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Abstract

This thesis considers the application of wavelet methods to the analysis of

time series and spatial data. In the �rst part, we propose a locally stationary

model of the covariance structure for data which lie on a regular grid. This is

achieved by moving from a (global) Fourier decomposition of structure to a localised

decomposition involving a set of discrete, non-decimated wavelets. The proposed model

is subsequently applied to various texture analysis problems. These range from the

classi�cation of images taken from the standard Brodatz texture collection to subtle

discrimination problems encountered by an industrial collaborator.

The second part proposes an e�cient construction of the inner product matrix of

discrete autocorrelation wavelets | a quantity which is of crucial importance in the

unbiased estimation of local wavelet spectra. The proposed scheme relates neighbouring

elements of the matrix which lie on a given diagonal using a two-scale relationship of

the autocorrelation wavelets. This results in a construction which is considerably more

e�cient than the brute force approach used to date.

Finally, we conclude by detailing the results of initial research on the estimation

of the local autocovariance structure of locally stationary time series. These results

provide an interesting interpretation of this quantity in terms of familiar (stationary)

time series measures.
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Chapter 1

Introduction

Wavelets are a comparatively new mathematical tool which have received a great deal

of interest within the statistical community in recent years. These localised basis

functions are capable of both e�ciently modelling high frequency signal components,

for example discontinuities, and capturing smooth signal structure. Such qualities have

resulted in a considerable amount of research into the potential of using wavelets for

signal denoising.

More recently, several researchers have considered the application of wavelets to

time series analysis, for example the work of Nason, von Sachs & Kroisandt (2000)

introduced a model of locally stationary wavelet processes to the literature. In contrast

to the traditional, frequency-based Cram�er representation, the model proposed by

Nason et al. permits a location-scale decomposition of the covariance structure of time

series which appear to be stationary within localised regions, although their form may

evolve from one region to another. A review of the key aspects of wavelet theory,

together with a survey of its application to time series analysis and signal denoising, is

presented in Chapter 2.

Many of the scenes and images which we encounter in our everyday lives possess

locally stationary, multiscale structure. Thus, to obtain insights into such processes it

would be useful to have a multiscale model for their covariance structure. Such a model

is proposed in Chapter 3, extending the work of Nason et al. (2000) to two dimensions.

The model provides a framework for the analysis of locally stationary processes which

fall on a regular grid. As a result, we can obtain a location-scale decomposition of the

covariance structure into three directions: horizontal, vertical and diagonal.



2 Introduction

A potential application of our modelling approach lies in the �eld of texture analysis,

a discipline which is concerned with the discrimination, classi�cation and segmentation

of images whose structure is in some sense regular. The �rst half of Chapter 4 provides

a review of this �eld, paying particular attention to recently proposed wavelet-based

texture analysis methods. The majority of these approaches are motivated by wavelet

properties rather than being wavelet-based models of structure. The second half of

Chapter 4 focuses on the application of our model to various texture analysis problems,

contrasting our results with alternative approaches.

Chapter 5 considers the construction of the inner product matrix of discrete

autocorrelation wavelets. This matrix plays an important role in the unbiased

estimation of location-scale measures of power associated with locally stationary

processes, be they time series or random �elds which lie on a regular grid. The

direct, brute-force construction of this quantity becomes computationally intensive

when dealing with large datasets as it requires O(N logN) operations. Utilising a well-

known recursion scheme associated with discrete autocorrelation wavelets, we are able

to derive an e�cient scheme for the construction of this inner product matrix. The

scheme relates neighbouring elements of the matrix which lie on a given diagonal. This

results in an O(log(N)3) construction.

We conclude this thesis by returning to the time series model proposed by Nason

et al. (2000). As a consequence of the location-scale decomposition a�orded by their

model, Nason et al. were able to propose a time-localised measure of the autocovariance

structure contained within locally stationary time series. Chapter 6 details the results of

an initial study which has been made into the application of this quantity. To facilitate

our understanding of this measure, we start by interpreting the local autocovariance

in terms of statistics which are used in classical stationary time series analysis. We

then consider the application of a local autocovariance estimator to the special case of

second-order stationary time series.

The estimation theory associated with the work presented in Chapter 3 has been

implemented as a suite of S-Plus routines which tie in with the WaveThresh3 package

released by Nason (1998). The suite may be downloaded from:

http://www.stats.bris.ac.uk/~maiae/LS2W.

Note that many of the �gures contained in this thesis were produced using WaveThresh.



Chapter 2

Literature review

2.1 Introduction

The last �fteen years have seen an explosion of interest in wavelets. Although initially

embedded in �elds such as functional analysis, signal processing and geophysics,

wavelets are now involved in many diverse disciplines: from solving partial di�erential

equations to compressing images and analysing economic data | see Hubbard (1998)

or Graps (1995) for further examples. Several stimulating books have also appeared

on the subject in recent years, see for example Chui (1992), Daubechies (1992), Meyer

(1992), Mallat (1999) and Vidakovic (1999).

This chapter summarises the principal aspects of wavelet theory which are required

for the work presented in this thesis and reviews various elements of the application

of wavelets in statistics. It should be noted that a review of wavelets in the �eld of

texture analysis is postponed until Chapter 4.

The �rst half of the chapter focuses on the fundamentals of wavelet theory. We start

by providing a brief synopsis of Fourier theory, highlighting the di�culty that Fourier

series have in representing functions with discontinuities. Then, in Section 2.3 we de�ne

a wavelet and consider its connection to multiresolution analysis. Various discrete

wavelet transforms are introduced in Sections 2.4 and 2.5 including the discrete wavelet

transform, the non-decimated wavelet transform and the wavelet packet transform. The

review of wavelet theory is concluded in Section 2.6 where we consider the extension

of the wavelet transform to higher dimensions.

In the second part of this chapter we consider the application of wavelet methods
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to time series analysis, paying particular attention to recent work on the modelling

of locally stationary processes. Finally, in Section 2.8 we review the application of

wavelets to one-dimensional smoothing problems.

2.2 The Fourier transform

Prior to introducing wavelets, we review some basic results from Fourier theory. The

aim of this review is to motivate the need for e�cient series representations for certain

function types, for example functions which possess a �nite number of discontinuities.

Additionally, it is often useful to consider the Fourier-domain properties of wavelets.

Thus it is hoped that this section will also act as a useful aide-memoire. For additional

details on this topic we refer the reader to Priestley (pp. 184{194, 1981) or, for a more

detailed treatment, Champeney (1973).

Following Vidakovic (1999), we de�ne the Fourier transform of a function as follows:

De�nition 2.1

Let < f; g >=
R
f(x)g(x) dx denote the inner product of two functions f and g. Then

the Fourier transform of a function f 2 L1(R) is de�ned by

bf(!) = F [f(x)] = < f(x); ei!x >

=

Z
R

f(x)e�i!x dx:

Further, if bf 2 L1(R) is the Fourier transform of f 2 L1(R), then

f(x) = F�1[ bf(w)] = 1

2�

Z
R

bf(!)ei!x d!
is de�ned to be the inverse Fourier transform.

(See Vidakovic (pp. 30{31) for a list of important Fourier transform properties.)

A function, f , periodic on [0; 2�) may also be represented as a sum of sinusoids:

f(x) =
a0
2�

+
1

�

1X
n=1

an cos(nx) + bn sin(nx);

where

an =

Z 2�

0

f(x) cos(nx); bn =

Z 2�

0

f(x) sin(nx) dx:
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This representation is commonly known as the Fourier series representation of a

function. Such a representation is possible as f1; cos(nx); sin(nx)g constitutes an

orthonormal basis of L2([0; 2�)).

When representing a function in terms of its Fourier series it is often desirable

that the expansion should be economical. In other words, that there are only a few

non-zero coe�cients. Such sparsity can facilitate our understanding of the function's

structure. Unfortunately, for many functions the Fourier series in not sparse. Consider,

for example, the Fourier series representation in �gure 2.1. Note how artefacts are

situated near the points of discontinuity. These are known as Gibbs e�ects and occur

because the series coe�cients fan; bng are evaluated using values of the function across

the whole interval [0; 2�). Thus a large number of high frequency terms are required

to represent the discontinuity accurately. Recently, researchers have been investigating

ways of overcoming such problems. One such approach is called wavelet theory.

2.3 What is a wavelet?

As the term \wavelet" suggests, a wavelet is simply a small localised wave. Today the

word is frequently used to describe an orthonormal basis of L2(R). The wavelet basis

is formed by translating and dilating a basic function  , which we call the \mother

wavelet". Following Meyer (1992), a mother wavelet may be de�ned as follows:

De�nition 2.2

Let m 2 N . Then for x 2 R, a function  (x) is called a mother wavelet of order m if

the following properties hold:

W1 If m = 0,  (x) 2 L1(R). If m � 1, then  (x) and all its derivatives up to order

m belong to L1(R).

W2  (x) and all its derivatives up to order m decrease rapidly as x! �1.

W3 For each k 2 f0; : : : ; mg, Z 1

�1
xk (x) dx = 0:
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(i) (ii)

(iii) (iv)

Figure 2.1: Fourier series approximation of the box-car function (black line) using
the �rst (i) 10, (ii) 20, (iii) 50 and (iv) 100 terms of the representation (increasing in
frequency).
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W4 The collection f j;kgj;k2Z forms an orthonormal basis of L2(R), the  j;k being

constructed from the mother wavelet using the identity

 j;k(x) = 2j=2 (2jx� k): (2.1)

Condition W1 expresses the regularity (i.e. smoothness) of the wavelet, whilst

conditions W2 and W3 address the localisation and oscillation of  . Frequently, W3 is

referred to as the vanishing moments property. Finally, the parameters j; k in condition

W4 are called the dilation and translation parameters respectively.

Whereas the Fourier basis consists of only one choice of basis functions

f1; cos(nx); sin(nx)g

there are many possible mother wavelets from which we can choose. Possibly the

simplest example of a wavelet basis is that proposed by Haar (1910). Haar wavelets

are generated by the following mother wavelet, of order 0,

 (x) =

8>>><>>>:
1 if 0 � x < 1=2

�1 if 1=2 � x < 1

0 otherwise:

(2.2)

Clearly properties W1!W3 of De�nition 2.2 are satis�ed by the Haar basis. It remains

therefore to show W4, that the f j;kg form an orthonormal basis. To demonstrate this,

we must appeal to multiresolution analysis (see Section 2.3.1). A detailed examination

of this orthonormality is provided by Kovac (Chapter 2, 1998).

Shannon's wavelet, also known as the Littlewood-Paley wavelet, possesses time-

frequency properties which are complementary to those of the Haar basis as it is

compactly supported in the Fourier domain:

b (!) =
8<: (2�)�1=2 for � � j!j < 2�

0 otherwise:

In the time domain, this results in a wavelet of in�nite support:

 (x) = (�x)�1(sin(2�x)� sin(�x)):

See Daubechies (Section 4.2.1, 1992) for further details.
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Meyer (1986) suggests a modi�cation of Shannon's wavelet, smoothing the sharp

edges which exist in the Fourier-domain using a \taper" function, whilst preserving

the orthonormality of the wavelet. Following Daubechies (Section 4.2.1, 1992), Meyer

wavelets are de�ned in the frequency domain as follows:

b (!) =
8>>><>>>:

(2�)�1=2ei!=2 sin
�
�
2
v
�

3
2�
j!j � 1

��
for 2�=3 � j!j < 4�=3;

(2�)�1=2ei!=2 cos
�
�
2
v
�

3
4�
j!j � 1

��
for 4�=3 � j!j < 8�=3;

0 otherwise;

the taper v being chosen such that the following properties are satis�ed:

v(x) + v(1� x) = 1;

v(x) = 0; x � 0;

and v(x) = 1; x � 1:

Other wavelet families include Daubechies' Extremal Phase and Least Asymmetric

wavelets (see Section 2.3.3) and Franklin wavelets. A comprehensive review of these

and other wavelet families may be found in Vidakovic (Section 3.4, 1999) or Percival

& Walden (Chapter 4, 2000). Daubechies (1992) provides a more mathematical

treatment.

By analogy with Fourier series, for certain choices of mother wavelet, the f j;kg
constitute an orthonormal basis of L2(R). Thus any function f 2 L2(R) may be

represented as

f(x) =
1X

j=�1

1X
k=�1

wj;k j;k(x) (2.3)

where wj;k =
R
R
f(t) j;k(t) dt. The wj;k provide information about the structure on

\scale" 2j near position 2�jk. In other words, the series is comprised of localised scale

information. This is in stark contrast to the Fourier approach, where coe�cients are

calculated using the whole function on the interval [0; 2�). As a consequence of this

localised information, wavelets have the ability to provide sparse representations of

functions with a �nite number of discontinuities.

2.3.1 Multiresolution analysis

We now consider the concept of multiresolution analysis, �rst introduced by Meyer

(1986) and Mallat (1989a). Put simply, multiresolution analysis provides a framework
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for examining functions at di�erent scales: zooming in to see the �ne detail and moving

out to view the broader picture. It enables us to understand wavelet bases and construct

new examples. As we shall see in Section 2.4, multiresolution analysis also has an

important role in the formation of the discrete wavelet transform. Stimulating reviews

of multiresolution analysis are provided by Mallat (1989a, 1999), Daubechies (1992),

Vidakovic (1999) and Jawerth & Sweldens (1994).

Following Mallat (1989a) we de�ne a multiresolution analysis as follows:

De�nition 2.3

A multiresolution analysis (MRA) is a nested sequence of closed subspaces,

Vj � L2(R) for j 2 Z,

� � � � V�2 � V�1 � V0 � V1 � V2 � � � � (2.4)

such that

1. the spaces have a trivial intersection:

\
j2Z

Vj = f0g; (2.5)

2. the union is dense in L2(R):

[
j2Z

Vj = L2(R); (2.6)

3. the following two-scale relation exists:

f(x) 2 Vj , f(2x) 2 Vj+1 8j 2 Z; (2.7)

4.

f(x) 2 V0 , f(x� k) 2 V0 8k 2 Z; (2.8)

5. and, �nally, there exists a scaling function, � 2 V0, whose integer translations

f�0;k : k 2 Zg constitute an orthonormal basis of V0.

Note that conditions (2.7) and (2.8) imply that f�j;k : k 2 Zg constitutes an

orthonormal basis of Vj. Furthermore since V0 � V1, the function �(x) 2 V0 may
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be represented as a linear combination of functions from V1. In other words for some

coe�cients fhkgk2Z, we can express

�(x) =
X
k2Z

hk�1;k(x) =
X
k2Z

hk2
1=2�(2x� k): (2.9)

Equation (2.9) is often called the scaling equation. The coe�cients h � fhkgk2Z are

of fundamental importance in the construction of wavelets and in the development of

an e�cient recipe for performing the discrete wavelet transform (see Section 2.4 for

further details). We will often refer to h as a �lter | a term which arises naturally

from the role which this quantity plays in the discrete wavelet transform.

We note two important properties of the wavelet �lters, h, associated with an

orthogonal MRA:

X
k2Z

hk =
p
2 and

X
k2Z

hkhk�2l = �l:

See Vidakovic (pp. 53{55, 1999) for proofs of the above.

Example 2.1 Possibly the simplest example of a MRA is that which can be constructed

using the Haar scaling function:

�(x) =

8<: 1 for 0 � x < 1

0 otherwise:
(2.10)

It is easily veri�ed that f�(x � k)gk2Z forms an orthonormal set. Simply noteR
R
�(x) dx = 1 and that integer translations do not overlap. Furthermore, setting

�j;k(x) = 2j=2�(2jx� k)

we �nd that

�(x) =
X
k2Z

hk2
1=2�(2x� k) = 2�1=2�1;0(x) + 2�1=2�1;1(x):

Thus

hk =

8<: 2�1=2 for k = 0; 1

0 otherwise:

Clearly,
P

k h
2
k = 1 and

P
k hk =

p
2 in this case.
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An approximation of a function f at resolution level j is given by

fj(x) =
X
k2Z

cj;k�j;k(x) = Pjf;

where Pj is the projection operator onto f�j;k(�)gk2Z. This is equivalent to saying that
Pj is the projection operator onto Vj, for spanf�j;kgk2Z = Vj. Note that as f�j;kgk2Z
are orthonormal, the fcj;kg may be obtained using

cj;k =< f; �j;k >=

Z
R

f(x)�j;k(x) dx: (2.11)

Figure 2.2 displays an example of successive approximations of a test function,

considered by Nason & Silverman (1994), at various resolutions using the Haar MRA.

0 100 200 300 400 500

f

P8f

P7f

P6f

P5f

P4f

Figure 2.2: Successive approximations of a smooth test function, f ,
containing a single discontinuity using the Haar MRA. The lowest
image denotes a coarse (broad-scale) approximation of the function
(upper image), whilst P5f ! P8f display successively �ner scale
approximations.

2.3.2 Fourier properties of �

In Section 2.3.3 we consider the derivation of a mother wavelet,  , from the scaling

function � associated with a MRA. When doing so, it is useful to consider the Fourier
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properties of both � and the vector of coe�cients, h, obtained from the scaling equation

(2.9). To this end we de�ne

m0(!) = 2�1=2
X
k2Z

hke
�ik!: (2.12)

This function describes the behaviour of the �lter, h, in the frequency domain.

It is easily shown that

b�(!) = m0

�!
2

� b��!
2

�
; (2.13)

where b�(!) denotes the Fourier transform of �. For a proof of this relation see,

for example, Vidakovic (p. 53, 1999). Additionally, Daubechies (p. 132, 1992)

demonstrates that the orthonormality of the scaling function leads to the condition

that

jm0(!)j2 + jm0(! + �)j2 = 1: (2.14)

Combining relation (2.13) with the result that jb�(0)j = 1 (Mallat, 1989a), it follows

that

jm0(0)j = 1 ) jm0(�)j = 0: (2.15)

These identities will prove useful in Chapter 3.

2.3.3 Deriving a wavelet from a MRA

Daubechies (p. 130, 1992) writes that

\The basic tenet of multiresolution analysis is that whenever a collection of

closed subspaces satis�es : : : [the conditions of a multiresolution analysis]

: : : then there exists an orthonormal wavelet basis f j;k : j; k 2 Zg of

L2(R)".

Indeed Daubechies (p. 136, 1992) observed that \every orthonormal wavelet basis of

practical interest : : : is associated with a multiresolution analysis". The question

therefore is how can a mother wavelet be derived from the scaling function?

The key to the answer lies in thinking about what happens to the detail information

which is lost when we move down from one resolution space, Vj+1, to a coarser space
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Vj. The di�erence between the two subspaces may be expressed in operator notation

by

Qj = Pj+1 � Pj; 8j 2 Z:

Thus Qjf is simply the projection of f on the orthogonal complement of Vj in Vj+1.

Alternatively, we can de�ne a detail space as follows:

De�nition 2.4

The detail space Wj is de�ned to be the orthogonal complement of Vj in Vj+1. Thus,

Vj+1 = Vj �Wj

where Wj ? Vj and Wj ? Wj0 if j 6= j 0.

Hence for J > j,

VJ = Vj �
J�1M
k=j

Wk (2.16)

where the subspaces fWkgJ�1k=j are mutually orthogonal.

Note that equation (2.16), in tandem with (2.5) and (2.6), ensures thatM
j2Z

Wj = L2(R): (2.17)

Thus, L2(R) may be decomposed into mutually orthogonal subspaces. Additionally,

the fWjg inherit the scale-relating property (2.7) of the fVjg. In other words,

f(x) 2 Wj () f(2x) 2 Wj+1: (2.18)

Thus if a function,  , can be found such that its integer translations form an

orthonormal basis of W0, then the relations given in (2.17) and (2.18) ensure that

f j;k :  j;k(x) = 2j=2 (2jx� k)gj;k2Z

form an orthonormal basis of L2(R).

To derive a wavelet function,  , from the scaling function we note that as W0 � V1,

 (x) 2 V1. Hence  (x) may be represented as

 (x) =
X
k2Z

gk
p
2�(2x� k) (2.19)
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for some coe�cients fgkgk2Z. Setting

m1(!) =
1p
2

X
k

gke
�ik! (2.20)

it may be shown that

b (!) = m1

�!
2

� b��!
2

�
:

By considering the Fourier properties of the fhkg and fgkg, Mallat (1989a)

demonstrates that the decomposition of a function, f 2 V0, into orthogonal components

V�1 and W�1 can be achieved only if the following conditions are satis�ed:

jm0(!)j2 + jm1(!)j2 = 1 (2.21)

and

m0(!)m1(!) +m1(! + �)m0(! + �) = 0: (2.22)

For further details see Daubechies (Chapter 5, 1992) or Vidakovic (pp. 57{59, 1999).

One possible choice of m1 which satis�es equations (2.21) and (2.22) is

m1(!) = �e�i!m0(! + �):

This is equivalent to setting:

gn = (�1)nh1�n: (2.23)

This relation is commonly referred to as the quadrature mirror �lter relation. The

following example highlights how, given �, we can derive  using the relation given in

equation (2.23).

Example 2.2 Recall from Example 2.1 that for the Haar scaling function

hk =

8<: 2�1=2 for k = 0; 1;

0 otherwise:

Using (2.23), it follows that

gk =

8>>><>>>:
2�1=2 if k = 0;

�2�1=2 if k = 1;

0 otherwise:
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Hence

 (x) = �(2x)� �(2x� 1)

=

8>>><>>>:
1 if 0 � x < 1=2;

�1 if 1=2 � x < 1;

0 otherwise:

Daubechies' compactly supported wavelets

Daubechies (1988, 1992) introduced two classes of compactly supported wavelets,

having a pre-assigned degree of smoothness. These wavelets are commonly known

as Daubechies' extremal phase and least asymmetric wavelets respectively. As we shall

see later, such compactly supported wavelets are particularly useful when dealing with

discrete data, for the �lters h and g = fgkg associated with the scaling relations (2.9)

and (2.19) only have a �nite number of non-zero coe�cients.

The Daubechies' compactly supported wavelets are constructed using the usual

condition that jm0(!)j2 + jm0(! + �)j2 = 1. Additionally, we suppose that  has

N(� 2) vanishing moments. Thus, by Theorem 5.5.1 of Daubechies (1992), these

wavelets must also satisfy:

m0(!) =

�
1 + e�i!

2

�N+1

L(!) (2.24)

where L is a 2�-periodic continuous function having continuous derivatives up to order

N . Examples of Daubechies' compactly supported wavelets are displayed in �gure 2.3.

For details of the construction of such wavelets, we refer the reader to the excellent

summary provided by Vidakovic (Section 3.4.5, 1998) or for a more technical exposition,

Daubechies (Chapters 6{8, 1992).

2.4 The discrete wavelet transform

Frequently, functions or data sets are observed at a �nite number of discrete time

points. Thus a continuous representation such as that displayed in equation (2.3)

is unsuitable. Rather a discrete analogue is required. The discrete wavelet transform

(DWT), proposed by Mallat (1989a, b), connects wavelets with multiresolution analysis

to provide an e�cient scheme for performing a discrete, wavelet-based transformation.
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Figure 2.3: Mother wavelets of a selection of Daubechies' compactly supported
orthonormal wavelet bases.
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The basic idea of the scheme is to �lter the data sequence, using the �lters h and g

associated with the scaling equations (2.9) and (2.19), to obtain the wavelet coe�cients

at di�erent levels. Our description of the DWT follows Vidakovic (Chapter 4, 1999).

Suppose by way of introduction that a function, f , is observed at a dyadic number

of equally spaced points:

cJ;k = f(tk) for k = 0; : : : ; 2J�1 for some J 2 N ;

where tk = t0 + k� for some t0;� 2 R. A function f can then be constructed using

f�J;k(x)gk2Z as follows:

f(x) =
X
k

cJ;k�J;k(x):

Clearly f is an element of VJ . It therefore follows that multiresolution analysis may be

used to provide a wavelet decomposition of the data. To this end, consider a MRA

� � � � Vj�1 � Vj � Vj+1 � � � � :

As Vj = Vj�1 �Wj�1, any function vj 2 Vj may be represented uniquely as

vj(x) = vj�1(x) + wj�1(x)

where vj�1 2 Vj�1 and wj�1 2 Wj�1. Moreover, a straightforward substitution of

indices in equations (2.9) and (2.19) leads to

�j�1;k(x) =
X
l

hl�2k�j;k(x) and  j�1;k(x) =
X
l

gl�2k�j;k(x): (2.25)

It therefore follows that

vj(x) = Pjf = Pj�1f +Qj�1f

=
X
l

cj�1;l�j�1;l(x) +
X
l

dj�1;l j�1;l(x)

= vj�1(x) + wj�1(x):

The coe�cients fcj;lg and fdj;lg are commonly known as the smooth and detail

coe�cients of the transformation.
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Using the relations in (2.25), together with the orthogonality of the wj�1(x) and

�j�1;l(x) for all j and l, we obtain

cj�1;l = < vj; �j�1;l >

= < vj;
X
l

hk�2l�j;k >

=
X
k

hk�2l < vj; �j;k >

=
X
k

hk�2lcj;k:

Similarly, dj�1;l =
P

k gk�2lcj;k.

In summary, Mallat's scheme is implemented as follows: Given a function f

which is observed at 2J equally spaced time points ftigi=0;::: ;2J�1, set cJ;k = f(ti)

for i = 0; : : : ; 2J � 1. The DWT of the sequence is then obtained by recursively using

the relations

cj�1;l =
X
k

hk�2lcj;k (2.26)

and

dj�1;l =
X
k

gk�2lcj;k (2.27)

to obtain

(c0;d1;d2; : : : ;dJ�2;dJ�1); (2.28)

where dj = fdj;lg. This scheme is commonly referred to as Mallat's pyramid algorithm.

Figure 2.4 provides a schematic representation of this algorithm, whilst �gure 2.5

displays the DWT of the test function displayed in �gure 2.2. The structure in �gure

2.4 is very sparse, with only a few non-zero coe�cients in the region of the discontinuity.

For compactly supported wavelets, such as those proposed by Daubechies (1988,

1992), the summations in equations (2.26) and (2.27) are �nite | an attractive feature

which leads to fast computation.

Due to the orthogonality of the  j;k, the DWT algorithm is invertible. Consider

the coe�cients associated with approximation and detail spaces Vj�1 and Wj�1. The
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Figure 2.4: DWT decomposition of a discrete signal cj into scaling
function (smooth) coe�cients cj�1 and wavelet (detail) coe�cients
dj�1. This �gure is reproduced with permission from Nason &
Silverman (1994) (after Mallat, 1989b).
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Figure 2.5: DWT of the test function considered in �gure 2.2 using
Daubechies' Extremal Phase (N=3) wavelets.
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coe�cients fcj;kg associated with Vj may be obtained as follows:

cj;k = < vj; �j;k >

=
X
l

cj�1;l < �j�1;l; �j;k > +
X
l

dj�1;l <  j�1;l�j;k >

=
X
l

cj�1;lhk�2l +
X
l

dj�1;lgk�2l;

for < �j�1;l; �j;k >= hn�2k and <  j�1;l; �j;k >= gn�2k. Hence when performing the

DWT, we need only store the detail coe�cients fdjg and the coarsest scale smooth,

c0. See �gure 2.6 for a schematic representation of this reconstruction algorithm.

convolve with filter X

2

X

signal

detail

2

2

smoothing

bandpass

interpolator (put one zero between each sample)

next levelcj+1

cj

dj g

h

Figure 2.6: DWT reconstruction of a signal cj+1 from the scaling
function (smooth) coe�cients, cj, and wavelet (detail) coe�cients, dj.
This �gure is reproduced with permission from Nason & Silverman
(1994) (after, Mallat 1989b).

Aside: In many situations, for example when using Daubechies' compactly supported

wavelets, the convolutions in (2.26) and (2.27) are such that the �lter extends beyond

the range of the data. In other words, a boundary problem occurs. Several approaches

exist for dealing with this issue. One is to assume that the behaviour at the boundary

is symmetric; i.e. (y0; : : : ; yn�1jyn�2; yn�3; : : : ). Alternatively, one can assume that the

boundary is periodic: (y0; : : : ; yn�1jy0; y1; : : : ). A third option is to pad out the vector

using a constant, for example (y0; : : : ; yn�1j0; 0; : : : ). See Nason & Silverman (1994)

for a detailed account of the periodic and symmetric boundary schemes.
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An alternative approach to considering the DWT is in terms of operators. Following

Nason & Silverman (1995), let H and G represent convolutions with the �lters h and

g respectively. Thus

(Hs)k =
X
n

hn�ksn

whilst (Gs)k =
X
n

gn�ksn:

Further, let D0 denote a binary decimation operator which chooses every even element

of a sequence:

(D0s)j = s2j 8j 2 Z:

Then the DWT of a sequence of 2J equally spaced observations, fcJ;kgk=0;::: ;2J�1 may

be represented as follows for j = J � 1; : : : ; 1:

dj�1 = D0Gcj;
cj�1 = D0Hcj:

Note that both cj and dj are sequences of length 2j.

2.5 The non-decimated wavelet transform

Vidakovic (p. 145, 1998) provides a brief history of the stationary, or non-decimated

wavelet transform (NDWT) as it is more commonly referred to. Our description

of this transformation follows that of Nason & Silverman (1995) who consider its

implementation in a statistical context.

Recall from Section 2.4 that the DWT consists of a convolution followed by dyadic

decimation. Although an orthogonal transformation, one undesirable consequence of

the decimation step is that a simple integer shift in the coe�cient sequence leads to

a non-trivial change in the wavelet transform (see �gure 2.7 for example). In other

words, the DWT of a shifted data set is not a shift of the transform of the original

data.

The essence of the NDWT is \to `�ll in the gaps' caused by the decimation step in

the standard wavelet transform" Nason & Silverman (1995). This leads to a translation

equivariant (TE) representation of the data: a shift in the data manifests itself as a



22 Literature review

x

f

5 10 15

2
4

6
8

10
12

(a)

x

f

5 10 15

2
4

6
8

10
12

(b)

index

co
ef

fic
ie

nt
 v

al
ue

2 4 6 8

0
2

4

Finest scale Haar DWT coefficients 
 original sequence

(c)

index

co
ef

fic
ie

nt
 v

al
ue

2 4 6 8

-4
-3

-2
-1

0

Finest scale Haar DWT coefficients 
 shifted sequence

(d)

Figure 2.7: Example of the DWT's lack of translation-equivariance. Figure (a) depicts
a sequence of sixteen observations whilst (b) depicts the sequence rotated by a simple
unit shift. Figures (c) and (d) denote the �nest scale detail coe�cients, dJ�1, of the
Haar DWT for the original and shifted sequence respectively. Note how the �nest scale
detail coe�cients associated with the shifted sequence do not correspond to a simple
shift of the detail coe�cients associated with the original sequence.
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Figure 2.8: Example of the translation equivariance of the non-decimated wavelet
transform. Figure (i) represents the �nest scale non-decimated Haar wavelet
coe�cients, dJ�1, of the sequence displayed in �gure 2.7(a) whilst (ii) represents the
�nest scale coe�cients, dJ�1, of the shifted sequence in �gure 2.7(b). Note how the
coe�cients in (ii) are a unit shift of the coe�cients displayed in (i).

shift in the (non-decimated) wavelet coe�cients (see �gure 2.8). An additional bene�t

of the NDWT is that it provides equal numbers of equi-spaced wavelets at each scale,

thus providing more information than the DWT at medium and low resolution levels.

However, the price we pay for these features is that the NDWT provides a redundant,

non-orthogonal representation of the original data.

Following Nason & Silverman (1995), the non-decimated wavelet transform may be

implemented as follows:

Suppose we have a sequence ~cJ = fc0; : : : ; cN�1g where N = 2J for some

J 2 N . Then apply the �lters H and G to cJ , but do not decimate the

resulting coe�cients. Thus we obtain the vectors

~cJ�1 = H~cJ and ~dJ�1 = G~cJ ; (2.29)

each of length N . ~cJ�1 represents the �nest scale non-decimated smooth

whilst ~dJ�1 represents the �ne scale detail.

Next let Z denote the operator which pads out a sequence with zeros as

follows:

(Zx)2j = xj and (Zx)2j+1 = 0:



24 Literature review

In other words, Z inserts a zero between each element of a sequence fxg.
De�ning the �lters H[r] and G[r] to have weights Zrh and Zrg respectively,

set

~cj�1 = H[J�j]~cj and ~dj�1 = G [J�j]~cj;

for j = J � 1; : : : ; 1.

The collection of vectors f~c0; ~d1; ~d2; : : : ; ~dJ�1g represents the non-decimated wavelet

transform of cJ .

It is perhaps instructive to relate the NDWT to the DWT. Recall that within each

level of the DWT a dyadic decimation operation occurs, retaining only even elements

of a sequence. Equivalently, an operator which retains odd elements of a sequence

could be used. Thus, at each step of the DWT we are faced with two equally viable

decimation options. This gives rise to the idea of an �-decimated discrete wavelet

transform:

Let � be an integer whose binary representation is given by

� = �0�1 : : : �J�1:

Then for each level j of a discrete wavelet transformation, let �j denote

whether to retain odd or evenly indexed elements of a sequence. See Nason

& Silverman (1995) or Vidakovic (Section 5.5.1, 1999) for further details of

this transform.

Nason & Silverman (1995) observe that the NDWT contains the coe�cients of the

�-decimated DWT for each value of �.

2.5.1 Other wavelet transforms

Wavelet packets In the DWT proposed by Mallat (1989b), the transform proceeds

from one level to the next by decomposing the smooth sequences, cj. The DWT

therefore provides a progressive analysis of the low-frequency smooths. However, the

most signi�cant information contained within a signal is frequently contained within

the middle or high frequencies. Thus, an alternative decomposition which provides a

suitably re�ned partition of these frequency bands is desirable.
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Such a decomposition is a�orded by the wavelet packet transform introduced by

Coifman, Meyer & Wickerhauser (1992). This transform is implemented by not only

decomposing the smooth sequences, cj, but also the detail sequences, dj. This provides

a multitude of wavelet packets. If all such packets are included, the transformation is

redundant. However various approaches can be used to select an orthogonal multiscale

representation based upon wavelet packets. The simplest of these is the \vertical line

rule" | see Vidakovic (Section 5.3.2, 1999) for details. A more re�ned approach is

a�orded by the \Best Basis" algorithm proposed by Coifman & Wickerhauser (1992).

The lifting scheme Sweldens (1996) introduces the lifting scheme | an alternative

approach to constructing wavelets which exploits the connection between the �lters h

and g. The approach also permits the construction of second-generation, biorthogonal

wavelets (see Sweldens (1997)). Perhaps one of the most interesting features of the

scheme is that it can be used to provide a multiscale decomposition of irregularly

spaced data and general meshes. See Daubechies et al. (1999) for further details.

