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Abstract

This thesis consists of two parts: an exploration of new measures of backbench opinion in

the UK House of Commons, and an exploration of variance stabilising transformations of

count data.

In the first part, we consider the use of Early Day Motions (EDMs) as a means of

gauging opinions of Members of Parliament (MPs) over a rangeof issues. A much used

measure of opinion is that of cohesion; how similar MPs from each political party are to

each other. We define a new cohesion measure using the signatories of Early Day Motions

and explore this measure over a moving time period for each ofthe main political parties.

We then use Early Day Motions for feature selection. We first identify issues which

cause individual parties to be more or less cohesive with oneanother, before setting out

methodology to distinguish which issues cause the major political parties to differ in opin-

ion.

We then turn our attention to methods of variance stabilisation of count data. Using

data of the number of deaths of coalition forces in Iraq, we demonstrate the good vari-

ance stabilisation which the data-driven Haar-Fisz transform possesses. We then modify

this transformation so that data with negative counts can bevariance stabilised. We show

its good performance for simulated data and demonstrate itspractical use on the central

England temperature data set.

Finally, we set about incorporating a transformation parameter into the Haar-Fisz meth-

ods, so that through the use of maximum likelihood techniques, the transformation primarily

attempts to normalise the data, rather than variance stabilise it.
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Chapter 1

Introduction

This thesis is in two parts: the first, Chapters 2–4 consider the use of Early Day Motions to

gauge backbench opinion in the UK House of Commons. Chapters5–8 consider methods

of variance stabilisation of count data.

1.1 Early Day Motions

Early Day Motions (EDMs) have been a much used tool by Britishpoliticians to convey

an opinion or to support the view of other Members of Parliament (MPs). Although popu-

lar amongst MPs, the use of EDMs to statistically gauge opinion has been somewhat con-

tentious. Their vast subject area andcheap-talknature drew concerns over their applicability

and reliability, with critics often overlooking the wealthof information contained within the

data.

In Chapter 2 we review the means by which an MP can cast a vote ona particular is-

sue. Divisions are introduced and theirwhippednature discussed. We review the role of

divisions in calculating thecohesionof the major political parties, as well as the usefulness

(if not limited number) ofunwhippeddivisions. We then introduce EDMs, detailing them

historically and reviewing their use in measuring backbench opinion in the House of Com-

mons. We end by reviewing some recent techniques developed to model legislators using

roll call data.

The work in Chapters 3 and 4 makes extensive use of the EDM dataset. Acquiring this
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data was key to this research and the detailed processes of downloading, converting and

coding the EDMs is only briefly described within this thesis.Having carried out this task,

the data has been made publicly available to allow for further research into the EDM data

set.

We propose the use of EDMs in calculating the cohesion of major political parties in

Chapter 3. We give a detailed review of the criticism and support which EDMs have re-

ceived in the past. We bring this debate up to date and show that although one signature

on an EDM may be cheap-talk, hundreds of signatures on thousands of EDMs constitute a

rich body of information. A new cohesion measure is then defined and applied to EDMs

over a moving time window. We use this cohesion measure for feature selection, picking

out issues which cause the parties to be more, or less cohesive.

Chapter 4 details further data mining applications with EDMs. In contrast to work in

Chapter 3, we suggest looking for issues which cause the political parties to be less similar

to each other, essentially discovering the issues which cause divisionbetweenparties. We

also include a brief investigation into how an MPs propensity to sign EDMs manifests itself

within the data.

1.2 Variance Stabilisation

The remaining chapters of this thesis concentrate on the variance stabilisation of count data.

This data is often ‘Poisson like’, and periods of high signalintensity are often coupled with

a higher degree of variability. This can cause problems withmany smoothing methods,

which assume a certain degree of Gaussianity within the data. We turn our attention to

transformations which Gaussianise, and variance stabilise data.

In Chapter 5 we review literature used in the remaining chapters of this thesis. We

introduce the discrete wavelet transform, as well as some methods of smoothing data. We

summarise some models for time series data where the counts are assumed to be drawn from

a Poisson distribution. Some variance stabilising, and Gaussianising transformations are

then reviewed. In particular, the Box & Cox (1964) transformation is given in detail, along

with methods to estimate the transformation parameters. The recently developed Haar-Fisz
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transformation by Fryzlewicz & Nason (2004), and the data-driven Haar-Fisz transform by

Fryzlewiczet al. (2007) for variance stabilisation are described in detail.These are used

extensively in the following chapters.

We use the data-driven Haar-Fisz transform (DDHFT) in Chapter 6 to stabilise the vari-

ance of counts of the mortality levels of coalition forces inIraq and use a range of smoothing

methods to estimate the underlying intensity. We compare the transform to that of Box &

Cox (1964) in terms of variance consistency and Gaussianityof residual variance. We find

the DDHFT outperforms the Box-Cox transform, and results inbetter intensity estimates

than the ‘running-mean’ techniques currently being used.

Chapter 7 considers modifications of the DDHFT for when the data includes negative

counts. Whereas it is common practice to add a constant to thedata for use with the Box-

Cox transform, this is not always appropriate for the DDHFT.Furthermore, the choice of

this constant for the Box-Cox transform can be problematic.We suggest two modifications

of the DDHFT, depending on assumptions about the data, and suggest a bootstrap test for

deciding the most appropriate of these two transforms. We show our methods perform

better than the Box-Cox transform over a range of test signals and then apply them to the

central England temperature dataset — annual temperature measurements often used in

climatological studies.

The work in Chapter 8 further modifies the Haar-Fisz transforms so that it’s primary goal

is good Gaussianisation, rather than variance stabilisation. A general Haar-Fisz transform is

defined in which a transformation parameter is to be estimated to optimise Gaussianisation.

Similar to the Box-Cox transform, we use maximum likelihoodtechniques to estimate this

parameter. The work outlined is initial and many possible extensions are left as future work.

Nevertheless, the methods described show the potential forthese transforms to be effective

Gaussianisers.

Finally, Chapter 9 summarises the work of this thesis and outlines future work and

extensions of the methods and applications presented within.
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Chapter 2

Literature Review I

2.1 Introduction

This chapter reviews literature which involves the quantitative and qualitative analysis of

Members of Parliament (MPs) in the UK House of Commons in terms of their voting be-

haviour on parliamentary roll calls and other such devices.These devices come in the form

of parliamentarydivisionsand the less formalEarly Day Motion(EDM).

Our review of divisions focuses mainly on their use for the measure ofcohesion, either

between individual MPs or between political parties in the UK. Other measures of cohesion

which have been applied to non-UK legislators are describedin Chapter 3.

Although we do not use the division lists as a source of data inthis thesis, they play

an important role in terms of work which has been carried out using them, and giving the

reader an understanding of the freedom of expression British politicians have.

We then review the use of EDMs as a measure of backbench opinion in the House of

Commons. We give an account of the rise in popularity amongstMPs to use EDMs as well

as a brief history of these relatively unknown parliamentary devices. We detail the char-

acteristics of EDMs which make them interesting to use (spontaneous signing, unwhipped

nature), and review work which use EDMs to analyse backbenchopinion.

Finally, we review some recent techniques using spatial models which have been applied

to legislators from many parliaments around the world.
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2.2 Divisions

A division is the term given when the House of Commons votes on a particular issue. These

divisions give MPs the chance to cast their vote on laws and various pieces of legislation.

Party discipline, however, plays a huge role in how MPs vote,with theparty whipshaving

a tight control over MPs. Parliamentary Factsheet P9, (House of Commons Information

Office (2003b)) gives full details as to the history and procedure of divisions.

Division lists were analysed by Lowell (1919) to investigate the decline of independent

voting from 1836 to the end of the 19th century. Cox (1987) derived various tables of

figures from those reported in Lowell’s original work, and examined party discipline over

the divisions. He showed that by the end of the study period, the number of divisions which

had the party whip had doubled to around 90 per cent. Cox also used Lowell’s data to

calculate a cohesion measures for the political parties during the period of study. An index

of cohesion was defined to compare the intra-party cohesion of each party on both whipped

and unwhipped divisions. The measure used was expressed algebraically by McLean (1995)

and the cohesion of MPs from partyi is given by

Ci =

∑n
k=1 2[(V maj

i,k /Vi,k) − 0.5]

n
, (2.2.1)

wherek is a division in the session, withk = 1, 2, . . . , n. It is assumed that the parties are

labelled1, . . . , i, . . . ,m, althoughi in (2.2.1) is arbitrary.V maj
i,k /Vi,k is the ratio of votes

cast by the majority of MPs within partyi on divisionk to all votes cast by MPs of partyi

on divisionk. The ratio can thus range from 0.5 (when half the MPs make up the majority)

to 1, when all MPs vote the same way.Ci is thus scaled to range from 0 to 1, with 1 being

perfect cohesion.

For whipped votes, Cox (1987) found that cohesion increasedmarkedly over the study

period whereas unwhipped votes showed no such trend.

Berrington (1968) pointed out the frailties of this cohesion measure: not infrequently,

the front benches did not vote in the same way as the majority of their party and instead

relied on support of the ‘opposition’ backbenchers over their own. This meant that those
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making up the value ofV maj
i,k in (2.2.1) may not be voting according to the (front bench)

party line, as implied.

In recent years, with vast data sets from the Houses of Parliament being available over

the internet, websites such aswww.publicwhip.org.ukhave been created to automat-

ically download division lists and present the user with this information in a more transpar-

ent form. Their aim is to make MPs more accountable for their actions by allowing the

public to identify how a particular MP has voted. A feature oftheir analysis involves identi-

fying ‘rebellious’ MPs, that is, when an MP votes against theparty whip. The site has also

used multidimensional scaling to obtain an idea of party structure and see where MPs lie in

relation to each other in terms of dissimilarity of voting.

The work on the site is informative and potentially useful tosomeone researching voting

patterns by MPs in general or on particular issues, yet the voting patterns revealed are not

that surprising. With the party whips having such strong hold over the voting of MPs, any

rebellion would likely to already be known to them. High profile rebels may also promote

their stance by telling journalists and other MPs, making the results published largely known

beforehand.

2.2.1 Unwhipped Divisions

Divisions which are known to be free from the party whip are known asfree votes. Free

votes generally occur when voting on issues such as the running of parliament, issues of

individual conscience or when the whips are no longer able toenforce a party line. Free

votes allow an MP to vote independently and in line with how they truly believe. Although

informative, free votes are nowadays rare. They have, however, been subject to quantitative

analysis.

We look in particular at work which uses free votes to calculate cohesion of the parties.

Readet al. (1994) used free votes to look at how MPs from the three main parties voted on

the issues of homosexuality and capital punishment. The measure, for a single free vote is

defined by:

C ′
i =

V maj
i − V min

i

m
, (2.2.2)
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whereC ′
i is the cohesion for MPs in partyi andV maj

i andV min
i are the number of votes

which make up the majority and minority of the party respectively. By excluding non-

voters, we haveV maj
i + V min

i = m, allowing for the cohesion, or theIndex of Party Unity

(IPU) to range from 0 to 1.

Compared to (2.2.1), the IPU is the cohesion on a specific division, rather than a mean

cohesion over a session. The IPU does not include non-voters, so makes less assumptions

about the behaviour of those MPs, whereas (2.2.1) classifiesthem separately and allow for

the possibility forV maj
i,k to be the comprised of MPs who abstained. Thus, if we were to

consider a session with only one division (i.e n = 1 in (2.2.1)), and where all MPs voted

without abstention, we haveCi = C ′
i.

Cowley & Stewart (1997) used the IPU to calculate the cohesion of the main parties

when they voted in free votes between 1979 and 1996. They defined a cohesive party as

one which has an IPU of 0.80; a divided party to be one with an IPU of below 0.80 and a

party to be considered seriously split if their IPU falls below 0.33. The free votes which are

analysed are considered by the author to beconsciencevotes and they conclude that they

followedparty lines (i.e. each party behaves independently) and that it is rare for all parties,

within themselves, to be split on an issue.

Free votes, by their very nature are different to other divisions in the House of Com-

mons. Although they give MPs a chance to vote without the party whip, they are limited in

number and generally restricted in content. Furthermore, as previously stated, Cox (1987)

found that there was no observable trend of cohesion as the number of unwhipped divisions

rose. Cox also believed that even for unwhipped divisions, party pressures may still have

been present and affecting the cohesion (reasons for this are given by Cox (1987, page 25)).

The unknown element of unwhipped divisions leads the authorto concentrate only on those

division which were known to be whipped.

We discuss some further measure of cohesion, which were applied to non-UK legislators

in Section 3.1.1.
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2.3 Early Day Motions

Early Day Motions (EDMs) are spontaneous, unwhipped motions which MPs can table

and support free from the party pressures which are associated with divisions. Much of

the information about the history of Early Day Motions is detailed in the Parliamentary

Factsheet P3 (House of Commons Information Office (2003a)).Full details of the procedure

governing how an MP proposes, signs or amends an EDM are given, along with details of

types, signature levels and even the cost to the tax payer of printing and publishing EDMs.

Finer et al. (1961) briefly details the history of EDMs and discusses in more detail the

reasons for an MP to sign, or not to sign a given motion. Here, we review the history of

EDMs and theirunwhippednature in comparison to Divisions. Details of the procedure,

types of EDMs and reasons for MPs to sign them are further discussed in Chapter 3.

The current procedure for tabling an Early Day Motion has been in place since 1943,

although the idea of proposing a motion with no fixed date for debate started to evolve nearly

100 years before. Prior to this, there had been ample time forMembers to raise matters of

interest to the House in order for debate, usually by the member simply announcing that

they were to raise such a question. In the 1850s and 60s, at theend of a session, when it

was impossible to set a date for such a debate, the practice ofinforming Members that they

wished to raise such matters in the future developed. These had no fixed date, but would be

intended to be debated in the next session, or at an early opportunity.

By 1865, the daily Notice (or Order) Paper which Members received would commonly

have a separate section headed Notices of Motions. Some wereintended for debate, others

just an expression of opinion. At this time, other Members would submit the same motion

as a sign of support to the original. The process evolved so that a new name to a motion

did not warrant resubmitting the entire motion (although a new number was attached to the

name). By the 1940s, EDMs were sometimes seen to attract hundreds of signatures and for

ease of reference, the number was attributed to the motion, and not to the names of each

supporter.

The phrase “For An Early Day” was appended to such motions in the 1940s, with the

notion (or indeed fiction), that the motion was for serious debate at the earliest opportunity
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in the future. This was the origin of their modern name, whichbecame the name of the

section where they were printed in the Notice Paper.

The rise of popularity of EDMs stemmed from more time being taken up in House of

Commons by government. In the 1940s this was never moreso; the implications of war

meant that time for Private Members’ Motions and Bills was nolonger available. It was

around this time that the popularity of EDMs, as a means of expressing an opinion started

to soar. It is reported that in the 1950s there were approximately 100 EDMs each Session,

rising to about 400 in the 70s and 700 by the early 80s. The thousand mark was first broken

in 1983 and by the end of the century there were around 1400 persession. It is now common

to see in excess of 2000 EDMs tabled per session.

Unlike Divisions, EDMs areunwhipped, that is, there is no pressure put on an MP by

their party to submit or sign a given motion. EDMs are, in their very nature cheap-talk and

Finer et al. (1961) give reasons, (apart from actually agreeing or disagreeing) for why an

MP would choose to sign, or not to sign a given motion. This hasbeen the cause of much

criticism into the use of EDMs to gauge political opinion andis discussed in more detail in

Section 3.1.2

2.3.1 Early Day Motions as a Measure of Backbench Opinion

Backbench Opinion in the House of Commons 1955-59, by Fineret al. (1961) introduced

the idea of using EDMs to gauge the opinion of the backbenches. The follow-up study by

Berrington (1973), looks at the earlier period of 1945–55 and also utilises other information,

such as floor revolts, open letters and free votes. The vast majority of data and analysis still

come from EDMs and the other forms of backbench expression afford Berrington, where

appropriate, to confirm findings drawn from the EDMs.

The authors look at the two main political parties, Labour and Conservative to investi-

gate where Members stand on certain issues of the day, such asforeign affairs, social welfare

and penal reform. Information about MPs’ backgrounds were used to investigate such is-

sues, comparing views of the MPs to information such as theireducational background,

occupation before entering the Commons and whether they hadserved national duty. Finer

et al. (1961), and Berrington (1973), used cross-tabulations andGuttman scaling to test
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the significance of the variables and to look for a single dimension running through certain

EDMs (i.e., relationship between advocates of European Unity with those who agree with

the ‘wider’ concept of world federation).

Fineret al.(1961) also produced a list of the ‘50 most left Labour MPs’, which proved to

be a controversial element of the study. Critics viewed the list as almost absurd, with names

appearing who were clearly known to be be less ‘left’ than others not appearing on the list.

We detail the reviews which Berrington’s work received in Section 3.1.2, summarising both

the positive and negative feedback which the work provoked.

Following from the work by Berrington (1973), Franklin & Tappin (1977) further in-

vestigate the use of EDM as an unobtrusive measure of backbench opinion. The authors

consider some of the criticism which Fineret al. (1961) received and discuss the issues

surrounding the use of EDMs in such a study. The work uses answers from 72 MPs given

during an interview in 1964. A wide variety of questions wereasked, ranging from the

respondent’s backgrounds and attitudes to political life,as well as questions involving per-

tinent issues of that time. EDMs on the same subject, which were signed by the MPs in

question, were used to compare answers to signatures.

Given this information, the authors looked for similarities and differences between the

two expressions of opinion (interview and EDM response), and defined an error rate of

using EDMs to predict a Members opinion. This, they comment,“is surely a great deal

lower than would have been expected by those commentators who have criticized the use of

EDMs as indicators of opinion”.

The authors then consider how EDMs could be used to gauge the opinion of non-signers.

In doing so, they define two models which account for the way inwhich an EDM gains

support. The first model categorises EDMs which are readily signed by those MPs in favour

of the motion. An example given of such types of EDMs are thosecovering the topic of

nuclear disarmament. The second type of EDM defined in the study are those in which

the signatures appear to be gained more randomly. EDMs on thecommon market and

government control of the economy are given by the authors aslikely topics to attract such

random support. For such random signing topics, the authorsconclude that a larger number

of EDMs would be needed to judge the opinion of non-signers.
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Leece & Berrington (1977) used EDMs to study the Labour partyduring the 1968–69

parliamentary session. Similar to earlier work by Berrington, Guttman scales are used to

scale attitudes within the Labour Party. The authors are careful in choosing which EDMs to

analyse, and set out criteria for an EDM to be included in the study.

EDMs are considered in pairs. They either represented opposing views, or more com-

monly a more ‘extreme’ view along a scale (i.e. to see if thoseMPs who thought family

allowance should be 40 pence a week also agreed that 25 pence should be given). For each

pair of EDMs, an association table is produced to look at the numbers of MPs signing each

motion. The table is as follows:

EDM 1 signed EDM 1 not signed

EDM 2 signed a b

EDM 2 not signed c d

Wherea is the number of MPs who signed both EDMs 1 and 2,b is the number who

didn’t sign EDM 2 but did sign EDM 1 and so on. A similar tabulation is later used in

Section 3.1.3 to compare pairs of MPs based on the EDMs they signed.

Given this representation of two EDMS, they were both judgedsuitable for inclusion

into the study based upon two measurements: the Yule Q score,(ad − bc)/(ad + bc) and

the similarity ratio,a/(a+ b+ c). The former, which ranges from−1 to 1, is an association

measure between EDMs and measures how likely a supporter of an ‘extreme’ EDM will

sign the less extreme EDM (or indeed, if they sign neither). Ahigh value is obtained if

MPs consistently voted for or against a given viewpoint, soa andd would be large. This

indicates that the MPs are concordant. For a given EDM, if theYule’s Q score of those who

signed it was greater than 0.8, it was considered for the study.

The similarity ratio between EDMs based on their signature levels is based upon the

Jaccard measure of dissimilarity, as later defined in Section 3.1.3. It is measure of similarity

of EDMs, ranging from 0 to 1 which does not include MPs who signed neither EDM. The

higher the value, the more similar the EDMs are. If this is greater than 0.25 for a pair of

EDMs, then they were considered for the study.
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Out of those EDMs considered for the study based on the Yule’sQ and similarity scores,

those on a similar topic and which had similar numbers of signatures as others considered

were then actually included. This careful selection of EDMsallowed the authors to validate

scales with the voting pattern of MPs in the division lobbies. They found that the MPs

investigated had rebelled against the party via their voting behaviour on various occasions.

Similar to previous studies, biographic attributes were also investigated in relation to

the scales produced. Results included showed how trade-union sponsored members had

become more ‘left wing’ since 1959 (this was explained by howthe party was selecting

candidates, rather than the candidates themselves changing their views).

The increased use of computer power differentiates the workof Leece & Berrington

(1977) to earlier studies. They indicate using multidimensional scaling and cluster analysis

to group EDMs and that they perform their statistical calculations on computer. Scaling

solutions are used in Chapter 3 to show party structure, and in Chapter 4 as part of feature

selection of divisive issues between parties.

The only further publication using this original data set was Berrington (1982), who

looks in particular at how the ‘left’ of the Labour party has changed over the years, using

methodology introduced in previous work.

Nason (2001) examined EDMs from a modern standpoint, utilising advances in compu-

tational power to mine the data. The work is exploratory and the author admits that the focus

is on answering interesting questions, rather than on statistical significance of the results.

That said, the work is an insightful reintroduction to the use of EDMs along with mod-

ern statistical applications. Data visualisation software is used to display multidimensional

scaling plots over a moving time period, focusing on the interaction between the three main

parties. These plots are used, for example, to focus on the position of the Liberal Democrat

leaders, Charles Kennedy and his predecessor Paddy Ashdownand their relationship with

the Labour Party. Also shown are how classification trees canbe used to classify MPs (or

would-be voters) into a political party, given their signing (or non signing) of given EDMs.

The most recent published work using EDMs is that by Childs & Withey (2004) which

studies the differences in signing patterns between the sexes and whether women are more

likely to sign ‘women’s’ EDMs. The authors use chi-squared tests on the response of MPs
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to either ‘sign’ or ‘not sign’ and conclude that female MPs did indeed act for women, by

signing for women.

2.4 The OC and NOMINATE Procedures

We end this chapter with a review of some of the most recent techniques of modelling parlia-

mentary voting, in terms of spatial positions of legislators, called the OC and NOMINATE

procedures.

Poole (2005) describes both the non-parametric optimal classification (OC) method

for spatial modelling of legislators in parliament and an approach to parametric classi-

fication which is dubbed the NOMINATE procedure (NOMINAl Three-StepEstimation).

Other models based on the same approach are also described (namely the D-, W- and DW-

NOMINATE procedures). This work brings together a multitude of research papers, as well

as building on the framework set out by Poole & Rosenthal (1997).

Both the OC and NOMINATE algorithms analyse parliamentary data, from which it is

inferred that such data is the outcome of a set of legislatorsvoting either Yea or Nay on

a given number of roll calls. An error is introduced into a legislators choice by using a

random utility model, which assumes that their utility for a Yea or Nay vote is the sum of a

deterministic utility function and a random error. Legislator i’s utility for the Yea outcome

(denoted byy) on roll call j is given as:

Uijy = uijy + εijy, (2.4.3)

whereuijy is the deterministic portion of the utility function andεijy is the random portion.

If there were no error, the legislator votes Yea ifUijy > Uijn, i.e. if the difference

Uijy − Uijn is positive. With random error, this difference is given by,

Uijy − Uijn = uijy − uijn + εijy − εijn,
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so the legislator votes Yea if,

uijy − uijn > εijy − εijn.

The OC method only assumes that legislators havesymmetric single-peakedutility func-

tions. That is, if a legislator ideally votes on the ‘centre’ground, they are equally likely (with

probability defined by the utility function) to vote in favour of roll calls which are the same

distanceeitherleft or right of their ideal spatial (central) position.

With no error present, a spatial map of the legislators can beobtained simply by using

multidimensional scaling.

When error is introduced into the decision making of the legislators, this scaling solution

is only one of many possible representations. Therefore thescaling solution may not be the

best set of coordinates to represent the data, and the OC method is developed to tackle this

problem.

Given an initial set of spatial coordinates (orideal points) of the legislators (given their

votes on the roll calls), the OC method first finds acutting pointor planefor each roll call.

The cutting points or planes split the ideal points of the legislators with Yea votes on one

side and Nay on the other. Given the known voting patterns of the legislators and their fixed

ideal points, the cutting plane is such that the number of erroneously classified legislators is

a minimum.

The second step is to estimate new ideal points of the legislators given the cutting point

(or plane). That is, given that the cutting plane remains fixed, new spatial coordinates of the

legislators are found to further reduce error of classification. This process is repeated until

convergence of cutting planes and ideal points. The OC method therefore assumes there is

error present, but does not attempt to model it.

The NOMINATE procedures considers the distribution of the utility function in (2.4.3)

and attempts to estimate the functional form of both the deterministic portion,uijy and the

random (or stochastic) portionεijy.

The deterministic part of the utility function is assumed tofollows a Gaussian distri-

bution, although Poole (2005) also derives models for the simpler case of it following a
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quadratic distribution. The random part of the utility function is also assumed to follow a

Gaussian distribution, although two other models, the uniform and the logit have also been

used (and are fully referenced by Poole (2005)).

Given the distributional assumptions, the distribution ofthe difference between the util-

ity for Yea and the utility for Nay for theith legislator on thejth roll call is derived and

shown to be Gaussian with constant variance, given by,

Uijy − Uijn ∼ N(uijy − uijn, σ
2).

The NOMINATE procedure works as follows. Firstly, a reasonable set of ideal points are

generated with which an initial set of roll call parameters (which determine the position

of cutting plane) are found,given the ideal points. Next,givenestimates of the roll call

parameters, better estimates of the ideal points are found.The third set of parameters to be

found are the utility function parameters, which are estimatedgivenboth the legislator ideal

points and the roll call outcome points. Estimation of the three sets of parameters are cycled

through until convergence.

These two methods can be thought of doing the following. Say we have coordinates to

represent MPs (i.e. the scaling solution) over a range of issues and for a given issue, we

wish to draw a line to separate those who were for or against the issue. We can then see

which MPs have been erroneously classified on either side of the line (and possibly subject

those MPs to further scrutiny). There is a question, however, that if given another vote

on the same set of issues, would the MPs vote the same way as previously? If not, their

position in the scaling solution and the cutting plane couldchange. The error term accounts

for this by allowing small ‘movements’ of the MP positions onthe scaling solution. This

may be such that they change sides of the cutting line. The process is repeated to minimise

the number erroneously classified.

We consider the use of these procedures in relation to EDMs and detail why they are not

directly suitable, or usefully adaptable to use in the British political system in Section 3.3.

Techniques involving the notion of categorising MPs into parties, and using the number

of erroneously classified within an optimising criteria is developed in Chapter 4.
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Chapter 3

Cohesion of Major Political Parties

3.1 Introduction

Cohesion of political parties or groups of legislators is ofkey interest to political analysts

and commentators. These measures have been largely used to investigate legislators in

the US Congress and Senate, and more recently have been developed for use within the

European Parliament (EP). The application of such measuresto political parties in the UK

is limited due to the strong political pressures which are put on Members of Parliament

(MPs) to vote according to their party line. Evenfree votes(where MPs vote according to

their true beliefs) are not without their critics. In this chapter, which is based on the paper

by Bailey & Nason (2008), we revisit the idea of using Early Day Motions as a measure of

backbench opinion and review the criticism to which they have been subjected to in the past.

We argue that although there is a degree of ‘uncertainty’ in the reason for an individual’s

signature of an EDM, the effect of this in the analysis of EDMsdiminishes as the number

of motions studied increases.

We develop a cohesion measure based on theasymmetricsigning of EDMs and use

this to investigate the cohesion of major political partiesin the UK. Finally, we use modern

statistical techniques and utilise computational power toinvestigate the issues which are

associated with cohesion and separation within political parties, via an exploratory method

which highlights the modern statistical method of ‘data-mining’.
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3.1.1 Measures of Cohesion

The vast literature on party cohesion and discipline mostlyinvolves analysis of roll calls in

the US House of Congress. The work is extensive, and we directthe reader to the com-

prehensive overview of the literature by Owens (2003) and the more recent book by Hazan

(2005) (in which the Owens article forms a chapter). We give abrief review of some cohe-

sion measures in the literature (in particular those not covered by Owens (2003), or detailed

in Chapter 2), and focus on attempts to calculate the cohesion of political parties in the UK.

A much used cohesion measure is introduced by Rice (1928). This index of voting

likenesswithin a political party is defined as

100
n∑

j=1

∣∣∣∣
NYeasj − NNaysj

NYeasj + NNaysj

∣∣∣∣ , (3.1.1)

whereNYeasj is the number of voters in a given party who voteYeaon votej andNNaysj

the number of those votingNay. An index of voting likeness of 1 indicates that all votes

within a party voted the same way across alln votes. A value of 0 indicates that the party

was split, over all votes, with half votingYeaand the other half votingNay.

Many measures are similar to, or based upon Rice’s measure, such as theAgreement

Index(AI) by Hix et al. (2005) which further makes allowance for the legislator to abstain

from a vote. This is a rescaling of theIndex of agreementby Attiná (1990), such that

cohesion values range from 0 to 1. As with the work by Attiná,the cohesion measure is

used to investigate the European Parliament.

Rahat (2007) defines a cohesion measure also based on Rice’s but which treats an ab-

stention as a ‘halfway’ vote between Yes or No. Furthermore,the measure only includes

the number of abstentions in the numerator of the cohesion measure if this was the majority

vote. The measure is thus defined by two formulas; the first when the majority of a party

votes for or against a bill, the second when the majority abstains. These two measures are

defined respectively as:

|NY easj −NNaysj|
N

and
NAbsj

N
,
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where the notation is the same as Rice’s measure in (3.1.1) and whereNAbsj is the num-

ber of voters abstaining andN is the total number of votes (including abstentions). This

measure is used to analyse the cohesion of the Israeli Parliament.

There have been many attempts to calculate cohesion scores for members of parliament

(MPs) in the UK House of Commons. The difference with MPs compared to their Amer-

ican counterparts is the party discipline exerted by theparty whipsto force them to vote

according to the party line. This was not always the case, as we described in Section 2.2

Unwhipped divisions, also known asfree votes, have been of some interest to political

researchers. They allow an MP to vote independently (usually on issues concerning the

running of parliament or issues of individual conscience),but although informative, are

nowadays rare. Section 2.2.1 gives more details on these divisions, as well as cohesion

measures used to analyse them.

Is it possible to gauge cohesion levels in the House of Commons? Free votes do not

have the problems associated with theirwhippedcounterparts, but their number and subject

matters are both limited. Furthermore Cox (1987, page 25), felt that although unwhipped,

party pressures were still evident in these divisions. For other divisions, cohesion levels

merely inform us as to how well the party whips are doing theirjob. Low cohesion may sig-

nify unrest within the party, but this would already be knownby the party whips. We instead

reopen the case for using Early Day Motions (EDMs) as a sourceof information on back-

bench opinion: a much used device by MPs that allow them spontaneous and unwhipped

opinions on a variety of subject matters.

Section 2.3 introduced EDMs and their historical context. We next give further infor-

mation about EDMs and consider the criticism which has been levelled at them in the past,

in reference to the works by Fineret al. (1961) and Berrington (1973).

3.1.2 Early Day Motions

An Early Day Motion (EDM) is traditionally a motion put down by a Member of Parliament

(MP) calling for a debate on a particular subject. The numberof EDMs has increased in

recent years, however, they are rarely debated (see Appendix A.1.1 for an example of a

debated EDM and Appendix A.1.2 for a recent EDM). The modern-day purpose of EDMs
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is to allow MPs to express their opinion on a subject and to canvass support for their views

by inviting other members to add their signatures in supportof the motion.

An EDM takes the form of a single sentence, no more that 250 words long and be-

ginning “That this house...” as it must be of the form of a resolution (House of Commons

Information Office, 2003a). EDMs are submitted to the House by an MP on a specially

printed form with space for six main sponsors and 50 further names. Any MP can initiate

an EDM, although Ministers, whips, the speaker and deputiesgenerally do not. Recall that

unlike most votes in the House of Commons, EDMs are unwhipped; that is, there is no

pressure put on an MPby their partyto sign it. EDMs could therefore be viewed as useful

by political researchers as they give an objective indication of what that MP truly believes.

EDMs fall into several groups. Opposition EDMs are put down by the opposition

against a government policy, Rebellion EDMs may be put down by members of a party

which express a view different from that of the party concerned, and “all-party” EDMs

express views across party divides (often on social issues which have been promoted by

one party but attract signatures from MPs of different political allegiance). Factsheet P3,

House of Commons Information Office (2003a), gives more detail on these types of EDMs

and gives examples of EDMs which may not fall into such groups(for example, an EDM

criticising another Member of the House, or the House of Lords).

An EDM will remain current throughout the entire parliamentary session. An amend-

ment EDM can be made by a different MP other than the initiatorof the original. Amend-

ments can be made at any time during the session, and can either oppose or strengthen the

view offered by the original EDM. If an MP wishes to table an amendment for an EDM

which they have already signed, they must first withdraw their name from the main motion.

The first major works involving the statistical explorationof EDMs was by Fineret al.

(1961) and Berrington (1973). The original work attracted much attention due to its provoca-

tive aims of using EDMs to gauge backbench opinion in the House of Commons. Initial

reviews of the work, as gauged by both Bromhead (1962) and Lloyd (1977), were written

by journalists and journalistically inclined politicians. Three such reviews were those by

Crossman (1961), Fellows (1962) and Howard (1962), whose hostile reactions left a stain

on the work. In reply to these critics, Berrington (1973) devoted the entire first chapter of
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the second book on this subject to a defence of the work.

