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Abstract

The central topic of this thesis is the development of new white noise testing method-

ology based on wavelets. We propose three white noise tests based on wavelet decompo-

sition of the raw periodogram of a univariate time series. Two of the tests are based on

Haar wavelets and the third uses Daubechies’ wavelets with ten vanishing moments. For

the Haar-based tests we derive an approximate result for the distribution of the wavelet

coefficients of the raw periodogram of a white noise process. For our third test, we de-

rived a theoretical power function. We evaluate our tests against commonly found tests

in statistical software, as well as on a range of real datasets, and find that our tests have

good performance. Unlike many white noise tests, ours do not require manual tuning

parameters and they are implemented in a separate R package hwwntest.

Next, we extend our univariate Haar wavelet white noise test to two-dimensional (spa-

tial) data. We design an experiment for evaluation of its performance against systematic

non-random effects in images and find that it has a good performance. Furthermore, we

compare its performance to an established spatial autocorrelation test on a range of spatial

autocorrelation scenarios. We also analyze a well-known spatial dataset, the Mercer and

Hall (1911) wheat data, and find that our test confirms the previously found trend in the

data.

Finally, we embark on application of white noise testing in functional time series.

We deal with the problem of order verification of the autoregressive Hilbertian process

of order one and design a procedure for that. Moreover, we refine the procedure to or-

ders greater than one by including one of our univariate wavelet white noise tests and

compare this approach with an established methodology. We find that our multistage al-

gorithm has good performance. We also suggest an applied methodology for forecasting

of autoregressive Hilbertian processes based on established theoretical results.

i



Author’s Declaration

I declare that the work in this thesis was carried out in accordance with the requirements

of the University’s Regulations and Code of Practice for Research Degree Programmes

and that it has not been submitted for any other academic award. Except where indicated

by specific reference in the text, the work is the candidate’s own work. Work done in

collaboration with, or with the assistance of, others, is indicated as such. Any views

expressed in the thesis are those of the author.

SIGNED ................................

Delyan Boyanov Savchev

DATE ....................................

ii



Contents

Abstract i

Author’s Declaration ii

1 Introduction 1

2 Literature Review — White Noise Tests and Wavelets 5

2.1 Stationary time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Time Series Analysis in the Frequency Domain . . . . . . . . . . . . . . 6

2.2.1 The Wiener-Khintchin theorem . . . . . . . . . . . . . . . . . . 6

2.2.2 Periodogram analysis and white noise . . . . . . . . . . . . . . . 7

2.2.3 Two-dimensional periodogram analysis and white noise . . . . . 9

2.3 The spectral approach to white noise testing . . . . . . . . . . . . . . . . 11

2.3.1 Schuster and Fisher’s white noise tests . . . . . . . . . . . . . . . 11

2.3.2 Bartlett’s test for white noise . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Durbin’s periodogram-based test . . . . . . . . . . . . . . . . . . 16

2.3.4 Other work related to Fisher’s and Bartlett’s tests . . . . . . . . . 17

2.3.5 Directions for periodogram-based tests and this thesis . . . . . . . 18

2.4 The autocorrelation approach to white noise testing . . . . . . . . . . . . 18

2.4.1 The Durbin-Watson test for lag one serial correlation . . . . . . . 19

2.4.2 The Extended Durbin-Watson h-test . . . . . . . . . . . . . . . . 20

2.4.3 Box-Pierce-Ljung white noise test . . . . . . . . . . . . . . . . . 21

iii



CONTENTS

2.4.4 Ljung-Box evaluation and lag selection . . . . . . . . . . . . . . 22

2.5 Contemporary work on white noise testing . . . . . . . . . . . . . . . . . 22

2.5.1 Small magnitude autocorrelation . . . . . . . . . . . . . . . . . . 23

2.5.2 The tests from Guay et al. (2013) and Hong (1996) . . . . . . . . 24

2.5.3 Lobato-Velasco periodogram-based test . . . . . . . . . . . . . . 25

2.5.4 Overview of white noise tests assumptions . . . . . . . . . . . . 26

2.5.5 White noise tests summary and thesis directions . . . . . . . . . . 26

2.6 Wavelets and wavelet transforms . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Haar wavelets in one dimension . . . . . . . . . . . . . . . . . . 28

2.6.2 How wavelets are constructed . . . . . . . . . . . . . . . . . . . 29

2.6.3 The Shannon wavelet and multiresolution analysis . . . . . . . . 31

2.6.4 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . 34

2.6.5 The discrete wavelet tranform(DWT) . . . . . . . . . . . . . . . 38

2.6.6 Vanishing moments . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.7 Haar in two dimensions . . . . . . . . . . . . . . . . . . . . . . 43

2.6.8 Wavelets in statistics . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.9 Spectral estimation with wavelets . . . . . . . . . . . . . . . . . 46

3 Literature Review — Functional Data Analysis 51

3.1 Overview of Functional Data Analysis . . . . . . . . . . . . . . . . . . . 51

3.1.1 An early FDA problem . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Tools for Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Functional Data Analysis Framework . . . . . . . . . . . . . . . . . . . 55

3.2.1 Functional Space, Mean and Covariance Functions . . . . . . . . 55

3.2.2 The Ramsay and Silverman monograph. . . . . . . . . . . . . . . 57

3.2.3 Nonparametric FDA: Ferraty and Vieu (2006) . . . . . . . . . . . 58

3.3 Some key tools in Functional Data Analysis . . . . . . . . . . . . . . . . 58

3.3.1 Functional Principal Components Analysis . . . . . . . . . . . . 59

3.3.2 The Need for Different Norms and Metrics . . . . . . . . . . . . 59

iv



CONTENTS

3.3.3 Combining of fPCA and derivative metrics . . . . . . . . . . . . 60

3.3.4 Other Aspects of Functional Data Analysis . . . . . . . . . . . . 60

3.3.5 Functional time series: Bosq(2000) . . . . . . . . . . . . . . . . 62

3.4 Functional Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 The Autoregressive Hilbertian Process of Order One . . . . . . . 63

3.4.2 Notation and Theoretical Setup for ARH(1) . . . . . . . . . . . . 64

3.4.3 The Data Problem in Functional Time Series . . . . . . . . . . . 67

3.4.4 Interesting problems in time series FDA . . . . . . . . . . . . . . 69

4 Univariate Wavelet White Noise Tests 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Building blocks of our tests . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Basic Components . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Assessing Spectral Constancy . . . . . . . . . . . . . . . . . . . 74

4.3 A Haar wavelet test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 All coefficient Haar Test . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Single coefficient Haar test . . . . . . . . . . . . . . . . . . . . . 77

4.4 A general wavelet test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Specification of the General Wavelet Test . . . . . . . . . . . . . 80

4.4.2 Power Function of the General Test . . . . . . . . . . . . . . . . 81

4.5 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Empirical distribution of the wavelet coefficients . . . . . . . . . 84

4.6 Univariate White Noise Simulation Study . . . . . . . . . . . . . . . . . 87

4.6.1 Size Estimation for the three Wavelet Tests and Others . . . . . . 87

4.6.2 Power Estimation for the three Wavelet Tests and Others . . . . . 90

4.6.3 Simulation Comparisons with Contemporary Papers . . . . . . . 93

4.7 Real Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.1 Wind Speed Example . . . . . . . . . . . . . . . . . . . . . . . . 94

v



CONTENTS

4.7.2 The HADCRUT4 Global Dataset . . . . . . . . . . . . . . . . . 96

4.7.3 S&P 500 Annual Log Returns . . . . . . . . . . . . . . . . . . . 100

5 Local Alternatives and Nonlinear Models 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Local Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 AR/MA(p) local alternatives scenario . . . . . . . . . . . . . . . 107

5.2.2 Theoretical power results . . . . . . . . . . . . . . . . . . . . . . 108

5.2.3 Spectrum estimation and periodicities . . . . . . . . . . . . . . . 111

5.3 Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Simulation Study with low-magnitude parameters . . . . . . . . . . . . . 115

5.4.1 What about moderate values of parameters . . . . . . . . . . . . 118

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Two-dimensional Wavelet White Noise Tests 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Basic components for the two-dimensional test . . . . . . . . . . . . . . 121

6.2.1 The 2D Periodogram . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.2 Usage and properties of the two-dimensional periodogram . . . . 122

6.2.3 The Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.4 The 2D Haar Wavelet Transform . . . . . . . . . . . . . . . . . . 124

6.3 Distribution of the 2D Haar wavelet cofficients . . . . . . . . . . . . . . 124

6.3.1 Empirical distribution of the 2D wavelet coefficients . . . . . . . 125

6.4 Two-dimensional HWWN test procedure . . . . . . . . . . . . . . . . . . 127

6.5 Spatial Statistics White Noise Tests . . . . . . . . . . . . . . . . . . . . 128

6.5.1 Popular Measures of Spatial Autocorrelation . . . . . . . . . . . 128

6.5.2 Brief literature review of spatial autocorrelation tests . . . . . . . 129

6.5.3 An illustrative example: the wheat data . . . . . . . . . . . . . . 130

6.5.4 Software for Spatial Statistics . . . . . . . . . . . . . . . . . . . 138

vi



CONTENTS

6.6 Spatial Autocorrelation Testing . . . . . . . . . . . . . . . . . . . . . . . 138

6.6.1 The Matrix of Spatial Weights . . . . . . . . . . . . . . . . . . . 138

6.6.2 Weighting and the 2D Haar Wavelet Transform . . . . . . . . . . 140

6.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7.1 The Spatial Autoregressive Model (SAR) . . . . . . . . . . . . . 142