2.6 Multidimensional wavelet transforms

We conclude our review of wavelet theory by providing a brief introduction to

multidimensional wavelet transforms. Our discussion follows that of Daubechies

(Chapter 10, 1992), focusing on orthogonal wavelet representations in two-dimensions

| the situation in higher dimensions being analogous. We restrict our discussion

to the separable multiresolution approximations of L2(R2) considered by Daubechies

(1988) and Mallat (1989b). However, it is important to note that other (non-separable)

approaches to the construction of two-dimensional wavelets exist. See, for example

Meyer (1992) or Daubechies (1992).

Note that conventionally, two-dimensional scaling functions and wavelets are

denoted by �(x; y) and 	(x; y). We break with this, representing such functions by

�(x; y) and  (x; y) respectively, reserving � and 	 to represent autocorrelation scaling

functions and wavelets (see Section 3.5).
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2.6.1 Two-dimensional multiresolution analysis

We begin by considering the tensor product of two, one-dimensional multiresolution

analyses. Thus, de�ne the spaces Vj, for j 2 Z, by

V0 = V0 
 V0 = spanfF (x; y) = f(x)g(y) : f; g 2 V0g

and

F (2jx; 2jy) 2 Vj () F (x; y) 2 V0:

Then the Vj form a multiresolution ladder in L2(R2) such that

� � � � V�2 � V�1 � V0 � V1 � V2 � � � �

and

\
j2Z

Vj = f0g and
[
j2Z

Vj = L2(R2):

Further, assume that there exists a scaling function � 2 V0 such that its integer

translations span V0 and the set f�(� � k)gk2Z forms an orthonormal basis of V0. Then

the collection of

�nx;ny(x; y) = �(x� nx)�(y � ny) for nx; ny 2 Z

forms an orthonormal basis of V0. Setting

�j;nx;ny(x; y) = �j;nx(x)�j;ny(y)

= 2j�(2jx� nx; 2
jy � ny) for nx; ny 2 Z

it follows that f�j;nx;ny(x; y)gnx;ny2Z constitutes an orthonormal basis of Vj.

Recalling the multiresolution analysis construction in one dimension, for each j 2 Z

let Wj be the orthogonal complement of Vj in Vj+1. Thus,

Vj+1 = Vj+1 
 Vj+1

= (Vj �Wj)
 (Vj �Wj)

= Vj 
 Vj � f(Wj 
 Vj)� (Vj 
Wj)� (Wj 
Wj)g
= Vj �Wj:
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The complement space, Wj, consists of three parts, the orthonormal bases of these

portions being given by:

 j;nx(x)�j;ny(y) for Wj 
 Vj;

�j;nx(x) j;ny(y) for Vj 
Wj

and  j;nx(x) j;ny(y) for Wj 
Wj:

Consequently, we are led to de�ne three wavelets for this separable construction:

 h(x; y) = �(x) (y)

 v(x; y) =  (x)�(y)

 d(x; y) =  (x) (y):

9>>>=>>>; (2.30)

As f l
j;n(x) : n 2 Z

2; l = h; v; or dg constitutes an orthonormal basis of Wj for all

j 2 Z, it therefore follows that

f l
j;n(x) : j 2 Z;n 2 Z

2 and l = h; v; or dg

forms an orthonormal basis of �j2ZWj = L2(R2).

Note that the superscripts h, v and d in equation (2.30) denote \horizontal",

\vertical" and \diagonal" respectively. The motivation behind this labelling convention

is that given an image, each wavelet tends to extract the associated features from a

speci�c direction. For an instructive example, see �gure 10.3 of Daubechies (1992).

Further details of separable wavelet bases are provided by Mallat (Section 7.7, 1999)

and Vidakovic (Section 5.7, 1999).

2.6.2 Discrete wavelet transforms in two dimensions

Mallat (1989b) proposes a two-dimensional analogue of the DWT founded upon the

separable wavelet construction detailed above. Suppose we have a square image, CJ ,

of size 2J � 2J for some J 2 N. Then the formulae for calculating the smooth and
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detail coe�cients for j = J � 1; : : : ; 1 are given by

Cj�1
u;v =

X
m

X
n

hm�2uhn�2vCj
m;n;

Dh;j�1
u;v =

X
m

X
n

gm�2uhn�2vCj
m;n;

Dv;j�1
u;v =

X
m

X
n

hm�2ugn�2vCj
m;n

and Dd;j�1
u;v =

X
m

X
n

gm�2ugn�2vCj
m;n:

From an implementational perspective, the algorithm is structured as follows (see �gure

2.9 for a graphical representation):

1. The rows of CJ are convolved with the one dimensional �lters h and g, retaining

alternate columns. This results in two matrices, each of size 2J � 2J�1.

2. The columns of the resulting matrices are then convolved with h and g, retaining

alternate rows. This results in four matrices, each of size 2J�1 � 2J�1. These

represent the level J � 1 smooth, horizontal, vertical and diagonal details.

The above is repeated for each stage of the decomposition.

As the DWT is orthogonal, it is possible to invert the above algorithm (see �gure

2.10). The algorithm is similar to that considered in the one dimensional case. See

Mallat (1989b) or Nason & Silverman (1994) for further details.

The NDWT has a similar extension to two dimensions. Suppose that our original

data, CJ , is once more a matrix of size 2J � 2J for some J 2 N and construct the

�lters H[r] and G[r] as in Section 2.5. Assuming that the NDWT has reached level j,

the level j � 1 coe�cients are obtained by �rstly convolving the rows of Cj with the

zero-padded �lters, H[J�j] and G[J�j], retaining all columns. The columns of the two

resulting 2J � 2J matrices are subsequently convolved with H[J�j] and G[J�j], again

retaining all coe�cients. The four resulting matrices represent the level j � 1 smooth

and horizontal, vertical and diagonal details.

Figures 2.11 and 2.12, below, display the �nest scale detail coe�cients of a Haar

DWT and NDWT of the Lennon image respectively. Both transforms are able to

identify regions of change which exist within the image, for example around the glasses

and nose, and can extract features which lie in certain directions, such as the horizontal
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Figure 2.9: Schematic representation of the two dimensional DWT
algorithm (after Mallat (1989b)). Figure reproduced with permission
from Nason & Silverman (1994).
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Figure 2.10: Schematic representation of the inverse 2D DWT (after
Mallat (1989b)). Figure reproduced with permission from Nason &
Silverman (1994).
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structure in the region of the mouth. Note that the size of the �nest scale detail images

returned by the DWT are half those of the original image, whereas the �nest scale

NDWT detail images are precisely the same size as the original.

�
�
�
���

-

@
@
@
@@R

Figure 2.11: Finest scale wavelet coe�cients of a Haar DWT of the Lennon

image. The upper right hand image depicts the vertical coe�cients, the middle

image depicts the horizontal coe�cients whilst the lowest image depicts the

�nest scale coe�cients in the diagonal direction.

Aside The two-dimensional NDWT is implemented in WaveThresh using the

command imwd( : : : , type="station"). Herrick (2000) notes this function returns

the horizontal and vertical coe�cients the wrong way around. An additional bug found

with this code is that the implementation of the NDWT does not pad out the �lters

with zeros. Rather, it simply applies the �lters h and g recursively. Corrected code

for this function is available at

http://www.stats.bris.ac.uk/~maiae/LS2W.
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Figure 2.12: Finest scale wavelet coe�cients of a Haar NDWT of the Lennon
image. The upper right hand image depicts the vertical coe�cients, the middle
image depicts the horizontal coe�cients whilst the lowest image depicts the
�nest scale coe�cients in the diagonal direction.
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2.7 Wavelets in time series analysis

2.7.1 Introduction

The sparse, location-scale decomposition of structure and ability to represent signals

with sudden changes has made wavelets an appealing tool for statisticians and the

focus of much recent research. An early example of the use of wavelets in statistics

appears in a paper by Donoho & Johnstone (1994), who consider the application of

wavelets to the problem of recovering a signal in the presence of noise. More recently,

wavelet methods have been applied to:

1. Density estimation (Hall & Patil, 1995; Donoho et al., 1996; Penev & Dechevsky,

1997; Vannucci & Vidakovic, 1997; Herrick, Nason & Silverman, 2002);

2. Change point problems (Ogden & Parzen, 1996a,b);

3. Hypothesis testing (Fan, 1996);

4. Hazard rate estimation (Antoniadis, Gr�egoire & Nason, 1999);

5. Spectral estimation of stationary processes (von Sachs & Schneider, 1996; Gao,

1997; Walden, Percival & McCoy, 1998);

6. Estimation of evolutionary spectra (von Sachs & Schneider, 1996; Neumann &

von Sachs, 1997);

Stimulating reviews of the application of wavelet methods in statistics are provided

by Antoniadis (1997), Morettin (1997), Vidakovic (1999) and Abramovich, Bailey &

Sapatinas (2000).

The application of wavelets in time series analysis has also seen a surge in interest

over the past few years, as can be seen in the review article of Nason & von

Sachs (1999) and the recent monograph of Percival & Walden (2000). For example,

Chiann & Morettin (1999) consider the application of wavelets to the spectral analysis

of stationary time series, developing a wavelet periodogram based on orthonormal

wavelets. The results presented in their paper provide an alternative representation

to a frequency analysis of a time series. However, as Vidakovic (1999) observes, \the
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best one can do for stationary processes is already contained in the classical Cram�er

spectral representation".

The wavelet variance, which has been extensively studied by Percival, Walden and

collaborators, provides an alternative measure of the structure contained within a time

series (see, for example, Percival &Walden (Chapter 8, 2000) and references therein). It

is a scale-based measure, formed by calculating the variance of the wavelet coe�cients

of a time series at a given scale. For stationary time series, this measure permits

a scale-based decomposition of the process variance, related to the classical spectral

decomposition using the Fourier-based spectral density (see Percival & Walden (p. 296,

2000) for further details).

More recently, Nason and collaborators have been investigating the potential of

using wavelet packet transforms in time series analysis. See for example Nason &

Sapatinas (2001), Nason, Sapatinas & Sawczenko (2001) and Hunt & Nason (2002).

The problem which they consider is the modelling of a response time series, fYtg, in
terms of an explanatory time series, fXtg. Having transformed the explanatory series

using a wavelet packet transform, standard statistical modelling techniques such as

CART, multiple regression or GLMs are then applied to establish which packets are

useful for modelling the fYtg. This approach is not founded upon a formal stochastic

model.

In this section, we focus on the locally stationary time series modelling approach

proposed by Nason et al. (2000). Their paper builds upon the work of Nason &

Silverman (1995) who suggested the use of wavelets as an exploratory technique for

producing local spectral density estimates of time series data.

2.7.2 Locally stationary time series models

Nason et al. (2000) consider the statistical analysis of locally stationary time series

consisting of N (= 2J) data points. Broadly speaking, the term locally stationary

means that on close-range inspection, such a series would appear to be stationary (see

Nason & von Sachs 1999). Thus if we can collect su�cient information in the region

of local stationarity, a sensible estimate of its statistical properties may be obtained.

A brief review of the literature on modelling locally stationary processes is provided

by Nason & von Sachs (Section 3, 1999). One approach, proposed by Priestley (1965,
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1981) is to generalise the classical Cram�er representation of a stationary stochastic

process fXtgt2Z,

Xt =

Z �

��
A(!)ei!t d�(!)

where d�(!) is an orthonormal increments process, to allow for a time varying

amplitude A(!; t) which changes slowly in a neighbourhood of t. Dahlhaus (1997)

considers an interesting alternative, again using the set of harmonics fei!t : ! 2
[��; �]g. The key to Dahlhaus' revolutionary approach lies in his reformulation of

the problem of estimating the statistical properties of the time series. Instead of

supposing that fA(!; t)g is observed on a grid t 2 f1; : : : ; Tg, Dahlhaus re-scales

the problem with respect to the length of the time series, T . Thus as T increases,

we observe A on an increasingly �ner grid. This permits the collection of increasing

amounts of information about the local structure of fA(!; t=T )g as T increases. Hence,

asymptotically, the model structure may be identi�ed.

The approach proposed by Nason et al. (2000) replaces the harmonics fei!tg by

compactly supported wavelets | thus decomposing the structure contained within a

time series by location and scale. Prior to de�ning the model proposed by Nason et

al., we review the basic building blocks of their locally stationary wavelet processes:

the discrete wavelet.

2.7.3 Discrete wavelets and their autocorrelations

Discrete wavelets are founded upon the low and high pass quadrature mirror �lters

h and g used in the construction of Daubechies' compactly supported wavelets

(Daubechies 1988, 1992). Following Nason et al. (2000) we de�ne such wavelets as

follows:

De�nition 2.5

Let fhkgk2Z and fgkgk2Z be two �lters related by the quadrature mirror �lter relation

of equation (2.23). Furthermore, for j 2 N , de�ne the discrete wavelet length as

Lj = (2j � 1)(Nh � 1) + 1;

where Nh is the number of non-zero elements contained within fhkg. Note that trivially,
L1 = Nh. The discrete wavelets, f jg, associated with these �lters are compactly
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supported, of length Lj, and are de�ned as follows:

 j =
�
 j;0; : : : ;  j;(Lj�1)

�
; (2.31)

where the elements of this wavelet are de�ned recursively by

 1;n =
X
k

gn�2k�0;k = gn; for n = 0; : : : ; L1 � 1; (2.32)

and  j;n =
X
k

hn�2k j�1;k; for n = 0; : : : ; Lj � 1 when j > 1: (2.33)

Here �0;k is the Kronecker delta. We de�ne the quantity  j;k(�) to be  j;k�� , the

(k� �)th element of the vector  j. A related set of discrete father wavelets, �j, can be

constructed similarly, replacing the gn�2k and gn in equation (2.32) by hn�2k and hn

respectively.

Note that a modi�ed form of the usual Meyer-Mallat scale numbering scheme is adopted

here. The scheme which we use is based upon that which is proposed by Nason et al.

(2000), whereby the time series data live on scale j = 0, the �nest resolution wavelet

detail live on scale j = 1 whilst coarser resolution wavelet detail exist on scale j = J ,

for J = log2N 2 N .

As we review below, Nason et al. (2000) use discrete non-decimated wavelets to

construct locally stationary stochastic processes. The autocorrelation functions of

discrete wavelets are required to obtain a measure of the local autocovariance structure

of these processes. These are de�ned as follows:

De�nition 2.6

Let j 2 N and � 2 Z. Then the discrete autocorrelation wavelet, 	j(�), is de�ned

by

	j(�) =

Lj�1+minf0;�gX
k=maxf0;�g

 j;k j;k�� : (2.34)

The discrete autocorrelation father wavelet, �j(�), is de�ned by replacing  by

� in (2.34).

Autocorrelation wavelets have several interesting and well-known properties. For

example, they are compactly supported, positive semi-de�nite functions de�ned on

[1�Lj; : : : ; Lj�1] and are symmetric about � = 0. For further details see Nason et al.

(2000).
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Finally, we de�ne the inner product matrix of discrete autocorrelation wavelets.

De�nition 2.7

Let J 2 N . The J-dimensional discrete autocorrelation wavelet inner product

matrix, AJ , is de�ned by

AJ = (Aj;k)j;k2f1;::: ;Jg ; (2.35)

where,

Aj;k = h	j;	ki :=

minfLj ;Lkg�1X
�=1�minfLj ;Lkg

	j(�)	k(�) (2.36)

= 1 + 2

minfLj ;Lkg�1X
�=1

	j(�)	k(�): (2.37)

2.7.4 Model speci�cation

Having summarised the basic building blocks used in this modelling approach, we now

de�ne the locally stationary wavelet model proposed by Nason et al. (2000).

De�nition 2.8

A locally stationary wavelet (LSW) process is a sequence of doubly indexed

stochastic processes fXt;Tgt=0;::: ;T�1; T = 2J � 1 having the following representation:

Xt;T =
JX
j=1

X
k

wj;k;T  jk(t) �jk; (2.38)

where f�jkg are a mutually orthonormal sequence of random variables having zero

mean and variance �2, f jk(t)gjk is a discrete non-decimated family of wavelets for

j = 1; : : : ; J(T ), k = 0; : : : ; T � 1, whilst the wj;k;T quantify the energy contribution

made to the process at location k and scale j.

The above model permits a local representation of structure. To quantify how the

size of the amplitudes, fwj;kg, change over time, Nason et al. embed their model into

the Dahlhaus (1997) framework, relating the amplitudes to a collection of Lipschitz-

continuous functions, fWj(z)g, for z 2 (0; 1). These, in turn, regulate the degree of

local stationarity of Xt;T . See Nason et al. (2000) for further details.
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2.7.5 The evolutionary wavelet spectrum

Recall from traditional time series analysis that the classical spectrum quanti�es the

contribution to variance in a stationary stochastic process over frequency (see, for

example, Priestley (1981) or Brockwell & Davis (1991)). Analogously, the following

evolutionary wavelet spectrum quanti�es the contribution to variance within a LSW

process over (rescaled) time, z = k=T , and scale j.

De�nition 2.9

Let Xt;T be a LSW process. The evolutionary wavelet spectrum (EWS) is de�ned

in terms of Wj(z) and is approximated by

Sj(z) � jWj(z)j2 (2.39)

for j = 1; : : : ; J(T ) and z 2 (0; 1).

The LSW model thus delivers a time-scale decomposition paralleling the time-

frequency decomposition of Dahlhaus (1997). Additionally, a measure of the local

autocovariance may be associated with the EWS. This quantity is de�ned using the

discrete autocorrelation wavelets of De�nition 2.6 as follows:

De�nition 2.10

De�ne the local autocovariance (LACV) of an LSW process with EWS fSj(z)g by

C(z; �) =
1X
j=1

Sj(z)	j(�) for � 2 Z; z 2 (0; 1):

The wavelet periodogram, I(z), formed by squaring empirical non-decimated discrete

wavelet transform coe�cients turns out to be a biased estimate of the EWS (Proposition

4, Nason et al. (2000)):

E (I(z)) = AJS(z) +O(T�1); 8z 2 (0; 1): (2.40)

Here AJ is the inner product matrix from De�nition 2.7, S(z) � fSj(z)gj=1;::: ;J is the

EWS and I(z) � fIl;[zT ]gl=1;::: ;J is the wavelet periodogram. The bias is due to the

redundancy of the non-decimated wavelet transform. As can be seen in the simulated

example below, the bias spreads power across scales. However, it may be corrected

by premultiplying I by A�1J . It also transpires that the wavelet periodogram is an

inconsistent estimator of the EWS (Proposition 4, Nason et al. (2000)) | a result which
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parallels the classical approach to time series analysis. Thus, to obtain consistency, the

estimator needs to be smoothed (see Section 2.8 for further details).

Example 2.3 An example of the bias spreading power across scales can be seen in

�gure 2.13 below. This is based on an EWS of the form:

Sj(z) =

8>>>>>>>>><>>>>>>>>>:

1 for j = 1; z 2 (0; 1=4)

1 for j = 2; z 2 (1=4; 1=2)

1 for j = 3; z 2 (1=2; 3=4)

1 for j = 4; z 2 (3=4; 1)

0 otherwise.

(2.41)

Figure 2.13 (i) shows a realisation of a process possessing EWS Sj(z), whilst �gure 2.13

(ii) depicts the true, underlying, wavelet spectral structure. An estimate of the

(uncorrected) wavelet periodogram for the series appears in �gure 2.13 (iii). Each

line of the �gure denotes biased estimates of Sj(z). The corrected (unbiased) EWS

estimate appears in �gure 2.13 (iv). Comparing (iii) to (iv) shows how power is spread

in the biased estimate (iii) and that (iv) is a better estimate of (ii) than (iii).

2.8 Wavelet shrinkage and thresholding

The problem which we consider here is the standard non-parametric regression problem

of trying to recover a signal in the presence of noise. Suppose we have N (= 2J) noisy

samples of a function f :

yi = f(ti) + �i; for i = 1; : : : ; N (2.42)

where ti = (i � 1)=N and the �i are independent, identically distributed N(0; �2)

random variables. Our goal is to estimate the unknown vector f = (f(t1); : : : ; f(tn)).

The wavelet shrinkage approach to this problem consists of three steps:

Step 1: Decompose the data using the DWT.

Step 2: Modify the coe�cients in some way, removing the e�ects of the noise.

Step 3: Invert the modi�ed wavelet coe�cients to obtain an estimate of f .
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Figure 2.13: (i) A realisation of a LSW process with EWS given in Section 2.3; (ii)
True underlying EWS for the realization given in (i); (iii) Mean wavelet periodogram
taken over 100 realizations of process with EWS given in (ii); (iv) Mean corrected EWS
estimate taken over 100 realizations of process with EWS given in (ii).

Clearly, the key stage in the above is the modi�cation of the wavelet coe�cients.

A popular coe�cient modi�cation approach, advocated by Donoho & Johnstone

(1994) and Donoho et al. (1995) is thresholding. This method is motivated by

two important properties of the DWT. Firstly, as a consequence of the vanishing

moments property (condition W3 of De�nition 2.2), a smooth function f is sparsely

represented in the wavelet domain. Furthermore, as wavelets are well localised in time,

a discontinuity in f will only result in large wavelet coe�cients, dj;k, for those values

of k which correspond to the location of the feature. Thus many functions, including

those with a �nite number of discontinuities are sparsely represented in the wavelet
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domain.

The second important feature of the DWT is that under the model (2.42), all

wavelet coe�cients will be contaminated by noise. More precisely, as the f�igi=1;::: ;N

are iid Gaussian, then the wavelet coe�cients are also contaminated by independent

Gaussian noise. The wavelet coe�cients obtained from the Gaussian-corrupted fyig
are thus related to the wavelet coe�cients of the true f(ti), fdj;kg, as follows:

~dj;k = dj;k + �j;k:

Here ~dj;k denotes the corrupted signal wavelet coe�cients and the �j;k are independent

Gaussian noise. This feature arises as a consequence of the orthogonality of the DWT.

The essence of thresholding is to determine which wavelet coe�cients are noise and

which are signal. The two most common thresholding policies are known as hard and

soft. Hard thresholding removes all coe�cients which are smaller than a threshold, � :

�H( ~dj;k; �) = ~dj;kI(j ~dj;kj > �)

whilst soft thresholding is de�ned as follows:

�S( ~dj;k; �) = sgn( ~dj;k)(j ~dj;kj � �)I(j ~dj;kj > �):

This second threshold takes into consideration the fact that all wavelet coe�cients are

contaminated by noise, shrinking larger coe�cients by � and removing the smallest

coe�cients.

The choice of threshold, � , is fundamental to the success of this denoising approach.

If it is set too high, then signal structure will be lost. Alternatively, if � is set too low,

then noise will be present in the resulting estimate. Below, we consider two of the most

popular choices of threshold:

The universal threshold

Many di�erent schemes have been proposed for choosing the threshold level � . For

stimulating reviews see Antoniadis (1997), Abramovich et al. (2000) or Vidakovic

(Chapter 6, 2000). Possibly the most famous threshold of all is the universal threshold,

proposed by Donoho & Johnstone (1994). This is given by

�univ = �
p
2 logN;
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where the noise variance, �, invariably needs to be estimated from the data. Donoho

& Johnstone (1994) suggest that � be estimated using the median absolute deviation

of the �nest level wavelet coe�cients divided by 0.6745. This constant is simply the

median of a standard normal variable X � N(0; 1).

The universal threshold is a noise suppressor and can be motivated by the following

argument: suppose we have a sequence of iid white noise, Zi � N(0; 1) for i = 1; : : : ; N .

Then, as a consequence of a result due to von Mises, as n!1,

P (max
i
jZij >

p
2 logn)! 0:

Thus, all the pure noise coe�cients will be thresholded to zero with high probability.

A consequence of this feature is that the universal threshold tends to over-smooth in

practice.

SURE threshold selection

An alternative threshold, proposed by Donoho & Johnstone (1995) is based upon the

minimization of Stein's unbiased risk estimator (SURE). In considering the problem

of estimating the mean of a multivariate normal distribution, Stein (1981) proves the

following result:

Theorem 2.1 (Theorem 1, Stein 1981)

Let di � N(�i; 1) for i = 1; : : : ; N be iid random variables and let b� be an estimator of

� of the form b�(d) = d+ g(d). If g = fgigNi=1 is weakly di�erentiable, then

E �kb� � �k = N + E �

�kg(d)k2 + 2rg(d)	 ;
where rg =

PN
i=1

@
@di
gi.

Recall that the soft threshold is de�ned as

�S( ~di; �) = sgn( ~di)(j ~dij � �)I(j ~dij > �):

This may be re-written as

�S( ~di; �) = ~di � sgn( ~di)min(j ~dij; �):

Thus, using Stein's result,

SURE(�; ~d) = N � 2
NX
i=1

I(j ~dij � �) +
NX
i=1

min(j ~dij; �)2
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is an unbiased estimate of the risk E �kb� � �k. This motivates the following choice of

threshold

�SURE = argmin0���p2 logN SURE(�; ~d):

The SureShrink procedure adopted by Donoho & Johnstone (1995) is in fact a

hybrid thresholding approach, utilising both the universal and the SURE thresholds.

If the wavelet representation at a given level is sparse, then the universal threshold is

selected. Otherwise, if the representation is not too sparse, the level-dependent SURE

threshold, �SUREj , is used. The motivation behind this approach is that in situations

where the representation is sparse, noise will swamp the information contributed to

SURE, resulting in over-smoothing.

Several other popular threshold policies exist. See for example Goel & Vidakovic

(1995), Nason (1996), Abramovich & Benjamini (1996) and Abramovich, Sapatinas &

Silverman (1998). Vidakovic (Section 6.6, 1999) provides an interesting review of these

and other approaches.

Thresholding correlated data

The thresholding schemes considered above focus on the situation where the noise is

assumed to be uncorrelated. Johnstone & Silverman (1997) consider an alternative

scenario, supposing that the noise process is correlated and stationary. They highlight

two interesting features of the wavelet transform, namely that:

1. within each level, j, the autocorrelation of the dj;k decays rapidly,

2. there tends to be little, or even no correlation between levels.

In other words, the wavelet transform decorrelates data. As a consequence, Johnstone

& Silverman (1997) propose the use of a level-dependent thresholding scheme in the

case of correlated noise.

Smoothing the wavelet periodogram

Recall from Section 2.7.5 that the local wavelet periodogram is an inconsistent estimator

of the local wavelet spectrum. Thus, to obtain consistency we must smooth this
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estimator. In this section, we review the application of wavelet thresholding to this

problem, considering the contribution of Nason et al. (2000).

For each �xed scale, j, Nason et al. (2000) consider using non-linear wavelet

thresholding to smooth the fbSj(z) = Ij;[zT ]gz2(0;1), before applying the inverse of

the inner product matrix, A, to achieve an asymptotically unbiased estimator of the

wavelet spectrum. The motivation behind this approach is that the problem of applying

wavelet shrinkage to �2-distributed random variables results in a considerably simpler

asymptotic analysis than the alternative of correcting by A�1 prior to smoothing.

Furthermore, the problem of smoothing �2-distributed random variables via wavelet

thresholding has also been studied in the context of both estimating the classical

periodogram and Dahlhaus' evolutionary spectrum. See, for example Neumann and

von Sachs (1995, 1997), von Sachs & Schneider (1996) and Gao (1997).

The smoothing scheme is implemented using an orthonormal second-stage wavelet

basis of L2([0; 1]), the �rst-stage wavelet basis being that which is used in the modelling

of the process. Having transformed a given wavelet periodogram, Ij;[zT ], into the

wavelet domain, the resulting wavelet coe�cients, fbdl;mg, are denoised via non-linear

thresholding. Finally, the smoothed EWS estimator, ~Sj(z), is obtained by inverting

the thresholded wavelet coe�cients.

Drawing on the work of Neumann & von Sachs (1995), Nason et al. (2000) advocate

the use of a \universal" threshold

� 2(l; m; j) = Var(bdl;m) log2(T )
for Gaussian LSW processes. This threshold takes the heavier tails of the �2-

distribution into account. For non-normality, techniques such as those proposed by

Neumann & von Sachs (1997) using the threshold

� 2(l; m; j) = Var(bdl;m) log(T )
are advocated.

The logarithmic transformation of the periodogram has the e�ect of stabilising

the variance of the periodogram coe�cients, pulling their distribution closer to

normality. See for example, Stuart, Ord & Arnold (Sections 32.38{32.40, 1999).

Thus an alternative approach to the problem of obtaining consistency is to consider
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smoothing the log-wavelet periodogram. This permits the use of a universal threshold

for (asymptotically) normally distributed data and parallels existing techniques for

smoothing the classical (e.g. Priestley (1981)) and evolutionary periodograms (e.g. von

Sachs & Schneider (1996)).

2.9 Summary

This chapter has summarised the foundations of wavelet theory required for the work

presented in this thesis. Having introduced the concept of a wavelet and multiresolution

analysis, we considered the discrete and non-decimated wavelet transforms. Both

transforms provide a localised, scale-based decomposition of the information contained

within a signal. However, whilst being an orthogonal transform, it is important to

appreciate that the discrete wavelet transform is not translation equivariant. In other

words, a simple shift in a data sequence does not generally manifest itself as a simple

coe�cient shift in the transform domain. By contrast, the non-decimated wavelet

transform is translation equivariant and also provides more information than the

discrete wavelet transform at medium and low resolution levels. The price we pay for

this additional information is a non-orthogonal representation of the original sequence.

The second half of the chapter focused on recent research which has applied wavelets

to time series analysis and non-parametric regression. Particular attention was paid

to the work of Nason et al. (2000), which introduced the concept of locally stationary

wavelet processes to time series analysis. In Chapter 3, we will extend this modelling

approach to two-dimensions, proposing a multiscale model of the covariance structure

contained within locally stationary data which lie on a regular grid.
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Locally stationary wavelet processes

In this chapter we propose and investigate a model of the covariance structure for

random �elds which lie on a regular grid. Traditional techniques of modelling the

covariance of such processes have dealt with situations where one can model the

covariance, CX(y; z) = Cov(Xy; Xz), as a function of z � y or kz � yk. We depart

from such approaches and instead consider the situation where CX(y; z) is a function

of both y and z. To model this alternative form, we move from using a (global) Fourier

decomposition of the covariance to a localised decomposition involving a set of non-

decimated wavelets. Proofs of results stated in this chapter may be found in Appendix

A.

3.1 Motivation

Suppose, by way of introduction, that we have a random �eld which lies on a regular

grid, fXrgr2Z2, for which we wish to estimate the covariance, Cov(Xr; Xs) = 
r;s. The

covariance structure could take many di�erent forms, one of the simplest being that the

�eld is (second-order) stationary : 
r;s = 
(r� s) 8r; s. In other words, the covariance

is a function of the vector di�erence between the two locations. As such, given a

realisation of a stationary process, fxrg where r = (r; s) and r = f1; : : : ; Rg; s =

f1; : : : ; Sg, the covariance may be estimated by:

b
(�1; �2) = 1

RS

R��1X
r=1

S��2X
s=1

xr;sxr+�1;s+�2:
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Should the size, i.e. the number of process observations R � S, increase, this estimate

will improve (see Priestley (Section 9.7, 1981) for further details).

Alternatively, the process may be intrinsically stationary. In other words the

variance is a function of the vector di�erence between two locations: Var(Xr �Xs) =

2�(r� s) 8r; s. Following Cressie (1991), let

N(� ) = f(r; s) : r� s = � ; for r; s and � 2 Z
2g

and set jN(� )j to be the number of distinct pairs contained within N(� ). Then

given a realisation, fxrg, of an intrinsically stationary process, the method of moments

estimator of the variogram is given by

2b� = 1

jN(� )j
X
N(� )

(xr � xs)
2:

Conversely, we may suspect that the covariance structure changes as a function of

location { i.e. that

Cov(Xr; Xs) = 
(r; s); 8r; s 2 Z
2

where 
(r; s) = 
(t;u) if, and only if, r = t and s = u. In this case, the �eld may

possess a highly non-stationary form. Furthermore, as the only information about


(r; s) comes from the single observed xr and xs, there is little hope of obtaining a

reliable estimate of the covariance from a single realisation of the process.

The �nal form of covariance which we consider is to suppose that the structure

changes slowly as a function of location. Heuristically speaking, such processes appear

to be stationary on close range inspection. Thus, the covariance around a particular

location, r, may be estimated by pooling information from thoseXr close to r, assuming

that su�cient data can be collected. Fields which exhibit this slowly varying structure

are what we term to be locally stationary random �elds.

Many of the scenes and images which we encounter in our everyday lives, although

highly complex processes, possess a locally stationary, multi-scale structure. For

example, �gure 3.1, is characterised by �ne scale detail in the region of the hair, edges

(i.e. discontinuities) de�ning the dominant features of the face and a gradual change of

lighting across the skin. Clearly, the variance structure within such an image is neither
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stationary nor does it appear to be a rapidly varying function of location. Rather, it

is locally stationary.

Figure 3.1: An image of a face. Image provided by Unilever Research.

In recent years there have been a number of developments in the modelling of

non second-order stationary spatial processes. See for example Haas (1990), Sampson

& Guttorp (1992), Loader & Switzer (1992), Le & Zidek (1992), Le, Sun & Zidek

(1997) and Higdon, Swall & Kern (1999). Of these, only Haas (1990) and Higdon

et al. (1999) provide methods for �tting a non-stationary model using a single

realisation. Furthermore, as these studies have considered the more general problem

of modelling spatial processes which do not fall on a regular grid, there has been no

formal consideration of the concepts of local stationarity or scale structure | features

which are arguably of importance when considering the structure within images, for

example.

In this chapter, we attempt to model locally stationary processes in two dimensions

using wavelets, thus building upon the work Nason et al. (2000). In Section 3.2

we introduce our basic building block, the discrete non-decimated wavelet, before

proceeding to de�ne and give examples of our random �eld model in Section 3.3. A

local measure of power, called the local wavelet spectrum, is proposed in Section 3.4.

As this measure is based upon the redundant NDWT, it is important that we establish

its uniqueness: this problem is considered in Section 3.5. We conclude, in Section 3.7,

by introducing a measure of the local autocovariance structure.
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3.2 Discrete wavelets

Prior to de�ning our model for locally stationary random �elds which lie on a regular

grid, we introduce the basic building block of our model. Naturally, when dealing with

data which are inherently discrete, we must use a discrete transform. Below, we follow

Nason et al. (2000) and use a set of discrete (non-decimated) wavelets founded upon

the low and high-pass quadrature mirror �lters used in the construction of Daubechies'

compactly supported wavelets (Daubechies 1988, 1992). See Section 2.7.3 for further

details.

A brief account of the history of the non-decimated wavelet transform, together with

an explanation of the transforms construction, is provided by Vidakovic (1999) whilst

a brief description of the non-decimated transform in two-dimensions is provided in

Chapter 2. The key di�erence between the traditional, decimated, wavelet transform

and its non-decimated counterpart is that non-decimated wavelets are positioned at

every location x 2 Z
2 within each scale of a decomposition. This is in stark contrast

to the standard scheme, where wavelets only appear at locations 2jx at each scale j.

