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The paper is concerned with inference for a parameter of interest in models that
share a common interpretation for that parameter but that may differ appreciably
in other respects. We study the general structure of models under which the
maximum likelihood estimator of the parameter of interest is consistent under arbitrary
misspecification of the nuisance part of the model. A specialization of the general
results to matched-comparison and two-groups problems gives a more explicit and
easily checkable condition in terms of a notion of symmetric parameterization, leading
to a broadening and unification of existing results in those problems. The role of a
generalized definition of parameter orthogonality is highlighted, as well as connections
to Neyman orthogonality. The issues involved in obtaining inferential guarantees
beyond consistency are briefly discussed.

causality | model structure | parameter orthogonality | symmetric parameterization |
model formulation

Scientific practice in nearly every field relies on the use of mathematical models: a
provisional base for describing how observable quantities materialize. Some models,
such as Einstein’s theory of gravitation, provide predictions that can be verified with
such accuracy that they are often considered to be the truth. This is, however, an atypical
situation: The processes underlying most observable data are much too complicated to be
described by exact laws and often require a probabilistic element. A useful statistical model
captures the essence of the data-generating mechanism in a way that can accommodate
new data collected under slightly different conditions. When the primary purpose of a
model is to provide insight and explanation, as is typical in many scientific contexts,
stable aspects should ideally be capable of interpretation. For this, statistical models will
usually have a relatively small number of scientifically interpretable parameters of interest.
So-called nuisance parameters are used to complete the specification of the model.

In contexts where prediction is the main focus, such as arise in many applications of
machine learning, model-free approaches are sometimes advocated. This is justified on
the grounds that faithful representation of a data-generating process is both unnecessary
for such a task and also unrealistically optimistic with very large or complex sets of data.
For instance in commercial recommender systems, the criteria of speed and accuracy
of predictions are key, and the identification of interpretable parameters unimportant.
In sharp contrast are contexts in which the goal is to understand how a treatment or
exposure influences the distribution of outcomes, having accounted, to the extent feasible,
for the diversity of individuals. Breiman (1) described this separation succinctly as the
“two cultures” of statistical thought. The development in this paper is closer to the view
expressed by Cox (2) in the discussion of that work.

We consider sets of statistical models that share a common interpretation for the
parameter of subject-matter interest but differ in their specification of the nuisance
component. A fundamental question is whether reliable inference for the interest
parameter is still achievable using standard approaches when the nuisance aspect is
misspecified. An exemplar setting is in understanding the effect of treatment or exposure
on the health outcomes of individuals. These individuals may exhibit considerable
heterogeneity and complex interdependencies stemming, for instance, from certain
shared genetic traits. Modeling such interdependencies is a formidable challenge and
often tackled by introducing a parameter for each individual. If these are, postulated to
have been drawn from a parametric distribution, the resulting doubly stochastic models
are called random-effects models. Since the choice of parametric distribution for the
individual-specific nuisance parameters is typically based on mathematical convenience,
the prospect of misspecification seems likely.

The extensive literature on inference under model misspecification appears to have
started with Cox (3), who considered two nonnested models for a vector random
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variable Y , specifying joint density or mass functions m and
m̌, say, where the latter is completely known up to a finite-
dimensional parameter �. With �̂ the maximum likelihood
estimator under model m̌, Cox (3) showed that when the true
density function is m, �̂ is asymptotically normal with expected
value �0

m and covariance matrix given by what is now known as
the sandwich formula. The quantity �0

m solves

Em[∇� log m̌(Y ; �)]�=�0
m

= 0,

where Em is expectation under m. Equivalently �0
m minimizes

with respect to � the Kullback–Leibler divergence∫
m(y) log

(
m(y)

m̌(y; �)

)
dy.

More rigorous discussions of the distribution theory and regular-
ity conditions were provided by Huber (4), Kent (5), and White
(6, 7).

Inferential guarantees for the quantity �0
m follow directly

under classical regularity conditions on the family of models.
Our interest, by contrast, is in the estimation of the true
value of an interest parameter, which is assumed to have a
common interpretation in both the true distribution and in
the fitted model. Our focus is on uncovering the structure for
which standard likelihood theory retains its first-order theoretical
guarantees, providing foundational insight into the limits of
likelihood inference. Reference to the unsolved nature of this
question is widespread; see, for instance, Evans and Didelez (8,
section 5).

A different line of exploration, with connections to the double-
robustness literature [e.g., Robins et al. (9) and Chernozhukov
et al. (10)] is the so-called assumption-lean approach to modeling
of Vansteelandt and Dukes (11), who center their analyses on
model-free estimands rather than parameters of a given model.
The ideal estimand coincides with a particular model parameter
when the chosen model includes m and retains a degree of
interpretability when the model is misspecified. The tension
between estimands and model parameters has a long history,
going back to Fisher and Neyman; see Cox (12).

In the discussion of ref. 11, Battey (13) conjectured a condition
under which the maximum likelihood estimator for an interest
parameter is consistent in spite of arbitrary misspecification of the
nuisance part of the model. The intuition for that incomplete
claim came from a highly involved calculation in a particular
paired-comparisons model studied in Battey and Cox (14). Any
role played by the assumed model for the random effects was
unclear from that calculation and is clarified by the more general
insight provided here.

In Section 1, we study the general structure for such a
consistency result, and specialize the analysis to settings of
common relevance, providing more explicit conditions on the
parameterization for matched-pair and two-group problems. An
important conclusion from this analysis is that the conditions
for consistency can sometimes be checked without knowledge of
the true model. Section 2 shows through this route that some
key insights have been overlooked in a rather large literature
on misspecified random effects distributions, particularly the
role of parameterization. Section 2.C recovers two well-known
results for generalized linear models as an illustration of the more
general statements, and Section 2.D provides a recent example in
the context of a marginal structural model, for which the more
general results of Section 1 provide elucidation. While some of

the material in Section 1 is rather technical, we have aimed to
provide intuition for the main results and have provided several
examples in Section 2. The examples are deliberately detached
from specific subject-matter details, in order that they be broadly
useful for a range of scientific applications.

1. Consistency in General Misspecified Models

1.A. General Conditions for Consistency. Let m represent the
density function for the outcomes, parameterized in terms of
an interest parameter  with true value  ∗. The assumed
model, while sharing the same interpretable interest parameter,
is misspecified in other ways. The joint density function for
the observations under the assumed model has parameters
( , �) ∈ Ψ × Λ, and `( , �) = log m̌(y; , �) denotes the
observed log-likelihood function for that model, viewed as a
function of ( , �) for observed data y = (y1, . . . , yn). As above,
maximization of `( , �) gives estimates ( ̂ , �̂); their dependence
on y is suppressed in the notation. As functions of the random
variable Y = (Y1, . . . , Yn) the probability limit of the maximum
likelihood estimator, as n→∞, is ( 0

m, �0
m), the solution to

Em[∇( ,�)`( 0
m, �0

m)] = 0. [1.1]

We consider the model to be misspecified if there are no values of
� in Λ for which the true density m is recovered. This precludes
the situation in which the true distribution belongs to a submodel
of an assumed encompassing family, briefly discussed in Section
3.C.