6.7.2 Relationship between Moran’s I and SAR parameter ρ . . . . . . 144

6.7.3 Empirical size simulations . . . . . . . . . . . . . . . . . . . . . 145

6.7.4 Empirical power simulations . . . . . . . . . . . . . . . . . . . . 147

6.7.5 Refining the test as univariate d22 . . . . . . . . . . . . . . . . . 149

6.7.6 Homogenizing and contaminating of white noise . . . . . . . . . 149

6.8 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . . . . . 153

7 ARH Order Verification Methodology 155

7.1 ARH(1) Order Verification . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.2 Our methodology for verification of ARH(1) . . . . . . . . . . . 157

7.1.3 Algorithm for verification of ARH(1) — VERARH . . . . . . . . 158

7.2 Simulation study for ARH(1) . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.1 Setup of the Simulation Routine for ARH(1) . . . . . . . . . . . 159

7.2.2 Results from applying VERARH for the verification of ARH(1) . 161

7.2.3 Conclusions from the simulation Results . . . . . . . . . . . . . 162

7.3 Simulation Study for ARH(2) . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.1 Setup of the Simulation for ARH(2) . . . . . . . . . . . . . . . . 164

7.3.2 Results from applying extended VERARH for the verification of

ARH(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3.3 The upgraded VERARH procedure, using d00 wavelet test . . . . 166

7.3.4 A Real Functional Time Series Example . . . . . . . . . . . . . . 168

7.4 Simulation study with GCV and VERARH for ARH(1) prediction . . . . 172

7.4.1 Forecasting of ARH processes using the VERARH method . . . . 172

vii



CONTENTS

7.4.2 Results from Forecasting Simulated Data . . . . . . . . . . . . . 177

7.5 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Conclusions and Innovations 181

Bibliography 184

A Proofs, ARH simulations and software 197

A.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.3 Proof of Approximation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.4 Derivation of the d0,0 index . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.5 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

viii



List of Figures

2.1 Left: Scaling Function Right: Mother Wavelet Top: Haar wavelet: m =

1; Middle: Daubechies Extremal Phase wavelet with m = 5 ; Bottom:

Daubechies Extremal Phase wavelet with m = 10 ; . . . . . . . . . . . . 42

2.2 Illustration of generic steps 1 and 2 from the two-dimensional discrete

wavelet transform algorithm. Cj := Xn×n and D1, D2 and D3 are the

horizontal, vertical and diagonal coefficients resepectively. Reproduced

with permission from Nason (2008). . . . . . . . . . . . . . . . . . . . . 44

2.3 Realization of the AR(4) process from equation(2.70). . . . . . . . . . . 47

2.4 Top: The raw periodogram of the AR(4) process from equation(2.70);

Bottom:Its wavelet coefficients of raw periodogram from a Daubechies

extremal phase wavelet with 5 vanishing moments. . . . . . . . . . . . . 48

3.1 These curves represent the tongue dorsum height while pronouncing the

sound ’Kah’. They are result of polynomial spline smoothing of tongue

position sampled every milisecond using an ultrasound sensing technique.

Each record begins and ends at the point where the slope is zero. Here the

lengths of the curves have been standardized to the interval (0, π). Picture

reproduced with permission from Besse and Ramsay(1986) . . . . . . . . 53

3.2 EDF daily electricity load time series from September 2002 till August

2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



LIST OF FIGURES

3.3 This picture shows the Electricite de France electricity load curves from

1 Sep 2008 to 31 Aug 2009. On the x axis we have the 48 instances of

daily measurement and on the y is the load in kw/h . . . . . . . . . . . . 64

3.4 5 curves of a Simulated Realization of ARH(1) with Wiener Noise over a

grid of 100 points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Top left: probability density estimate (solid) of Haar wavelet coefficients

v̂11,k with g2(x) superimposed (dotted). Top right: equivalent but for cu-

mulative distribution. Bottom left: empirical histogram of p-values. . . . 77

4.2 All plots: solid line is theoretical power calculated from (4.12) for the

general wavelet test, circles are results from simulation study below. Top

left: independent and identically distributed normal random variables;

Top right: AR(1) with α = 0.3, Table 4.2; Bottom left: MA(2) with

β1 = 0, β2 = 0.5, Table 4.3, Bottom right: AR(12) with α1 = · · · =

α11 = 0, α12 = −0.4, Table 4.3. . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Top left to bottom right respectively: black — Empirical distribution of

finest-scale Haar wavelet coefficients of 103 realizations from Gassian

white noise with T = 128, 256, 512, 1024, red — theoretical Macdonald

curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Top left to bottom right respectively: black — Empirical distribution of

103 realizations from Gassian white noise with T = 32, 64, 128, 256, red

— standard Gaussian curve N(0, 1) . . . . . . . . . . . . . . . . . . . . 88

4.5 Shapes of the Macdonald distribution with varying the m parameter; red

— standard Gaussian curve N(0, 1) . . . . . . . . . . . . . . . . . . . . 89

4.6 Top left: Aberporth wind speed time series. Top right: first differences of

Aberporth wind speed time series. Bottom left: Autocorrelation function

of Aberporth wind speed first differences. Bottom right: Cumulative nor-

malized periodogram (solid black) and ideal white noise line (red dotted)

for Bartlett white noise test. . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



LIST OF FIGURES

4.7 Hadcrut4: Global ensemble medians of temperature anomalies from 01/1850

till 04/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Hadcrut4: Global ensemble medians of temperature anomalies from 01/1850

till 04/1935 (first 1025 observations of the data from Fig. 4.7 . . . . . . . 97

4.9 ACF and PACF of the temperature anomalies monthly raw data from

01/1850 till 04/2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 ACF and PACF of the temperature anomalies monthly raw data from

01/1850 till 04/1935. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.11 ACF and PACF of first order diffences of the temperature data. . . . . . . 98

4.12 Auto and Partial (auto) correlations of the residual series from ARIMA(1,1,1)

model on the 1025 monthly obsevations — from 1850 till 1935 — of the

HADCRUT4 Global Dataset . . . . . . . . . . . . . . . . . . . . . . . . 99

4.13 Annual Log-Returns from S&P 500 from 1871 till 1998 . . . . . . . . . 101

4.14 ACF and PACF of the lLog-Returns from S&P 500 from 1871 till 1998 . 102

5.1 Top left: Spectrum of AR(3) process with parameter αi = 0.1767 for i =

1, 2, 3 corresponding to local alternatives scenario α = 2/
√

(T ), T =

128. Top right: the Haar wavelet coefficients of the normalised spectrum

with T = 128. Bottom left and right: spectrum of AR(3) with negative

parameters and its Haar wavelet coefficients for T = 128 . . . . . . . . . 104

5.2 Top left: Spectrum of AR(1) process with parameter αi = −0.6. Top

right: the Haar wavelet coefficients of the normalised spectrum with T =

128. Bottom left and right: spectrum of AR(1) with parameter αi = −0.9

and its Haar wavelet coefficients for T = 128 . . . . . . . . . . . . . . . 106

5.3 Spectra and their Haar wavelet coefficients for local alternatives Scenario

1a. Top: AR(1), middle: AR(4), bottom: AR(6). . . . . . . . . . . . . . 112

5.4 Spectra and their wavelet coefficients (10 vanishing moments) for local

alternatives Scenario 1a. Top: AR(1), middle: AR(4), bottom: AR(6). . . 113

5.5 AR1 (ρ1 = 0.1) Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xi



LIST OF FIGURES

5.6 AR1 (ρ1 = 0.125) Power . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 AR1 (ρ1 = 0.15) Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 MA1 (θ1 = 0.1) Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9 MA1 (θ1 = 0.15) Power . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 AR1 (ρ1 = 0.3) Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Two-dimensional 128× 128 white noise as a grey-scale image . . . . . . 122

6.2 Top left to bottom right respectively: black — 1000 realizations of Empir-

ical distribution of finest-scale diagonal 2D Haar wavelet coefficients of

103 realizations from Gaussian white noise with T = 256, 1024, 4096, 16384,

red — theoretical Macdonald curve . . . . . . . . . . . . . . . . . . . . 126

6.3 Wheat Raw Data Total Surface . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Wheat Data — Residuals Surface after Median-Polish . . . . . . . . . . . 133

6.5 256 Wheat datapoints subset’s surface — raw data . . . . . . . . . . . . . 134

6.6 256 Wheat datapoints subset’s surface — residuals after median-polish . . 134

6.7 Wheat 256 datapoints subset’s images — total (left) and residuals after

median polish(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8 Image of 256 observations of Gaussian white noise . . . . . . . . . . . . 135

6.9 Total column effects vs plot number (east-west) (left) and the same for

our 256-datapoint subset(right) . . . . . . . . . . . . . . . . . . . . . . . 136

6.10 Left: image of the original 20 × 25 wheat data. Right: image of the

augmented 32× 32 wheat data. . . . . . . . . . . . . . . . . . . . . . . . 137

6.11 Left: 2D periodogram of 32 × 32 Gaussian white noise. Right: 2D peri-

odogram of 32× 32 SAR model. . . . . . . . . . . . . . . . . . . . . . . 141

6.12 Left: 2D periodogram of 32 × 32 Gaussian white noise. Right: 2D peri-

odogram of 32× 32 SAR model. . . . . . . . . . . . . . . . . . . . . . . 141

6.13 Left: image of the 2D periodogram of 32 × 32 Gaussian white noise.

Right: image of the 2D periodogram of 32× 32 SAR model (ρ = −0.8). . 142

xii



LIST OF FIGURES

6.14 The empirical distribution of Moran’s I for a SAR model with ρ = 0.5

for 1000 realizations from a 32× 32 grid . . . . . . . . . . . . . . . . . . 144

6.15 Histogram of ordinary p-values from 2D HWWN test of a 128×128 white

noise data — for all coefficients at all scales . . . . . . . . . . . . . . . . 146