The majority of reviews published in peer reviewed journalswere more positive. None

completely dismiss the issues which arise with the collecting of signatures of EDMs and

thus their cheap-talk nature, but as both Bromhead (1962) and Richards (1962) comment,

the authors “fully recognise the issues which arise” and they concur that the cheap-talk na-

ture does not rule out EDMs as an important source of information. This view is neatly

summarised by Turner (1963), who believes that “some of the patterns that emerge stand

out too clearly to be ignored”. These patterns, including the strong party structure shown by

Nason (2001), indicate the irrefutable wealth of information this data contains. Although

a single EDM may be cheap-talk, it is certainly the case that several thousand EDMs col-

lectively contain important and discoverable information. In the most recent review of

Berrington’s work, McLean (1995) discusses the contribution made to political analysis

over Berrington’s career. Work of a similar nature is explored, as well as how the work and

ideas inBackbench Opinionwere derived. The article discusses the hostility of the initial

reviews toward the work and Berrington’s reaction to them. Also McLean (1995) noted that

the battles that Berrington had fought over the use of statistical methodology had now been

won and that opportunities now exist to do far more with his data than was easily possible

in the 1960s and 1970s.

As mentioned in Section 2.3.1, Fineret al. (1961) comments on possible reasons for

MPs not to sign EDMs. These reasons include how the original sponsor collects signatures,

as an EDM with an active ‘business-like’ sponsor who asks MPsfor their signatures is

more likely to receive a large number of signatures. That said, the sponsor may be after the

signature of certain, influential MPs, rather than a large number. Furthermore, some MPs

will be of the type who sign few, or no EDMs. With the current trend in numbers of EDMs

per session and the time an MP has to read them all, this latterreason is still pertinent.

The cheap-talk nature of EDMs was the main cause of concern for reviewers who ques-

tioned their validity to reveal information about the British political system. It is true that

there are many factors which influence whether an MP will showsupport for a particular

motion and, as McLean (1995) comments, these factors may indeed be frivolous. They may

not, however, be clear. As an example, consider a motion which congratulates a particular
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football team’s success. This seeminglycross-partyEDM could be called to question be-

cause an MP whose constituency forms the fan base of a rival team may not sign it to avoid

increasing sporting tensions and, in some cases, sectarianviolence. This, however, is not

always the case; MPs may sign or propose such congratulatorymotions as a statement to

show that the rivalry should remain only on the football pitch (this can be seen in EDMs

signed by the Everton MP, Louise Ellman, following Liverpool Football Club’s success in

the 2005 Champions League finals). We use this example to demonstrate the complexity of

EDMs and to highlight that perceived reasons for signing maybe wrong and indeed oppo-

site to the perceived truth. There are many reasons for MPs tosign a particular motion, but

it is not valid to dismiss their content entirely.

The non-signing of EDMs may be as frivolous as the signing of them. As discussed

in Section 2.3, there are many reasons for an MP to sign (or notsign) an EDM. If an MP

has signed a particular EDM, it is reasonable to assume that they are committed to that

point of view. The absence of a signature on an EDM does not, however, imply that a

given MP disagrees with that EDM. As Fineret al. (1961) point out, reasons for this may

be that the MP was not canvassed for their signature (if they do not usually sign EDMs at

will), or indeed that the MP may not sign any EDMs regardless of opinion. Fineret al.

(1961) test whether certain type-classes of MPs (for example, with particular educational

or occupational backgrounds) are more likely to sign particular types of EDMs, rather than

the process being at random. Assuming this random signing pattern, the authors calculate

the distribution of signatures (and non-signatures) of MPsof different type-classes across

the EDMs. These expected frequencies were then compared to the observed frequencies

and the chi-squared test was used to establish statistical significance of the signing patterns.

The authors report a significant, and in some cases highly significant association between

the substance of the Motion and the type-class of MP signing it and conclude that a lack of

signature is not (statistically) due to the canvassing of that particular EDM.

We do not delve into type-classes for this study. As our work uses dissimilarity measures

between MPs, we instead ensure that MPs who do not sign any EDMs are not included in

the study. For other patterns of signing, we ensure that MPs are not compared on EDMs

which neithersign.
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We further consider the cheap-talk nature of the signing of EDMs by viewing it as

addingnoiseto the data. If this ‘noise’ has a large effect, we would not expect there to be

strong party structure within the data. To briefly illustrate the party structure, we perform

classical multidimensional scaling on a dissimilarity matrix of MPs for EDMs tabled during

the 2005/06 parliamentary session (details of methods are found in Chatfield & Collins

(1996) and in Section 3.1.3 of this chapter). Figure 3.1 shows the first two dimensions of

the scaling solution, wherein we see the strong grouping which exists within the data. The

first dimension appears to somewhat split the Conservativesfrom the other parties whilst

Labour and the Liberal Democrats are similar yet still distinct. Other minority parties have

more in common with the Liberal Democrats than either of the other two main parties.

Investigating higher dimensions of the scaling solution further supports our findings that

political parties are split. The plot in Figure 3.1 shows strong structure within the data;

MPs are not forced to sign motions along party lines but nevertheless often do so (note that

we discuss the ‘horseshoe’ effect within this plot in Section 4.2). Within the vast amount

of data on EDMs there is definitely useful information to be found; modern statistics and

computational power can assist the process of discovery. Although one signature on an

EDM may be cheap-talk, hundreds of signatures on thousands of EDMs constitute a rich

body of information.

3.1.3 Obtaining and Analysing EDM Data

All EDMs signed since the start of the 1989/90 parliamentarysession, including amend-

ments can be found on the EDM websitewww.edm.ais.co.uk. The site contains in-

formation on all EDMs proposed including their content, date tabled and their supporters.

Unfortunately, the list of names of signers for EDMS between1989–1992 are incomplete

and thus not used for analysis within this thesis.

Having downloaded the relevant web pages, the data is converted into matrix form, with

columns and rows representing each EDM (by number) and MP names respectively (see

Appendix A.2 for details of downloading and conversion of data). Data on MPs signing

EDMs from each parliamentary session are stored inn× p matrices, with binary entries:
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Figure 3.1: Classical multidimensional scaling solution of 05/06 EDM data. L = Labour, C
= Conservative, D = Liberal Democrat, M = other Minority parties.

mij =





1, if MP i signed EDMj for i = 1, . . . , n; j = 1, . . . , p.

0, otherwise,
(3.1.2)

Table 3.1 shows the top left of such a matrix. We have producedseveral such matrices, one

for each session from 1992 to 2005 which can be found on the website

www.maths.bris.ac.uk/∼db0797/Research.html.

Nason (2001) investigated the relationship between MPs andbetween political parties

by defining a dissimilarity coefficient between pairs of MPs.The Jaccard coefficient of dis-

similarity was used (see Chatfield & Collins (1996, page 195)) as it reflects the important

feature of EDMs of having to ‘opt-in’ to agree with the motion. Failure to sign does not

necessarily indicate disagreement with that motion (Fineret al.(1961, pages 9–10), discuss

many reasons for the varying levels of signatures that an EDMreceives). We modify this

measure to create a separate dissimilarity coefficient for each EDM type. Our dissimilarity

coefficient between MPs (i,j), denoted byDij will then be a weighted average of the respec-
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EDM number
MP names 1 2 3 4 5 6 7 8 . . .

Abbott/Diane 1 0 0 0 0 0 0 0 . . .
Afriyie/Adam 0 0 1 0 0 0 0 1 . . .
Ainsworth/Bob 0 0 0 0 0 0 0 0 . . .
Ainsworth/Peter 0 0 0 0 0 0 0 1 . . .
Alexander/Danny 1 0 0 1 1 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.1: Top left of data matrix for 2005/6 session

tive EDM type distances (see Friedman & Meulman (2004)). Ourmeasure, which we call a

weighted average Jaccard coefficient is defined as follows.

Let each MPi be categorised byN EDMs, (xi = xi1, xi2, . . . , xik, . . . , xiN ). The

EDMs are classified intoT different types with the weight of each EDM type being de-

noted byw = {wk}T
1 . We define the Jaccard coefficient between any pair of MPs on EDMs

of typek as follows: given two MPs letak be the number of EDMs of typek thatbothMPs

sign and definebk, ck andek according to the following table:

MP1 signs MP1 doesn’t sign

MP2 signs ak bk

MP2 doesn’t sign ck ek

The Jaccard coefficientdijk = (bk + ck)/(ak + bk + ck) is then used to measure the

dissimilarity between MPsi andj for EDMs of typek.

The dissimilarity coefficient between MPsi andj over allT types of EDMs is denoted

by Dij and defined as the sum of the product of the Jaccard dissimilarity coefficients for

each EDM type, and its weighted average:

Dij =

T∑

k=1

wkdijk, (3.1.3)

with

{wk ≥ 0} and
T∑

k=1

wk = 1,
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for EDMs of typek : 1 . . . T .

Hence a dissimilarity matrix derived from the EDM data is obtained, with entryDij

representing the dissimilarity between MPi and MPj, based upon their averaged weighted

dissimilarity over each EDM type.

We next consider a party of MPs of sizen. The overall level of similarity, or cohesion

for those MPs can be calculated by first defining the mean dissimilarity that MPi has with

all other MPs in the party:

Mi =
1

n− 1

∑

j∈{1,...,n}\{i}

Dij . (3.1.4)

The mean dissimilarity of all MPs with each other, within theparty, can then be calcu-

lated by further taking the mean of theMi’s over alln MPs:

M =
1

n

n∑

i=1

Mi and let Ĉ = 1 −M. (3.1.5)

The quantityM in equation (3.1.5) is a measure of overall separation. We therefore de-

fine Ĉ as the cohesion measure, which takes values between0 and1, the larger the number,

the stronger the coherence between MPs within that party.

Note that MPs who did not sign any EDMs over each period of interest were not in-

cluded in these calculations as, by definition, they would have perfect dissimilarity with all

other MPs who signed at least one EDM (and have an undefined dissimilarity coefficient

with other non-signing MPs). We also do not remove any EDMs which may be considered

by some as irrelevant, for example sporting EDMs. There are many reasons for this which

we touched upon toward the end of Section 3.1.3. It is the wealth of subject matter, and vast

number of EDMs, which reduces the impact of the cheap-talk nature of individual EDMs.

We direct the reader ahead to table 3.4, which shows the number of EDMs of different types

for each session of the previous Parliament. This shows the vast number of different types of

EDMs which make up the dataset and how they are split into differenttypes. For a so-called

‘irrelevant’ type of EDM to be tabled numerous times within a100 EDM time window and

for it to have a large effect on cohesion, it is very unlikely to have be irrelevant in the first
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place.

3.2 Cohesion of Political Parties

The overall cohesion measure for each of the three main political parties and all parties

combined (from the 1992 parliamentary session to date) is shown in Figure 3.2. Note that

a parliamentary session (the time between state opening anddissolution) commonly covers

an entire year, starting around November, with many short recesses during the year and a

longer summer recess around late July. A short session, caused by an early dissolution for

a general election is common (as with the May 2005 election) and is often followed by a

longer than usual session (such as the 2005/06 session). Other general elections during the

time period of our data are April 1992, May 1997 and June 2001.

We use the dissimilarity measure from equation (3.1.3) withall EDMs but withk = 1

(i.e. all EDMs are the same type). This is the standard Jaccard coefficient of dissimilarity

of the coefficient). From the plot, we can see that the LiberalDemocrats are more cohe-

sive overall than the other two parties. This might be expected: with far fewer MPs it is

much easier for them to agree with each other (we discuss thisin more detail later). The

Conservative and Labour parties have more comparable cohesion measures and which of

the two is more cohesive alternates throughout the study period. From the closely fought

general election of 1992, both party’s cohesion levels havefluctuated. Generally Labour

have decreased in annual cohesiveness whilst the Conservatives have increased. Both show

variation in cohesion levels during Labour’s first term following the 1997 election victory.

The cohesiveness measure gives a static feel of the situation for each parliamentary

year in its entirety. To see how this measure changes throughout a session, we look at

the cohesion averaged over a moving ‘time window’ of EDM’s. For example we calculate

cohesion for EDMs1 − 100, 2 − 101 and so on over the entire session. This idea was used

by Cromwell (1982) to analyse MP behaviour on division listsover a period of time.

As EDMs remain open over the whole of the parliamentary session, the use of a moving

time window may seem inappropriate. A time window of EDMs during the beginning of

the session may contain signatures which were only been placed during the last day of the
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Figure 3.2: Annual coherence of main political parties: L = Labour; C = Conservative; D =
Liberal Democrat;• = All parties (*up to 25/7/06).

session. This occurrence, however, is seldom seen and most EDMs receive the majority of

their signature over the first few weeks of them being tabled.Using a large enough time

window (of 100 EDMs) ensures the effect of any ‘slow’ EDM is small and considering time

periods in months, rather than weeks or days will insure thatany misrepresentation of the

data is at a minimum. Some information will inevitably be analysed as ‘belonging’ to a

different time period but this will have minimal effect on our findings.

As well as the size of the time window, or bandwidth, we can also adjust the overlap

between consecutive windows. This step size is the number ofEDMs we ‘step over’ each

time to get to our next time window. We focus on the 2005/06 session. The moving cohesion

plots with a time window of 100 EDMs can be seen in Figure 3.3 and are discussed in

Section 3.2.3.

We present each party on separate axes for clarity. This alsoallows the reader to com-

pare thetrendof the cohesion rather than the actual value. This is desireddue to the possi-

bility of the coherence value being affected by party size. We investigated the relationship

between the cohesion of a party and the number of EDMs they signed for each time window
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Labour (264) Conservative (195) Liberal Democrat (63)
Mean S.E. Mean S.E. Mean S.E.

NMP/5 0.094 0.010 0.115 0.015 0.200 0.020
2NMP/5 0.093 0.007 0.118 0.010 0.197 0.011
3NMP/5 0.095 0.004 0.117 0.007 0.199 0.016
4NMP/5 0.094 0.003 0.117 0.004 0.199 0.004

Table 3.2: Mean and standard error (S.E.) of cohesion of 100 random samples from main
political parties(NMP in brackets). The mean propensity to sign remains constant (to 2
decimal places) over all sample sizes for each of the parties(Labour = 0.10, Conservatives
= 0.06 and Liberal Democrat = 0.16).

(the number signed is a proxy for both the party size and propensity to sign). The Labour

party had a weak correlation of 0.1 but there appeared to be evidence of slight positive cor-

relation for the Conservatives (0.25) and a stronger relationship for the Liberal Democrats

(0.4). For this parliamentary session, the number of (actively signing) members in a party

appears to increase the chance of correlation between the party size and cohesion levels.

We must therefore ensure that any analysis of cohesion levels between parties takes into

account this possible underlying structure. We achieve this by developingcalibration levels

in order to gauge if a party’s cohesion is higher or lower thanmay otherwise be expected.

3.2.1 Simple Random Sampling of MPs

We briefly investigate how the cohesion of each of the political parties is related to the num-

ber of MPs within that part which the measure is based upon. For each of the three political

parties, of sizeNMP we randomly sample⌊n⌋ MPs, wheren = NMP
5 , 2NMP

5 , 3NMP
5 , 4NMP

5

(where⌊n⌋ is the largest integer less than or equal ton). We then calculate the cohesion

(3.1.5) of thesen MPs, given their support of EDMs. For each value ofn, we take 100 dif-

ferent random samples from the data and calculate the mean cohesion and standard errors

as given in table 3.2. For each party, the cohesion remains almost constant (to 2 decimal

places) over all sample sizes. We also note that the mean propensity to sign (Number of

Signatures / (Number of MPs× Number of EDMs) also remains constant for each party, no

matter the sample size.

We next turn our attention to the effect that party size and propensity to sign EDMs has

on the cohesion measure. We test these by simulating a time window of 100 EDMs. Let
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Figure 3.3: Cohesion of main political parties with a movingtime window ofbandwidth
100 andstep size1, during the 2005/06 session (up to summer recess 25/7/06).Month on
top axis taken from ‘middle’ EDM in time window. Horizontal dashed lines represent the
signature based simulated cohesion level, as described in Section 3.2.2, vertical dashed line
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Figure 3.4: Contour plot of mean cohesion measure of simulated incidence matrices.

mij, represent whether MPi signs EDMj as defined in (3.1.2). We modelmij by:

mij ∼ Bernoulli(p), (3.2.6)

wherep is the propensity for MPs to sign EDMs. Settingp equal to0.5 implies that each

EDM has an equal chance of being signed or not by a given MP and would thus be expected

to gain support from roughly half of the MPs.

For this study we setj = 1, . . . , 100 andi = 1, . . . , NMP whereNMP ranges from 20

to 400 to represent different party sizes. For each of these party sizes, we allow a different

propensity to sign,p, ranging from 0.01 to 0.1 (these cover the range of propensities which

we later report for the main political parties). For each combination of propensity to sign

and number of MPs, we create 100 simulated incidence matrices and take the mean of the

cohesion measure from (3.1.5). A contour plot of the mean cohesion measures is given in

figure 3.4. We clearly observe that the (mean) cohesion depends on the propensity to sign,

and not the number of MPs within the party.

We further note that as the propensity to sign increases, thecohesion quickly decreases
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before slowly increasing. An example of this for the simulated study with 100 MPs is shown

in figure 3.5. We leave further investigations of the relationship between propensity to sign

and cohesion measure as future work.

This small study indicates that the propensity to sign, rather than the number of MPs

within a party which effects the cohesion measure. Our simulation did not, however, take

into account the way EDMs attract signatures: most receive few signatures and only some

attract large support. We thus create a simulated cohesion measure to be able to compare the

observed cohesion with a ‘random’ cohesion, which takes into account propensity to sign,

but also the popularity of certain EDMs. We start with a simple Bernoulli model, similar to

that in the above simulation study to motivate the need for further complexity.

3.2.2 Simulated Cohesion Levels

Cohesion levels are derived from the opinions of MPs and are not signed at random. To

attempt to calibrate our measures we wish to simulate the signing of EDMs to replicate

our data set but with the addition of the MPs signing EDMs at random. We simulate these
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incidence matrices (as in table 3.1) by developing simple stochastic models of the rate at

which EDMs are signed by MPs. We can then calculate coherenceon these simulated

matrices using our cohesion measure.

Our simulated models must take into account that each of the political parties have a

different propensity to sign EDMs. To more accurately modelthe way in which each EDM

attract signatures, we also wish to factor in that differentEDMs receive differing levels of

support. We next define our model, starting with the most simple Bernoulli model and then

factoring in the above properties which we wish to account for.

Letmij, represent whether MPi signs EDMj as defined in (3.1.2) and recalled above

in (3.2.6). We estimate the value ofp from our data, for each political party.

Definep, the propensity to sign, as Number of Signatures / (Number ofMPs× Number

of EDMs) — the ‘mean’ of the incidence matrix. We calculatep from the 2005/06 data set

as 0.05 for both Labour and Liberal Democrat, and 0.03 for Conservative (similar to the

proportions calculated for the 1997–2000 data set by Nason (2001)).

Table 3.3 shows the simulated cohesion levels for each partyusing this model with a

time window of 100 EDMs. When compared with true cohesion levels, it is clear that this

model produces cohesion levels lower than observed. Moreover, from experimentation, the

resulting cohesion level from the simulated model does not depend that greatly on the size

of the time window or the number of MPs within the party being modelled. The model also

assumes that each EDM is identical in the level of support it attracts from MPs. This can be

shown to be untrue, simply from observing the range and distribution of the total number of

signatures per EDM over the session.

Signature-based model.We fit a new model which uses bootstrap resampling (Davison

& Hinkley, 1997) which will more accurately model how many signatures each EDM re-

ceives but is tailored around each political party. The model, based on a time window of

100 EDMs, works as follows:

Let Yg be the number of signatures EDMg receives from MPs in a particular party, for

g = 1, . . . , NEDM andNEDM the number of EDMs in the data set. Take a random sample,

with replacement, of size 100 from theYg to represent our time window of EDMs. Denote

the elements of this sample byXj , with j = 1, . . . , 100.
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We want theXj to influence the level of signatures our simulated EDMs receive. For

eachXj , define a corresponding probabilitypj by:

pj =
Xj

NMP
, for j = 1, . . . , 100 EDMS,

whereNMP is the number of MPs in our data set. Thuspj ∈ [0, 1], with the extreme values

being met when none or all of the party sign EDMj.

Definemij as in equation (3.1.2), and modelmij by:

mij ∼ Bernoulli(pj),

to obtain a simulated data matrix.

Calculate the (unweighted) cohesion of the simulated data matrix using equation (3.1.5)

and denote byCB, for B = 1, 2, . . . , n. Repeating the entire process, we then define the

simulated cohesion level by:

CSIM =
1

n

n∑

B=1

CB .

For results shown here, we usedn = 10, 000.

Table 3.3 shows the cohesion levels calculated using this ‘signature based’ model. The

cohesion values are much more realistic compared to the simpler model, accounting for

features within the data more accurately and therefore suitable as a ‘calibration’ level.

Party
Method Labour Conservative Liberal Democrats

Simple Bernoulli model 0.05 0.05 0.03
‘Signature’ based model 0.10 0.11 0.17

Table 3.3: Simulated cohesion levels for time window of 100 EDMs

A wide variety of other models could be used in the calibration of cohesion levels. A

simplistic model would be to use the mean of the cohesion calculated over the session. This

however would give a calibration level closely related to the actual cohesion and without

the element of ‘random signing’ of EDMs by MPs.

The ‘signature’ based model used repeated simulations to get an overall cohesion level

for the entire session. It is feasible that during differentperiods, for example before and after
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a parliamentary recess, the cohesion level is affected. A model could be used which sampled

EDM signature levels by recent trends or by analysis of previous sessions. Development of

these time-varying cohesion calibrations are left as future work.

3.2.3 05/06 Session Interpretation

Figure 3.3 shows the cohesion plots for the three main parties for the 2005/06 session, which

started after the general election on May 5. The plots use a bandwidth of 100 EDMs and

a step size of one. The three parties are shown along with horizontal lines representing the

‘signature’ based cohesion calibration levels. We use thiscalibration level as an indication

of whether the party has more or less cohesion than if they were signing EDMs at random

(but taking into account number of signatures varying over EDMs).

The plots show changing cohesion within the parties over time. Overall, the cohesion of

the Liberal Democrat party is far more variable than Labour or Conservative, intuitively due

to the far fewer MPs in the party making the cohesion level more sensitive to differences

in opinion. As we do not know the exact relationship between party size and cohesion

for all the parties, we only compare cohesion between parties in terms oftrend rather than

actual cohesion level and also take care to ensure that any fluctuations in cohesion due to

EDMs receiving very few signatures is reported. Finally, wecompare cohesion to that of

the simulated level.

All three parties at the start of the session show a level of similarity in trend, increasing

and decreasing cohesion at similar times. This trend stops shortly after the summer break

(vertical line), and by the end of October all three parties appear to behave independently

Conservatives: Comparing cohesion levels to that of the calibration level, the Con-

servatives, unlike the other parties, are mostly above whatwould be expected if signing

randomly (or rather with our ‘signature’ based model). The middle plot of Figure 3.3 shows

that in late November the cohesion of the Conservative partyappears to slump and then

suddenly rises. Following the general election in May that year, Michael Howard resigned

as party leader but did not step down immediately. The leadership campaign lasted all

of November and continued into December, with David Cameronwinning the leadership

election on the 6th of December (see White (2005)).
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A further low in the cohesion of the Conservatives can be seenduring late March. This

was an eventful period in politics. The new leader was starting to show the direction the

party was heading in and a controversial education bill was narrowly passed with Conser-

vative support.

A further significant period of the cohesion plot where the cohesion of the Conservatives

is less than our ‘signature’ based model is during July 2005 and corresponds to a period in

which there is a local minimum in the number of EDMs the Conservatives were signing. We

believe this to be the reason although we have not found any other apparent link between

cohesion and number of signatures at other periods during the session. We discuss this

variation in the number of signatures briefly in the next section.

Liberal Democrats: The lower cohesion plot in Figure 3.3 also reflects interesting

variability within the Liberal Democrat party during this session. From February onwards it

remains at a low level compared to earlier in the session. Following what many considered

to be a disappointing General Election result, and despite gaining seats, the leadership came

under a lot of pressure. Activists felt the party had not taken advantage of a weakening

government and opposition and criticised the leader, Charles Kennedy, for his policies and

election campaign. It was also known within the party that hewas battling with alcoholism

(see Hurst (2006, Chapters 1 and 10)). After a period of intense pressure by high profile

party members, Charles Kennedy admitted having a problem with alcohol and resigned as

party leader on 9th of January (see Hurst (2006, page 23)). Comparing to simulated cohe-

sion levels, the Liberal Democrats fluctuated above and below and more recently remained

less cohesive than if EDMs were signed at random. Following the leadership election, Sir

Menzies Cambell’s Liberal Democrats did not achieve the cohesion levels seen during 2005.

Labour : The Labour party generally has a lower cohesion than the other main parties.

Following the summer break (indicated by a vertical line), there appears to be no dramatic

change in Labour’s cohesion level, which is at a level suggesting that they regularly disagree

with other members of the party. One period of interest is that of March 2006. As with the

Conservatives at this time, the cohesion of the party dropped. The education bill which

was passed during this time split the Labour party, with massrebellion from the Labour

backbenches, see Wintour (2006). Further problems for bothLabour and the Conservatives
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at this time was the news of secret loans that both major parties had received in the run up to

the general election, see Hencke (2006). These continuing revelations about party funding

were a blow to both major parties.

The 2005/06 session is unique in that the cohesion of all three main parties are at a

comparable level. Previous sessions have exhibited vast differences in the level of cohesion.

Possible explanations of this are the number of MPs signing EDMs or changes in propensity

to sign EDMs. Previous session plots from the 1997/98 session to date can be found online

atwww.maths.bris.ac.uk/∼db0797/Research.html.

3.2.4 Volatility of Cohesion

When considering the cohesion plots with bandwidths of 100 EDMs or less, cohesion levels

tend to be much greater for the more recently tabled EDMs. As the EDMs in the time

windows become older, the coherence generally reduces. Some EDMs will receive all of

their signatures quickly, whereas others may take longer toobtain support. Some possible

reasons for this are discussed by Franklin & Tappin (1977) who consider EDMs to either

obtain many signatures quickly, due to ‘business-like’ canvassing of MPs by the proposer

of the motion, or to gain support in a more random fashion.

If we were considering a dynamic cohesion measure, which wasupdated on, say, a daily

basis, the addition of signatures to EDMs causes the coherence of a given time window to

change. Further, it is of interest to see how the measureMi, defined in (3.1.4), varies within

a given time window (recall thatMi is the mean dissimilarity that MPi has with all other

MPs, and is used to define the cohesion measure). The variation of theMi during each time

window is a measure of the range of similarities that the MPs have towards each other. To

measure this volatility we define the variation measureV = var(Mi) for MPsi = 1, . . . , n.

Similar to the cohesion plots, we look at the measureVi over a moving time window of

100 EDMs with fixed step size of one. Figure 3.6 shows the plot for the 2005/06 session.

We observe that the variance of theMi for all three parties remain low and fairly stable up to

mid November (indeed, the Liberal Democrats and Labour havea low and stable variation

of Mi throughout). This is expected. With no major changes in the signing patterns by

MPs, the spread of theMi would reasonably be expected to remain fairly constant given
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Figure 3.6: Variation of mean dissimilarity of MPs with a moving time window during
2005/06 session: Solid = Labour; Dotted = Conservative; Dashed = Liberal Democrat.

that the EDMs have obtained all, or most of their signatures.For very recent time windows

the variation of the Labour party, and more so the Conservatives are a lot higher, indicating

the large range of similarities each MP has with members of their own party. This is due

to the more recent EDMs having yet to receive all of their signatures. As EDMs receive

signatures, they have a changing influence in the calculations of theMi and cause a larger

range in the values ofMi. This range in values ofMi becomes more constant (and smaller)

in the long run when the EDMs no longer attract additional support from more MPs.

Two large changes in this pattern occur during this session for the Conservative party,

the first during December and January, following David Cameron’s election to leader of the

party. This plot shows the variability of similarity amongst MPs during this time, indicating

the differences within the party. Considering that the cohesion at this point is also rising,

there is ‘unrest’ within the party with some MPs within the party in agreement with each

other and others who are not. To a certain but lesser extent Labour also show unrest during

this period, which highlights the impact a new leader can have on the other parties.

The second major disruption comes more recently, during February and March 2006.
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This coincides with a period of low signing of EDMs by the Conservatives and this may

be the explanation rather than any political events. Further increases in the variance are

towards the beginning of April and are at the same time as a drop in cohesion (and the

party loan scandal), see Hencke (2006). More recently thereis a change in variation in July

2006. This variation may settle over time, with the relationship being temporary, as not all

signatures will have been received for those recent EDMs.

3.3 Feature Selection using Cohesion Levels

We next propose to use our cohesion measure in a technique which utilises computational

power and a combination of statistical techniques. We first consider the work by Poole

& Rosenthal (1997) and Poole (2005) who developed the non-parametric optimal classifi-

cation (OC) method for the spatial modelling of legislatorsin parliament and parametric

methods based on the NOMINATE procedure (NOMINAl Three-StepEstimation) which

were described in Section 2.4.

We refer the reader back to the scaling solution of EDMs in Figure 3.1. Recall that the

OC and NOMINATE techniques use an initial set of spatial coordinates of legislators (such

as the scaling solution) and finds cutting planes which best separate the legislators between

those who vote Yea or Nay on a given roll call. The method iterates between finding cutting

planes, spatial coordinates, and in the case of NOMINATE, parameters for a legislators

utility function. The results are used to see where the legislators lie on a given roll call and

to investigate cohesion and discipline within the legislators.

The OC (and NOMINATE) procedures are not easily adaptable tothe analysis of EDMs.

The methods rely on either a Yea or Nay vote in order tocut the legislators into two groups

and, as previously discussed it would be wrong to construe a lack of signing EDM as a

‘Nay’ vote. A possible method could be to investigate EDMs with opposite opinions, or to

use amendments with conflicting views of the original EDM to obtain a data set where MPs

vote for either sides of an opinion. This would create a much smaller subset of MPs where

a firm Yes/No could be worked out for the given subject matter.Not only would the data set

be very small, there would still be difficulty regarding the subjective nature of EDMs.
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Spirling & McLean (2006) attempted to use the OC procedure ondivisions in the House

of Commons and concluded that the method was unsuitable for the data due to the divisions

being whipped and strategic voting by MPs. Even if the methods outlined here were adapted

for use with EDMs, their cheap-talk nature would again be an issue when ‘cutting’ MPs on

a single motion.

We instead look to other methods to further investigate EDMsby turning our attention

to using feature selection to pick out important information from the data.

Feature selection is a valuable tool used in many applications, reducing dimensional-

ity and allowing for easier subsequent analysis and interpretation of results. Our cohesion

measure is dependent on which EDMs MPs sign. Some of these EDMs are likely to influ-

ence the cohesion measure more than others. They may have a higher popularity amongst

MPs or they may be on issues which regularly divide MP opinion. In contrast to narrowly

searching individual topics for a reaction amongst the legislators, we wish to investigate

whether, over the vast data set, there are types of EDM that MPs agree on, or EDMs which

cause disagreement within a political party. This has a further advantage over the OC and

NOMINATE procedures in that we use all EDMs on a given topic, not just one of many to

use as a cutting plane.

We first classify EDMs from the 2001–2005 parliament into different issues or types.

By using average weighted dissimilarity measures between MPs, we can allow certain types

of EDM to have a greater or lesser effect on the cohesion of theMPs. Minimising and

maximising the cohesion measure by adjusting these weights, we discover the cause of most

agreement and disagreement within the main political parties during the last parliament.

3.3.1 Optimisation using Weighted Cohesion

EDMs are used by MPs to give an opinion on any subject matter. There are a huge range of

topics which EDMs can cover and we categorise EDMs into a number of different types or

issues. EDM topics can range from education to the environment; they can give an opinion

against a political party or their policy, such as criticising public spending, or be such that

all members may wish to sign.

For each session in the 2001—05 parliament, each EDM has beencategorised into one
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Session
Type 01/02 02/03 03/04 04/05 All

Health 212 246 233 101 792
Trade/Business 87 84 163 81 415
Social Issues 143 133 83 37 396

Abuse/Humanitarian 87 136 55 38 316
Congratulatory 54 90 87 44 275
Foreign Issues 50 98 93 33 274

Policy/Legislation 70 81 82 31 264
Transport Issues 63 88 66 43 260
Environmental 20 82 82 51 235

Sport 75 55 65 29 224
Education 51 61 62 46 220

Media 75 55 57 29 216
Arts/Culture/History 50 23 81 18 172

Employment 64 49 49 32 194
Defence/Armed Forces 65 34 47 45 191
Congratulations in Sport 70 29 65 20 184

Iraq 31 93 42 15 181
Food/Agriculture/Farming 48 61 51 50 210

Table 3.4: Number of EDMs on different issues. EDMs are listed in descending order of
total number over all sessions. Plain type means that numberfor that issue in a particular
session is in top 10, bold means that it is in top 10 for anothersession.

of 50 different types. Table 3.4 shows the most popular 10 types for each session (along with

other types referring to top 10 from other sessions). Care was taken to classify an EDM into

its primary subject matter. When more than one category was possible all were recorded;

but only one has been used per EDM for this analysis (see Appendix A.2 for details of our

classification process).

We are interested in which EDMs influence cohesion. We consider the EDMs which

form the 30 most popular types of EDM and give each type a weight so as to regulate their

influence or importance. For a set of weights, the weighted cohesion can be calculated using

equations (3.1.4)-(3.1.5). We wish to adjust the weights soas to maximise the cohesion

measure. The corresponding weights will identify features(or types of EDM) which bring

members of the partiescloser together. Minimising the weighted cohesion will pick out

features which cause most disagreement within the parties.

Many classical numerical optimisation routines assume smoothness of the optimisation

function and depend heavily on starting values. Due to the nature of our optimisation criteria
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and size of the problem, genetic algorithms have been selected for this optimisation task.