The following example will be used repeatedly to illustrate key
ideas and notation.

Example 1.1: Consider a matched comparison problem in
which, for each of n twin pairs, one individual from each pair
is chosen at random to receive a treatment, the other being
the untreated control. Let Yi1 and Yi0 denote the time until
some medical event of interest (e.g., recovery from illness)
for the treated and untreated individual in the ith pair. A
simple parametric model specifies the outcomes Yi1 and Yi0
as exponentially distributed of rates 
i > 0 and 
i/ > 0,
respectively. The pair-specific nuisance parameter 
i captures,
for instance, genetic differences between the pairs of twins.
The parameter of interest  with true value  ∗ quantifies the
effect of the treatment:  2 being the multiplicative effect of the
treatment on the instantaneous probability of recovery relative
to baseline. Other parameterizations are possible, but the above
symmetric parameterization will be shown to play an important
role. Suppose the pair effects are modeled as gamma distributed
of shape � and rate �. Then, under the assumed model, the joint
density function for the outcomes in any given pair at (y1, y0) is

Γ(� + 2)��

Γ(�)(y1 + y0/ + �)�+2 . [1.2]

The true random effects distribution could have been quite
different, so that the model Eq. 1.2 is misspecified. Nevertheless,
the interpretation of the interest parameter  is stable over
the different specifications. The notional nuisance parameter is
� = (�, �).

Remark 1.1: A different analysis is possible in this example,
treating the pair effects 
1, . . . , 
n as fixed arbitrary constants,
which can be eliminated from the analysis by basing likelihood
inference on the distribution of the ratios Zi = Yi1/Yi0; this is
discussed briefly in Section 3.B.
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Definition 1.1 (parameter m-orthogonality): Let ∇2
 �`( , �)

denote the cross-partial derivative of the assumed log-likelihood
function. The parameter  is said to be m-orthogonal to the
notional parameter � if Em[∇2

 �`( , �)] = 0. This can hold
globally for all ( , �) or at particular values, the notation
Ψ ⊥m Λ indicating global m-orthogonality and Ψ ⊥m � and
 ⊥m Λ indicating, respectively, local m-orthogonality at � for
any  , and local m-orthogonality at  for any �.

To gain some intuition for parameter m-orthogonality, con-
sider first the much stronger condition, ∇2

 �`( , �) = 0 for all
 and �. This corresponds to what is called a cut in the parameter
space and implies Em[∇2

 �`( , �)] = 0 for any m so that the
true density m trivially plays no role. In this strongest setting,
parameter orthogonality is a purely geometric property of the log-
likelihood function that holds only in certain parameterizations.
It is effectively an absence of torsion, implying that, for any
fixed �, the corresponding log-likelihood function over Ψ is
maximized at the same point. This parameter separation in
the likelihood function is, however, limited to a relatively small
number of models. The weaker condition Em[∇2

 �`( , �)] = 0
only requires the absence of torsion to hold on average over
hypothetical repeated draws from the true distribution. If the
model is correctly specified, the usual definition of parameter
orthogonality with respect to Fisher information is recovered.

Propositions 1.1 and 1.2 give two alternative general conditions
for consistency of  ̂ in spite of arbitrary misspecification of the
nuisance part of the model. Their proofs, and those of subsequent
results, are in SI Appendix.

Proposition 1.1. Let the observed log-likelihood function for the
assumed model be strictly concave as a function of ( , �). Then,
 0

m =  ∗ if and only if Em[∇ `( ∗, �0
m)] = 0. The latter

condition is equivalent to Em[∇ `( ∗, �)] = 0 for all � if and
only if  ∗ ⊥m Λ.

Remark 1.2: Local orthogonality at a particular value, �′ say,
is not sufficient to ensure that Em[∇ `( ∗, �′)] = 0 implies
Em[∇ `( ∗, �0

m)] = 0, as is clear from the proof of Proposi-
tion 1.1.

Remark 1.3: In Example 1.1, it was shown in ref. 14 that  is
globally m-orthogonal to � = (�, �) for any distribution over the
random effects, and the consistency of the maximum likelihood
estimator of  was established through an explicit calculation.
An initial motivation for the present work was to understand
how sensitive that conclusion was to various aspects of the model
formulation.

The first part of Proposition 1.1, i.e., the requirement of an
unbiased estimating equation Em[∇ `( ∗, �0

m)] = 0, is almost
immediate. Since �0

m depends on the unknown m and is typically
unavailable, verification of the orthogonality condition ∗ ⊥m Λ
uniformly over m, in the event of its validity, appears to be the
simplest way of establishing consistency. The simplest special
cases in which orthogonality can be checked are those in which
there is a parameter cut. Such examples include misspecification
of the dispersion component of a generalized linear model,
discussed in Section 2.C, and Gaussian linear mixed models with
a misspecified distribution over the random effects. Robustness
of inference in the latter case has often been observed empirically,
e.g., Schielzeth et al. (15) without reference to any underlying
structure. A more elaborate example with a parameter cut is the

causal model of ref. 8 outlined in Section 2.D. Example 1.1
obeys the weaker form Em[∇2

 �`( , �)] = 0 from Proposition
1.1, as does the unbalanced two-group problem of Example 2.4 in
Section 2.A, in which the pair-specific parameters are replaced by
stratum-specific parameters. The relevant structure underpinning
these paired and two-group examples is elucidated in Section 1.C,
where some intuition is provided.

The unbalanced two-group problem of Example 2.3, on
the other hand, violates the m-orthogonality assumption of
Proposition 1.1 with respect to one of its two nuisance parameters.
Nevertheless, Cox and Wong (16) showed that the maximum
likelihood estimator of the interest parameter in Example 2.3 is
consistent, suggesting that Proposition 1.1, while easier to verify,
is too strong for some situations. Proposition 1.2 presents weaker
conditions for consistency.

Suppose that the orthogonality condition  ∗ ⊥m Λ from
Proposition 1.1 fails, so that there exists at least one � 6= �0

m such
that Em[∇ `( ∗, �)] 6= 0. Let

g ( ∗, �) := Em[∇ `( ∗, �)], g�( ∗, �) := Em[∇�`( ∗, �)],
[1.3]

and partition the inverse of the Fisher information matrix i :=

i( ∗, �) := Em[−∇2
( ,�)`( 

∗, �)] as(
i  i �

i� i��

)
:=

(
i  i �
i� i��

)−1
. [1.4]

In Proposition 1.2 and its proof, we refer to g ( ∗, �) and
g�( ∗, �) in the shorthand g and g� respectively.

Proposition 1.2. If i  g + i �g� = 0 for all � ∈ Λ, then
 0

m =  ∗. If  and � are both scalar parameters, the condition
reduces to i��g = i �g�.