6.16 Image of 128× 128 observations of Gaussian white noise with mean of 3

and variance 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.17

Image of 128× 128 Gaussian white noise, after the homogenizing operation152

6.18

Image of 128×128 Gaussian white noise, after the contaminating operation152

7.1 left: distribution of the value of the autocorrelation coefficient, defined

as αj = 0.8 for the first 50 pricinpal components and right: its p-value,

for all 1000 realizations with n = 500 curves and p=100 discretizations

points/principal components . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 left: distribution of the value of the autocorrelation coefficient, defined

as αj = 0.5 for the first 50 pricinpal components and right: its p-value,

for all 1000 realizations with n = 500 curves and p=100 discretizations

points/principal components . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3 Percentage of explained variance by the first 5 principal components for

1000 realizations of ARH(2) . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 EDF daily electricity load time series from September 2002 till August

2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5 All the curves for the last 1 year of data i.e. Sep 2008 - Aug 2009 . . . . . 170

xiii



LIST OF FIGURES

7.6 Autocorrelations for transformed daily data taken at the: a - 1st grid-

point(00:30 hrs), c - 24th gridpoint(12:00 hrs), e - 36th gridpoint(18:00

hrs)

Partial autocorrelations for transformed daily data taken at the: b - 1st

gridpoint(00:30 hrs), d - 24th gridpoint(12:00 hrs), f - 36th gridpoint(18:00

hrs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Plot of typical MAPE distribution over the 100 curves forecast horizon for

the ρ̃1 predictor. Green — our method for choosing k, Red — generalised

CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.8 Plot of typical MAPE distribution over the 100 curves forecast horizon for

the ρ̃2 predictor. Green — our method for choosing k, Red — generalised

CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiv



List of Tables

4.1 Empirical size for the five white noise tests for various sample sizes, T .

True model is independent and identically distributed variates. Approxi-

mate theoretical power from (4.12) computed to be 4.9% for all T for the

General Wavelet Test genwwn. . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Empirical power for the five white noise tests for various sample sizes, T .

True model is AR(1) with parameter α with standard normal innovations. 91

4.3 Empirical power for the five white noise tests for various sample sizes, T ,

all with standard normal innovations. MA(2) model has β1 = 0, β2 = 0.5,

ARMA(1, 2) model has α1 = −0.4, β1 = −0.8, β2 = 0.4, AR(12) model

has α1 = · · · = α11 = 0, α12 = −0.4. . . . . . . . . . . . . . . . . . . . 92

4.4 Empirical power for the three white noise tests for T = 256 for different

models with Student’s t distributed noise with two degrees of freedom in

roman font. Results with Gaussian innovations, reproduced from tables

above, are in italic font. Model: a.) AR(1) α = 0.3 from Table 4.2; b.)

MA(2), (β1 = 0, β2 = 0.5) from Table 4.3; c.) AR(12), α1 = · · · =

α11 = 0, α12 = −0.4 from Table 4.3. . . . . . . . . . . . . . . . . . . . 92

4.5 Results from applying white noise tests to the residuals of ARIMA(1,1,1)

on the 1025 monthly obsevations — from 1850 till 1935 — of the HAD-

CRUT4 Global Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xv



LIST OF TABLES

4.6 Results from applying the Ljung-Box test with different lags to the resid-

uals of ARIMA(1,1,1) on the 1025 monthly obsevations — from 1850 till

1935 — of the HADCRUT4 Global Dataset . . . . . . . . . . . . . . . . 100

4.7 Results from applying white noise tests to the log-returns from S&P 500

for 1871-1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Results from applying the Ljung-Box test with different lags to the log-

returns from S&P 500 for 1871-1998 . . . . . . . . . . . . . . . . . . . . 101

5.1 Approximate theoretical power for d00 in Scenario 1: AR(p) . . . . . . . 109

5.2 Approximate theoretical power for d00 in Scenario 1: MA(q) . . . . . . . 109

5.3 Approximate theoretical power for hwwn in Scenario 1: AR(p) . . . . . . 109

5.4 Approximate theoretical power for d11 in Scenario 1: AR(p) . . . . . . . 109

5.5 Approximate theoretical power results for local Scenario 1a: AR(p) . . . 110

5.6 Approximate theoretical power results for local Scenario 2a: MA(q) . . . 110

5.7 Approximate theoretical power results for local Scenario 1a: AR(p) . . . 111

5.8 Approximate theoretical power results for local Scenario 1a: MA(q) . . . 111

5.9 Empirical power of various tests on 103 realizations following tmWN with

T = 1024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Empirical power results for various white noise tests against GARCH(1, 1)

models m1 to m6: 103 relizations with T = 1024 . . . . . . . . . . . . . 115

6.1 Statistical Size for MVN ∼ (0, I) for Moran’s test, our HWWN and

HWWN(BH) - with using False Discovery Rate instead of Bonferroni. . . 145

6.2 Statistical Size for U ∼ (0, 1) . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Statistical Power for Gaussian UAR with ρ = 0.3 . . . . . . . . . . . . . 147

6.4 Statistical Power for Gaussian UAR with ρ = 0.5 . . . . . . . . . . . . . 147

6.5 Statistical Power for Gaussian UAR with ρ = 0.7 . . . . . . . . . . . . . 147

6.6 Statistical Power for Gaussian SAR with ρ = 0.2 . . . . . . . . . . . . . 148

6.7 Statistical Power for Gaussian SAR with ρ = 0.5 . . . . . . . . . . . . . 148

xvi



LIST OF TABLES

6.8 Statistical Power for Gaussian SAR with ρ = 0.8 . . . . . . . . . . . . . 149

6.9 Statistical Power for Gaussian SAR with ρ = −0.3 . . . . . . . . . . . . 149

6.10 Statistical Power for Gaussian SAR with ρ = −0.5 . . . . . . . . . . . . 149

7.1 Empirical power (left) and size (right), testing 100 principal components

for 1000 realizations of ARH(1) with VERARH . . . . . . . . . . . . . . 161

7.2 Results from Ljung-Box test up to lag 6, testing the residuals of AR(2)

fits to the first 5 principal components for 1000 realizations of ARH(2) . . 165

7.3 Results from standard PCA and the method for the transformed EDF data. 170

7.4 Table of the forecast comparisons using our method versus the CV method

for defining the number of eigenvalues to retain in the expansion of the lag

0 covariance for ρ1 and symmetrized lag 1 autocorrelation for ρ2 respectively178

xvii



Chapter 1

Introduction

Time series analysis is a branch of statistics that deals with data observed on a time grid,

often at regular intervals, which are assumed to be a realization of a discrete stochastic

process {Xt}Tt=1, T ∈ N. However, the intervals might also be irregular. The main differ-

ence with other branches of statistics is that, because we are observing the same process

or random variable at different instances through time, dependence structure is present in

the data. For some time series, autocorrelation can be found among the regular observa-

tions, but for others such as financial time series, it exists between the squared values of

the observations and can be modelled by GARCH models as in Bollerslev (1986). For

successful modelling of time series, this correlation structure must be taken account of.

Thus, there are different approaches to time series analysis. For example, we might con-

sider estimation of the correlation in the time domain or its dual, the spectrum, in the

frequency domain. Moreover, since we expect correlation structure in the observed data,

it is possible that the data-generating process might be decomposed in different math-

ematical bases. Furthermore, we need to make assumptions about the character of the

dependence in order to choose the right mathematical basis. This ultimately depends on

the objective of the statistical modelling of the time series. For instance, prediction of

future values of the process e.g. inflation or stock prices indices, electricity consump-

tion or internet traffic. Another form of application might be to classify time-dependent
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patterns of curves e.g. in meteorology we have different weather stations and record mea-

surements at fixed instances throughout the day. Then, based on those classifications, we

could derive physical and/or statistical models for doing weather forecasts for the differ-

ent regions of interest.

The concept of white noise testing is central to time series model validation and test-

ing for (auto)correlation structure. This is because when we believe that a dataset follows

a specific model, we should validate that in a certain way. As in simple regression where

we want the residuals to be independent and identically distributed as Gaussian or close

to, in the same way in time series analysis, such a requirement is to have no autocor-

relation structure in the residuals from a model. That condition is often crucial for the

limit theorems to hold so that we are able to derive meaningful confidence intervals, for

instance.

This thesis has two main purposes:

1. The development of new methods for univariate and spatial white noise testing via

wavelet analysis of the raw periodogram.

2. The analysis, via verification of the order, and forecasting of, functional time series,

specifically the Autoregressive Hilbertian Processes (ARH).

Chapter 2 reviews some time and frequency approaches for white noise testing and

related tests. We start with a key result from Brockwell and Davis (1991) that derives the

distribution of the raw periodogram of white noise, which is central to our further work.

While white noise testing itself has played a historical part in the development of random

number generators and has other applications in engineering, we do not cover those. We

focus on the development of white noise tests within time series analysis during the previ-

ous century in both the time and frequency domain, which has naturally evolved together

with statistical science. We try to emphasize the communalities and different features of
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the various tests in the review. Moreover, we discuss how are they related to each other

and how that influences their performance. Further, chapter 2 provides a brief review of

wavelets and multiresolution analysis and then elaborates on aspects of wavelet shrinkage

that relate to our proposed work of white noise testing.

Chapter 3 reviews the relatively new branch of statistics called functional data analy-

sis. This is a branch of statistics that deals with modelling of curves and surfaces. Func-

tional data arise when the object of interest is a mathematical function. Typically, though,

we are only able to obtain samples of the function, often contaminated with noise and/or

blurred. In this thesis we examine functional time series which arise as we consider two

time scales operating on the same functional object e.g. observe every day Earth’s mag-

netic field every 100 miliseconds during the day. In this review we focus on the basic

principles for performing functional data analysis drawing on monographs in the litera-

ture. We also discuss a basic model for functional time series called the autoregressive

Hilbertian process. This is a very popular and frequently applied model in the field and

subject to our subsequent investigation.