A good introduction to genetic algorithms can be found in Mitchell (1998). Briefly, ge-

netic optimisation uses the principle of natural selectionto obtain (locally) optimal values.

For a starting population of weights, each set of weights is considered in binary form along

with their corresponding weighted cohesion level. Sets of weights which are found to be

more optimal progress to the second generation, and combineto produce new sets of off-

spring (or weights) also in this generation. Analogous to survival of the fittest, this process

aims to produce a more optimal second generation of weights.Picking a suitable initial

population size allows for a desired level of ‘genetic diversity’ and the number of iterations

(or generations) will control the level of convergence of the optimal value (with an obvious

trade-off between the two).

Genetic optimisation was used for feature selection by maximising and minimising co-

herence levels as described below. Initial population sizes of 1000 were used over 500

generations to allow values to converge suitably. Other variables used within the procedure

is the mutation chance, which is the probability that a givenentry in the binary number

will change. This was set at 0.001. Finally, for each iteration, 200 of the population were

allowed to proceed to the next generation.

We note that the ordering of the weights within the proceduremay affect convergence,

with weights ordered close together being more likely to have either combined, or not com-

bined with another set of weights. So, for example, with 30 different weights, weights 1

and 2 are more likely to have the same outcome (combine with another set of weights, or

not) compared to weights 1 and 30. Repeated optimisation routines with different ordering

would give more information as to the severity and effect of this, but is left as future work.

Finally, we do not rule out other methods of optimisation procedures to solve these

problems. Methods based on estimating the gradient of the output function were tried (for

example, those by Nelder & Mead (1965) and Fletcher & Powell (1963), but results were

slow and often did not converge.
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3.3.2 2001–2005 Parliament Results

Table 3.5 shows the results of feature selection for individual sessions during the 2001–05

parliament. Cohesion values were maximised to select features which make parties more

cohesive and minimised to find issues which separate the parties. When the optimising

criteria is maximised, we find that the results mostly contain only a single feature (EDM

type) of the data. This is somewhat expected, with the solution putting maximal weight on

the attribute which causes maximal cohesion and minimal weight on all others. Any other

combination of weights would generally produce less optimal results. This is treated more

formally, and more generally (considering subsets of attributes) in Friedman & Meulman

(2004) (we leave any adaptation of our methods to subsets of attributes as future work).

When minimising cohesion, results would not be expected on just a single attribute.

Given that we would reasonably expect single issues to be given maximal weight in

our procedures, we can compare the resulting (weighted) cohesion level with the cohesion

calculated from considering each of the different 30 types of EDMs individually. When

more than one issue is found to give maximal importance, thiswill act as a check that the

results are, indeed, more optimal.

For all sessions and parties except for the Conservatives during 2003/04, maximum

cohesion is a result of a single issue. Comparing this to the cohesion calculated when all

other issues individually are given maximal weighting, confirms that the issue found using

our optimisation techniques is the most pertinent. In many cases, other issues would cause

near optimal results and this is discussed in the next section. Maximal disagreement was

caused by combinations of different issues. In all cases, the level of cohesion caused by a

combination of the issues was less than that from any single issue.

Cohesion: During the 2001/02 session, foreign issues bring all threemajor parties to-

gether. This was a very eventful parliamentary year, covering the attacks on the World Trade

Centers in New York (The Poynter Institute, 2001) and subsequent invasion of Afganistan

(Wintour et al., 2001). These occurrences are a possible reason for the solidarity within the

parties.

Energy issues maximise the Liberal Democrat cohesion for all sessions except for 2001/02
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01/02 Session
Labour Conservative Lib Dems

Coh.(0.72) Sep.(0.95) Coh.(0.75) Sep.(0.96) Coh.(0.63) Sep.(0.91)
Foreign Europe Foreign Disability Issues Foreign Congrats. in sport

Environmental Middle East Europe
Statutory Instruments Environment

Congrats. in Sport (6.1) Employment
Congratulatory(2.3)

02/03 Session
Labour Conservative Lib Dems

Coh. (0.84) Sep. (0.95) Coh.(0.79) Sep.(0.96) Coh.(0.67) Sep.(0.92)
Energy Issues Northern Ireland Social Issues Northern Ireland Energy Issues Northern Ireland

Defence/Armed Forces Congrats. in Sport Sport
Immigration Transport Safety Congrats. in Sport

Statutory Instruments Employment Arts/culture
Foreign Immigration

03/04 Session
Labour Conservative Lib Dems

Coh. (0.83) Sep. (0.96) Coh. (0.78) Sep. (0.94) Coh.(0.66) Sep.(0.91)
Arts/Culture/History Northern Ireland Tax Middle East Energy Issues Northern Ireland

Congrats in Sport Policy/Legislation Abuse/Humanitarian Sport
Religious Issues (0.5) Disability Issues (1.1) Europe

04/05 Session
Labour Conservative Lib Dems

Coh.(0.82) Sep.(0.97) Coh.(0.76) Sep.(0.94) Coh.(0.65) Sep.(0.93)
Abuse/Humanitarian Northern Ireland Foreign Middle East Energy Issues Northern Ireland

Arts/Culture/History Transport Safety Iraq
Prisons Disability Issues Local Govt.

Congratulatory (1.3)
Northern Ireland

Employment (0.1)
All Session

Labour Conservative Lib Dems
Coh.(0.84) Sep.(0.94) Coh.(0.79) Sep.(0.93) Coh.(0.67) Sep.(0.91)

Energy Issues Disability Issues Policy/Legislation Disability Issues Energy Issues Northern Ireland
Pensions Congrats. in Sport Defence/Armed Forces Sport

Sport Policy/Legislation (5.2) Congrats. in Sport
Education (3.0) Regional Issues

Table 3.5: Optimal issues for cohesion and separation of parties 2001/05 parliament, with cohesion value. (Issues havemaximal weighting (10)
unless stated and each line corresponds to a different issue.)
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(where, in fact, the cohesion is just 0.01 less than for foreign issues alone). This topic, cov-

ering all aspects of renewable and non-renewable energy sources, was deemed important

by political parties during this period. Labour published The Energy Review (Performance

and Innovation Unit, 2002) and the Liberal Democrats had clear policies on such issues,

with targets of reducing climate change emissions depending hugely on renewable energy

expansion, see Liberal Democrats (2001). They have been outspoken over the issues of

energy, in particular regarding renewable sources. In an interview on the subject the Liberal

Democrat shadow Environment Secretary Norman Baker statedthat “proper investment in

renewables together with energy conservation and efficiency measures would eliminate the

need to rely on nuclear power to meet Britain’s greenhouse gas commitments”, see Baker

(2004).

Separation: Interpreting the results from the minimisation of cohesion to find separa-

tion is more complicated than the maximisation. There couldbe an underlying structure in

the way certain MPs sign EDMs which are in favour or oppose a given subject. There could

also be a pattern in how MPs consistently sign no EDMs of a certain type. We leave the

details of this to further work and here present an overview of results andpossibleinterpre-

tations.

Congratulatory and sporting EDMs are often selected amongst issues which cause max-

imal separation within the parties. They are generally considered to be ‘all-party’ EDMs

and obtain signatures from MPs regardless of political affiliation. Many MPs may choose

not to sign these EDMs at all, whereas others will consistently sign them, causing them to

be a source of separation within the parties.

Northern Ireland issues (by which we mean those relating to the peace process and its

implications for devolution) are fairly common in separating all the parties during different

sessions. The period of interest was an eventful time in the Northern Ireland Assembly, with

the first minister, David Trimble, resigning and later returning to power only to resign for a

second time. Following Britain resuming direct rule in 2002, a bank raid and ‘brutal murder’

blamed on the IRA delayed any progress on restoring the Assembly, see The Economist

(2006). These events appear to have continually divided theopinion of MPs in Westminister.

Our results also show that disability issues as well as the Middle East separate the Con-
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servative Party in all but one of the sessions. The latter is potentially caused by MPs criticis-

ing government policy regarding the Middle East (Watt, 2003) during a time of hostility and

uncertainty following the invasion of both Afganistan and Iraq (Conte, 2005) and the death

of the Palastinian leader Yassar Arafat in November 2004 (Whitaker, 2004). It is plausible

that the separation is caused by a small number of MPs agreeing on certain EDMs, whilst

all others show little or no opinion.

The Conservatives were the only main political party to havea manifesto during the

2001 General Election which had pledges aimed at the needs ofthe disabled, see Conserva-

tive Party (2001). Our results indicate that over the following years the party was divided on

the issue. In 2004 the Conservatives started a nationwide consultation process in disability

legislation, see Conservative Research Department (2004), possibly as a result of divided

opinion within the party.

Other interesting (and possibly expected) results includeimmigration issues dividing

Labour and Conservative in 2002/03 when asylum procedures came under heavy scrutiny,

see Robinson (2003).

Entire Parliament : Table 3.5 also shows results from when the entire 2001—05 par-

liament was considered as one data set. Only MPs who were present over the entire period

were considered for the analysis. The results show which issues are consistently causing

cohesion and separation over the entire parliament. As expected given results from individ-

ual sessions, Energy Issues and Northern Ireland cause the Liberal Democrats to be more

and less cohesive respectively. Sport is the only issue to appear to cause opposite reactions,

being a minor cause of separation for Labour during 2001/02 yet overall causing separation

over the entire parliament. Issues regarding policy and legislation separate the Labour party

overall, whereas they make the Conservatives more cohesive. Possible causes of this would

be EDMs which are against government policy being highly signed by Conservatives and

also highlighting rifts within the Labour camp.
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3.4 Conclusions and Future Work

In this chapter we have proposed a new cohesion measure to analyse the behaviour of Mem-

bers of Parliament in the UK. Our measure uses the signaturesof Early Day Motions, a large

and rich data source.

We apply our measure to a moving time window of EDMs over the recent 2005–06

parliamentary session. Due to the complexity and uncertainty in the signing of EDMs, we

constructed a simulated cohesion measure for each of the main political parties. We use

these measures to assess whether a party’s cohesion is high or low, and highlight changes in

cohesion which can then be linked to political events. Thesecomparisons showed evidence

to suggest that the level of our cohesion measure is broadly indicative of perceived party

unity.

We further use our cohesion measure to investigate which ‘issues’ cause the parties to

unite and separate in opinion. This was achieved by classifying each EDM by primary

topic and using a range of statistical techniques to ‘weight’ groups of EDMs on similar

issues. Data from the entire 2001–05 parliament were used and pertinent issues, which

caused maximal and minimal cohesion for each party during each session, were discovered.

Comparing these results once again to political events overthe sessions there is further

evidence to suggest that the tabling and signing of EDMs reflects current political climates

on both national and international issues.

We emphasise that our analysis of results and comparisons topolitical events are to some

extent conjectural, and our analysis is not exhaustive. We have indicated possible reasons

for some of the behaviour shown within EDMs where we believe there is an interpretation

which gives a new insight or interest into EDMs and MPs.

We also highlight the subjective nature of classification ofEDMs and the difficulty of

assigning each to just one category. Careful steps were taken to ensure a ‘good’ classifica-

tion (described in Appendix A.2), and for the vast majority of EDMs, a primary category

for each was agreed upon by all coders.

This article shows how EDMs can be used to measure political cohesion in the UK.

Without the influence of the party whips, there are many extensions to their use. A natural
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extension to the moving cohesion measure would be one of forecasting behaviour of the

cohesion of the political parties. Identification of those MPs who are the main cause of

the lack of unity within a party could also give an indicationof the structure in the party.

Consideration of the hierarchy of MPs from a centroid point of a party is a possible way of

carrying out such a task.

As discussed, single issues were the main cause of the parties showing maximal cohe-

sion. The second most important issue could also be of interest and could be obtained by

introducing an entropy measure to our optimisation criteria. Furthermore, by classifying

EDMs into more than one issue, a more detailed and accurate picture of the content of each

EDM could be used for feature selection.
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Chapter 4

Divisive Issues Between Political

Parties

4.1 Introduction

In Chapter 3 we defined a cohesion measure for political parties in the UK. EDMs were

classified byissueand an optimisation procedure was defined which usedweightsassigned

to each issue to maximise and minimise the cohesion measure.That is, we identified the

issues on which MPs within a party agreed on, and issues whichcaused disagreement.

In this chapter we extend the idea of using weighted dissimilarity matrices along with

feature selection to pick out attributes of the EDM data set which are of interest. Previously,

each of the main political parties was considered separately, with no interaction between

them. Here we develop an optimisation criterion to investigate the interactionbetweenpo-

litical parties and to identify issues which differentiatethe main political parties, by causing

them to be less similar to each other.

Briefly, we wish to pick out issues which cause political parties to differ in opinion.

Our measure for this is the number of MPs who are erroneously classified as being in a

particular political party. The smaller this number, the more disjoint the parties are. By

altering the influence that EDMs of a particulartypehave on the classification procedure,

we can identify the issues which cause the most separation.

The OC and NOMINATE techniques, by Poole (2005), were described in Section 2.4
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and use a scaling solution of legislators based on parliamentary voting. These techniques

classify legislators by finding ‘cutting lines’ or planes which best separate different parties.

Both the OC and NOMINATE methods induce changes in the scaling solution by assuming

errors in the voting pattern. We considered the use of these procedures for EDM data in

Section 3.3 and pointed out why they are not suitable for suchanalysis (asymmetric signing

and strategic voting were amongst the reasons).

We next consider the scaling solution of MPs given EDM signing, as well as a method of

classification given this scaling solution. We use data fromthe 2001/02 parliamentary ses-

sion to give an example of these procedures before incorporating them into an optimisation

routine to identify key issues.

4.2 Scaling Solution of EDM Data

The dissimilarity matrix of MPs can be represented spatially using classical multidimen-

sional scaling (MDS) to reduce dimensionality of the of the data (see Chatfield & Collins

(1996) for details). We use classical scaling, rather than other types of scaling for con-

sistency, simplicity and ease of computation, as we will compute many multidimensional

scalings. Further, good results using classical scaling have been previously shown using

the EDM data set (see Nason (2001)). We do not investigate theuse of the many other

scaling methods here. References to scaling solutions in the remainder of this chapter refer

to classical multidimensional scaling. The scaling solution plays an important role in our

methodology as we use it to categorise MPs into political parties.

We use the EDM data for the 2001/02 session to aid the explanation of our methodol-

ogy. We use the unweighted Jaccard coefficient to calculate the dissimilarity between MPs

(defined in Chatfield & Collins (1996) and given in general form in Section 3.1.3). Figure

4.1 shows the first two dimensions (or principal components)of the scaling solution for the

three main parties during the 2001/02 parliamentary session. We see the strong party struc-

ture which exists within the signing of EDMs. The Conservatives, although fairly spread out

are clearly separated from the other parties. The Liberal Democrats are strongly grouped

but appear attached to the edge of the Labour party. Further investigations show that for
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Figure 4.1: Scaling solution for 2001/02 data.• = Labour,• = Conservative,• = Liberal
Democrat.

higher dimensions, the Liberal Democrats are more disjointfrom Labour. This raises the

question of how many dimensions one should use to represent the data in the scaling so-

lution. Common practice is to look at thescreeplot of the eigenvalues of each principal

component of the scaling solution, and to use the number of dimensions indicated by the

elbowpoint on the plot. Figure 4.2(a) shows the scree plot of the first 10 eigenvalues (out

of a possible 529) from the scaling solution of the 2001/02 data. The elbow point seems to

be at the fourth eigenvalue, so we use up to and including thisin the subsequent analysis.

We note at this point the ‘horseshoe’ effect (see Kendall (1971)) which is apparent in

the scaling solution in figure 4.1. This phenomenon occurs inclassical multidimensional

scaling (as well as other linear scaling methods and non-metric multidimensional scaling)

and is observed for large datasets where there are many dissimilarity coefficients between

pairs of observations which are close to maximum. At a certain point, it is no longer possible

to plot the observations any further from each other and thiscauses extreme points to be

positioned in a curve. It implies that the second (or subsequent) axes may be dependent

upon the first axis (although they are linearly uncorrelated).

Podani & Milklos (2002) observe the horseshoe effect using avariety of dissimilarity
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Figure 4.2: Scree plot of first 10 eigenvalues. (a) 2001/02 Session, (b) First 200 EDMs from
2001/02 Session.

coefficients and classical scaling. The Jaccard coefficientis not one which is considered

within this study, but it has been observed in other studies (in particular, see Hoilandet al.

(2004)). We refer the reader to the list of references provided by Podani & Milklos (2002)

and to the work by Hill & Gauch (1980) for many methods of accounting for horseshoe

effects.

We will not incorporate such techniques within this study. For the data presented in this

chapter we note that although the horseshoe effect is observed for the second dimension, it

is not apparent in higher dimensions. Further, although we use data from the entire session

for motivation, our actual analysis will be performed on a much smaller data set. We direct

the reader ahead to figure 4.3(a) for the first two dimensions of the scaling solution for just

200 EDM; an example of the data which will be used in within this chapter. We note that the

horseshoe effect is not as apparent over these dimensions, nor is it for higher dimensions.

We thus make no effort to adjust for any possible ‘horseshoeing’ at this point, but note that

it should be considered for any future analysis using data from the entire session.
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4.2.1 Classifying MPs

We wish to use the scaling solution to predict party affiliation of each MP. To group the

data, we use the simple method of linear discriminant analysis (LDA), proposed by Fisher

(1936). This seeks to find a linear combinationaT x of the n variables (or dimensions),

x = (x1, . . . , xn), that would best separate the data into groups (see Krzanowski & Mar-

riott (1995) for a detailed overview). Note that this scoring technique has been chosen for

its speed and simplicity and alternative methods, such as clustering procedures, could be

used instead within this procedure. This method has been used (although with non-metric

scaling) by Cox & Ferry (1993). Work by Chang (1983) and Gnanadesikanet al.(2007) are

examples of studies which are are similar, but using principal component analysis with the

aim of clustering, rather than classification.

We apply LDA to the first 4 dimensions of the scaling solution for the three main po-

litical parties. The LDA calculates discriminant values with which to best predict party

affiliation of all MPs (given that there are three party choices). Given theknownparty af-

filiation of the MPs, we can then identify the number of erroneously classified MPs in each

group. The number of misclassified MPs can be thought of as a measure of overlap between

parties.

We return to the data from the 2001/02 parliamentary sessionand perform LDA on

the first 4 dimensions of the scaling solution. We predict each MP’s party given the LDA

results. The number predicted for each party, along with theknown party affiliation of the

MPs is shown in Table 4.1. We see that the most erroneously classified MPs are Liberal

Democrat as Labour (50 times) and Conservatives classified as Labour (21 times).

Classification
Actual Party Con Lab Lib

Con 139 21 1
Lab 1 315 0
Lib 1 50 2

Table 4.1: LDA Classification for 2001/02 session.

With equal EDM weights, the total number of erroneously classified MPs is 74. This

number will be used later as our optimisation criteria. Notethat for the remaining analysis
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we concentrate on the total number of erroneously classifiedMPs and not on the behaviour

of individual MPs or parties. Our justification of this is similar to the cheap-talk nature of

EDMs, discussed in Section 3.1.2. We do not pick out (and name) MPs due to the ‘noise’

which may be present. We treat misclassification of an MP as a sign that they are far from

their own party, rather than having beliefs and opinions belonging to another.

The example we have used so far is for an entire session. In practice, looking at an

entire session is not computationally feasible and insteadwe look at a moving time window

of 200 EDMs. This is the same idea as the moving cohesion measure in Chapter 3, but here

the EDM time window is shifted by 100 EDMs each time.

The scree plot of the first time window for the 2001/02 sessionis given in Figure 4.2(b).

For this example, the scree plot does not exhibit such defining features as the full session

and is more of a curve than a definitivescreeshape. We continue to use 4 dimensions in

the subsequent analysis of the data, based on the full data set. Furthermore, as will become

clear from the methodology, it is not a priority to have a scaling solution which is near

perfect as the measure of overlap between parties (misclassified MPs) will be used as our

optimisation criteria.

4.3 Feature Selection using Linear Discriminant Analysis

We next describe our methodology for identifying key issueswhich cause separation be-

tween political parties. We introduce variables into the techniques previously described in

the form of EDM weights. These enable us to alter the importance of each EDM type to

minimise the number of erroneously classified MPs.

As with the cohesion measure of Section 3.1.3, we classify EDMs into differenttypes

to which we assign a weightwk. We use this to calculate an average weighted dissimilarity

Dij between MPs(i, j) defined in equation (3.1.3) as

Dij =

T∑

k=1

wkdijk, (4.3.1)
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Figure 4.3: First two dimensions of scaling solution on firsttime window of 2001/02 ses-
sion. (a) Unweighted. (b) Weighted.• = Labour,• = Conservative,• = Liberal Democrat.

with

{wk ≥ 0} and
T∑

k=1

wk = 1,

for attributes (EDMs)k : 1 → T . As with (3.1.3),dijk is the Jaccard dissimilarity measure

between MPs(i, j) on EDM typek, with weightwk.

We use the average weighted dissimilarity matrix to form a scaling solution, as de-

scribed by example in Section 4.2. We then classify MPs usinglinear discriminant analysis

(Section 4.2.1) and find the number of MPs who have been erroneously classified. We

can then modify the weights assigned to each EDMtype to attempt to reduce the number

of misclassified MPs: the smaller the number, the larger the difference between the par-

ties. The corresponding weight values of the optimal solution will identify the importance

of given issues in separating the main political parties, and answer questions as to which

issues distinguish the parties from each other.

We once again use genetic algorithms, described in Section 3.3.1, to minimise the num-

ber of erroneous MPs and find optimal EDM issue weights. We runthe procedure with a

population size of 500 over a total of 750 generations.

Returning to our example, Figure 4.3(a) shows the first two dimensions of the un-
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weighted scaling solution for the first time window of 200 EDMs for the 2001/02 session.

Note that with fewer EDMs, the structure does not appear as strong compared with the full

data set in Figure 4.1. Figure 4.3(b) shows the first two dimensions of the scaling solution

for the same time window but with the average weighted dissimilarity matrix using the op-

timal weights from our procedure. We see that on these dimensions the weighting has, to a

certain extent, brought MPs of a similar party together. TheConservatives and Labour are

more compact on these dimensions. Further, for higher dimensions, the Liberal Democrats

are more disjoint from the other parties. Overall, 45 MPs aremisclassified.

Preliminary tests using this method indicate that despite alarge starting population, the

results found appear only locally optimal – the genetic optimisation for repeat trials on the

same data converged withdifferentoptimal weights. Instead of increasing the population

size, we choose to repeat the process 10 times with new starting populations to get repeat

results (this allows each ‘run’ to be computed in parallel).We then include these 10 op-

timal solutions in the starting population of a final procedure to get the results which we

present in this chapter. For the example presented above, this method reduced the number

of misclassified MPs to 36.

4.3.1 Application to 2001–05 Parliament

Figures 4.4–4.6 shows the results of the genetic optimisation moving over time for each ses-

sion between 2001–04. We do not plot the results from the shorter 04/05 session, which only

comprised of seven ‘time’ windows. The horizontal axis represents each time window of

200 EDMs with an overlap of 100 EDMs. It is labeled with the month corresponding to the

middle EDM of that time window for reference (although the EDMs, and thus the months

are not spread evenly over the session). The top axis gives the number of erroneously clas-

sified MPs for that window. The left vertical axis representsthe 30 most popular issues.

They are ordered by the sum of the weights of each issue, for the entire session. This sum

of weights is given on the right axis. Each issue, for each time window, is plotted by a

shaded box, which indicates the weight given to the issue. For clarity, we have multiplied

each weight by 10 and have 4 levels of shading to represent increments of 2.5 along the new

weight scale of 0 to 10 — the darker the shading, the higher theweight. This adds an extra
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Figure 4.4: Issues separating main political parties 2001/02 session. Weight shading: white
0–2.5, light grey 2.5–5, dark grey 5–7.5, black 7.5–10.

dimension to the plot, with changing weights easily readable from the plot.

Although we present the results from each of the sessions, webelieve they should be

treated asinitial results. They are limited due to uncertainty over the numberof locally op-

timal solutions which exist and the likelihood of them beingfound using the current meth-

ods. The largest limiting factor was computational power. For the solutions reported in this

chapter, it took up to 3 days to complete the genetic optimisation for a single time window

(using computers with 2.2 GHz processors and 2Gb of RAM). Over our 10 repetitions of the

procedure for each time window, the optimal solutions founddiffered considerably. This

indicates the size and complexity of the problem and why the work presented here is treated

as preliminary. We thus only summarise some of the findings and discuss future work in

Section 4.4.

Results from the 2001/02 session in Figure 4.4 show some expected results. Conduct of

Members, and Statutory Instruments (SI) arewithin-partyEDMs and generally expected to

get support from just one party. We see that they are amongst the most divisive of between-

party issues. The highly divisive areas of education, employment and tax are also found
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Figure 4.5: Issues separating main political parties 2002/03 session. Weight shading: white
0–2.5, light grey 2.5–5, dark grey 5–7.5, black 7.5–10.
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to split the parties. Humanitarian issues, which are shown not to divide parties, could be

consideredcross-partyEDMs, and are predictably given low weights. Animal welfareis

also given a low weight and to a certain degree could be considered to unite the parties.

This comes following a time of mass animal culling due to the foot and mouth outbreak

(in early 2002 the UK was no longer considered ‘infected’, over a year since the initial

outbreak).

For the 2002/03 session, plotted in Figure 4.5, similar issues to the previous session

are towards the top and bottom of the scales. It is interesting to note that issues involving

financial services came second and both Iraqi issues and armyand defense issues were mid-

table at a time when they were high on the political agenda. Further, health issues do not

appear to be cause of much separation between the parties.

Dividing issues, which may be expected, are at the top of the results for the 2003/04

session in Figure 4.6. Congratulations in sport is perhaps unexpectedly high on the list of

weights, with Environmental, along with Food and Agricultural issues also featuring highly.

During a time which included the invasion of Iraq, issues with the Army and Defense were

highly divisive although more specific issues concerning Iraq were not. Health is yet again

low on the list.

The 2004/05 session (which we do not plot) was much smaller due to the general elec-

tion in May 2005. Health is yet again low in the list of issues which separate the parties,

whereas transport and army and defense issues feature highly.

As explained, these results should be treated as preliminary. We highlighted certain

features but do not speculate on any reasons behind them at this stage. Nonetheless, results

highlighted here show the wealth of information which is contained and is a motivation for

future work.

We next digress somewhat to consider the extent to which propensity to sign EDMs

affects the scaling solution and thus the results plotted inthis chapter.

4.3.2 Scaling Solutions and Propensity to sign EDMs

We next briefly investigate the relationship between the number of EDMs an MP signs and

the principal components (PC) of the scaling solution. Thissection aims to give a feel of
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the behaviour of the data by considing a single time window ofEDMs. It is thus not an

exhaustive investigation but highlights issues within thedata.

As discussed in Section 3.2, due to the asymmetric nature of the Jaccard coefficient

of dissimilarity, the number of EDMs which an MP signs will have an impact on their

dissimilarity. For the cohesion measure we accounted for this by simulating the signing of

EDMs by MPs and using the cohesion of this data as a calibration level. We next show how

the lower dimensions of the scaling solutions represent theMPs propensity to sign EDMs.

Figure 4.7(a) shows that the relationship between the first principal component and the

total number of EDMs signed by each MP for the first time windowof the 01/02 session.

The number signed appears to be exponentially decreasing with the value of the principal

component. This relationship is also observed, but to a lesser extent for the second PC.

Higher dimensions, however, show no such trend.

The notion that propensity to sign is manifested within the scaling solution raises some

interesting questions over the validity of the feature selection. Are the issues with higher

weights also those which attract the most or least signatures? Are the MPs who are mis-

classified those who sign the most or least number of EDMs? Without considering these

questions we do not know if the plots in Figures 4.4 – 4.6 are showing us anymore than just

what issues are signed the most. We attempt to answer these questions by investigating the

scaling solution and an MPs propensity to sign for a single time window.

Figure 4.7(b) again shows first dimension of the scaling solution against total number

of EDMs signed (for each MP) using the optimal weighted scaling solution. The relation-

ship is not as strong as the unweighted solution, although there is still a distinct decreasing

pattern. Indicated on the far right of the plot are markers representing the number of EDMs

each erroneously classified MP signed. We see from the plots that although there is a rela-

tionship between the two measures, it is not enough to be ableto predict position of an MP,

based on number of EDMs signed. Furthermore, there is nothing to suggest that MPs are

misclassified based on the number of EDMs signed (this was also observed for the second

dimension of the scaling solution).

Other investigations show very little evidence to suggest that an EDM type will be given

a higher or lower weighting depending on how many signaturesit receives.

60



−0.2 0.0 0.2 0.4

0
50

10
0

15
0

First Dimension

T
ot

al
 E

D
M

s 
S

ig
ne

d

−0.2 0.0 0.2 0.4

0
50

10
0

15
0

First Dimension

T
ot

al
 E

D
M

s 
S

ig
ne

d

(a) (b)

Figure 4.7: First principal component against total EDMs signed for first time window of
2001/02 session. (a) Unweighted, (b) Weighted.• = Labour,• = Conservative,• = Liberal
Democrat. X indicates number of EDMs signed by erroneously classified MPs.

4.4 Conclusions and Further Work

Much can be gained from the analysis of the feature selection. We see results which support

known behaviour amongst the MPs and also issues which would not have been expected to

divide the parties to such an extent. However, it is clear that computation constraints limit

the results of this procedure. Although we take care to repeat the optimisation routine, there

is still significant deviation between each set of results. Furthermore, the ‘eleventh’ repeti-

tion of the genetic optimisation, which has a starting population inclusive of the ten previous

optimal solutions, rarely improves beyond those initial solutions. This either means that lo-

cal optima are few and have been found by our procedure, or that there is much work to be

done in this area. With 30 variables, the latter would be the obvious conclusion. Increasing

the population size of the GA would increase the search area and could be coupled with a

reduction in the number of generations to reduce computation. This would still be far from

ideal and a reduction in the number of variables may be further beneficial, to reduce the

current computational time.

In this chapter we used linear discriminant analysis as a quick and effective method for
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classification and therefore did not investigate how well suited it was to the scaling solution

of the MPs. LDA has the assumption of normally distributed classes (or political parties in

this case) and equal variance matrices in the groups. It may be that this method is not as

suitable as others for the data, but as explained within the chapter, our aim was not to get the

best(initial) classification of MPs, but to obtaina classification, on which we set to improve

by assigning weights to the EDM types. LDA suited our needs for this initial investigation,

being both simple and well understood. The development of other classification techniques

are left as future work.

Although the results presented here are of a moving time window, both the size of the

window and thestep sizeare large. Any significant improvement in computational time, be

it from reducing the complexity of the problem or an increasein computational resources

could allow smaller step sizes and windows and give the analysis a more continuous feel.

We further investigated how the lower dimensions of the scaling solution are related to

an MP’s propensity to sign EDMs. We considered one time window of EDMs and found

that such a relationship exists for the first two dimensions of the scaling solution. Higher

dimensions did not show such a pattern. Furthermore, MPs do not appear to be misclassified

based on the number of EDMs which they sign, and there was little evidence to suggest

that EDMs with the most (or least) number of signatures were those picked by the feature

selection

We believe that the results here are far from conclusive, butthe methodology appears

sound and worthy of further exploration. If efficiencies canbe found in the methodology to

increase accuracy (statistical, computational or otherwise) then many intriguing questions

about the UK political parties may be answered.
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Chapter 5

Literature Review II

5.1 Introduction

This chapter reviews literature which is related to the following chapters of this thesis.

In contrast to previous chapters, the focus now turns to the transformation and variance

stabilisation of data.

We first provide some theory of the discrete wavelet transform and some types of

smoothing operators, suitable for both raw data and the wavelet transform of data. We

then describe some models for time series count data before exploring some variance stabil-

ising and Gaussianising transformations, which form the basis of our work in the remaining

chapters.

5.2 Discrete Wavelet Transform

This section describes the discrete wavelet transformation (DWT) on a series of datax =

x1, . . . , xn, wheren = 2J andJ ∈ Z. For a more detailed introduction to wavelets, we

refer the reader to Daubechies (1992) or Vidakovic (1999). For a more gentle introduction

to wavelets, see Burruset al. (1998). Details of the continuous wavelet transform can also

be found within these references.

A wavelet family is generated by dilations and translationsof a functionψ, called the

mother wavelet. Wavelets have oscillating, wave-like characteristics, such that
∫
ψ(x)dx =
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0, but have their ‘energy’ concentrated around a certain timepoint. Away from this point,

wavelets have a fast decay.

A wavelet representation of a functionf(x) is generated from ascaling function, or

father waveletdenoted byφ(x). This function belongs to a closed subspace of a multireso-

lution analysis inL2(R) (see Vidakovic (1999, page 51)). The set ofφ(x) translated overZ

form an orthonormal basis for the closed subspace withinL2(R) and it can be shown that

φ(x) =
∑

k∈Z

hk

√
2φ(2x− k),

which is known as the scaling equation. The coefficients{hk}k∈Z are the low-pass filter

associated withφ. It can be further shown that

〈φj−1,k, φj,n〉 = hn−2k,

and that

φj−1,k(x) =
∑

n∈Z

〈φj−1,k, φj,n〉φj,n(x),

=
∑

n∈Z

hn−2kφj,n(x), (5.2.1)

indicating that the scaling function at a certain scale can be expressed in terms of a translated

scaling function from the next scale.

The mother wavelet can be represented in terms of the father wavelet as

ψ(x) =
∑

k∈Z

gk

√
2φ(2x− k).

The coefficients{gk}k∈Z are known as high pass filters associated withψ. Similar to (5.2.1),

it can be shown that

ψj−1,k(x) =
∑

n∈Z

gn−2kφj,n(x).
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Figure 5.1: Left: Haar Wavelet; Right: Daubechies ExtremalPhase wavelet with 2 vanish-
ing moments.