That Proposition 1.2 is more general than Proposition 1.1 is seen
on noting that the orthogonality condition of Proposition 1.1 im-
plies i � = 0 and g = 0, so that the condition of Proposition 1.2
also holds. The conditions of Propositions 1.1 and 1.2 are clearly
not necessary. In particular, if �0

m can be calculated, the route to
establishing consistency or inconsistency of  ̂ is more direct. Any
practical relevance, beyond general theoretical understanding, is
to situations in which �0

m is not calculable, typically because m
is unknown. The conditions in Propositions 1.1 and 1.2, while
dependent on m, are nevertheless checkable in some situations,
as illustrated in the examples of subsequent sections.

A generalization involves a second nuisance parameter vector,
� ∈ N say, such that  ∗ ⊥m N and � ⊥m N in Proposition
1.1 or Λ ⊥m N in Proposition 1.2. It can be shown via a
straightforward extension of the arguments leading to Propositions
1.1 and 1.2 that the conclusion of the latter is unchanged by this
modification. Examples involving a second nuisance parameter
are provided in Section 2.

The consistency demonstrated by Battey and Cox (14) for
Example 1.1 arises as a special case of Proposition 1.1, while the
argument of Cox and Wong (16) for an unbalanced doubly
stochastic two-group problem turns out to be an application
of Proposition 1.2 and Corollary 1.1 below. We return to this
example in Section 2.B.

1.B. Parameter Orthogonality and Orthogonalization in Mis-
specified Models. In view of Propositions 1.1 and 1.2, a key
question is when the assumed Fisher information matrix, with
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expectation computed under an erroneous model, coincides with
the true Fisher information matrix in some or all regions of
the parameter space. Such coincidence implies in particular that
parameter orthogonality established under a notional model is
true more generally. The practical import is that otherwise
Ψ ⊥m Λ or its local analog would typically not be verifiable
without knowledge of m. A partial answer is presented as
Proposition 1.3, whose proof is immediate by the definition of
sufficiency.

Proposition 1.3. Suppose that the cross-partial derivative of the
assumed log-likelihood function ∇2

 �`( , �) depends on the data
only through a sufficient statistic S = (S1, . . . , Sk), for some
1 ≤ k ≤ n. Write ı̌ �( , �) = E( ,�)[−∇2

 �`( , �)], where
E( ,�) means expectation under the assumed model. Provided that
∇

2
 �`( , �) is additive in S1, . . . , Sk and Em(Sj) = E( ,�)(Sj)

for all j, then i �( , �) = ı̌ �( , �).

Corollary 1.1. Under the conditions of Proposition 1.3, a sufficient
condition for parameter m-orthogonalityΨ ⊥m Λ is ı̌ �( , �) = 0
for all ( , �) ∈ Ψ× Λ, and similarly for local m-orthogonality.

Remark 1.4: For Example 1.1, m-orthogonality can be estab-
lished more directly via Proposition 2.1.

In general, a reparameterization of a model from parameters
� to � = �(�) is called interest-respecting if the parameter of
interest is common to both: if� = ( , �) then � = ( , �( , �)).
The relevance of interest-respecting reparameterizations in scien-
tific work is that the more important interpretable aspects of
the model are retained. In ref. 17, interest-respecting orthogonal
reparameterizations were explored for improving inference in
correctly specified models. The role in misspecified settings is
amplified in view of Proposition 1.1, which concerns the first-
order properties of the estimator.

In a slightly more explicit notation, suppose that � is
a parameterization for which the (r, s)th component satisfies
i(�)
rs (�) = ı̌(�)

rs (�) = 0. Consider an interest-respecting repa-
rameterization from an initial parameter � to a new parameter �,
with coordinates

�r(�1, . . . , �p), �a(�1, . . . ,�p), (a, r = 1, . . . , p),

where �1 = �1 =  . An implication of Corollary 1.1 is that the
approach of Cox and Reid (17) can still be used in misspecified
models, provided that the additional structure of Proposition 1.3
is present in the parameterization that is orthogonal under the
assumed model. Specifically, from a starting parameterization �,
an orthogonal parameterization � is any solution in �2, . . . , �p

to the system of p− 1 differential equations

ı̌(�)
ab

∂�a(�)
∂�1 + ı̌(�)

1b = 0, b = 2, . . . , p,

or in matrix notation

∂�(�)
∂�1 = −(ı̌(�)

• •
)−1(ı̌(�)

• 1 ),

where ı̌(�)
• • is the Fisher information matrix under the assumed

model without the row and column corresponding to �1, and
ı̌(�)
• 1 is the excluded column.

Even under the assumptions of Proposition 1.3, with model
misspecification, the asymptotic variance of  ̂ is not i  but

is given by the sandwich formula of ref. 3. This means that
inferential guarantees beyond consistency are not, in general,
available using standard likelihood-based approaches; see Section
3.A for a brief discussion of some exceptions.

1.C. Symmetric Parameterizations and Induced Antisymme-
try. For the matched-pair and two-group examples of Sections
2.A and 2.B, a fundamental role is played by symmetric
parameterization in transformation models, which induces an
antisymmetry on the log-likelihood derivative and thereby the
m-orthogonality of Proposition 1.1 under arbitrary misspecifi-
cation of the model. The class of problems covered in this
subsection exemplifies settings in which m-orthogonality can be
straightforwardly verified without knowledge of m. A simplified
explanation is that in transformation models, there is a convenient
duality between the parameter space and the sample space which
results in the cancelation of the relevant terms in Em[∇2

 �`( , �)]
provided that the appropriate parameterization is used.

Let P be a set of continuous probability measures on Y . A
transformation model under the action of G [e.g., Barndorff–
Nielsen and Cox (18, p. 53)] is a subset of P parameterized by

 ∈ Γ and possibly other parameters suppressed in the notation,
such that

PG := {p ∈ P : p(gE ; g
) = p(E ; 
), g ∈ G, E ∈ E , 
 ∈ Γ},

where E is the set of measurable events on the sample space Y .
The definition implies that G acts on both the sample space and
the parameter space. In particular, the action of G on F, say, is
a continuous map G × F → F, (g, x) → gx for x ∈ F, where
in the transformation model, x represents either the data point
y ∈ Y or the parameter value 
 ∈ Γ. In general, Y and Γ need
not be equal, although this will often be the case. The identity
element on Y or on Γ is written e = g−1g = gg−1, the context
leaving no ambiguity.

The relevant group actions for present purposes depend only
on the interest parameter  , so that we may write, in a more
explicit notation, g = g ∈ G. Two examples serve to illustrate
the properties of the transformation models. In location models,
Y = Γ = R, the group action is addition and g 
 = 
 +  ,
giving gg−1 = g g− = e = g0. In scale models, Y = Γ =
R+, the group action is multiplication and g 
 = 
 , giving
gg−1 = g g(1/ ) = e = g1.

Let U be a random variable with a distribution depending only
on 
 . This is best thought of as the random variable at baseline
with respect to  , i.e.,  = 0 in location models and  = 1 in
scale models. Write the probability density function of U at u as
fU (u; 
)du. The following definition plays an important role in
establishing consistency for a treatment parameter in matched-
pair and two-groups problems.