Following the separable construction suggested by Mallat (1989b), we de�ne discrete

two-dimensional wavelets as a suitable product of the discrete wavelets and father

wavelets de�ned in De�nition 2.5:

De�nition 3.1

Let fhngn2Z and fgngn2Z be the usual low and high-pass quadrature mirror �lters

associated with the construction of Daubechies' compactly supported, continuous-time,

wavelets. Further, let k = (k1; k2). Then the two-dimensional discrete wavelets,

f l
jg, associated with these �lters are compactly supported, of dimension L2

j , and are

de�ned as follows:

 l
j =

26664
 l
j;(0;0) : : :  l

j;(0;Lj�1)
...

...
...

 l
j;(Lj�1;0) : : :  l

j;(Lj�1;Lj�1)

37775 for l = h, v or d,

where h denotes the wavelet in the horizontal direction, v the vertical direction and d
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the diagonal direction. The constituent elements of these wavelets are de�ned by:

 h
j;k � �j;k1 j;k2

 v
j;k �  j;k1�j;k2

and  d
j;k �  j;k1 j;k2

9>>>>>>>>>=>>>>>>>>>;
for k1; k2 = 0; : : : ; Lj � 1, (3.1)

where  j;k and �j;k are the one-dimensional discrete wavelets de�ned in De�nition 2.5.

Similarly, the two-dimensional discrete father wavelet is de�ned as:

�j;k � �j;k1�j;k2: (3.2)

It is important to note that a modi�ed form of the usual Meyer-Mallat scale

numbering scheme is adopted here. The scheme which we use is based upon that

proposed by Nason et al. (2000): the data live on scale 0, the �nest resolution wavelet

detail live on scale 1 and coarser resolution wavelet detail exist on scale J , for J 2 N .

The advantage of this altered numbering scheme is that we keep the support of the

wavelets on the �nest scale �xed and constant with respect to the size of the observed

�eld. More importantly, as the size increases, we can observe broader and broader

cycles within the process.

As a consequence of adopting a separable two-dimensional discrete wavelet

construction, any given two-dimensional discrete wavelet may be formed by taking

a tensor product of the appropriate discrete mother and father wavelets. For example,

the �nest scale discrete Haar wavelet in the diagonal decomposition direction is given

by:

 d
1 =  1 
  1 =

24 1=2 �1=2
�1=2 1=2

35 ; (3.3)

whilst, the second �nest scale discrete Haar wavelet in the vertical direction is given

by

 v
2 =  2 
 �2 =

26666664
1=4 1=4 1=4 1=4

1=4 1=4 1=4 1=4

�1=4 �1=4 �1=4 �1=4
�1=4 �1=4 �1=4 �1=4

37777775 : (3.4)
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3.3 Locally stationary wavelet random �elds

In this section we de�ne a new class of processes, the locally stationary two-dimensional

wavelet process, thereby extending the recent time series work of Nason et al. (2000).

Several assumptions are made about the structure of such processes, these being stated

separately from the process de�nition. In Section 3.3.1 examples are provided which

demonstrate the ability of this approach to capture both stationary and non-stationary

structure.

De�nition 3.2

Let R = (R; S) where R = 2m, S = 2n � 1 for m;n 2 N and set J(R; S) =

log2[min (R; S)]. Further, let r = (r; s) and u = (u; v) for r;u 2 [0; R� 1]� [0; S � 1].

Then a class of locally stationary two-dimensional wavelet processes (LS2W)

is de�ned to be a sequence of stochastic processes which lie on a regular grid:

fXr;Rgr2[0;R�1]�[0;S�1] : (3.5)

Such processes have the following representation in the mean-square sense:

Xr;R =
X
l

JX
j=1

X
u

wl
j;u;R 

l
j;u(r)�

l
j;u; (3.6)

where the sum over l is over decomposition directions v, h and d. The decomposition

consists of amplitudes, fwl
j;u;Rg, which quantify the contribution made to the process

at location (u; v) in direction l at scale j; a discrete non-decimated family of wavelets

�
 l
j;u(r)

	
fj = 1; : : : ; J(R; S)g
fu 2 [0; R� 1]� [0; S � 1]g

and a random orthonormal increment sequence, �lj;u;v:

Cov
�
�lj;k; �

p
m;n

�
= �j;m�k;n�l;p; (3.7)

where l; p 2 fh; v; dg.

We shall henceforth drop the dependence on R, though naturally it is still assumed.

Model interpretation: The above model permits a local representation of a random

�eld, capitalising on the wavelet property that fast (high frequency) oscillations can
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change quickly whilst slow oscillations vary slowly. It possesses the ability to decompose

the covariance structure of a random �eld into contributions made by each location at

various scale-direction pairs (j; l). These contributions are measured by the amplitudes

fwl
j;ug. In broad terms, such amplitudes are expected to be large if there is a high

correlation between Xu andXu�� orXu+� , for some lag � which matches the associated

\wavelength" of  j;u(x).

Modelling assumptions

In order that we can estimate the local covariance structure of a LS2W process, we

must naturally impose some assumptions on the behaviour of such a process.

Assumption 1: The �rst assumption which we make is that

E
�
�lj;u
�
= 0; 8j;u and l: (3.8)

Hence, for all locations r 2 [0; R � 1]� [0; S � 1], it follows that E (Xr) = 0. In

other words, all LS2W processes have zero mean. Naturally, this is unlikely to be

the case in reality. Thus, should a non-zero trend exist, it should be estimated

and subsequently removed if one is to use the modelling approach which we

describe here. Such trend removal could be carried out in any number of ways,

for example using median polish, multivariate regression or a two-dimensional

extension of the approach proposed by von Sachs & MacGibbon (2000).

It is important to understand that we are not observing a �xed continuous spatial

process on an increasingly �ner grid as min (R; S) ! 1. To overcome this handicap,

we draw inspiration from Dahlhaus (1997), adopting rescaled location in our �nal

assumption. In other words, we re-scale as follows:

zu =
u

R
and zv =

v

S
; where zu; zv 2 (0; 1);

thus permitting increasing amounts of information to be collected about the local

structure of a location z as min (R; S)!1.

Assumption 2: Within each decomposition direction, l, there exists a Lipschitz-

continuous function (with respect to the L1-norm) W l
j(z) for each level j � 1,

where z 2 (0; 1)2. These functions satisfy the following properties 8j and l:
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1.

X
l

1X
j=1

jW l
j(z)j2 <1 (3.9)

uniformly in z 2 (0; 1)2;

2. The Lipschitz constants, Ll
j, of W

l
j are uniformly bounded in j; l and

X
l

1X
j=1

22jLl
j <1: (3.10)

3. Let u
R
=
�
u
R
; v
S

�
. Then there exists a sequence of constants C l

j such that for

each dimension set R,

sup
u

���wl
j;u �W l

j

� u
R

���� � C l
j

maxfR; Sg (3.11)

where for each j = 1; : : : ; J(R) = log2 (min (R; S)) the sup is over all pairs

of coordinates u 2 [0; R]� [0; S] and where
�
C l
j

	
ful�lls

X
l

1X
j=1

C l
j <1: (3.12)

The essence of this �nal assumption is to attempt to encapsulate the way in which the

local structure of the LS2W process becomes increasingly stationary with respect to a

given wavelet basis as we obtain more information. This is achieved by introducing the

fW l
j(z)g and imposing certain restrictions about their smoothness (variation), namely

1. the Lipschitz-continuity of the functions,

2. and through the variation limiting constants fC l
j=max (R; S)g.

The variation-limiting constants simply restrict the amount by which the fwl
j;ug are

allowed to di�er from the smooth locally stationary \amplitudes" fW l
j(z)g. Together,

these conditions ensure that the region which determines the variation at each spatial

location becomes asymptotically arbitrarily small.

Note that whilst we have assumed here that the W l
j(z) are Lipschitz with respect

to the L1-norm, other norms could be chosen. Naturally, a change of norm will a�ect

some of the results which we state later in this chapter.
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3.3.1 Examples of LS2W processes

The representation in equation (3.6) permits contributions at various scales within the

vertical, horizontal and diagonal decomposition directions. Thus, we can construct

stationary and non-stationary processes which possess features in one or more of these

directions.

Example 3.1 Possibly the simplest LS2W processes which we can construct consists

of contributions made in only one decomposition direction. Let us therefore assume that

no contributions are made by structure in either the horizontal or vertical directions.

Thus, from (3.6), we have

X1;d
r =

JX
j=1

X
u

wd
j;u 

d
j;u(r)�

d
j;u; (3.13)

for some J 2 N. Let us also assume that the �nest scale detail (j = 1) is the only scale

at which a contribution is made to the process:

X1;d
r =

X
u

wd
1;u 

d
1;r�u�

d
1;u:

If, furthermore,

1. the  are non-decimated Haar wavelets;

2. �d1;u = �u, where f�ug is a purely random process with zero mean and variance �2;

3. and �nally, that wd
1;u = 1 for all locations u, which implies that W d

1 (z) = 1 for

this example;

then the following process is obtained:

X1;d
r;s =

1

2
(�r;s � �r;s+1 � �r+1;s + �r+1;s+1): (3.14)

The above is an example of a moving average �eld (De�nition 3.3) of order (1,1) which

uses the wavelets given in equation (3.3). A realisation of such a process is displayed

in �gure 3.2(a).

Example 3.2 Scale 2 Haar wavelets can be used to form a LS2W process with

\broader" features. By combining contributions from both the vertical and horizontal
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directions (j = 2), we obtain the following moving average �eld of order (3,3), a

realisation of which may be seen in �gure 3.2(b):

X2
r =

X
u

wh
w;u 

h
2;u(r)�

h
2;u +

X
u

wv
w;u 

v
2;u(r)�

v
2;u; (set wh

2;u = 1 = wv
2;u 8 u);

= (�r;s + �r;s+1 + �r+1;s + �r+1;s+1)

�(�r+2;s+2 + �r+2;s+3 + �r+3;s+2 + �r+3;s+3):

Here f�r;sg is a zero-mean random orthonomal process.

More generally a moving average (MA) �eld of order (2j � 1; 2j � 1), fXj
rg, may be

constructed using scale j discrete non-decimated Haar wavelets. Such processes fall

into a class similar to that de�ned by Haining (1978). This class of processes may be

de�ned as follows:

De�nition 3.3

Let fXr;sg be a random �eld on a grid of dimension R � S and let m;n 2 Z. Then

fXr;sg is said to be a moving average �eld of order (m,n) if

Xr;s =
mX
p=0

nX
q=0

cp;q�r+m�p;s+n�q; (3.15)

where f�p;qg is a random orthonormal process and the fcp;qg are constants.

See Moore (1988) or Cressie (1991) for further details.

As we have seen in the above examples, a special class of MA process can be

generated using Haar wavelets at various directions and scales:

De�nition 3.4

Let c 2 R. A Haar MA �eld of order j0, in direction l0, is de�ned to be the LS2W

process fXj0;l0
r g generated by the Haar wavelet family with the following condition on

the amplitudes:

wl
j;u =

8<: c for j = j0 when l = l0,

0 otherwise.
(3.16)

Thus, for example, the process de�ned in Example 3.1 is a Haar MA �eld of order 1 in

the diagonal decomposition direction.

Any two-dimensional MA �eld can be represented as a linear combination of Haar

MA �elds. This follows as a consequence of the property that any sequence in l2(Z2)
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Figure 3.2: Haar moving average �elds. (a) A 2D Haar MA process of order 1. (b) A
2D Haar MA process of order 2.

can be decomposed using Haar non-decimated wavelets (but not uniquely). Often, as

in Examples 3.1 and 3.2, the representation is sparse. Note also, that other forms of

MA �elds may be constructed using non-decimated Daubechies wavelets. However,

the real potential of the LS2W model lies in its ability to capture certain forms of

non-stationary behaviour.

Example 3.3 One of the simplest examples of a non-stationary LS2W process is given

by the following:

Xr =
4X

j=1

X
u

wd
j;u 

d
j;u�

d
j;u; (3.17)

where f l
j;ug is the Haar family of wavelets and

wd
j;u =

8>>>>>>>>><>>>>>>>>>:

1 for j = 1, u = [0; : : : ; 2J�1 � 1]� [0; : : : ; 2J�1 � 1];

1 for j = 2, u = [2J�1 � 1; : : : ; 2J � 1]� [0; : : : ; 2J�1 � 1];

1 for j = 3, u = [0; : : : ; 2J�1 � 1]� [2J�1; : : : ; 2J � 1];

1 for j = 4, u = [2J�1 � 1; : : : ; 2J � 1]� [2J�1; : : : ; 2J � 1];

0 otherwise.

(which implies that the fW l
j(z)g have an equivalent non-constant form for the four

�nest scales in the diagonal direction).
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A realisation of this process is displayed in �gure 3.3. Each quadrant of the process

is stationary. However, the change in the covariance structure from one region to

another is visible to the eye. We will revisit this particular process in the next section,

when we consider the problem of measuring the local power contained within a LS2W

process.

Figure 3.3: Realisation of a non-stationary LS2W process.

3.4 Measuring local power

As can be seen in Example 3.3, the covariance structure of many LS2W processes

varies from one region to another. It is therefore important to be able to capture and

quantify this local behaviour. In this section we propose a measure of the local power

(i.e. contribution to variance) present in a LS2W process. The measure is founded

upon the \amplitudes", W l
j(z). This approach is therefore analogous to that of the

traditional, stationary, approach whereby the spectrum of a stationary �eld is estimated

by taking the square of the Fourier transform of the process. In the second half of this

section, we consider the estimation of wavelet spectra via the non-decimated wavelet

transform of a realisation.

The local wavelet spectrum, which we de�ne below, measures the local power of an

LS2W process at a speci�c (rescaled) location, z 2 (0; 1)2, and scale, j, in a given

direction l.
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De�nition 3.5

For R; S 2 N n 1, we de�ne the local wavelet spectrum (LWS) of a LS2W process,

fXrg, to be given by

Sl
j(z) � jW l

j(z)j2; (3.18)

for z 2 (0; 1)2, j 2 1; : : : ; J and l 2 fh; v; dg.

In other words, the LWS provide a form of location-direction-scale decomposition

of the structure within a LS2W process. These channels tend to extract structure

from the horizontal, vertical and diagonal directions respectively. As a consequence

of Assumption 2 (pp. 51{52) which we make about LS2W processes, the LWS can

also be measured (asymptotically) using the innovations fwl
j;ug. Note that the LWS is

de�ned only for z 2 (0; 1)2. This is because boundaries do not make any sense in this

framework.

Property 3.1

Let z = (zu; zv). Assumption 2 means that

Sl
j(z) = lim

R;S!1
jwl

j;[zuR];[zvS]j2; for z 2 (0; 1)2; (3.19)

and satis�es

X
l

1X
j=1

Sl
j(z) <1 uniformly for z 2 (0; 1)2: (3.20)

A plot of Sl
j(z) for �xed direction, l, and scale, j, therefore provides a map of the

contribution to structure made over the entire region. The following provides some

examples of LWS for stationary and a non-stationary processes.

Example 3.4 De�ne the LWS of the order k Haar MA �eld in the decomposition

direction m to be fSl
j(z)g. Then, by De�nition 3.5:

Sl
j(z) = jW l

j(z)j2;

=

8<: 1 for j = k and l = m;

0 otherwise;

= �l;m�j;k 8 z 2 (0; 1)2:
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Thus, for the process considered in Example 3.1, fX1;d
r g, the LWS has the form

Sl
j(z) =

8<: 1 for j = 1, l = d,

0 otherwise
8z 2 (0; 1)2: (3.21)

Similarly, the process in Example 3.2 has LWS of the form:

Sl
j(z) =

8>>><>>>:
1 for j = 2, l = h,

1 for j = 2, l = v,

0 otherwise

8z 2 (0; 1)2: (3.22)

However, for the non-stationary process considered in Example 3.3, the LWS structure

will be

Sl
j(z) =

8>>>>>>>>><>>>>>>>>>:

1 for j = 1, l = d, z 2 (0; 1=2)2

1 for j = 2, l = d, z 2 (1=2; 1)� (0; 1=2)

1 for j = 3, l = d, z 2 (0; 1=2)� (1=2; 1)

1 for j = 4, l = d, z 2 (1=2; 1)2

0 otherwise.

(3.23)

An estimate of the LWS for realisations of this process is displayed in �gure 3.5. Note

how this estimate is able to identify pockets of localized activity which appear at various

scales within the diagonal direction. See Example 3.6 for further details.

3.5 A.C. wavelets and the LWS representation

An important issue which we consider in this section is whether the LWS are uniquely

de�ned, given the corresponding LS2W process. To establish such a result, we

must �rstly introduce a wavelet based quantity, discrete autocorrelation wavelets, and

de�ne the inner product matrix of these functions. Such wavelets are related to the

autocorrelation shell proposed by Saito & Beylkin (1993) and have in the past been

used to obtain a measure of the covariance structure within locally stationary wavelet

processes. See the review of the work of Nason et al. (2000) in Section 2.7 for further

details.

The following de�nition extends autocorrelation wavelets to two-dimensions.
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De�nition 3.6

Let j 2 N , l 2 fv; h; dg and � ;v 2 Z
2 where � = (�1; �2) and v = (v1; v2). Then the

autocorrelation (a.c.) wavelet, of a two-dimensional discrete wavelet family
�
 l
j;k

	
,

is given by

	l
j(� ) =

X
v

 l
j;v(0)  

l
j;v(� )

=
X
u

X
v

 l
j;(u;v) 

l
j;(u��1;v��2): (3.24)

As one might expect, the two-dimensional a.c. wavelets inherit the separable form of

the discrete wavelets (cf. De�nition 3.1). Moreover, as we demonstrate in Proposition

3.2, such a.c. wavelets are symmetric in � and are positive semi-de�nite.

Proposition 3.1

Let � = (�1; �2) 2 Z
2. Then two-dimensional discrete autocorrelation wavelets have

the following separable forms:

1. In the horizontal direction:

	h
j (� ) = �j(�1)	j(�2): (3.25)

2. In the vertical direction:

	v
j (� ) = 	j(�1)�j(�2): (3.26)

3. Finally, in the diagonal direction:

	d
j(� ) = 	j(�1)	j(�2): (3.27)

It can also be shown that the two-dimensional discrete autocorrelation scaling function

is given by �j(� ) = �j(�1)�j(�2).

Proposition 3.2

Within any decomposition direction pair (j; l), the two-dimensional discrete

autocorrelation wavelets are symmetric in the following sense:

	l
j(�1; �2) =

8>>><>>>:
	l
j(��1; �2)

	l
j(�1;��2):

(3.28)
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Moreover, for any set of locations � 1; � 2; : : : ; � n and all real k1; k2; : : : ; kn, the

autocorrelation wavelets de�ned in De�nition 3.6 are positive semi-de�nite functions

in the sense that

nX
p=1

nX
q=1

	l
j(� p � � q)kpkq � 0: (3.29)

As a consequence of (3.28), it naturally follows that 	l
j(�1; �2) = 	l

j(��1;��2). We

now consider an example which demonstrates the form of the two-dimensional discrete

Haar a.c. wavelet.

Example 3.5 Nason et al. (2000) showed that discrete (1-D) non-decimated Haar

wavelets, 	j(�), can be expressed in terms of the continuous Haar a.c. wavelets, 	H(u),

as follows:

	j(�) =

8<: 	H

�
j� j
2j

�
for � = 1� Lj; : : : ; Lj � 1;

0 otherwise.
(3.30)

where

	H(u) =

8<: 1� 3juj for juj 2 [0; 1=2];

juj � 1 for juj 2 (1=2; 1].
(3.31)

This result also holds for all other Daubechies' wavelets. Furthermore, it can be shown

that the Haar a.c. father wavelet, �j(�), is a sampled version of the continuous Haar

a.c. wavelet

�H(u) =

Z 1

�1
�H(x)�H(x� u) dx =

8<: 1� juj for juj 2 [0; 1],

0 otherwise.
(3.32)

Thus, utilising the separable form of a.c. wavelets, it is easily shown that discrete two-

dimensional Haar a.c. wavelets, 	l
j(� ), are given by:

	l
j(�x; �y) = 	l

H

� j�xj
2j
;
j�yj
2j

�
; (3.33)

setting u = (u1; u2), where 	
l
H(u) is a two-dimensional (continuous) Haar a.c. wavelet

constructed from (3.31) and (3.32) in the same way as for the discrete case in

Proposition 3.1:

Vertical direction:
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	v
H(u) =

8>>>>>>>>><>>>>>>>>>:

(1� 3ju1j)(1� ju2)j for ju1j 2 [0; 1=2]

and ju2j 2 [0; 1],

(ju1j � 1)(1� ju2j) for ju1j 2 [1=2; 1]

and ju2j 2 [0; 1].

Horizontal direction:

	h
H(u) =

8>>><>>>:
(1� 3ju2j)(1� ju1j) for ju2j 2 [0; 1=2] and ju1j 2 [0; 1],

(ju2j � 1)(1� ju1j) for ju2j 2 [1=2; 1] and ju1j 2 [0; 1].

Diagonal direction:

	d
H(u) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

(1� 3ju1j)(1� 3ju2j) for ju1j 2 [0; 1=2]

and ju2j 2 [0; 1=2];

(ju2j � 1)(1� 3ju1j) for ju1j 2 [0; 1=2]

and ju2j 2 [1=2; 1];

(ju1j � 1)(1� 3ju2j) for ju1j 2 [1=2; 1]

and ju2j 2 [0; 1=2];

(ju1j � 1)(ju2j � 1) for ju1j 2 [1=2; 1];

and ju2j 2 [1=2; 1]:

Figure 3.4 below displays various examples of two-dimensional Haar autocorrelation

wavelets. These and other autocorrelation wavelet families will be used in Section 3.7

to construct a measure of the autocovariance structure within LSW process.

3.5.1 The inner product matrix of a.c. wavelets

The �nal quantity which we de�ne is the discrete a.c. wavelet inner product matrix.

Such matrices will prove useful in Section 3.6, when we consider the problem of

estimating the LWS.

Instead of having two separate indices representing scale and direction (i.e. j and

l), it is often convenient to combine both to provide a single index, �, each value of
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Figure 3.4: Discrete Haar autocorrelation wavelets at scale 5 in the (a) diagonal, (b)
vertical and (c) horizontal decomposition directions.
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which represents a particular decomposition scale in a given direction. Explicitly, we

code � as follows:

�(j; l) � f(j) + g(l);

where

f(j) � j and g(l) �

8>>><>>>:
0 when l = v,

J when l = h,

2J when l = d,

for j = 1; : : : ; J .

For notational convenience, we shall henceforth represent �(j; l) as simply �. The

construction of � is such that its �rst J values refer to the set of scales in the vertical

direction, the second set correspond to the horizontal direction whilst the �nal set refers

to scales in the diagonal direction. The (j; l)� � notation will be used interchangeably

throughout the remainder of this chapter and Appendix A.

Further details about autocorrelation wavelets may be found in Chapter 5, where we

consider the e�cient construction of the inner product matrix of discrete a.c. wavelets.

We de�ne this matrix as follows:

De�nition 3.7

We de�ne the operator A = (A�;�)�;��1 by

A�;� = h	�;	�i (3.34)

=
X
�

	�(� )	�(� ):

Further, we de�ne the 3J dimensional matrix

AJ = (A�;�) � = 1; : : : ; 3J

s = 1; : : : ; 3J

(3.35)

where J = log2 (min (R; S)). Additionally, for each J = J(R; S) = log2 (min (R; S)))

we de�ne the vector

�(� ) = f��(� )g�=1;::: ;3J

via

�(� ) = A�1J 	(� ) (3.36)

where

	(� ) = f	�(� )g�=1;::: ;3J :
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AJ is formed in such a way that the rows (and columns) of AJ are ordered by scale

within each decomposition direction. An equivalent construction is given by structuring

the rows of AJ by direction within each decomposition scale. The computational

expense of calculating either one of these matrices via a brute force approach is large.

However, Eckley & Nason (2000) have shown that recursion schemes may derived for

the form de�ned in De�nition 3.7 (see Chapter 5 for further details). These permit a

more e�cient construction of the matrix.

3.5.2 Uniqueness of the LWS

We are now nearly in a position to prove the uniqueness of the LWS representation,

given that the underlying wavelet family is speci�ed a priori. However, prior to this,

we establish certain Fourier domain properties of the discrete wavelets. These will be

required in the proof of the uniqueness of the LWS

Lemma 3.1

Let b j(!) be the Fourier transform of f j;kg and b�j(!) be the Fourier transform of

f�j;kg.Then it can be shown that

i) b j(!) = 2j=2m1(2
j�1!)

Qj�2
k=0m0(2

k!) (result in Nason et al. (2000));

ii) b�j(!) = 2j=2
Qj�1

k=0m0(2
k!);

where m0(!) and m1(!) are as de�ned in equations (2.12) and (2.20).

These results are simple consequences of the scaling relations between wavelets and

father wavelets. However for completeness we have proved i) in the appendix.

Using the relationships detailed in De�nition 3.1, the following expressions for the

Fourier transforms of the  l
j;u may be derived.

Corollary 3.1

Let ! = (!1; !2) and

b l
j(!) =

Z
R

Z
R

 l
j(x1; x2)e

i!1xei!2x dx1dx2

be the Fourier transform of the discrete autocorrelation wavelet at scale j in direction

l. Then, b v
j (!) = b j(!1)b�j(!2), b h

j (!) = b�j(!1) b j(!2) and b d
j (!) = b j(!1) b j(!2).
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The following theorem, valid for all Daubechies compactly supported wavelets,

demonstrates that A is an invertible operator and that for each J 2 N , the norm

of A�1J is bounded from above by a constant CJ . Moreover, the theorem establishes

the uniqueness of the LWS given the corresponding LS2W process. These results are

an extension of Theorem 1 from Nason et al. (2000). It should be noted that the �rst

part of the proof follows directly from this earlier work. However due to the inclusion of

an additional dimension, namely direction, the second part of the proof of this theorem

requires careful consideration.

Theorem 3.1

For any compactly supported Daubechies wavelet, the family of discrete autocorrelation

wavelets f	�g1�=1 is linearly independent. Hence,

a) the operator A is invertible (since all its eigenvalues are positive) and for each

J 2 Z
+, the norm kA�1J k is �nite;

b) and the LWS is uniquely de�ned given the corresponding LS2W process.

3.6 Estimating the LWS

Having found a measure which provides a local direction-scale decomposition of power,

it is natural to enquire how one can estimate this quantity, given the prior speci�cation

of the underlying wavelet family. The issue of what happens when one uses an

alternative wavelet family to that which underlies the process is left as an avenue

for future work.

Recall from stationary theory that an estimate of the spectral density function

is given by the squared absolute value of the Fourier transform of a realisation of a

second order stationary process. Analogously, the estimator which we propose for the

LWS is founded upon the collection of squared empirical wavelet coe�cients, for the

coe�cients which we consider here are real. Should complex wavelets be used, then

the squared modulus of such coe�cients should be adopted:

De�nition 3.8

Let fXrg be a LS2W process as de�ned in De�nition 3.2. The empirical wavelet
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coe�cients of the process are given by

dlj;u �
X
r

Xr 
l
j;u(r):

We are now in a position to de�ne the local wavelet periodogram.

De�nition 3.9

The local wavelet periodogram (LWP) of a LS2W process fXrg is de�ned as

I lj;u � jdlj;uj2: (3.37)

As we shall see in Theorem 3.2, it transpires that the LWP is a biased estimator of

the LWS. However, the form of this bias suggests a transformation of the spectra which

produces an asymptotically unbiased estimate of the LWS. In order that we may prove

Theorems 3.2 and 3.3, we assume that the following conjecture about the operator, A,

holds. Such an assumption is motivated by the work of Nason et al. (Theorem 2, 2000)

who demonstrated that for the (one-dimensional) inner product matrix the conjecture

holds for Haar and Shannon wavelets. Furthermore, they were able to provide strong

evidence to suggest that the result holds for all Daubechies wavelets which, loosely

speaking, lie between these two extremes.

Conjecture 3.1

For all Daubechies' compactly supported wavelets the minimum eigenvalue of the

operator A, �min(A), is positive. Therefore kA�1k < 1, A is positive de�nite and

has a bounded inverse.

It is important to note, however, that Theorem 3.1 guarantees that AJ is invertible

and that the norm of A�1J is bounded.

We are now in a position to consider the expectation of the local wavelet

periodogram.

Theorem 3.2

Let z = (z1; z2), R = (R; S) and [zR] = ([z1R]; [z2S]) where R = 2J ; S = 2K for some

J;K 2 N . Further, assume that the f��;rg are Gaussian, then:

E
�
I�;[zR]

�
=
X
�1

A��1S�1(z) + O

�
1

minfR; Sg
�
: (3.38)

Thus the LWP estimate of the LWS at a given (j; l)-pair is a weighted sum of all LWS.
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An example of this bias (i.e the right hand side of equation (3.38) minus S�(z)) can

be seen in Table 3.1, below. The table displays a selection of coe�cients from A,

highlighting the corruption which occurs within the estimate of the third �nest scale

LWS in the vertical decomposition direction, Iv3;[z;R]. Observe how the estimator is

a mix of contributions from various directions and scales. Note in particular that

power leaks across from the fourth and �fth scales within the diagonal decomposition

direction.

Direction Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Vertical 0.703 3.797 15.453 13.793 7.573
Horizontal 0.203 0.797 1.891 2.793 2.073
Diagonal 0.047 0.422 3.953 8.379 6.220

Table 3.1: Biased contributions, A�;�1 , which enter into the LWP estimate of S�=3(z) =
Sv
3 (z). The displayed coe�cients are correct to three decimal places.

Clearly, without correction, the redundancy of the NDWT induces a spread of power

into other directions and scales. However, if we denote the vector of periodograms,

I(z) =
�
I�;[zR]

	
, and de�ne the vector of corrected LWPs to be given by L(z) =

A�1L(z), then we obtain an asymptotically unbiased estimator of the LWS:

E (L(z)) = S(z) +O

�
1

min fR; Sg
�
: (3.39)

This is a straightforward consequence of Proposition 4 of Nason et al. (2000).

The following de�nition will prove useful when considering the covariance structure

of the wavelet periodogram.

De�nition 3.10

De�ne

�l1;l2j1;j2
(u1;u2) =

X
r

 l1
j1;u1

(r) l2
j2;u2

(r): (3.40)

In e�ect, this is a form of \cross-correlation" between two wavelets of the same family

at (possibly) di�erent scales and directions, centred on di�erent locations. Using this

identity, we can explore the covariance structure of the (uncorrected )LWP.



68 Locally stationary wavelet processes

Theorem 3.3

Assume that the f��;rg are again Gaussian. Then the covariance between I l1j1;p and I
l2
j2;q

may be expressed as follows:

Cov(I l1j1;pI
l2
j2;q

) = 2

(X
l0

X
j0

X
u0

(wl0
j0;u0

)2�l1;l0j1;j0
(p;u0)�

l2;l0
j2;j0

(q;u0)

)2

:

Thus the correlation between these quantities decreases with increasing distance

between location p at scale-direction (j1; l1) and the location q at (j2; l2). In particular,

when j1 = j2, the covariance is zero when kp � qk exceeds the overlap of the

corresponding wavelets support. Moreover

Var(I lj;p) = 2E (I lj;p)
2;

= 2

 X
�1

A��1S�1([p=R])

!2

+O

�
2j(�)

min (R; S)

�
; (3.41)

where j(�) � � � b��1
J
cJ simply denotes the scale element of �(j; l).

The above demonstrates that the uncorrected LWP have asymptotically non-vanishing

variance. Hence, by construction, the corrected LWP will also have an asymptotically

non-vanishing variance, thus paralleling the traditional stationary case. Consequently,

estimates of the LWS need to be smoothed to obtain consistency. See Section 3.6.1 for

details of a wavelet-based scheme.

Example 3.6 Recall the non-stationary LS2W process which was considered in

Example 3.3. This process was constructed in such a way that contributions to the

covariance structure were only made in certain regions of the diagonal decomposition

direction. Figure 3.5 displays a selection of the mean (corrected) LWP of 100

realisations of this process. Note how the scale 2 diagonal contribution is well localised

as is the contribution at scale 4 in the diagonal direction. Some structure does however

appear in the horizontal and vertical directions, primarily on the boundaries of the

various covariance regions, see for example the plot of the scale 3 horizontal LWS

estimate in �gure 3.5.

To highlight the pitfalls of neglecting to correct by the inner product matrix, we

include a plot of the mean (uncorrected) LWP of the same 100 realizations of this

process for scales 1 to 4 (see �gure 3.6). Note how power has seemingly increased in
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both scales 2 and 4, even in the vertical direction which contributed no structure within

the model construction.

The corrected LWP will be used later, in Chapter 4, when we consider the application

of this measure to various texture analysis problems.

3.6.1 Smoothing the local wavelet periodogram

In a further parallel to the traditional stationary approach, Theorem 3.3 demonstrates

that the LWP is not a consistent estimator of the LWS (see Priestley (pp. 301{302,

1981) for a brief summary of consistency). To attain a consistent estimate of the LWS

we must therefore smooth the LWP. Several smoothing approaches could be used in

this instance, for example kernel smoothing or a moving average approach. However

bearing in mind that many images, including the textured images of Chapter 4, are

characterised by edges, it would appear prudent to use a smoothing scheme which has

the ability to deal e�ciently with such features. It is for this reason that we propose

to smooth the LWP, I�;z, as a function of z using either DWT shrinkage, paralleling

the approach proposed by von Sachs, Nason & Kroisandt (1997), or the translation

invariant denoising approach of Coifman & Donoho (1995).

Assuming that the innovations f�lj;ug are Gaussian it follows that, upon squaring,

each element of the wavelet periodogram has a �2-distribution. Correcting, to obtain

an asymptotically unbiased estimate of the LWS (as suggested by Theorem 3.2), leads

to a complex correlated distribution for the LWP. Thus, we follow Nason et al. (2000)

and suggest �rstly performing wavelet shrinkage of the �2-distributed periodogram

prior to correction by A�1. A detailed description of how one may smooth using an

orthonormal second-stage wavelet basis f ~ l;mg is provided by von Sachs et al. (1997).

Brie
y, smoothing is performed by implementing a non-linear thresholding of the raw

(uncorrected) periodogram, I�(z), and then inverting the smoothed transformation to

obtain the estimate ~I�(z).

Whilst wavelets are well-suited to representing point-like discontinuities, a potential

problem exists when smoothing images with line or curve-like edges. Often, the wavelet

transform of such images contains several large wavelet coe�cients along the entire

length of an edge. Furthermore, as Starck, Cand�es & Donoho (2000) observe, \in a
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Figure 3.5: Mean (corrected) local wavelet spectra of 100 realisations of the non-
stationary process displayed in �gure 3.3.