The wavelet basis function,ψj,k(x), is derived from the mother wavelet and defined by

ψj,k(x) = 2
j

2ψ(2jx− k), for j, k ∈ Z.

Due to the construction ofψ(x), the wavelet family{ψj,k(x)} inherits the same orthonormal

basis property asφ(x), but over the whole ofL2(R).

The Haar wavelet is the simplest example of a wavelet. The Haar father wavelet can be

defined by

φ(x) =





1, x ∈ [0, 1],

0 otherwise.

From this, the Haar mother waveletψ(x) can be derived, and shown to be:

ψ(x) = φ(2x) − φ(2x− 1)

=





−1 0 ≤ x ≤ 1/2,

1 1/2 ≤ x ≤ 1,

0 otherwise.

(5.2.2)

Figure 5.1 shows two examples of wavelets; the Haar wavelet (left) and the Daubechies

extremal phase wavelet with two vanishing moments (right).For more details of these, and

other wavelets, see Daubechies (1992).
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It can be shown that a functionf(x) in L2(R) can be represented as

f(x) =
∑

k∈Z

sj0,kφj0,k(x) +
∑

j≥j0

∑

k∈Z

dj,kψj,k(x), (5.2.3)

wherej0 is known as theprimary resolution leveland sj0,k and dj,k are the father and

mother wavelet coefficients (also known as thesmooth anddetail coefficients). These

coefficients are the inner products

sj0,k = 〈f(x), φj0,k(x)〉 ,

dj,k = 〈f(x), ψj,k(x)〉 .
(5.2.4)

The representations off(x) in (5.2.3) and (5.2.4) highlight the recursive nature of the

wavelet transform when computing the wavelet coefficients:an initial set of smooth and

detail coefficients are formed, from which all other coefficients are then generated. These

coefficients give information about the functionf(x) at a scale2j at the location, or time

point2−jk.

At the finest scale of the transform, the smooth coefficients,sj0,k, can be thought of

as a smoothed representation of the original data whereas the detail coefficient,dj,k can be

thought of as the information lost by this smoothing operator. For an efficient representation,

we want sparse sets of wavelet coefficients, that is, many of the detail coefficients to be close

to, or equal to zero. This is useful for compression and also for denoising, which we shall

discuss later.

In the following chapters, we are primarily concerned with the application, rather than

the theory, of the discrete wavelet transform. We thus outline here the methodology of

obtaining the wavelet coefficients in an applied, rather than theoretical sense.

The DWT first forms smooth and detail vectors of the sequence of observationsx. These

coefficients are known as the finest level of the transform. Coarser levels are found by

recursively performing the decomposition on the smooth coefficients, until we are left with

just a single smooth and detail coefficient. Computationally, the detail coefficients are stored

at each level of the transformation, whereas the smooth coefficients are used to form the next

set of coefficients.

66



As an example of this decomposition, we next define the wavelet transform (and its

inverse) for the Haar mother wavelet from (5.2.2), which is used extensively in the following

chapters. We follow the exposition (and notation) from Fryzlewicz et al. (2007).

Given an input vectorx = (x)ni=1 wheren = 2J , the Discrete Haar Transform (DHT)

is performed as follows:

1. LetsJ
i = xi, for i = 1, . . . , n.

2. For eachj = J − 1, J − 2, . . . , 0, recursively define vectorssj anddj:

sj
k =

sj+1
2k−1 + sj+1

2k

2
; dj

k =
sj+1
2k−1 − sj+1

2k

2
, (5.2.5)

for k = 1, . . . , 2j .

3. The operatorH, whereHx = (s0,d0, . . . ,dJ−1), defines the DHT.

The inverse DHT is performed as follows:

1. For eachj = 0, 1, . . . , J − 1, recursively formsj+1

sj+1
2k−1 = sj

k + dj
k; s

j+1
2k = sj

k − dj
k (5.2.6)

for k = 1, . . . , 2j .

2. Setxi = sJ
i , for i = 1, . . . , n.

The elements ofsj (anddj) are the smooth (and detail) of the original vectorx at scale

2j .

Each recursive step of the wavelet transform produces half the number of smooth and

detail coefficients as the previous level. This is known asdecimationor downsampling.

Most wavelet methods (and methods used within this thesis) use such ‘filters’ with a base

equal to 2 so that the number of coefficients are halved. See Vidakovic (1999) for more

details.

The exposition above can be easily adapted for wavelets other than Haar. The formula-

tion of the smooth and detail coefficients involve using morecoefficients from the previous
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level of the wavelet transform. Haar only uses 2 points, if say another wavelet used 3 points

and we still moved over the data in pairs, two adjacent coefficients would depend on the

same element from the previous level, although these will begiven a different weight for

the different coefficient locations. This overlap of coefficients adds to the smoothness of the

wavelet.

Both the downsampling, and the number of elements used in thewavelet transform can

cause boundary problems, where the number of elements needed in the formulation of the

smooth and detail coefficients are greater than the number which exist. We direct the reader

to (Nason, 2008, chap 2) for a discussion on boundary conditions for the discrete wavelet

transform.

We make extensive use of the Haar wavelet transform within our variance stabilising

procedures, which are described in Section 5.5.4.

As previously mentioned, the sparse nature of the wavelet decomposition makes the

wavelet transform useful for denoising. Suppose we have an observed signal which is be-

lieved to be composed of ‘signal + noise’. If there were no noise present, we would expect

the detail coefficients of the wavelet decomposition to be sparse, as the detail lost from the

smoothing coefficients will be small (as the signal itself issmooth).

Noise within the signal would cause the detail coefficients to be non-zero as they detect

the sudden jumps in the signal. Thresholding can be used to ascertain which of the non-zero

coefficients are purely noise, and which represent signal information. Athresholdinglevel

can be set, below which the detail coefficients are believed to contain ‘noise’. These wavelet

coefficients are then set to zero, and the inverse wavelet transform will result in a noise free

signal.

There are many methods to calculate a thresholding level, and Jansen (2001) gives an

overview of many popular schemes. A common thresholding method used in the remaining

chapters is empirical Bayes thresholding, by Johnstone & Silverman (2004, 2005b), which

we describe in Section 5.3.1.
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5.3 Some Smoothing Methods

In this section we outline some smoothing methods which are commonly used in the fol-

lowing chapters. We begin with empirical Bayes thresholding. Although it can be applied

generally to any sequence of data, we focus on its use in the thresholding of wavelet co-

efficients to remove noise. We then outline smoothing filtersand kernel estimators, which

can be applied to most datasets and are used in the following chapters. These methods are

either currently used with certain data sets, or have been shown to perform well over a wide

range of data and are used within the following chapters. Furthermore, all methods have

been coded for use in the statistical program R on computers with a 2.2GHz AMD Opteron

processors and 2Gb RAM.

5.3.1 Empirical Bayes Thresholding of Wavelets

We next describe empirical Bayes thresholding as describedby Johnstone & Silverman

(2004, 2005b). Its implementation in R is via theEbayesThresh package, detailed by

Johnstone & Silverman (2005a). This technique is shown to perform well over a range of

simulated and real data, and as such we use it often in the the following chapters.

Although the ideas can be applied to many data sequences, we focus on its use for

thresholdingthe coefficients of wavelet decomposition. As mentioned in Section 5.2, an

efficient wavelet representation of many classes of function has sparse wavelet coefficients

and these can be thresholded to obtain an estimate of the underlying signal of the original

data. The idea therefore assumes sparsity of the wavelet coefficients of the true signal

and the empirical Bayes thresholding approach from Johnstone & Silverman (2004, 2005b)

places a prior on the true wavelet coefficient of the form

d∗j,k ∼ (1 − wj)δ0 + wjγ, (5.3.7)

for each levelj. Here,wj is the (prior) probability of the wavelet coefficient being non-zero,

γ is the density of the wavelet coefficient, conditional on it being non-zero, andδ0 is the

density conditional on it being zero. The method uses a heavy-tailed distribution forγ, such
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as the Laplace distribution, or the ‘quasi-Cauchy’ densitywhich is defined by Johnstone &

Silverman (2005b).

If d∗j,k has the prior distribution (5.3.7) and the observed waveletcoefficient is such

that dj,k ∼ N(d∗j,k, σ
2), we can find the posterior distribution ofd∗j,k conditional on the

observationdj,k. The median of this posterior distribution can be used as an estimate for the

‘true’ wavelet coefficientd∗j,k. This acts as a thresholding method, since for a fixedw, there

will be a functiont(w) such that the median will equal zero if and only if|d∗j,k| ≤ t(w) (see

Johnstone & Silverman (2005b) for more detail). Other thresholding methods involving

the (post) mean, and soft or hard thresholding of the function t(w) are also considered by

Johnstone & Silverman (2004, 2005b).

In statistics, wavelet coefficients are assumed to be typically sparse at finer resolution

levels with the coarser levels having larger detail coefficients representing a lot of signal.

Johnstone & Silverman (2004, 2005b) suggest applying empirical Bayes separately to each

level of the wavelet transform. Further, they suggest finding the parameters of the prior

distribution at each scale using marginal maximum likelihood estimators.

Isotonic Regression

At this points it is worth mentioning isotonic regression, which is used within empirical

Bayes thresholding (and can be performed using theisotone function in theEbayesThesh

package) as it is also used within the data-driven Haar-Fisztransform (see Section 5.5.4)

to estimate a non-decreasing monotonic function for data with a particular mean-variance

relationship.

Given our sequence of valuesxi and a set of weightswi, the least squares isotone

regression finds the monotonic increasing sequencex∗i for which

∑
wi(xi − x∗i )

2, (5.3.8)

is minimised. This is achieved using the pool-adjacent violators algorithm (see Friedman &

Tibshirani (1984) for an overview), modified to allow for theweightswi.

Briefly, the method identifies local maxima and minima in the sequence in order to
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locate decreasing subsequences. These subsequences in thedata are replaced by a single

value equaling the weighted values of the subsequence. The corresponding weights are

replaced by the sum of the weights over the subsequence. Thisprocedure is iterated until

(5.3.8) is minimised.

Isotonic regression is used extensively in the remainder ofthis thesis, indirectly as part

of empirical Bayes thresholding and directly in modifications to the data-driven Haar-Fisz

transform.

5.3.2 Smoothing Filters

Filter smoothing of data smooths in a given window around each data point. The filter

smoothing function,f at timet, taken over data,x is given by

ft = b−1
b∑

i=1

cixt+i−⌊b/2⌋, (5.3.9)

whereb is the number of observations used to form each local mean (the bandwidth),⌊x⌋

is the largest integer less than or equal tox and{ci}b is the set of filter coefficients. When

ci = 1 for i = 1, . . . , b, (5.3.9) is therunning meansestimator ofxt. Simply put, it is

the mean of a window ofb observations surrounding the data pointxt. We use the running

means filter in Chapter 6.

A filter much used with meteorological data (and used in Chapter 7) is the binomial

filter. For a filter size ofb, andm = 0, . . . , b, the coefficientsci of the filter (5.3.9) take the

following form

ci = km/

b∑

m=0

km where km =
b!

m!(b−m)!
.

with a slight change in notation from (5.3.9) in thati = 0, . . . , b. Panofsky & Brier (1968)

give a numerical example of a binomial filter, whereas Aubury& Luk (1995) give a more

thorough account of the theoretical properties.

For independent, identically distributed data from the Poisson distribution, wherext ∼

Poi(λ), it is clear from (5.3.9) thatvar(ft) will comprise of (up to a constant) the sum of
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the variances of the Poisson variables, i.e.

var(ft) = var(b−1
∑b

i=1 cixt+i−⌊b/2⌋),

= b−2
∑b

i=1 var(cixt+i−⌊b/2⌋),

= b−2
∑b

i=1 c
2
i var(xt+i−⌊b/2⌋), sinceci does not depend ont,

= b−2
∑b

i=1 c
2
iλ,

= (λ/b2)
∑b

i=1 c
2
i .

(5.3.10)

As var(xt) = E(xt) = λ, the variance is proportional to the mean, and the estimatorwill

exhibit more variance when the signal itself has more variance (i.e. larger mean).

5.3.3 Kernel Smoothing

Kernel estimators smooth data by considering weighted datasurrounding the point of esti-

mation. The kernel regression estimator for datax1, . . . , xn is given by

Yi = r(xi) + εi,

for a regression functionr whereε are independent and identically distributed withE(ε) =

0 andvar(ε) = σ2 for i = 1, . . . , n. An estimator̂r for the regression curve can be derived

from the kernel density estimator. One popular estimator istheNadaraya-Watson estimator

(Nadaraya (1964), Watson (1964)), defined as

r̂(x) =

∑n
i=1K(x−xi

b )yi∑n
i=1K(x−xi

b )
,

for a kernel functionK, bandwidthb and the estimated density is at pointx. For a full

introduction to kernel smoothing, see Wand & Jones (1995) orSimonoff (1996)

The kernel regression estimator much used in the remainder of this thesis is the local

plugin bandwidth estimator, known aslokern, by Brockmannet al. (1993). Lokern is a

non-parametric regression estimation technique using kernel estimators. The procedure

automatically chooses a local plugin bandwidth, which putsspecial weight on the stability

aspects of the bandwidth size so that the estimator is not toonoisy (or too smooth). The
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optimal bandwidths are estimated by considering the asymptotic optimal mean square error

of the bandwidths.

A common feature of local bandwidth estimators is that a gainin the mean integrated

square error (MISE) is coupled with a larger variability in the estimator, particularly if the

sample size is small. This is considered in case of the lokernestimator, by Brockmannet al.

(1993) and the resulting estimator can adapt for different features within the data.

An equivalent method using a global bandwidth estimator is also described by Brock-

mannet al. (1993). Lokern is shown to improve on this, even with small sample sizes.

Lokern can be implemented in R using thelokern add-on package.

5.4 Time Series Count Data Models

In this section we review some models of count data. We refer the reader to Junget al.

(2006) for a nice review and comparison of a whole series of techniques. A wide variety of

models are shown in the books by MacDonald & Zucchini (1997),Winkelmann (2003) and

Cameron & Trivedi (1998). This section is not exhaustive andwe aim only to give a flavour

of some of the models which are currently used. We discuss at the end of the section why

we do not consider such models in the remainder of this thesis.

Count data models are broadly classified as being observation-driven or parameter-

driven. In the former, the conditional distribution of a time seriesyt is specified as a function

of past observationsyt−1, . . . , y1 whereas in the parameter-driven model, autocorrelation is

introduced through a latent process.

Junget al. (2006) compare two such models in terms of their ability to account for

dynamic and distributional properties of count data (the work also proposes a new method

of estimation of the likelihood for the model). The well known parameter-driven Poisson

model with stochastic autoregressive mean (SAM) by Zeger (1988) is used in the paper.

This models a time series of observationsyt for time t = 1, . . . , T , on a sequence of covari-

atesxt by

yt|(xt, ut) ∼ Poi(exp{x′tφ}ut),

whereut is a latent non-negative stochastic process andφ is a vector of regression param-
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eters. The conditional distribution ofyt|(xt, ut) is therefore assumed to be Poisson with

meanµt = exp(x′tφ)ut. The latent processut is introduced to account for possible over-

dispersion and serial correlation within the data and it is often assumed thatλt = ln(ut) is

a Gaussian first order autoregressive process, satisfying

λt = δλt−1 + vεt, ε ∼ iidN(0, 1).

The parameters,φ, δ andv are to be estimated.

A recent observation-driven model is the autoregressive conditional Poisson (ARCP)

model by Heinen (2003). For a time series of datayt with all prior observations denoted by

Yt−1, yt is modelled by

yt|Yt−1 ∼ Poi(µt),

with an autoregressive conditional mean

E(yi|Yt−1) ≡ µt = ω +

p∑

j=1

αjyt−j +

q∑

j=1

βjµt−j,

with αj , βj andω being positive, to ensureµt is non-negative.

A further observation-driven model worth noting is the firstorder Poisson autoregressive

(AR(1)) process by McKenzie (1988). This is considered by Al-Osh & Alzaid (1988) as a

special case of their integer valued autoregressive model (INAR), first described in Al-Osh

& Alzaid (1987).

A random variable is said to follow a first order INAR process with Poisson marginals

(writteny ∼ INAR(1)) if

yt = α ◦ yt−1 + εt.

Amongst many conditions on the variables (as summarised by Winkelmann (2003)),yt−1

andεt are independent Poisson variables.

The symbol◦ represents a mixture operation andα ◦ yt denotes the number of elements

out of t−1 that survive to periodt. The probability of survival is given byα. For the AR(1)

process by McKenzie (1988),◦ is binomial thinning.
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Winkelmann (2003) and MacDonald & Zucchini (1997) detail and discuss these models,

as well as describing the Poisson moving average process of order one by McKenzie (1988),

the similar integer-valued moving average (INMA) process from Al-Osh & Alzaid (1988)

and the INAR(1) model for negative binomial marginals.

The models described above are just some of a range of count data models. All essen-

tially involve the estimation of parameters, a task in itself which is often not straightforward.

The models also concern data in which the counts are Poisson-like and are correlated. In the

remainder of this thesis we use and develop techniques whichdo not require Poisson data

(although there are assumptions on the mean-variance relationship) and are therefore more

widely applicable. Furthermore, for the Iraq and central England temperature data sets,

introduced in Chapters 6 and 7 respectively, we show that after mean correction and trans-

formation, the time series are not correlated, raising further questions of the appropriateness

of such count data models for our data.

5.5 Variance Stabilising Transforms

We now describe some variance-stabilising (and Gaussianising) transformations which are

used in the remainder of this thesis.

5.5.1 Anscombe Square Root Transform

For Poisson data, wherer ∼ Poi(λ), Anscombe (1948) derived the transformation

y =
√
r + c, (5.5.11)

for stabilising the variance of the variabler. The mean and variance of the transform can be

calculated via a Taylor series expansion and it can be shown that for largeλ, the transformed

variabley has a ‘most nearly constant variance’ of1
4 when the constant,c = 3

8 . See Nason

(2008, chap. 6) for further details and a derivation of the square root transform.

Zhanget al. (2006) use a similar transformation within their procedurefor variance

stabilisation of Poisson counts. First, the observed signal is filtered, and the resulting sig-
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nal is variance stabilised using the Anscombe transform, but pre-multiplied by a constant.

Although different ‘filters’ can be used, the method focuseson the use of wavelets to first

transform the observed data. Methods are outlined to estimate the constants of the transfor-

mation set as well as a wavelet based denoising step.

5.5.2 Box-Cox

The primary objective of the Box-Cox transformation is theGaussianisationof the observed

signal (that is, to make the observed signal more Gaussian).A secondary effect of this is that

the variance of the data is often stabilised (as discussed byKendallet al. (1983, page 103)).

Due to its good Gaussianising performance, the transformation is used heavily in the

following chapters as a comparison to our new methods. We also use the ideas of finding

optimal transformation parameters via likelihood functions in Chapter 8, and as such, we

give the transformation and derivation of parameter estimation in detail.

Box & Cox (1964) consider the parametric family of power transformations

y(λ) =





yλ − 1

λ
, if λ 6= 0;

log y, if λ = 0.

(5.5.12)

For some unknownλ, the transformed observations are assumed to be independently Gaus-

sian, with constant varianceσ2 and expectation

E{y(λ)} = µ,

wherey(λ) is the vector of transformed observationsy1(λ), . . . , yn(λ).

The likelihood of the transformed variables in relation to the original observations is

obtained by multiplying the Gaussian density by the Jacobian of the transformation. The

likelihoodL(λ, µ, σ2), dependent on the transform parameterλ, meanµ and varianceσ2 is

L(λ, µ, σ2) =

n∏

i=1

((2πσ2)−1/2 exp
{
−(yi(λ) − µ)2/2σ2

}
J, (5.5.13)
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where the Jacobian,J , is

J =

n∏

i=1

∣∣∣∣
∂yi(λ)

∂yi

∣∣∣∣ . (5.5.14)

The maximum likelihood estimates are found in two steps. First, for a fixedλ, (5.5.13)

is, except for a constant factor, the likelihood of the leastsquares problem with response

y(λ) (as the Jacobian does not involveµ or σ). Hence the maximum-likelihood estimate of

µ, denoted for a fixedλ by µ̂(λ), is

µ̂(λ) = y(λ),

the mean of the transformed observations. The estimate ofσ2 for a givenλ, σ̂2(λ), is

σ̂2(λ) =

n∑

i=1

(yi(λ) − y(λ))/n = S(λ)/n,

whereS(λ) is the residual sum of squares of theyi(λ).

Thus, for a fixedλ, the partially maximised log-likelihood is, up to proportionality,

lmax(λ) = −(n/2) log σ̂2(λ) + log J, (5.5.15)

and is therefore a function ofλ which depends both on the residual sum of squaresS(λ)

and on the JacobianJ (whereJ = J(λ)).

A simpler form oflmax(λ) can be obtained by working with the normalised transforma-

tion

z(λ) = y(λ)J1/n. (5.5.16)

For the transformation in equation (5.5.12), we have

∂yi(λ)/∂yi = yλ−1
i ,

which gives

log J = (λ− 1)
∑

log yi.
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The normalised power transform can then be written as,

z(λ) =





yλ − 1

λẏλ−1
, if λ 6= 0,

ẏ log y, if λ = 0,

(5.5.17)

whereẏ is the geometric mean of the observations.

The partially maximised log-likelihood of the observations can then be written, apart

from constant, as

lmax(λ) = −(n/2) log(R(λ)/n), (5.5.18)

where

R(λ) = σ̂2
z(λ)n, (5.5.19)

is the residual sum of squares ofz(λ) andσ̂2
z is the variance of the transformed observations.

The maximum likelihood estimatêλ is the value of the transformation parameter for

which lmax(λ) is a maximum. Equivalently, it is the value for which the residual sum of

squares,R(λ) is minimised. A common way to find̂λ is to plot lmax(λ) (or R(λ)) for

various values ofλ.

An extended form of the transformation in (5.5.12) which takes two parameter values

was also proposed by Box & Cox (1964) and is defined as:

y(λ) =





(y + λ2)
λ1 − 1

λ1
, if λ1 6= 0;

log(y + λ2), if λ1 = 0.

(5.5.20)

The additional parameter allows for a constant to be added (or subtracted) from the data

before transformation as with the one parameter model. An example of its use is in survival

time experiments, where the origin of the response is not a true lower limit and thus a

constant is subtracted from the data. It can also be used to estimate an optimal constant to

add to negative data to ensure positivity.

Estimation of the second parameter can be incorporated intothe likelihood equation of

(5.5.13) and continued as with the one parameter transformation. The Gaussianised form,

equivalent to (5.5.17), is given by
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z(λ1, λ2) =





(y + λ2)
λ1 − 1

λ {G(y + λ2)}λ1−1
=
qλ1 − 1

λq̇λ1−1
, if λ1 6= 0,

log(y + λ2)G(y + λ2) = q̇ log q, if λ1 = 0,

(5.5.21)

where q̇ = G(y + λ2) is the geometric mean of the observations after addition of the

parameterλ2.

Analogously to (5.5.19), the partially minimised sum of squares for the two parameter

model,R(λ1, λ2) is defined as

R(λ1, λ2) = σ̂2
z(λ1, λ2)n. (5.5.22)

whereσ̂2
z(λ1, λ2) is the variance of the transformed observations. For the oneparameter

model, plots ofR(λ) againstλ are close to a parabola. As described by Atkinson (1987),

contour plots of (5.5.22) fall into two broad classes. In some examples there is a local min-

imum of the sums of squares surface, in the region of which thecontours are approximately

elliptical. For the estimates producing these local minima, approximate Gaussianity holds.

In other examples, the residual sums of squares declines steadily to zero asλ2 approaches

−ymin. There may or may not be a local minima, but there will always be a region of

parameter space in whichR(λ1, λ2) can be made arbitrarily small. This can be shown as

follows. If 0 < λ1 < 1, bothλ1 and1 − λ1 are greater than zero. Then from (5.5.21),

z(λ1, λ2) can be written as

z(λ1, λ2) = q̇1−λ1(qλ1 − 1)/λ1.

As λ2 → −ymin, at least one value ofq becomes very small and thusq̇ will also become

small. It follows thatq̇1−λ1 becomes small and the residual sum of squares decreases to

zero. It will therefore always be possible to makeR(λ1, λ2) arbitrarily small, but the result-

ing parameters may not result in Gaussianity of the transformed observations. We direct the

reader ahead to Figure 7.4 for a plot of the residual sums of squares, which displays some

of the problems outlined here.
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5.5.3 Some Data-Driven Variance Stabilising Transformations

When the underlying noise distribution of a signal is unknown, it is often desirable to es-

timate the variance stabilising transform from the data. Procedures using a data-driven

method include the ACE (alternating conditional expectation) procedure by Breiman &

Friedman (1985) and AVAS (additivity and variance stabilization), by Tibshirani (1988).

Given random variablesX andY , the ACE procedure looks to find the transformations

θ(Y ) andφ(X) that maximise the correlation between the transformed variables, cor(θ(Y ),

φ(X)), subject tovar(φ(X)) = 1. The transformations have the added property that they

minimiseE(θ(Y ) − φ(X))2, subject tovar(φ(Y )) = 1.

The procedure is iterative and alternates between the two conditional expectations

θ(X) = E(φ(Y )|X) and φ(Y ) =
E(θ(X)|Y )

[var(E(θ(X)|Y ))]1/2
, (5.5.23)

using the previous expectation of one function to get an update of the other untilE(θ(Y )−

φ(X))2 no longer decreases.

When the distribution of the data is unknown, scatterplot smoothers are used to replace

the conditional expectation in (5.5.23).

Tibshirani (1988) points out several drawbacks of the ACE algorithm and suggests that it

is better suited for correlation analysis rather than regression. The AVAS algorithm, which is

a modification of the ACE procedure has several advantages asit is designed specifically for

regression (advantages stated by Tibshirani (1988) include being able to reproduce model

transformations and sensitivity to the marginal distribution of the predictors,X).

A further transform is by Lintonet al. (1997) who detail an algorithm for transform-

ing additive nonparametric regression models and derives asymptotic distributions of the

estimators.

5.5.4 Haar-Fisz Transform

The Haar-Fisz (HF) transform, proposed by Fryzlewicz & Nason (2004), uses the Haar

wavelet transform to decompose the input vector into smoothand detail coefficients and

then stabilises their variance at all levels. The HF uses themean-variance relationship of
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the data to smooth the Haar coefficients.

We first define the discrete Haar transform (DHT), before describing modifications to it

resulting in the Haar-Fisz transform (HFT) for Poisson dataand the data-driven Haar Fisz

transform (DDHFT), from Fryzlewiczet al. (2007), for data where the exact distribution

is unknown. We follow the exposition from Fryzlewiczet al. (2007) (and also use the

same notation for wavelet coefficients with subscript denoting level, superscript denoting

location, in the rest of this thesis).

Let X = (Xi)
n
i=1 denote an input vector to the HF transform. The following list speci-

fies the generic distributional properties thatX must possess.

1. The length,n, of X must be a power of two. We denoteJ = log2(n).

2. (X)ni=1 must be a sequence of independent, nonnegative random variables with finite

positive meansµi = E(Xi) > 0 and finite variancesσ2
i = var(Xi) > 0).

3. The variance ofσ2
i must be a non-decreasing function of the meanµi:

σ2
i = h(µi), (5.5.24)

where the functionh is independent ofi.

For Poisson data,Xi ∼ Poi(λi), we haveµi = λi andσ2
i = λi, which givesh(µ) = µ.

The Haar-Fisz transform (HFT) decomposes dataX = (Xi)
n
i=1, wheren = 2J using

the Discrete Haar Transform (DHT) described in Section 5.2.The detail coefficients,dj
k are

then modified with the aim of stabilising their variance (andmaking them closer to Gaus-

sian). The inverse DHT is then applied to these modified coefficients to bring the sequence

back to the original data domain, where the transformed datahas a stabilised variance and

is also closer to Gaussian. We now describe the variance stabilising and Gaussianising of

thedj
k.

Consider firstdJ−1
1 = (X1 −X2)/2. Assume that the Poisson distributions ofX1 and

X2 are identical (which is likely if the underlying mean is piecewise constant). This implies

that the distribution ofdJ−1
1 is symmetric around zero. We want to stabilise the variance of

dJ−1
1 around2(J−1)−J = 1/2. So, we dividedJ−1

1 by 21/2 times its own standard deviation.
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We have

var(dJ−1
1 ) = 1/4(var(X1) + var(X2)) = σ2

1/2,

which gives21/2(var(dJ−1
1 ))1/2 = σ1 = h1/2(µ1). In practiceµ1 is unknown and we

estimate it locally byµ1 = (X1 + X2)/2 = sJ−1
1 . The approximate variance-stabilised

coefficientfJ−1
1 is given by:

fJ−1
1 =

dJ−1
1

h1/2(sJ−1
1 )

.

Fryzlewicz et al. (2007) continue this example to find a value forfJ−2
1 (and subse-

quent levels), which are of a similar form tofJ−1
1 . The coefficientsf j

k are called theFisz

coefficientsof X (as Fisz (1955) studied properties of variables of a similarform tof j
k ).

We now give the general algorithm for the HFT when the function h is known.

1. LetsJ
i = Xi, for i = 1, . . . , n.

2. For eachj = J − 1, J − 2, . . . , 0, recursively form the vectorssj andfj :

sj
k =

sj+1
2k−1 + sj+1

2k

2
; f j

k =
sj+1
2k−1 − sj+1

2k

2h1/2(sj
k)

, (5.5.25)

for k = 1, . . . , 2j .

3. For eachj = 0, 1, . . . , J − 1, recursively modifysj+1:

sj+1
2k−1 = sj

k + f j
k ; sj+1

2k = sj
k − f j

k ,

for k = 1, . . . , 2j .

4. SetY = sJ .

The relationY = FhX defines a nonlinear, invertible operatorFh which is called the

Haar-Fisz transform (ofX) with variance functionh.

5.5.5 Data-Driven Haar-Fisz Transform

Whenh is unknown it must be estimated from the data. Sinceσ2
i = h(µi), we estimate

the mean and variance ofX1,X2, . . . and use these values to estimateh. Let the empirical
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estimates of the mean and variance ofXi be

σ̂2
i =

(Xi −Xi+1)
2

2
,

and

µ̂i =
Xi +Xi+1

2
,

respectively.

The regression model

σ̂2
i = h(µi) + εi

is used, whereεi = σ̂2
i − σ2

i = (Xi − Xi+1)
2/2 − σ2

i and “in most cases”E(εi) ≈ 0, to

estimateh.

For eachk = 1, . . . , 2J−1, we havêµ2k−1 = sJ−1
k andσ̂2

2k−1 = 2(dJ−1
k )2, which leads

us to our final regression model

2(dJ−1
k )2 = h(sJ−1

k )2 + εk. (5.5.26)

In other words, we estimateh from the finest-scale Haar smooth and detail coefficients of

(Xi)
n
i=1, where the smooth coefficients serve as pre-estimates ofµi, and the squared detail

coefficients serve as pre-estimates ofσ2
i .

The unknownh is restricted to be a non-decreasing function ofµ and is estimated

from the regression problem (5.5.26) via least-squares isotone regression, using the ‘pool-

adjacent violators’ algorithm described in detail in Johnstone & Silverman (2005a). The

resulting estimate, denoted here byĥ, is a non-decreasing, piecewise constant function of

µ.

The DDHFT is performed as with the HFT above, except thatĥ replacesh.

Applications using the DDHFT can be seen in Motakiset al. (2006) where the DDHFT

is used on microarray data and in Chapter 6 where the number ofcoalition casualties in Iraq

is estimated. Modifications to allow negative data for both HFT and DDHFT are shown

in Chapter 7, whereas in Chapter 8, we investigate a maximum likelihood approach to the

Haar-Fisz transforms.
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A further application of the HFT is described by Fryzlewiczet al. (2006), where the

variance of a time series is estimated and used within a non-stationary model. Forecasting

using the model is also discussed and empirical results showmixed performance, compared

to other well known models.

5.5.6 Recent Work Generalising Fisz Variance Stabilising Transforms

Recently, Jansen (2006) has extended the ideas of the Haar-Fisz transformation for smooth-

ing Poisson data. The transform can firstly be seen as an extension to the Haar-Fisz trans-

form, modified so that in the variance stabilising step, any family of wavelet transforms

can be used (with the notion that the coefficients are beingGaussianisedinstead of vari-

ance stabilised). Incorporated into the transform is a thresholding step: a level-dependent

threshold is applied to the coefficients before being multiplied by the Gaussianising coeffi-

cient to return noise-free wavelet coefficients. The inverse-transformed coefficients are then

considered an estimate of the Poisson intensities. A new Bayesian thresholding scheme,

specifically for Poisson data is incorporated into the relevant step of the procedure.

In simulations, the transform was shown to have good performance, in terms of the mean

square error compared to the Haar-Fisz and Anscombe transformations. The transformation,

however, requires the data to be Poisson and hence can be viewed as a generalisation of the

Haar-Fisz transformation. In the Haar sense it is similar toperforming the HFT but after

the wavelet coefficient are variance stabilised, they are thresholded to remove noise. The

inverse stage of the transform thus produces denoised intensity estimates. The thresholding

step could be replaced with a different method.

Fryzlewicz (2007) defines a ‘wavelet-Fisz’ transformationfor Poisson data and a data-

driven wavelet-Fisz transform for when the distribution ofthe data is unknown. These trans-

forms either use the known mean-variance relationship, or an estimation via a Nadaraya-

Watson estimator. A thresholding step is also suggested within the methodology which

uses the estimated variance and local means of the data to setthresholding levels (for the

decomposed wavelet coefficients).

Similar to Jansen (2006) the transform can be adapted for anyfamily of wavelet, and

when the distribution is known (and Poisson) and the Haar wavelet is used, the transfor-
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mation reduces to the HFT. In contrast to Jansen (2006), the aim of this transformation is

variance stabilisation, and the data-driven version of thetransform allows a greater degree

of flexibility in assumption for real data.