Definition 1.2 (symmetric parameterization): Let Y1 and Y0
be independent random variables with probability measures in
PG and density functions f1 and f0, respectively. Their joint
distribution is said to be parameterized  -symmetrically with
respect to ( , 
) if g = g ∈ G depends only on  and if the
density functions f1 and f0 relate to fU by

fU (u; 
)du = f1(gu; g
)d(gu) = f0(g−1u; g−1
)d(g−1u).

In other words, the joint density function, when expressed in
terms of u1 = g−1y1 and u0 = gy0, is symmetric in u1 and u0:

f1(y1; g
)f0(y0; g−1
)dy1dy0 = fU (u1; 
)fU (u0; 
)du1du0.
[1.5]
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Definition 1.2 says that the random variables U1 = g−1Y1
and U0 = gY0 are equal in distribution to U , which has a
“standardized form.” The inverted commas express that fU might
not be a standardized form in the conventional sense, as it depends
on 
 and possibly other parameters suppressed in the notation.
The symmetric parameterization can equivalently be written

f1(y1; g
)dy1 = fU (g−1y1; 
)J+
1 dy1

f0(y0; g−1
)dy0 = fU (gy0; 
)J+
0 dy0,

[1.6]

where

J+
1 = |d(g−1y1)/dy1|, J+

0 = |d(gy0)/dy0|,

satisfy J+
1 J+

0 = 1. In a location model, Eq. 1.6 becomes

f1(y1; 
 +  )dy1 = fU (y1 −  ; 
)dy1

f0(y0; 
 −  )dy0 = fU (y0 +  ; 
)dy0,
[1.7]

while in a scale model Eq. 1.6 becomes

f1(y1; 
 )dy1 = fU (y1/ ; 
)(1/ )dy1

f0(y0; 
/ )dy0 = fU (y0 ; 
) dy0.
[1.8]

Distributions within the scale family are often parameterized
in terms of rate, or inverse scale, which reverses the roles of g
and g−1 relative to their actions in the scale parameterization.
Example 1.1 is of this form.

In a location-scale model, the action of G is g = g 2 ◦ g 1 ,
where g 1 is multiplication by a positive scalar  1 and g 2 is
addition of a scalar  2, its inverse being g−1 = g−1

 1
◦ g−1

 2
. Thus,

a two-parameter symmetric parameterization in a location-scale
model is in terms of g
 =  1
 +  2 and g−1
 = (
 −  2)/ 1.
For the applications we have in mind, the interest parameter  
represents a treatment effect. Thus, if the treatment is assumed
to affect either the location or the scale but not both, a location-
scale distribution can effectively be treated as either location
or scale. Examples include the extreme-value distributions, the
most common parametric families arising in renewal theory
and used in survival modeling, and members of the elliptically
symmetric family in one or more dimensions, which encompasses
the Gaussian, Student-t, Cauchy, and logistic distributions.

Consider, as a function of  alone, the log-likelihood
contribution of y1 and y0, realizations of Y1 and Y0. This is
of the form

`( ; 
 , y1, y0) = log L( ; 
 , y1, y0)

= log f1(y1; g
) + log f0(y0; g−1
).

Variables to the right of the semicolon in the log-likelihood
function ` are treated as fixed (although arbitrary), together with
any other parameters suppressed in the notation.

Definition 1.3 (antisymmetry): The symmetric parameteriza-
tion of f1 and f0 is said to induce antisymmetry on the associated
log-likelihood derivative with respect to  if ∇ `( ; 
 , y1, y0),
when expressed in terms of u1 = g−1y1 and u0 = gy0, satisfies
∇ `( ; 
 , u1, u0) = −∇ `( ; 
 , u0, u1).

Example 1.2 (Continuation of Example 1.1): In the exponential
matched pair problem, the gamma distribution over the random
effects is irrelevant for illustrating the symmetric parameterization
and induced antisymmetry, as these definitions are conditional on


 within a single pair. Since multiplication of rates corresponds
to division of scale, it is natural, for consistency with Eq. 1.8,
to define the group operation g as division by  rather than
multiplication by  . Thus let u1 = g−1y1 =  y1 and u0 =
gy0 = y0/ . Conditionally on 
 , the joint density function of
(Y1, Y0) is

f1(y1 ; ∗, 
)f0(y0 ; ∗, 
)dy1dy0 = 
2 exp{−
(u1+u0)}du1du0,

which is symmetric in u1 and u0. The log-likelihood derivative
with respect to  is

∇ `( ; u0, u1) = −
(y1 − y0/ ) = −
(u1/ − u0/ ),

where the right hand side is −(−
(u0/ − u1/ )) =
−∇ `( ; u1, u0). This shows that the log-likelihood derivative
is antisymmetric in the sense of Definition 1.3.

The main transformation models arising in statistics are the
location models and the scale models. For these, we show in
Example 1.3 that the symmetric parameterization automatically
induces antisymmetry on the associated log-likelihood derivative.
We also show this for a rotation family on the circle in Example
1.4. We conjecture that antisymmetry according to Definition 1.3
is a necessary consequence of the  -symmetric parameterization
for any transformation model, but in the absence of general
group-theoretic proof, we present the following necessary and
sufficient conditions for asymmetry, that may be checked on a
case-by-case basis for more exotic groups. Examples 1.3 and 1.4
illustrate the application of Proposition 1.4.

Proposition 1.4. Suppose that the joint distribution of Y1 and Y0
is parameterized  -symmetrically with respect to ( , 
) in the sense
of Definition 1.2. The parameterization induces antisymmetry on
the log-likelihood derivative in the sense of Definition 1.3 if and only
if

a(u1, u0) :=
∂u1

∂ 
+

∂u0

∂ 
= −a(u0, u1),

and

c(u1, u0) :=
( ∂

∂ 

∣∣∣∂u1
∂y1

∣∣∣)∣∣∣∂u0
∂y0

∣∣∣+ ( ∂

∂ 

∣∣∣∂u0
∂y0

∣∣∣)∣∣∣∂u1
∂y1

∣∣∣ = −c(u0, u1),

where u1 = g−1y1 and u0 = gy0.

A clearer but more cumbersome expression of the conditions
a(u1, u0) = −a(u0, u1) and c(u1, u0) = −c(u0, u1) makes the
dependence of the partial derivatives on u1 and u0 explicit. In
this more explicit notation, a(u1, u0) = −a(u0, u1) amounts to
(∂u1/∂ )(u1) = −(∂u0/∂ )(u1) and vice versa.