3.6 Estimating the LWS 71

50

100

150

200
250

R50

100

150

200

250

S

 0
1

2
3

4
5

6
P

ow
er

Scale 2, Diagonal direction

50

100

150

200
250

R50

100

150

200

250

S

 0
10

20
30

40
50

P
ow

er

Scale 4, Diagonal direction

50

100

150

200
250

R
50

100

150

200

250

S

 0
5

10
15

20
25

P
ow

er

Scale 4, Vertical direction

Figure 3.6: Mean (uncorrected) local wavelet spectra of 100 realisations of the non-
stationary process displayed in �gure 3.3.
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map of the large wavelet coe�cients [of an image] one sees the edges of the images

repeated scale after scale". Thus many coe�cients are required to reconstruct the

edges in an image.

In recent years, Cand�es and Donoho have proposed two new expansion forms:

namely Ridgelets and Curvelets (see, for example, Cand�es (1999), Cand�es & Donoho

(1999a, b)). A ridgelet expansion of an image results in a sparse representation of both

smooth functions and perfectly straight edges, whilst curvelets provide an e�cient

representation of smooth curve discontinuities. Recent empirical investigations by

Starck et al. (2000) and Do & Vetterli (2000, 2001) indicate that these new transforms

outperform traditional wavelet methods in the denoising of images with smooth curve

discontinuities. It would therefore appear that, for certain LWS forms, there is strong

motivation for considering curvelet-based smoothing techniques. This is left as an

avenue for future research.

3.7 Capturing the autocovariance structure

In Sections 3.4 { 3.6 we proposed and studied various properties of the local wavelet

spectrum, a quantity which measures the local power within a LS2W process at a given

scale and direction. From traditional models of processes which lie on a regular grid,

it is known that the autocovariance of a (second order) stationary process, fXug, may

be represented by the following:

CX(� ) =

Z
f(!)ei!�d!; (3.42)

where f(!) is the spectrum of the process. Thus it seems natural to enquire whether

an equivalent relationship exists between the LWS and a measure which captures the

local autocovariance structure of a LS2W process.

The measure which we propose below is based on a time series analogue introduced

by Nason et al. (2000). The measure is constructed using the autocorrelation wavelets

which we introduced in Section 3.5. The remainder of the section highlights various

theoretical properties of the local autocovariance measure.
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3.7.1 Local autocovariance

De�nition 3.11

The local autocovariance (LACV), C(z; � ), of a given LS2W process with LWS�
Sl
j(z)

	
is de�ned to be

C(z; � ) =
X
l

1X
j=1

Sl
j(z)	

l
j(� ) (3.43)

where � 2 Z
2 and z 2 (0; 1)2.

By Proposition 3.2, it follows that the local autocovariance C(z; � ) is symmetric in � .

Frequently, the LACV provides an e�cient representation of the second order structure

within a process. The following example demonstrates the sparsity with which Haar

MA �elds may be represented by this measure.

Example 3.7 The stationary process X1;d
r given in Example 3.1 has autocovariance

CX1(�1; �2) = �2
�
��1;0��2;0 �

1

2
��1;0��2;1 �

1

2
��1;1��2;0

�1

2
��1;0��2;�1 �

1

2
��1;�1��2;0 +

1

4
��1;1��2;1

+
1

4
��1;�1��2;�1 +

1

4
��1;�1��2;1 +

1

4
��1;0��2;1

�
This is precisely the autocorrelation wavelet 	d

1(�1; �2). Thus X
1(r; s) has an extremely

sparse representation in terms of the autocorrelation wavelets:

1

�2
CX1(�1; �2) = 	d

1(�1; �2);

i.e. equation (3.43) with Sl
j(z) = 1 for (j = 1; l = d) and zero otherwise. Furthermore,

as one would expect for a stationary process, there is no dependence on z in this

expression.

Similar sparse representations occur if we replace Haar wavelets by other compactly

supported, two dimensional wavelets and concentrate only on one or two decomposition

aspects, e.g. W l
j(z) = 1 for j = 1; l = d and zero elsewhere.

Whilst the above example illustrates the form of the local autocovariance for a

simple stationary case, De�nition 3.11 refers to the more general LS2W case. The

following proposition demonstrates the manner in which the autocovariance of a LS2W

process, CR, tends asymptotically to the de�ned C(z; � ) which has the autocorrelation
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wavelet representation given by (3.43). This result extends that of Nason et al.

(Proposition 1, 2000).

Proposition 3.3

Suppose we have a LS2W process as de�ned in De�nition 3.2. Then as R; S !1,

jCR(z; � )� C(z; � )j = O

�
1

min fR; Sg
�

(3.44)

uniformly in � 2 Z� Z and z = (zR; zS) 2 (0; 1)2.

Note If the process fXr;Rg is stationary, then the dependence of Sl
j on z disappears.

In other words for a stationary process, Sl
j is constant over z for any direction/scale

pair (l; j). This, in turn, implies that the dependence of C on z disappears when the

process is stationary. Thus, for stationary processes, the representation in equation

(3.6) changes from being local to global. The shift-equivariance of the non-decimated

wavelet transform is able to cope with this change in the nature of the representation.

3.7.2 Invertibility of the autocovariance representation

In the classical analysis of stationary processes which lie on a regular grid, the

representation given by equation (3.42) for the autocovariance is invertible. More

precisely, the spectrum is also the Fourier transform of the autocovariance. Thus it

is natural to ask whether the LWS can be considered to be an \inverse transform"

of the LACV? As a consequence of Theorem 3.1 we are able to prove the following

straightforward extension of Nason et al. (Proposition 2, 2000), demonstrating that

the LWS can indeed be considered to be such an inverse transform.

Lemma 3.2

Assume that Conjecture 3.1 holds. Then the inverse formula of

C(z; � ) =
X
�

S�(z)	�(� )

is given by

Sl
j(z) =

X
�1

A�1�;�1
X
�

C(z; � )	�1(� ): (3.45)
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It is important to understand that even though for each �nite R and S, the process

representation in (3.6) cannot be unique, the representation of the LACV given by

(3.43), as an asymptotically de�ned quantity is unique.

The �nal result which we consider extends Proposition 3 of Nason et al. (2000) to

two-dimensions, focusing on the ability of LS2W processes to represent second-order

stationary processes:

Proposition 3.4

Assume that Conjecture 3.1 holds. Then for any family of discrete Daubechies'

wavelets, f jg:

a) any zero mean, second-order stationary process, fXrg, with absolutely summable

autocovariance
P

�
jCX(� )j is a LS2W processes with LWS, fSl

j(z)g.

b) Moreover, any LS2W process fXr;sg with location-independent LWS,
�
Sl
j(z)

	
,

ful�lling the additional assumption

X
lj

22jSl
j(z) <1

is a stationary process with absolutely summable autocovariance CX(� ).

3.8 Summary

In this chapter, we have introduced a wavelet-based model of locally stationary random

�elds which lie on a regular grid. The LS2W model provides a local decomposition

of power into various direction-scale pairs. To quantify the local power within LS2W

processes we introduced the local wavelet spectrum (LWS), a spatially localised wavelet

analogue of the Fourier-based spectrum which is used with second-order stationary

processes. We have also been able to prove that given the corresponding LS2W process,

the LWS is uniquely de�ned.

An estimator of the LWS was proposed in Section 3.6. Although this initial

estimator was shown to be biased (an artefact of the inherent redundancy of the non-

decimated wavelet transform), it gave rise to an asymptotically unbiased estimator after

correction. This estimator will be used in Chapter 4, where we consider the application

of this modelling approach to texture analysis. Finally, in Section 3.7, we introduced
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a measure of the local autocovariance (LACV) structure within LS2W processes and

were able to demonstrate that the LWS are a form of \inverse transform" of the LACV.

We have not considered the problem of estimating the LACV in this chapter.

Conceptually, the estimation of this quantity seems simple:

Suppose we observe a process on a grid of dimension R� S, where R = 2J

and S = 2K for some J;K 2 N . Na��vely, the LACV may be estimated using

bCJ0(z; � ) =
X
l

J0X
j=1

I lj([zR])	j(� ); (3.46)

where J0 = log2(minfR; Sg).

This measure is similar to that proposed by Nason et al. (2000) in the context of time

series analysis. To date, neither estimator has been studied in detail. In Chapter 6

we consider the properties of the one-dimensional version of this estimator in the hope

that we can relate this quantity to its stationary counterpart and, for example, consider

issues of bias.

A module of routines for the (unbiased) estimation of the LWS has been

implemented in S-Plus as an add-on to WaveThresh. A summary of the suite's key

routines may be found in Appendix C.



Chapter 4

Texture analysis

4.1 Introduction

In this chapter, we consider the application of the LS2W modelling approach to gray-

scale texture analysis, the issue of analysing coloured images being left as an avenue for

future research. Broadly speaking, texture is the visual character of an image region

whose structure is, in some sense, regular: for example the appearance of a woven

material. The human visual system is well adapted to the recognition of texture, to

the extent that upon looking at �gure 4.1(a) for example, we can easily identify that

it is an image of tree bark.

Texture frequently possesses structure on many di�erent scales. Thus, when

modelling the structure of a textured image, an attempt should be made to incorporate

this multiscale reality. A model, such as that a�orded by the LS2W approach, which

provides a multiscale decomposition of the covariance structure of a textured image

would therefore appear desirable.

The content of this chapter is divided into two halves. The �rst half reviews the

\statistical" approach to texture analysis: in Section 4.2, we consider the de�nition

of texture and some of its many properties, together with a brief summary of

various texture-based applications. A review of several traditional approaches to

texture analysis is provided in Section 4.3, whilst recent wavelet-based approaches

are considered in Section 4.4. The second half of the chapter focuses on the application

of our LS2W approach to texture analysis. Section 4.5 provides details of the approach

which we adopt to various texture discrimination and classi�cation problems, together
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with an example based on images taken from the standard Brodatz (1966) collection.

Finally in Section 4.6 we investigate the potential of our approach to various texture

analysis problems encountered by an industrial collaborator, comparing our results

with Fourier and various multiscale-based texture measures.

4.2 What is texture?

The Oxford English Dictionary (Second Edition) provides the following entry under

texture:

\texture n. [ad. L. text�ura a weaving see TEXT n. and -URE. So F.

texture (16th c. in Godef. Compl.).] 1. a. The process or art of weaving.

Obs. ... 2. b. transf. Any natural structure having an appearance or

consistence as if woven; ... 3. The character of a textile fabric, as to

its being �ne, coarse, close, loose, plain, twilled, ribbed, diapered, etc.,

resulting from the way in which it is woven. ... 4. In extended use:

The constitution, structure, or substance of anything with regard to its

constituents or formative elements. a. Of organic bodies and their parts

... b. Of inorganic substances, as stones, soil etc.: Physical (not chemical)

constitution; the structure or minute moulding (of a substance)."

It is a term which we use frequently in our everyday lives and, invariably, is used in

the context of a physical quality of an object which appeals greatly to our senses,

particularly vision and touch. Yet texture has no precise de�nition. Indeed, such is

the di�culty in de�ning texture that Coggins (1982) was able to compile a collection

of di�erent de�nitions of texture from the computer vision literature (see Tuceryan &

Jain (1999) for examples).

Haralick, Shanmugam & Dinstein (1973) write that texture \is an innate property

of virtually all surfaces ... It contains important information about the structural

arrangement of surfaces and their relationship to the surrounding environment." In

what follows, we consider texture to be the collection of properties which represent the

surface structure of an object. Figure 4.1 provides examples of textured images taken

from the Brodatz (1966) image library | a collection of images which has become a
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standard test set in the literature. Typically, textured images are not uniform. For

example, the bark image (�gure 4.1(a)) contains variations within its pixel intensities

which form a pattern which we identify as being a visual texture. These patterns

are induced by physical properties, for example roughness and edges, and re
ective

di�erences from the colour of the surface.

(a) (b) (c)

Figure 4.1: Sample images of (a) Bark, (b) Grass and (c) Herringbone Weave taken

from the Brodatz (1966) image library. Images obtained from the USC-SIPI Image

Database (http://sipi.usc.edu/services/database/Database.html).

A more re�ned view of texture is provided by Haralick (1979), who argues that

texture can be considered as

\an organized area phenomena. When it is decomposable, it has two basic

dimensions ... The �rst dimension is for describing primitives out of which

the image is composed, and the second dimension is for the description of

the spatial dependence or interaction between the primitives of an image

texture."

A texture primitive is simply a collection of pixels which form a basic element of

a textured image, for example a blade of grass in �gure 4.1(b). Thus, in light of

Haralick's comment, it is evident that some form of scale dependency is required for

texture description. For example, in the herringbone weave of �gure 4.1(c), there are

potentially two primitive levels: the �rst (coarsest) level corresponding to the \bone"

structure within the image, whilst the �ner texture of the material strands constitutes

an alternative level.
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The development and application of techniques which harness the information

contained within textured images are studied in texture analysis. Broadly speaking,

the research in this �eld may be divided into two categories; namely the development of

feature extraction methods and the development applications which use these extracted

features.

Extracted features are frequently applied in one of the following activities:

Texture Discrimination: Discrimination of textured images of known

classes based on extracted features. By discriminating e�ectively and

understanding the features used, one can begin to appreciate the di�erences

between the various classes.

Texture Classi�cation: Similar to discrimination. The task is to determine

to which of a �nite number of classes a textured image I (of unknown class)

belongs. Consequently, prior knowledge of the available classes is required,

together with an e�ective texture measure.

Texture Segmentation: Involves the decomposition of a (possibly) multi-

textured region (for example �gure 4.2) into its constituent elements and

identifying the boundaries between the various regions. Frequently, the

number and type of textures involved are unknown, making this problem

particularly challenging.

Texture Synthesis: This consists of the synthetic generation of a texture

based on statistical parameters. See Wechsler (1980) or Iversen &

L�nnestad (1992) for further details.

These activities have been used in several �elds, including automated inspection (Jain,

Farrokhnia & Alman (1990)), medical image analysis (Lundervold (1992)), remote

sensing (Haralick et al. (1973), Lee & Philpot (1991)) and document processing (Jain

& Farrokhnia (1991)) to name but a few. Tuceryan & Jain (1999) provide a stimulating

review of many other applications.
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Figure 4.2: An example of a multi-textured region (images obtained
from the Brodatz collection of the USC-SIPI Image Database).

Feature extraction techniques developed to date have largely fallen into one of two

categories. The most commonly used approach is statistical and consists of computing

di�erent measures which describe a texture in a form suitable for statistical pattern

recognition. A summary of several such techniques is provided below. In Section

4.3 we review some of the more established feature extraction techniques prior to

considering several recently proposed wavelet-based approaches in Section 4.4. It

should be noted that there exists an alternative approach to texture analysis, termed

\syntactic". This approach is based upon a grammatic or symbolic representation of

the primitive relationship structure within a texture (see Haralick (1979), Wechsler

(1980) or Sonka, Hlavac & Boyle (1999) for further details).

4.3 Statistical approaches to texture description

Below, we summarise some of the more established statistical techniques used in

the literature. Although the approach is termed statistical, the issue of obtaining

suitable measures from textured images has not received much attention in the statistics

literature. Comprehensive reviews of the statistical approach to texture analysis are

provided by Haralick (1979, 1986), Tuceryan & Jain (1999) and Tomita and Tsuji

(Chapter 2, 1990). Reed & du Buf (1992) review feature extraction techniques for
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unsupervised applications (i.e. segmentation) whilst Randen & Hus�y (1999) provide

a comparative review of various �ltering-based approaches to feature extraction.

4.3.1 Fourier-based approaches

Perhaps the most familiar statistical technique used in the �eld of texture analysis is

that which is based upon the autocorrelation function,

�(r; s) =
RS

(R � r)(S � s)

PR�r
i=1

PS�s
j=1 xi;jxi+r;j+sPR

i=1

PS
j=1 x

2
i;j

;

for r; s 2 f1; : : : ; Rg � f1; : : : ; Sg. Here r and s denote the lag di�erence in the i; j

directions respectively whilst R and S denote the dimensions of the image.

Haralick (1979) draws attention to an experiment conducted by Kaizer (1955).

The aim of this experiment was to establish whether there was any form of relationship

between the texture which photo-interpreters view in an image and the autocorrelation

function of that image. Using several aerial photographs of an Arctic region (see for

example �gure 1 of Haralick (1979)) Kaizer assumed isotropy and calculated estimates

of the autocorrelation functions. The results of Kaizer's research are discussed by

Haralick (1979, 1986). What is particularly interesting is Kaizer's discovery that a

relatively 
at background, indicative of a �ne texture, was interpreted by subjects as

being �ne or coarsely textured. This highlights a fundamental characteristic of texture:

for a given smooth surface there exists a scale such that when the image is examined at

that scale, it has no texture. As resolution increases, the grading of that texture moves

gradually to a �ne texture and then a coarse texture. Thus scale, and the appreciation

of the scale in question, is an important feature of texture.

Another, related quantity, used for texture feature extraction is the spectrum of

an image (i.e. the squared modulus of the image's Fourier transform). This provides

a frequency descriptor of the information contained within an image. Average values

of energy within ring or wedge functions of frequency (see �gure 4.3) can be used to

provide features relating to coarseness and directionality respectively. For example a

high energy in the low frequencies is characteristic of a coarse texture, whilst a large

contribution in the high frequencies is indicative of a �ne texture (see, for example,

Weszka, Dyer & Rosenfeld (1976) for further details).
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(a) (b)

Figure 4.3: Frequency-based texture statistics: measures can be formed by evaluating
average energy values in (a) frequency rings or (b) wedges.

It has been demonstrated that features based on the Fourier power spectrum

are outperformed by measures based on gray level co-occurrence statistics, which we

describe in Section 4.3.3. Statistics based on spatial gray-level di�erences have also

been shown to outperform the Fourier approach (Weszka et al. (1976) and Conners &

Harlow (1980)).

4.3.2 Textural edgeness

An alternative approach to quantifying texture by spatial frequency is to consider

texture in terms of edgeness per unit area (Davies & Mitchie (1980)). A microedge

may be detected by comparing the (local) values of properties obtained from pairs of

non-overlapping neighbourhoods bordering the resolution cell. Conversely, a macro

edge may be detected using large neighbourhoods. Sutton & Hall (1972) propose

an alternative approach, using the gradient as a function of distance between pixels.

Tomita & Tsuji (1990) propose several other texture properties which may be derived

from statistics based upon edge distributions. These include coarseness, contrast and

directivity.
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4.3.3 Gray tone co-occurrence matrices

Haralick et al. (1973) present a general procedure for extracting textural properties

based upon the co-occurrence matrix of an image (de�ned below). This approach is

founded upon the use of the repeated occurrence of a gray level con�guration within

an image as a texture descriptor: a con�guration varies rapidly with distance within a

�ne texture but slowly with coarse textures. More precisely, the method is formulated

as follows:

Consider a region of interest, R, of dimensionM �N within an image. Further, let

Pd;�(a; b) be a matrix which measures the number of occurrences with which two pixels,

of gray levels a and b respectively, appear in R separated by a distance d in direction �.

Haralick et al. (1973) argue that Pd;�(a; b) describes an occurrence of some gray-level

con�guration. Various measures such as energy, entropy, contrast and correlation may

be derived from the co-occurrence matrices, these features subsequently being used

for texture classi�cation etc. Such matrices may also be de�ned to be symmetric (see

Sonka et al. (Section 14:1:2, 1999)). Although co-occurrence matrices provide good

results in practice, the approach is computationally expensive.

4.3.4 Other statistical approaches

A popular feature extractor, proposed by Laws (1979), assesses average gray-level,

edges, spots, ripples and waves. The measures are constructed from three simple

vectors:

L3 = [ 1; 2; 1] a measure of average;

E3 = [�1; 0; 1] which calculates �rst di�erences (i.e. edges);

and S3 = [�1; 2;�1] which calculates spots.
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Taking suitable convolutions of these vectors with themselves and each other results in

�ve vectors:

L5 = [ 1; 4; 6; 4; 1];

E5 = [�1;�2; 0; 2; 1];
S5 = [�1; 0; 2; 0;�1];
R5 = [ 1;�4; 6;�4; 1]
and W5 = [�1; 2; 0;�2;�1]:

9>>>>>>>>>=>>>>>>>>>;
(4.1)

The tensor products of the vectors displayed in equation (4.1) produce the two-

dimensional �lters which are commonly referred to as Laws' masks. For example,

one such mask is given by:

L5 
 E5 =

26666666664

�1 �2 0 2 1

�4 �8 0 8 4

�6 �12 0 12 6

�4 �8 0 8 4

�1 �2 0 2 1

37777777775
: (4.2)

These �lters can be used to formulate feature vectors of textured images.

The �lters proposed by Laws are an example of a local linear transform (LLT). Other

examples of such transforms include the discrete sine, cosine and Hadamard transforms.

With several potential LLTs available for any given problem, Unser (1986) considers the

problem of transform selection for a given application: the \optimal" transform being

chosen either by minimising an entropy criterion or maximising an energy criterion

such that the transform produces uncorrelated variables. Unser (1986) demonstrates

that the \optimal" transform (with respect to the energy criterion) when trying to �nd

a representation which best describes the local texture properties of an image, is the

Karhunen-Lo�eve transform. However, as Unser & Eden (1989) note, in practice it is

often preferable to use sub-optimal linear transforms as optimal transforms are texture

dependent.

In an experiment to determine how the LLT approach compares with the co-

occurrence matrix method, Unser (1986) concludes that it is \almost as e�cient": i.e.

the classi�cation rates are comparable. Moreover, due to the computational e�ciency

of LLTs and their connection to psychological �ndings about the visual system, Unser
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(1986) argues that they may be preferable to the co-occurrence approach. Indeed,

Unser (1995) states that the LLT can \be used as the reference method for a single

resolution analysis".

Many other statistical approaches have been used by texture analysts, for example:

1. Autoregressive models (Deguchi & Morishita, 1978)

2. Markov chain models (Cross & Jain, 1983; Qian & Titterington, 1991) )

3. Mathematical morphology (Serra & Verchery, 1973)

4. Fractal based methods (Pentland, 1984)

5. The texture transform (Simaan, 1990)

6. Gray level run length (Galloway, 1975)

See Haralick (1986) or Sonka et al. (1999) for further details.

None of the above feature extraction techniques can be described as providing a

multiscale analysis of the structure within a textured image. However, as we noted

in Section 4.2, scale-structure is an inherent feature of many textured images. Thus,

when trying to di�erentiate or classify between various textured images, the inclusion

of scale information seems highly desirable. In an attempt to harness and quantify

such scale structure, recent research has focused upon the use of multiscale techniques

for texture analysis. We proceed to consider such methods in the next section.

4.4 Wavelets for texture analysis

4.4.1 An introduction to wavelets for texture analysis

Recent psycho-visual research has indicated that the human and mammalian visual

systems process images in a multiscale manner, preserving both local and global

information (see Daugman (1990), Reed & Wechsler (1990) or Field (1999) for

example). A review of such models is provided by Mallat (Chapter 5, 1999) . Such

�ndings have provided a strong motivation for the development of texture analysis

techniques founded upon multiscale methods.
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Initial multiscale approaches to texture analysis were based upon Gabor functions,

see for example Turner (1986), Bovic, Clark & Geisler (1990) and Dunn & Higgins

(1995). However, Unser (1995) provides compelling arguments against such an

approach, highlighting potential disadvantages including computational intensity and

lack of �lter orthogonality. Similar issues have also been raised by Chang & Kuo (1993).

Conversely, discrete wavelet transforms can be computed e�ciently and, in many cases,

are orthogonal. Consider, for example the DWT or the \best basis" discrete wavelet

packet transform: these may be calculated in order O(N) and O(N log(N)) operations

respectively and are both orthogonal transforms. Coupled with the multiscale nature

of wavelet transforms, these features have prompted the application of wavelets to

texture analysis.

Below, we review several recently proposed techniques, paying particular attention

to the work of Unser (1995). Further reviews of wavelets for texture analysis are

provided by Sonka et al. (1999) and Scheunders et al. (1998).

4.4.2 The discrete wavelet transform

The use of the discrete wavelet transform for texture analysis was �rst suggested

by Mallat (1989b). Noticing that wavelet representations could be interpreted as a

form of basic primitive decomposition, Mallat was able to relate the discrete wavelet

transform to the texton theory of Julesz (1981). This transform is also appealing as it

is well localised and permits a decomposition into three di�erent directions: vertical,

horizontal and diagonal. However, it should be noted that one is not necessarily

constrained to these three directions. Mallat (1989b) draws attention to alternative

constructions, using non-separable wavelet bases such as those considered by Meyer

(1992), which permit as many decomposition orientations as one desires.

4.4.3 Discrete wavelet packet transforms

Chang & Kuo (1993) reason that a potential disadvantage of using the DWT for texture

analysis is that it focuses on the progressive analysis of the low -frequency smooths.

They argue that although the discrete wavelet transform a�ords a multiscale image

decomposition, the most signi�cant information contained within a textured image is
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often located within the middle frequencies. Thus, the DWT may not be suitable

in many cases as the low frequency region \may not necessarily contain signi�cant

information". In other words, it does not provide a suitably re�ned partition of the

middle frequencies.

To combat this problem, Chang & Kuo (1993) suggest the use of the \tree

structured" or wavelet packet transform, detecting \signi�cant" frequency channels

which are subsequently further decomposed, an approach which ensures an orthogonal

transformation of the data. The measure used to decide which branches to decompose

is based upon the normalised energy

elj =
1

RS

RX
r=1

SX
s=1

jplj;(r;s)j for l = 1; 2; 3; 4;

where p1j;(r;s) = dhj;(r;s), p
2
j;(r;s) = dvj;(r;s), p

3
j;(r;s) = ddj;(r;s) and p4j;(r;s) = cj;(r;s) { the level

j horizontal, vertical, diagonal details and smooth respectively. This measure is also

used by Chang & Kuo (1993) in the training and testing of various texture classi�cation

algorithms.

The application of the discrete wavelet packet transform to texture analysis is also

considered by Saito & Coifman (1995) and Laine & Fan (1993). Saito & Coifman (1995)

adopt the \Best Basis" approach of Coifman & Wickerhauser (1992), thus ensuring an

orthogonal multiscale representation of the texture data. Energy based measures are

then used to train and test two di�erent classi�ers: a classi�cation tree and linear

discriminant analysis-based classi�er. Laine & Fan (1993) adopt a slightly di�erent

approach, evaluating a complete wavelet packet transform (WPT) of a textured region

of interest. They then proceed to compare the classi�cation performance of

1. the complete (i.e. redundant) WPT against that of the DWT;

2. an orthogonal WPT, based on a single given level, against the redundant WPT;

3. two di�erent measures when constructing a vector of statistics used for pattern

recognition. The �rst is an energy measure, based upon the sum of squared detail

(or smooth) coe�cients within a given packet image, whilst the second provides

a measure of entropy: H(x) = �P(r;s) jxr;sj2 log(jxr;sj2).

Their results indicate that, in comparison to the DWT, a \�ner discrimination may

be more strongly supported by additional subsets of wavelet packets (redundancy)"
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and that classi�cation based upon the wavelet packet energy measure was marginally

superior to that based upon the entropy measure. They also observe that the vector

of statistics based upon a redundant representation, using all level 1, 2 and 3 packets,

results in poorer classi�cation rates than those based upon an orthogonal representation

(for example the complete set of level 3 wavelet packets). They reason that \this

suggests that redundancy may increase uncertainty ... for the classi�er employed in our

study". It is perhaps more reasonable to suppose that these higher misclassi�cation

rates were due to the vector entries being correlated and/or the so called \curse of

dimensionality".

4.4.4 Non-decimated discrete wavelet transforms

The lack of translation equivariance (TE) of the DWT is a well-known phenomenon

which we considered in Section 2.5. Put simply, the consequence of non-TE is that

a simple integer shift of the input signal frequently results in a non-trivial change

in the DWT of the signal. This is clearly undesirable, particularly when considering

images with multiple texture features such as �gure 4.2, for upon translation, markedly

di�erent features could be returned at texture boundaries. To remedy this issue,

Unser (1995) proposes the use of the Discrete Wavelet Frame (DWF), a form of non-

decimated wavelet transform, for texture analysis. Like the NDWT proposed by Nason

& Silverman (1995) and others, the DWF is \similar" to computing the DWT for all

circular shifts (in 1-D) of the input signal (see Unser (1995) for further construction

details).

Unser (1995) adopts the following approach to texture characterisation: Given a

textured image, R, of dimension N2 for N = 2J ; J 2 N , we decompose R with respect

to the DWF, giving a 3J + 1 component vector:

yR(r; s) = (yi(r; s))i=1;::: ;3J=1;

=
�
s0(r; s) dh1(r; s) dv1(r; s) dd1(r; s) : : : ddJ�1(r; s)

�
:

A concise texture representation is a�orded by the \channel variances", Var(yi). These

are estimated by

vi =
1

n2

NX
r=1

NX
s=1

y2i (r; s): (4.3)



90 Texture analysis

Using the vi as classi�er inputs for a test involving several Brodatz images, Unser

(1995) observes that the DWF approach outperforms the DWT. Furthermore, the

DWF compares favourably with the local linear transform (LLT) proposed by Unser

(1986) (see Section 4.3.4). This is of particular interest, for as we observed earlier, the

LLT regularly outperforms other standard single resolution methods, such as the co-

occurrence and correlation approaches. Perhaps, most interestingly of all, Unser (1995)

concludes that \increasing the number of vanishing moments : : : of the underlying

basis functions does not seem to have any real advantage for texture analysis and

discrimination".

4.4.5 Other wavelet-based approaches to texture analysis

The recent \Wavelets for Texture Analysis" initiative at the University of Antwerp

(http://www.ruca.ua.ac.be/visielab/wta/wta.html) has generated several novel texture

analysis techniques. Van de Wouwer, Scheunders & Van Dyck (1999a) consider

the application of the discrete (undecimated) wavelet transform to texture analysis,

introducing two new sets of features. Their �rst set is based upon the experimental

observation made by Mallat (p. 686, 1989) that the histogram of gray scales within a

given detail image may be modelled by the family of exponentials:

h(u) = K exp�(juj=�)
�

:

This is, a re
ected Weibull distribution, with scale parameter � and shape parameter

�. Estimates of these parameters were subsequently used as inputs to the texture

classi�cation algorithm.

The second set of measures proposed by Van de Wouwer et al. (1999a) is motivated

by the co-occurrence approach of Haralick et al. (1973). Instead of calculating

co-occurrence matrices for the image, Van de Wouwer et al. (1999a) calculate co-

occurrence matrices of the wavelet detail images. Measures including inertia, total

energy and entropy of the detail image are evaluated from the co-occurrence matrices

for inclusion in the feature vector. Van deWouwer et al. (1999b) consider the problem of

classifying coloured texture images, building upon the \energy signature" approach of

Laine & Fan (1993) and Unser (1995), whilst Van de Wouwer (Chapter 5, 1998) tackles

the problem of rotation-invariant feature extraction, using a non-separable wavelet
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transform.

To overcome problems of translation invariance and poor directional selectivity

within the DWT, novel multiscale transforms such as the non-decimated wavelet

packet transform, dual-tree complex wavelet transform (Kingsbury, 1999) and steerable

pyramid (Simoncelli & Freeman, 1995) have been used for various texture analysis

tasks. See Laine & Fan (1996), de Rivaz & Kingsbury (1999) or Portilla & Simoncelli

(2000) for example.

Finally, recent research by members of the Digital Signal Processing group at Rice

University has focused upon hidden Markov tree modelling of the structure within

wavelet transforms and its application to various image and texture based applications:

for example Crouse, Nowak & Baraniuk (1998), Romberg, Choi & Baraniuk (2000),

Venkatachalam, Choi & Baraniuk (2000) and Choi et al. (2000). Such models can

capture the key features of many real world images, for example the persistent nature of

discontinuities in the wavelet domain. However, the application of such approaches can

be computationally expensive (see Romberg et al. (2000)). To combat such expense,

it is often convenient to reduce the number of model parameters by assuming that,

within any given scale, the parameters are constant over location.

4.4.6 Concluding remarks

The measures used by Unser (1995) for texture classi�cation are similar to those which

are considered in Section 4.5 when we apply the LS2Wmodel to various texture analysis

problems. However, our approach di�ers from many detailed in Sections 4.4.2 { 4.4.5

in one key respect: few are model-based. It is therefore sometimes di�cult to associate

a meaning with the quantities used for texture feature extraction. Moreover, no direct

consideration can be made as to whether the redundancy of various approaches, such

as those proposed by Laine & Fan (1993, 1996) and Unser (1995), causes power to leak

across decomposition scales and directions. Such leakage could nullify any meaning

one might attempt to attach to the measures. Additionally, the lack of any formal

modelling procedure makes the task of texture synthesis using these approaches very

di�cult.
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4.5 The LS2W model and texture analysis

We now consider applying the LS2W modelling approach to texture analysis. Our

approach is based upon the observation that textures possess structure at di�erent

scales. It seems natural, therefore, to conjecture that many textures may be

discriminated on the basis of their local (scale-based) spectral structure. To achieve

this, some form of summary measure of the structure contained within a textured image

is required.

The work of Chapter 3 allows us to formalise the analysis of textured images within a

stochastic framework, demonstrating that in the case of the redundant non-decimated

wavelet transform, power can leak across both scale and direction. This bias may

be corrected (asymptotically) by applying the inverse of the inner product matrix

of discrete autocorrelation wavelets to the array of raw local wavelet periodograms

(LWPs), as in equation (4.4). This estimate of the local wavelet spectrum (LWS)

provides a form of location, direction-scale decomposition of the covariance structure

within a LS2W process. To obtain a statistically consistent estimate of the LWS, we

must also smooth the LWP.

Given a textured image, TI , of dimension 2J � 2J , the collection of local wavelet

spatial periodograms, fL(z)g, forms an array of dimension 3J�2J�2J . As a �rst step

to investigating the potential of the LS2W approach to texture analysis, we consider

the following statistic, one of many which could be based upon the (smoothed) local

wavelet periodogram:

t(TI) =
X
z

~L(z) =
X
z

A�1J ~I([zR]): (4.4)

Any given element, ft(TI)�g�(j;l), provides a measure of the contribution made to

the overall local variance structure at scale j within direction l. This measure is

similar to the \channel-variance" proposed by Unser (1995). However, whilst Unser's

feature set is motivated by the conservation of energy within a tight wavelet frame, no

consideration is made of how the redundancy of the DWF can a�ect estimates of local

spectral features.