Chapter 4 develops three univariate white noise tests based on wavelet analysis of the

raw periodogram of a time series. The first test uses Haar wavelets and we derive an ap-

proximate result for the exact distribution of the wavelet coefficients. Then we suggest

a multiple comparisons procedure to test all wavelet coefficients of the raw periodogram

in order to judge whether or not our series are white noise. The second test is based on

a single coarsest-scale wavelet coefficient and thus has a simple form. Moreover, it turns

out that it can be expressed as a weighted sum of autocorrelations of the time series. Our

third wavelet test uses Daubechies’ wavelets with ten vanishing moments and we derive a

normal approximation based on a result from Neumann (1996). We developed a theoret-

ical power function for this test against an alternative hypothesis of ARMA class, which

can give guidance on the sample size needed in order to attain certain power level. We
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conclude the chapter with an extensive simulation study considering also non-Gaussian

models and comparing our tests against other tests found in statistical software. We also

present three different real datasets which benefit from white noise analysis.

Chapter 5 demonstrates that white noise tests have application in time series model

order verification for univariate AR and MA models. We focus on the case of moderate

number of observations (100 − 500) and parameters of small magnitude. We performed

a simulation study which showed that usual AIC usage delivers 75% statistical power,

whereas by using white noise tests we can get the power to 100% for our study.

Our two-dimensional extension of the Haar wavelet test is proposed in chapter 6. We

investigate the hypothesis of spatial autocorrelation and compare our test with one of the

standards in the literature. Furthermore, we analyze one of the classical spatial datasets:

the Wheat data from Mercer and Hall(1911) and show that our test correctly detects the

trend explored by many authors before. We also design a simulation experiment with

non-random operations on an image and explore how our test deals with those. We also

give brief guidance to further research and discuss how our work could be improved.

Chapter 7 suggests a multistage procedure for verification of the order of the autore-

gressive Hilbertian process. First, we explore order one processes and then extend the

procedure to larger orders. White noise testing is central to our algorithm and we com-

pare its results with an established method for the order verification problem for ARH.

We show a practical example with electricity load data. Based on our routine, we also

suggest a procedure for forecasting and compare it with a well-known generalised cross-

validation approach from the literature on simulated data. We find that our routine has a

good performance.

Finally, we conclude in chapter 8 and discuss possible further research.
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Chapter 2

Literature Review — White Noise Tests

and Wavelets

2.1 Stationary time series

A key concept in time series analysis is stationarity. Colloquially speaking, stationarity

means that the statistical properties of the stochastic process do not depend on the absolute

value of time. However, when defining it mathematically there are different options. At

the highest level of taxonomy in the literature, there exist two main forms of stationarity

- strict stationarity and wide-sense stationarity with the latter being most popular. Let

Xt, t ∈ N is a time series. Before getting to the definitions, let us define the main statistical

quantities of a time series following Chatfield (1996) chapter 3: the

1. Mean function

µ(t) = E{X(t)} (2.1)

2. Variance function

σ2(t) = Var{X(t)} (2.2)

5



CHAPTER 2. LITERATURE REVIEW — WHITE NOISE TESTS AND WAVELETS

3. Autocovariance function

γ(τ) = E[{X(t)− µ(t)}{X(t+ τ)− µ(t+ τ)}] (2.3)

4. Autocorrelation function

ρ(τ) = γ(τ)/γ(0). (2.4)

Here τ ∈ Z is known as the lag.

Definition 1. (Chatfield (1996), page 28)

A time series process {Xt}Tt=1 is said to be strictly stationary if the joint distribution

of X1, . . . , XT is the same as the joint distribution of X1+τ , . . . , XT+τ for all τ .

However, this definition is usually too restrictive to employ in practice and difficult

to verify. Therefore, a widely used relaxation, which is popular in practice, is a form of

wide sense stationarity called second order stationarity.

Definition 2. (Chatfield (1996), page 29)

A times series process X(t) is said to be second order stationary if E{X(t)} = µ,

Cov{X(t), X(t+ τ)} = γ(τ) and E(X2
t ) <∞.

From now on, we will assume that Xt, t ∈ Z is a second order stationary process,

unless otherwise stated.

2.2 Time Series Analysis in the Frequency Domain

In this section, we will present the main results upon on which we will later develop our

white noise tests in chapters 4 and 6.

2.2.1 The Wiener-Khintchin theorem

The Wiener-Khintchin theorem is a key result on which the theory and practice of second

order stationary stochastic processes is built.

6



CHAPTER 2. LITERATURE REVIEW — WHITE NOISE TESTS AND WAVELETS

Theorem 1. (Wiener-Knintchin, Priestley (1983), page 219) A necessary and sufficient

condition for ρ(τ) to be the autocorrelation function of some stochastically continuous

stationary process, {Xt}, is that there exists a function F (ω), having the properties of

a distribution function on (−∞,∞), (i.e. F (−∞) = 0, F (+∞) = 1, and F (ω) non-

decreasing), such that for all τ, ρ(τ) may be expressed i the form:

ρ(τ) =

∫ +∞

−∞
exp{iωτ}dF (ω), (2.5)

where the integral is a Stieltjes integral.

Moreover, if the derivative f(ω) = dF (ω)/dω exists, the theorem says that the au-

tocorrelation function is the Fourier transform of the normalized power spectral density

of the stochastic process Xt. The spectral density is called normalized since ρ(τ) =

γ(τ)/γ(0), thus a similar relation holds for the autocovariance function γ(τ). Therefore,

the autocovariance and the power spectral density are Fourier pairs. Hence, the inverse

relation to equation (2.5), which defines the normalized spectrum is (Priestley (1983),

page 216):

f(ω) = (2π)−1

∫ +∞

−∞
exp(−iωτ)ρ(τ)dτ, (2.6)

In other words, the power spectral density describes the distribution of the variance

over frequency rather than time. This is also very useful in practice, since it would be

hard to judge from a graph what is the main periodic component of a time series. In

many applications we collect data with predefined sampling rate such as daily, weekly,

monthly, quarterly or annually, thus different effects and seasonalities can be present in

the observed data.

2.2.2 Periodogram analysis and white noise

A key estimator of the spectrum of a second-order stationary time series process is the

periodogram from Brockwell and Davis (1991), page 342 which can be estimated from a
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realization {Xt}Tt=1:

IT (ω) = (2πT )−1

∣∣∣∣∣∣
T∑
t=1

Xte
−iωt

∣∣∣∣∣∣
2

, (2.7)

which can be computed at the Fourier frequencies Ip = IT (ωp), where ωp = 2πpT−1 for

p = 1, . . . , T/2.

Definition 3. An independent and identically distributed second-order stationary discrete

stochastic process, with mean zero and variance σ2 is denoted by Zt ∼ IID(0, σ2),

t = 1 . . . T, T ∈ N, σ2 ∈ R+, σ2 < ∞ is called white noise. If {Zt} are mutually

independent random variables and Zt ∼ N(0, σ2), where N denotes the Normal (Gaus-

sian) distribution, then it is called Gaussian white noise. Due to the properties of the Nor-

mal distribution, a sufficient condition for independence of Zt is that Cov(Zt, Zt+k) 6= 0,

where k ∈ Z and k 6= 0

A key component of the univariate white noise tests developed in this thesis, and

for spectrum estimation from the periodogram in general, is the following result from

Brockwell and Davis (1991), page 344, Proposition 10.3.2, concerning the distribution of

the periodogram ordinates in equation (2.7). We will note that this proposition holds for

arbitrary frequencies λi in the range [−π, π], but also for the Fourier frequencies, which

are of our interest here. Next we present a modified (less general) version of this result.

Proposition 1. Suppose that Zt ∼ IID(0, σ2), σ2 ∈ R+, and let IT (ω),−π ≤ ω ≤ π,

denote the periodogram of (Z1, Z2, . . . , ZT ) as defined by (2.7)

1. If 0 < ω1 < . . . < ωp < π then the random vector {IT (ω1), . . . , IT (ωp)}T con-

verges in distribution as T → ∞ to a vector of independent and exponentially

distributed random variables, each with mean σ2.

2. If EZ4
1 = ησ4 <∞ and ωj = 2πj/T ∈ [0, π], then

Var{IT (ωj)} =


T−1(η − 3)σ4 + 2σ4, if ωj = 0 or π.

T−1(η − 3)σ4 + σ4, if 0 < ωj < π.

8
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and

Cov{IT (ωj), IT (ωk)} = T−1(η − 3)σ4 if ωj 6= ωk. If Z1 is Normally distributed,

then (η − 3) = 0 so that IT (ωj) and IT (ωk) are uncorrelated for j 6= k.

Proposition 1 will be a keystone on which we build our wavelet-based univariate white

noise tests in chapter 4.

2.2.3 Two-dimensional periodogram analysis and white noise

Starting with a square matrix of data Xts for t, s = 1, . . . , T , T ∈ N, we can calculate the

two-dimensional periodogram by the following:

IT,S(ω1, ω2) = (2π)−2T−2

∣∣∣∣∣∣
T∑
t=1

T∑
s=1

Xt,se
−i(tω1+sω2)

∣∣∣∣∣∣
2

, (2.8)

which can be computed at the Fourier frequencies Ip,q = IT,S(ωp, ωq), where ωp =

2πpT−1 and ωq = 2πqT−1 for p, q = 1, . . . , T/2 respectively.

Proposition 1 has its generalization in two dimensions, developed as Theorem 3.2 in

Brillinger (1969). The result is that the two-dimensional periodogram has a Wishart distri-

bution with one degree of freedom. The assumptions, on which the result relies, are strict

stationarity of the series, existence of all moments and summability of the cumulants.