Example 1.3: In a symmetric parameterization of a location
model ∂u1/∂ = −1 = −∂u0/∂ and( ∂

∂ 

∣∣∣∂u1

∂y1

∣∣∣)∣∣∣∂u0

∂y0

∣∣∣ = 0 = −
( ∂

∂ 

∣∣∣∂u0

∂y0

∣∣∣)∣∣∣∂u1

∂y1

∣∣∣.
Thus, a(u1, u0) = 0 = −a(u0, u1) and c(u1, u0) = 0 =
−c(u0, u1). In a symmetric parameterization of a scale model
∂u1/∂ = −u1/ , ∂u0/∂ = u0/ , and( ∂

∂ 

∣∣∣∂u1

∂y1

∣∣∣)∣∣∣∂u0

∂y0

∣∣∣ = −
1
 

= −
( ∂

∂ 

∣∣∣∂u0

∂y0

∣∣∣)∣∣∣∂u1

∂y1

∣∣∣,
so that a(u1, u0) = −a(u0, u1) and c(u1, u0) = 0 = −c(u0, u1).
Thus both cases satisfy the condition of Proposition 1.4.
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Example 1.4: For a rotation model on Rp, Y ⊂ Rp, Γ =
[0, 2�) and the group action is matrix multiplication by a
rotation matrix g ∈ G ⊆ SO(p), where SO(p) is the special
orthogonal group of dimension p. The identity element is
matrix multiplication by the p-dimensional identity matrix and
fU (u; 
) is a distribution on the hypersphere, where 
 is a
rotation parameter. The von Mises–Fisher distribution is one
such example. Consider the case of p = 2.

Let v ∈ R2 be a point on a circle of fixed arbitrary radius,
either a location parameter of a probabilistic model or a data
point on the circle. In a symmetric parameterization of a rotation
model, v
 = g
v defines a (counterclockwise) rotation of angle
vT

 v = 
 and v1 = g v
 , v0 = g−1

 v
 define (counterclockwise
and clockwise) rotations of angles vT

1 v
 =  and vT
0 v
 = − ,

respectively, where

g−1
 =

(
cos − sin 
sin cos 

)−1
=
(

cos sin 
− sin cos 

)
=
(

cos(− + 2�) − sin(− + 2�)
sin(− + 2�) cos(− + 2�)

)
∈ G.

and g g
 = g
+ ∈ G, g−1
 g
 = g
− ∈ G. Thus, in Eq. 1.6

g
 should be understood either as addition of angles g
 = 
+ 
or multiplication of rotation matrices g
 = g g
 .

Let y1 = (y11, y12)T, y0 = (y01, y02)T. Then

u1 = g−1y1 =
(

y11 cos + y12 sin 
−y11 sin + y12 cos 

)
,

u0 = gy0 =
(

y01 cos − y02 sin 
y01 sin + y02 cos 

)
.

The Jacobian determinants J+
1 and J+

0 are both equal to
| cos2  + sin2  | = 1. Thus, c(u1, u0) = 0 = −c(u0, u1)
in Proposition 1.4. Since

∂u1

∂ 
=
(
−y11 sin + y12 cos 
−y11 cos − y12 sin 

)
= g−1

� u1,

∂u0

∂ 
=
(
−y01 sin − y02 cos 

y01 cos − y02 sin 

)
= g�u0,

with � = �/2, the quantity a(u1, u0) from Proposition 1.4 is

a(u1, u0) =
(

cos(−�/2) − sin(−�/2)
sin(−�/2) cos(−�/2)

)
u1

+
(

cos(�/2) − sin(�/2)
sin(�/2) cos(�/2)

)
u0 = −a(u0, u1),

verifying the conditions for the  -symmetric parameterization
of rotation families on the circle.

2. Examples

2.A. Matched Pairs. Let Yi1 and Yi0 be random variables corre-
sponding to observations on treated and untreated individuals in
a matched pair design, where i = 1, . . . , n is the pair index. The
treatment effect is represented by a parameter  while the pair
effects are encapsulated in the pair-specific nuisance parameter

i, avoiding explicit modeling assumptions in terms of covariates.
As noted in Example 1.1, two approaches to analysis treat the
pair effects as fixed arbitrary constants, or as independent and

identically distributed random variables. In the latter case, it
is common to model the distribution parametrically, typically
producing efficiency gains in the treatment effect estimator
if the parametric assumptions hold to an adequate order of
approximation.

The relevant calculations are the same for every pair, and we
therefore omit the pair index i from the notation. Let the true
joint density function of (Y1, Y0) be given by

m(y1, y0) =
∫

f1(y1 ; ∗, 
)f0(y0 ; ∗, 
)f (
)d
 , [2.1]

with f (
) an unknown density function for the nuisance
parameters, which are treated as independent and identically
distributed across pairs.

Conditionally on 
 , let `( ; 
 , y1, y0) denote the log-
likelihood contribution for  from a single pair.

Proposition 2.1. Suppose that the assumed model over 
 is parame-
terized by �, producing a log-likelihood contribution `( , �; y1, y0),
assumed strictly concave. Suppose further that, conditionally on

 , Y1 and Y0 have a joint distribution that is parameterized
 -symmetrically (Definition 1.2). Then, provided that the group
induces antisymmetry on the log-likelihood derivative (Definition
1.3), it follows that  ∗ ⊥m Λ and

0 = Em[∇ `( ∗, �)]

=
∫
Y

∫
Y

(
∇ `( ∗, �; y1, y0)

)
m(y1, y0)dy1dy0, [2.2]

for all � ∈ Λ. Thus,  0
m =  ∗ by Proposition 1.1.

Example 2.1 (Continuation of Examples 1.1 and 1.2): Example
1.2 establishes antisymmetry of the log-likelihood derivative
for the symmetric parameterization of the exponential matched
pairs problem. Consistency of  ̂ thus follows by Proposition 2.1
regardless of the true distribution and assumed model for the
random effects 
 . This considerably extends the result of ref. 14
and provides deeper insight into the structure of inference under
model misspecification.

Remark 2.1: It is not too difficult to check following calcu-
lations similar to that in Appendix A.4 of ref. 14 that if we
parameterize this model nonsymmetrically, for example, with
rates 
i� and 
i, the resulting estimator is not consistent if the
gamma random effects assumption is erroneous.

Proposition 1.4 gives easily verifiable conditions for anti-
symmetry of the log-likelihood derivative, which holds for all
location and scale families in Example 1.3. The following explicit
calculation for the normal distribution mirrors Example 1.2.

Example 2.2 (normal matched pairs with arbitrary mixing):
Let Y1 and Y0 be normally distributed with unit variance and
means 
 +  ∗ and 
 −  ∗, respectively, 
 being treated as
random. The conclusion is unchanged if an unknown variance
parameter is present. Conditionally on 
 , with u1 = y1 −  ∗,
u0 = y0 +  ∗, the joint density function of (Y1, Y0) is

f1(y1 ; ∗, 
)f0(y0 ; ∗, 
)dy1dy0

= exp[−{(u1 − 
)2 + (u0 − 
)2
}/2]du1du0,

which is symmetric in u1 and u0 by construction as a result of
using a  -symmetric parameterization with respect to addition,
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the relevant group action for location models. Conditionally on

 , the likelihood as a function of  is

L( ; y0, y1, 
) ∝ exp{− 1
2 (y1 − 
 −  )2

−
1
2 (y0 − 
 +  )2

}

∝ exp[− 1
2 {(y1 −  )2 + (y0 +  )2

}], [2.3]

where the proportionality symbol on the second line absorbs
the multiplicative term exp{−
2 + 
(y1 + y0)}, which does not
depend on  . On taking logarithms and differentiating,

∇ `( ; u0, u1) = y1−y0−2 = u1−u0 = −∇ `( ; u1, u0),

verifying the antisymmetry condition of Definition 1.3.
For any assumed random effects distribution for 
 with density

function parameterized by �, an application of Proposition 2.1
guarantees that the resulting maximum likelihood estimator  ̂ is
consistent for  ∗ under arbitrary misspecification of the random
effects distribution.