The transformation is shown to perform well at estimating the underlying intensity of

signals drawn from the Blocks and Bumps signalswithout knowingthe original noise dis-

tribution.
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Chapter 6

Estimating the Intensity of Conflict

in Iraq

6.1 Introduction

6.1.1 Background

This chapter addresses the question of estimating the true intensity of coalition conflict, in

terms of coalition deaths, in Iraq since the current conflictbegan on 20th March 2003. The

chapter is based on the paper by Nason & Bailey (2008).

Generally, a large proportion of statistical work is concerned with both accurately quan-

tifying mortality and also the reasons and causes for such mortality, for example, epidemi-

ological studies. The work in this chapter focuses deliberately on estimation of the true

intensity but doesnot consider the rights and wrongs, or causes, of the conflict itself.

Our primary data set consists of the number of deaths of coalition personnel. The ex-

istence of such data raises extremely important questions for a variety of concerned parties

including the military, the respective governments, the people of Iraq and people from coali-

tion countries. For example: is the ‘true’ intensity increasing, decreasing or did it stay flat?

Or, did the true intensity increase or decrease during certain different periods of political

instability? As the Iraq Body Count website (www.iraqbodycount.net) points out:

“Knowledge of war deaths must be available to all”.
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Why consider this problem? Since the conflict started in 2003several websites have

appeared with the laudable aim of tracking the number of deaths in the conflict (for example,

www.icasualties.org,www.iraqbodycount.net). Some of these sites provide

graphs showing the raw data but also estimates of the ‘underlying mean’. Unfortunately,

most of these estimates are not very good, primarily becausethey do not take into account

the distributional properties of the data. In particular, these estimates do not take account

of the fact that the variance of the data depends strongly on the mean. We later show that

the number of deaths exhibits a clear non-decreasingmean-variance relationship. We have

obtained our data fromwww.icasualties.org.

Our primary concern is to get good estimates of the underlying death intensity. We con-

centrate on the recorded number of deaths of coalition service personnel which are accu-

rately recorded by the military and, hence, not subject to measurement error (although the

record does not include those ‘missing in action’ but these numbers are extremely small:

four unaccounted for up to 2nd July 2007, CNN Website (2007)). Also, althoughevery

death is one too many, the actual number of recorded coalition deaths per day is small in

statisticalterms. Hence, as with any low intensity count data, it is a statistical challenge to

estimate the underlying intensity.

A related problem, which is of great concern and importance,is the number of non-

coalition deaths stemming directly or indirectly from the conflict. We do not analyze these

here because:

1. Controversially, non-coalition deaths are not officially recorded by coalition forces,

see Robertset al. (2004). So, at best, the number of such deaths are themselves

estimated by external agencies, typically through media reports. These are subject to

measurement error which requires a whole set of new techniques.

2. As also highlighted by Robertset al. (2004) the number of non-coalition deaths is

much higher than the number of coalition deaths. With high intensity count data a

‘central limit theorem’ behaviour sets in and these cases tend to be ‘more Gaussian’

and more standard mean estimates, as currently used by the media and websites, work

reasonably well.
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6.1.2 Methodology

The problem that prevents us from using simple methods to estimate the mean intensity of

conflict is that these kinds of small count time series data often exhibit a non-trivial mean-

variance relationship as described next.

Suppose the number of deaths during weekt is denoted byXt ≥ 0. Letµt andσ2
t denote

the (marginal) mean (or intensity) and variance ofXt. We claim here that the variance is

some (non-decreasing) function of the mean. Mathematically, we writeσ2
t = h(µt) for

someh.

The classical example of such a setup also arose in a militarycontext. von Bortkiewicz

(1898) described data which counted the number of cavalrymen killed by horse or mule

kicks in 13 corps of the Prussian army. This data is presentedin modern form in Andrews &

Herzberg (1985) and can be obtained online in thevcd package for the R statistical system.

For the Prussian data the classical analysis assumes that the deaths,Xt, are distributed

as Poisson random variables. In this case it is known that themean equals the variance,

σ2
t = µt, and hence the non-decreasing functionh turns out to be the identity function

h(µ) = µ. This distributional form appears not to be the case for the Iraq data as later

sections will demonstrate.

An effective approach for this kind of data is that of variable transformation. Let us

denote the number of deaths per day of coalition forces (fromall causes) byAt. The idea

is to find a transformation function ofAt which creates a new variable which has a rela-

tively constant variance (that does not depend on the new variable’s mean) and also with a

marginal distribution closer to Gaussian. A popular and quick choice in this instance could

be thelog transformation, or maybe the square root transformation ifone suspected Pois-

son data. A better choice might be the famous Box-Cox transformation due to Box & Cox

(1964). This is described in detail in Section 5.5.2. Recallthat the Box-Cox transform of

variableX is given by

{(X + λ2)
λ1 − 1}/λ1 (6.1.1)

for λ1 6= 0 andlog(X+λ2) if λ1 = 0. The parametersλ1, λ2 can sometimes be selected by

maximum likelihood methods. However, as we shall see in Section 6.2.3, the two-parameter
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Box-Cox method does not always work well (in terms of bias, variance stabilisation and

Gaussianisation), and sometimes it cannot even be calculated at all.

The main transformation method considered here is theData-Driven Haar-Fisztrans-

form (DDHFT) recently introduced by Fryzlewiczet al. (2007) and described in Sec-

tion 5.5.4. This adopts a multiscale approach that has proven to be extremely effective.

Recall that the method works by estimating the mean-variance relationship and then stabi-

lizing the relevant time series at all scales and locations simultaneously. The operation of

the DDHF transform is denoted byFĥ where the subscript denotes that the mean-variance

function has been estimated byĥ.

There is a large literature for the analysis of time series count data, for example, Winkel-

mann (2003) or see Junget al. (2006) for a nice review and comparison of a whole series of

techniques. We review several of these models in Section 5.4. Most of these methods ad-

dress the separate issue of parameter estimation in models which often involve exogenous

variates and/or other time-constant parameters (e.g. analogues of the constant parameter

autoregressive processes). Our goal here is different in that we estimate the mean inten-

sity which is inherently time-varying. The other point to recall from Section 5.4 is that

much of the literature is concerned with Poisson-like response data (maybe with over- or

under-dispersion) which exhibits serial correlation whereas our modelling demands fewer

distributional assumptions and hence could be applied morewidely. Additionally, as shall

be demonstrated in Section 6.2.5, after appropriate mean correction the residual time series

are not autocorrelated. Hence there is a real question over the appropriateness of many of

the models for count data time series in the literature forthis data set.

6.2 Analysis of Deaths from All Causes

6.2.1 The Data

The number of deaths per day (from all causes),At, t = 1, . . . 1024 from 12th June 2003

until 31st March 2006 is depicted in Figure 6.1 and a number offeatures are apparent. Over-

all, the number of deaths per day is usually less than or equalto 5. In fact, approximately

91% of days have 5 deaths or less. However, it can also be observed that there are periods
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Figure 6.1: Number of deaths per day from all causes from 12thJune 2003 until 31st March
2006 (solid line). A marker indicating the width of 30 days isplotted on the far left of the
plot at level 15. Value of ‘off-scale’ observation is 37. Thedashed line is a 7-day running
mean (translated upwards by 10 so that it is is not obscured bythe data).

where the number of deaths per day are higher, although theremight not be a large number

on each and every day during such periods. For example, the numbers of deaths on days

570 to 590 (1st Jan 2005 to 21st Jan 2005) were:

1, 6, 1, 1, 4, 12, 14, 9, 8, 11, 10, 4, 12, 6, 1, 2, 5, 4, 0, 2, 1

During this period the number of deaths per day was much higher than usual. However, the

variation is also larger than during “quieter” periods. In other wordsthe variation of the data

is related to the mean level: the higher the mean the higher the variance or a non-decreasing

mean-variance relationship. This phenomena can also be observed directly in Figure 6.1.

We assume that the mean intensity (and hence the variance) changes over the period of

the conflict. However, we also implicitly assume that the change in mean intensity is not

too fast. Although we admit sudden changes we do not assume continual rapid change (that

is the mean could change suddenly, butnot change rapidly day after day for a prolonged

period). We believe these assumptions are realistic but we have not tested them in any

formal statistical sense.
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√
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6.2.2 Estimating the Mean-Variance Relationship with DDHFT

The first step of the DDHF transform estimates the mean-variance relationship,̂h. Fig-

ure 6.2 shows the local standard deviations,σ̂t plotted against estimated local means,µ̂t (as

estimated by DDHFT) and also the best non-decreasing fit (isotonic regression) is plotted

as a solid line.

It appears that the best non-decreasing fit lies mostly between they =
√
x (Poisson-

like) andy = x (χ2-like) lines (i.e.µt ≤ ĥ(µt) ≤ µ2
t ). Although the best-fit line does not

coincide withy = x, it is much closer to it than they =
√
x line.

The prime objective of our method is to stabilise the variance of the transformed series

(confirming that this is performed successfully is described in the next sections, particularly

model-checking in Section 6.2.5). The exact nature ofĥ is not of great importance here but

it is an interesting by-product which gives a general idea ofthe mean-variance relationship.

It would be interesting to study further the properties ofĥ, we discuss this in Section 6.6.
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6.2.3 Estimating the True Intensity

Using DDHFT.The DDHFT takesAt into a new series by applying the operatorFĥ to

obtainat = FĥAt andat is assumed to be well-modelled by

at = ft + ǫt, (6.2.2)

whereft is the transformed signal andǫt is distributed as iidN(0, σ2
a). It turns out, as we

shall verify later, this model forat is a very good one for our data.

Our primary aim is to obtain good intensity estimates. So rather than apply a single

smoothing method to the DDHF-transformed data we applied several, three of which are

listed in the Appendix B.1 (two wavelet shrinkage ones labelled S1 and S3, and one local

kernel regression one labelled S2). After smoothing we apply the inverse DDHF transform

to obtain an estimate in the original data domain. Figure 6.3shows our 3 smoothing methods

as applied toAt. Roughly, all estimators show more or less the same, although there are

some differences. From July 2003 until about January 2005 there has been a slow rise from

about 1.8 deaths per day to 2.8 deaths per day and since then a decline and plateau at 2.5

deaths per day. The estimators are flexible enough to detect some sharp rises in deaths

during January 2004 (large protests for direct elections),late June 2004 (power transferred

from coalition to Iraqis) and smaller peaks centred around late Jan 2005 (Iraqi election 30th

January 2005, also this period has single deadliest day for coalition since the war began),

late Mar 2005 (Iraqi assembly meets for the first time), earlyAug 2005 (Iraqi constitution

drafted), early Oct 2005 (Iraqi voting on constitution) andlate Dec 2005 (Parliamentary

elections held).

The reader can make what they will of the intensity estimates. However, ouropinion

is that, although the mean intensity for all causes of death does oscillate, there is a trend

upwards from the beginning of the series until about January2005 and then the intensity

levels off and then a slight decrease to another plateau at about June 2005.

Using Box-Cox.The one-parameter Box-Cox transformation, (6.1.1) withλ2 = 0 can-

not be used as, obviously, the number of deaths on a given day can be zero andlog(0) is not

defined. A popular recommendation in this case is to apply Box-Cox to, e.g.1+At but then
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Figure 6.3: Several estimators of the mean ofAt. Method S1 (solid line), S2 (dotted), and
S3 (dashed). OriginalAt sequence is shown in grey. The mean of the wholeAt sequence is
shown as a horizontal solid line.

one must ask the question why 1? This then leads onto use of thetwo-parameter Box-Cox

transform (6.1.1). Unfortunately, for our data, and also insituations of this kind it is well-

known that the likelihood is/can be unbounded and sensible parameter estimates are difficult

to obtain, see (Atkinson, 1987, 9.3). So generally, we do notuse Box-Cox here. The popular

choice of1 +At wastried but resulted in poorer variance stabilisation and Gaussianisation

properties than the DDHFT as judged by Breusch-Pagan tests and Kolmogorov-Smirnov

tests respectively. Additionally, one often pays a bias penalty when using transformation

methods. Both Box-Cox and DDHFT methods incur a penalty but the bias associated with

the DDHFT is, overall, dramatically less than with Box-Cox.See Appendix B.2 for some

empirical bias calculations that demonstrate this good performance. Theorem 3 from Fry-

zlewicz (2007) shows that the DDHFT procedure, using a Nadaraya-Watson estimate ofh,

is asymptotically unbiased.

Running Means.Several websites use running means to generate estimates oftrue inten-

sity. We described running means in Section 5.3.2. Recall that mathematically, the running
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mean at timet is given by:

rt = b−1
b∑

i=1

At+i−⌊b/2⌋, (6.2.3)

whereb is the number of observations used to form each local mean, the bandwidth, and⌊x⌋

is the largest integer less than or equal tox. The⌊b/2⌋ term in (6.2.3) causes the running

meanrt to be computed on a ‘window’ of observations centred onAt of lengthb.

The dashed line in Figure 6.1 shows a 7-day running mean for theAt time series. It is

extremely variable compared to the estimates in Figure 6.3.

One problem with running means is deciding on how to choose the window widthb.

Most websites chooseb too small which results in an extremely variable estimate and cer-

tainly of little use in estimating the underlying intensity. Another problem is that theb

parameter is global and does not adapt to local signal characteristics. If we chose the win-

dow width well for one part of the series it would almost certainly be wrong for another part.

In this respect the wavelet shrinkage and local kernel smoothing that we use are superior. A

third, and serious problem for this kind of data which exhibits non-constant variance, is that

the estimate itself is more variable in areas of high variability — this can be clearly seen in

the dashed line in Figure 6.1 (and is also demonstrated in Section 5.3.2).

6.2.4 A Bootstrap Test for Variance Stabilisation

Before we proceed with model checking, we suggest a new bootstrap test for variance sta-

bilisation. However, as will be shown, this test does not perform well compared to the

Breusch & Pagan (1979) test for heteroskedascity.

Briefly, our test operates in the following way.

1. Select a sample of consecutive points from the signalAt, centred on some random

point t, with random lengthL > 20, L even.

2. Split the sample from 1. about its centre into two equally sized parts. Perform Mood’s

two-sample test for a difference in scale parameters (mood.test in R, see Conover

(1971)), and record thep-value for this test.

3. Repeat 1. and 2.nsearch= 250 times and take the median of thep-values. This is the
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test statistic.

4. Repeat 3. Bsims= 99 times but each time on a different random permutation of the

initial series,At.

5. Compare the test statistic in 3. with the bootstrap simulations in 4. to obtain an overall

p-value for the test.

Essentially this test works as follows. If the variance ofAt, denoted byσ2
t is constant. then

permuting the values will have no effect on the distributionof the test statistic calculated

in 3. If the varianceσ2
t changes over time then thep-values from Mood’s test in 2. will

be small. Likewise, the medianp-value as computed in 3. will also be small. Thus, if

the test statistic is large compared to the bootstrap simulation, we conclude thatAt has a

non-constant variance.

Note that we assumed earlier that the mean intensity would not be subject to prolonged

periods of rapid change. If we did not assume this then long periods of rapid intensity

change could not be detected by our test.

Comparison with Breusch-Pagan Test

We generate data to test both our bootstrap test and the Breusch-Pagan test for heterogeneity.

We first generate data from the Gaussian distribution of length 512 with zero mean and unit

standard deviation. We then replace the lastk points of the data with new values, again

drawn from the Gaussian distribution, but with standard deviation σ2. We varyk to take

values 16, 32, 64, 128 and 256 andσ ranges from 1 to 3 in increments of 0.1. For each of

these sequences, which are known to have a non-constant variance, we measure the power

of the tests, that is, the number of times they correctly identify the variance as non-constant.

For each value ofk andσ we generate 100 sequences and take the mean of the size.

For each valuek, we plot the power against the value ofσ and compare the effectiveness

of the two tests. Figure 6.4 shows the power for the tests for valuesk = 32 andk = 64

respectively. For smallerk, the bootstrap test has a poorer performance and for larger

k (i.e. ≥ 64) the bootstrap compares more favourably. Further, increasing the variables

within the test, such as the sample sizeL, the number of iterationsNsearchor replications
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Bsims, are likely to improve the performance for smallerk. However, this will increase the

computational time for the test. We therefore choose not to use the bootstrap test to analyse

the effectiveness of the DDHF transform for the Iraq data andinstead use the Breusch &

Pagan (1979) test.

6.2.5 Model Checking

We now consider the statistical properties ofAt and the DDHF-transformed versionat. Our

hypothesis is thatAt is some uncorrelated sequence with a marginal distributionpossessing

the mean-variance relationship as estimated in the previous section.

Autocorrelation. Figure 6.5 shows several autocorrelation (acf) plots. The first, plot

(a.) shows the acf of the original sequenceAt and plot (b.) shows the same for the DDHF-

transformed sequence. There is some indication that the sequences might be autocorrelated

but one must remember that we believe that the mean of each series is not constant (as

it is this that we are trying to estimate). Autocorrelation figure 6.5.c shows the acf after

subtracting the mean estimate S3 fromat. It can be seen that after the varying mean has

been taken into account the acf more or less disappears. Hence, we have some justification

for assuming that{ǫt}, in the model for the transformed data (6.2.2), is uncorrelated. Figure

d. shows the acfs of the equivalent of c. but in the original data domain. The acf has almost

entirely disappeared. Hence, once the local mean has been successfully estimated we have

evidence that the sequenceAt is uncorrelated.

Constant variance.We tested the constant variance assumption using the Breusch &

Pagan (1979) test. For S1, S2, and S3 thep-values are 0.9, 0.76 and 0.63. Hence there is no

evidence for non-constant variance.

Gaussianity. We applied the Kolmogorov-Smirnov test to the residuals from each of

the fits shown in Figure 6.3. Thep-values of the residuals from S1, S2 and S3 are 0.009,

0.066 and 0.044 (hereH0 is the usual hypothesis that the samples are Gaussian with a

given mean and variance, estimated here by their sample values). So for method S2 there is

(formally) no evidence against Gaussianity. For S3 which issignificant at the 5% level, but

not the 1% level there may be weak evidence against Gaussianity. For S1 there is evidence

of non-Gaussianity. All of these tests are sensitive to the mean removal. It must also be
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Figure 6.4: Power of the Breusch-Pagan (solid line) and the bootstrap tests (dashed line) for
Gaussian data, mean 0 and standard deviation 1, with modifiedpoints of standard deviation
σ. Top: 32 modified points. Bottom: 64 modified points
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Figure 6.5: Clockwise from top left: autocorrelation functions of (a.) the number of deaths
due to all causes,At; (b.) at, the DDHF transform ofAt; (c.) at minus signal estimate S3
(below); (d.)At minus signal estimate inverse DDHF-transformed S3.
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Figure 6.6: Density estimate of residuals from S1 fit. Solid:residuals using DDHFT.
Dashed: residuals using Box-Cox.

remembered that the prime objective of variance stabilisation is to make variance constant

and Gaussianisation is only a secondary effect (that is why the constant variancep-values

above are so much better).

Having said that, the DDHF-transformed variates are much more Gaussian than those

produced by the Box-Cox transforms that we tried. For example, see Figure 6.6, which

shows the density estimates of residuals from the S1 fits using both DDHFT and Box-Cox

transformation methods. The Box-Cox residuals are clearlybimodal. The DDHFT residuals

have a ‘shoulder’ at about -1.5 but the density’s symmetry isbetter (so, roughly speaking,

more Gaussian looking). Similar pictures were observed from the residuals of S2 and S3.

6.3 Analysis of Deaths from Hostile Actions

Figure 6.7 shows the number of deaths from hostile actions, which we denote byHt, for the

same date range as for the deaths due to all causes.
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Figure 6.7: Number of deaths per day resulting from hostile action from 12th June 2003
until 31st March 2006. A marker indicating the width of 30 days is plotted on the far left of
the plot at level 15.

6.3.1 Estimating the Mean-Variance Relationship

As in Section 6.2.2 the first stage of the DDHFT algorithm is toestimate the mean-variance

relationship. Figure 6.8 again shows the estimated local standard deviations,̂σt plotted

against estimated local means,µ̂t and also the best non-decreasing fit (isotonic regression)

is plotted as a solid line. Once more the best non-decreasingfit is closer to they = x line.

6.3.2 Estimating the True Intensity

We again use the DDHFT and transformHt to a sequenceht. After smoothing using meth-

ods S1, S2 and S3 we obtain estimates as shown in Figure 6.9. The differences between

Figures 6.3 and 6.9 show that the deaths in Feb/Mar 05 were largely due to non-hostile ac-

tions as the second peak around that time is missing from Figure 6.9. Referring back to the

original records confirms that many non-hostile action deaths occurred around that time.

Further analysis of the differences between non-hostile and hostile deaths is presented in

Section 6.4.

The estimate of hostile death intensity shows a decline fromFeb 2005 to July 2005
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Figure 6.8: Hostile causes. Small circles: plot of estimated local standard deviation,̂σt, ver-
sus local mean,̂µt. Solid line: estimated mean-variance relationship function ĥ estimated
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√
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Figure 6.9: Several estimators of the mean ofHt. Methods S1 (solid line), S2 (dotted), and
S3 (dashed). OriginalHt sequence is shown in grey. The mean of the wholeHt sequence
is shown as a horizontal solid line.
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before another increase begins (apart from the extra peak, the “all deaths” series also shows

a decline). During this period there was a increase in the number of terrorist attacks upon

Iraqi citizens (Jan 2005: Iraqi elections held; Feb 28th 2005 saw the largest number of Iraqi

deaths in a single incident; Apr 2005 saw selection of Iraqi President and Prime Minister

“amid escalating violence”, BBC Website (2007)).

6.3.3 Model Checking

Similar model checking activities were performed for the deaths from hostile causes time

series. The acf plots were not noticeably different from thepatterns seen for “all deaths”

shown in Figure 6.5.

For constancy of variance the Breusch-Pagan test indicatedstrong non-constancy of

variance. On further examination we believe that this is dueto the almost zero count at

the very beginning of the series (around July 2003 in Figure 6.7). If we omit the first

30 observations in the Breusch-Pagan test then thep-values indicate no evidence for non-

constancy of variance. (Thep-values for S1, S2 and S3 are 0.08, 0.14 and 0.1 respectively).

For checking the Gaussian nature of residuals the Kolmogorov-Smirnov p-values for

the residuals for S1, S2 and S3 were 0.004, 0.04 and 0.01, again, strictly non-Gaussian at

the “5% level” but, for S2 and S3 at least nottoo non-Gaussian!

6.4 Differences due to Hostile and Non-Hostile Events

In this section we make use of the S2 kernel estimates for the intensity of deaths due to “all

causes” and hostile causes (the results were similar when weused the S1 and S3 methods).

Let us denote the mean intensity that we estimated in Section6.2 for all causes byµA
t

and the mean intensity that we estimated in Section 6.3 for hostile deaths byµH
t (these

were plotted as lines S2 in both Figures 6.3 and 6.9 respectively). Figure 6.10 shows both

estimates plotted on the same plot. Overall, on most occasions, a large “all causes” intensity

is associated with a large “hostile” intensity. However, there are occasions when the “all

causes” exceeds the “hostile” intensity. In particular, there is a big hump during March

2005 which appears to be due to entirely non-hostile causes.
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Figure 6.10: Time series plot of̂µA
t (solid line) andµ̂H

t (dashed).

Figure 6.10 raises the following question: is the intensityof non-hostile deaths related

to the intensity of hostile deaths? For example, one might think of several potential hy-

potheses: more ‘accidental’ deaths occur during period of increased hostile stress? Or more

‘accidental’ deaths occur when there is less concern about the hostile threat. Or some other

relationship might hold.

A plot of the numbers of deaths (thedata), At−Ht versusHt does not reveal much due

to the noise in these processes. Figure 6.11 shows a plot ofµ̂A
t −µ̂H

t versuŝµH
t for each time

point. There is evidence of a slight negative correlation (in fact, numerically the correlation

is -0.24). The dots in the bottom right hand of the plot are dueto three separate periods in

time and the spikes to the top and extreme top-left are both individual and separate periods.

Hence, the tentative conclusion is that fewer accidental deaths occur when the hostile threat

is greater. Further, it must be the case that the smaller number of accidental deaths is not just

because largernumbersof coalition forces are involved in battle as the numbers involved in

these skirmishes are relatively small. We propose that someother less direct mechanism is

at work. For example, it could be that in times of known higherhostile threat that people

are more vigilant and less subject to non-hostile action deaths.
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Figure 6.11: Plot ofµ̂A
t − µ̂H

t versus µ̂H
t . (Note that six values wherêµA

t − µ̂H
t

are slightly negative are omitted. The negative values to two decimal places are
−0.12,−0.06,−0.06,−0.05,−0.05,−0.03.)

6.5 Recent Work

Recently, Spirling (2007) suggested using reversible jumpMarkov chain Monte Carol (RJM-

CMC) techniques to investigate possible ‘jumps’ in the number civilian casualties, where

the overall rates of attack appear to change. This techniquehas the advantage that estimation

of the actual number of deaths is not required so they are not faced with the problems asso-

ciated with such a measure. The paper thus considers the frequency of attacks, rather than

their actual size and uses data fromwww.iraqbodycount.org to obtain aminimum

possible death toll (and avoid any possibility of over-counting).

The work attempts to answer the following questions: How many change points oc-

curred? If this number was known,whendid they occur? And finally, if change points and

dates were known, what were the effects? The number of pointsis assumed to be four and

this is used to discover when the jumps occurred. A comparison with events in Iraq, as well

the deaths per day before and after each ‘jump’ are used to suggest possible effects of these

changes.

The author gives a 90% highest posterior density (HPD) of therange of dates at which
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the jumps occur. This range for the first two jumps cover a period of over 9 months each.

Also presented is a plot of the change in rates of casualty incidence over time. The large

range in dates when the jumps occured, plus a fairly flat rate of change in casualty incidents

suggests the notion of four jumps is perhaps unwise. This first jump is stated as occuring on

26 January 2004. During this time, our data shows a large peakat a time of protest for direct

election. It is feasible that the two data sets are linked andwe suggest that their ‘jump’ point

during this time is caused by apeakin the intensity, rather than an overall increase.

Regardless of the interpretations of their results, the work presents an interesting alter-

native to estimating the actual number of deaths. Similar towork in this chapter, trends and

real life events are used to analyse results. We briefly suggest extensions of their methods,

in relation to coalition deaths, in the next section.

6.6 Some Interpretations and Next Steps

In this chapter we have proposed an analysis of the number of deaths of coalition personnel

due to both “all causes” and hostile action during the current Iraq conflict. Our main aim

was to supply good estimates of the mean intensity for both ofthese time series and to

improve on the highly variable estimates presented on various websites computed using

simple running means. As described in the text above, although oscillatory, the mean level

of the conflict intensity increased until about January 2005, then leveled off until about June

2005 and then underwent a slight decrease and a further leveling off until the end of the

series.

We also showed that, for both these data sets, the marginal variance of the series is

approximately equal to the square of the mean of the series. This is in contrast to the

classical ‘Poisson’ military example due to von Bortkiewicz (1898) and exhibits a greater

degree of variability at higher intensity levels.

Another, more tentative, conclusion is that the intensity of non-hostile deaths is in-

versely related to the intensity of hostile deaths. However, this conclusion should be sub-

jected to further scrutiny.

Further technical observations are that the DDHFT method stabilises (and Gaussianises)
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the data well and better than the Box-Cox method with a ‘popular’ parameter ofλ2 = 1

for data that contain zeroes. It was not possible to find good parameter values for the two-

parameter Box-Cox transformation as the likelihood was unbounded. We also tried AVAS

due to Tibshirani (1988) but did not get good results and so wedo not report them here

(using theavas() function from the packageacepack() in R).

There are many avenues for further investigation in this area. It would be interesting to

identify and study the theoretical properties ofĥ both to enable the construction of confi-

dence intervals and also to understand the robustness of theprocedure and implications for

the subsequent intensity estimation problem. This articlemakes use of isotonic regression

which itself confers a degree of robustness and localisation when compared to, e.g. para-

metric regressions. It is also important to note that for discrete data the number of repeated

points at a givenµt location is usually relatively high so outlier identification is often easier

when compared to the common situation of one observation at eachµt.

Another possibility would be to obtain forecasts of the future behaviour of the time

series, both of the future mean intensity and also its first derivative (to discover whether the

conflict was improving or deteriorating).

One might also wonder whether it would be more worthwhile to study death rates rather

than the absolute numbers. In particular, areas with fewer troops, more insurgents, or dif-

ferent operational policies might influence death rates significantly. One problem is that

acquiring such data is extremely difficult.

The RJMCMC method of Spirling (2007) could be applied to the coalition death toll to

pick out points at which the intensity increases. Although estimation of the numbers is not

an issue with our analysis, the results would be of interest and similar areas of jumps within

both datasets could provide links between coalition and civilian deaths.
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Chapter 7

Haar-Fisz Transforms for Negative

Data

7.1 Introduction

Chapter 6 showed how the data-driven Haar-Fisz transform can be used to stabilise variance

and Gaussianise count data, where the mean-variance relationship is estimated from the

data. The Box-Cox transform was also considered for the task, but not used due to problems

of choosing the transformation parameters and often (as wasthe case for the Iraq data), the

maximum likelihood can be unbounded.

In this chapter we introduce the central England temperature anomaly (CET) data set;

an annual temperature record of various locations in the UK.Its records date back as far as

1772 and is considered to be an accurate measurement of annual temperature. As such, it

is used to analyse the trend in temperature change by estimating an underlying intensity for

the data. We demonstrate how existing methods to estimate trend using a running means

estimator is not suitable as it does not take into account anyunderlying mean-variance

relationship within the data.

We investigate this mean-variance relationship and propose using a variance stabilising

transform before intensity estimation. We highlight the unbounded nature of the likelihood

equations when using the Box-Cox transform to stabilise thedata, as well as the limitations

of the data-driven Haar-Fisz transform (DDHFT).
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We then outline modifications to the DDHFT so that it can be used to stabilise the vari-

ance of the CET data. We create different transforms for whenthe mean-variance relation-

ship is known and unknown, and apply the latter to the CET datato stabilise its variance. We

can then use estimation techniques more suitable for the variance stabilised data to obtain

new estimates of the underlying trend in temperature change.

7.2 Central England Temperature Data 1772–2006

The central England temperature (CET) data set is the longest instrumental record in the

world and consists of temperature measurements taken from aroughly triangular area of

England extending from the Lancashire plains in the north, to London in the southeast and

Herefordshire in the southwest. It is described in detail byParkeret al. (1992) (which is

based on work by Manley (1953)). The CET data is taken from a succession of observing

sites and has been adjusted to remove heterogeneities between data sets, caused by changes

in exact location and methods over time. The final data set, which is commonly scaled to

be relative to 1961–1990, is referred to as ‘anomalies’.

The CET data has been used in many climatological studies. Regularly updated plots of

the data are published online as part of the Met Office Hadley Centre observation datasets

athttp://hadobs.metoffice.com/hadset/. The raw data, which includes daily,

monthly and seasonal observation values can also be downloaded from the website. Figure

7.1 shows the annual mean ‘anomalies’ from the CET data set from 1772–2006, plotted in

grey.

A much used smoothing technique for meteorological data is binomial filtering, as de-

scribed in Aubury & Luk (1995) (and detailed in Section 5.3.2). The 21-point binomial

filter has been used to smooth the CET data and is published on both the online plots and

in various other publications. This binomial filter, applied to the CET data can be seen as

the black line in Figure 7.1. The filter takes a weighted mean of a ‘window’ of data which

surrounds each point. Questions arise over the values of theweights and the size of the

window to use, and certain choices of the global parameters may result in poor performance

over some areas of the data. A further problem, as with the Iraq data of Chapter 6, is that
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Figure 7.1: Central England Temperature 1772-2006 (grey),with 21-point binomial filter
(black).

the estimate itself is more variable in areas where the data has high variability, as mentioned

in Section 5.3.3.

Many smoothing techniques assume a level of Gaussianity within the data and thus

make assumptions about the independence of a mean-variancerelationship of the data. We

next investigate a putative mean-variance relationship for the CET data more detail.

7.2.1 Analysis of Mean-Variance Relationship

We applied the technique of Section 5.5.5 to estimate the unknown mean-variance relation-

ship (h) of the CET data (using finest level Haar wavelet coefficientsto produce ‘pilot’

estimates of the mean and variance). The estimates are plotted as small circles in Figure

7.2. For negative means, the correlation between mean and variance is−0.062. For positive

means this value is 0.40 and when the largest 5 mean values areomitted, this rises to0.54.

We further investigate the complexity of the mean-variancerelationship found using

Haar coefficients as estimates of the mean and variance. We use a smoothing spline (using

the functionsmooth.spline in R) as a basis of this further investigation. For the mean,

we smooth our data using a cubic spline and take the smoothed value to be a local estimate
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Figure 7.2: Central England Temperature data. Plot of pilotvariance,̂σ2
i , versus pilot mean,

µ̂i. Dashed line: estimation of mean-variance function using DDHFT. Dotted line: mean =
0

of the mean. An estimate of the local variance is achieved by first taking the logarithm of

the squares of the data. These are then smoothed using splines and the logarithm inverted

to give the local variance approximation.

The plot of estimated mean and variance is shown in Figure 7.3. The spline estimation

clearly shows a decreasing mean-variance relationship fornegative means (with a−0.67

correlation). For positive means, (in particular those greater then 0.5), there is a much

smaller amount of data and there appears to be a positive mean-variance relationship (with

a0.86 correlation for means greater then zero). This, however, may be caused by a boundary

effect of the spline estimate. The plot also suggests that any change from a negative to a

non-negative mean-variance relationship might indeed occur at a point greater than zero. As

the data is limited, we can not ascertain from either estimates displayed in figures 7.2 and

7.3 the nature of the mean-variance relationship for positive means. We leave and additional

investigation of this as future work and assume the transition occurs at mean zero.