Assumption 1. (Brillinger (1969), Assumption I) Let Xt is a vector-valued strictly sta-

tionary series all of whose moments exist. For each j = 1, 2, . . . , k − 1 and any k-tuple

a1, a2, . . . , ak, with caa(t) being the autocovariance of Xa(t) (a = 1, 2, . . . , s) we have:

∑
t1,...,tk−1

|tjca1,...,ak−1
(t1, . . . , tk−1)| <∞ (k = 2, 3, . . .) (2.9)

In the Gaussian white noise case, because cumulants of order greater than two vanish,

equation (2.9) reduces to

∞∑
−∞

|tcaa(t)| <∞ (2.10)
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Next, we present a simplified version of Theorem 3.2 from Brillinger (1969)

Theorem 2. Let X(t) be a multivariate time series satisfying assumption I(Brillinger

(1969)), having mean vector 0, and the two-dimensional periodogram IT,S is defined at

the Fourier frequencies as in equation(2.8). Let WS(1, V ) denotes the Wishart distri-

bution with one degreee of freedom and scale parameter V . If 0 ≤ ωp ≤ π, then the

elements of the matrix IT,S(ω1, ω2) are asymptotically independent. IT,S(ω1, ω2) tends in

distribution to WS{1, IT,S(ω)}.

Although Assumption 1 requires strict stationarity, it has been applied in practice for

two-dimensional spectral estimation with second order stationarity assumptions. Exam-

ples are Pawitan (1996) and Rao et al. (2014). We will also use the result from Theorem 2

in order to infer the approximate distribution of two-dimensional Haar wavelet coeffi-

cients of the periodogram in 6. Brilliger (2001), Theorem 4.4.1 displayed next, also shows

that the two-dimensional discrete Fourier transform has a multivariate complex Gaussian

distribution, thus its squared magnitude would be exponentially distributed.

Theorem 3. Let X(t), t = 0,±1, . . . be an r vector-valued series satisfying assump-

tion I(Brillinger (1969)), cX = EX(t) and . Let sj(T ) be an integer with λj(T ) =

2πsj(T )/T → λj as T → ∞ for j = 1, . . . , J . Suppose 2λj(T ) ± λk(T ) 6≡ 0( mod 2π)

for 1 ≤ j ≤ k ≤ J . Let

d
(T )
X (λ) =

T−1∑
t=0

X(t) exp{iλt} −∞ < λ <∞. (2.11)

Then d
(T )
X (λj(T )), j = 1, . . . , J are asymptotically independent NC

r (0, 2πT fXX(λj))

variates respectively. Also if λ = 0,±2π, . . ., dTX(λ) is asymptoticallyNr(TcX , 2πT fXX(λ))

independently of the previous variates and if λ = 0,±π,±3π, . . ., dTX(λ) is asymptoti-

cally Nr(0, 2πT fXX(λ))

Note that fXX is the r × r spectral density matrix of the series X(t).

10
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2.3 The spectral approach to white noise testing

There appear to be two main approaches for testing the null hypothesis of white noise

— a time domain approach based on the sample (partial) autocorrelation function and a

frequency domain approach that is based on power spectrum estimation. Historically, the

spectral approach appears to have been developed first, e.g. Schuster (1898), during the

end of the nineteenth and the first half of the twentieth century.

The null hypothesis, for a discrete-time second order stationary stochastic process to

be a white noise, is equivalent to a flat spectral density in the frequency domain. How-

ever, in the real world, when we have a dataset to analyze, we are only dealing with one

possible realization of a stochastic process. Therefore, we cannot expect a perfect flat line

from the periodogram of a real dataset. However, what we can do as statisticians is to

hypothesize a model for the dataset e.g. independent and identically distributed (iid) data

or even iid Gaussian. Then, the spectrum of under this null hypothesis would be a flat line.

Historically, the term periodogram was coined in the paper of Schuster (1898), enti-

tled “On the investigation of hidden periodicities with application to a supposed 26 day

period of meteorological phenomena”. The research problem boils down to the following

situation: we might have a dataset from a natural phenomenon which contains obvious pe-

riodicities such as those caused by tidal semi-diurnal cycle or eleven-year sunspot maxima

(Schuster (1898)). However, something such as the “lunar influence of the daily variation

of magnetic forces” (Schuster (1898), page 13) might not be so easy to detect and ver-

ify. Schuster (1898) proposed to look at the problem by considering the “probability for

different values of the amplitudes if the original numbers are chosen at random”

2.3.1 Schuster and Fisher’s white noise tests

This section follows closely Fisher (1929). The starting assumptions of Schuster’s test

test is that we have a realization X1, X2, . . . , X2t+1 and Xt ∼ N(0, σ2), σ2 ∈ R+. Thus
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any linear combination of Xs would be also normally distributed and for orthogonal lin-

ear combinations the independence will also hold. Thus Schuster (1898) arrived at the

main corollary from our Proposition 1. If A =
∑2n+1

r=1 arXr and B =
∑2n+1

r=1 brXr, then

z = A2 + B2 will be exponentially distributed i.e. z ∼ Exp(2σ2) so that the probabil-

ity of exceeding a given value of z is exp{−z/2σ2}. The test consisted of testing every

particular value. The drawback is that the population variance σ2 is not known in advance.

Section 2 of Fisher (1929) acknowledges further work on the topic by Sir Gilbert

Walker, but an explicit paper is not cited however. Walker’s idea is to test the significance

of the largest periodogram ordinate in relation to its other values — considering the ratio

of the largest periodogram ordinate to the sum of all. If P = exp−z/2σ
2 is a small proba-

bility that is to be used as a significance level, then (1− exp{−z/2σ2})n = 1− P is the

relation which has to be solved in order to get an empirical critical value for z.

Fisher (1929) extends the test of Walker to test any value of the periodogram, not nec-

essarily the largest, but second or less largest. He also considers the resulting sampling

error from the unknown variance σ2 and shows that, if we use ratio of periodogram val-

ues (i.e. ratio of exponential random variables), then it will be F -distributed, thus σ2 is

irrelevant, since it is replaced by the usual sum-of-squares sample variance formula i.e.

using T − 1 in the denominator, rather than T . Nowadays, it is called Fisher’s g test and

is implemented in the GeneCycle package in R (Ahdesmaki et al. (2012)), for example.

Koen (1990) looks in the same problem as Fisher (1929), but in the context of as-

trophysics. However he shows that when we do not have observations at fixed interval

or when we do not use the Fourier frequencies in calculating the periodogram, then the

subtle difference between the exponential and F -distribution for the ratio of a given pe-

riodogram ordinate to the cumulative periodogram matters and this should be taken into

account.
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2.3.2 Bartlett’s test for white noise

Bartlett (1950) further developed white noise testing by analysing general linear processes

with continuous spectra. He also puts special emphasis of the work of Yule (e.g. Yule-

Walker equations) with respect to the autoregressive process of order two. Bartlett’s main

motivation is the fact that while Fisher’s test can show that there is a hidden periodicity,

if there are more than one, then it is hard to say which one is the most important. There-

fore, more elaborate methods are needed to perform the so-called “periodogram analysis”

Bartlett (1950). Furthermore, his paper emphasizes the benefits of the general linear

model and discusses general results for stationary time series such as Wiener-Khintchin

theorem(page 2):

“The very generality of these results becomes embarrassing when it comes to the anal-

ysis of actual series, and further assumptions about the character of the series are usually

necessary in practice before much progress can be made — hence the importance of one

general type of series distinct from the classical harmonic series and having a continuous

spectrum.”

Furthermore, Bartlett (1950) is remarkable since it employs many devices related to

the spectral estimation from the periodogram, which are nowadays a standard in statis-

tical time series software. For instance, Bartlett explains why it is useful to smooth the

periodogram with the Daniell kernel when plotting it against frequency for spectrum vi-

sualization.

The argument (for smoothing) from Bartlett (1950) is the following. Let us have a

univariate time series Xt, t ∈ N+ which contain a harmonic component with a fixed

frequency λ, then its spectrum fs would have a component c cosλs. Thus at frequency

13
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ωp = λ the periodogram’s expectation E(Iωp) will tend to infinity. For ωp = λ, this gives

an O(T ) effect to the calculated periodogram, where T is the length of the series Xt.

On the other hand, for every ωp 6= λ, the effect is O(T−1) and the “periodogram anal-

ysis” can distinguish frequencies that have a difference in magnitude greater than this.

Moreover, because of the derived exponential distribution of Iωp from Fisher (1929) i.e.

P(Iωp ≥ z) = exp{−z/E(Iωp)} and its memorylessness property, for an iid process,

the periodogram alternates around the mean. Therefore, for spectral estimation Bartlett

(1950) recommends that the series is smoothed, so that such fluctuations and the induced

correlations among the periodogram ordinates are mitigated. It is well known today, that,

asymptotically, the periodogram is not a consistent estimator of the spectrum i.e. its vari-

ance does not decrease when the number of observations T goes to infinity. As an aside,

if we use the spectrum function in R, then smoothing and plotting the logarithm of the

periodogram are activated automatically.

Moreover, the arguments developed in Bartlett (1950) help when one decides how to

approach white noise testing in the spectral domain. Since we would not be looking for

any particular frequency, or a combination of, then we are not restricted by the O(T−1)

contributions. On the contrary, we might use methods for expressing deviation between

statistical distributions in order to discern whether or not a time series exhibits (Gaussian)

white noise characteristics. In chapter 4 we will be using distributional results for the

wavelet coefficients of a periodogram in order to test for white noise.