Remark 2.2: A separate point in connection with Example 2.2 is
that, due to the separation in the log-likelihood function specific
to this case (a parameter cut in the terminology of ref. 19),
 ̂ = (Y1 − Y0)/2 regardless of the assumed random effects
distribution, and for an analysis from n pairs  ̂ = (S1− S0)/2n,
where Sj =

∑n
i=1 Yij, where i is the pair index. For any finite-

variance random effects distribution f , var(Y1) = var(Y0) =
1 + varf (
) and cov(Y1, Y0) = varf (
). Thus var( ̂) = 2/n
irrespective of f and of the assumed (erroneous) model over the
random effects.

Remark 2.3: In the context of stratum-specific random effects,
Lindsay (20, Thm 4.2) established the limiting distribution of
his proposed estimator of the interest parameter, valid whether
or not the random effects distribution is misspecified, under the
assumption that his estimator is consistent. The latter aspect,
central to the present paper, was not discussed in that work.

2.B. Two-Group Problems. Section 2.A dealt with an experimen-
tal setting in which the matching ensures balance. A more realistic
situation in an observational context is that observations on
treated and untreated individuals are stratified into groups that
are as similar as possible. This in general produces unbalanced
strata, having a potentially different number of individuals in the
treated and untreated groups for each stratum.

Inference is based on the sufficient statistics Sj1 and Sj0 within
treatment groups and strata. Let (Yij1)

rj1
i=1 and (Yij0)

rj0
i=1 be

observations within the jth stratum for treated and untreated
individuals, respectively. Some examples fix ideas. If the obser-
vations (Yij1)

rj1
i=1 and (Yij0)

rj0
i=1 are normally distributed with

means 
j +  ∗ and 
j −  ∗ and variance �, the likelihood
contribution to the jth stratum depends on the data only
through

∑rj1
i=1 Yij1/rj1 and

∑rj0
i=1 Yij0/rj0, whose distributions

are normal with means unchanged, and variances �/rj1 and �/rj0,
respectively. If, conditionally on 
j, the individual observations
are Poisson distributed counts of rates 
j ∗ and 
j/ ∗, the
sufficient statistics are sums of these counts, Poisson distributed of
rates rj1
j ∗ and rj0
j/ ∗. As a third example, if the originating
variables are exponentially distributed of rates 
j ∗ and 
j/ ∗,
the sufficient statistics are gamma-distributed sums of shape and
rate parameters (rj1, 
j ∗) and (rj0, 
j/ ∗), respectively. The
matched comparison setting of Section 2.A is a special case of
this formulation with rj1 = rj0 = 1 for all j. The more general
balanced case with rj1 = rj0 = r is also implicitly covered by
Propositions 1.4 and 2.1.

The situation when rj1 6= rj0 is more complicated as it implies
that even if the distributions of Sj1 and Sj0 belong to a group
family, the transformations required to express their distributions
in the standardized form fU depend on the different values of
rj1 and rj0, so that Definition 1.2 is violated. The following
extension of Proposition 2.1, which assumes the same random
effects formulation for the nuisance parameters 
j, omits the
subscripts for the strata as before.

Proposition 2.2. Suppose that, conditionally on 
 , S1 and S0 are
independent random variables with probability measures in PG .
Let h1 ∈ G and h0 ∈ G, not depending on  or 
 , be such
that T1 = h1S1 and T0 = h0S0 have a joint distribution that is
parameterized  -symmetrically in the sense of Definition 1.2 and
such that the log-likelihood derivative, when expressed in terms of
u1 = g−1t1 and u0 = gt0, is antisymmetric in the sense of Definition
1.3. Then, provided that `( , �) is strictly concave,  ∗ ⊥ Λ and

0 = Em[∇ `( ∗, �)]

=
∫ ∫ (

∇ `( ∗, �; s1, s0)
)
m(s1, s0)ds1ds0, [2.4]

for all � ∈ Λ. Thus,  0
m =  ∗ by Proposition 1.1.

For discrete problems such as the two-group Poisson situation
mentioned above, there is no natural group and Propositions
2.1 and 2.2 are therefore inapplicable. Direct verification of
Proposition 1.2 is sometimes more fruitful, as illustrated in the
following examples.

Example 2.3 (stratified two-group Poisson problem with
unbalanced strata): Cox and Wong (16) considered mis-
specification of a random effects distribution in a stratified
two-group problem. The distributions of counts Sj1 and Sj0 in
the treated and untreated groups for stratum j are, conditionally
on 
j, Poisson with means rj1
j exp(�∗) and rj0
j exp(−�∗),
respectively, where rj1 and rj0 reflect the number of patients at risk
in each group and 
j are stratum-specific nuisance parameters.

The problem can equivalently be parameterized in terms of
 = e� but the above formulation was used by Cox and Wong
(16). The result of Proposition 2.3 was noted there; we complete
their proof in SI Appendix.

Proposition 2.3 [Cox andWong (16)]. Suppose that in Example
2.3, the nuisance parameters (
j)n

j=1 are modeled as independent
and identically distributed random variables with gamma density
�(�
)!−1 exp(−�
)/Γ(!), parameterized in terms of the notion-
ally orthogonal parameters � = �/! and! > 0. Provided that there
is a member of the assumed model that gives the same expectation
E�,!(
j) = 1/� as under the true random effects distribution for
(
j)n

j=1, �̂ is consistent for �∗.

Example 2.4 (time to the first event in a two-group problem
with unbalanced strata): We describe here the generating
mechanism for an exponential analog of Example 2.3. Suppose
the available data in Example 2.3 consist also of the failure
times. If these are, for each individual, independent exponentially
distributed of rates 
j exp(�∗) and 
j exp(−�∗) in the jth stratum,
with rj1 and rj0 individuals at risk in the treated and untreated
groups, then the times Sj1 and Sj0 to the first failure in each
group are the group minima, exponentially distributed with
rates rj1
j exp(�∗) and rj0
j exp(−�∗), respectively. By using
only the minima across strata, information is sacrificed, which
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would normally not be advised unless to check on modeling
assumptions. After reparameterization,  = e� , the problem
satisfies the conditions of Proposition 2.2 with Tj1 = rj1Sj1 and
Tj0 = rj0Sj0. Thus,  ̂ is consistent for  ∗ = exp(�∗).