In the remainder of this chapter, we consider the application of the LS2W approach

to various texture problems. To start with, we consider its potential in discriminating

and classifying between various standard Brodatz textures, comparing our results
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with alternative measures based upon the DWT, (uncorrected) NDWT and the

Fourier spectrum. Then in Section 4.6, we consider the application of the LS2W

modelling approach to various texture analysis problems encountered by an industrial

collaborator. Again, we will compare our results with those of other approaches. It

should be noted that due to the small size of the textures considered, we focused on

building discriminant models using sub-images of dimension 128 � 128. Such sub-

images provide information at a variety of �ne and medium scales whilst also allowing

several samples to be taken from the original images. Should larger images become

available, then naturally it would be interesting to investigate the e�ect of using larger

sub-images in the analysis of such textures. This is left as an avenue for future work.

4.5.1 The Brodatz experiment

The Brodatz (1966) texture collection has become a standard test set within the

texture analysis community. Thus, it seems natural to commence our investigation

with this dataset. We focus attention on the six 640 � 640 images displayed in

�gure 4.4. These �gures were supplied by T. Randen and may be downloaded

from http://www.ux.his.no/tranden. As can be seen, the textures have many di�erent

features: some, such as �gure4.4(5) are characterised by �ne scale structure whilst

others possess coarser features. However, each image is in some sense \stationary" as

all exhibit some form of regularity within their structure.

The �rst experiment which we consider attempts to discriminate between the six

textures displayed in �gure 4.4. To the eye, these textures appear very di�erent

from one another. Hence we would hope that our LS2W-based approach is able to

discriminate e�ectively between these di�erent texture types. Fifty sub-images, Si, of

dimension 128� 128 were randomly sampled from the upper half of each image. The

feature vector, ft(Si)gi=1;::: ;300, was evaluated for each sub-image and stored ready

for input into a discrimination algorithm. This procedure was implemented in S-

Plus, using the WaveThresh and LS2W software suites, making extensive use of the

LS2W-function cddews. See Appendix C or http://www.stats.bris.ac.uk/~maiae/LS2W

for further details.

In this initial analysis, the Haar family of wavelets was used to estimate the LWS,

the resulting spectra being smoothed using the Daubechies Extremal Phase (N=4)
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(1) (2) (3)

(4) (5) (6)

Figure 4.4: Brodatz images used to test the LS2W model's ability to
discriminate and classify between di�erent textures. Images provided by T.
Randen, Schlumberger Stavanger Research.

wavelet with a soft, locally stationary universal threshold as proposed by Nason et al.

(Theorem 4, 2000). The variance estimator used in this case was the sample variance.

Fisher's linear discriminant analysis (LDA) was used as an exploratory discrimination

method (see Mardia, Kent & Bibby (1979) or Ripley (1996) for comprehensive reviews

of this technique). The results of this analysis may be seen in �gure 4.5. The di�erent

texture types can be discriminated quite easily, with each texture class being well

localised within the discriminant plane. Note however that texture types 3 and 4,

though discriminable, are situated close together. This feature is also present in

the linear discriminant plot of texture features based upon the (uncorrected and

unsmoothed) Haar non-decimated wavelet transform (�gure 4.6). The vector of feature

statistics was formed by summing the squared non-decimated wavelet coe�cients over

location within each direction-scale pair.

Figures 4.7 and 4.8 display plots of the �rst two discriminant variables based on
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texture measures created using the Haar discrete wavelet transform and the Fourier

transform respectively. In the case of the discrete wavelet transform, each element of the

feature vector was formed by summing the squared detail coe�cients within a given

direction-scale pair. The Fourier feature set was was created by summing elements

within frequency rings having a depth of 10 frequency units (see �gure 4.3(a)). Figure

4.7 displays a good level of discrimination between all texture classes. In contrast,

the Fourier-based measures have di�culty in discriminating between texture classes 3,

4 and 6. As several of these images are characterised by edges (i.e. discontinuities),

we would not expect the Fourier approach to discriminate as e�ciently between the

various classes.

The second experiment which we consider attempts to classify a test set of three

hundred sub-images of dimension 128�128 into one of the six Brodatz texture classes.

Fifty sub-images were randomly sampled from the lower half of each image in �gure

4.4. Features were calculated for each test sub-image using the LS2W, (uncorrected)

non-decimated wavelet transform, discrete wavelet transform and Fourier approach

detailed above. To start with, sub-images were assigned to a texture class according

to the following simple rule:

1. Perform a LDA on the training set of all six texture classes.

2. Then for each test sub-image, calculate the LDA-transformed feature vector and

assign ~Si to the class whose mean is closest (in the Euclidean sense).

The results of this experiment are displayed below:

Method Percentage Correctly Classi�ed

LS2W model 83.3
Uncorrected NDWT 83.3
DWT 91.0
Fourier 73.3

Table 4.1: Percentage of Brodatz textures classi�ed correctly using various
feature extraction techniques. Wavelet based features were generated using the
Haar wavelet and the LS2W model was smoothed using Daubechies Extremal
Phase (N=4) wavelets.
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First discriminant variable
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Figure 4.5: Plot of the �rst two linear discriminant axes for LS2W-based
features obtained from the Brodatz textures displayed in �gure 4.4. Texture
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respectively.
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Figure 4.7: LDA plots for measures of the Brodatz textures based on the
discrete wavelet transform.
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Figure 4.8: LDA plots for measures of the Brodatz textures based on the
Fourier transform.
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As we would expect from looking at the LDA plots in �gures 4.5 { 4.8, these errors

are invariably due to texture type 4 being misclassi�ed as type 3. Looking at �gure

4.4 this is perhaps unsurprising, the structure in both images being reasonably similar.

It is also interesting to note that the multiscale approaches produce more accurate

classi�cation results. However, we would expect this as these images are characterised

by edges.

Noticing that it is di�cult to discriminate between, for example, texture types 3 and

4 in the LDA plots associated with the multiscale approaches (�gures 4.5 { 4.7), one

might in practice consider a two-stage scheme in an attempt to improve classi�cation

performance. Such an approach is described below:

LS2W, NDWT and DWT approach: A LDA is performed on the training set

of all six texture classes. If the LDA-transformed feature vector of a test sub-image,

~Si, is closest (in the Euclidean sense) to the mean of class 1, 2, 5 or 6, then the sub-

image is assigned to that class. Otherwise, a LDA is performed on the training set of

texture classes 3 and 4 only. The sub-image is then assigned to whichever texture the

LDA-transformed feature vector is closest to.

Fourier approach: Recall from �gure 4.8 that only texture classes 1, 2 and 5 are

easily discriminable using the Fourier-based feature vector. Thus the following two-

stage classi�cation scheme, founded on the �rst two linear discriminant variables of a

test set, was adopted when using Fourier-based feature vectors:

i) Perform a LDA on the training set of all six texture classes.

ii) If the LDA-transformed feature vector of ~Si is closest (in the Euclidean sense) to

the mean of class 1, 2 or 5 then assign the sub-image to that class.

iii) Otherwise, perform a LDA on the training set of texture classes 3, 4 and 6.

iv) Assign ~Si to the class to which the LDA-transformed feature set is closest.

The results obtained may be seen in table 4.2.

Clearly this modi�ed scheme, which takes into consideration the discriminant

structure of this speci�c data set, produces superior results. It is evident from the above



4.6 Applications of the LS2W model 99

Method Percentage Correctly Classi�ed

LS2W model 100
Uncorrected NDWT 100
DWT 98.7
Fourier 92.3

Table 4.2: Percentage of Brodatz textures classi�ed correctly using various
feature extraction techniques in conjunction with a two-stage classi�cation
scheme. Wavelet based features were generated using the Haar wavelet and the
LS2Wmodel was smoothed using Daubechies Extremal Phase (N=4) wavelets.

that the wavelet-based approaches achieved improved classi�cation rates compared

with the Fourier-based approach. However, with seemingly perfect classi�cation rates

returned by the LS2W and (uncorrected) non-decimated wavelet transform methods,

one must ask how realistic is it to judge a classi�er on the basis of its ability to

discriminate between bricks and bubbles? As we shall see in the next section, the

classi�cation problems which are encountered in reality are frequently far more subtle.

4.6 Applications of the LS2W model

4.6.1 Exploratory analysis of pilled material images

The following texture analysis problem arises from work with an industrial collaborator.

Six samples of identical material were bu�ed to varying degrees in an attempt to

simulate di�erent levels of garment wear. The e�ect of this bu�ng is to induce pilling,

a building up of �brous balls on the surface of the material. As can be seen in

�gure 4.9, certain materials have a very �ne level of pilling (for example �gure 4.9(1))

whilst others are heavily pilled (�gure 4.9(6)). Each image is 1024 � 1024 pixels in

size. Unfortunately, physical scale was not considered to be an issue in the original

application which generated this data. Consequently no record was made of the size of

the textiles contained in these images. In future work, such records will be collected.

Interestingly, some of these samples are very di�cult to discriminate between

visually. To investigate the ability of LS2W approach to discriminate between these

di�erent textures, �fty sub-images of dimension 128�128 were randomly sampled from
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(1) (2) (3)

(4) (5) (6)

Figure 4.9: Images of materials pilled to varying degrees. Image (1) contains a �ne
pill material, whilst image (6) contains heavy pilling. Images provided by Unilever
Research.

the left hand half of each image. For each sub-image, the following classes of feature

sets were evaluated:

1. LS2W measures, smoothed using the Daubechies Least Asymmetric (N=6)

wavelet;

2. Uncorrected non-decimated wavelet transform;

3. Discrete wavelet transform;

4. Fourier transform features using rings of 10 frequency units.

This linear partition of the frequency space (item 4) was thought to be reasonable for

this initial study, being neither particularly �ne nor coarse. Other choices of partition

could consist of a �ne linear partition of the space or a logarithmic partition, thus

mimicking the division performed by wavelets. Daubechies Extremal Phase (N=3)

wavelets were used for all wavelet-based measures.
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Figure 4.10 displays a plot of the �rst two linear discriminant axes for the LS2W

feature set. Note how the di�erent pill levels span the plane: heaviest pill on the left

and lightest pills on the right. The di�erent classes are reasonably well separated, the

analysis even being able to separate pill levels 5 and 6, two images which appear very

similar to the eye. However, it should be noted that pill levels 3 and 4 overlap. Figure

4.11 displays a plot of the �rst and third discriminant variables for this feature set,

whilst �gure 4.12 displays the �rst and fourth discriminant variables. Observe how

the quality of separation between the various texture classes diminishes as we proceed

from the second through to the fourth discriminant variable. Note in particular how

the separation between pill levels 5 and 6 disappears by �gure 4.12.

Figures 4.13 { 4.15 display the plots of the �rst two linear discriminant axes for

the feature sets obtained from the non-decimated wavelet, discrete wavelet and Fourier

transforms respectively. With the exception of �gure 4.15, pill levels 3 and 4 again

overlap. By contrast, the Fourier based features used in �gure 4.15 have di�culty in

discriminating between texture classes 1, 2 and 4, although classes 3, 5 and 6 are well

separated.

The weighting of the di�erent contributions to the linear discriminant variables may

provide us with a useful insight into which scales permit discrimination between the

various texture types. Table 4.3 shows the weighting of the various contributions to the

�rst and second linear discriminant variables formed from the LS2W training set. Many

scales contribute, the vertical scale structure having a particularly strong in
uence

especially on the second discriminant variable. This would appear to correspond with

the direction of the weave within the material.

Classi�cation

With such subtle di�erences between the images displayed in �gure 4.9, it is interesting

to see whether the various feature extraction schemes can provide measures which

permit reasonable classi�cation rates. To this end, a test set of �fty sub-images of

dimension 128 � 128 were randomly sampled from the right half of each pill image.

The LS2W, uncorrected non-decimated wavelet transform, discrete wavelet transform

and Fourier \spectral ring" feature sets were evaluated for each sub-image. These

feature vectors were subsequently used to classify the sub-images to a pill class.
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Figure 4.10: LDA plots for measures of the Pill images based on the
LS2W model. Sub-images were analysed using the non-decimated Daubechies
Extremal Phase (N=3) wavelet transform, smoothed using the Daubechies
Least Asymmetric (N=6) wavelet and corrected.
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Figure 4.11: LDA plot of the �rst and third discriminant variables for the Pill
images based on the LS2W model.
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Figure 4.12: LDA plot of the �rst and fourth discriminant variables for the
Pill images based on the LS2W model.
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Figure 4.13: LDA plots for measures of the Pill images based on the
uncorrected, non-decimated wavelet transform.
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Figure 4.14: LDA plots for measures of the Pill images based on the discrete
wavelet transform.
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Figure 4.15: LDA plots for measures of the Pill images based on the Fourier
transform.
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Direction/Scale First Discriminant Second Discriminant
Pairs Variable Variable

(1,v) 6.6 -33.3
(2,v) -9.6 -7.6
(3,v) 3.0 -98.4
(4,v) -7.6 5.9
(5,v) 2.5 4.0
(6,v) -12.4 16.3
(7,v) -4.7 3.4
(1,h) 2.4 -0.9
(2,h) -2.7 10.7
(3,h) -1.0 0.2
(4,h) -1.9 -0.5
(5,h) -2.0 0.7
(6,h) -0.1 0.3
(7,h) -0.7 -1.1
(1,d) -0.7 -0.6
(2,d) 0.6 -0.1
(3,d) 0.3 2.5
(4,d) -0.1 0.4
(5,d) -0.6 -0.3
(6,d) 1.0 -4.1
(7,d) -0.6 -3.5

Table 4.3: The �rst and second discriminant variables for the LS2W-based
linear discriminant analysis model of the pilled images, constructed using the
Daubechies Extremal Phase (N=3) wavelets (�10�6).
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Method Percentage Correctly Classi�ed

LS2W model 57.7
Uncorrected NDWT 51.7
DWT 54
Fourier 66

Table 4.4: Percentage of Pill textures classi�ed correctly using a single
step classi�cation algorithm. Wavelet based features were generated using
the Daubechies Extremal Phases (N=3) wavelet and the LS2W model was
smoothed using Daubechies Least Asymmetric (N=4) wavelets.

To begin with, a single stage classi�cation scheme based upon the �rst four linear

discriminant variables was performed. Each sub-image was classi�ed using a minimum

(Euclidean) distance rule. In the event that the distances between a sub-image and

two (or more) texture classes were equal, the sub-image was deemed to be unclassi�ed.

The results of this approach are displayed in Table 4.4. As can be seen, barely

half the sub-images are classi�ed correctly when using the multiscale methods |

the LS2W approach achieving the best results of the three. Note however, that the

Fourier approach classi�es approximately two thirds of the sub-images correctly. These

comparatively poor misclassi�cation rates are not particularly surprising for texture

classes 2, 3 and 4 are not well separated in the linear discriminant plots of �gures 4.10

{ 4.15.

In practice, it is likely that one would adopt a sequential classi�cation approach,

akin to that described in Section 4.5.1 when discriminating between such visually

similar textures. This is the next experiment which we consider. We focus on using

simply the �rst two linear discriminant variables since these display the best separation

between the various texture classes. The results of this experiment are displayed in

Table 4.5. The most notable feature of these results is that no method achieves a perfect

(or even near perfect) classi�cation rate. This is understandable, for even the human

eye can �nd it di�cult to discriminate between some of these pill images. Sub-images

from pill levels 3, 4 and 5 were by far the most frequently misclassi�ed samples.

Of the three multiscale approaches, the LS2W approach faired best of all with 70:7%

of sub-images classi�ed correctly. However yet again, the Fourier transform achieved
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Method Percentage Correctly Classi�ed

LS2W model 70.7
Uncorrected NDWT 66.7
DWT 65.7
Fourier 72.3

Table 4.5: Percentage of Pill textures classi�ed correctly using various
feature extraction techniques. Wavelet based features were generated using
the Daubechies Extremal Phases (N=3) wavelet and the LS2W model was
smoothed using Daubechies Least Asymmetric (N=4) wavelets.

the best classi�cation rate (72:3%) with this dataset. This result is not surprising,

for these images have a regular form. Consequently their spectral properties in the

wavelet domain will also be regular, thus implying that the underlying process is, in

some sense, stationary. Hence we would expect these textures to be well-discriminated

by Fourier features.

4.6.2 Exploratory analysis of hair images

The �nal problem which we consider is the discrimination and classi�cation of two

images of straight hair, displayed in �gure 4.16. The images arise from research by

an industrial collaborator. Figure 4.16(a) depicts an image of hair which was given

a treatment which we call Treatment A, whilst �gure 4.16(b) depicts an image of the

same head of hair having received a second treatment, Treatment B. Each image is

576 � 768 pixels in size. Unfortunately, physical scale was not considered to be an

issue in the original application which generated this data. Consequently no record

was made of the size of these images. In future work, such records will be collected.

Clearly, both images are a�ected by a variable light condition | the left hand side

of both images appear to be shaded somewhat. To counteract this e�ect, we could pre-

process the image in some way: a popular image processing technique being histogram

equalisation (see Sonka et al. (1999) for further details). Unfortunately, this approach

has a tendency to emphasise sudden changes in structure (i.e. discontinuities) whilst

diminishing the e�ect of subtle di�erences. Consequently, we do not pursue this avenue

at this time. Instead, we deal with the images in their original format.
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Figure 4.17 displays LDA plots for various feature sets obtained from �fty 128�128

sub-images which were randomly sampled from the upper half of each image in �gure

4.16. The three wavelet-based LDA plots display a good level of discrimination between

the two texture types whilst �gure 4.17(d), based upon the Fourier transform, does not

achieve such a clear distinction between the two texture types.

(a) (b)

Figure 4.16: Images of straight hair. Image (a) depicts hair which was washed and
dried according to treatment A, whilst image (b) depicts hair which was washed and
dried according to treatment B. Images provided by Unilever Research.

Table 4.6 provides the weightings of the various direction-scale contributions to the

LDA plot in �gure 4.17(a). Note how the greatest in
uence arises from the vertical

scale coe�cients, as one might expect when comparing two images of near vertical

straight hair.

Direction/Scale First Discriminant
Pairs Variable (�10�4)
(1,v) -3.103
(2,v) -1.679
(3,v) 14.980
(4,v) 2.826
(6,v) 2.723

all other pairs < 1

Table 4.6: The �rst discriminant variable for the LS2W-based linear discriminant
analysis model of the hair images.

In an attempt to ascertain the potential of the LS2W approach to classify hair

images, �fty further sub-images of dimension 128� 128 were randomly sampled from
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Figure 4.17: LDA plots for measures of the Hair images based on the LS2W model.
Plot (a) is based on LS2W-derived features, whilst plots (b) and (c) were formed using
non-decimated and discrete wavelet transform features respectively. The Daubechies
Extremal Phase (N=4) wavelet transform was used in each case, the LS2W-spectra
being smoothed using Daubechies Least Asymmetric (N=6) wavelets. Plot (d) was
formed using Fourier-based spectral rings having a depth of 10 pixels.
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the lower half of each image in �gure 4.16. LS2W, non-decimated wavelet, discrete

wavelet and Fourier-based features were evaluated for each sub-image, the resulting

vector of statistics being transformed, using the appropriate �rst linear discriminant.

As in Sections 4.5.1 and 4.6.1, each sub-image was assigned to the texture class whose

mean was closest to the (transformed) feature co-ordinate.

Classi�cation is far from perfect for this data set. As can be seen in Table 4.7,

the three wavelet-based classi�ers achieve higher classi�cation rates than the Fourier-

based approach. However, approximately 30% of sub-images were misclassi�ed by even

the best approach. Removing the variable lighting from the original images, using

histogram equalisation would, with the exception of the Fourier-set, appear to have

little e�ect on the rate of misclassi�cation.

Method Percentage Correctly Percentage Correctly
Classi�ed (Original) Classi�ed (Histogram equal.)

LS2W model 71 68
Uncorrected NDWT 71 68
DWT 73 72
Fourier 60 69

Table 4.7: Percentage of hair sub-images classi�ed correctly using various
feature extraction techniques. Wavelet based features were generated using the
Daubechies Extremal Phases (N=4) wavelet, the LS2W model being smoothed
using Daubechies Least Asymmetric (N=4) wavelets.

Note how in both analyses the LS2W and uncorrected NDWT approaches achieve

identical classi�cation rates. This result is not surprising, for there exists good

separation within the LDA plots associated with both these feature sets (see �gures

4.17 (a) and (b)). The reason for this similarity in results is that the original images

have a very regular form. In other words they are reasonably stationary and so their

local wavelet spectra will be constant across location. Hence, correction by A�1 will not

greatly a�ect the analysis. In Section 4.6.3 we will consider a non-stationary texture

analysis example which demonstrates the potential of the LS2W approach.

Table 4.8, below displays the results of a similar classi�cation experiment using the

Haar wavelet transform. Note how the results are comparable with those which were
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achieved with the Daubechies Extremal Phase (N=4) wavelet. This is in line with the

�ndings of Unser (1995) who noted that increasing the number of vanishing moments

of the underlying wavelets does not signi�cantly a�ect classi�cation.

Method Percentage Correctly
Classi�ed

LS2W model 68
Uncorrected NDWT 68
DWT 66

Table 4.8: Percentage of hair sub-images classi�ed correctly using various
feature extraction techniques. Wavelet based features were generated using
the Haar wavelet, the LS2W model being smoothed using Haar wavelets.

4.6.3 Non-stationary texture classi�cation

Recall that the power of the LS2W modelling approach lies in its ability to analyse

images whose covariance structure is locally stationary. In other words, it is well suited

to the analysis of images whose covariance structure is globally non-stationary, but

stationary within a local region. Crucially, the LS2W approach is able to correct

artefacts which arise as a consequence of the inherent redundancy of the NDWT, the

transform used in the estimation of the spectral structure of an image. The result

of this correction is that we are able to reduce the e�ect of power spreading across

scales and directions. This is in stark contrast to using the squared detail coe�cients

of the NDWT, see for example �gures 3.5 and 3.6. It is therefore anticipated that our

modelling approach will fare well when classifying between non-stationary textures. To

investigate it's potential, we consider the following simulated problem:

Suppose a certain tile making process generates two texture types, T1 and T2 (see

�gure 4.18). T1 represents a desirable tile type whilst T2 is deemed to be a spoiled

tile. The task therefore is to �nd an approach which is able to achieve a high rate of

correct classi�cation.

Two classi�cation approaches are considered, the �rst being based upon our

LS2W model whilst the second uses the NDWT. The LS2W classi�cation approach



112 Texture analysis

T1 T2

Figure 4.18: Simulated examples of non-stationary textures.

is structured as follows: for each of 25 realisations of tile types T1 and T2, calculate

the local wavelet periodogram using the Haar transform, smoothing each periodogram

using Daubechies Extremal Phase (N=4) wavelets. Then calculate the mean local

wavelet periodogram structure within each tile type, thus obtaining two spectral

models, ~IT1 and ~IT2, of each tile's local wavelet spectral structure

A further 50 realisations of each tile type, fTigi=1;::: ;100, are then used as a test set for

classi�cation purposes. For each test case, calculate the LWP, again using the squared

detail coe�cients of the Haar NDWT smoothed using the Daubechies Extremal Phase

(N=4) wavelets. A tile Ti is then assigned to type T1 ifX
j;l;u

�
~Ij;l;u;T1 � ~Ij;l;u;Ti

�2
<
X
j;l;u

�
~Ij;l;u;T2 � ~Ij;l;u;Ti

�2
:

and type T2 if X
j;l;u

�
~Ij;l;u;T1 � ~Ij;l;u;Ti

�2
>
X
j;l;u

�
~Ij;l;u;T2 � ~Ij;l;u;Ti

�2
:

An equivalent approach is adopted using the squared detail coe�cients of an

unsmoothed, Haar non-decimated wavelet transform of the realisations.

The results of this experiment are displayed in Table 4.9. Recall that in the

examples given in Sections 4.6.1 and 4.6.2 the LS2W and (uncorrected) NDWT

approaches yielded similar classi�cation rates. This was due to the original images

being stationary. In this case however, the di�erence between the two approaches

becomes quite apparent, with the NDWT method only able to classify 62% of tiles

correctly. The reason for this is that the inherent redundancy of the NDWT causes
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Method Percentage Correctly Classi�ed

LS2W model 100
Uncorrected NDWT 62

Table 4.9: Percentage of tile types classi�ed correctly using the LS2W and
NDWT-based classi�cation approaches.

power to leak across directions and into lower scales, thus making discrimination

between the two tile types on the basis of their detail coe�cients di�cult. The LS2W

approach corrects for this leakage and therefore attains a higher classi�cation rate.

4.7 Summary

The application of the LS2W modelling approach to texture analysis has been

considered in this chapter. Having reviewed recent wavelet-based texture measures,

we proposed and investigated a direction/scale measure of texture power based on

the LWP proposed in Chapter 3. This measure was compared, with varying degrees

of success, against alternative texture measures (non-decimated wavelet transform,

discrete wavelet transform and Fourier) for various texture problems. In the case of

the standard Brodatz textures, the LS2W-approach fared well.

We then proceeded to consider more realistic problems. Discrimination between

the various Pill and Hair images was good. However, when attempting to classify

sample textures obtained from these real-world problems, no one approach excelled.

As one would expect with stationary images, the LS2W model and uncorrected non-

decimated wavelet transform features obtained comparable results. However, when

considering the application of these approaches to non-stationary texture classi�cation,

the uncorrected NDWT approach was inferior to the LS2W model | the higher

classi�cation rates of the latter being due to its ability to correct the power leakage

which is induced by the redundancy of the NDWT.





Chapter 5

The inner product matrix of

discrete autocorrelation wavelets

5.1 Introduction

This chapter considers the construction of the inner product matrix of discrete

autocorrelation wavelets. Such wavelets have recently been used in the statistical

analysis of locally-stationary time series, consisting of N (= 2J) data points, which

possess a variance structure which changes slowly over time (see Nason et al. (2000)

for example). Broadly, this means that on close-range inspection, such a series would

appear to be stationary (see Nason & von Sachs 1999). Thus if one can collect su�cient

information in the region of local stationarity, one can obtain a sensible estimate of

their statistical properties.

Direct, brute force, construction of discrete autocorrelation wavelets proves

computationally taxing when dealing with large datasets. However a well-known

recursion, which we discuss in Section 5.2, permits an economic construction of the

autocorrelation wavelets. The order of the recursion is O(2J), compared with O(22J)
when using the brute-force approach. This chapter shows that the autocorrelation

wavelet recursion scheme can be exploited to derive an e�cient scheme for the

construction of the inner product matrix of the autocorrelation wavelets, rather than

adopt the slow brute-force computations used by Nason et al. (2000).

The method proposed in Section 5.3 relates neighbouring elements of the inner

product matrix lying on a given diagonal (�gure 5.1 illustrates our scheme). A recursive
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Figure 5.1: Recursive scheme for (symmetric) inner product matrix A
calculation. All diagonal elements are obtained recursively: Aj+1;k+1

from Aj;k. The top row is populated through direct computation.

scheme for the calculation of those (initialising) elements which lie upon the top row

of the inner product matrix is proposed in Section 5.4. The computational e�ciency

of the various schemes considered in Section 5.2 and 5.3 are compared to the brute-

force alternatives in Table 5.1. Finally, motivated by the work of Chapters 3 and 4,

we propose a recursive construction for the inner product matrix of (separable) two-

dimensional discrete autocorrelation wavelets. Proofs are presented in Appendix B.

Brute force Recursive

Autocorrelation 22J 2J

wavelets (N2) (N)
Inner Product J2J J3

matrix (N logN) (logN)3

Table 5.1: Order of computations required.

5.2 Autocorrelation wavelets and time series

From our review of the work of Nason et al. (2000) in Section 2.7, it is evident that

the inner product matrix of autocorrelation wavelets plays an important role in the
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estimation of EWS. More precisely, the corrected EWS estimator is asymptotically

unbiased. Thus it is desirable to analyse the longest possible time series. Such series

require the use of larger inner product matrices. Hence this chapter focuses on the

development of an e�cient scheme for the generation of such matrices.

We begin by highlighting two useful recursive properties of autocorrelation wavelets

which permit an e�cient construction scheme. The �rst property shows the relationship

between the �nest scale autocorrelation wavelets and the discrete autocorrelation father

wavelet:

Property 5.1

Using equation 5.1.34 of Daubechies (1992), it is easily shown that the discrete

autocorrelation wavelets at scale 1 are related to the discrete autocorrelation father

wavelets via the relationship 	1(�) = (�1)��1(�).

The next property illustrates a two-scale relationship between autocorrelation

wavelets. This permits a more e�cient method for discrete autocorrelation wavelet

computation than the brute force application of (2.34).

Property 5.2

Let � 2 Z. Then the discrete autocorrelation wavelet at scale j + 1 is related to that

at scale j 2 N by the following:

	j+1(2�) = 	j(�) (5.1)

and

	j+1(2� + 1) =

minfL1
2
�1;Lj+��1gX

p=maxf�L1
2

;1�Lj+�g
�1(2p+ 1)	j(� � p): (5.2)

In other words, the autocorrelation wavelet at any scale can be recursively obtained

from the autocorrelation wavelet at the previous �ner scale, using knowledge only of

�1, the scale j = 1 autocorrelation father wavelet. A similar two-scale scheme can also

be found for discrete autocorrelation father wavelets.

It is easily shown that, whereas construction of the complete set of f	j(�)gj=1;::: ;J

takes O(22J) operations via a brute force approach, one can construct the same family

in O(2J) operations using Property 5.2 (see Eckley & Nason (2000) for further details).
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5.2.1 Inner product matrix: brute force construction

Recall from De�nition 2.7 that Nason et al. (2000) de�ne the J-dimensional inner

product matrix of autocorrelation wavelets to be given by

AJ = (Aj;k)j;k2f1;::: ;Jg

where

Aj;k =

minfLj ;Lkg�1X
�=1�minfLj ;Lkg

	j(�)	k(�):

It can be shown that for all j 2 N , 	j(0) = 1. Using this identity, together with

the symmetry of the discrete autocorrelation wavelets, it is easily seen that:

Aj;k = 1 + 2

minfLj ;Lkg�1X
�=1

	j(�)	k(�): (5.3)

Consequently, for any suitable values of j and k, direct computation of the inner

product, Aj;k, takes minfLj; Lkg + 1 operations, given that 	j(�) and 	k(�) have

already been evaluated. However, as AJ is symmetric, only its upper (or lower) triangle

need be computed. Hence, for k � j, computation of any given element in this upper

triangle requires

min fLj; Lkg+ 1 = Lj + 1 operations.

Thus, brute force construction of AJ takes

JX
j=1

JX
l=j

(Lj + 1);

i.e. O(J2J) operations.

5.3 Inner product matrix: recursive construction

The previous section motivated the need for an e�cient method of constructing discrete

autocorrelation wavelet inner product matrices. A natural approach to �nding such

a method would be to apply the results of Property 5.2 to �nd recursive structures

within such a matrix. This is the approach adopted below. We begin by obtaining

a relationship which relates elements of the inner product matrix which lie upon the
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leading diagonal. This helps motivate the work of Section 5.3.3, in which we derive an

analogous relationship between neighbouring elements on any given diagonal. Sections

5.3.2 and 5.3.4 consider the computational e�ciency for the leading and other diagonals

respectively.

5.3.1 The leading diagonal

This section obtains a relationship which connects neighbouring elements of the leading

diagonal. In particular, it enables e�cient computation of Ak;k from A1;1 for any k 2 N .

Some of the ideas in this section and leading to Proposition 5.4 are joint work with Dr.

G. P. Nason. We start by de�ning a few key quantities:

De�nition 5.1

For r 2 Z, let lr = �L1=2�minf0; rg and ur = L1=2� 1�maxf0; rg. Then we de�ne

Qr =
urX
p=lr

�1(2p+ 1)�1 (2(p+ r) + 1) : (5.4)

It is easily shown that Qr is symmetric about r = 0 and has support [1�L1; L1�1]. As

a consequence of this symmetry, we need only evaluate fQrgr2f0;::: ;L1�1g. Evaluation

of this set takes

Ops(Q) =
L1

2
(L1 + 1) operations.

The second quantity is based upon the autocorrelation wavelets at level j 2 N .

De�nition 5.2

Let j 2 N , ln = 1� Lj +max f0; ng and un = Lj � 1 + minf0; ng. Then de�ne

Pj;n =
unX
k=ln

	j(k)	j(k � n): (5.5)

Property 5.3

Clearly Pj;n is symmetric about n = 0 and has support [2(1 � Lj); : : : ; 2(Lj � 1)].

Additionally Pj;0 = Aj;j.

Using the two-scale relationship of discrete autocorrelation wavelets, we can recursively

construct the Pj;n as follows:



120 The inner product matrix of discrete autocorrelation wavelets

Proposition 5.1

Let p 2 Z and j 2 N and let

ue = minfL1 � 1; 2(Lj�1 � 1)� pg; le = maxf1� L1; 2(1� Lj�1)� pg;
uo1 = min

�
L1
2
� 1; 2(Lj�1 � 1)� p

	
; lo1 = max

�
�L1

2
; 2(1� Lj�1)� p

�
;

uo2 = min
�
L1
2
� 1; p� 2(1� Lj�1)

	
and lo2 = max

�
�L1

2
; p� 2(Lj�1 � 1)

�
:

Then,

Pj;2p = Pj�1;p +
ueX
q=le

Pj�1;p+qQq (5.6)

and

Pj;2p+1 =
uo1X
r=lo1

�1(2r + 1)Pj�1;p+r +

uo2X
r=lo2

�1(2r + 1)Pj�1;p�r: (5.7)

Thus the Pj;n may be calculated using knowledge of only �1 and Pk;n at �ner scales k.

The results of Property 5.2, together with the above identities, permits the

derivation of a recursive relationship between neighbouring elements which lie along

the leading diagonal of the inner product matrix.

Proposition 5.2

Let j 2 N . Then the (j + 1; j + 1)th element of the inner product matrix is related to

the (j; j)th element by the following recursive relation:

Aj+1;j+1 = Aj;j +
L1�1X

r=1�L1
Pj;rQr

= Aj;j(1 +Q0) + 2
L1�1X
r=1

Pj;rQr: (5.8)

In other words, the elements which lie on the leading diagonal of the inner product

matrix, AJ , can be recursively obtained using only knowledge of A1;1 and �1.

5.3.2 Computational e�ort of calculating the leading diagonal

recursively

Initialising values

We start our analysis of the computational e�ort required to calculate the leading

diagonal using the scheme outlined in Section 5.3.1 by considering the cost of computing
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the initialising values fP1;ng. By de�nition,

P1;n =

L1�1+minf0;ngX
k=1�L1+maxf0;ng

	1(k)	1(k � n): (5.9)

However, as P1;n is an even function in n, it su�ces to calculate it for n 2 [0; : : : ; 2(L1�
1)]. Thus, from (5.9), it follows that direct evaluation of the fP1;ngn2[0;::: ;2(L1�1)], using
pre-computed values of f	j(�)g, takes

Ops(Pinit) =

2(L1�1)X
n=0

2(L1 � 1)� n;

= (L1 � 1)(2L1 � 1) operations:

In other words, for any given wavelet family, it is an O(1) operation.