Such approaches are developed in Bartlett (1954), Bartlett (1955) and Grenander and

Rosenblatt (1957). The general idea is to evaluate the departure of the empirical pe-

riodogram from the one expected under the white noise hypothesis, accounting for the

distributional differences. To accomplish this task, a Kolmogorov-Smirnov test is used,

from Kolmogorov (1933) and Smirnov (1948). This test is based on the Glivenko-Cantelli

theorem and considers the maximum difference of the empirical and theoretical distribu-
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tion functions of a given data and theoretical distribution. The Bartlett test from Bartlett

(1954) and Bartlett (1955), pages 92-94 is based on applying the Kolmogorov-Smirnov

test to the cumulative distribution function(cdf) of the raw periodogram of the data, com-

paring it with a uniform cdf. To our knowledge, the Bartlett test is implemented in the

commercial SAS and STATA statistical packages, and our R package hwwntest. Fol-

lowing Newton (1996), next we present the main steps of the Bartlett test for white noise.

Let us have a time series {Xt}, t = 1 . . . T, T ∈ N and q = T/2. First we define

the cumulative (or integrated) periodogram as:

F̂I(ωp) =

∑p
j=1 I(ωj)∑q
j=1 I(ωj)

, p = 1 . . . q, (2.12)

where FI(0) = 0 and FI(ωq) = 1. The idea of the Bartlett test is that, under the null

hypothesis of {Xt} being white noise, if we plot the integrated periodogram against the

frequency, then the points should be placed on a straight line. The (Kolmogorov-Smirnov)

test statistic is defined as:

B = q−1/2 max
1≤k≤q

∣∣∣∣F̂ (ωk)−
k

q

∣∣∣∣ , (2.13)

and its distribution function is:

G(b) = lim
n→∞

Pr(B ≤ b) =
∞∑

j=−∞

(−1)j exp{−2b2j2}. (2.14)

Then, this distribution function G can be used to calculate a p-value.

A drawback of the Bartlett’s test is that it does not perform well with small samples.

The reason is that, the Kolmogorov-Smirnov test is based on the Glivenko-Cantelli central

limit theorem which deals with the convergence of the empirical distribution function

to the continuous distribution function. This theorem relies on the strong law of large

numbers and thus implicitly requires a fine partition where the empirical cdf is evaluated

i.e. a large number of observations. Thus, if we do not have many datapoints, then the
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empirical cdfs would have more steep steps and large differences, since empirical cdfs are

step functions with discontinuities.

2.3.3 Durbin’s periodogram-based test

Durbin (1969) extends Bartlett’s cumulative periodogram white noise test, considering

the small-sample scenario as well as adapting the procedure to use least-squares resid-

uals. Furthermore, it explores the scenarios of both high and low frequency departures

from Gaussian white noise. Additionally, a graphical approach is presented which shows

confidence bands for the respective high and low frequency departures from whiteness. A

generalized test, based on the mean value of the integrated periodogram is also presented.

Durbin (1969) stated that the reason for development of those tests is because the autocor-

relation based Durbin-Watson tests(Durbin and Watson (1950, 1951) are not applicable

to least-squares residuals and also, in practice, a better tool for detecting departures from

white noise is needed due to the drawbacks of Bartlett’s test.

When approaching the high versus low frequency departures from Gaussian white

noise, Durbin (1969) considers two cases of the Bartlett’s test statistic from equation

(2.13), without the absolute value. For the situation when the alternative hypothesis is a

low frequency departure, Durbin (1969) defines:

c+ = max
1≤k≤q

{
F̂ (ωk)−

k

q

}
. (2.15)

For a high frequency alternative, Durbin (1969) defines:

c− = max
1≤k≤q

{
k

q
− F̂ (ωk)

}
. (2.16)

Eventually, Bartlett’s test statistic is defined for the two-sided alternative hypothesis:

c = max(c+, c−) (2.17)
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The test procedure is thus very similar to the one from Bartlett (1954). However, the

Durbin (1969) provides theoretical arguments as to what modifications in the confidence

bands must be made when the residuals are from regressions on lagged dependent vari-

ables i.e. a simple autoregressive model. Durbin also points out that there are regions

of the test statistics for which the results of the tests are inconclusive, similar to the ones

from Durbin and Watson (1950) and Durbin and Watson (1951).

Furthermore, an additional procedure — for the average integrated periodogram value:

F̂I(ωp) =
1

q − 1

q−1∑
j=1

F̂I(ωp), (2.18)

as a test statistic — is considered and also explained that its distribution would be

simpler and the inconclusive region, such as the one for Durbin-Watson’s d statistic from

Durbin and Watson (1950), shown in equation 2.19, is narrower. The reason is that, be-

cause of the central limit theorem, the distribution of the average cumulative periodogram

would converge quickly to the Normal distribution.

2.3.4 Other work related to Fisher’s and Bartlett’s tests

An interesting paper is Reschenhofer (1989) who looks separately at the sine and cosine

components of the discrete Fourier transform(DFT). Reschenhofer (1989) uses the work

of Fisher (1929) with respect to the F -distribution of the ratios of periodogram ordinates.

The paper exploits the fact that Bartlett’s white noise test often fails if there is more

than one peak in the periodogram. Furthermore, it is shown through simulation that the

autoregressive testing approach of Box and Pierce (1970) is superior to the approach in

Reschenhofer (1989) when the lag tested is less than 5. However, for large lags such as 20,

the Box-Pierce approach is inferior to the periodogram test developed in Reschenhofer

(1989). It is also noted that the rank portmanteau test of Hallin et al. (1987), that is

initially developed for stationary continuous alternative hypotheses, is also applicable for
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compound periodicity alternatives where the periodogram has more than one peak.

2.3.5 Directions for periodogram-based tests and this thesis

From the works of Schuster (1898); Fisher (1929); Bartlett (1950, 1954); Durbin (1969),

it is clear that the periodogram gives many opporunites for the development of white noise

tests, both for raw datasets and residuals from regression (or other) models.

In this thesis, we use wavelet decompositions of the periodogram in chapter 4 in order

to develop white noise tests that encompass different classes of alternative hypotheses and

can be applied for either: high and low frequency or general alternatives with a continuous

spectrum such as ARIMA models.

2.4 The autocorrelation approach to white noise testing

An approach for white noise testing based on the sample autocorrelation function is com-

plementary to spectral analysis. From this perspective, the problem of white noise testing

often arises when considering the residuals from linear regression. The reason is that,

because of Gauss-Markov theorem, the statistics for overall model fit and coefficient sig-

nificance such as the F and T would only be valid if the residuals of the model are iid.

Thus, especially in econometrics, it became customary first to check whether or not the

residuals from a model possess first-order autocorrelation, with the Durbin-Watson test

(Kotz and Johnson (1992), page 234). It is probably interesting to notice that in the paper

Durbin and Watson (1950) today’s standard matrix notation for linear models was coined

in i.e. y = Xβ + ε (Kotz and Johnson (1992), page 234).
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2.4.1 The Durbin-Watson test for lag one serial correlation

One of the first tests available to search for residual autocorrelation was the Durbin-

Watson test. The null hypothesis H0 is that the residuals from a regression model are

iid N(0, σ2). The procedure was developed in Durbin and Watson (1950) and statisti-

cal tables with critical values for the test statistic were produced in Durbin and Watson

(1951). It concerns only lag one autocorrelation. The Durbin-Watson test statistic is:

d =

∑T
t=2(εt − εt−1)2∑T

t=1 ε
2
t

, (2.19)

where εt are the residuals from a model such as yi = β0+β1Xt+εt, t = 1 . . . T, T ∈

N. However, in practice, we do not know the real residuals, but only their estimates which

will be denoted ε̂t. So, considering lag one autocorrelation in the residuals of a model

gives a regression equation from which, the autocorrelation ρ can be estimated as ρ̂.

ε̂t = ρε̂t−1 + vt, (2.20)

where vt is an IID error term. Considering equations (2.19) and (2.20), and after some

algebra, one can get the relationship between the two:

d = 2(1− ρ̂). (2.21)

Thus, H0 means that ρ̂ = 0 which translates to d = 2. However, the ease of use of

this approximation depends on complicated arguments since there is a subtle difference

between the observed and the real residuals. For a detailed review of the arguments, the

reader is referred to either the articles Durbin and Watson (1950), Durbin and Watson

(1951) or Kotz and Johnson (1992), page 229 for an extensive discussion. It would suf-

fice to say that the performance of the Durbin-Watson test depends also on the number of

parameters in the regression equation from which the residuals are derived. Furthermore,

if we look closely at equation (2.21), we can notice that the test statistic d varies between
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0 (perfect positive autocorrelation of residuals) and 4(perfect negative autocorrelation).

This test statistic also has two different critical values — lower dl and upper du — de-

pending on whether the alternative hypothesis Ha is ρ > 0 or ρ < 0. So, there is a range

of the test statistic for which the test is inconclusive. For example, given a fixed number

of observations n, if the number of variables in the regression k increases, then the gap

between dl and du also increases, so the test loses in terms of empirical statistical power.

The Durbin-Watson test is ubiquitous in statistical packages — available in: R, pack-

age lmtest, function dwtest; Matlab, Mathematica, SAS, Eviews, Stata, Minitab,

SPSS. For a review from applied point of view with the different steps in econometric

analysis, consult Hatekar (2010), section 6.5.

2.4.2 The Extended Durbin-Watson h-test

A drawback of the Durbin-Watson(DW) test is that it is not applicable when the regressors

are lagged values of the dependent variable. As such, it could not be applied for residual

testing of autoregressive models, which is a large area for application of model validation

technique such as the DW test. Especially, autoregressive model specification for the

errors i.e. is the serial correlation in lag one or lag two. The problem was addressed by

Durbin (1970) where a general likelihood ratio Neyman-Pearson type test is developed

We will outline the test statistic, but not go into details of the method, since it is far from

the methodology developed in this thesis. The test statistic for the extended DW test is:

h = (1− d/2)
[
T/{1− T V̂ar(β̂1}

]1/2

, (2.22)

where T is the number of observations, d is the DW statistic from (2.19) and V̂ar(β̂1)

is the estimated variance of the autoregressive parameter for lag one. Additional condi-

tion regarding the validity of the test is that T · V̂ar(β̂1) < 1 and the sample is moderately

large (Hatekar (2010), section 6.5).
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It is interesting to note that Durbin (1970) includes the Ljung-Box portmanteau test as

a special case of the general methodology developed there.