Before smoothing the data, we wish to first transform the datain order to stabilise the

variance which we have shown seems to be dependent on the mean. We attempt this with

both the Box-Cox transform, and the data-driven Haar-Fisz transform to highlight problems
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Figure 7.3: Spline estimate of local mean and local variance.

which arise in their application and to motivate modifications of the DDHFT.

7.3 Existing Variance Stabilising Transformations of the CET

Data

Box-Cox Transform. To highlight problems with the issue of choosing suitable parameters

for the Box-Cox transform, we show results from applying maximum likelihood estimation

Box-Cox techniques to the CET data set. As we have negative data, we have to use the two

parameter Box-Cox transform. As detailed in Section 5.5.2,we simplify the calculations by

Gaussianising the transformation. Maximising the likelihood function becomes equivalent

to minimising the the residual sum of squaresR(λ1, λ2) as defined by (5.5.22).

Atkinson (1987) describes how plots ofR(λ1, λ2) are not sensitive to the behaviour as

λ2 → -ymin, so we instead work in the scale defined by

λ2 = −ymin(1 − 10ε). (7.3.1)

Whenε = 0, 10ε = 1 andλ2 = 0. Forε > 0, λ2 > 0 andε < 0, λ2 < 0. Furthermore, as
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Figure 7.4: Residual sums of squares,R(λ1, ε) for the CET data.ε range is equivalent to
values ofλ2 between -2047.95 and 2.05.

ε→ −∞, λ2 → -ymin.

Note thatε can take any real value and that forε greater than zero, positive values ofλ2

are obtained. Also, .

Optimal parameters are thus found by minimising the reparameterised (Gaussianised)

residual sum of squaresR(λ1, ε) of the transformed CET data. The contour plot ofR(λ1, ε)

is shown in Figure 7.4. For the results plotted,ε ∈ (−12, 2) which corresponds to values of

λ2 between−2047.95 and2.05 (−ymin).

The contour plot shows the unbounded behaviour ofR(λ1, λ2). It indicates thatR(λ1, λ2)

approaches a minimum asλ2 → −ymin. We showed at the end of Section 5.5.2 how

R(λ1, λ2) will get smaller asλ2 → −ymin and thus for the CET data, no clear transfor-

mation parameters can be found.

Data-Driven Haar-Fisz Transform. We next use the data-driven Haar-Fisz transform

(with h unknown), as described in Section 5.5.4, to transform the data and attempt to sta-

bilise the variance. Figure 7.2 showed the pilot mean-variance estimates of the CET data

from the DDHF transform. The estimate of the mean-variance function ĥ, using isotone

regression (see Johnstone & Silverman (2005b)), is shown asa dashed line and does not fit
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the data well as the basic DDHFT assumes that the mean-variance relationship is strictly

non-decreasing.

Negative mean values and an apparent decreasing mean-variance relationship cause

problems in our current estimation ofĥ. Scaling the data by−1 could ensure a positive

mean-variance relationship (if indeed the relationship isdecreasing throughout the entire

data) and a constant could be added to the data to ensure positivity. These would both add

further parameters and questions could be raised as to how these are appropriately selected.

Regardless of these issues, if the mean-variance relationship is not monotonic, as is the case

with the CET data, the DDHFT as it stands is not suitable.

To cope with the mean-variance behaviour exhibited by the CET data, we next propose

modifications to the DDHFT.

7.4 Modifications to Haar-Fisz Transforms for Real Data

The Haar-Fisz transform (h() known) and the data-driven Haar-Fisz transform (h() un-

known) are described in Section 5.5.4. Both require positive data and assume the variance

σ2
i to be a non-decreasing function of the meanµi. We next detail modifications to both

transformations so that they are suitable for use with both positive and negative data.

7.4.1 The Negative Haar-Fisz Transform for Poisson Data

Here we outline our methodology which is a modification to theHaar-Fisz (HF) algorithm,

for Poisson data, as described in Fryzlewicz & Nason (2004).We model our datayi to be

such that

P (Y = y) =





λ|y|e−λ

2|y|! , if y ∈ Z \ {0},

e−λ, if y = 0

(7.4.2)

for λ ∈ 0, 1, . . . . Therefore the probability ofyi taking a negative value, say−y, is equal to

the probability of it taking the positive valuey.

The Haar-Fisz transform for such real-valued (potentiallynegative) data denoted by the

vectorv = (v0, v1 . . . , vN−1) for N = 2J wherevi ∈ R for all i, is defined as follows.

115



1. LetsJ
i = vi for i = 1, . . . , n.

2. For eachj = J − 1, J − 2, . . . , 0, recursively form the vectorssj, dj andtj:

sj
k =

sj+1
2k−1 + sj+1

2k

2
; dj

k =
sj+1
2k−1 − sj+1

2k

2
; tjk =

|sj+1
2k−1| + |sj+1

2k |
2

, (7.4.3)

and immediately definefj by:

f j
k =





0 if tjk = 0,

dj
k/

√
tjk otherwise,

(7.4.4)

for k = 1, . . . , 2j , noting that ifsj+1
2k−1, sj+1

2k ≥ 0, thentjk = sj
k in (7.4.3).

3. For eachj = 0, 1, . . . , J − 1, recursively modifysj+1:

sj+1
2k−1 = sj

k + f j
k ; sj+1

2k = sj
k − f j

k , (7.4.5)

for k = 1, . . . , 2j , and store the vectortj for use in the inverse of the transformation.

4. Setu = sJ .

This procedure differs from the existing HF methods by defining the coefficientstj .

This is the local mean of the magnitudes of our data, which we use to stabilise the variance.

For strictly positive data,tj is the same assj (which is then also equal to themagnitudeof

the mean).

Taking absolute values removes information about the sign of the data — information

which is needed when inverting the transform (specifically when inverting (5.5.25)). We

next give a numerical example to illustrate these problems.

7.4.2 Numerical Exposition

For clarification of the above procedure, we consider a simplified example with only two

data points. These are general points from a vector of data and could be from any level of

the recursive transformation.
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Let the values of these two data points be

sj+1
2k−1 = −2 and sj+1

2k = 5.

Then from (7.4.3) we havesj
k = 1.5, dj

k = −3.5 and tjk = 3.5. From 7.4.4 we get

f j
k = −

√
7/2.

We then form the Haar-Fisz transformed variables using (7.4.5)to get

sj+1
2k−1 =

3

2
−

√
7

2
≈ 0.40, sj+1

2k =
3

2
+

√
7

2
≈ 3.37.

In the context of a larger data set, we would expect the data tohave a stabilised variance

and to be more ‘Gaussian’.

Common practice would be to smooth this transformed data andthen to invert the

smoothed values to get back to the original data domain. Justto ‘see what happens’, we

intuitively follow a similar method to the inverse Haar-Fisz transform to invert the data.

Say, for example, we used a smoothing technique to obtain estimates of the underlying

intensity of our transformed data as

ŝj+1
2k−1 = 0.5 and ŝj+1

2k = 3.5. (7.4.6)

We then wish to invert the data back to the original data domain so we retrace our steps

backwards using the values in (7.4.6) to first produce

ŝj
k =

ŝj+1
2k−1 + ŝj+1

2k

2
= 2, f̂ j

k =
ŝj+1
2k−1 − ŝj+1

2k

2
= −1.5,

which is undoing the effect of (7.4.5).

We next undo the effect of (7.4.4) (the ‘Fisz’ step), to obtain the detail coefficients,

defined by

d̂j
k = f̂ j

k

√
tjk. (7.4.7)

This, however, raises the interesting question of which value of tjk to use. In the above,

we imply that the original value (from the ‘forward’ transform in (7.4.3)) is used. This is
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intuitive as we wish to get back to the original data domain, which this value is associated

with. However, since smoothing the data, this value is no longer specific to the values of

ŝj+1
2k−1 andŝj+1

2k which we are using. Should we then use the updated value,t̂jk defined by

t̂jk =
|ŝj+1

2k−1| + |ŝj+1
2k |

2
= 2?

Using either of these values fort would not guarantee that this step is invertible. We return

to the numerical example to explain this point further.

Using the original value oftjk, which we now denote using the further subscripttjk1
, we

obtain

d̂j
k = −1.5

√
3.5,

from (7.4.7). We then undo the operation in 7.4.3 to obtain our smoothed estimate of the

original data:

ŝj+1
2k−1 = ŝj

k + d̂j
k = 2 − 1.5

√
3.5 ≈ −0.806,

ŝj+1
2k = ŝj

k − d̂j
k = 2 + 1.5

√
3.5 ≈ 4.806.

(7.4.8)

If we were to produce a new value oft from this data, denoted bytjk2
, we would find that

tjk2
≈ 2.806. We would like these values oftjkl

(for l = 1, 2, . . . ) to be the same, so that

we can ‘undo’ any steps taken. We thus put our value oftjk2
back into (7.4.7) and calculate

subsequent updates,tjk3
, tjk4

, . . . .

This process can be repeated untiltjkl
= tjkl−1

, for somel, wherel is the number of

update iterations. It can be shown that using this iterativeupdate procedure,tjkl
converges

(asl → ∞) and takes the values

tjk =





|ŝj
k|, if (f̂ j

k)2 ≤ |ŝj
k|,

|f̂ j
k

√
tjk|, if (f̂ j

k)2 ≥ |ŝj
k|.

(7.4.9)

Proof of this convergence is given in Appendix C. It is interesting to note that this result

is a generalisation of the Haar-Fisz transform for positivedata, as we always have that

(f̂ j
k)2 ≤ |ŝj

k|.
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7.4.3 Inverse Transformation

Our inverse of the transformation can thus be summarised as follows:

1. Apply the Haar DWT tôu to produce(̂sJ , f̂
J
, f̂

J−1
, . . . , f̂

1
).

2. Define:

t̂jk =





|ŝj
k|, if (f̂ j

k)2 ≤ |ŝj
k|,

|f̂ j
k

√
tjk|, if (f̂ j

k)2 ≥ |ŝj
k|.

3. Apply the inverse Haar DWT tôsj and f̂
j
, undoing the effect of (7.4.4) as each scale

is produced to give:

ŝj+1
2k−1 = ŝj

k + f̂ j
k

√
tjk, (7.4.10)

and

ŝj+1
2k = ŝj

k − f̂ j
k

√
tjk. (7.4.11)

4. Setv = sJ .

7.4.4 Negative Data-Driven Haar-Fisz Transformation forh Unknown

Recall that when the mean-variance relationship is unknown, a function estimate can be

obtained by fitting isotonic regression to local estimates of the mean and variance to obtain

the functionĥ, as described by Fryzlewiczet al. (2007). Recently, Fryzlewicz (2007) pro-

posed using a Nadaraya-Watson estimator for the mean-variance function. Here, we extend

methods using isotonic regression.

We wish to fit a curve which takes account of the different behaviour of the function for

positive and negative means. That is, we wishh to be strictly non-increasing for negative

means and strictly non-decreasing for positive means.

Assuming this behaviour is correct, we further classify thedata into two different situ-

ations. Firstly, we may believe that the mean-variance relation is different for positive and

negative means and hence we estimate two separate curves, each based solely on either the

positive or negative local estimates of the mean and variance.

Alternatively, we might assume that the mean-variance relationship for positive and
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negative means is equal in value, but opposite in sign. We thus estimate theabsolutemean-

variance relationship and translate it for the negative means. We discuss both of these

possibilities next.

DDHFT2. In our first modification to the estimation step, we wish to estimate the

mean-variance function̂h such that it is non-increasing for negativeµi and non-decreasing

for positiveµi. We consider these as two separate functions, calledĥ− andĥ+ respectively,

which are calculated using isotone regression separately on both positive and negativeµi.

Our estimate of̂h is then defined as

ĥ =





ĥ−, if µi < 0,

ĥ+, if µi ≥ 0.
(7.4.12)

This estimate is used as in the original DDHFT. We refer to this modified version as

DDHFT2 in the remainder of this chapter.

DDHFT3. Our second method of modifying the mean-variance estimation procedure is

as follows. We assume that the mean-variance function we aretrying to estimate is such

that

σ2
i = h(|µi|). (7.4.13)

We thus look at the relationship between the absolute value of the mean and the variance.

This is achieved by ‘flipping’ the negative estimates of the mean to the positive domain, and

estimating a non-decreasing curveh as with the original DDHFT. The functionh is then

translated back to the negative domain for the corresponding negative means. The function

ĥ is therefore an even function of the mean,µi and is defined by:

ĥ =





h, if µi ≥ 0,

−h, if µi < 0.
(7.4.14)

Whereh is the mean-variance estimate from (7.4.13). We refer to this method as

DDHFT3 in the remainder of this chapter.
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Figure 7.5: Donoho and Johnstone intensity functions translated to have (min, max) of
(-4,4).

7.5 Simulated Comparisons

We compare our modifications to the DDHFT withh unknown to the one and two param-

eter Box-Cox transform. We use the test functions as described in Donoho & Johnstone

(1994) as underlying signal intensities which we corrupt with noise and test our methods by

comparing how well the true underlying intensity is detected.

The test functions used are the Bumps, Blocks, Heavisine andDoppler signals, of length

n = 1024, which are linearly shifted and scaled to achieve (min, max)intensities of (-4, 4).

We also modified the blocks signal to be two consecutively joined blocks signal, in which

the second had been scaled by−1. Each signal we used can be seen in Figure 7.5.

We use the test signals above to act as different underlying Poisson intensitiesλi, i =

1, . . . , n. Each of the signals is corrupted with noise to produce our observed sequence

v = (v1, v2, . . . , vn) with n = 1024. As we wish thevi to have both positive and negative

values, we define the sequence of variablesv such that:

vi ∼ Poisson(|λi|)sgn(λi). (7.5.15)
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For each of the 4 test signals above, we carry out the following:

1. Create a sequence of variables,vi, as defined by (7.5.15).

2. Transform the data using both the 1 and 2 parameter Box-Coxtransform and our two

versions of the DDHFT.

3. Take the discrete wavelet transform of the data, for each of Daubechies extremal

phase wavelets with 1 to 10 vanishing moments.

4. Use wavelet thresholding to smooth the transformed data,using EbayesThresh from

Johnstone & Silverman (2005a) (as described in Section 5.3.1).

5. Take the inverse wavelet transform of the thresholded sequence.

6. Take the inverse of the method used in step 2.

For each signal, we then have a sequence of known intensitiesλi along with our corre-

sponding estimate, which we denote byλ̂n. The mean squared error,

MSE =
1

N

N∑

n=1

(λn − λ̂n)2, (7.5.16)

is used to compare our estimated intensities with the known intensities, the smaller the

MSE, the closer the estimate is to the ‘truth’.

7.5.1 Simulation Results

The results reported in Tables (7.1)–(7.4) are the mean and standard error (SE) of the MSE

(to three decimal places) for 100 replications of the above procedure. For the one parameter

Box-Cox transform, the data are arbitrarily shifted to haveminimum value of 1. Optimal

(or near optimal) values for the transformation parametersare found using the functions

boxcox.fit andbox.cox from the R packagesgeoR andcar respectively. Our mod-

ifications to the DDHFT, as well as our threshold smoothing methods use code and functions

from EbayesThresh andDDHFm packages in R.

Overall, apart from the Haar wavelet, there is no significantdifference between the

performance with different wavelets. For all but the Bumps data, the two methods of the
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Bumps
Wavelet Family 1 Param. B-C 2 Param. B-C DDHFT 2 DDHFT 3

Mean SE Mean SE Mean SE Mean SE

1 0.609 0.051 0.599 0.053 0.450 0.050 0.439 0.056
2 0.516 0.052 0.505 0.050 0.456 0.064 0.429 0.054
3 0.502 0.060 0.490 0.058 0.494 0.073 0.466 0.058
4 0.537 0.062 0.527 0.060 0.517 0.069 0.502 0.063
5 0.528 0.058 0.517 0.058 0.500 0.068 0.490 0.065
6 0.511 0.055 0.502 0.054 0.489 0.055 0.486 0.058
7 0.505 0.064 0.498 0.061 0.532 0.064 0.524 0.064
8 0.553 0.065 0.544 0.064 0.575 0.064 0.576 0.062
9 0.574 0.068 0.563 0.067 0.567 0.065 0.563 0.064
10 0.553 0.060 0.544 0.059 0.564 0.061 0.558 0.062

Table 7.1: Mean and standard error (SE) MSE values for Bumps signal. The best mean
MSE for each family of wavelet is surrounded by a box. The overall optimal value is found
using the DDHFT3 and the wavelet with 2 vanishing moments.

Blocks
Wavelet Family 1 Param. B-C 2 Param. B-C DDHFT 2 DDHFT 3

Mean SE Mean SE Mean SE Mean SE

1 0.555 0.162 0.562 0.161 0.660 0.207 0.701 0.202
2 0.844 0.090 0.842 0.090 0.638 0.096 0.642 0.108
3 0.863 0.081 0.860 0.081 0.650 0.097 0.651 0.093
4 0.859 0.085 0.856 0.085 0.717 0.101 0.716 0.100
5 0.865 0.090 0.862 0.091 0.733 0.110 0.722 0.102
6 0.871 0.085 0.869 0.085 0.713 0.092 0.717 0.088
7 0.866 0.084 0.863 0.084 0.692 0.093 0.693 0.095
8 0.854 0.090 0.852 0.089 0.673 0.093 0.681 0.090
9 0.848 0.087 0.844 0.087 0.663 0.102 0.666 0.098
10 0.846 0.085 0.844 0.086 0.675 0.104 0.663 0.097

Table 7.2: Mean and standard error (SE) MSE values for Blockssignal. The best mean
MSE value for each family of wavelet is surrounded by a box. The overall optimal value is
found using the DDHFT2 and the wavelet with 2 vanishing moments.
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Heavisine
Wavelet Family 1 Param. B-C 2 Param. B-C DDHFT 2 DDHFT 3

Mean SE Mean SE Mean SE Mean SE

1 0.634 0.88 0.615 0.088 0.144 0.023 0.147 0.038
2 0.345 0.101 0.345 0.101 0.114 0.026 0.109 0.024
3 0.322 0.099 0.318 0.099 0.121 0.030 0.113 0.033
4 0.342 0.116 0.340 0.116 0.111 0.032 0.108 0.032
5 0.334 0.102 0.334 0.102 0.106 0.031 0.103 0.032
6 0.332 0.108 0.329 0.109 0.107 0.034 0.105 0.034
7 0.329 0.107 0.329 0.105 0.115 0.034 0.105 0.034
8 0.345 0.112 0.343 0.109 0.117 0.030 0.112 0.033
9 0.353 0.112 0.351 0.111 0.114 0.030 0.113 0.034
10 0.351 0.116 0.350 0.115 0.109 0.031 0.108 0.034

Table 7.3: Mean and standard error (SE) MSE values for Heavisine signal. The best mean
MSE value for each family of wavelet is surrounded by a box. The overall optimal value is
found using the DDHFT3 and the wavelet with 5 vanishing moments.

Doppler
Wavelet Family 1 Param. B-C 2 Param. B-C DDHFT 2 DDHFT 3

Mean SE Mean SE Mean SE Mean SE

1 0.799 0.104 0.785 0.103 0.349 0.042 0.355 0.052
2 0.530 0.117 0.537 0.112 0.372 0.050 0.359 0.048
3 0.482 0.111 0.487 0.110 0.363 0.054 0.339 0.049
4 0.469 0.112 0.475 0.109 0.315 0.051 0.292 0.044
5 0.450 0.106 0.456 0.105 0.289 0.045 0.278 0.043
6 0.435 0.113 0.441 0.110 0.311 0.048 0.297 0.043
7 0.453 0.112 0.461 0.108 0.335 0.054 0.313 0.050
8 0.447 0.105 0.454 0.103 0.333 0.053 0.312 0.049
9 0.456 0.113 0.466 0.112 0.305 0.049 0.289 0.040
10 0.442 0.108 0.449 0.108 0.294 0.054 0.276 0.045

Table 7.4: Mean and standard error (SE) MSE values for Doppler signal. The best mean
MSE value for each family of wavelet is surrounded by a box. The overall optimal value is
found using the DDHFT3 and the wavelet with 10 vanishing moments.
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DDHFT out perform the Box-Cox transform across wavelets 2–10 (although Bumps is good

for wavelets 1–6). It should be noted that the Box-Cox does give better results for Blocks

data, when the Haar wavelet is used in the wavelet transform and this is the best overall.

The Bumps data produces very similar results for the different methods, with the minimum

value of the MSE resulting from one of the Haar-Fisz transforms 6 times out of 10, and once

with the same minimal value as a Box-Cox transform.

When comparing the two proposed methods, the Bumps signal isthe only data where

DDHFT3 has a lower MSE that DDHFT2 over all wavelets, although this difference is quite

small. For both the Heavisine and Doppler signals, only oncedoes DDHFT2 outperform

DDHFT3. Again, the difference in actual MSE values are minimal, both having a 2%

smaller MSE. The MSE for the blocks signal is again very similar, with the minimum values

showing more for DDHFT2.

As this is simulated data, it would be expected that both DDHFT2 and DDHFT3 would

perform very similarly, as the noise added is symmetrical around zero. Further, given the

models, it would be expected that DDHFT3 would out perform DDHFT2. This indeed is

the case, with the DDHFT2 having a smaller MSE that DDHFT3 only a quarter of the time.

An investigation of the mean-variance relationship is key in deciding which would be best

for real-life data.

7.6 Choice of Modification Method

We have produced two modifications of the DDHFT which both assume certain behaviour

of the mean-variance functionh. When such behaviour is not known, it may be desirable to

testh to assess its ‘goodness of fit’. We devise a bootstrap test forchoice of transformation

which, under the null hypothesis, tests whether the values of h are the same for positive and

negative values ofµi. If they are, we choose to use DDHFT3, otherwise we assume the

relationship is independent and use DDHFT2.
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7.6.1 Bootstrap Test

The test works as follows: we test the null hypothesis,H0: positive and negative mean-

variance the same (DDHFT3) against the alternative,HA: the mean-variances are different

(DDHFT2), i.e.,H0: model (7.4.14) is true, versesHA: model (7.4.12) is true.

We denote the estimate of the mean-variance function asĥ for DDHFT3, when the

negative data has been ‘flipped’ andh̃ for DDHFT2, when the estimate is created by con-

sidering positive and negative means separately. We further define the positive and negative

components of̃h ash̃+ andh̃− from (7.4.12).

Given dataX = X1,X2, . . . ,Xn, with n = 2J , J = 1, 2, . . . , underH0 we carry out

the following:

1. Calculate the test statistic,TS(X) on dataX, as described in Section (7.6.2).

2. Perform a bootstrap simulation of the data conditioned onĥ (as described in Section

7.6.3) to obtain a simulated local variance estimate,σ∗2i for each of the local mean

estimates,µi.

3. Repeat step 2.,Bsim= 1000 times, calculating̃h(µi) for the mean and simulated vari-

ance estimates. Calculate the test statistic usingh̃(µi), from (7.6.17) below, denoting

the value byTSb for b = 1, . . . , Bsim.

4. Compare the test statistic in step 1. with the bootstrap simulations in step 3., to obtain

an overallp-value for the test.

We next describe our test statistic and bootstrap methods.

7.6.2 Test Statistic

Given dataX = X1,X2, . . . ,Xn (or local mean and variance estimates,µi andσ∗2i ), es-

timate h̃(µi), using DDHFT2. In doing so, we form two separate estimatesh̃− and h̃+

for negative and positiveµi respectively. Under the null hypothesis, we assume that the

function h̃ is an even function. That is, if we were to ‘flip’ its negative part ĥ− so it took

values of positiveµi, we should find that̃h− = h̃+. Thus, if the null hypothesis is true, the

difference between these values will be small.
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Our test statistic is defined as,

TS(X) =

n∑

i=1

(
h̃+(µi) − h̃−(µi)

)2
, (7.6.17)

which is the sum of the squares of the difference of the two estimates, at each of the local

mean estimates|µi|. Larger values indicate a significant difference betweenh̃− andh̃+ and

the need for separate estimates.

For real life data,̃h− andh̃+ may not be of the same length due to a differing number of

positive and negativeµi values. In these cases we interpolate the respectiveh̃ so they have

equal length.

7.6.3 Bootstrap Simulations

We refer the reader to Davison & Hinkley (1997) for further details and examples of boot-

strap tests. Our bootstrap simulations work as follows. Fora given data setX = X1,X2, . . . ,Xn,

perform the first step of either DDHF transform (which is the discrete Haar wavelet trans-

form), to obtain local estimates of the mean,µi and varianceσ2
i Under the null hypoth-

esis, we estimate the mean-variance relationshipĥ(µi) = σ2
i , for each local estimate

i = 1, . . . , n/2. For eachµi, we now have a known variance,σ2
i and a fitted variance,

ĥ(µi). We can thus calculate the fitted residuals as

ri = σ2
i − ĥ(µi), (7.6.18)

for i = 1, . . . , n/2. For each value ofµi we create a simulated variance, denoted byσ∗2i

and defined by

σ∗2i = ĥ(µi) + rj , (7.6.19)

with j randomly sampled from1, . . . , n/2, with replacement. We thus have a new set of

local variance estimates,σ∗2i for the local means,µi.

It is possible to invert the initial stage of the DDHF transformation to obtain ‘simulated

data’, but in practice we use these mean and variance estimated directly in our calculation

of the test statistic.
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Figure 7.6: Example of simulated Poisson data.

Note that if the fitted variance is close to the original variance then theri in (7.6.18) will

be small and the re-assignment step in (7.6.19) will cause little change in the variance (and

thus the test statistic will be small).

7.6.4 Bootstrap Test Assessment: Test Size

We wish to assess the efficiency of our bootstrap test at identifying whether or not the

underlying mean-variance relationship is symmetrical. For this we use simulated data sets

for which the truth is known.

We first calculate the size of the test, that is, given that thedistribution is known to have

a symmetrical mean-variance relationship, we wish to calculate the number of times the

tests reject the null hypothesis (i.e. choose DDHFT2 over DDHFT3).

Our simulated data is drawn from a Poisson distribution suchthatXi ∼ Poi(λi) for

i = 1, . . . , 256. Ourλi consist of8 ‘blocks’ of data of length32, each with equal intensity

λ, taking the values10, 5, 2, 1, 1, 2, 5, 10. The first half of the data is then scaled by−1 to

create negative data. An example of such data can be seen in Figure (7.6). We create500

such data sets and test the mean-variance relationship using our bootstrap test.

The proportion of times the test wrongly rejected the null infavour of the alternative
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was0.18. This figure is fairly high considering the desired size of a test would be around

0.05. The length of the data and more specifically thesizeof the blockscan results in

apparent differences between two (identically distributed) sets of generated data. Over a

larger sample, two independent, identically distributed random samples should appear more

similar and our test would expected to have a smaller ‘size’.

To test this, we calculate the size of the test on the same sequence ofλi, but with

‘block’ size of 64 and128 (giving sequence length512 and 1024 respectively). The size

corresponding to these sequences are 0.09 and 0.02. As expected, the tests improve with

more data.

7.6.5 Bootstrap Test Assessment: Test Power

We next look at assessing the power of the bootstrap test. Ourmethodology involves using

estimates of the mean-variance function taken from the data. We then change this estimate

to produce a set-up close to the original data but with an unknown mean-variance relation-

ship. Starting with data with a known symmetrical mean-variance relationship, we wish to

alter the data such that this relationship gradually becomes increasingly different for positive

and negative mean values. We do this for two different methods as follows.

We first alter the data by adding a constant to the values for which the mean is positive.

This has the effect of shifting the positive part of the mean-variance function to the right.

Figure (7.7) shows the mean-variance relationship of the simulated data from Figure (7.6).

The solid line is the estimated mean-variance function of the simulated data, whereas the

dashed line shows how this line alters for positive means, when a constant of3 is added to

the positive parts of the data.

Our second method of finding the power of the test consists of altering the data in such

a way to cause some of the data to become over-dispersed. Thatis, for the mean-variance

function corresponding to positive means, we wish to alter the data in such a way that for

a given value of mean, the corresponding variance is larger.We do this by altering the

detail coefficients of the HWT of the data, which act as a localestimate of the variance.

Once altered, the transformation is inverted to obtain a newsequence which is the same

for negative values, but is now over-dispersed for positivevalues. The detail coefficients
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Figure 7.7: Mean-variance estimates from simulated data. Solid line: estimates using
DDHFT2. Dashed line: estimate with constant 3 added to the positive mean. Dotted line:
estimate with constant 2 added to the standard deviation (corresponding to positive mean
values).

corresponding to positive means are transformed such that:

d∗1i = d1i + c,

where c is a chosen constant. The dotted line in Figure 7.7 shows an alteration with constant

2. Note that we add the constants to the estimates from DDHFT2(and not DDHFT3) as we

wish for the changes to be independent of the values of the negativeµi.

For both methods, we add a constant to the mean or the variancewhich increases from

0 to 1 in step sizes of 0.1. For each, the bootstrap test is carried out on250 generated

data sets to detect this change and the power is calculated asthe proportion of times the test

successfully identifies a change in the mean-variance relationship at the 5% level. The mean

size of each of these signals is 0.17 which is expected as we are not adding any constant to

either mean or variance (so in essence performing the same calculation as in Section 7.6.4).

The power of the test for when the mean is altered can be seen inFigure 7.8 as a solid

line. The dashed line represents the power for the over-dispersed data.
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7.7 Applications to the Central England Temperature Series

Figure 7.9 displays both estimatesĥ andh̃ for the local meanµi and standard deviationσi

estimates of the CET data. The bootstrap test statistic willbe influenced more by the large

number of data points close to mean zero, and less for the moresparse data with larger mean

magnitude. Thep-value from the bootstrap test for the CET data was 0.14, so wecan’t reject

the null hypothesis and therefore the use of DDHFT3. From oursimulated investigation into

the power of this bootstrap test on a similar sized data set, we would expect to accept the

null hypothesis at the 95% level if either the difference in mean of the two estimates were

greater than 0.7 or the difference in variance were greater than 0.4

In an applied sense, as the temperature deviates from the ‘base’ rate the range of values

it takes will also increase. The symmetry of the mean-variance relationship suggests that

the rate of this variance is to an equal level, whether the temperature is getting higher or

lower (than the base rate).

Figure 7.10 shows the CET data set together with smoothed estimates. The solid line

uses DDHFT3 and kernel regression smoothing using a local plugin bandwidth (using the

lokern package in R. See Brockmannet al. (1993)). The corresponding values using
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Figure 7.9: Central England Temperature data. Small circles: plot of local standard devia-
tion, σ̂2

i , verses local mean,̂µi. Solid line: estimated mean-variance relationship function
ĥ using DDHFT2 method of isotonic regression. Dashed line: estimated mean-variance
relationship using DDHFT3 (symmetric).
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Figure 7.10: Smoothed CET data, using DDHFT modifications and kernel regression
smoothing. Solid line: using DDHF2. Dashed line: using DDHF3.
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Figure 7.11: Smoothed CET data, using DDHFT modifications (with kernel regression
smoothing) and a 21-point binomial filter. Solid line, Binomial filter. Dotted line: DDHFT2.
Dashed line: using DDHFT3.

DDHFT2 are shown as a dashed line. For comparison, we plot these two estimates again

in Figure 7.11 as a dotted and dashed line respectively, but with the 21-point binomial filter

estimate as a solid line.

Both estimates are similar, with the DDHFT2 estimate varying more around 1820, and

overall being slightly more variable than the DDHFT3. Our bootstrap test suggested that

the DDHFT3 was more suitable for the data. The lack of variability means that peaks can

be more accurately assessed and identified. Based on the DDHFT3 estimate, our intensity

estimation appears less variable than that of the binomial filter shown in Figure 7.11. For the

first half of the data, the temperature exhibits peaks in temperature but continually returns

to a base rate of around -0.5. From the end of the 19th century,the temperature increases

steadily. From 1970 the temperature rises at a much faster pace and continues up to the end

of the data. Similar conclusions are drawn when comparing the DDHFT2 estimate.

7.7.1 Model Checking

It is worth considering the statistical properties ofAt and the DDHFT3 versionat. Figure

7.12 shows several autocorrelation (acf) plots. The first, (a.) shows the acf of the original

133



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

a.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

b. (DDHF3)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

d.

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

c. (DDHF3)

Figure 7.12: Clockwise from top left: autocorrelation functions of (a.) CET data,At; (b.)
at, the DDHFT3 ofAt; (c.) at minus kernel regression smoothing estimate; (d.)At minus
signal estimate inverse DDHFT3.

sequence, which we denote byAt and plot (b.) shows the same for the DDHFT3 ofAt,

denoted byat. There is some indication that the sequences might be autocorrelated, but we

also believe that the mean of each sequence is not constant (as this is what we are trying

to estimate). Figure 7.12c. shows the acf after subtractingthe mean estimate using kernel

regression smoothing fromat. After the mean has been taken into account, the acf virtually

disappears. Plot (d.) shows the acf of (c.) but in the original data domain. Again, the acf has

almost entirely disappeared. Hence, once the mean has been estimated we have evidence

that the sequenceAt is uncorrelated.

We test the constant variance assumption of the transformedresiduals using the Breusch

& Pagan (1979) test. For the kernel regression smoothing, thep-value is 0.16 and hence no

(formal) evidence for non-constant variance.

We use the Kolmogorov-Smirnov test on the same residuals andfind ap-value of 0.23

and hence no evidence against Gaussianity.
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7.8 Conclusions and Future Work

This chapter has proposed modifications to the data-driven Haar-Fisz transformations for

both known and unknown mean-variance functions. The modifications allow transforma-

tion of negative data with variance related to the absolute value of the mean. Comparisons

using simulated data shows that our methods outperform the traditional Box-Cox transform

over a variety of noise corrupted intensity signals. It should be noted though that for the un-

derlying Bumps signal, the performance was less emphatic and the MSE results were similar

over most wavelets. Also, for the Blocks signal, the Box-Coxtransform out-performed the

DDHF transforms only once, but the MSE for this single instance was lower than over all

other replications.

