMPLE EXPERIMENT (CONTINUED)

For each i = 1, . . . , n, vS0 of the vS0 + vC0 correlated
variables are multiplied by a constant signal and added,
together with standard normal noise. This is Yi .

Arrange variable indices in 10× 10× 10 cube and reduce by
strategy 2 followed by strategy 3 at the 0.1% level.

LR test against the comprehensive model.



MC ESTIMATES: 24 FACTORIAL EXPERIMENT

pr(S ⊆ Ŝ) pr(S ∈ M) E|M\S|

vS0 vC0 ρ
signal undertuned undertuned CB CB CB CB CB CB
noise lasso (full) lasso (split) (full) (split) (full) (split) (full) (split)

1 1 0.9 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.57 (0.50) 0.99 (0.10) 6.71 (9.35) 18.53 (43.53)
1 1 0.9 0.6 0.95 (0.22) 0.86 (0.35) 0.98 (0.14) 0.84 (0.37) 0.43 (0.50) 0.83 (0.38) 4.98 (4.87) 17.44 (33.48)
1 1 0.5 1 0.96 (0.20) 0.90 (0.30) 1.00 (0.00) 1.00 (0.00) 0.54 (0.50) 1.00 (0.00) 4.62 (4.91) 9.15 (19.64)
1 1 0.5 0.6 0.88 (0.33) 0.69 (0.46) 0.99 (0.10) 0.82 (0.39) 0.32 (0.47) 0.82 (0.39) 2.28 (2.53) 8.14 (15.49)
1 3 0.9 1 1.00 (0.00) 0.99 (0.10) 1.00 (0.00) 0.99 (0.10) 0.62 (0.49) 0.98 (0.14) 23.67 (17.98) 78.93 (97.47)
1 3 0.9 0.6 0.92 (0.27) 0.75 (0.44) 0.98 (0.14) 0.81 (0.39) 0.47 (0.50) 0.81 (0.39) 26.56 (24.78) 57.39 (128.02)
1 3 0.5 1 0.98 (0.14) 0.88 (0.33) 1.00 (0.00) 1.00 (0.00) 0.59 (0.49) 0.98 (0.14) 12.51 (14.05) 16.61 (45.29)
1 3 0.5 0.6 0.87 (0.34) 0.79 (0.41) 0.98 (0.14) 0.83 (0.38) 0.43 (0.50) 0.82 (0.39) 3.63 (4.37) 13.76 (40.87)
5 1 0.9 1 0.97 (0.17) 0.96 (0.20) 1.00 (0.00) 1.00 (0.00) 0.94 (0.24) 0.99 (0.10) 7.82 (8.40) 102.05 (123.82)
5 1 0.9 0.6 0.80 (0.40) 0.59 (0.49) 0.99 (0.10) 0.99 (0.10) 0.92 (0.27) 0.99 (0.10) 41.32 (36.96) 176.80 (166.64)
5 1 0.5 1 1.00 (0.00) 0.95 (0.22) 1.00 (0.00) 1.00 (0.00) 0.96 (0.20) 1.00 (0.00) 0.04 (0.40) 16.85 (25.66)
5 1 0.5 0.6 0.99 (0.10) 0.94 (0.24) 1.00 (0.00) 0.99 (0.10) 0.87 (0.34) 0.98 (0.14) 1.50 (2.63) 78.01 (118.03)
5 3 0.9 1 0.98 (0.14) 0.94 (0.24) 1.00 (0.00) 1.00 (0.00) 0.97 (0.17) 0.99 (0.10) 18.23 (15.62) 381.76 (382.79)
5 3 0.9 0.6 0.83 (0.38) 0.52 (0.50) 1.00 (0.00) 0.96 (0.20) 0.89 (0.31) 0.95 (0.22) 119.59 (103.24) 578.29 (492.43)
5 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.10) 0.99 (0.10) 0.04 (0.40) 36.95 (53.05)
5 3 0.5 0.6 0.99 (0.10) 0.97 (0.17) 1.00 (0.00) 0.96 (0.20) 0.90 (0.30) 0.94 (0.24) 3.83 (5.64) 241.18 (261.09)

Table: S is the true set of signal variables, Ŝ is the set of variables surviving the reduction
phase, M is the set of low dimensional models whose likelihood ratio test against the
comprehensive model is not rejected at the 1% level.

The lasso is tuned to pick at least as many variables as are retained through the reduction phase.