Evaluation of the Pj;2p

Recall from Proposition 5.1 that

Pj;2p = Pj�1;p +
ueX
q=le

Pj�1;p+qQq: (5.10)

Moreover, by Property 5.3, Pj;2p is symmetric about 2p = 0. It therefore su�ces to

consider the evaluation of Pj;2p for p > 0.

The construction of (5.10) is such that to calculate Pj;2p, for any given j 2 N ; p 2 Z,

one must perform the following number of operations:

Ops(Pj;2p) = 1 + ue � le;

= 1 +minfL1 � 1; 2(Lj�1 � 1)� pg
�maxf1� L1; 2(1� Lj�1)� pg: (5.11)

However, as p > 0, it follows that 1 � L1 is always greater than 2(1 � Lj�1) � p,

for j 2 N n f1g. Hence equation (5.11) can be simpli�ed somewhat. However, it is

important to note that the minimum term cannot be simpli�ed, as there exist p 2 N

such that 2(Lj�1� 1)� p < L1 � 1. It therefore follows that the number of operations

required to calculate Pj;2p from Pj�1;� for j; p 2 N , is given by

Ops(Pj;2p) = L1 +minfL1 � 1; 2(Lj�1 � 1)� pg: (5.12)
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We now consider the values of p for which we wish to evaluate Pj;2p, for any given

j 2 N . The recursive identity of Proposition 5.2,

Aj+1;j+1 = Aj;j(1 +Q0) + 2
L1�1X
r=1

Pj;rQr; (5.13)

requires only those values of Pj;r such that r 2 [1; : : : ; L1 � 1]. We can therefore

conclude that the length of the �lter associated with the wavelet determines the number

of Pj;r which need to be evaluated at any given level. Thus at �rst glance, it appears

reasonable simply to calculate Pj;2p for all 2p 2 [1; L1�1] for all levels j 0 < j. However,

as we demonstrate in Example 5.1, the recursive form of (5.6) used to generate the

fPj;2pg ensures that this is not possible.

Example 5.1 Assume that J 2 N is �xed and that all fPj;rgj=1;::: ;J�1 which are

required for the construction of fPJ;2pg have already been evaluated. As J is �xed, we

know from (5.13) that it su�ces to calculate PJ;2p for 2p 2 [1; : : : ; L1 � 1]. However,

for Daubechies' compactly supported wavelets, L1 is even. Hence it su�ces to calculate

PJ;2p for p 2 [1; : : : ; L1=2� 1]. By Proposition 5.1,

PJ;2p = PJ�1;p +
ue+pX
q=le+p

PJ�1;qQq�p: (5.14)

In other words, we need to know PJ�1;q for

1� L1 + p � q � minfL1 � 1; 2(LJ�1 � 1)� pg+ p: (5.15)

However,

min
p2f1;::: ;L1=2�1g

fL1 � 1; 2(LJ�1 � 1)� pg = minfL1 � 1; 2LJ�1 � L1=2� 1g;
= L1 � 1:

Hence (5.15) reduces to:

1� L1 + p � q � L1 � 1 + p; (5.16)

for p 2 f1; : : : ; L1=2� 1g. Thus, we conclude that to calculate fPJ;2pg1;::: ;L1=2�1, PJ�1;q
is required for q 2 [0; : : : ; L1 + L1=2� 2].

Clearly, wider and wider \intervals" of Pj;r will be required as j decreases. However,

it is important to note that one cannot construct an algorithm for the evaluation of
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fPj;2pgj=1;::: ;J for all Daubechies' compactly supported wavelets. Consider, for example,

the situation at the end of Example 5.1: to construct PJ;2p for p 2 f1; : : : ; L1=2�1g,
we need to be able to evaluate PJ�1;r for r 2 f0; : : : ; L1 + L1=2� 2g. However, as L1

is even, L1+L1=2� 2 can be either odd or even valued, depending on the form of Nh.

In other words, if we want to know the precise number of PJ�1;2p to evaluate,

we must consider each wavelet family individually. Already, this approach seems

unappealing. However, the situation is actually more complicated than this, for we

also need to consider the situation for each scale (see Eckley & Nason (2000) for further

details). Thus, we may conclude that if the algorithm is to be constructed such that

only the required fPj;rg are evaluated not only do we need to construct routines for

each individual wavelet family, but the situation for each individual scale must also be

considered. This is most unappealing from an implementational perspective.

An alternative to deriving an algorithm for each individual wavelet family, is to

devise an algorithm which, though maybe not as computationally e�cient, can be

used for any Daubechies wavelet. We propose such an algorithm below. Although this

approach evaluates a slightly larger number of Pj;r than is actually required, it is both

easy to implement and, more importantly, is still e�cient.

1. Fix J 2 N .

2. Calculate P1;r for all r 2 [0; : : : ; 2(L1 � 1)]:

3. Then, for j 2 2; : : : ; J, calculate Pj;r for r 2 Ij, where

Ij = f0; : : : ;minf2(Lj � 1); (J � j + 1)L1gg; (5.17)

setting Pj;r = 0 for any values of r such that 2(Lj � 1) < r � (J � j + 1)L1.

Adopting the above procedure permits the evaluation of a tractable upper bound

for the number of operations required no matter what the choice of wavelet. Moreover,

as Pj;r is evaluated for values of r 2 Ij, we know that we need only evaluate fPj;2pg for

p 2 Ij;even = f0; : : : ; uj � minfLj � 1; (J � j + 1)L1=2gg:

Note that in general, uj cannot be simpli�ed to (J � j +1)L1=2, for if J is large whilst

j is small, then uj = Lj � 1. However, using the de�nition of Lj, it is easy to show
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that the following holds:

uj = (J � j + 1)L1=2 i�
Nh

Nh � 1
� 2

2j � 1

(J � j + 1)
: (5.18)

From the work of Eckley & Nason (2000), we know that

OpsfPeveng =
JX
j=2

ujX
p=0

Ops(Pj;2p)

is, at the very most, an O(J2) operation.

Evaluation of the Pj;2p+1

The situation for the calculation of the Pj;2p+1 is almost exactly the same as that

discussed in the previous section. Following the same logic, it is clear that if we are

to evaluate fPJ;2p+1g for 2p+1 2 f1; : : : ; L1g, then wider and wider intervals of Pj�1;r

are required as j decreases. Again, the width of any one of these intervals depends

on the form of L1, the upper boundary being either odd or even. Thus, to obtain an

upper bound on the number of operations required to calculate the relevant fPj;2p+1g,
we adopt the procedure outlined above, calculating Pj;r for

r 2 Iodd = f0; : : : ;minf2(Lj � 1); (J � j + 1)(L1)gg ;

setting Pj;r = 0 for any values of r such that 2(Lj � 1) < r � (J � j + 1)(L1). Note

that as it is assumed that r = 2p + 1 2 I, it su�ces to calculate the fPj;2p+1g for

p 2 f0; : : : ; uo;jg, where

uo;j = min

�
L1

2
(J � j + 1)� 1; Lj � 2

�
:

It can be shown that calculation of the fPj;2p+1g required by this algorithm takes, at

most, Ops(Podd) = O(J2) operations (see Eckley & Nason (2000)) for further details).

Calculation of the leading diagonal

Having proposed algorithms for the calculation of the key identities and investigated the

computational expense of using such algorithms, we are now in a position to consider

the number of operations required to calculate the leading diagonal of a given inner

product matrix of discrete autocorrelation wavelets.
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Suppose that A1;1, fPj;rg and the fQrg have already been calculated. Then from

(5.8), it follows that the calculation of Aj+1;j+1, for any level j 2 1; : : : ; J � 1, takes L1

operations. Thus the construction of the leading diagonal of the inner product matrix

via the schemes proposed in Section 5.3.1 takes

Ops(Leading Diagonal) = Ops(A1;1) + Ops(Aj+1;j+1)j=1;::: ;J�1 + Ops(Podd)

+Ops(Peven) + Ops(Pinit) + Ops(Q)

= JL1 + 1 + Ops(Podd) + Ops(Peven) + Ops(Pinit) + Ops(Q)

operations. In other words it is, at most, an O(J2) operation. In contrast, the brute

force approach adopted by Nason et al. would take O(2J) operations.

5.3.3 General diagonal case

The results of Section 5.3.1, particularly Proposition 5.2, suggest that a recursive

relationship may exist for those entries which lie on other diagonals. Prior to

establishing such a recursion, we de�ne the following identities.

De�nition 5.3

Let j; k 2 N with k � j, lr = max f1� Lj; 1� Lk + rg and ur =

minfLj � 1; Lk + r � 1g. Furthermore, suppose that r 2 Z. Then de�ne,

Tj;k;r =
urX
l=lr

	j(l)	k(l � r): (5.19)

Tj;k;r plays an analogous role here to that of Pj;r in the leading diagonal case.

However Tj;k;r does not (generally) share the properties as Pj;r. For example, the

support of Tj;k;r is [2�Lj�Lk; Lk+Lj�2]. Furthermore, Tj;k;r is not usually symmetric

in r, though it is easily shown that

Tj;k;�r = Tk;j;r: (5.20)

As one might expect, a special case exists when k = j, for Tj;j;r = Pj;r and is

consequently symmetric in r by Property 5.3. The following proposition establishes

an e�cient, recursive, approach for the construction of the Tj;k;r.
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Proposition 5.3

Suppose that j; k 2 N with k � j, j 6= 1, p 2 Z and set

le;p = max f1� L1; 2� Lj�1 � Lk�1 � pg ;
ue;p = min fL1 � 1; Lk�1 + Lj�1 � 2� pg ;
lo1;p = max

�
�L1

2
; 2� Lj�1 � Lk�1 � p

�
;

uo1;p = min

�
L1

2
� 1; Lk�1 + Lj�1 � 2� p

�
;

lo2;p = max

�
�L1

2
; 2 + p� Lj�1 � Lk�1

�
and uo2;p = min

�
L1

2
� 1; Lj�1 + Lk�1 + p� 2

�
:

Then it can be shown that

Tj;k;2p = Tj�1;k�1;p +
ue;pX

m=le;p

Tj�1;k�1;p+mQm (5.21)

and

Tj;k;(2p+1) =

uo1;pX
r=l01;p

�1(2r + 1)Tj�1;k�1;p+r +
uo2;pX
r=lo2;p

�1(2r + 1)Tj�1;k�1;p�r: (5.22)

Combining knowledge of the fTj;k;rg, together with the fQrg and the top row of

the inner product matrix, the following recursive algorithm for the calculation of those

elements lying on the diagonals of the inner product matrix may be derived.

Proposition 5.4

Let k � j. Then using Qr and Tj;k;r as de�ned above, the following recursive scheme

can be derived to calculate those elements which lie on a diagonal of the inner product

matrix A:

Aj;k = Aj�1;k�1 +
L1�1X

r=1�L1
Tj�1;k�1;rQr: (5.23)

5.3.4 E�ciency of adopting the recursive approach for other

diagonals

By reasoning in a manner similar to that of Section 5.3.2, it becomes evident that if

one wishes to develop an algorithm which evaluates only those fTj;k;rg required by the

recursion proposed in Proposition 5.4, then the algorithm must
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a) consider each wavelet family separately,

b) and consider the situation for each scale individually.

Such an algorithm seems both inelegant and laborious to implement. Thus we propose

an alternative approach which, although evaluates a slightly larger number of Tj;k;r

than is actually required, proves much simpler to implement.

Details of the proposed algorithm are given below, together with an analysis of the

computational expense. Note that as the recursive construction of the Aj;j has already

been discussed in length and as we only need calculate Aj;k for k � j, we will assume

throughout that k > j. We commence by �nding the number of computations required

to calculate the initialising fTj;k;rg. Then we consider the number of operations required
to calculate the Tj;k;r for even and odd-values of r respectively.

Calculation of the initialising values

A natural place to start considering the e�ciency of this recursive approach is to

evaluate the number of computations required to enumerate the fTj;k;rg when j = 1.

In this case, the de�ning equation, (5.19), reduces to

T1;k;r =

minfL1�1;Lk+r�1gX
l=maxf1�L1;1�Lk+rg

	1(l)	k(l � r); (5.24)

This is compactly supported on [2� L1 � Lk; : : : ; L1 + Lk � 2].

The fT1;k;rg can be calculated directly, using the values of 	j(�) obtained from the

recursion scheme detailed in Proposition 5.2. However, following arguments similar to

those proposed in Section 5.3.2, it is evident that a complicated, case by case algorithm

is required for the evaluation of the precise number of fT1;k;rg required for the recursive
construction of the fAj;kg. A much simpler algorithm may be developed if we are

willing to evaluate a slightly larger number of fT1;k;rg than that which is required for

the construction of AJ . This algorithm possesses the additional bene�t of being suitable

for all wavelet families. An outline of the algorithm is provided below. Note how the

width of the interval is dependent on k | this is a consequence of the assumption that

k > j.

1. Fix J 2 N .
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2. For k 2 N n 1, set

linit;k = maxf�L1(J � k + 1); 2� L1 � Lkg
and uinit;k = minfL1(J � k + 1); L1 + Lk � 2g:

3. Calculate T1;k;r for all

r 2 Ik = [linit;k; : : : ; uinit;k];

setting T1;k;r = 0 for any values of r such that L1 + Lk � 2 � r � L1(J � k + 1)

or �L1(J � k + 1) � r � 2� L1 � Lk.

It can be shown that construction of the initialising T1;k;r via the above scheme takes

at most Ops(Tinit) = O(J2) operations (see Eckley & Nason (2000) for further details).

Evaluation of the Tj;k;2p

Recall from Proposition 5.3, that

Tj;k;2p = Tj�1;k�1;p +
ue;pX

m=le;p

Tj�1;k�1;p+mQm: (5.25)

Assuming that all relevant fTj�1;k�1;rg have been evaluated, it follows from (5.25) that

evaluation of Tj;k;2p for any given j; k;2 N and p 2 Z takes

Ops(Tj;k;2p) = 1 + ue;p � le;p operations: (5.26)

As in earlier sections, it is important to observe that for any given j; k 2 Z, it is not

necessarily the case that one must evaluate Tj;k;2p for all 2p 2 [2�Lj�Lk; Lj+Lk�2].

However, as with the initialising values, fT1;k;rg,, the exact construction would require

a cumbersome case by case algorithm. This is both inelegant and complicated

to implement. We therefore propose the following algorithmic approach for the

construction of the fTj;k;2pg:

1. Fix J 2 N .

2. Then for j; k 2 N n 1, set

lej;k = maxf�L1(J � k + 1); 2� Lj � Lkg (5.27)

and uej;k = minfL1(J � k + 1); Lj � Lk � 2g: (5.28)
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3. Evaluate Tj;k;2p for all

p 2 Iej;k =
�
lej;k
2
; : : : ;

uej;k
2

�
:

setting Tj;k;2p = 0 for any p 2 f�L1(J � k + 1); : : : ; L1(J � k + 1)g such that

p 62 Iej;k.

The advantage of using the above scheme is that it may be used with all wavelet families,

although it evaluates a slightly larger number of Tj;k;2p than is actually required.

Adopting the above procedure, it follows that the construction of the required

fTj;k;2pg takes
uej;k=2X
p=lej;k=2

Ops(Tj;k;2p) operations: (5.29)

Thus, the construction of the complete suite of fTj;k;2pg j = 2; : : : ; J � 1

k = j + 1; : : : ; J

for all relevant p

takes

Ops(Teven) =
J�1X
j=2

JX
k=j+1

uej;k=2X
p=le

j;k
=2

Ops(Tj;k;2p) =
J�1X
j=2

JX
k=j+1

uej;k=2X
p=le

j;k
=2

1 + ue;p � le;p

�
J�1X
j=2

JX
k=j+1

(2L1 + 1)(uej;k=2� lej;k=2 + 1)

� (2L1 + 1)
J�1X
j=2

JX
k=j+1

L1(J � k + 1):

In other words it is, at worst, an O(J3) operation.

Evaluation of the Tj;k;2p+1

Recall from Proposition 5.3 that

Tj;k;2p+1 =

uo1;pX
r=lo1;p

�1(2r + 1)Tj�1;k�1;p+r +
uo2;pX
r=lo2;p

�1(2r + 1)Tj�1;k�1;p�r: (5.30)

It therefore follows that the construction of Tj;k;2p+1 for any j; k 2 N n 1 and

2p+ 1 2 [2� Lj � Lk; Lj + Lk � 2] takes

Ops(Tj;k;2p+1) = uo1;p � lo1;p + uo2;p � lo2;p + 1 operations: (5.31)
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Furthermore, using arguments similar to those given in previous sections, it transpires

that the development of an algorithm which calculates precisely those Tj;k;2p+1 required

by the recursion schemes proposed here is both complicated and time-consuming.

We therefore propose that the following algorithm, which is valid for all Daubechies'

wavelets, be adopted when constructing the Tj;k;2p+1:

1. Fix J 2 N .

2. For j; k 2 N n 1, set

loj;k =
1

2
maxf�L1(J � k + 1); 2� Lj � Lkg (5.32)

uoj;k =
1

2
minfL1(J � k + 1); Lj + Lk � 2� 1g: (5.33)

3. Calculate Tj;k;2p+1 for all

2p+ 1 2 Ioj;k =
�
loj;k; : : : ; u

o
j;k

�
;

setting Tj;k;2p+1 = 0 for any values of

2p+ 1 2 [�L1(J � k + 1); : : : ; L1(J � k + 1)]

such that 2p+ 1 62 Ioj;k.

Adopting the above procedure, it follows that the construction of the required

fTj;k;2p+1g, for all j; k 2 N n 1, takes

Ops(Todd) =
J�1X
j=2

JX
k=j+1

uo
j;kX

p=lo
j;k

Ops(Tj;k;2p+1) �
J�1X
j=2

JX
k=j+1

uo
j;kX

p=lo
j;k

(2L1 � 1)

�
J�1X
j=2

JX
k=j+1

(2L1 � 1)[L1(J � k + 1)� 1]:

In other words, construction of the required fTj;k;2p+1g is, at worst, anO(J3) operation.

Evaluation of the Aj;k

We conclude our analysis by considering the number of operations required to form

the Aj;k using the recursive quantities de�ned in Section 5.3.3. Assuming that j 6= 1,

Proposition 5.4 states that

Aj+1;k+1 = Aj;k +
L1�1X
1�L1

Tj;k;rQr: (5.34)



5.4 Constructing the inner product matrix top row 131

It therefore follows that, given the prior enumeration of the fTj;k;rg, calculation of any

given fAj;kg
j = 2; : : : ; J � 1

k = j + 1; : : : ; J

takes

Ops(Aj;k) = 2L1 � 1 operations:

Thus the recursive construction, utilising the schemes outlined over the previous

sections, of those elements which lie neither upon the leading diagonal nor upon the

�rst row of the inner product matrix, takes

Ops(Lead Diags) = Ops(Tinit) + Ops(Teven) + Ops(Todd) +
J�1X
j=2

JX
k=j+1

Ops(Aj;k)

operations. In other words, it is at worst an O(J3) operation. Conversely, direct

enumeration of the fAj;kg via the brute force approach would take O(2J) operations.
One question now remains, namely, how best to calculate the top row of A? Do we

have to use a brute force approach, or does an e�cient recursive method exist? We

address this issue in the next section.

5.4 Constructing the inner product matrix top row

Given the 
avour of the work in Section 5.3, it is natural to wonder whether the fA1;j+1g
can be obtained recursively using knowledge of A1;j and hence seed the �rst row of the

matrix. Furthermore, should such a method exist, is it more e�cient than the brute

force approach? To date, no recursion involvingA1;1 has been found. However, a certain

form of recursive scheme can be developed which may be applied in the evaluation of

the A1;j. Such a scheme requires the construction of the following identity.

De�nition 5.4

De�ne

Rl
j;q =

minfbL1�2�q

2j�l+1 c;Lj�1gX
r=maxfd�L1�q

2j�l+1 e;1�Ljg
	1

�
2j�l+1r + q + 1

�
	j(r): (5.35)

It is possible to show that the fRl
j;qg may be evaluated recursively via the following

proposition.
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Proposition 5.5

Rl
j;q has the following recursive form:

Rl
j;q = Rl�2

j�1;q +
X
p

�1(2p+ 1)Rl�2
j�1;2j�l+1+2j�l+2p+q

: (5.36)

Furthermore, it can be shown that the support of Rl
j;q is given by

��L1 + (1� Lj)2
j�l+1; L1 + (Lj � 1)2j�l+1 � 2

�
:

Consequently, the support of Rj
j;2p is

[2(1� Lj)� L1; L1 + 2(Lj � 2)] :

The identity given in De�nition 5.4 may be used in the recursive computation of A1;j+1

for j 2 N .

Proposition 5.6

The value of A1;j+1 at any scale j can be obtained by calculating Rj
j;2p recursively and

using knowledge of �1, the scale j = 1 father autocorrelation wavelet. More precisely,

the relationship can be expressed as follows:

A1;j+1 = 1 +

L1=2�1X
p=�L1=2

�1(2p+ 1)Rj
j;2p: (5.37)

We have therefore demonstrated that the top row of the inner product matrix may be

constructed via a recursive relation. From this point, we can recursively compute all

elements which exist on a given diagonal in the upper triangle of a matrix using the

methods of previous sections. However, we must now ask how e�cient is this recursive

approach?

It is quite easy to see that, as we progress from one scale to the next, the fRl
j;qg

required by one scale di�er from that required by the next. Hence, in e�ect, we

have to re-calculate the Rl
j;q for each A1;j. Already, this approach is beginning to

look unattractive. Indeed, it seems that for the majority of entries along the top

row of the inner product matrix, it is more e�cient to calculate the A1;j directly

via the interpolation rules of Property 5.2. Hence, we advocate that the fA1;kg be

constructed directly from 	1(�) and 	k(�) which can be computed using the e�cient

O(2J) algorithm.
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From our earlier work, it is easy to see that, given the prior construction of the

discrete autocorrelation wavelets, direct calculation of the A1;j for k 2 f1; : : : ; Jg
would take

JX
j=1

(L1 � 1) = J(L1 � 1) operations:

5.5 Extension to two-dimensions

Recursion schemes, similar to those outlined in Section 5.3, can be devised for the

construction of either of the following inner product matrices:

i) BJ = (Bj;k) = (h�j;�ki) - the inner product matrix of discrete autocorrelation

father wavelets,

ii) or CJ = (h�j;	li);

though clearly, the latter is not symmetric. Furthermore, as we explain below, by taking

suitable products of AJ , BJ and CJ , an inner product matrix of discrete (separable)

two-dimensional autocorrelation wavelets may be constructed.

Recall from De�nition 3.7 that we de�ne the inner product matrix of discrete,

two-dimensional autocorrelation wavelets f	h
j ;	

v
j ;	

d
jgj=1;::: ;J to be the 3J-dimensional

matrix, DJ , the elements of which are constructed as follows:

D�;� = h	�;	�i ;

where �; � are coded as follows

�(j; l) � f(j) + g(l)

with

f(j) � j and g(l) �

8>>><>>>:
0 when l = v;

J when l = h;

2J when l = d:
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The construction of this matrix is such that its elements may be evaluated by using

suitable combinations of other inner product matrices | namely AJ , BJ , and CJ .

Explicitly, D3J , can be expressed as follows:

DJ =

26666666666666666666664

AJ �BJ CJ � CT
J AJ �CJ

CJ � CT
J AJ �BJ AJ �CJ

AJ �CT
J AJ � CT

J AJ � AJ

37777777777777777777775
where A � B denotes a component-wise multiplication of A and B. Thus recursion

schemes of the form given in Section 5.3 can be used in the construction of the inner

product matrix of two-dimensional discrete autocorrelation wavelets.

5.6 Concluding remarks

The e�cient computation of the discrete autocorrelation wavelets' inner product

matrix is vital for the (asymptotically) unbiased estimation of the evolutionary wavelet

spectra of locally stationary wavelet processes. Collection of longer time series, for

better estimation, requires computation of inner product matrices of larger and larger

dimension and hence demonstrates the need for e�cient methods of computation.

This chapter introduced an e�cient recursive scheme for the construction of the

inner product matrix of discrete autocorrelation wavelets. Our scheme constructs

matrices using O(J3) = O((logN)3) operations, in comparison to the brute-force

scheme which uses O(J2J) = O(N logN) operations. If our new algorithm is used in

conjunction with the recursive formulae for generating the autocorrelation wavelets,

then the recursive methods require O(2J) = O(N) operations in contrast to the

expensive O(22J) = O(N2) operations required by the brute force approach.



Chapter 6

Local autocovariance estimation

This chapter documents initial research that investigates the local autocovariance

measure of LSW processes proposed by Nason et al. (2000). In Section 6.2 we consider

the interpretation of the LACV estimator in terms of stationary time series statistics.

Then, in Section 6.3, the application of the Haar LACV estimator to zero mean, second

order stationary processes is considered. As these results constitute work in progress,

we conclude by highlighting various avenues of future research.

6.1 Introduction

Recall from Section 2.7 that Nason et al. (2000) proposed the following as a measure

of the local autocovariance structure within LSW processes:

C(z; �) =
1X
j=1

Sj(z)	j(�); for � 2 Z; z 2 (0; 1). (6.1)

In practice, we do not observe time series of in�nite length. Rather, it is natural that

the observed sequence be �nite. This leads us to de�ne the following measure:

De�nition 6.1

Let J 2 N and fXtg be a LSW process as de�ned in De�nition 2.8. Then the curtailed

local autocovariance (CLACV) to level J is de�ned to be

CJ(z; �) =
JX
j=1

Sj(z)	j(�); for � 2 Z; z 2 (0; 1). (6.2)
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De�ning

dj;k =
T�1X
t=0

Xt j;k(t) (6.3)

to be the empirical wavelet coe�cients of an LSW process, fXtg, Nason et al. (2000)

demonstrated that the vector of corrected wavelet periodogramsL(z) = fLj;[zT ]gj=1;::: ;J ,

where L(z) = A�1J I(z), is an asymptotically unbiased estimator of the EWS. Here

Ij;[zT ] � jdj;[zT ]j2. It therefore appears natural to estimate the CLACV by replacing the

EWS, Sj(z), in (6.2) by its estimate, Lj(z), as follows:

De�nition 6.2

Let T = 2J for some J 2 N and fxtgt=0;::: ;T�1 be a realisation of a real-valued

LSW process with associated wavelet family  j;k. Then the curtailed local

autocovariance estimator to level J is de�ned to be

bCJ(z; �) =
JX
j=1

Lj(z)	j(�): (6.4)

As the corrected wavelet periodogram is an asymptotically unbiased estimator of the

EWS, it follows that bCJ(z; �) is an asymptotically unbiased estimator of the CLACV.

Below we study various analytic properties of the CLACV estimator, attempting to

relate this quantity to existing estimators used in time series analysis. However, it

should be noted that to obtain a consistent estimate of the LACV structure, this

estimator would normally require some form of smoothing.

6.2 Interpreting the CLACV estimator

Recall from traditional time series analysis that the autocovariance function (acvf) of

a zero-mean, second order stationary process fXtg is purely a function of the lag � :

Cov(Xt; Xt+� ) = R(�): (6.5)

Given a realisation of the process, fxtgt=0;::: ;T�1, the acvf may be estimated using

bR(�) = 1

T

T�1�j� jX
t=1

xtxt+j� j: (6.6)

Although biased by the additive lag-dependent quantity j� j
N
R(�), this positive semi-

de�nite function has, in general, a smaller mean square error than the alternative
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estimator bR�(�) = (N � j� j)�1PT�j� j
t=1 xtxt+j� j. See Parzen (1961) or Priestley (Section

5.3.3, 1981) for further details.

An interesting approach to interpreting the information contained within the

CLACV estimator is to investigate whether this quantity may be expressed in terms

of a measure similar to that of equation (6.6). In so doing we can, for example, more

easily compute the bias of our estimator. With this approach in mind, we introduce

the following identity which provides a measure of the degree of association between

Xt and Xt+� over speci�c regions of the series.

De�nition 6.3

Let T = 2J for some J 2 N and fxtgt=0;::: ;T�1 be a realisation of a LSW process with

associated discrete non-decimated wavelet family f j;k(s)g. Then the lag � wavelet

autocovariance estimate (WAE) at location k within scale j, bRW
j;k(�), is de�ned to

be given by

bRW
j;k(�) =

T�1��X
t=0

 j;k(t) j;k(t+ �)xtxt+� : (6.7)

The WAEs are a form of \windowed" acvf, the windowing being achieved by the

inclusion of compactly supported discrete non-decimated wavelets. With the above

de�nition in place, we may prove the following proposition which demonstrates that

squared empirical wavelet coe�cients, and hence the CLACV estimator, may be

represented as a sum of these localised (stationary) autocovariance estimators.

Proposition 6.1

Let T = 2J for some J 2 N and set r = [zT ]. Further let fxtgt=0;::: ;T�1 denote

a realisation of a LSW process based on the discrete non-decimated wavelet family

f j;k(t)g. Then the squared empirical wavelet coe�cient, d2j;k, may be expressed as

d2j;k = bRW
j;k(0) + 2

T�1X
�=1

bRW
j;k(�):

Hence, the CLACV estimator may be represented as a weighted sum of WAEs:

bCJ(z; �) =
JX
j=1

	j(�)
JX
l=1

A�1j;l

(bRW
l;r(0) + 2

T�1X
�=1

bRW
l;r(�)

)
: (6.8)

In light of the above, we can interpret the CLACV estimator as being a weighted

sum of \windowed" acvfs. These windows are of various lengths, dependent on the

scale parameter, j, and the support of the f j;kg.
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Proof of Proposition 6.1

Using equation (6.3), it follows that

d2j;k =

 
T�1X
t=0

Xt j;k(t)

!2

=
T�1X
s=0

xs j;k(s)
T�1X
t=0

xt j;k(t): (6.9)

Expanding (6.9) we obtain:

d2j;k =
T�1X
s=0

x2s j;k(s)
2 + 2

 
T�1�1X
s=0

xsxs+1 j;k(s) j;k(s+ 1)

+
T�1�2X
s=0

xsxs+2 j;k(s) j;k(s+ 2) + : : :+ x0xT�1 j;k(0) j;k(T � 1)

!

=
T�1X
s=0

x2s j;k(s)
2 + 2

(
T�1X
�=1

T�1��X
s=0

xsxs+� j;k(s) j;k(s+ �)

)

= bRW
j;k(0) + 2

T�1X
�=1

bRW
j;k(�): (6.10)

Recalling that the CLACV estimate is given by

bCJ(z; �) =
JX
j=1

	j(�)Lj(z)

=
JX
j=1

	j(�)
JX
l=1

A�1j;l d
2
l;r; (6.11)

On substituting (6.10) into (6.11) we obtain the required result. �

Proposition 6.1 considers the structure of the CLACV estimator for any given LSW

process. Although appealing, the interpretation of bRW
j;k(�) as a \windowed" acvf is not

directly accessible to those unfamiliar with wavelets. Hence we provide the following

result which focuses on the special case of a locally stationary Haar process. To achieve

this, we introduce the following quantities which measure the (stationary) covariance

structure on various windows of the series. Clearly these are related to bRW
j;k, but the

precise form of the relation is not important here:

bR0
l;r(�) =

P2l+r�1��
s=r xsxs+� ; bR1

l;r(�) =
2l�1+r�1X

s=r+2l�1��
xsxs+� ;

bR2
l;r(�) =

P2l�1+r�1��
s=r xsxs+� and bR3

l;r(�) =
2l+r�1��X
s=r+2l�1

xsxs+� :
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Using these quantities we can obtain a direct interpretation of the local autocovariance

estimator, bCJ , as a weighted sum of windowed versions of the classical acvf estimator.

Proposition 6.2

Let fxtgt=0;::: ;T=2J�1 be a realisation of a LSW process founded upon the Haar wavelet

family. Setting r = [zT ] and assuming that the NDWT is implemented using a periodic

boundary condition, then the level J CLACV estimator may be expressed as follows:

bCJ(z; �) = 2�1
JX
j=1

	j(�)A
�1
j;1(x

2
r+1 + x2r � 2xrxr+1)

+
JX
j=1

JX
l=2

2�l	j(�)A
�1
j;l

(bR2
l;r(0) + bR3

l;r(0)

+ 2
2l�1�1X
u=1

� bR2
l;r(u) + bR3

l;r(u)� bR1
l;r(u)

�
� 2

2l�1X
u=2l�1

bR0
l;r(u)

)
:(6.12)

The above demonstrates that the CLACV estimator of locally stationary Haar

processes may be interpreted as a weighted sum of (stationary) windowed acvf

estimators. The contributions in equation (6.12) estimate the stationary structure

on various windows of the series, these window widths being dependent on the lag, � ,

and on scale, l. We can therefore relate the Haar CLACV estimator to the classical

acvf estimator.