2.4.3 Box-Pierce-Ljung white noise test

The Box-Pierce-Ljung test is one of the most popular white noise tests — consisting,

formally, of two tests Box-Pierce and Ljung-Box. As with the Durbin-Watson test, it is

available in most commercial and open source statistical packages. Unlike the DW test,

it considers departures from white noise up to a pre-chosen lag and is thus a cumulative

portmanteau test.

The Box-Pierce test is developed in Box and Pierce (1970) which derives the mathe-

matical approximation of the distribution of residuals in autoregressive integrated moving

average (ARIMA) models. The residual distribution is shown to be χ2 with degrees of

freedom equal to the lag, up to which the sample autocorrelations are tested. LetXt, t =

1, . . . , T be a zero mean second order stationary time series. Then ρ̂i = Cov(Xt, Xt+i)/Var(Xt)

is the sample autocorrelation coefficient at lag i. The test Box-Pierce test statistic is:

T

h∑
i=1

ρ̂i
2, (2.23)

where T is the number of observations and the index h denotes the maximum lag con-

sidered.

Later, it was realized that the approximation for the distribution of (2.23) could be

improved and Ljung and Box (1978) was developed. The Ljung-Box test statistic is:

Q = T (T + 2)
h∑
i=1

ρ̂2
i

T − i
, (2.24)

where T is the sample size, ρ̂i is the sample autocorrelation at lag i, h is the number
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of lags being tested and Q is approximately χ2(h) distributed. However, because of the

differences between the residuals and true white noise autocorrelations, when considering

the residuals from an ARIMA(p, 0, q) model, the degrees of freedom should be corrected:

Q ∼ χ2(h− p− q).

2.4.4 Ljung-Box evaluation and lag selection

Due to its popularity and ease of computation, the Ljung-Box test is often the first choice

of a practitioner and is ubiquitous in statistical software. However, there exists the crucial

question of selecting the lag. It can be seen, from its test statistic in (2.24), that the higher

the lag, the larger the test statistic. Moreover, this means that choosing a high lag could

drive the power of the test to deteriorate if the true statistically significant autocorrelation

coefficient is contained in smaller lags. On the other hand, choosing a small lag could

miss significant higher-lag autocorrelation coefficients. A survey of its statistical power

and rules of thumb for lag selection are described by Hyndman (2014). Hyndman (2014)

employs a Kolmogorov-Smirnov test for the uniformity of the p-values calculated from

simulated data. The main conclusion is that when we increase the lag, then the statistical

size becomes greater than the nominal size of the test and this is checked for nominal

levels of both 5% and 1%.

2.5 Contemporary work on white noise testing

With the increasing data abundance and the development of the financial markets in

the 1980s, many more time series models were developed. Examples are ARCH,Engle

(1982), and GARCH, Bollerslev (1986), which model the variance (volatility) of a time

series as an ARIMA process itself. These developments created a new wave in econo-

metric applications of white noise tests over the past 25 years. A detailed introduction is

available in Guay et al. (2013) and Lobato et al. (2001). For our exposition, it suffices to

explain what are the main directions of some recently developed tests.
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2.5.1 Small magnitude autocorrelation

The origin of this econometric problem arises in financial time series. In plain terms,

the efficient market hypothesis means that financial markets are effective and thus there

should be no autocorrelation in the financial returns time series. However, this is not al-

ways true, so institutions can make money on the market, Samuelson (1965). The zero

autocorrelations phenomenon is also known as one of the stylized facts for financial time

series and one reason for the development of the ARCH/GARCH models. It is an im-

portant example because near-zero sample autocorrelation is on the edge of the Box-type

tests. To illustrate that, let us think about the standard confidence intervals for the autocor-

relations, under the null hypothesis of independent and identically distributed time series:

−2/T−1/2 to +2/T−1/2 where T is the number of observations. If we have a moderately

long series, say T = 200 to 300 e.g. T = 256, then our 95% confidence interval would

be from −2/16 to 2/16, i.e. an autocorrelation of 0.125 would not be deemed signifi-

cant. A similar test scenario is used in Guay et al. (2013), namely, to be able to detect an

o(T−1/2) autocorrelation, provided there is enough of them. Their way to achieve that is

to use a heavily-modified Box-Pierce test, more precisely, weighting its autocorrelations

via special kernels and/or tuning algorithm for choosing the right lag. For instance, the

Box-Pierce might be considered as a vanilla case with uniform kernel and pre-specified

lag. These procedures are by no means simple and would be a huge burden for a practi-

tioner.

A test based on periodogram/weighted spectral density. which covers the ARFIMA

alternative and local AR(1) and MA(1) alternatives, is developed in Hong (1996). It is

based on kernel-weighted distance (metric) between the null-hypothesized spectral den-

sity and the estimated one from the data. The author shows three variants: one with

quadratic form distance, one based on Hellinger metric and one based on information cri-

terion.
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2.5.2 The tests from Guay et al. (2013) and Hong (1996)

The Guay et al. (2013) and Hong tests merge the spectral approach, explained earlier in

section 2.3, with the Box-Pierce-Ljung approach. The assumptions of Hong (1996) are

that we have a second-order stationary process {Xt}, with an autocorrelation function

ρj, j ∈ Z However, instead of starting with the periodogram, Hong (1996) starts with a

normalized spectral density function:

f(ω) = (2π)−1

∞∑
−∞

ρj cos jω, ω ∈ [−π, π]. (2.25)

The null hypothesis H0 is that ρj = 0 for all j ∈ Z, j 6= 0 and the alternative Ha

is that ρj 6= 0 for some j 6= 0. Let also f0(ω) = 1/2π be the spectrum of white noise.

Hong (1996) considers different divergence measures to express the deviation of f from

f0 — based on quadratic norm, Hellinger metric and Kullback-Leibler divergence. We

will explain his test when using the quadratic norm, since the situation is similar for the

others. In the quadratic norm case the test statistic is:

Q(f, f0) =

[
2π

∫ π

−π
{f(ω)− f0(ω)}2dω

]1/2

. (2.26)

Then the test statistic can be computed as the value of Q(f̂t, f0) where f̂t is a kernel

estimator for the spectral density from the data. Then it is explained, that the Box-Pierce

test can be seen as a special case of Q(f, f0) where f is a truncated periodogram. Hong

(1996) goes further by considering kernels and theoretical arguments for the selection of

a lag h, which would determine the magnitude of the weights for the kernel density esti-

mation of the spectrum. Additionally, scaling quantities are defined to modify the statistic

Q, together with assumptions, which lead to a form that has asymptotic Gaussian distri-

bution, from which the actual test is constructed.
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Guay et al. (2013) uses the test statistic Q as a starting point, however then develops

complicated algorithms for lag selection and weighting in order to fullfil the case for the

alternative hypothesis of the type o(T−1/2). We will use scenarios from both Guay et al.

(2013) and Hong (1996) to compare to results of our wavelet-based white noise tests in

chapter 4. However, we could not find a software implementation of the Guay et al. and

Hong tests.

2.5.3 Lobato-Velasco periodogram-based test

Lobato and Velasco (2004) introduced a spectral white noise test based on the standard-

ized cumulative periodogram, in fact the statistic that is maximized from Bartlett’s test.

As defined before, let us have a time series Xt, t = 1 . . . T, T ∈ N, q = T/2 and

define.

Z(ωp) = q−1/2

{
F̂i(ωp)−

k

q

}
, (2.27)

where F̂i is the cumulative periodogram from section 2.3.2, equation (2.12)

A key component in this test is also the Cramer von Mises statistic given by:

CvM = q−1

q∑
p=1

Z(ωp)
2 (2.28)

Let us have a second-order stationary time series {Xt} with mean µ = 0 and variance

σ2 < ∞. Next, Lobato and Velasco (2004) reformulate the null hypothesis in terms of

the periodogram — since under white noise the normalized spectrum would be 1, then

I(ω)/σ̂2 − 1 = 0 and then the Cramer von Mises functional is applied to it which gives:

Mn =
1

q

q∑
p=1

{
I(ωp)

σ̂2
− 1

}2

(2.29)

Further in the paper, it is shown that q−1/2(Mn − 1) is asymptotically distributed as
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N(0, 4) and it is also explained that the test is suitable for analysing regression residuals.

The R package normwhn contains the function whitenoise.test which computes

the Lobato-Velasco test. We will use this test for comparisons in chapter 4 of the thesis.

2.5.4 Overview of white noise tests assumptions

Another important aspect underlying the construction of a statistical test are the assump-

tions which are made. In the tests of Bartlett, Durbin’s both periodogram based and

autocorrelation of lag one tests, and Box-Pierce-Ljung tests, the main assumptions for

H0 are second order stationarity and that the process Xt is Gaussian. However, with the

knowledge of Proposition 1, the Gaussian assumption in Bartlett’s test may be relaxed.

In Reschenhofer’s and our wavelet tests developed in chapter 4, only second order

stationarity is assumed.

In contrast, due to the more complicated setups and scenarios, the contemporary tests

of Hong, Guay and Lobato require more stringent assumptions (additional to second order

stationarity) that are hard to verify for a real time series data:

1. The test of Hong assumes only IID data, but requires a finite moment condition of

order four.

2. The test of Guay et al. (2013) assumes a finite moment condition of order 12 and

the order of the average lag may reach T 1/2.