ESTIMATED CONTRASTS ON LOGIT SCALE

Let ξ0(A) and ξ1(A) be the probabilities pr(outcome) for variable A at its
low and high levels respectively. Let ψA be the treatment effect of A,
multiplicative on the odds scale1, where

ξ1(A)

1− ξ1(A)
, ψAλA,

ξ0(A)

1− ξ0(A)
, λA

A︷ ︸︸ ︷
−−−−−−−−−−

outcome vS0 vC0 ρ ss

S ⊆ Ŝ 6.573 0.823 0.758 51.83
S ∈ M 4.792 0.831 0.773 13.97

Table: Monte Carlo estimates of ψA. “ss” = signal strength

1Equivalently logψA is an additive treatment effect on the logit scale



ANOTHER SIMPLE EXPERIMENT: SURVIVAL OUTCOMES

Slightly larger sample size: n = 150 instead of n = 100.

Covariates are generated as in the previous experiment.

The outcomes are from a PH model with Weibull baseline
hazard and exponentially distributed censoring times.

Fitted by partial likelihood (Cox, 1972; 1975).



MC ESTIMATES: 24 FACTORIAL EXPERIMENT (SURVIVAL)

pr(S ⊆ Ŝ) pr(S ∈ M) E|M\S|

vS0 vC0 ρ
signal undertuned undertuned CB CB CB CB CB CB
noise lasso (full) lasso (split) (full) (split) (full) (split) (full) (split)

1 1 0.9 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.03 (0.17) 0.95 (0.23) 54.1 (92.2) 1273 (1490)
1 1 0.9 0.6 0.99 (0.12) 0.94 (0.24) 1.00 (0.04) 0.97 (0.17) 0.00 (0.04) 0.89 (0.31) 15.6 (57.3) 1863 (2264)
1 1 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.04 (0.21) 0.95 (0.21) 57.4 (97.4) 962 (1085)
1 1 0.5 0.6 1.00 (0.00) 0.98 (0.13) 0.99 (0.08) 0.96 (0.20) 0.00 (0.00) 0.90 (0.31) 13.0 (31.6) 1734 (2374)
1 3 0.9 1 1.00 (0.00) 0.99 (0.09) 1.00 (0.00) 1.00 (0.04) 0.07 (0.25) 0.95 (0.22) 102 (209) 2468 (2738)
1 3 0.9 0.6 0.97 (0.18) 0.90 (0.30) 0.98 (0.13) 0.95 (0.21) 0.01 (0.09) 0.91 (0.29) 45.0 (98.5) 3182 (3700)
1 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.07 (0.25) 0.95 (0.22) 105 (158) 1094 (1090)
1 3 0.5 0.6 1.00 (0.00) 1.00 (0.06) 1.00 (0.00) 0.97 (0.17) 0.00 (0.04) 0.91 (0.28) 18.6 (51.1) 1955 (2859)
5 1 0.9 1 0.98 (0.15) 0.90 (0.30) 1.00 (0.00) 1.00 (0.04) 0.78 (0.41) 0.91 (0.29) 30.9 (46.5) 916 (1165)
5 1 0.9 0.6 0.79 (0.41) 0.52 (0.50) 1.00 (0.00) 0.99 (0.08) 0.59 (0.49) 0.94 (0.24) 136 (180) 2216 (2390)
5 1 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.80 (0.40) 0.91 (0.28) 0.00 (0.09) 59.0 (118)
5 1 0.5 0.6 1.00 (0.00) 0.99 (0.12) 1.00 (0.00) 1.00 (0.04) 0.54 (0.50) 0.90 (0.31) 1.46 (4.22) 382 (572)
5 3 0.9 1 0.98 (0.13) 0.86 (0.35) 1.00 (0.00) 1.00 (0.04) 0.80 (0.40) 0.86 (0.35) 46.4 (66.2) 1383 (1682)
5 3 0.9 0.6 0.71 (0.45) 0.48 (0.50) 1.00 (0.00) 0.99 (0.11) 0.63 (0.48) 0.90 (0.30) 242 (310) 2846 (2603)
5 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.83 (0.38) 0.87 (0.34) 0.09 (1.03) 73.4 (175)
5 3 0.5 0.6 1.00 (0.00) 0.99 (0.11) 1.00 (0.00) 1.00 (0.04) 0.59 (0.49) 0.90 (0.30) 2.35 (5.25) 575 (925)

Table: S is the true set of signal variables, Ŝ is the set of variables surviving the reduction
phase, M is the set of low dimensional models whose likelihood ratio test against the
comprehensive model is not rejected at the 1% level.