Proof of Proposition 6.2

In this proof we adopt the form of dl;r as implemented inWaveThresh, which we will use

later in Section 6.3. This construction di�ers slightly from equation (6.3), consisting

of a sign change and a shift in origin. The sign change is irrelevant as we are dealing

with squared detail coe�cients. The e�ect of the shift in origin is also negligible as the

NDWT is translation-equivariant. Moreover, the principal motivation for this result is

the investigation of the bias of this measure when analysing second-order stationary

processes. In this case, the process's covariance structure is location-independent and

hence an origin shift will not e�ect the subsequent analyses.
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By (6.11) ,

bCJ(z; �) =
JX
j=1

JX
l=1

	j(�)A
�1
j;l d

2
l;r; where r = [zT ]

= 2�1
JX
j=1

	j(�)A
�1
j;1(xr � xr+1)

2 +
JX
j=1

JX
l=2

	j(�)A
�1
j;l d

2
l;r:

Further,

d2l;r =
1

2l

0@ 2l�1+rX
t=2l�1+r

xt �
2l�1�1+rX

t=r

xt

1A2

=
1

2l

240@ 2l�1+rX
t=2l�1+r

xt

1A2

+

0@2l�1�1+rX
t=r

xt

1A2

� 2
2l�1+rX
t=2l�1+r

xt

2l�1�1+rX
s=r

xs

35 : (6.13)
Consider the last term of (6.13). This double sum extends over a lattice of points

on a square. Normally we might consider, for example, summing �rst over rows and

then adding the row sums. However in this case, we sum over diagonals and add the

diagonal sums together:

2l�1+rX
t=2l�1+r

xt

2l�1�1+rX
s=r

xs =
2l�1+r�1X

s=r

xsxs+2l�1 +
2l�1+r�2X

s=r

xsxs+2l�1+1

+
2l�1+r�3X

s=r

xsxs+2l�1+2 + : : :+ xrxr+2l�1

+
2l�1+r�1X
s=r+1

xsxs+2l�1�1 +
2l�1+r�1X
s=r+2

xsxs+2l�1�2

+ : : :+ x2l�1+r�1x2l�1+r

In other words,

2l�1+rX
t=2l�1+r

xt

2l�1�1+rX
s=r

xs =
2l�1�1X
u=0

2l�1+r�1�uX
s=r

xsxs+2l�1+u +
2l�1�1X
u=1

2l�1+r�1X
s=r+u

xsxs+2l�1�u:

The terms on the right hand side of this last expression represent the summations of

the upper and lower triangles of the lattice. Setting m = u+ 2l�1 and m = u� 2l�1 in

the �rst and second double sums respectively, it follows that

2l�1+rX
t=2l�1+r

xt

2l�1�1+rX
s=r

xs =
2l�1X

m=2l�1

2l+r�1�mX
s=r

xsxs+m +
�1X

m=1�2l�1

2l�1+r�1X
s=r+m+2l�1

xsxs�m:
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Furthermore, by setting u = �m in the second double sum of the above, we obtain

2l�1+rX
t=2l�1+r

xt

2l�1�1+rX
t=r

xt =
2l�1X

u=2l�1

bR0
l;r(u) +

2l�1�1X
u=1

bR1
l;r(u): (6.14)

Next, consider the term
�P2l�1�1+r

t=r xt

�2
. Again, we sum over the diagonals �rst

and then add the diagonal sums:0@2l�1�1+rX
t=r

xt

1A2

=
2l�1�1+rX

s=r

x2s + 2

8<:
2l�1�1+r�1X

s=r

xsxs+1

+
2l�1�1+r�2X

s=r

xsxs+2 + : : :+ xrxr+2l�1�1

9=;
=

2l�1�1+rX
s=r

x2s + 2

2l�1�1X
u=1

2l�1�1+r�uX
s=r

xsxs+u

= bR2
l;r(0) + 2

2l�1�1X
u=1

bR2
l;r(u): (6.15)

Similarly, it may be shown that0@ 2l�1+rX
t=2l�1+r

xt

1A2

= bR3
l;r(0) + 2

2l�1�1X
u=1

bR3
l;r(u): (6.16)

On substituting equations (6.14), (6.15) and (6.16) into (6.13) we obtain the required

result. �

6.3 The CLACV and stationary processes

In this section we consider the bias of the Haar CLACV estimator when estimating

the covariance structure of second order stationary time series. To this end, let

fxtgt=0;::: ;2J�1 be a realisation of a zero-mean, second order stationary process. Then

it can easily be shown that the expected values of the identities used in Proposition

6.2 are given by

E ( bR0
l;r(u)) = (2l � u)R(u);

E ( bR1
l;r(u)) = uR(u);

E ( bR2
l;r(u)) = (2l�1 � u)R(u);

and E ( bR3
l;r(u)) = (2l�1 � u)R(u)

9>>>>>>=>>>>>>;
(6.17)



142 Local autocovariance estimation

where R(u) is simply the acvf of the underlying stationary process.

Using Proposition 6.2 and equation (6.17), we can derive the expected value of the

Haar CLACV estimator for second order stationary processes:

Proposition 6.3

Let fxtgt=0;::: ;2J�1 be a realisation of a second order stationary process. Then the

expected value of the CLACV estimator, based on Haar wavelets, is given by

E ( bCJ (z; �)) = R(0)

(
3=2

JX
j=1

JX
l=2

	j(�)A
�1
j;l +

JX
j=1

	j(�)A
�1
j;1

)
� R(1)

JX
j=1

	j(�)A
�1
j;1

+
JX
j=1

JX
l=1

	j(�)2
�lA�1j;l

8<:2
2l�1�1X
u=1

(2l � 3u)R(u)

�2
2l�1X

u=2l�1

(2l � u)R(u)

9=; : (6.18)

It is evident from the above that the Haar-based CLACV estimator, bCJ(z; �), is

biased by contributions from lags other than � . These contributions are di�cult to

appreciate when looking at equation (6.18). Thus aMAPLE routine has been written to

evaluate E ( bCJ (z; �)) for this speci�c case involving Haar wavelets. Given a curtailing

level, J 2 N , and a lag, � 2 Z, the code uses analytic expressions for 	j(�) and

AJ , derived by Nason et al. (2000) to return exact coe�cients for the constituent

elements of (6.18). The relevant �les for this program can be downloaded from

http://www.stats.bris.ac.uk/~maiae/LACV.

The following example demonstrates the nature of the bias within the Haar CLACV

estimator for a simple moving average (MA) process.

Example 6.1 Assume that fxtgt=0;::: ;127 is a realisation of a zero-mean MA(3) process

whose true covariance structure is given by R(�) = 
0�0;�+
1�1;�+
2�2;�+
3�3;� , where

�n;� is the Kronecker delta. Then it can be shown that the expected values of the Haar-

based estimator, bCJ(z; �), are such that (to two decimal places)

E ( bC7(z; �)) =

8>>>>>>>>><>>>>>>>>>:

1:00
0 � 0:01
1 � 0:01
2 � 0:01
3 for � = 0;

0:00
0 + 0:99
1 � 0:01
2 � 0:01
3 for � = 1;

0:00
0 � 0:01
1 + 0:81
2 + 0:35
3 for � = 2;

0:00
0 � 0:01
1 + 0:35
2 + 0:27
3 for � = 3;

0:00
0 � 0:01
1 � 0:11
2 + 0:19
3 for � = 4:

(6.19)
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Note how E ( bC7(z; �)) is able to provide a reliable estimate of the autocovariance

structure at lags 0 and 1. For � = 2 or 3, the CLACV estimator is contaminated by

contributions from other lags. Further, note how the contribution of 
� in E ( bC7(z; �))

decreases quickly as � increases | this suggests that a component of the bias may be

behaving like j� j=N as in the classical case (an avenue for future work). If the length

of the series increases to 4096 = 212 observations then we obtain,

E ( bC12(z; �)) =

8>>>>>>>>><>>>>>>>>>:

1:00
0 � 0:00
1 � 0:00
2 � 0:00
3 for � = 0;

0:00
0 + 1:00
1 � 0:00
2 � 0:00
3 for � = 1;

0:00
0 � 0:00
1 + 0:82
2 + 0:36
3 for � = 2;

0:00
0 � 0:00
1 + 0:36
2 + 0:28
3 for � = 3;

0:00
0 � 0:00
1 � 0:10
2 + 0:20
3 for � = 4:

(6.20)

Again, at lags 2, 3 and 4 the estimator is contaminated.

To demonstrate the e�ect of this contamination, consider the following situation:

suppose that fxtgt=0;::: ;127 is a realisation of

Xt = 10� 1p
2
(�t � �t�1) + 40� 1

2
(�t + �t�1 � �t�2 � �t�3)

= (20 + 10=
p
2)�t + (20� 10=

p
2)�t�1 + (�20�t�2) + (�20�t�3); (6.21)

where the f�tg are iid N(0; 1) random variables. Then it is easily shown that the acvf

of this process is given by

R(�) =

8>>>>>>>>><>>>>>>>>>:

1700 for � = 0;

491:4 for � = 1;

�800 for � = 2;

�541:4 for � = 3;

0 otherwise

(correct to one decimal place). However, using equation (6.19), it can be seen that the

expected values of the Haar-based CLACV estimator are given by

E ( bC7(z; �)) =

8>>>>>>>>><>>>>>>>>>:

1700 for � = 0;

491:4 for � = 1;

�850:7 for � = 2;

�438:7 for � = 3;

�28:6 for � = 4:

(6.22)
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Comparing equations (6.21) and (6.22) the e�ect of the inherent bias of bCJ(z; �) is

clear.

An independent check to verify these results can be achieved by simulating

realisations of such processes and computing the CLACV estimator directly using

WaveThresh. To this end, 1000 simulations of the process given by equation (6.21)

were generated, each realisation consisting of 128 data points.
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Figure 6.1: Mean of the CLACV estimate, bC7(z; 1), for 1000
simulations of the MA(3) process.

The Haar CLACV estimate was evaluated for each simulation. Figure 6.1 displays

the mean of the 1000 estimates of bC7(z; 1). Note how the estimate 
uctuates around

491, as we would expect from the results of equation (6.22). However, the last few time

points di�er wildly from the rest of the series. This artefact arises because the process

simulations do not place any requirements on the boundary of the realisations, for

example that the end of the series be similar to the start. However the LSW modelling

approach of Nason et al. (2000) requires that such a condition be made. To overcome

this artefact, we will only focus on the �rst 120 time points of bC7(z; �).
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Since the process used in the simulation of fXtgt=0;::: ;127 is second-order stationary,

C(z; �), is independent of z. Hence in this case, an estimate of the CLACV may be

obtained by averaging bC7(z; �) over time (see Table 6.1). Note how these estimates

concur with the theoretical values in equation (6.22), displaying noticeable bias at lags

2; 3 and 4.

EstimatebCJ(z; 0) 1709bCJ(z; 1) 499bCJ(z; 2) -843bCJ(z; 3) -439bCJ(z; 4) -34

Table 6.1: Time-averaged estimates of the mean of 1000 estimates of the
CLACV for the MA(3) process de�ned in equation (6.21).

6.4 Summary

This chapter has considered the use of the curtailed LACV estimator as a measure of the

covariance structure within time series. We have demonstrated that the Haar CLACV

estimator may be expressed in terms of \windowed" classical autocovariances. This

allows us to interpret the estimator as a weighted sum of acvf estimators which estimate

the stationary covariance structure on various partitions of the series. Additionally we

have shown that, in the case of second order stationary processes, the Haar CLACV

estimator displays bias at comparatively small lags. Clearly this is a problem which

requires further study.

For stationary time series, the vector of CLACV estimators at a given time point,bCJ = f bCJ(z; �)g�=0;::: ;T�1 may be expressed as a linear combination of the vector of

acvfs R = fR(�)g: bCJ = MR, the coe�cients of M being obtained from equation

(6.3). Hence one approach to correcting the bias of the Haar CLACV estimator might

be to use a simple linear transformation of the estimates. However, initial investigations

indicate that M is not invertible. Thus an alternative approach will be required.
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Future avenues of research with this topic may include

1. calculating the mean squared error of the Haar CLACV estimator;

2. evaluating the statistical properties of the CLACV estimator for other wavelet

families;

3. investigation of techniques to improve the properties of the estimator;

4. and the application of the LACV measure to other forms of processes, for example

locally stationary time series.



Chapter 7

Conclusions and future directions

Wavelet methods have been applied to many branches of statistics, from density

estimation to time series analysis. In a departure from these comparatively established

areas of research, this thesis has considered the application of wavelets to the modelling

of locally stationary random �elds which lie on a regular grid. We introduced the LS2W

model, which permits a local decomposition of the covariance structure into various

scale contributions within certain directions. A wavelet analogue of the Fourier-based

spectrum, termed the local wavelet spectrum, was introduced to quantify this local

structure together with an associated estimation theory.

We then considered the application of the LS2W modelling approach to various

texture analysis problems, its potential being contrasted against several recently

proposed wavelet-based methods both on a conceptual and applied basis. For many

textures, such as the Brodatz and Pill images, the LS2W approach was found to achieve

classi�cation rates which were comparable with those of the (uncorrected) NDWT |

a consequence of the stationary nature of these textures. However, the true potential

of our model becomes clear when we consider its application to non-stationary texture

classi�cation. In this case, the results obtained with a NDWT approach were found to

be inferior to those of the LS2W model. This disparity is due to the latter's ability to

correct for the power leakage which is induced by the redundancy of the NDWT.

By exploiting a well-known recursion which permits an economic construction of

discrete autocorrelation wavelets, we were able to derive an e�cient scheme for the

construction of the inner product matrix of discrete autocorrelation wavelets. This

recursive approach permits an O(log(N)3) construction which compares favourably
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with the brute force O(N logN) computation which has been used in the past for the

estimation of the evolutionary wavelet spectrum.

Finally, we considered the local autocovariance measure proposed by Nason et al.

(2000). Having introduced the CLACV estimator as a statistic for the estimation

of the local covariance structure within time series, we demonstrated that the Haar

CLACV estimator may be expressed in terms of classical, windowed, stationary time

series measures. This allows us to interpret the estimator as a weighted sum of acvf

estimators which estimate the stationary structure on various windows of the series.

In addition, we showed that in the case of second order stationary processes, the Haar

CLACV estimator displays bias, even at comparatively small lags.

We conclude this thesis by considering various avenues of future research. Naturally,

some of these lead on directly from the work contained in this thesis. For example, an

important conjecture made during the course of Chapter 3 states that the inner product

operator of discrete autocorrelation wavelets, A, has a bounded inverse. This underpins

two important results, Theorems 3.2 and 3.3, thus its resolution has considerable

motivation. It is thought likely that the proof of Theorem 2, Nason et al. (2000),

together with the separability of A will prove useful in establishing this result.

The locally stationary two dimensional process model which we have proposed

focuses on analysing the covariance structure on regular grids of size 2m� 2n. Clearly,

it is desirable from a practical perspective to extend such an approach to more general

structures, including those with missing observations and/or unevenly spaced locations.

The NDWT does not readily lend itself to such extensions thus alternative approaches,

such as the lifting scheme (see Section 2.5.1), may need to be considered.

Local autocovariance estimation has received little attention to date, be it in the

context of modelling time series or regular lattice processes. The work of Chapter 6

highlights several potential directions for future research with this measure, including

issues of bias removal in the case of the Haar CLACV estimator and the investigation

of the statistical properties of this estimator when founded upon other wavelet families.

The extension of this work to two-dimensions may well prove to be a useful addition

to the literature, since a map of local variation within images could have applications

in medical imaging and geophysics.

Finally we turn to texture analysis. Although statistics has devised numerous
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discrimination and classi�cation schemes which are applied in this �eld, the issue

of obtaining suitable measures from textured images has not yet received much

attention in the statistics literature. Our exploratory analyses involving the standard

Brodatz dataset and various industrial problems indicates that none of the approaches

considered to date consistently excels. Thus the problem of measure choice is one which

is ripe for future research. One interesting avenue lies in extending recent time series

work involving wavelet packets. The approach which Hunt & Nason (2002) and Nason

& Sapatinas (2001) have proposed consists of using wavelet packets associated with

an explanatory time series fXtg to model a response series fYtg. By extending such

an approach into two dimensions one could attempt to discover those packets which

enable discrimination between two or more texture classes.





Appendix A

Chapter 3 Proofs

Proof of Proposition 3.1

Consider the proof for the horizontal case. Setting � = (�1; �2) 2 Z
2, it follows from

De�nitions 3.1 and 3.6 that

	h
j (� ) =

X
u

X
v

 h
j;(u;v) 

h
j;(u��1;v��2)

=
X
u

�j;u�j;u��1
X
v

 j;v j;v��2

= �j(�1)	j(�2)

as required. The proofs for 	v
j (� ) and 	d

j(� ) follow similarly. �

Proof of Proposition 3.2

It is easily shown that 	j(�) and �j(�) are symmetric in � . Thus the �rst part follows

from Proposition 3.1. To demonstrate that these two-dimensional autocorrelation

wavelets are positive semi-de�nite functions, let k1; k2; : : : ; kn 2 R. Then for any

set of locations � 1; : : : ; � n,

nX
p=1

nX
q=1

	l
j(� p � � q)kpkq =

nX
p=1

nX
q=1

(X
u

 l
j;u 

l
j;u�(�p�� q)

)
kpkq

=
nX

p=1

nX
q=1

X
u

 l
j;u 

l
j;u�(� p�� q)kpkq:
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Setting m = u� � p, we obtain

nX
p=1

nX
q=1

	l
j(� p � � q)kpkq =

X
m

(
nX

p=1

 l
j;m+�pkp

)(
nX

q=1

 l
j;m+�qkq

)

=
X
m

(
nX
i=1

 l
j;m+� i

ki

)2

� 0:

�

Proof of Lemma 3.1

b j(!) =
X
k

 j;ke
�i!k

=
X
k

(X
l

hk�2l j�1;l

)
e�i!k

=
X
l

 j�1;l
X
k

hk�2l j�1;le�i!k:

Upon making the substitution p = k � 2l, we obtain

b j(!) =
X
l

X
p

hp j�1;le�i!(p+2l)

=
X
l

 j�1;le�i!2l
X
p

hpe
�i!p:

However from equation (2.12),
P

p hpe
�i!p =

p
2m0(!). Hence,

b j(!) =
p
2m0(!)b j�1(2!)

=
p
2m0(!)

p
2m0(2!)b j�2(4!):

Repeating the above argument for scales (j � 2); (j � 3); : : : ; 1 and using  1;n = gn,

together with equation (2.20), we obtain

b j(!) = 2j=2m1(2
j�1!)

j�2Y
k=0

m0(2
k!):

The proof for b�j(!) follows similarly. �
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Proof of Corollary 3.1

Consider the case in the vertical direction. Setting ! = (!1; !2),

b v
j (!) =

X
x

X
y

 j;x�j;ye
�i!1xe�i!2y

=
X
x

 j;xe
�i!1x

X
y

�j;ye
�i!2y

= b j(!1)b�j(!2):

Hence, using the results of Proposition 3.1,

b v
j (!) = 2jm1(2

j�1!1)m0(2
j�2!2)

j�2Y
p=0

m0(2
pw1)m0(2

pw2):

The results for b h
j (!) and

b d
j (!) follow similarly. �

Proof of Theorem 3.1

The structure of this proof is similar to that of the one dimensional case, considered by

Nason et al. (Theorem 1, 2000), although added care is required when dealing with the

zeros of m0(!) and m1(!). This is due to the addition of directionality, l 2 fh; v; dg,
as well as scale, j, within the decomposition.

Suppose, by way of contradiction, that there exist two spectral representations of

the same LS2W process. In other words, assume that there exist w
(1)
�;u and w

(2)
�;u such

that ���w(i)
�;u �W (i)

�

� u
R

���� = O

�
1

maxfR; Sg
�

for i = 1; 2

which also possess the same covariance structure. In other words

C(z; � ) =
X
�

S(1)
� (z)	�(� ) =

X
�

S(2)
� (z)	�(� )

where C is de�ned in (3.43), for all z 2 (0; 1)2, � = Z
2, where Si

�(z) =
���W (i)

� (z)
���2 for

i = 1; 2.

Let ��(z) � S
(1)
� (z)� S

(2)
� (z). To prove this result, we must show that

0 =
X
�

��(z)	�(� ) 8z 2 (0; 1)2; 8� 2 Z
2;

) ��(z) = 0 8�; 8z 2 (0; 1)2;
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What we actually show is that

0 =
X
�

~��(z)	�(� ) 8z 2 (0; 1)2; 8� 2 Z
2;

implies that ~��(z) = 0, 8� � 1, 8z 2 (0; 1)2, where

~��(z) = 2�2j(�)��(z) (A.1)

and j(�) � � � b��1
J
cJ for � = 1; : : : ; 3J . Here b�c denotes the 
oor function. Thus

j(�) simply refers to scale.

To start, recall that the operator A = (A�;�)�;��1 is de�ned by

A�;� =
X
�

	�(� )	�(� ):

However, by Parseval's relation

A�;� =
X
�

	�(� )	�(� )

=

�
1

2�

�2 Z Z b	�(!)b	�(!) d!; (A.2)

where b	�(!) takes one of the following forms:

jb	v
j (!)j2 = 22jjm1(2

j�1!1)j2jm0(2
j�1!2)j2

Qj�2
p=0 jm0(2

pw1)m0(2
pw2)j2

jb	h
j (!)j2 = 22jjm0(2

j�1!1)j2jm1(2
j�1!2)j2

Qj�2
p=0 jm0(2

pw1)m0(2
pw2)j2

jb	d
j(!)j2 = 22jjm1(2

j�1!1)j2jm1(2
j�1!2)j2

Qj�2
p=0 jm0(2

pw1)m0(2
pw2)j2

9>>>>>>>>>=>>>>>>>>>;
(A.3)

The above follows as a consequence of Proposition 3.1 and the result that b	l
j(!) =��� b l

j(!)
���2. Thus,

0 =
X
�

~�(z)	�(� )

) 0 =
X
�

~��(z)	�(� )
X
�

~��	�(� ); 8z 2 (0; 1)2; 8� 2 Z
2:

Hence,

0 =
X
�

X
�

~��(z) ~��(z)
X
�

	�(� )	�(� ):
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Applying Parseval's relation, (A.2), we obtain

0 =
X
�

X
�

~��(z) ~��(z)

�
1

2�

�2 Z Z b	�(!)b	�(!) d!

=

Z Z
d!
X
�

X
�

~��(z) ~��(z)b	�(!)b	�(!)

=

Z Z
d!

 X
�

~��(z)b	�(!)

!2

: (A.4)

By De�nition 3.5, S�(z) is positive, hence jS�(z)j = S�(z). Furthermore, by

Property 3.1,
P

� S�(z) < 1, uniformly in z. Thus,
P

� j��(z)j < 1 and henceP
� 2

2j(�)j ~��(z)j < 1. Further, we can infer that
P

�
~��(z)b	�(!) is a continuous

function for ! 2 [��; �]2. This is because 2�2j(�)b	�(!) is continuous in this domain

(it is simply a trigonometric polynomial in two variables, uniformly bounded above by

1). Hence, (A.4) if and only if

0 =
X
�

~��(z)b	�(!); 8! 2 [��; �]2; 8z 2 (0; 1)2:

All that remains now is to demonstrate the pointwise implication of ~��(z) = 0

8� � 1; 8z 2 (0; 1)2. To achieve this, we use continuity arguments and the insertion of

the zeros of jm0(2
l!)j2 and jm1(2

l!)j2.
We start by �xing z 2 (0; 1)2 and set ~�� = ~��(z) at this �xed point z. Then, ,

0 =
X
�

~��
b	�(!)

=
JX
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~��
b	�(!) +

2JX
�=J+1

~��
b	�(!) +

3JX
�=2J+1

~��
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JX

�=1
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2jjm1(2

j�1!1)j2jm0(2
j�1!2)j2

j�2Y
l=0

jm0(2
lw1)m0(2

lw2)j2
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2JX

�=J+1

~��2
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+

3JX
�=2J+1

~��2
2jjm1(2

j�1!1)j2jm1(2
j�1!2)j2

j�2Y
l=0

jm0(2
lw1)m0(2

lw2)j2:

From Daubechies (Chapter 5, 1992) we know that m0 is a 2�-periodic function which

is such that jm0(�)j2 + jm0(� + �)j2 = 1 and,

jm0(�)j2 = 0: (A.6)
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Thus, jm0(0)j2 = 1. Recall also that jm1(!)j2 = 1�jm0(!)j2 for Daubechies compactly

supported wavelets.

To show that ~�1; ~�J+1 and ~�2J+1 are all zero, consider the following: Let !1 = �

and !2 vary. Then by the construction of b	�(!1; !2) and using (A.6) it follows

that b	�(�; !2) = 0 for � = 2; 3; : : : ; J; J + 1; : : : ; 2J; 2J + 2; : : : ; 3J . However since

jm1(�)j2 = 1 (A.5) simpli�es to

0 = ~�14jm1(�)j2jm0(!2)j2 + ~�2J+14jm1(�)j2jm1(!2)j2

= ~�1jm0(!2)j2 + ~�2J+1jm1(!2)j2;

8!2 2 [��; �]. Now suppose, without loss of generality, that !2 = 0. Then

jm1(0)j2 = 1� jm0(0)j2 = 0:

Hence,

0 = ~�1jm0(0)j2 + ~�2J+1jm1(0)j2

= ~�1jm0(0)j2:

In other words,

~�1 = 0: (A.7)

To show that ~�2J+1 is zero, reconsider (A.7):

0 = ~�1jm1(�)j2jm0(!2)j2 + ~�2J+1jm1(�)j2jm1(!2)j2

= ~�2J+1jm1(�)j2jm1(!2)j2; as ~�1 is zero

= ~�2J+1jm1(!2)j2 8!2 2 [��; �]:

Setting !2 = �, we obtain,

0 = ~�2J+1jm1(�)j2

=) ~�2J+1 = 0: (A.8)

To conclude this part of the proof, it remains to show that ~�J+1 = 0. To this end,

reconsider (A.5) setting !2 = � and letting !1 vary. Then, as jm0(�)j2 = 0, it follows



157

that b	�(!1; �) = 0 for all � except � = J + 1 and 2J + 1. However, we have already

shown that ~�2J+1 = 0. Thus (A.5) simpli�es to

0 = ~�J+1jm0(!1)j2 8!1 2 [��; �]:

Setting !1 = 0 () jm0(w1)j2 = 1), we �nd that

~�J+1 = 0: (A.9)

We have therefore shown that ~�1; ~�J+1 and ~�2J+1 = 0. Thus (A.5) simpli�es to
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In other words,
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j�1!2)j2
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)
:

As jm0(!)j2 and jm1(!)j2 are analytic andm0(!); m1(!), as trigonometric polynomials,

have �nitely many zeros, it follows that the (continuous) function in the braces must

vanish identically. Setting !1 = �=2 and letting !2 vary, we �nd that

jm0(2w1)j2 = jm0(�)j2 = 0 and jm1(2!1)j2 = 1:

Hence (A.10) reduces to

0 = ~�22
4jm1(�)j2jm0(2!2)j2 + ~�2J+22

4jm1(�)j2jm1(2!2)j2

0 = ~�2jm0(2!2)j2 + ~�2J+2jm1(2!2)j2 8!2 2 [��; �]: (A.11)

Without loss of generality, let !2 = 0. Then as jm1(0)j2 = 0, the above simpli�es to

~�2 = 0:
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Thus the expression in (A.11), where !2 can take any value, simpli�es to

0 = ~�2J+2jm1(2!2)j2:

Setting !2 = �=2, we obtain

0 = ~�2J+2jm1(�)j2 = ~�2J+2:

Finally to show that ~�J+2 = 0, reconsider (A.10), this time allowing !1 to vary and

setting !2 = �=2.The expression reduces to

0 = ~�J+22
4jm0(2!1)j2jm1(�)j2 + ~�2J+22

4jm1(2!1)j2jm1(�)j2 but ~�2J+2 = 0;

= ~�J+2jm)(2!1)j2 8!1 2 [��; �]:

Setting !1 = 0 it follows that

~�J+2 = 0:

Continuing with this scheme for j(�) = 3; 4; 5; : : : leads to the result that

~��(z) = 0 8�; 8z 2 (0; 1)2:

Hence the LWS are uniquely de�ned given the corresponding LS2W process.

Furthermore, since we have shown that 0 =
P

�
~��(z)	�(� ) if, and only if ~�j(z) = 0,

we have that f	�(� )g1�=1 are linearly independent. Moreover, since A is the Inner

Product (or Gram) matrix of the 	�, A is clearly symmetric and also positive de�nite.

Consequently the eigenvalues of A are positive. �

Proof of Theorem 3.2

Let p=[zR]. By de�nition,

E (I lj;p) = E
�
(dlj;p)

2
�

= E

24 X
r

Xr 
l
j;p(r)

!2
35 :
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As fXrg is assumed to be a LS2W process, we obtain
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By the orthonormality of the increment sequence and Assumption 1 (page 51), it follows

that

Cov(�l1j1;u1�
l2
j2;u2

) = E (�l1j1 ;u1�
l2
j2;u2

)

= �j1;j2�l1;l2�u1;u2 :

Hence,

E (I lj;p) =
X
l1;j1;u

(wl1
j1;u

)2
X
r1

 l1
j1;u

(r1) 
l
j;p(r1)

X
r2

 l1
j1;u

(r2) 
l
j;p(r2): (A.12)

Upon making the substitution u = x+ p we obtain:

E (I lj;p) =
X
l1;j1;x

(wl1
j1;x+p

)2

(X
r

 l1
j1;x+p

(r) l
j;p(r)

)2

=
X
l1;j1;x

(wl1
j1;x+p

)2

(X
r

 l1
j1;x+p�r 

l
j;p�r

)2

: (A.13)

As the sum over x ranges over fx = (x1; x2) : x1; x2 2 Zg, it follows that p in the �nal

summation of equation (A.13) becomes redundant. Hence,

E (I lj;p) =
X
l1

X
j1

X
x

(wl1
j1;x+p

)2

(X
r

 l1
j1;x�r 

l
j;�r

)2

:

It is easily shown that���jwl
j;[zR]+xj2 � Sl

j

�
z+

x

R

���� � C l
j

maxfR; Sg :

See the proof of Proposition 3.3 for further details. Hence

jwl
j;[zR]+xj2 � Sl

j

�
z+

x

R

�
� C l

j

maxfR; Sg :
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In other words,

jwl1
j1;x+p

j2 = Sl1
j1

�
x + p

R

�
+O

 
C l1
j1

maxfR; Sg

!
:

Thus,

E (I lj;p) =
X
l1

X
j1

X
x

 
Sl1
j1

�
x+ p

R

�
+O

 
C l1
j1

maxfR; Sg

!!(X
r

 l1
j1;x�r 

l
j;�r

)2

=
X
l1

X
j1

X
x

Sl1
j1

�
x+ p

R

�(X
r

 l1
j1;x�r 

l
j;�r

)2

+O

�
1

maxfR; Sg
�
:

Aside: The remainder term can be brought out because

1. the number of terms in the wavelet product
�P

r  
l1
j1;x�r 

l
j;�r
	

is �nite and

bounded as a function of x due to j being �xed and the fact that discrete wavelets

have compact support.

2. and as
P

l

P
j C

l
j <1:

Moreover, as we show in the proof of proof of Proposition 3.3, if we set z = (z1; z2)

and � = (�1; �2), then

��Sl
j(z1 + �1=R; z2 + �2=S)� Sl

j(z1; z2)
�� = O

�
Ll
j

� j�1j
R

+
j�2j
S

��
:

Thus,

Sl
j(z1 + �1=R; z2 + �2=S) = Sl

j(z1; z2) +O

�
Ll
j

j�1j+ j�2j
minfR; Sg

�
: (A.14)

Incorporating this Lipschitz property of the fSl
jg, (A.14), we obtain

E (I lj;p) =
X
l1

X
j1

X
x

 
Sl1
j1

� p
R

�
+O

 
Ll
jkxk1

minfR; Sg

!!(X
r

 l1
j1;x�r 

l
j;�r

)2

+O

�
1

maxfR; Sg
�

X
l1

X
j1

X
x

8<:Sl1
j1

� p
R

�(X
r

 l1
j1;x�r 

l
j;�r

)2
9=;+O

�
1

minfR; Sg
�
;

again due to
�P

r  
l1
j1;x�r 

l
j;�r
	

being �nite and the summability of the Lipschitz

constants Ll
j.
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Expanding the squared wavelet product term yields

E (I lj;p) =
X
l1

X
j1

X
x

Sl1
j1

� p
R

�(X
r1

 l1
j1;x�r1 

l
j;�r1

X
r2

 l1
j1;x�r2 

l
j;�r2

)
+O

�
1

minfR; Sg
�
:

Upon making the substitution s = r2 � r1 we obtain

E (I lj;p) =
X
l1

X
j1

X
x

Sl1
j1

� p
R

�(X
r1

 l1
j1;x�r1 

l
j;�r1

X
s

 l1
j1;x�s�r1 

l
j;�s�r1

)

+O

�
1

minfR; Sg
�

=
X
l1

X
j1

Sl1
j1

� p
R

�X
r1

X
s

 l
j;�r1 

l
j;�s�r1

X
x

 l1
j1;x�r1 

l1
j1;x�r1�s

+O

�
1

minfR; Sg
�
:

By recognition, this last summation is simply the discrete a.c. wavelet, 	l1
j1
(s). Thus,

E (I lj;p) =
X
l1

X
j1

Sl1
j1

� p
R

�X
s

	l1
j1
(s)
X
�r1

 l
j;r1 

l
j;�s�r1 +O

�
1

minfR; Sg
�

=
X
l1

X
j1

Sl1
j1

� p
R

�X
s

	l1
j1
(s)	l

j(s) +O

�
1

minfR; Sg
�
: (A.15)

Setting � = (j; l) and �1 = (j1; l1), and recalling that
P

s	�1(s)	�(s) = A�;�1 , equation

(A.15) reduces to:

E (I�;p) =
X
�1

A�;�1S�1

� p
R

�
+O

�
1

minfR; Sg
�
;

as required. �

Proof of Theorem 3.3

Variance: The variance of a wavelet periodogram,

Var(I lj;p) = Var
�
(dlj;p)

2
�

= E
�
(dlj;p)

4
�� E

�
(dlj;p)

2
�2
:
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We already know the asymptotic form of E
�
(dlj;p)

2
�
. We therefore focus on

E
�
(dlj;p)

4
�

= E

0@ X
r

Xr 
l
j;p(r)

!4
1A

= E

0@ X
r

X
l1

X
j1

X
u1

wl1
j1;u1

 l1
j1;u1

(r)�l1j1;u1 
l
j;p(r)

!4
1A

= E

 
4Y
i=1

X
ri

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(ri)�
li
ji;ui

 l
j;p(ri)

!

=
4Y
i=1

X
ri

X
li

X
ji

X
ui

E
�
�l1j1;u1�

l2
j2;u2

�l3j3;u3�
l4
j4;u4

�
wli
ji;ui

 li
ji;ui

(ri) 
l
j;p(ri):

Consider the term E
�
�l1j1;u1�

l2
j2;u2

�l3j3;u3�
l4
j4;u4

�
. Using a result due to Isserlis (1918),

E
�
�l1j1;u1�

l2
j2;u2

�l3j3;u3�
l4
j4;u4

�
= E

�
�l1j1;u1�

l2
j2;u2

�
E
�
�l3j3;u3�

l4
j4;u4

�
+E
�
�l1j1;u1�

l3
j3;u3

�
E
�
�l2j2;u2�

l3
j4;u3

�
+E
�
�l1j1;u1�

l4
j4;u4

�
E
�
�l2j2;u2�

l3
j3;u3

�
+ �4

where �4 is the fourth order cumulant of the distribution of
�
�l1j1;u1 ; �

l2
j2;u2

; �l3j3;u3 ; �
l4
j4;u4

	
.

Moreover when f�lj;ug is Gaussian, as in this case, �4 � 0. (See Priestley (Section 5.3,

1981) for further details.)