This point shows that the tests were perhaps misleading. Thewavelet used was varied

to test the methods over a range of estimators but in fact whatwe are doing is testing how

well the wavelets perform, given a certain transformation.Further simulated studies should

only use the best performing wavelet for each signal, and compare it to different smoothing

methods rather than different wavelets. Using other Gaussianising or variance stabilising

transformations (such as Anscombe (1948) or the negative Haar-Fisz transform proposed

within this chapter) would also benefit the study.

Our modification to the data-driven Haar-Fisz transform depends on whether the mean-

variance relationship for negative means is the same as for positive means, i.e., if the func-

tion h is even. We proposed using bootstrap resampling to assess the significance of a test

for symmetry. For simulated data, our test appears to perform well, although is less accurate

for smaller data sets. For the central England temperature data, our bootstrap test does not

reject the null hypothesis that the mean-variance functionis symmetric around zero. We

displayed smoothed values of the CET data using both methods, and concluded that from

the end of the 19th century the temperature increases, and that this increase is much more

rapid after the 1970s.

Although these methods appear sound, it is still questionable, however, how suitable

these transforms are for the actual data. The transforms assume a ‘turning point’ in the

mean-variance relationship where the estimated function changes from being non-increasing
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to non-decreasing. The modifications proposed in this chapter both assume this point to be

at zero, which, from figures 7.2 and 7.3 may not be the case for the CET data. Further-

more, the behaviour of the mean-variance relationship for positive means remains unclear.

This may not be the case for other data sets and generalising the modifications to select the

turning point is left as future work.
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Chapter 8

Gaussianisation using Haar-Fisz

Transforms

8.1 Introduction

Gaussianity of a signal, or rather residual noise of a signalis a common requirement in may

applications. For example, in signal estimation it is oftenassumed that the observed signal

gt, is such that

gt = ft + εt,

whereft is the ‘true’ underlying signal andεt the noise, is distributed as iidN(0, σ2).

Applications in Chapters 6 and 7 focused primarily on the variance-stabilising proper-

ties of the HFT and the DDHFT. Although we never formally usedthem for Gaussianisation,

we briefly mentioned testing the transformed signals to see how well they coped with this

task. It was often found that they performed well, considering that this was not their main

task. In this chapter we consider Haar-Fisz based transforms for the primary purpose of

Gaussianisation, so that we may transform non-Gaussian signals for possible use within

many other procedures with Gaussian constraints.

In order to use the Haar-Fisz transforms for Gaussianisation, we will introduce a param-

eter to the ‘Fisz’ step of the procedure (where the detail coefficients are ‘stabilised’). By

using a similar maximum likelihood parameter estimation method as the Box-Cox trans-
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form, we select our parameter to best Gaussianise the data.

This chapter is a computational study and the underlying theory is left as future work.

We first look at the case where the distribution of the data is known (and Poisson) and then

consider possible generalisations to make the process of mean-variance estimation data-

driven.

8.2 General Haar-Fisz Transform

Recall from Section 5.5.4 that the Haar-Fisz transform (HFT) decomposes an input vector

v = (v)Ni=1 whereN = 2J , using the discrete Haar transform to form smooth and detail

vectorssj anddj of the original vector at scalej. The coefficientsdj
k are then variance

stabilised by division of a function of the variance to produce a vector ofFisz coefficients

fj, defined by

f j
k =

dj
k

h1/2(sj
k)
, (8.2.1)

for k = 1, . . . , 2j .

Kendallet al. (1983, page 103) make the comment that variance-stabilising transforma-

tions commonly Gaussianise as a by-product, although they do not tend to produce optimum

Gaussianisation. Thus, the distribution of the transformed sequence in (8.2.1) would, to a

certain degree be expected to be closer to Gaussian than the original sequence. For Poisson

data, wherevi ∼ Pois(λi), we haveµi = λi andσ2
i = λi which givesh(x) = x, the

identity function. TheFisz coefficientsin (8.2.1) thus become

f j
k =

dj
k

sj
k

1/2
. (8.2.2)

As detailed by Fryzlewicz & Nason (2004, Proposition 2), this transform asymptoti-

cally brings vectors of Poisson counts to Gaussianity with variance one, as the mean of the

Poisson counts, and length of the data both tend to infinity. We next consider the HFT for

the purpose of Gaussianisation and apply maximum likelihood techniques to a general form

of (8.2.2) to select a transformation parameter which best Gaussianises the data.
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We generalise (8.2.2) by replacing the square root functionby a transformation param-

eter, which we callα. Furthermore, we define different values ofα for each scale of the

wavelet transform. Thusα = (αJ , αJ−1, . . . , α1) allows the transform to be ‘local’ for

each of theJ levels. The generalFisz coefficientof thekth element on thejth ‘level’ can

then be defined as

f j
k =

dj
k

sj
k

αj
. (8.2.3)

Our aim is to select the parametersα for each scalesuch that the transformed data is

as Gaussian as possible. We selectα using maximum likelihood techniques. We denote

the general Haar-Fisz transform by the operatorFα and its operation on the vectorv =

(v1, v2, . . . , vN ), for N = 2J by Fαv. We wish to use a linear model with Gaussian

errors to represent the transformation on a set of regression variablesX. As with Box &

Cox (1964), we do not directly assume that the transformation can be written in the form

Fαv = µ+ ǫ but instead assume that for someα,

E(Fαv) = µ,

whereFαv is the vector of transformed observations of lengthN andµ is unknown. This

is a similar set-up to the theory of choosing parameters for the Box-Cox transform (see

Atkinson (1987), Chapter 6 and the review in Section 5.5.2),and as such variance stability is

a secondary goal. To compare different values ofα it is necessary to compare the likelihood

to that of the original observationsv which is

N∏

i=1

(2πσ2)−1/2 exp{−(Fαvi − µ)2/2σ2}J , (8.2.4)

where the Jacobian is given by

J =

N∏

i=1

∣∣∣∣
∂Fαvi

∂vi

∣∣∣∣ . (8.2.5)

Note the slight change in notation for the Jacobian,J , from that in Section 5.5.2. This

is to avoid confusion with the number of levels of the wavelettransform,J . The Jacobian
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allows the transformed variables to be on the same scale for each value ofα. For fixedα,

(8.2.4) is the likelihood for the least squares problem withresponseFαv (as the Jacobian

does not depend on eitherβ or σ). Once again, using the same notation as Atkinson we

denote the maximum likelihood estimates ofβ for a given vectorα by β̂(α). The least

squares estimates are therefore given by

µ̂(α) = Fαv,

the mean of the transformed observations. The residual sum of squares of theFαv is

S(α) =

n∑

i=1

(Fαv −Fαv)2.

(8.2.6)

As with the Box-Cox transform, division of this byN yields the maximum likelihood esti-

mate ofσ2 as

σ̂2(α) = S(α)/N. (8.2.7)

For fixed α we maximise the log-likelihood over bothµ andσ2 by substituting the

expressions forS(α) andσ̂2(α) from (8.2.6) and (8.2.7) respectively into the logarithm of

the likelihood given by (8.2.4). This gives

lmax(α) = −(N/2) log σ̂2(α) + logJ . (8.2.8)

This is the partially maximised log-likelihood and is a function of α in terms of both

the residual sum of squares and the Jacobian.

For the Box-Cox transformation, detailed in Section 5.5.2,Gaussianising (8.2.8) by

division ofJ 1/n simplifies the likelihood equations by removing the dependency upon the

Jacobian. There is no such obvious simplification for the HFTso we use the form oflmax(α)

in (8.2.8). Furthermore, an algebraic representation of the Jacobian,J , is not simple so we

opt instead to use a numerical approximation of the Jacobian, adapted from the algorithm

given by Presset al. (1992, page 388), which estimates the partial derivatives matrix in
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8.2.5.

We now give the algorithm for the general HFT for datav = (v1, v2, . . . , vN ), for

N = 2J , when the functionh is known.

1. LetsJ
i = vi, for i = 1, . . . , n.

2. For eachj = J, J − 1, . . . , 1, recursively form the vectorssj andfj :

sj
k =

sj+1
2k−1 + sj+1

2k

2
; f j

k =
sj+1
2k−1 − sj+1

2k

2hαj+1(sj
k)

, (8.2.9)

for k = 1, . . . , 2j (whereh(sj
k) = sj

k whenv is Poisson).

3. For eachj = 1, 2, . . . , J , recursively modifysj+1:

sj+1
2k−1 = sj

k + f j
k ; sj+1

2k = sj
k − f j

k ,

for k = 1, . . . , 2j .

4. SetY = sJ

We will refer to this transform as the general Haar-Fisz transform, and denote it by

HFTα. We find the optimalαj by maximisinglmax(α) in (8.2.8) numerically, in R using

theoptim function over theαj. The general HFT can then be inverted in the same way

as the regular HFT, as described in Section (5.5.4), but using the values ofα to reverse the

operatorf j
k in (8.2.9).

We define another version of this generalised Haar-Fisz transform by imposing the extra

constraint thatαj = α for all j in J, J − 1, . . . , 1 . This single parameter (or constrained)

model assumes that theαj are the same for all levels of the Haar transform and we denote

it by HFTα in the remainder of this chapter. With a single parameter, the optimisation

routines are considerably faster than the multi-parametergeneral transform HFTα, so its

performance is of interest. Furthermore, a single parameter allows us to graphically explore

the outcome of the optimisation routines onlmax.
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Figure 8.1: Left: Poisson signal of mean 5. Right:lmax(α) over different values ofα

8.2.1 Examples

As an example of our transformation, we generate a sequence of Poisson variables of length

1024 and mean 5, as shown in the left plot in Figure 8.1. We use our constrained version,

HFTα and calculatelmax(α) for differentα . The plot oflmax(α) can be seen in the right

plot in Figure 8.1. The maximum occurs atα = 0.44. Note that this is close to, but not

the same as, the (variance stabilising) optimal value of theHFT of 0.5. Therefore, if the

data is known to be Poisson, one would obtain near-Gaussianisation (but non-optimal), by

applying the variance stabilising value ofα = 0.5 instead of searching over all possible

values.

It should be noted that the estimation of the JacobianJ can cause numerical difficulties

in finding the maximum likelihood: although the logarithm ofthe Jacobian is finite (as

with the case of the example), the actual Jacobian can be verylarge. This occurs to such

an extent that a computational representation can become infinite and induce numerical

instability. This is dependent on factors such as the lengthor intensity of the data, and we

have observed these problems mostly for negative values ofα smaller than -2, and very

large positive values ofα. In most circumstances we have found that a maximum likelihood

estimate ofα still exists (and has commonly been observed between the range of 0 and 2).

We discuss this further in Section 8.4.

We test our code by generating a signal of length 512 from a Gaussian distribution with

mean 5 and variance 1. The idea is to invert this sequence withknown values ofα, so that

we have a sequence of data for which we know the parameters which will return the data

142



Mean Estimated Alpha
Knownαj α α9 α8 α7 α6 α5 α4 α3 α2 α1

0 0.10 0.17 0.17 0.17 0.16 0.16 0.16 0.10 -0.04 -0.15
0.5 0.55 0.55 0.55 0.55 0.54 0.54 0.52 0.47 0.33 0.11
1 1.16 1.16 1.19 1.21 1.22 1.22 1.19 1.14 1.04 0.80

0.1–0.9 – 0.12 0.22 0.32 0.42 0.51 0.59 0.69 0.80 0.76

Table 8.1: Values ofαj for constant Gaussian signal (mean 5, variance 1), given known αj

back to Gaussian. We can then compare these to those found using the maximum likelihood

techniques.

We invert our Gaussian data using values ofα fixed over each level so thatα = α.

We use arbitrary values of 0, 0.5 and 1. We optimiselmax(α) for both the general and

constrained models to obtain our estimates ofα. For the HFTα we also invert our initial

Gaussian sequence withαj ranging from 0.1 – 0.9 in increments of 0.1 (asj decreases).

For all of our values ofαj , we repeat over 100 random Gaussian sequences and the mean

values of the estimates ofαj are given in Table 8.1.

We findα values of 0.10, 0.55 and 1.16 respectively for each value of our α. For the

multi-parameter HFTα, our methodology mostly finds values ofαj which are close to the

known value, although less so for the initial value ofα = 1. As our initial sequence was

random, some fluctuation from the known true value ofα is to be expected. When we vary

αj for each level and use the HFTα, our optimal values ofαj are very close to the known

true values. This suggests a certain degree of uniqueness within the parameters. We do

not, however, rule out the possibility that other sets of parameters may give equally good

Gaussianisation.

In our initial investigations we find that the value oflmax(α) appears less dependent

uponαj for coarser scales (smallerj), and a range of values of theαj produce very little

change inlmax(α) compared to changingαj at the smoother scales (largerj). The finer

scales of the detail coefficients represent noise within thedata, whereas the coarser scale

coefficients contain mostly signal (as the noise can be thought of as having been ‘smoothed’

out over the finer scales). Transforming the signal, compared to the noise will have less of

a Gaussianising effect. This is a possible explanation for why the likelihood appears less

dependent on coarserαj, although we leave any detailed investigation into the sensitivity of
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lmax(α) with j as future work.

We also note here the computational time for our transformations. Performing our cal-

culations in R on a 2.2 GHz AMD Opteron with 2Gb RAM, we found that for data of length

1024, one simulation of our constrained model took between 2and 3 minutes to run and the

general transformation took between 40 and 60 minutes. Thislong computational time was

caused by the estimation of the partial derivatives for eachtransformation parameter over

each scale.

8.2.2 Gaussianisation Simulations

We compare the Gaussianisation of both the HFTα and the HFTα with that of the one

parameter Box-Cox and the identity transformation on simulated data sets.

We generate 4 underlying intensity signals of length 1024: aconstant signal of 4, and the

Donoho & Johnstone (1994) Blocks, Doppler and Heavisine signals, which we transform

linearly to have (minimum, maximum) of (1/8, 8). These are referred to as ‘small’ intensity

signals in the remainder of this chapter. We also create a setof ‘large’ signals, again using

the Donoho & Johnstone (1994) signals, but with (min, max) equal to (1/128, 128). We also

have a ‘large’ constant signal of intensity 64.

We denote our underlying intensity byλ and generate signals of Poisson variables

v = Poi(λ) for each of the signals. We judge the success of Gaussianisation of our HF

transforms by comparing the residualsFαv − Fαλ andFαv − Fαλ, with those of the

Box-Cox (BC) transform (Bv −Bλ) and the identity (ID) transform (v − λ). We compare

the transforms by considering the Q-Q plots of each of the residuals and we also test the

residuals using the Kolmogorov-Smirnov (KS) test of Gaussianity.

Figure 8.2 shows the mean of the Q-Q plots for the small intensity signals, taken over

100 sample signals. We also show a histogram of the values ofα maximising the likelihood

for each signal for the constrained HFTα.

The Q-Q plots of the transformations indicate that over all the signals the HFTα (plotted

in green) out performs the other transforms, signified by thecomparative straightness of the

line. The plot for the constant signal is still stepped, but less so than the other transforms

(and is only a slight improvement on the constrained HFTα). For the Blocks signal, the
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Figure 8.2: Underlying intensity signal from top: Constant; Blocks; Heavisine and Doppler.
Left plots: QQ-Plots. Black: Identity transform; Blue: Box-Cox transform; Red: HFTα;
Green: HFTα. Solid line has slope 1, indicating unit variance. Constantintensity = 4, all
others have (min,max) of (1/8, 8). Right: Corresponding histogram ofα values.

145



KS Test Variance
Signal ID BC HFTα HFT α ID BC HFTα HFTα

Constant 1.1e-13 5.1e-10 2.7e-4 0.0027 4.01 1.02 0.95 0.95
Blocks 4.7e-6 9.1e-7 0.0013 0.27 4.02 0.47 0.45 0.63

Heavisine 0.0039 0.39 0.15 0.71 4.19 0.60 0.50 0.58
Doppler 0.0064 0.57 0.38 0.70 4.45 0.77 0.48 0.63

Table 8.2: Meanp-values of Kolmogorov-Smirnov Gaussianity test for ‘small’ intensity
signals. The best overallp-value for each signal is boxed (note that other transforms may
still have statistically significantp-values).

Mean Estimatedαj

Signal α α10 α9 α8 α7 α6 α5 α4 α3 α2 α1

Constant 0.52 0.52 0.52 0.52 0.51 0.52 0.52 0.50 0.40 0.37 0.01
Blocks 0.87 0.67 0.65 0.69 0.83 1.04 1.65 1.72 2.17 2.09 1.43

Heavisine 0.89 0.81 0.69 0.64 0.62 0.69 0.82 3.26 1.43 2.83 0.32
Doppler 0.83 0.70 0.61 0.63 0.71 0.92 1.24 1.70 2.49 2.09 0.96

Table 8.3: Values ofαi for the ‘small’ intensity signals for both constrained HFTα and the
general HFTα.

Q-Q plot of the HFTα is also a lot smoother than that of the Box-Cox transform. TheQ-Q

plot of the Box-Cox transform is, however, closer to the solid line for the Heavisine and

Doppler signals, indicating that the transformed residualvariance closer to 1 than for the

other transforms.

Table 8.2 shows the meanp-values of the KS-test under the null hypothesis that the

residuals are drawn from a Gaussian distribution (and the alternative that they are not). For

reference, we also show the variance of the transformed residuals. The values coincide

with the interpretations of the Q-Q plots that the general HFtransform performs best at

Gaussianisation compared to the other transforms. Thep-value is significant when trans-

forming the constant signal using the general HF transform,although this was apparent in

the stepped nature of the Q-Q plot. For the Heavisine and Doppler signals, the KS test does

not reject the hypothesis of Gaussianity for both the Box-Cox and the constrained general

HF transforms.

The optimal values ofα for both HF transforms are given in Table 8.3. We note that for

the constant signal, both transforms haveαi close to 0.5, indicating that the variance should

also have been stabilised around 1 (which is true, from Table8.2). We again observe the
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KS Test Variance
Signal ID BC HFTα HFTα ID BC HFTα HFTα

Constant 0.073 0.12 0.42 0.76 64.18 13.26 0.55 0.76
Blocks 0.048 0.25 1.2e-5 1.7e-4 62.61 1.78 0.0083 0.39

Heavisine 0.020 0.36 0.077 0.75 66.00 6.80 0.16 1.18
Doppler 0.0047 0.21 0.55 0.79 70.19 20.47 0.24 1.06

Table 8.4: Various statistics for ‘large’ intensity signals. The best overall p-value from
the KS test for each signal is boxed (note that other transforms may still have statistically
significant p-values).

Mean Estimatedαj

Signal α α10 α9 α8 α7 α6 α5 α4 α3 α2 α1

Constant 0.89 0.56 0.56 0.56 0.56 0.56 0.55 0.54 0.51 0.50 0.43
Blocks 1.54 0.92 1.00 1.14 1.26 1.45 1.56 1.57 1.72 1.74 1.49

Heavisine 0.77 0.46 0.46 0.49 0.56 0.81 1.15 1.38 1.08 1.54 0.56
Doppler 0.69 0.44 0.50 0.64 0.78 0.93 1.18 1.20 1.37 1.30 0.96

Table 8.5: Values ofαi for the ‘large’ intensity signals for both constrained HFTα and the
general HFTα.

variation in values ofαi for largeri for the general HFT.

Figure 8.3 shows the Q-Q plots of the four transforms for the larger signals. For all but

the Blocks signal (which we will discuss separately), both the HF transforms are closer to

the solid line than the other transforms. Furthermore, the lines appear at least as straight as

the Box-Cox and identity transformations (except for the constrained HF for the Heavisine).

This is further supported by testing the residuals for Gaussianity, as thep-values of the KS

test indicate in Table 8.4.

Excluding the Blocks signal, the HFTα has a less significantp-value than the other

transforms. It should be noted, however, that with these larger underlying intensity signals,

it is only the identity transformation on the Doppler signalwhich is significant at the 5%

level (as with large mean values for our Poisson signals, theCentral Limit Theorem comes

into effect).

Table 8.5 shows the optimal values ofαj for both HF transformations. Compared with

the ‘small’ intensity signals,α is larger for the constant signal but smaller for both Heavisine

and Doppler signals. For the HFTα, the optimalα are again close to 0.5 for the constant

intensity. The optimalα for the Heavisine and Doppler signals are smaller than thosefor the
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Figure 8.3: Underlying intensity signal from top: Constant; Blocks; Heavisine and Doppler.
Left plots: QQ-Plots. Black: Identity transform; Blue: Box-Cox transform; Red: HFTα;
Green: HFTα. Solid line has slope 1, indicating unit variance. Constantintensity = 64, all
others have (min,max) of (1/128, 128). Right: Corresponding histogram ofα values.
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smaller signals and again appear to increase in value for thecoarser levels (with a somewhat

erratic behaviour forα1).

The Blocks signal for larger intensities exhibits unexpected behaviour while using the

both HF transforms. Furthermore, the histogram of the optimal values ofα show two dis-

tinct clusters of values (Figure 8.3, second row, right column). The first cluster accounts for

15 out of the 100 repetitions. The histogram of the second cluster is plotted separately next

to the original.

8.2.3 Problems in Methodology

We now briefly discuss problems which have arisen so far in this study. We comment on

initial investigations which have been carried out but do not describe them in detail due to

them being preliminary. They provide an initial indicationas to where the problems may be

occurring, but are not conclusive.

The above simulations on the Donoho & Johnstone (1994) signals did not include a

sequence generated from the Bumps signal. When generating aPoisson sequence with the

underlying intensity being the Bumps signal, a large proportion of the original data is zero.

We attempted to transform our signals as with the other intensities, but found the likelihood

estimate to be unbounded.

Initial investigations suggest that when the number of zerovalues within the signal

increase, the log-likelihood becomes unbounded (asα increases). In particular, it is the

Jacobian component of the likelihood in (8.2.8) which becomes unbounded. The cause of

this is unknown and simulating data with an increasing number of zero points would be a

suitable next step. Also, consideration of the estimation of the Jacobian and the effect which

zero points have on the HF transformed variables will further help to understand the reasons

for this unbounded behaviour.

We also found that often, no values exist for the Jacobian forlarge values ofα and

for negativeα (and in particular when the signal intensity is small). Thisis caused by the

approximation of the Jacobian (8.2.5) becoming too large and being replaced by an infinite

value in R. We discuss this further in Section 8.4.

The last problem we observed was with the Blocks intensity signal for the HFTα, where
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there were two distinct regions where the parameter was optimal (Figure 8.3, second row).

Initial investigations suggest that there are local ‘peaks’ occurring when calculating the

Jacobian, and these are being treated as optima. Again, further investigation of the causes

of this within the Jacobian is required and is further discussed in Section 8.4.

8.3 Data-Driven Haar-Fisz Transformation for Gaussianisation

In this section we detail initial investigations into adaptations of the DDHFT for Gaussiani-

sation. It is conceptually and computationally straightforward to apply the same maximum

likelihood techniques dependent upon a parameter to fit a curve to local estimates of the

mean and variance so that our general HF transforms become data-driven. We refer the

reader to the algorithm for the DDHFT in Section 5.5.5 and that for the general HFT given

in Section 8.2.3.

In the conversion from the original HF to DDHF transforms, the mean-variance function

went from being fixed (and for Poisson data the identity transform) to functional, based on

estimation from the data. Recall that the regression setup used is

σ̂2
i = h(µi) + εi,

and the smooth coefficients of the Haar transform act as pre-estimates ofµi and the squared

detail coefficients act as pre-estimates ofσ2
i . The estimate ofh was found using non-

decreasing isotonic regression from Johnstone & Silverman(2005a) and then used to form

theFisz coefficientsfj defined by

f j =
dj

h1/2(sj)
. (8.3.10)

We wish to generalise the transformation to incorporate a Gaussianising parameter as

with the constrained Haar-Fisz transform (HFTα). As with the HFTα, we modify the trans-

form so that the denominatorh1/2(sj) is raised to theβ instead of being fixed at1/2 (other

possible modifications are discussed in Section 8.3.2). Under the same assumptions of

Gaussianity as with the HFTα, we can again use maximum likelihood techniques (as de-
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tailed in Section 8.2.3) to chooseβ such that the resulting signal transformation is most

Gaussian. TheFisz coefficientsfj thus become

f j =
dj

hβ(sj)
, (8.3.11)

whereh() is the estimate of the mean-variance function using isotoneregression andβ

is chosen by maximising the log-likelihood function given in (8.2.8) (but with the obvious

change in parameter lettering). We refer to this transformation as DDHFTβ in the remainder

of this chapter.

We also considered a further transformation where the mean-variance function was in-

stead estimated with kernel regression smoothing using a global plugin bandwidth (using

thelokern package from R). See Brockmannet al. (1993) for more details. The method

uses a kernel estimator to fit a function to the mean-variancerelationship and is dependent

upon a global bandwidth. Again, we selected this global bandwidth parameter using maxi-

mum likelihood techniques, as with the general HF transform. The larger the bandwidth, the

smoother the mean-variance function will be. This method was limited as no matter what

values the bandwidth took, the function estimate was still estimating the mean-variance

function of the data. When we generalise to attempt to Gaussianise the data, we no longer

wish to have the actual function which fits the data, we only want a mean-variance function

which serves best to Gaussianise the data. Thus the transform did not compare well and we

do not report results using this method.

8.3.1 Comparison with Box-Cox and the Constrained HFT

We compare our data-driven Haar-Fisz transforms using the same sets of intensity signals

from Section 8.2.2 with both the ‘small’ and ‘large’ intensity range. The idea of our transfor-

mations is to produce data which can be represented as ‘signal plus noise’ where the noise is

Gaussian. We can then apply a denoiser to estimate the signaland invert our transformation

to obtain an estimate of the (known) underlying intensity.

For each of the signals which are corrupted with Poisson noise, we apply the Box-Cox,

HFTα, DDHFTβ transforms. We do not compare the HFTα due to the considerable amount
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Small Intensity
Signal HFTα DDHFTβ BC

Mean SE Mean SE Mean SE

Constant 0.023 0.022 0.071 0.061 0.060 0.033
Blocks 0.558 0.073 1.329 0.557 0.616 0.096

Heavisine 0.312 0.131 1.120 0.480 0.340 0.089
Doppler 0.604 0.091 1.287 0.517 0.604 0.084

Table 8.6: Mean MSE and standard errors (SE) of small intensity signals for different trans-
formations.

Large Intensity
Signal HFTα DDHFTβ BC

Mean SE Mean SE Mean SE

Constant 0.023 0.019 0.107 0.180 0.065 0.034
Blocks 15.622 2.925 47.640 57.72 8.432 1.838

Heavisine 9.636 1.071 13.221 5.837 11.715 2.169
Doppler 26.937 2.086 28.229 2.229 29.321 2.217

Table 8.7: Mean MSE and standard errors (SE) of large intensity signals for different trans-
formations.

of time required for suitable optimisation, compared to theother transformations. Also, al-

though thep-values of the KS test were notasnon-significant for the HFTα compared to

the HFTα, many were still not significant at the 5% level. We estimate the underlying in-

tensity using EbayesThresh wavelet thresholding from Johnstone & Silverman (2005a) (we

first take the wavelet decomposition of the signals using theHaar wavelet for the constant

and Blocks signals, and Daubechies least-asymmetric wavelet with 10 vanishing moments

for the Doppler and Heavisine signals). We then invert our smooth signals back to the orig-

inal data domain and compare the estimation of the underlying intensity with the known

intensity using the mean square error (MSE) as defined in (7.5.16).

Table 8.6 and Table 8.7 give the mean MSE over 100 sample pathsfor the small and

large intensities respectively. Note the further transformation which is included in the tables,

DDHFTδ. We define this in Section 8.3.2.

Over all intensities and signals, the DDHFTβ performs poorly, having a much higher

MSE than both the HFTα and the Box-Cox transform (with the only exception being the

‘large’ Doppler intensity, where it is better than Box-Cox). The standard errors of the MSE

values for the DDHFTβ are very large, suggesting the MSE values vary considerably. The
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Peak intensity=8 Peak intensity=128
Signal α β α β

Constant 0.49 0.95 0.87 0.99
Blocks 0.86 4.54 1.57 2.02

Heavisine 0.88 4.45 0.77 1.68
Doppler 0.83 4.10 0.68 1.52

Table 8.8: Mean optimal parameters from the HFTα and the DDHFTβ

mean optimal parameters for both Haar-Fisz transforms are given in Table 8.8. For the

smaller intensity, we see the high parameter values for all functions except the constant sig-

nal. The optimisation algorithms had maximum parameter value forβ of 5, which suggests

that the likelihood function for these signals are unbounded. We have increased this limit

and have again observed parameter values close to the maximum range.

We leave investigations into the unbounded likelihood as future work, but considering

the poor performance of the DDHFTβ over the other signal (where the likelihood appears

to be bounded), we instead consider alternative modifications.

8.3.2 Further Work: Other Models

We first consider the behaviour of the mean-variance estimate from both the HFTα and

the DDHFTβ, for when the likelihood appears bounded. We look at the constant signal of

intensity 4 and use both methods to obtain a mean-variance function. Figure 8.4 shows the

local estimates of the mean and variance, along with our two function estimates.

For this example, the optimal parameter values areα = 0.59 andβ = 0.93. The values

of the isotone regression estimate not included in the plot increase up to a variance of 18.

As the mean increases, the estimate from the DDHFTβ gets larger at a faster rate than the

HFTα.

Over the range of values plotted, the mean-variance function for the HFTα appears

fairly straight. As a further model for our data-driven method, we propose a different trans-

form where the modification to theFisz coefficientsis defined by

f j =
dj

δh1/2(sj)
. (8.3.12)
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Figure 8.4: Local estimates of mean and variance of underlying constant signal. Solid line:
h() estimated using HFTα. Dashed line:h() estimated using DDHFTβ. Maximum value
for variance of DDHFTβ is 18.

This modification estimates the mean-variance curve using isotone regression as with

the original DDHFT, but then then multiplies it by a constant, δ. We refer to this transfor-

mation as DDHFTδ in the remainder of this chapter. We include this further modification

to compare the transformation to previous techniques and asa suggestion of next steps in

improving the Gaussianisation of the DDHFT.

We calculate the mean square error for the same simulated signals in Section 8.3.1

with the same smoothing methods. The mean MSE and standard errors can be seen in

Table 8.9. Comparing these results to the the small intensities in Table 8.6, we see that

our modification DDHFTδ results in a lower MSE than any of the other transformations

for all but the constant signal (where the standard error is large compared to the mean

MSE). For the larger signal intensities, the DDHFTδ produces the smallest MSE for the

Heavisine signal and the MSE is only 6 and 13 per cent higher than that of the HFTα

for the Doppler and Constant signals respectively. Furthermore, it should be noted the

poor performance which we have shown the HFTα to have for the Blocks signal, and the

improvement (in terms of MSE) which the DDHFTδ shows (and is only 6% worse than the

Box-Cox transform).
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Peak intensity=8 Peak intensity=128
Signal Mean MSE SE Mean MSE SE

Constant 0.026 0.024 0.026 0.025
Blocks 0.520 0.069 8.900 1.859

Heavisine 0.250 0.064 9.462 1.060
Doppler 0.599 0.070 28.685 2.348

Table 8.9: Mean MSE and standard errors (SE) using the DDHFTδ for both large and small
intensities. Boxes imply smaller mean MSE than other previous methods.

We note, however, that although the DDHFTδ appears superior to the other transfor-

mations, the likelihood is often unbounded. Nevertheless,the results presented here are

promising and further work investigating the likelihood function is required to shed light on

the behaviour of the transformation.

8.4 Conclusions and Future Work

In this chapter we proposed a Haar-Fisz transform which primarily attempts to Gaussianise

data. We defined two types of such a transform, a constrained model in which the mean-

variance relationship is assumed to be the same for all levels of the wavelet decomposition,

and a general transform where a different relationship was sought for each level. We com-

pared these transforms to the identity transformation and the Box-Cox transformation over

known intensities which had been corrupted with Poisson noise. We compared Q-Q plots

andp-values for the Kolmogorov-Smirnov test for Gaussianity and found that the general

HFTα outperformed all other transforms except for the Blocks with the ‘large’ intensity

range. Furthermore, our constrained HFT compared well to the other transforms and bene-

fited from a considerably shorter computational time compared with the general transform.

It must be noted, however that although we conclude that our methods were ‘most Gaus-

sian’ by the significance of the K-S tests, many of the other meanp-values were also sig-

nificant at the 5% level. Further simulations should be caried out to further compare the

performance of our methods.

Although the general HFTα outperformed other transforms, it is highly computationally

intensive, with long execution times. The main cause of thiswas the use of approximation to

the Jacobian matrix. An explicit form of this, or further approximations and simplifications
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would be greatly beneficial. A explicit form of the Jacobian matrix might also remove the

anomalies found in the procedure where the estimation of theJacobian is computationally

set to infinity. Further investigation into the sensitivityof lmax for different values ofαj

could result in the tolerance of the optimising procedure being reduced (if the required level

of accuracy oflmax is not affected), resulting in much faster computational times. As an

example, we have observed that by reducing the number of decimal places to whichlmax

has been deemed to converge by one, has reduced computational time by half. This change

appears to mostly effect the parameters of the ‘coarser’ levels of the HFTα.

We further proposed data-driven Haar-Fisz transforms for Gaussianisation, which raised

the mean-variance function to an unknown parameterβ, and a further model which multi-

plied the square root of the estimated function by an unknownparameter. Both parameters

were again found using maximum likelihood techniques.

Our transforms were compared to others in terms of mean square error of intensity

estimation of a known underlying signal, following Gaussianisation. Again, our methods

were compared to that of Box-Cox and also to the HFTα and for both the ‘small’ and ‘large’

intensity signals used previously in the chapter.