2.C. Generalized Linear Models. A simple example in which
Proposition 1.1 is directly applicable is misspecified dispersion
in exponential-family regression problems. Suppose that the true
density function belongs to the class of canonical exponential
family regression models with unknown regression coefficient  
on a set of known covariates x1, . . . , xn (each column vectors of
the same dimension as ), and dispersion parameters�1, . . . ,�n.
The form of the exponential-family log-likelihood function with
respect to �i is such that  ∗ ⊥m �i for all i. In particular
this implies that if �i is modeled erroneously as �i(�), perhaps
depending on covariates other than or including xi,  ∗ ⊥m Λ.
Write the log-likelihood function of the assumed model as

`( , �) =
n∑

i=1
�−1

i (�){yixT
i  − K (xT

i  )}+
n∑

i=1
h{yi;�i(�)}.

[2.5]

We do not distinguish notationally between realizations of the
random variables Y1, . . . , Yn and arbitrary evaluation points for
their joint density function conditional on covariates. With
outcomes treated as random, the estimating equation for  is
unbiased in the sense that Em[∇ `( ∗, �)] = 0 for all � ∈ Λ.
Thus,  ̂ is consistent in the presence of arbitrary misspecification
of the dispersion parameters.

In a continuation of this generalized linear models example,
we assume this time a simplified specification for dispersion but
allow for relevant covariates to be omitted. Let Z = (X, W )
denote the included and omitted covariates. The conditional
probability density or mass function of Y = (Y1, . . . , Yn) at
y = (y1, . . . , yn) is, with �∗ = ( ∗T, �∗T)T.

m(y; zT
1 �
∗, . . . , zT

n �
∗)

= exp
[
�−1

{
�∗T

n∑
i=1

ziyi −

n∑
i=1

K (zT
i �
∗)
}] n∏

i=1
h(yi,�),

Let m̌(y; xT
1  , . . . , xT

n  ) be the assumed model, in which the
outcome is modeled only in terms of X . The orthogonality
condition  ∗ ⊥m Λ is

n∑
i=1

K ′′(xT
i  
∗ + wT

i �)xiwT
i = 0, [2.6]

for all �, a highly restrictive condition. By Proposition 1.1, the
additional conditions under which  0

m =  ∗ are those that set
Em[∇ `( ∗, �)] = 0 for all �, where ` is the log-likelihood
function under the assumed model. Since � is not present under
the assumed model,

Em[∇ `( ∗, �)] =
n∑

i=1
{K ′(zT

i �
∗)− K ′(xT

i  
∗)}xi

=
n∑

i=1
K ′′(xT

i  
∗ + �i)xiwT

i �
∗,

where �i is on a line between 0 and wT
i �
∗ and the first

equality is because K ′(zT
i �
∗) = Em(Yi | Zi = zi). Since

K ′′(xT
i  
∗ + �i) 6= K ′′(xT

i  
∗ + wT

i �) in general, the second
condition Em[∇ `( ∗, �)] = 0 typically does not hold exactly
even when the columns of X and W are orthogonal. An exception
is the normal-theory linear model, for which K (�) = �2/2 so
that K ′′(�) = 1. For an insightful discussion of noncollapsibility
in logistic and other regression models, see ref. 21, and for some
relevant approximations, see ref. 22.

Although both conclusions of this subsection are well estab-
lished in the literature, their purpose is to illustrate application
of Proposition 1.1 to some well-known settings.

2.D. Marginal Structural Models. Evans and Didelez (8) pre-
sented a further example in which consistency arises as a special
case of Proposition 1.1. Their paper introduced the idea of a frugal
parameterization of a marginal structural model, constructed to
complete the specification of a model respecting the interven-
tional components of interest, but without loss or redundancy.
In a causal system of the form, e.g., Z → X , Z → Y , X → Y ,
the authors suggest a reparameterization of the joint distribution
pZXY from (pZ , pX |Z , pY |ZX ) to (pZ , pX |Z , p∗Y |X ,�∗YZ |X ), where
p∗Y |X , with finite-dimensional parameter �∗Y |X , is typically the
unobservable interventional distribution of interest for Y |
do(X ), and �∗YZ |X is whatever is necessary to complete the
joint model. The quantity pX |Z is known as the propensity
score. We refer to the original paper for a detailed discussion
of these quantities, which in turn are expressed in terms of finite-
dimensional parameters, say  and �. The vector parameter  
with true value  ∗ comprises �∗YZ |X and the main component
of interest �∗Y |X which together specify pZ pY |ZX , while �
characterizes the propensity score pX |Z . A consequence of the
above parameterization within the class of marginal structural
models is Theorem 5.1 of ref. 8, which establishes consis-
tency and asymptotic normality of the maximum likelihood
estimator  ̂ of  ∗, even if pX |Z = pX |Z (�) is misspecified.
As noted in ref. 8, the conclusion arises as a consequence of
the parameter cut between pZ pY |ZX and pX |Z , and therefore
between  and �. The parameter cut implies the parameter
orthogonality condition  ∗ ⊥m Λ, and Evans and Didelez (8)
implicitly establish in their proof the remaining condition of
Proposition 1.1.

3. Discussion

3.A. Stronger Inferential Guarantees. Even if consistency holds,
inferential guarantees entail estimation of variance, a difficult
problem due to failure of Bartlett’s second identity. Such
difficulties persist under the stronger condition of Proposition 1.3.

In the notation of Section 1, let

q = Em[(∇( ,�)`)(∇( ,�)`)
T],

q̌ = E( ,�)[(∇( ,�)`)(∇( ,�)`)
T],

both functions of  and �. Proposition 1.3, Eq. 1.1 and
consistency of  ̂ imply

E( ,�)[∇( ,�)`( ∗, �0
m)] = 0,

and differentiation gives Bartlett’s second identity under the
assumed model:

−ı̌( ∗, �0
m) + q̌( ∗, �0

m) = 0.

The relevant quantities for establishing the limiting distributions
of standard test statistics are, however, i and q, where i

8 of 10 https://doi.org/10.1073/pnas.2402736121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 H
ea

th
er

 B
at

te
y 

on
 A

ug
us

t 3
0,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
2.

96
.1

98
.7

9.



was defined in Section 1. These do not in general satisfy
−i( ∗, �0

m)+q( ∗, �0
m) = 0, even with the additional structure

of Proposition 1.3. An exception is Example 2.2 because of the
particular simplicity of this case.

It can be shown using now standard arguments that, with
the log-likelihood function constructed from n independent
observations, provided that  ̂ is consistent for  ∗,

√
n( ̂ −  ∗)→d N (0, (i−1qi−1)  ), [3.1]

the variance being the so-called sandwich formula, in which
the constituent terms are evaluated at ( ∗, �0

m). This reduces
to i  ( ∗, �0

m) = i  ( ∗, �∗) when the model is correctly
specified, so that the usual asymptotic result is recovered. The
standard refs. 3, 5–7, and 23 have  0

m in place of  ∗ in
Eq. 3.1. Qualitatively similar results hold for the profile score
and profile likelihood ratio statistics, the main point being that
confidence set estimation is infeasible without knowledge of
m unless q̌( ∗, �0

m) = q( ∗, �0
m) to some adequate order of

approximation. In general, this requires, not only that the expec-
tations of the sufficient statistics are robust to misspecification
but also that the expectations of any relevant squares and cross
terms are stable.