Using this quadravariate decomposition, the expression of E
�
(dlj;p)

4
�
simpli�es to

E
�
(dlj;p)

4
�

=
4Y
i=1

X
ri

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(ri) 
l
j;p(ri)

�
E
�
�l1j1;u1�

l2
j2;u2

�
E
�
�l3j3;u3�

l4
j4;u4

�
+ E

�
�l1j1;u1�

l3
j3;u3

�
E
�
�l2j2;u2�

l3
j4;u3

�
+ E

�
�l1j1;u1�

l4
j4;u4

�
E
�
�l2j2;u2�

l3
j3;u3

�	
= I1 + I2 + I3;

where, for example,

I1 =
4Y
i=1

X
ri

X
li

X
ji

X
ui

E
�
�l1j1;u1�

l2
j2;u2

�
E
�
�l3j3;u3�

l4
j4;u4

�
wli
ji;ui

 li
ji;ui

(ri) 
l
j;p(ri): (A.16)

By construction

E
�
�l1j1;u1�

l2
j2;u2

�
= Cov(�l1j1;u1; �

l2
j2;u2

)

= �j1;j2�u1;u2�l1;l2 :
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Hence (A.16) simpli�es as follows:

I1 =
2Y
i=1

X
ri

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(ri) 
l
j;p(ri)E

�
�l1j1;u1�

l2
j2;u2

�
�

4Y
i=3

X
ri

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(ri) 
l
j;p(ri)E

�
�l3j3;u3�

l4
j4;u4

�
=

X
l1

X
j1

X
u1

(wl1
j1;u1

)2
X
r1

 l1
j1;u1

(r1) 
l
j;p(r1)

X
r2

 l1
j1;u1

(r2) 
l
j;p(r2)X

l3

X
j3

X
u3

(wl3
j3;u3

)2
X
r3

 l3
j3;u3

(r3) 
l
j;p(r3)

X
r4

 l3
j3;u3

(r4) 
l
j;p(r4)

=

"X
l1

X
j1

X
u1

(wl1
j1;u1

)2
X
r1

 l1
j1;u1

(r1) 
l
j;p(r1)

X
r2

 l1
j1;u1

(r2) 
l
j;p(r2)

#2
= E (I lj;p)

2 (by recognition from formula (A.12))

= I2 and I3:

Thus, (changing to �(j; l) notation)

Var(I�;p) = 3E (I�;p)
2 � E (I�;p)

2

= 2E (I�;p)
2:

However, from Theorem 3.2, we know that

E (I�;p) =
X
�1

S�1

� p
R

�
A�;�1 +O

�
1

minfR; Sg
�
:

Hence,

Var(I�;p) = 2E (I�;p)
2

= 2

(X
�1

A�;�1S�

� p
R

�
+O

�
1

minfR; Sg
�)2

:

From the work of Nason et al. (2000) it is known that 	l
j(� ) = O(1), uniformly in � .

Hence it follows that

A�(j;l);�(j1 ;l1) =
X
�

	l
j(� )	

l1
j1
(� ) = O(22j(�)):

Thus, as � is �xed

Var(I�;p) = 2

(X
�1

A�;�1S�

� p
R

�)2

+O

�
22j(�)

minfR; Sg
�
:

�
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Covariance:

Cov(I laja;p; I
lb
jb;q

) = Cov

��
dlaja;p

�2
;
�
dlbjb;q

�2�
= E

��
dlaja;p

�2 �
dlbjb;q

�2�
� E

��
dlaja;p

�2
)E (
�
dlbjb;p

�2�

We already know the form of E
��
dlj;p
�2�

. Hence we focus on the term

E

��
dlaja;p

�2 �
dlbjb;q

�2�
= E

0@ X
r

Xr 
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ja;p(r)

!2 X
s

Xs 
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jb;p

(s)

!2
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= E

0@ X
r

X
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X
j1

X
u1
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j1;u1

 l1
j1;u1

(r)�l1j1;u1 
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(r)

!2

�
 X

s

X
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X
j2

X
u2

wl2
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j2;u2
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jb;q

(s)
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X
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X
ji

X
ui
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ji;ui
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ji;ui

(ri) 
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ja;p

(ri)

�
4Y

i=3

X
si

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(si) 
lb
jb;q

(si)

�E ��l1j1;u1�l2j2;u2�l3j3;u3�l4j4;u4�
Using Isserlis' theorem, together with the fact that the fourth order joint cumulant of

Gaussian random variables is zero, we can expand the above expression as follows:

E

��
dlaja;p

�2 �
dlbjb;q

�2�
=
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X
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X
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X
ji

X
ui

wli
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(ri) 
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�
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X
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X
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X
ui

wli
ji;ui
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(si) 
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jb;q
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��E ��l1j1;u1�l2j2;u2� E ��l3j3;u3�l4j4;u4�+ E
�
�l1j1;u1�

l3
j3;u3

�
E
�
�l2j2;u2�

l4
j4;u4

�
+E
�
�l1j1;u1�

l4
j4;u4

�
E
�
�l2j2;u2�

l3
j3;u3

�	
= I1 + I2 + I3:

Now recall that by construction E (�l1j1 ;u1�
l2
j2;u2

) = �j1;j2�u1;u2�l1;l2 . It therefore follows
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that:

I1 =
2Y

i=1

X
ri

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(ri) 
la
ja;p

(ri)

�
4Y
i=3

X
si

X
li

X
ji

X
ui

wli
ji;ui

 li
ji;ui

(si) 
lb
jb;q

(si)

�E ��l1j1;u1�l2j2;u2� E ��l3j3;u3�l4j4;u4�
=

X
l1

X
j1

X
u1

(wl1
j1;u1

)2
X
r1

 l1
j1;u1

(r1) 
la
ja;p(r1)

X
r2

 l1
j1;u1

(r2) 
la
ja;p(r2)X

l3

X
j3

X
u3

(wl3
j3;u3

)2
X
s3

 l3
j3;u3

(s3) 
lb
jb;q

(s3)
X
s4

 l3
j3;u3

(s4) 
lb
jb;q

(s4):

However, recall from equation (A.12) that
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Hence, I1 = E (I laja ;p)E (I
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). Furthermore,
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#2
:

Finally, it is easily shown that I3 = I2.

Drawing our expressions for I1; I2 and I3 together we �nd that,

Cov(I laja;p; I
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) = E (I laja ;pI
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jb ;q

)
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Proof of Proposition 3.3

Using the LS2W process representation in (3.6),

CR(z; � ) = Cov(X[zR]; X[zR]+� )

= E
�
(X[zR] � �[zR])(X[zR]+� � �[zR]+� )

�
:

However, by Assumption 1, E (Xr) = 0 for all r. Hence,

CR(z; � ) = E
�
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�
= E
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X
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X
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l
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j0;u0
([zR] + � )E (�lj;u�
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)

for the wl
j;u and the  l

j;u are deterministic. Moreover, since

Cov(�lj;u; �
l0
j0;u0

) = E (�lj;u�
l0
j0;u0

) = �j;j0�l;l0�u;u0 ;

it follows that

CR(z; � ) =
X
l

X
j

X
u

jwl
j;uj2 l

j;u([zR]) l
j;u([zR] + � ); next let u = p+ [zR]

=
X
l

X
j

X
u
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j;p+[zR]j2 l
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=
X
l

X
j

X
u

jwl
j;p+[zR]j2 j;p(0) l

j;p(� ):

We now derive two limit results which are required to complete this proof.

Limit result 1 By De�nition 3.5, Sl
j(z) = jW l

j(z)j2 for all z 2 (0; 1)2. Furthermore,

Property 3.1 states that

Sl
j(z) = lim

R;S!1
jwl

j;[zR]j2 for z 2 (0; 1)2.

By Assumption 2,
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���wl
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� u
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���� � C l
j
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The triangle inequality implies that
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!
as
P

j jW l
j(z)j2 <1.

Hence, setting z = u=R, we obtain

��jwl
j;uj2 � Sl
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�� = O

 
C l
j

maxfR; Sg

!
: (A.17)

Limit result 2 Recall that the W l
j(z) are assumed to be Lipschitz continuous

functions (with respect to the L1-norm). Hence,

kW l
j(z+ �=R)�W l

j(z)k � Ll
jk(z+ �=R)� zk where �=R = (�1=R; �2=S)
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j(z+ �=R)�W l

j(z)j � Ll
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jk�=Rk1 by the triangle inequality

) jW l
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��
: (A.18)
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With the above limit results in place, we are now in a position to consider the

asymptotic convergence of CR(z; � ) to C(z; � ):
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However 	l
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l
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Using Limit Result 2, in conjunction with the modelling assumptions made in equations

(3.10) and (3.12), we obtain
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Proof of Lemma 3.2

This proof is identical to that of the one-dimensional case considered by Nason et al.

(Proposition 2, 2000) and is included for completeness. Consider,X
�1

A�1�;�1
X
�

C(z; � )	�(� )

By de�nition, C(z; � ) =
P

� S�	�(� ). HenceX
�1

A�1�;�1
X
�

C(z; � )	�(� ) =
X
�1

A�1�;�1
X
�

(X
�

S�(z)	�(� )

)
	�(� )
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A�1�;�1
X
�

S�(z)
X
�

	�(� )	�1(� ):

The order of the summations may be changed above for
P

� S�(z) <1 8z whilst the

sum over � is �nite. By de�nition
P

�
	�(� )	�1(� ) = A�;�1 = A�;�1 . Hence,X
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A�1�;�1
X
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X
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S�(z)��;�

= S�(z):

�

Proof of Proposition 3.4

To prove part (a), de�ne �(� ) = fk�(� )g via �(� ) = A�1	(� ). Assuming Conjecture

3.1, then
P

� j��(� )j < 1 uniformly in � . Hence, by Lemma 3.2 we can relate the

autocovariance to a sequence of LWS fS�(z)g which satisfy
P

j

P
l S

l
j(z) <1.

To prove part (b) we consider the following result which demonstrates the absolute

summability of C(z; �) in � and, consequently, that the process autocovariance is also

absolutely summable.

Corollary A.1

Assume that
P

� 2
j(�)S�(z) <1 uniformly in z. Then

P
�
jC(z; � )j <1 uniformly in

z and X
�

jCR(z; � )� C(z; � )j = o(1); as � !1



170 Chapter 3 Proofs

uniformly in z.

Proof Let CJ0(z; � ) =
P3J0

�=1 S�(z)	�(� ). Then, as it follows from the work of Nason

et al. (2000) that 	�(� ) = O(1) uniformly in � , we therefore obtain
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= o(1):

Hence
P

�
jCR(z; � )� C(z; � )j = o(1) as minfR; Sg ! 1. �

Thus, as a consequence of the above and Proposition 3.3 we have the desired result for

those processes whose LWS are constant over location. �
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Chapter 5 Proofs

Proof of Proposition 5.2

By De�nitions 2.5 and 2.6

	j+1(�) =
X
l

 (j+1)l (j+1)(l��) (B.1)

=
X
l

 X
k

hl�2k jk

! X
m

hl���2m jm

!
; (B.2)

Case A: (even argument). Now

	j+1(2�) =
X
l

X
k

hl�2k jk
X
m

hl�2(�+m) jm (then let r = m + �)

=
X
l

X
k

hl�2k jk
X
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hl�2r j(r��)

=
X
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 jk
X
r

 j(r��)
X
m

hmhm+2(k�r)

=
X
k

 jk
X
r

 j(r��)�k�r;0 (by equation 5.1.39 of Daubechies (1992))

= 	j(�):

Case B: (odd argument). Now
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X
l

X
k

hl�2k jk
X
m

hl�1�2(�+m) jm (again let r = m + � .)

=
X
k

 jk
X
r

 j(r��)
X
l

hl�2khl�1�2r

=
X
k

 jk
X
r

 j(r��)�1 f2(r � k) + 1g (now let p = r � k)

=
X
p

�1(2p+ 1)	j(� � p):
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The limits of the above are obtained by considering the supports of �1(2p + 1) and

	j(� � p).

Proof of Proposition 5.1

First, consider the case of Pj;n when n is even. By de�nition:

Pj;2p =
X
k

	j(k)	j(k � 2p)

=
X

k (even)

	j(k)	j(k � 2p) +
X

k (odd)

	j(k)	j(k � 2p)

=
X
l

	j(2l)	j(2(l � p)) +
X
l

	j(2l + 1)	j(2(l � p) + 1):

Applying Proposition 5.2, the above expression can be re-written as

Pj;2p = Pj�1;p +
X
r

X
s

�1(2r + 1)�1(2s+ 1)
X
l

	j�1(l � r)	j�1(l � p� s):

Setting q = l � r, we obtain:

Pj;2p = Pj�1;p +
X
r

X
s

�1(2r + 1)�1(2s+ 1)
X
q

	j�1(q)	j�1(q � (s+ p� r))

= = Pj�1;p +
X
r

X
s

�1(2r + 1)�1(2s+ 1)Pj�1;s+p�r:

Finally, on making the substitution q = s � r and applying De�nition 5.1, the above

can be simpli�ed to

Pj;2p = Pj�1;p +
X
r

X
q

�1(2r + 2q + 1)�1(2r + 1)Pj�1;p+q

= Pj�1;p +
X
q

Pj�1;p+qQq; (B.3)

as required.

We now consider the case of Pj;n when n is odd. By De�nition 5.2,

Pj;2p+1 =
X
k

	j(k)	j(k � (2p+ 1))

=
X

k (even)

	j(k)	j(k � 2p� 1) +
X
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	j(k)	j(k � 2p� 1)

=
X
l

	j(2l)	j(2(l � p)� 1) +
X
l

	j(2l + 1)	j(2(l � p)):
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Again, applying Proposition 5.2, the above can be re-expressed as

Pj;2p+1 =
X
r

�1(2r + 1)
X
l

	j�1(l)	j�1(l � p� r)

+
X
q

�1(2q + 1)
X
l

	j�1(l � p)	j�1(l � q): (B.4)

Finally, on making the substitution s = l� q in the second double sum of B.4 and then

applying De�nition 5.2, we obtain:

Pj;2p+1 =
X
r

�1(2r + 1)
X
l

	j�1(l)	j�1(l � p� r)

+
X
q
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X
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	j�1(s+ q � p)	j�1(s)

=
X
r

�1(2r + 1)Pj�1;p+r +
X
q

�1(2q + 1)Pj�1;p�q:

Hence result. �

Proof of Proposition 5.2

Let j 2 Z
+. From De�nition 2.7, we know that:

Aj+1;j+1 = h	j+1;	j+1i
=

X
k

	j+1(2k)	j+1(2k) +
X
k

	j+1(2k + 1)	j+1(2k + 1):

Applying Proposition 5.2, we obtain:

Aj+1;j+1 = Aj;j +
X
p

X
q

�1(2p+ 1)�1(2q + 1)
X
k

	j(k � p)	j(k � q):

Next, make the substitution r = k � p,

Aj+1;j+1 = Aj;j +
X
p;q

�1(2p+ 1)�1(2q + 1)
X
r

	j(r)	j(r + p� q)

= Aj;j +
X
p

X
q

�1(2p+ 1)�1(2q + 1)Pj;q�p: (B.5)

Finally, we make the substitution r = q � p in (B.5). This results in

Aj+1;j+1 = Aj;j +
X
r

Pj;r
X
p

�1(2p+ 1)�1(2(p+ r) + 1)

= Aj;j +
X
r

Pj;rQr; (by De�nition 5.1.) (B.6)

as required. �
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Proof of Proposition 5.3

This is similar to the proof of Proposition 5.1 in that we consider the cases of Tj; k; 2p

and Tj;k;2p+1 separately. The approach for each case consists of a divide and conquer

approach; dividing the summation into odd and even parts, before applying Proposition

5.2 to obtain the desired result. (See Eckley & Nason (2000) for further details). �

Proof of Proposition 5.4

Proof is similar to that of Proposition 5.2. Recall that Aj+1;k+1 =
P

� 	j+1(�)	k+1(�).

By dividing this summation into odd and even parts and then applying Proposition

5.2 we obtain the required result. (See Eckley & Nason (2000) for further details). �

Proof of Proposition 5.5

As with earlier proofs, this result can be shown by adopting a divide and conquer

approach. By De�nition 5.4,

Rl
j;q =

X
r

	1(2
j�l+1r + q + 1)	j(r) (B.7)

where j; l > 0. Dividing the summation in (B.7) into odd and even valued arguments,

applying Proposition 5.2 and re-arranging the resulting expression, we �nd that

Rl
j;q = Rl�2

j�1;q +
X
p

�1(2p+ 1)Rl�2
j�1;2j�l+1+2j�l+2p+q

: (B.8)

The limits of the summation in (B.7) can be found by considering the support of the

	1 and 	j term. (See Eckley & Nason (2000) for further details).

Proof of Proposition 5.6

By recalling that

A1;j+1 =
X
�

	1(�)	j+1(�);

dividing the summation into odd and even arguments of � and using the result that

	1(2�) =
X
k

gkgk�2� = ��;0 8� 2 suppf	jg:
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it is easily shown that

A1;j+1 = 	j(0) +
X
k

	1(2k + 1)	j+1(2k + 1):

However, from the properties of wavelets, we know that

	j(0) =
X
k

 2
j;k =

X
k

g2j;k = 1:

Hence,

A1;j+1 = 1 +
X
k

	1(2k + 1)	j+1(2k + 1):

Using Proposition 5.2, the above expression may be simpli�ed to

A1;j+1 = 1 +
X
p

�1(2p+ 1)Rj
j;p as required. (B.9)

�





Appendix C

The LS2W software suite

Motivated by the principle of reproducible research, this appendix contains help pages

for various programs which have been written to implement the estimation scheme

associated with the LS2W model proposed in Chapter 3. These programs may be

downloaded from the following web site,

http://www.stats.bris.ac.uk/~maiae/LS2W

where details of other subsidiary routines may be obtained. It should be noted that

this suite has been designed to tie in with the freeware package, WaveThresh.
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D2ACW

Compute 2-D discrete autocorrelation wavelets.

Description

This function computes two-dimensional discrete autocorrelation wavelets. The inner

products of these wavelets are required for correction of the (biased) raw wavelet

periodograms. See Chapter 3 for further details.

Usage

D2ACW(J, filter.number = 1, family = "DaubExPhase", switch =

"direction", tol = 1e-100, OPLENGTH = 2000)

Required arguments

J

Discrete autocorrelation wavelets will be computed for scales 1 to J within each

decomposition direction (horizontal, vertical and diagonal). This number should be

a positive integer.

Optional arguments

filter.number

The index of the wavelet used to compute the discrete autocorrelation wavelets.

family

The wavelet family used to compute the discrete autocorrelation wavelets.

switch

Allows the user to de�ne how they wish their inner product matrix to be formed. There

are two available options:
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� switch = "direction" - structures the matrix by scale within each

decomposition direction. Thus, the ordering goes as follows (1; V ); (2; V ); : : : .

� switch = "level" - structures the matrix by direction within each scale. Thus

the ordering is as follows (1; V ); (1; H); (1; D); (2; V ); (2; H); : : : .

tol

In the brute force computation for Daubechies' compactly supported wavelets

many inner product computations are performed. This tolerance discounts any

results which are smaller than tol which e�ectively de�nes how long the inner

product/autocorrelation products are.

OPLENGTH

This integer variable de�nes some workspace of length OPLENGTH. The code uses this

workspace. If the workspace is not long enough then the routine will stop and tell you

what OPLENGTH should be set to.

Value

A list containing 3J components, numbered from 1 to 3J . If switch="direction", the

�rst J components contain the vertical autocorrelation wavelet coe�cients, the second

set of J components contains the horizontal autocorrelation wavelet coe�cients (scales

1; : : : ; J) and the last J components constitute the diagonal autocorrelation wavelet

coe�cients. However, if switch="level", then the �rst 3 components contain the

�nest scale autocorrelation wavelet coe�cients in the vertical, horizontal and diagonal

decomposition directions respectively. The second set of 3 contains the vertical,

horizontal and diagonal coe�cients at scale 2 etc.

Note that these 2-D autocorrelation wavelets are stored as matrices. The central

element of the matrix refers to lag 0.

Side e�ects

None.
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Details

This function computes the 2-D discrete autocorrelation wavelets. It does not have any

direct use for space-scale analysis. The construction method is a brute force approach

| a more elegant solution would be based on the recursive schemes of Chapter 5.

The routine returns only the values of the discrete autocorrelation wavelets, not their

spatial positions. Each discrete autocorrelation wavelet is compactly supported. This

support is determined from the discrete wavelets upon which these autocorrelations

are based.

Examples

#

# Let us create the discrete autocorrelation wavelets for the Haar wavelet.

# We shall create up to scale 2.

#

> D2ACW(J=2, filter.number=1, family="DaubExPhase", switch="direction")

[[1]]:

[,1] [,2] [,3]

[1,] -0.25 -0.5 -0.25

[2,] 0.50 1.0 0.50

[3,] -0.25 -0.5 -0.25

[[2]]:

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.0625 -0.125 -0.1875 -0.25 -0.1875 -0.125 -0.0625

[2,] -0.1250 -0.250 -0.3750 -0.50 -0.3750 -0.250 -0.1250

[3,] 0.0625 0.125 0.1875 0.25 0.1875 0.125 0.0625

[4,] 0.2500 0.500 0.7500 1.00 0.7500 0.500 0.2500

[5,] 0.0625 0.125 0.1875 0.25 0.1875 0.125 0.0625

[6,] -0.1250 -0.250 -0.3750 -0.50 -0.3750 -0.250 -0.1250

[7,] -0.0625 -0.125 -0.1875 -0.25 -0.1875 -0.125 -0.0625

#
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#... and the remaining terms follow suit.

#

# You can also plot components to get an idea of what the

# 2-D autocorrelation wavelet looks like. This can be done using the

# command D2autoplot (see web-site for further details).

#

> D2autoplot(J=2, filter.number=1, family="DaubExPhase", direction="3")
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2-D Autocorrelation Wavelet

Figure C.1: Scale 2, discrete Haar autocorrelation wavelet in the
diagonal decomposition direction.
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D2Amat

Creates the A matrix required for analysing LS2W processes.

Description

This function creates the matrix used to correct the raw periodogram of a LS2W

process.

Usage

D2Amat(J, filter.number=10, family="DaubExPhase", OPLENGTH=2000,

switch="direction", verbose = F)

Required Arguments

J

The level to which the decomposition must extend. This number should be a positive

integer.

Optional Arguments

filter.number

The index of the wavelet used to compute the correction matrix A.

family

The wavelet family used to compute A.

OPLENGTH

This integer variable de�nes some workspace of length OPLENGTH which is used by the

code. If the workspace is not long enough, then the routine will stop and tell you what

OPLENGTH should be set to.
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switch

Dictates the structure of the matrix [by direction or by scale].

verbose

Allows certain informative messages to be printed on screen.

Value

A matrix of order 3J � 3J containing the elements Aj;l de�ned in Chapter 3. Each

element is the sum over all lags of the product of the matrix coe�cients of a 2-D

DACW matrix at level j1 in direction l1 with that of another (not necessarily di�erent)

matrix of DACW coe�cients at level j2 in direction l2. The structure of this matrix

is as follows: the rows and columns of the matrix are labeled 1; : : : ; 3J in accordance

with the notation of Chapter 3. When switch="direction" the matrix rows (and

columns) are structured as follows:

� Rows (columns) 1; : : : ; J correspond to the di�erent levels of the decomposition

in the vertical direction. 1 =�ne and J =coarse scale.

� Rows (columns) J +1; : : : ; 2J correspond to the di�erent levels in the horizontal

direction.

� Rows (columns) 2J + 1; : : : ; 3J correspond to the di�erent directions in the

diagonal direction.

A pictorial representation of this structure is displayed in �gure 5.1.

When switch="level", the row and column elements cycle as follows:

level 1 vertical, level 1 horizontal, level 1 diagonal, level 2 vertical, etc.

Side e�ects

None.
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Details

See Section 3.5.1 and Chapter 5 for further details about this matrix.

Examples

#

# Let's compute the A matrix for the Haar wavelet in 2-D.

#

> D2Amat(J=2, filter.number=1, family="DaubExPhase", switch="direction")

1 2 3 4 5 6

1 2.2500 1.3125 0.2500 0.3125 0.7500 0.9375

2 1.3125 4.8125 0.3125 0.5625 0.1875 1.3125

3 0.2500 0.3125 2.2500 1.3125 0.7500 0.9375

4 0.3125 0.5625 1.3125 4.8125 0.1875 1.3125

5 0.7500 0.1875 0.7500 0.1875 2.2500 0.5625

6 0.9375 1.3125 0.9375 1.3125 0.5625 3.0625

Element (6,6) of the above matrix represents the inner product of 	d
2 with itself, whilst

the entry in (2,4) represents the inner product of 	h
2 with 	

v
2. A pictorial representation

of the structure of this matrix may be seen on page 133.

#

# And now for the same matrix structured by level

#

>D2Amat(J=2, filter.number=1, family="DaubExPhase", switch="level")

1 2 3 4 5 6

1 2.2500 0.2500 0.7500 1.3125 0.3125 0.9375

2 0.2500 2.2500 0.7500 0.3125 1.3125 0.9375

3 0.7500 0.7500 2.2500 0.1875 0.1875 0.5625

4 1.3125 0.3125 0.1875 4.8125 0.5625 1.3125

5 0.3125 1.3125 0.1875 0.5625 4.8125 1.3125

6 0.9375 0.9375 0.5625 1.3125 1.3125 3.0625
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cddews

Compute the local wavelet spectrum estimate

Description

This function computes the local wavelet spectrum (LWS) estimate of an image (or non-

decimated wavelet transform of a time series). The estimate is computed by taking

the non-decimated wavelet transform of the image, squaring the detail coe�cients,

smoothing using wavelet shrinkage and then correcting the redundancy caused by use

of the non-decimated wavelet transform.

Usage

cddews(data, filter.number=1, family="DaubExPhase", switch="direction",

correct = T, verbose = F, smooth = T, sm.filter.number = 4., sm.family

= "DaubExPhase", levels = 3.:6., type = "hard", policy = "LSuniversal",

by.level = F, value = 0., dev = var)

Required arguments

data The image you want to analyse.

Optional arguments

filter.number

This selects the index of the wavelet used in the analysis of the time series (i.e. the

wavelet basis functions used to model the time series). For Daubechies compactly

supported wavelets the �lter number is the number of vanishing moments.

family

This selects the wavelet family to use in the analysis of the time series (i.e. which

wavelet family to use to model the time series). Only use the Daubechies compactly

supported wavelets DaubExPhase and DaubLeAsymm.
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switch

This allows one to order the corrected spectrum by scale or decomposition direction.

Two options are available

switch = "direction"

structures the matrix by scale within each decomposition direction. Thus, the

ordering goes as follows (1; V ); (2; V ); (2; D) : : : .

switch = "level"

structures the matrix by direction within each scale. Thus the ordering is as

follows (1; V ); (1; H); (1; D); (2; V ); (2; H); (2; D) : : : .

For further details, see Eckley & Nason (2000).

correct

In Chapter 3 we demonstrated that, as a consequence of the inherent redundancy of

the non-decimated wavelet transform, the raw wavelet spectrum is biased. However,

an asymptotically unbiased estimator may be obtained by applying the inverse of the

inner product matrix of discrete autocorrelation wavelets. This argument permits the

user to decide whether or not to correct for this inherent bias.

verbose

Allows certain informative messages to be printed on screen.

smooth

This T/F switch argument allows the user to specify whether or not the resulting local

wavelet periodogram should be smoothed to obtain. It is advised that this option be

set to T in order that consistent estimates be obtained.

sm.filter.number

Selects the index number of the wavelet that smooths each scale of the wavelet

periodogram.
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sm.family

Selects the wavelet family that smooths each scale of the wavelet periodogram.

levels

This speci�es the levels which are smoothed when performing the wavelet shrinkage.

type

The type of shrinkage: either "hard or "soft".

policy

This dictates the threshold selection method used for smoothing. For LWS estimation

LSuniversal is recommended for the Chi-squared nature of the periodogram

coe�cients.

by.level

If T then the wavelet shrinkage is performed by computing and applying a separate

threshold to each level in the transform of each scale. Note that each scale in the

LWS is smoothed separately and independently. Each smooth consists of taking the

(second-stage) non-decimated wavelet transform and applying a threshold to each level

of a wavelet transformed scale.

If F then the same threshold is applied to the discrete wavelet transform of a scale.

Di�erent thresholds may be computed for di�erent scales but the threshold will be the

same for each level arising from the non-decimated transform of a scale.

value

This argument supplies the threshold value used when a manual policy is adopted.

dev

The method for estimating the variance of the empirical wavelet coe�cients for

smoothing purposes.
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Value

A list with the following components:

S The directionally dependent wavelet spectral estimate of the input data. This is a

large array, the �rst dimension refers to a speci�c scale-direction pair (see Chapter 3

for further details). The next dimension refers to the rows of the spectral image, whilst

the third element refers to the columns of the image.

datadim The dimension of the original image.

filter.number This gives the index of the wavelet used in the analysis of the image

(i.e. the wavelet basis functions used in the modelling). For Daubechies compactly

supported wavelets the �lter number is the number of vanishing moments.

family This contains the wavelet family used in the analysis of the image (i.e. the

wavelet family used in the modelling).

STRUCTURE

Explains the protocol by which the inner product matrix and S are structured. This

can only take two values, direction and scale. In other words, the �rst dimension

of S may be structured by scale, for example (1; H); (1; V ); (1; D); (2; H); (2; V ) : : : , or

by direction, (1; V ); (2; V ); (3; V ); : : : ; (1; H); (2; H); : : : .

Levels The number of levels in the decomposition.

correct T or F, depending on whether the user corrected for the bias.

smooth T or F, depending on whether the LWP has been smoothed.

date The date at which the analysis was made.

Side e�ects

None
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Details

This function computes an estimate of the directionally dependent wavelet spectrum

of an image according to the work of Chapter 3. The function works as follows:

1. The non-decimated wavelet transform of the series is computed.

2. The squared modulus of the non-decimated wavelet transform is computed (this

is the raw wavelet periodogram, which is returned as S if smooth="F").

3. The squared modulus is smoothed using wavelet shrinkage.

4. The smoothed coe�cients are corrected using the inverse of the inner product

matrix of the autocorrelation wavelets.

To display the LWS use the specplot function on the S component (see the examples

below).

Examples

#

# Apply the cddews estimate function to the lennon image

#

> lennon.cddews <- cddews(lennon, filter.number=1, family="DaubExPhase")

> lennon.cddews

Class 'cddews' : corrected directional dependent wavelet spectrum:

~~~~~~ : List with 10 components with names

S datadim filter.number family STRUCTURE Levels

invIPmatrix correct smooth date

The spectrum of this image was corrected (IP matrix).

$S is a large array of data

Created on : Sun Aug 26 18:45:40 BST 2001

summary(.):
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----------

Levels: 8

dimension of original image was: 256 x 256 pixels.

Filter was: DaubExPhase N= 1

Structuring is by direction

Date: Sun Aug 26 18:45:40 BST 2001



191

specplot

Plot the local wavelet periodogram associated with a cddews object

Description

This function displays the LWP associated with a cddews object, allowing the user to

dictate display type.

Usage

specplot(cddews, scaling = "by.level", arrangement = c(3., 3.), page =

T, dataname = "Image", display = "persp", reset = T, title = T)

Required Arguments

cddews

An object of class cddews must be supplied to the function.

Optional Arguments

scaling

Two scaling options are available. The default setting is to scale "by.level" | an

option which is useful if you wish to compare coe�cients within a resolution level. The

alternative setting is global, whereby one scale factor is chosen for all plots. This

factor depends on the largest coe�cient which is to be included in the suite of plots.

arrangement

Allows the user to specify the number of spectral plots which are to appear on any

given page.

page

An argument which allows the user to request that they be prompted when a new page

of plots appears. Two options are available: T or F.
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dataname

A name for the image whose LWP is being displayed. This will appear as part of the

title associated with each plot.

display

Two display methods are available. Using the option display="persp" displays

a 3-dimensional plot of the LWP, using the S-Plus routine persp. The option

display="image" displays the LWP as a collection of images.

reset

If set to T, this restores the plot settings to their default con�guration (i.e.

par(mfrow=c(1,1))). If F, then the current settings will remain in operation.

Title

Setting this option to F allows the suppression of titles in the displayed output.

Value

No value is returned.

Side e�ects

None.
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Haar2MA.diag, Haar2MA.vert, Haar2MA.horiz

Generate 2-D Haar MA process (diagonal/vertical/horizontal

direction).

Description

These functions generate an arbitrary number of observations from a Haar MA process

of any order with a particular variance. We will focus here on Haar2MA.diag |

the routine which generates processes having spectral structure solely in the diagonal

decomposition direction.

Usage

Haar2MA.diag(n, sd = 1, order = 5)

Required arguments

n

The number of rows and columns in realisation that you want to create. Note that n

does NOT have to be a power of two.

Optional arguments

sd

The standard deviation of the innovations.

order

The order of the MA process.

Value

A matrix containing a realisation of the speci�ed dimension, order and standard

deviation.
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Side e�ects

None.

Details

A two-dimensional Haar MA process is a special kind of moving-average (MA) �eld. A

diagonal Haar MA process of order k is a MA �eld of order 2k � 1, the coe�cients of

the process being given by the �lter coe�cients of the two-dimensional, discrete Haar

wavelet at various scales within the diagonal direction. For example: the diagonal Haar

MA �eld of order 1 is an MA process of order 1. The coe�cients of this process are

given by 24 1=2 �1=2
�1=2 1=2

35 :
The Haar MA process of order 2 is an MA process of order 3, its model coe�cients

being given by 26666664
1=4 1=4 �1=4 �1=4
1=4 1=4 �1=4 �1=4
�1=4 �1=4 1=4 1=4

�1=4 �1=4 1=4 1=4

37777775 :

It is possible to de�ne such processes for other wavelets as well.

Examples

#

# Generate a realisation of a diagonal component 2-D MA field

# of order 4.

#

image1 <- HaarMA.diag(n=128, sd=3, order=4)
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HaarMontage

Generate a 2-D Haar MA process.

Description

This function generates a particular set of four 2-D Haar MA processes. These are

subsequently collated to form a montage.

Usage

HaarMontage(direction="diagonal")

Required arguments

None.

Optional arguments

direction

Three directions can be speci�ed: horizontal, vertical and diagonal. The direction

chosen dictates the decomposition direction in which the wavelet spectral structure

exists.

Value

A vector containing 512*512 observations from four collated 2-D Haar MA processes.

Side e�ects

None.

Details

This function generates a realisation of a particular kind of non-stationary lattice

model, an example of which is displayed in �gure 3.3. The returned lattice is the
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result of combining four HaarMA processes. One process is of order 1, whilst another

is of order 2. The two remaining processes are of order 3 and 4 respectively. Each

individual lattice has dimension 128*128. The standard deviation of the innovations is

1.

Examples

#

# Generate a realisation of the non-stationary combined Haar MA

# process with structure in the vertical direction.

#

> MyHaar2 <- HaarMontage(direction="vertical")

#

# Plot it.

#

image(MyHaar2)
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Figure C.2: A realisation of a montage process whose wavelet spectral
contributions lie in the vertical direction.
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