For the small signals, the DDHFTδ had a smaller MSE than the other transforms over

all signals except the constant (where HFTα performed better). For the Doppler signal,

however, the improvement from the DDHFTδ was less than 1% smaller MSE compared

to the HFTα and Box-Cox transforms. The DDHFTδ showed a 7% and 24% reduction in

mean MSE for the Blocks and Heavisine signals, respectively, compared to the next best

performing method.

There were mixed results when comparing transforms for the larger intensity signals,

with the HFTα having the smallest mean MSE for two of the signals, and the DDHFTδ

and Box-Cox both having the smallest mean MSE on one occasion. For the large signal

intensity, the the improvement the ‘best’ performing transform has over the next best method

is never more than a 5% reduction in mean MSE.

Another observation was that for the smaller intensity signal, the likelihood within the

parameter estimation appeared to be unbounded. Further understanding of the nature of

the likelihood estimation and how it is linked with the estimation of the Jacobian matrix is
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required for this work to progress. Due to these uncertainties, we remind the reader that

methods and results presented in this chapter are to be considered as preliminary.

Future work could also consider other modifications of both the Haar-Fisz and data-

driven Haar-Fisz transformations. Our second modificationof the data-driven DDHFTδ

suggests that more general transformations could improve Gaussianisation performance

when the mean-variance function is both known and unknown. Furthermore, extension

of the data-driven transforms to estimate this relationship for each level of the wavelet

decomposition would be an obvious extension and likely (as seen by HFTα) to improve

performance.
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Chapter 9

Conclusions and Further Work

This chapter provides a summary of the work outlined within this thesis. We consider the

main work from the research chapters, discussing the advantages and disadvantages of the

methodology as well as discussing ideas for future work.

9.1 Backbench Opinion in the House of Commons using EDMs

Work in Chapters 3 and 4 reintroduced the idea of using Early Day Motions (EDMs) as a

measure of backbench opinion. A new cohesion measure was defined in Chapter 3 which

took into account the asymmetric signing of EDMs and was usedto chart the cohesion of

the three main political parties over the course of the 2005/06 parliamentary session. As a

means of calibration, a basic probabilistic model was derived to create simulated cohesion

levels to compare with the observed levels. The cohesion wasthen interpreted in terms of

these calibration levels and compared against real life events with which a perceived party

unity could be ascertained.

Extensions to this work could be the development of the calibration level to more accu-

rately model the party cohesion and even forecasting the cohesion of the parties.

The cohesion measure was then used for feature selection. Having classified EDMs

into different types and assigned each a weight, the cohesion measure was maximised and

minimised by altering the weights. Those EDMs given high or low weights were deemed

to cause party cohesion and separation respectively.
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EDMs were used for feature selection again in Chapter 4. Using the multi-dimensional

scaling solution and linear discriminant analysis to assign each MP to a party, issues were

sought which caused the parties to appear more disjoint. An optimising criteria was formed

by summing the number of erroneously classified MPs. This acted as a measure of overlap

between parties. Similar to the moving time window of the cohesion levels, this feature

selection looked at windows of 200 EDMs moving across the session. This allowed for

quicker computation and a less static feel of the data (although with an overlap of 100

EDMs it was still somewhat static).

The second use of EDMs for feature selection was not as successful as the first. This was

due to the complexity of the methodology and subsequent computational time required for

results. We presented preliminary results and suggested possible steps to increase efficiency

of the computation. These included increasing the optimisation search area to uncover more

optimal solutions, or decreasing the size of the data set to reduce the number of variables. A

mixture of the two, as well as an increase in computational power or efficiency would help,

but then it may also be tempting to increase the number of windows over the session to get

a less static feel to the output.

Both examples of feature selection indicate the wealth of information contained in the

EDM data set. The classification of EDMs into different issues was to a certain extent

subjective and considering secondary classification issues would increase the information

gained from the data.

Chapter 4 also included a brief investigation into the effect that propensity to sign has

on an MPs position in the scaling solution. Initial investigations suggest that this is indeed

prevalent up to and including the second dimension, but thatmore dimensions are needed

to effectively capture the information within the data.

9.2 Coalition Mortality Rates in Iraq

Chapter 6 introduced data on the number of coalition deaths in the recent Iraqi conflict. We

showed how current methods of intensity estimation are not suitable for the data as they

assume a certain degree of Gaussianity, and we proposed using the recently developed data-
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driven Haar-Fisz transform (DDHFT) to variance stabilise the data. We then applied differ-

ent smoothing methods to obtain intensity estimates. Our methods were shown to perform

well using statistical tests for Gaussianity and heteroskedascity and they also outperformed

the much used Box-Cox transform. We concluded that the mean level of intensity increased

until about January 2005, leveled off until around June 2005and then slightly decreased

before leveling off again until the end of the series. We alsotentatively concluded that the

number of non-hostile deaths is inversely related to the intensity of hostile deaths.

Further extensions to this analysis could be to look at clusters within the data. There

are periods where deaths appear to increase in intensity over a few days and then return to a

lower level. Time series models could also be constructed based on the number of attacks,

rather than the casualty rate. The ratio of attacks to casualties would help build up a clearer

picture of the intensity of conflict. Such information, however, would be hard to accurately

obtain.

As mentioned within the chapter, using methods from Spirling (2007) could also be

used to pick out areas of increase intensity of deaths as wellas providing a method of

comparing coalition and civilian deaths. Similarity between these data sets could provide

further measures regarding the conflict.

9.3 DDHFT for Negative Data

We detailed the central England temperature (CET) data set in Chapter 7 and examined its

mean-variance relationship. We observed separate regionsof positive and negative correla-

tion and modified the Haar-Fisz and data-driven Haar-Fisz transforms so that this data could

be suitably transformed and variance stabilised. We proposed two versions of the negative

DDHFT, which depended on different assumptions being made about the distribution of the

positive and negative data points, and suggested a bootstrap test for deciding between the

two. We used our methodology to transform the CET data and then used smoothing methods

to obtain an underlying intensity estimate. We concluded that since 1970, the temperature

appears to be increasing at a faster rate than previously.

We compared our transforms to the Box-Cox transform using a set of test signals which
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were transformed and then smoothed. The mean square error ofthe smooth signal compared

to the known underlying intensity was shown to be smaller forthe DDHFT methods. A

natural extension of this method would be to automatically select the ‘turning point’ of

the mean-variance relationship (the point at which it changed from a negative to positive

relationship). Further modifications could be made which allow for a more flexible mean-

variance function.

9.4 Maximum Likelihood Techniques for Haar-Fisz Transforms

In Chapter 8 we looked at Haar-Fisz transforms from the viewpoint of wishing to primarily

Gaussianise the data, as opposed to stabilising the variance of it. We introduced a parameter

into the Haar-Fisz transform which replaced the square rootfunction (for Poisson data)

and used a similar derivation of the maximum likelihood estimator as with the Box-Cox

transform. We proposed two such transforms: one where the parameter is constant over all

wavelet levels and one where it was allowed to vary. Considering Q-Q plots andp-values

from Kolmogorov-Smirnov tests for Gaussianity, our transforms were shown to perform

well compared to Box-Cox. The transform which allowed for different parameter for each

wavelet decomposition level outperformed the other transforms, but had a much longer

computational time.

We also showed initial work into adapting the methods for a data-driven transform. We

suggested some possible transforms and compared their performance (in terms of mean

square error of a test signal estimate) to that of the one parameter Haar-Fisz and Box-Cox

transforms. Our methods did not perform well and we suggested a further, simpler model.

Although this appeared to perform well, it had an unbounded likelihood.

The methods outlined in this chapters are initial investigations and there are many av-

enues left to explore. We highlighted the computational time that the HF transform took

when the parameters are assumed to be different for each level of the wavelet decompo-

sition. Considering the sensitivity of the optimisation criteria to the likelihood, and the

effect this has on the parameters, may provide some efficiencies or simplifications to the

methods. Also, our modifications to the DDHFT showed that a simpler translation of the
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mean-variance function may indeed produce better results.

We have shown how the transforms can Gaussianise count data more effectively than

the Box-Cox transform. Many problems which were found focused on the estimation of the

Jacobian. Further development of an algebraic form of this,or simplifications within the

derivation of the likelihood function may increase the effectiveness of these transformations.
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Appendix A

A.1 Examples of Early Day Motions

A.1.1 Debated EDM

A Motion put down by Rt Hon Margaret Thatcher, the then Leaderof the Opposition, cen-

suring the Government. When this Motion was debated on 28 March, it was agreed to,

leading to a General Election.

EDM Number: 351

Date: 22.03.1979

NO CONFIDENCE IN HER MAJESTYS GOVERNMENT

That this House has no confidence in Her Majestys Government.

Total Number of Signatures: 6

A.1.2 Early Day Motion 1646

Date: 14.02.2006

SMOKING IN THE HOUSE OF COMMONS

Tabled by: Julia Goldsworthy

That this House notes that right hon. and hon. Members voted to ban smoking in all

public places including private members’ clubs on 14th February 2006; further notes that

the will of the House may not apply in the House itself since itis a royal palace; further

notes that this means that staff working in the Smoking Room could still be exposed to

the harmful effects of second-hand smoke; and calls for thisanomaly to be rectified by the

House authorities as soon as possible.
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Total Number of Signatures (at time of writing): 69

A.2 Obtaining and Classifying Data

Data was downloaded from the internet by using Unix functions and converted into a suit-

able form using Perl scripts. Classification of EDM types wasperformed by hand by the au-

thors or a team of coders under close supervision by the authors. Two coders independently

classified each session into primary and secondary (where appropriate) issues. Where the

two agreed on a primary issue, or a primary issue from one and asecondary from the other,

the corresponding classification was used. Where there was disagreement, a third classifier

was used and the process repeated. Where no agreement could be found from three coders,

the authors took the final decision.
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Appendix B

B.1 Smoothing Methods Used

S1 Haar decimated wavelet shrinkage using the EbayesThresh threshold choice of John-

stone & Silverman (2005a).

S2 Kernel regression smoothing using a local plugin bandwidth(usinglokern package

from R). See Brockmannet al. (1993).

S3 Translation-invariant, basis-averaging over complex-valued Lina-Mayrand wavelet (with

5 vanishing moments) using multiwavelet style threshold asdescribed by Barber &

Nason (2004).

B.2 Empirical Bias Results for the Data-Driven Haar-Fisz Trans-

form for Finite Sample Sizes

In the following sections we individually detail the signals which we use to compare the

bias of the two transformations. We first give a general overview of the procedure.

We define a sequence of intensitiesλi for i = 1, . . . , N , whereN is a power of 2. We

use these to generate our simulated dataX, defined by:

Xi = Poi(λi), (B.1)

for i = 1, . . . , N .
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Figure B.1: Underlying intensity of test signals

For each signal, we take both the DDHF and Box-Cox transformations. (For DDHF, we

use functions from the R packageDDHFm. For Box-Cox, we add a constant of 1 to the data

to ensure positivity and use the functions from the R packagecar to estimate the parameter

and to transform the data.)

Kernel regression smoothing using a local plugin bandwidth, from Brockmannet al.

(1993) is then used to smooth the transformed data (using thelokern package from R).

We next invert both of our sequences and compare our estimates to the known underlying

intensities.

We repeat this process 100 times and take the mean of the intensity estimations for each

signal. The bias is the difference between the known signal intensity and the estimated one.

As these values can be negative, we report the sum (over all points) of the square of the bias.

We next describe our intensity signals and resulting bias calculations.

B.2.1 Piecewise Constant Intensity

We first use an underlying intensity which is a piecewise constant of length 512. The con-

stant regions are equal in length and take the values 1,2,4, and 8 respectively. The intensity

can be seen in figure B.1(a).
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Figure B.2: Intensity estimates of piecewise constant function. Dashed line: known inten-
sity. Green: DDHF. Red: Box-Cox.

We simulate 100 time series and use the method described above to obtain a mean signal

intensity, shown in figure B.2. The sums of squared bias for Box-Cox and DDHF transforms

are 127.08 and 59.61 respectively.

B.2.2 Exponential Intensity

For this simulation, our underlying intensity takes the values

λi = eki ,

whereki is the square of the sequence from 0.5 to 1.5 of length 512, shown in figure B.1(b).

We once again create a 100 sequences of Poisson random variables with intensityλi,

which we transform, smooth and invert. Figure B.3 shows the mean of intensity estimates

for our two transformations.

The sums of squared bias for Box-Cox and DDHF transforms are 40.0 and 0.47 respec-

tively.
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Figure B.3: Intensity estimates of exponential function. Dashed line: known intensity.
Green: DDHF. Red: Box-Cox.

B.2.3 Constant Intensity

For our third simulation, we create a Poisson signal of constant intensityλi = 5, of length

512. Figure B.1(c) shows the mean estimated intensity for both transformations. The sum

of squares of the bias is 18.36 and 0.39 for the Box-Cox and DDHF transforms respectively.

B.2.4 Iraq Data

Finally, we consider the bias of the transformations on datataken from Nason & Bailey

(2008). The data is an estimation of the underlying intensity of daily mortality rates amongst

coalition forces in Iraq for the 1024 days since the beginning of the invasion in March 2003.

Of the three methods of estimation used in the paper, we use the results from theS2method,

using kernel regression from Brockmannet al. (1993).

The intensity can be see in figure B.1(d.) We once again use this signal as ourλi to

create 100 simulated Poisson signals. Figure B.5 shows the mean estimated intensity of the

signals from both transformations. The sum of squared bias for the Box-Cox and DDHF

transforms is 117.81 and 30.16 respectively.
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Figure B.4: Intensity estimates of constant function. Dashed line: known intensity. Green:
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Figure B.5: Intensity estimates of Iraq data. Dashed line: known intensity. Green: DDHF.
Red: Box-Cox.
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B.2.5 Conclusions

For all four of our test sequences, the empirical transformation bias from the DDHF trans-

form is significantly lower than that of the Box-Cox transformation. Furthermore, Theo-

rem 3 from Fryzlewicz (2007) shows that the DDHF procedure, using a Nadaraya-Watson

estimate ofh, is asymptotically unbiased.
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Appendix C

C.1 Convergence of̂tji

In this appendix we prove the convergence oftjkl
asl → ∞ and derive its limit, as stated in

7.4.9.

From equation (7.4.3), we have

tjk =
|ŝj+1

2k−1| + |ŝj+1
2k |

2
.

Substituting for the values given in (7.4.10) and (7.4.11) gives

tjk =
(∣∣∣ŝj

k + f̂ j
k

√
tkj

∣∣∣ +
∣∣∣ŝj

k − f̂ j
k

√
tkj

∣∣∣
)
/2. (C.1)

For clarity, we remove annotation from around the variablesas they do not change within

our proof. We add the iteration indexl to each of thet’s, wherel ∈ N. Thus, equation C.1

becomes:

tl =
(∣∣∣s+ f

√
tl−1

∣∣∣ +
∣∣∣s− f

√
tl−1

∣∣∣
)
/2. (C.2)

We next prove that the sequencetl converges to the limitT , asl → ∞. Furthermore,

we show that T takes the values

T =





|s|, if (f)2 ≤ |s|,

|f
√
t|, if (f)2 ≥ |s|

(C.3)

wheret is the value calculated in the ‘forward’ step in (7.4.3) (andgiven above). We write
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Figure C.1: Possible values of g(t). Solid line: values of g(t) within function constraints.
Dashed line: possible values of g(t) which lie on the components of g(t), but outside the
constraints.

equation C.2 in functional form to give

g(t) =
(∣∣∣s+ f

√
t
∣∣∣ +

∣∣∣s− f
√
t
∣∣∣
)
/2. (C.4)

This is equivalent to

g(t) =





|s| if s ≥ f
√
t,

|f
√
t| if s < f

√
t,

(C.5)

and is plotted as a solid line in figure C.1.g(t) is said to have converged when|g(t)− t| < ε

for some smallε > 0.

The functiong(x) is made up of two components. The first, whens ≥ f
√
t is a constant

valueg(t) = |s|. So providing the constraints hold,g(t) = t = |s| is constant, and has thus

converged.

The second component ofg(t) is for the conditions < f
√
t and in which case,g(t)

takes the value|f
√
t|. It can be shown that the square root function has an attracting fixed

point (see for example Strogatz (1994)) and thus will converge so thatg(t) = t.

We have therefore shown thattl in (C.2) converges asl → ∞. We next show that the

limit of this convergence, denoted by T, takes the values given in (C.3).

Clearly, if s ≥ f
√
t, the only value T can take is|s|. If s ≤ f

√
t, then the attracting
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fixed point which is the limit T, will lie on the curveg(t) = |f
√
t|. Suppose this point is

such thatg(t) = t = α. Then

α = |f√α|,

⇒ α2 = f2α,

⇒ α2 − f2α = 0,

⇒ α = 0 or f2.

Sog(t) = t = f2. We also note the situation when|s| = f2. In this scenario, we have that

|f
√
t| = |s| so the fixed points are identical. Therefore, asl → ∞, tl converges and takes

the values given in (C.3).

In the last part of this proof we check that points which lie oneitherg(t) = |s| or g(t) =

|f
√
t|, but are not within the limits given in (C.5) are not attractive fixed points (sog(t) has

not converged). For an initial pointt1, let us suppose the latter so thatg(t1) = |f√t1|. Say,

for example, thatg(t1) is point Fp1 in figure C.1, so thatt1 = f2. Therefore we also have

t1 ≤ (s/f)2 so that

f2 ≤ s2/f2 ⇒ f4 ≤ s2,

⇒ f2 ≤ |s|.

But from (C.3), iff2 ≤ |s| theng(t1) must take the value|s|, sot1 has not converged.

Lastly, if g(t1) = |s| but t1 ≥ (s/f)2, we have|s| ≥ (s/f)2. An example of this

is indicated by point Fp2 on figure C.1. This implies thatf2 ≥ |s|. But if this is so, the

attracting fixed point is atg(tl) = |f√tl| and thust1 has not converged.

Therefore, any point which has valueg(t) = |s| or g(t) = |f
√
t| but for which the

constraints in (C.5) but do not hold, will converge to the values given in (C.3).
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Attiná, F. 1990. The voting behaviour of the European Parliament members and the problem

of Europarties.European Journal of Political Research, 18, 557–579.

Aubury, M., & Luk, W. 1995. Binomial Filters.The Journal of VLSI Signal Processing,

12(1), 35–50.

Bailey, D., & Nason, G.P. 2008. Cohesion of major political parties.British Politics. Note:

To appear.

Baker, N. (Liberal Democrat Shadow Environment Secretary). 2004.

http://www.politics.co.uk/issueoftheday/norman-baker-proper-investment-in-

renewables-would-rule-out-need-nuclear-power-$368309$367007.html. September.

177



Barber, S., & Nason, G.P. 2004. Real nonparametric regression using complex wavelets.

Journal of the Royal Statistical Society B, 66, 927–939.

BBC Website. 2007.http://news.bbc.co.uk/1/hi/world/middle_east/737483.stm.

Berrington, H. 1968. Partisanship and dissidence in the nineteenth-century House of Com-

mons.Parliamentary Affairs, 21(4), 338–374.

Berrington, H. 1982.The Politics of the Labour Party. London: George Allen & Unwin.

Chap. 3.

Berrington, H.R. 1973.Backbench opinion in the House of Commons, 1945-55. Oxford:

Pergamon.

Box, G.E.P., & Cox, D.R. 1964. An analysis of transformations. Journal of the Royal

Statistical Society B, 26, 211–246.

Breiman, L., & Friedman, J. 1985. Estimating optimal transformations for mulitiple regres-

sion and correlation.Journal of the American Statistical Association, 80, 580–598.

Breusch, T., & Pagan, A. 1979. A simple test for heteroscedasticity and random coefficient

variation.Econometrica, 47, 1287–1294.

Brockmann, M., Gasser, T., & Herrmann, E. 1993. Locally adaptive bandwidth choice for

kernel regression estimators.Journal of the American Statistical Society, 88, 1302–1309.

Bromhead, P.A. 1962. Backbench opinion in the House of Commons, 1955-59 - Finer S.E.,

Berrington, H.B., Bartholomew, D.J.Sociological Review, 10, 349–351.

Burrus, C., Gopinath, R., & Guo, H. 1998.Introduction to Wavelets and Wavelets Transfor-

mations: A Primer. New Jersey: Prentice-Hall.

Cameron, A., & Trivedi, K. 1998.Regression Analysis of Count Data. Cambridge: Cam-

bridge University Press.

Chang, W. 1983. On using principal components before separating a mixture of two multi-

variate normal distributions.Applied Statistics, 32(3), 267–275.

178



Chatfield, C., & Collins, A.J. 1996.Introduction to Multivariate Analysis. London: Chap-

man and Hall.

Childs, S., & Withey, J. 2004. Women representatives actingfor women: sex and the signing

of Early Day Motions in the 1997 British parliament.Political Studies, 52, 552–564.

CNN Website. 2007. U.S. and Coalition POW/MIA.

http://edition.cnn.com/SPECIALS/2003/iraq/forces/pow.mia/.

Conover, W.J. 1971.Practical Nonparametric Statistics. New York: Wiley.

Conservative Party. 2001.2001 Conservative Party General Election Manifesto: Time for

Common Sense. London: Conservative Party.

Conservative Research Department. 2004.Conservative Party Disability Consultation.

London: Conservative Party.

Conte, A. 2005.Security in the 21st Century. The United Nations, Afghanistan and Iraq.

England: Ashgate.

Cowley, P., & Stewart, M. 1997. Sodomy, slaughter, Sunday shopping and seatbelts - free

votes in the House of Commons, 1979 to 1996.Party Politics, 3(1), 119–130.

Cox, G. 1987.The Efficient Secret: The Cabinet and the Development of Political Parties

in Victorian England. Cambridge: Cambridge University Press.

Cox, T.F., & Ferry, G. 1993. Discriminant analysis using non-metric multidimensional

scaling.Pattern Recognition, 26(1), 145–153.

Cromwell, V. 1982. Mapping the political world of 1861: A multidimensional analysis of

House of Commons’ division lists.Legislative Studies Quarterly, 7, 281–297.

Crossman, R.H.S. 1961. How poor are the poor?Manchester Guardian, 15 December.

Daubechies, I. 1992.Ten Lectures on Wavelets. Philadelphia: SIAM.

Davison, A.C., & Hinkley, D.V. 1997.Bootstrap Methods and Their Applications. Cam-

bridge: Cambridge University Press.

179



Donoho, D.L., & Johnstone, I.M. 1994. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81, 425–455.

Fellows, Sir E. 1962. Backbench opinion in the House of Commons, 1955-59 by Finer S.E.,

Berrington, H.B., Bartholomew, D.J.Parliamentary Affairs, 15, 244–245.

Finer, S.E., Berrington, H.R., & Bartholomew, D.J. 1961.Backbench Opinion in the House

of Commons, 1955-59. Oxford: Pergamon.

Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems.Annals of

Eugenics, 7, 179–188.

Fisz, M. 1955. The limiting distribution of a function of twoindependent random variables

and its statistical application.Colloquium Mathematicum, 3, 138–146.

Fletcher, R., & Powell, M.J.D. 1963. A rapidly convergent decent method for minimization.

Computer Journal, 6(2), 163–168.

Franklin, M.N., & Tappin, M. 1977. Early Day Motions as unobtrusive measures of back-

bench opinion in Britain.British Journal of Political Science, 7, 49–69.

Friedman, J., & Meulman, J. 2004. Clustering objects on subsets of attributes.Journal of

the Royal Statistical Society B, 66, 815–839.

Friedman, J., & Tibshirani, R. 1984. The Monotonic Smoothing of Scatterplots.Techno-

metrics, 26(3), 243–250.

Fryzlewicz, P. 2007.Data-driven wavelet-Fisz methodology for nonparametric function

estimation. Submitted for publication.

Fryzlewicz, P., & Nason, G.P. 2004. A Haar-Fisz algorithm for Poisson intensity estimation.

Journal of Computational and Graphical Statistics, 13, 621–638.

Fryzlewicz, P., Sapatinas, T., & Subba Rao, S. 2006. A Haar-Fisz technique for locally

stationary volatility estimation.Biometrika, 93, 687–704.

180



Fryzlewicz, P., Delouille, V., & Nason, G.P. 2007. GOES-8 X-ray sensor variance stabiliza-

tion using the multiscale data-driven Haar-Fisz transform. Journal of the Royal Statistical

Society C, 56, 99–116.

Gnanadesikan, R., Kettenring, J.R., & Maloor, S. 2007. Better alternatives to current meth-

ods of scaling and weighting data for cluster analysis.Journal of Statistical Planning and

Inference, 137(11), 3482–3496.

Hazan, R.Y. 2005.Cohesion and Discipline in Legislators. London and New York: Rout-

ledge.

Heinen, A. 2003. Modelling time series count data: an autoregressive conditional Poisson

model.Core Discussion Paper No. 2003-66.

Hencke, D. 2006. Poll cash race leads to secret deals.The Guardian, 14th March.

Hill, M.O., & Gauch, H.G. 1980. Detrended correspondence analysis: an improved ordina-

tion technique.Vegetatio, 43, 47–58.

Hix, S., Noury, A., & Roland, G. 2005. Power to the parties: cohesion and competition in

the European Parliament, 1979–2001.British Journal of Political Science, 35, 209–234.

Hoiland, K., Laane, C.M.M., & Medbo, J.I. 2004. Multivariate analysis of materials found

on a sentenced man and on the scene of the crime.Law, Probability and Risk, 3(3–4),

193–209.

House of Commons Information Office. 2003a.House of Commons Factsheet P3. London:

Office of Public Sector Information.

House of Commons Information Office. 2003b.House of Commons Factsheet P9. London:

Office of Public Sector Information.

Howard, A. 1962. Backbench opinion in the House of Commons, 1945-55.New Statesman,

12 January.

Hurst, G. 2006.Charles Kennedy: A Tragic Flaw. London: Politico.

181



Jansen, M. 2001.Noise Reduction by Wavelet Thresholding. New York: Springer.

Jansen, M. 2006. Multiscale Poisson data smoothing.Journal of the Royal Statistical

Society Series B, 68, 27–48.

Johnstone, I.M., & Silverman, B.W. 2004. Needles and straw in haystacks: empirical Bayes

estimates of possibly sparse sequences.The Annals of Statistics, 32(4), 1594–1649.

Johnstone, I.M., & Silverman, B.W. 2005a. EbayesThresh: R programs for empirical Bayes

thresholding.Journal of Statistical Software, 12(8), 1–38.

Johnstone, I.M., & Silverman, B.W. 2005b. Empirical bayes selection of wavelet thresholds.

The Annals of Statistics, 33(4), 1700–1752.

Jung, R.C., Kukuk, M., & Liesenfield, R. 2006. Time series of count data: modeling,

estimation and diagnostics.Computational Statistics and Data Analysis, 51, 2350–2364.

Kendall, D.G. 1971. Seriation from abundence matrices.In: Hodson, F.R., Kendall, D.G.,

& Tautu, P. (eds),Mathematics in the Archaeological and Historical Sciences. UK:

Edinburgh University Press.

Kendall, M., Stuart, A., & Ord, J. 1983.The Advanced Theory of Statistics. 4 edn. Vol. 3.

London & High Wycombe: Charles Griffin & company Limited.

Krzanowski, W., & Marriott, F. 1995.Kendall’s Library of Statistics 2, Multivariate Anal-

ysis volume 2. Arnold.

Leece, J., & Berrington, H. 1977. Measurements of backbenchattitudes by Guttman scal-

ing of Early Day Motions: a pilot study, Labour, 1968–69.British Journal of Political

Science, 7, 529–541.

Liberal Democrats. 2001.Freedom, justice, honesty: manifesto for a liberal and democratic

Britain: general election 2001. London: Liberal Democrat Party.

Linton, O., Chen, R., Wang, N, & Hardlem, W. 1997. An analysisof transfromations for

additive nonparametric regression.Journal of the American Statistical Association, 92,

1512–1521.

182



Lloyd, T. 1977. Backbench opinion in the House of Commons, 1945-55 - Berrington, H.

Canadian Historical Review, 158, 242–243.

Lowell, A.L. 1919. The Government of England. Vol. 2. New York: Macmillian.

MacDonald, I., & Zucchini, W. 1997.Hidden Markov and Other Models for Discrete-

Valued Time Series. New York: Chapman and Hall.

Manley, G. 1953. The mean temperature of central England, 1698–1952.Quarterly Journal

of the Royal Meteorological Society, 79, 242–261.

McKenzie, E. 1988. Some ARMA models for dependent sequencesfor Poisson counts.

Advances in Applied Probability, 20, 822–835.

McLean, I. 1995.Party, Parliament and Personality: Essays Presented to Hugh Berrington.

New York: Routledge. Chap. 8.

Mitchell, M. 1998.An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT Press.

Motakis, E., Nason, G., Fryzlewicz, P., & Rutter, G. 2006. Variance stabilization and nor-

malization for one-color microarray data using a data-driven multiscale approach.Bioin-

formatics, 22, 2547–2553.

Nadaraya, E.A. 1964. On estimating regression.Theory of Probability and Its Applications,

10, 186–190.

Nason, G.P. 2001. Early Day Motions: exploring backbench opinion during 1997-2000.

Technical Report, Dept. Mathematics Bristol. 01:11.

Nason, G.P. 2008.Wavelet Methods in Statistics with R. New York: Springer-Verlag.

Nason, G.P., & Bailey, D. 2008. Estimating the intensity of conflict in Iraq. Journal of the

Royal Statistical Society Series A.

Nelder, J.A., & Mead, R. 1965. A simplex-method for functionminimization. Computer

Journal, 7(4), 308–313.

183



Owens, J.E. 2003. Explaining party cohesion and disciplinein democratic legislatures:

purposiveness and contexts.The Journal of Legislative Studies, 9(4), 12–40.

Panofsky, H., & Brier, G. 1968.Some Applications of Statistics to Meteorology. Pennsyl-

vania: University Park.

Parker, D., Legg, T., & Folland, C. 1992. A new daily central England temperature series,

1772-1991.International Journal of Climatology, 12, 317–342.

Performance and Innovation Unit. 2002.The Energy Review. London: Labour Party.

Podani, J, & Milklos, I. 2002. Resemblance coefficients and the horseshoe effect in principal

coordinates analysis.Ecology, 83(12), 3331–3343.

Poole, K. T. 2005.Spatial Models of Parliamentary Voting. New York: Cambridge Univer-

sity Press.

Poole, K.T., & Rosenthal, H. 1997.Congress: a political-economic history of roll call

voting. New York: Oxford University Press.

Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. 1992. Numerical Recipes in C. 2

edn. Cambridge: Cambridge University Press.

Rahat, G. 2007. Determinants of party cohesion: evidence from the case of the Israeli

Parliament.Parliamentary Affairs, 60(2), 279–296.

Read, M., Marsh, D., & Richards, D. 1994. Why did they do it? Voting on homosexuality

and capital punishment in the House of Commons.Parliamentary Affairs, 47(3), 374–

386.

Rice, S.A. 1928.Quantitative Methods in Politics. New York: Knopf.

Richards, P.G. 1962. Backbench opinion in the House of Commons, 1955-59 by Finer S.E.,

Berrington, H.B., Bartholomew, D.J.Public Administration, 40(3), 337–339.

Roberts, L., Lafta, R., Garfield, R., Khudhairi, J., & Burnham, G. 2004. Mortality before

and after the 2003 invasion of Iraq.The Lancet, 364, 1857–1864.

184



Robinson, V. 2003.Spreading the ‘Burden’?: A Review of Policies to Dispurse Asylum

Seekers and Refugees. Bristol: The Policy Press.

Simonoff, J.S. 1996.Smoothing Methods in Statistics. New York: Springer-Verlag.

Spirling, A. 2007. “Turning points” in the Iraq conflict: reversible jump Markov chain

Monte Carlo in political science.The American Statistican, 61(4), 315–320.

Spirling, A., & McLean, I. 2006. The rights and wrongs of rollcalls. Government and

Opposition, 41(4), 581–588.

Strogatz, S.H. 1994.Nonlinear Dynamics and Chaos. USA: Westview Press.

The Economist. 2006 (August). Northern Ireland. http://www.economist.com /re-

search/backgrounders/displaybackgrounder.cfm?bg=832536.

The Poynter Institute. 2001.September 11, 2001. Andrews McMeel Publishing.

Tibshirani, R. 1988. Estimating transformations for regression via additivity and variance

stabilization.Journal of the American Statistical Society, 83, 394–405.

Turner, J.E. 1963. Backbench opinion in the House of Commons, 1955-59 by Finer S.E.,

Berrington, H.B., Bartholomew, D.J.Administrative Science Quarterly, 8(1), 104–108.

Vidakovic, B. 1999.Statistical Modeling by Wavelets. New York: John Wiley & Sons.

von Bortkiewicz, L. 1898.Das Gesetz der kleinen Zahlen. Leipzig: Teubner.

Wand, M., & Jones, M. 1995.Kernel Smoothing. New York: Chapman & Hall.

Watson, G.S. 1964. Smooth regression analysis.Sankhya, Series A, 26, 359–372.

Watt, N. 2003. MPs to grill cabinet on WMD.The Guardian, 4th June.

Whitaker, B. 2004. Arab world mourns “Father of nation”.The Guardian, 12th November.

White, M. 2005. Cameron’s new Conservatism.The Guardian, 7th December.

Winkelmann, R. 2003.Economic Analysis of Count Data. New York: Springer.

185



Wintour, P. 2006. Blair wins on education - but at a cost.The Guardian, 16th March.

Wintour, P., Ahmed, K., Vulliamy, E., Taynor, I., & Saraj, J.2001. It’s time for war, Bush

and Blair tell Taliban.The Observer, 7th October.

Zeger, S. 1988. A regression model for time series of counts.Biometrika, 75, 621–629.

Zhang, B., Fadili, M.J., & J-L., Starch. 2006. Multi-scale variance stabilizing transform for

multi-dimensional Poisson count image denoising.IEEE International Conference on

Acoustics, Speech and Signal Processing, 1329–1332.

186