The lasso is tuned to pick at least as many variables as are retained through the reduction phase.



A REAL EXAMPLE

n =129 individuals: 105 with osteoarthritis, 24 controls.

v ∼ 50, 000 genetic variables.

Traverse hypercube: fit a standard (i.e. low-dimensional) linear
logistic regression to the corresponding sets of variablesa.

A set of approx 20 variables results.

aFor details of decision rules used, see Cox and Battey (2017).



EXPLORATORY PHASE: SOME INTERACTION PLOTS
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The majority of suggested interactions can be discarded on the
basis of such plots. The above are more strongly suggested.



A SET OF WELL-FITTING MODELS

Model Recoded variable indices
1 1 16 3 8 - 5 - 19 - - - - - - - - - - - - -
2 1 16 3 8 - 5 - 19 - - - - - - - - - - - - 2
3 1 16 3 8 - - - - - 10 - - - - - - - - 4 - -
4 1 16 3 8 - 5 - 19 - - - - - - - - - - 4 - -
5 1 16 3 8 - 5 - - - 10 - - - - - - - - - - -
6 1 16 3 8 - 5 - 19 - - - - - - - - - - - - -
7 1 16 3 - 15 5 - - - 10 - - - - - - - - - - -
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Statistics can take us no further.

Any choice between such models would require additional data
or subject matter expertise.



One could construct summaries in an attempt to extract compact messages.

A B
1 16 3 8 15 5 6 19 13 10 17 12 9 18 11 21 14 7 4 20 2

1 1 0.72 0.22 0.69 0.66 0.75 0.25 0.94 0.09 0.66 0.19 0.16 0 0.03 0.16 0.53 0.28 0.19 0.16 0.03
16 1 0.54 0.68 0.98 0.07 0.41 0.02 0.15 0.66 0.78 0.20 0.15 0.10 0.66 0.07 0.29 0.20 0.41 0.15 0.02
3 0.95 0.90 0.82 0.99 0.31 0.52 0 0.41 0.33 0.49 0.20 0.44 0.28 0.37 0.11 0.23 0.17 0.15 0.09 0.07
8 0.91 0.95 0.88 0.73 0.62 0.64 0.41 0.40 0.35 0.36 0.33 0.23 0.28 0.19 0.28 0.23 0.23 0.15 0.13 0.07

15 0.96 1 0.99 0.74 0.80 0.54 0.63 0.34 0.31 0.18 0.30 0.19 0.16 0.12 0.22 0.13 0.24 0.17 0.12 0.11
5 0.96 0.87 0.56 0.62 0.80 0.56 0 0.45 0.46 0.33 0.31 0.28 0.24 0.40 0.24 0.26 0.13 0.25 0.07 0.06
6 0.98 0.93 0.74 0.70 0.61 0.63 0.43 0.31 0.38 0.26 0.12 0.33 0 0.30 0 0.24 0.12 0.16 0 0.12

19 0.94 0.91 0.57 0.61 0.75 0.33 0.54 0.42 0.41 0.36 0.29 0.29 0.26 0.29 0.22 0.21 0.14 0.18 0.07 0.07
13 1 0.93 0.78 0.65 0.61 0.68 0.51 0.48 0.35 0.28 0.26 0.25 0.22 0.29 0.17 0.19 0.21 0.16 0.12 0.09
10 0.94 0.97 0.76 0.63 0.61 0.69 0.58 0.50 0.37 0.32 0.30 0.35 0.30 0.19 0.23 0.23 0.19 0.11 0.10 0.08
17 0.98 0.98 0.82 0.65 0.55 0.63 0.52 0.47 0.32 0.34 0.32 0.28 0.21 0.22 0.25 0.19 0.20 0.13 0.10 0.09
12 0.95 0.94 0.72 0.64 0.63 0.63 0.44 0.42 0.32 0.34 0.34 0.30 0.23 0.25 0 0.22 0.19 0.16 0.09 0.10
9 0.95 0.93 0.81 0.59 0.57 0.62 0.58 0.43 0.32 0.39 0.30 0.31 0.27 0.23 0.24 0.22 0.19 0.16 0.10 0.08