Suppose, however, that the parameterization is orthogonal in
the sense  ∗ ⊥m �0

m. Then,

(i−1qi−1)  = i  q  i  ,

and the familiar result is also recovered if q  i  = Idim( ), a
weaker requirement than q = i especially if  is a scalar. Under
the additional structure of Proposition 1.3, inference based on the
assumed model is unaffected by the misspecification.

3.B. Treating Incidental Parameters As Fixed or Random. In the
context of Section 2.A, the lack of general inferential guarantees
beyond consistency may well be an argument for treating the
nuisance parameters as fixed. Although the conceptual distinction
is consequential for the analysis, a formulation in which incidental
parameters are treated as fixed and arbitrary, and one in which
they are treated as independent and identically distributed
from a totally unspecified distribution, are numerically indis-
tinguishable. In this sense, the fixed-parameter formulation is
essentially nonparametric for the nuisance component, with the
distinguishing feature that it evades estimation of the infinite-
dimensional nuisance parameter.

The group structure used to define the symmetric parame-
terization in Proposition 2.1 also allows elimination of nuisance
parameters by suitable preliminary maneuvers when the nuisance
parameters are treated as fixed. In the exponential matched
pairs setting of Example 2.1, (14) compared inference based
on the distribution of Yi1/Yi0 to that based on modeling the
pair effects by a gamma distribution. The random pair effects
model is more efficient when the gamma distribution is correct,
but efficiency degrades substantially under misspecification,
compared to maximum likelihood estimation based on the
distribution of ratios.

Proposition 2.1 hinges on a symmetric parameterization having
been chosen, which is possible only under the group structure of
Section 1.C. Outside of this setting, there are no guarantees of
consistency of the maximum likelihood estimator with misspec-
ified random effects distribution, while it may still be possible to
eliminate the pair effects with exact or approximate conditioning
arguments, as illustrated in the second example of ref. 14.

3.C. Overstratification and Other Encompassing Models. Two
essentially equivalent ways to adjust for potential confounders
are to stratify by observed explanatory features, leading to strata
effects (
j)m

j=1 as in Example 2.3, or to adjust for the explanatory
features in a regression analysis. Both approaches are a form
of conditioning by model formulation. It is arguably more
relevant in this context to treat the strata effects as fixed rather
than random. In De Stavola and Cox (24), this modification
of Example 2.3 was considered, showing the extent to which
overstratification decreases efficiency of the estimator. As is
intuitively clear, no bias is incurred through overstratification,
yet the conditions of Propositions 1.1 and 1.2 do not always hold,
as illustrated by the following example. The explanation is that
the true density is nested within the encompassing model, so
that �0

m = �∗ = 0. The overstratified model is therefore not
misspecified according to the definition below Eq. 1.1.

To isolate the point at issue, we assume that any dispersion
parameters are equal to 1, the conclusion of Proposition 3.1 being
unchanged for arbitrary dispersion parameter by the discussion
of Section 2.C.

Proposition 3.1. Suppose that, conditional on observed explana-
tory features, the probability density or mass function of Y =
(Y1, . . . , Yn) at y = (y1, . . . , yn) is of canonical exponential family
regression form, that is,

m(y; xT
1 
∗, . . . , xT

n 
∗)

= exp
{ n∑

i=1
yixT

i  
∗
−

n∑
i=1

K (xT
i  
∗)
} n∏

i=1
h(yi).

Suppose further that the analysis is overstratified so that under the
assumed model the log-likelihood function is `( , �) = sT +tT�−
K ( , �), where s =

∑n
i=1 xiyi, t =

∑n
i=1 wiyi and K ( , �) =∑n

i=1 K (xT
i  + wT

i �). The conditions of Propositions 1.1 and 1.2
are in general violated, yet the maximum likelihood estimator  ̂ is
consistent for  ∗.

Another type of encompassing model arises in random effects
models when the assumed family of distributions for the random
effects is rich enough to include the true distribution, for instance
if the postulated mixture class is nonparametric [Kiefer and Wol-
fowitz (25)], as discussed in Section 3.B. This type of situation
can be understood in terms of the convex geometry of mixture
distributions [Lindsay (26)] and was specialized to the case of
binary matched pairs with logistic probabilities by Neuhaus et
al. (27). Their conditions on the mixing distributions with regard
to the resulting cell probabilities effectively imply that the model
is correctly specified according to the definition below Eq. 1.1.

3.D. Estimating Equations and Neyman Orthogonality. A gen-
eralization of the score Eq. 1.1 is to other estimating equations,
often but not always obtained as the vector of partial derivatives of
a convex loss function. The model need only be partially specified
in terms of a known function h of the data, an interest parameter
 and a nuisance parameter �, such that the expectation
when the assumed model is true satisfies Em[h( ∗, �∗; Y )] =
E( ∗,�∗)[h( ∗, �∗; Y )] = 0. If the model is misspecified the
limiting solutions satisfy, in analogy with Eq. 1.1,

Em[h( 0
m, �0

m; Y )] = 0.

A special choice of h, establishing a connection to the double
robustness literature, is the Neyman-orthogonal score for  ,
defined as

PNAS 2024 Vol. 121 No. 36 e2402736121 https://doi.org/10.1073/pnas.2402736121 9 of 10
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s∗N( ; �, Y ) = ` ( , �)− w∗T`�( , �),

where ` and `� are the partial derivatives of ` with respect to  
and � and w∗T is a matrix of dimension dim( )× dim(�) given
by w∗T = i∗ �i∗−1

�� when the model is correctly specified. Here,
i∗ � and i∗�� are the components of the Fisher information matrix
at the true parameter values ( ∗, �∗). Consider instead

sN( ; �, Y ) = ` ( , �)− wT`�( , �), wT = i �i−1
�� , [3.2]

where i � and i�� are as defined in Eq. 1.4. Write the condition
i  g + i �g� = 0 of Proposition 1.2 as

g + i  .�i �g� = 0,

i  .� = (i  )−1 = i  − i �i−1
�� i� , [3.3]

where i  .� is the Fisher information for at ( ∗, �), computed
under the true model, having adjusted for estimation of �. On
noting that i � = −i  i �i−1

�� , we see that the information
identity i  g + i �g� = 0 of Proposition 1.2 is equivalent
to requiring that the Neyman orthogonal score Eq. 3.2, with
score adjustment w computed under the true distribution, has
zero expectation under the same distribution for all � ∈ Λ.
Specification of w in Eq. 3.2 when the model is misspecified
thus hinges on the conditions of Proposition 1.3 being satisfied.

Data, Materials, and Software Availability. There are no data underlying
this work.
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