18 0.94 0.93 0.76 0.63 0.56 0.60 0.38 0.42 0.31 0.36 0.25 0.24 0.27 0.26 0.16 0.22 0.20 0.17 0.11 0.08
11 0.95 0.98 0.80 0.60 0.56 0.70 0.58 0.47 0.39 0.29 0.29 0.30 0.27 0.29 0.23 0.17 0.20 0.16 0.10 0.08
21 0.95 0.93 0.72 0.65 0.62 0.63 0.42 0.43 0.31 0.34 0.33 0.09 0.30 0.22 0.25 0.21 0.18 0.15 0.09 0.09
14 0.97 0.95 0.76 0.63 0.58 0.64 0.56 0.43 0.34 0.35 0.29 0.30 0.29 0.28 0.20 0.22 0.20 0.17 0.11 0.09
7 0.96 0.94 0.75 0.64 0.64 0.58 0.50 0.38 0.36 0.32 0.31 0.28 0.27 0.27 0.24 0.20 0.21 0.16 0 0.08
4 0.96 0.96 0.75 0.61 0.62 0.65 0.54 0.44 0.35 0.29 0.28 0.29 0.28 0.27 0.24 0.21 0.21 0.19 0.10 0.09

20 0.96 0.95 0.75 0.63 0.62 0.60 0.48 0.40 0.35 0.32 0.29 0.27 0.27 0.27 0.22 0.20 0.20 0.09 0.15 0.08
2 0.95 0.94 0.75 0.61 0.62 0.60 0.55 0.40 0.34 0.32 0.30 0.28 0.26 0.26 0.22 0.21 0.20 0.18 0.15 0.10

Table: proportion of the models in the set of well-fitting models not containing variable B that
contain variable A, i.e. |M(A ∩ ¬B)|/|M(¬B)|, where M(¬B) is the set of models in the
confidence set that do not contain variable B.

But the whole set of well-fitting models should also be reported.



Variable number
Gene name Description and biological function

(occurrence rate)

7235 (0.96) ESYT2-007
Tethers the endoplasmic reticulum to the cell membrane.

Plays a role in FGF signalling. May play a role in cellular lipid transport.

48433 (0.94) LTBP1
Latent transforming growth factor beta binding protein.

Diseases associated with LTBP1 include geleophysic dysplasia.

25125 (0.75) PRR5L
Associates with the mTORC2 complex that regulates cellular

processes including survival and organization of the cytoskeleton.

29679 (0.61) - mRNA.

48415 (0.61) RP11-542K23.10 RNA Gene.

25744 (0.61) NDEL1
Plays a role in multiple processes including cytoskeletal organization,

cell signaling and neuron migration, outgrowth and maintenance.

27642 (0.53) SRFBP1
Serum response factor binding protein. May play a role in biosynthesis

and/or processing of SLC2A4 in adipose cells.

45991 (0.33) MAZ MYC associated zinc finger protein.

36409 (0.31) SERTAD1 Stimulates E2F1/TFDP1 transcriptional activity.

48549 (0.29) COL9A2
Collagen type IX alpha 2 chain. Mutations in this gene

are associated with multiple epiphyseal dysplasia.

44276 (0.27) GLS Plays an essential role in generating energy for metabolism.

33385 (0.26) LFNG
Encodes evolutionarily conserved glycosyltransferases. Mutations in this gene
have been associated with autosomal recessive spondylocostal dysostosis 3.

37443 (0.22) WDR20 Regulates the activity of the USP12-UAF1 deubiquitinating enzyme complex.

46771 (0.19) PLAGL2 Zinc-finger protein that recognizes DNA and/or RNA.

27920 (0.18) ANKRD24 Protein Coding gene.

25470 (0.14) SPEN Encodes a hormone inducible transcriptional repressor.

11643 (0.08) NAT10 Protein coding gene with numerous biological functions.

Table: Gene function is obtained from GeneCards. Variables highlighted in orange have been
associated with other bone abnormalities and bone diseases.



BINARY OUTCOMES: A WARNING

Well-fitting models are found, but not all.

Modifications are needed for theoretical guarantees.

Lasso and separating hyperplanes.

Overlap should not be expected.



SUMMARY

It is misleading to report one model if statistics is unable to
distinguish between many.

This view is in contraposition to that implicit in the use of the
lasso and related methods.

We have outlined a different approach whose aim is essentially
a confidence set of models.

Any choice between well-fitting models must be based on
subject-matter expertise or additional data.
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SOFTWARE

Matlab code is available from my website.

An R package HCmodelSets has been written by H. H. Hoeltgebaum.