3. The test of Lobato and Velasco (2004) assumes a finite moment condition of order

eight.

2.5.5 White noise tests summary and thesis directions

The literature appears to contain two main approaches to the white noise hypothesis test-

ing: the spectral and sample autocorrelation approach. The key tests are Bartlett’s and
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Box-Pierce-Ljung. There is a plethora of other tests which represent different modifica-

tions of those two main tests or tuning parameters.

We will be using wavelet transformations of the periodogram in order to construct our

white noise tests in chapter 4. The variety of wavelets gives us the opportunity to construct

tests which suit different alternative hypotheses, without changing the test statistics as in

Durbin (1969), but by using different wavelet specifications.

2.6 Wavelets and wavelet transforms

Wavelets are mathematical functions that are “little waves” and they are often used to

represent other functions. In mathematical sense they are quite new, since the theory

has been developed predominantly in the last 30 years. Some of the most comprehen-

sive mathematical reference to wavelets are Daubechies (1992), Mallat (1998), Vidakovic

(1999), Percival and Walden (2000) or Nason (2008), the last 2 dealing with wavelets in

time series analysis and statistics. Similar to Fourier series, wavelets can act as a basis

for L2(R) space of square-integrable functions on the real line. Unlike Fourier series’

basis functions, wavelets can be approximated by functions with compact support. Fur-

thermore, due to their construction, wavelets provide sparse representations for smooth

functions. For instance, if a smooth function has some discontinuities, then only a few

wavelet coefficients of its representation would be influenced. However, if we calculate

the Fourier coefficients of a function with one discontinuity, then all coefficients would be

influenced since the support of the sine and cosine is the whole real line (e.g. the Gibbs

phenomenon).

Furthermore, there exist many different wavelet bases that carry certain properties

with respect to simulaneous localization in time and frequency. Moreover, there are

orhogonal wavelet bases, but also non-orthogonal ones, thus wavelets can be used for
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different purposes, especially when analysing nonstationary signals and creating models

for them (Nason et al. (2000)). Similarly to Fourier analysis, there can be a wavelet spec-

trum which, however, would contain information for the variance over the scale rather

than frequency of the data e.g. we will have a scalogram rather than a periodogram (Na-

son and von Sachs (1999), Percival (1995)). In order to illuminate on those concepts, first

we will define and show the oldest and simplest type of wavelets — Haar — in the next

section.

2.6.1 Haar wavelets in one dimension

The coverage of the L2(R) space of functions from wavelets is achieved through the

translation and scaling(dilation) of a single function called the mother wavelet. Let us

now describe the one-dimensional Haar wavelet system.

Define

ψ(x) =


1, if x ∈ [0, 1/2)

−1, if x ∈ [1/2, 1)

0, otherwise

(2.30)

to be the mother wavelet — a function ψ : R 7→ R. Next, the wavelets are defined through

the mother Haar wavelet:

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z (2.31)

The collection {ψj,k(x)} forms an orthonormal basis for L2(R). Therefore, given a

function f ∈ L2(R) we can write:

f(x) =
∞∑

j=−∞

∞∑
k=−∞

dj,kψj,k(x), (2.32)
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where

dj,k =

∫ ∞
−∞

f(x)ψj,k(x)dx. (2.33)

Equations (2.32) and (2.33) are called the wavelet transform and dj,k are the wavelet

coefficients of a function f(x). Equation (2.33) is simply the (scalar) dot product in L2(R)

i.e. dj,k =< f(x), ψj,k(x) >. Based on the allowed ranges for j and k, wavelets can be

discrete or continuous. Furthermore, j is called the scale and k the location.

Next, for illustration, let us see how the discrete Haar wavelets are formed from rela-

tions (2.30) and (2.31). Let j ∈ N and define:

ψj,k =


2−j/2, if k = 0, . . . , 2j−1 − 1

−2−j/2, if k = 2j−1, . . . , 2j − 1

0, otherwise

So, we also notice that the number of locations depends on the number of scales:

ψ1,k = 2−1/2[1,−1]

ψ2,k = 2−1[1, 1,−1,−1]

ψ3,k = 2−3/2[1, 1, 1, 1,−1,−1,−1,−1]

2.6.2 How wavelets are constructed

How Haar wavelets are generated

As explained in section 2.6.1, the mother wavelet determines the Haar wavelet orthogonal

system. However, this is not the whole story and there is also a father wavelet function

which, transformed in a particular way, defines the mother wavelet. In this section we will

explain this process by following Walter (1994) chapter 1.
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The father wavelet of the Haar orthogonal system is the indicator function of the [0, 1)

interval of the real line, defined by:

φ(x) =


1, if x ∈ [0, 1)

0, otherwise
. (2.34)

Then it immediately follows that φ(x) and φ(x − k), k 6= 0, k ∈ Z are orthogo-

nal because their product is zero. However, {φ(x − k)} is not an orthogonal system for

L2(R) since its closed linear system V0 contains piecewise constant functions with possi-

ble jumps only at the integers, but the integers are not dense in R.

Therefore, in order to include more functions, a dilated version of φ(x) can be defined

as φ(2jx), j ∈ Z. Using a change of variable, it can be shown that {2j/2φ(2jx − k)} is

a complete system. Let its closed linear span be denoted by Vj . Those linear subspaces

play a major role in constructing other wavelet bases as well.
⋃
j Vj is dense in L2(R),

because any function in L2(R) can be approximated by a piecewise constant function fj

with jumps at binary rationals. Consequently, the system {φj}, defined by:

φjk(x) = 2j/2φ(2jx− k),

is complete in L2(R), but not orthogonal because φ(x) and φ(2x) are not orthogonal.

However, this issue might be circumvented by defining

ψ(x) = φ(2x)− φ(2x− 1). (2.35)

Now, {ψ(x−k)} is an orthonormal system and ψ(2x−k) and ψ(x−k) are orthogonal
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for all x and k. Therefore, it follows that the system {ψjk}j,k∈Z defined by:

ψj,k(x) = 2j/2ψ(2jx− k),

is complete and orthonormal inL2(R). We recognize that this is equation (2.31). Also,

considering equation (2.32) and the wavelet coefficients in equation (2.33) (calculated as

a dot product in L2(R) i.e. < f, ψjk >) , we can write for any function f ∈ L2(R):

f(x) =
∞∑

j=−∞

∞∑
k=−∞

< f, ψjk > ψj,k(x). (2.36)

Then the wavelet approximation of a function f , for a scale j, is given by:

fj(x) =

j−1∑
i=−∞

∞∑
k=−∞

< f, ψik > ψi,k(x), (2.37)

which converges to a piecewise constant function with jumps at 2−jx, x ∈ Z for Haar

wavelets.

2.6.3 The Shannon wavelet and multiresolution analysis

We continue to follow Walter (1994) chapter 1 for our exposition.

We started section 2.6.2 with the indicator function of the unit interval which played

the role of the father wavelet. The father wavelet is also called scaling function in the

wavelet literature. The Shannon wavelet system is complementary to the Haar system in

the sense that it starts with the indicator function in the frequency domain, whereas in

Haar, we started in the time domain. Therefore let us call it the Fourier transform of the

scaling function, defined to be:

φ̂(ω) =


1, if −π ≤ ω ≤ π,

0, otherwise.
(2.38)
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By fundamentals, its inverse Fourier transform is:

φ(x) = (2π)−1

∫ ∞
−∞

φ̂(ω) exp(iωx)dω = (2π)−1

∫ π

−π
exp(iωx)dω = sinπx/πx. (2.39)

φ(x) is called the sinc function, its value at x = 0 is defined as sinc(0) = 1, following

from application of L’Hopital’s rule for x → 0. Here φ(x) and φ(x − k), k ∈ Z are

orthogonal based on Fourier transform properties and Parseval’s inequality. It can be

shown that:

∫ ∞
−∞

φ(x)φ(x− k)dx = sin(πk)/πk = 0, k 6= 0.

If we have a function f(x) ∈ L2(R) which has a Fourier transform f̂(ω) that vanishes

for|ω| > |π|, it has a Fourier series given by

f̂(ω) =
∑
k

ck exp(iωk), |ω| ≤ π, (2.40)

where cn are the Fourier coefficients. Then, by the Fourier inversion theorem applied to

both sides of (2.40), it can be shown that:

f(x) =
∑
k

f(−k) sinπ(x+ k)/k(x+ k), ∀x. (2.41)

Let V0 denotes the space of all such functions f(x). It is a closed linear space. Formula

(2.41) is called the Shannon sampling theorem. It is used to reconstruct a band-limited

function from V0 from its realizations over the integers. If we make a change of vari-

able in f(x) from equation (2.41) — x = 2t and get g(t) = 2t, then we have a new

closed linear space V1 that consists of functions with Fourier transforms vanishing out-

side [−2π, 2π]. This process can be repeated infinitely many times in both shrinking and

expanding change-of-variables. As a result we get a sequences of subspaces {Vj}∞j=−∞
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that are ordered in the following relation:

· · · ⊆ V−j ⊆ · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · ·Vj ⊆ · · · (2.42)

When j → −∞ in (2.42), the support of the Fourier transform of φ collapses to zero.

When j →∞, it covers the whole real line. So, {Vj}∞j=−∞ has the following key proper-

ties:

1.
⋂
j Vj = {0}

2. Every f ∈ L2(R) can be approximated by a function in Vj for a sufficiently large j

The sequence {Vj} is called a “multiresolution analysis” associated with φ(x).

Now, similarly to section 2.6.2, relation 2.35, we can construct the mother wavelet of

the Shannon system. It is a function ψ(x) ∈ V1 that is orthogonal to ψ(x − k) and given

by:

ψ(x) = 2φ(x)− φ(x), (2.43)

whose Fourier transform is:

ψ̂(ω) = ψ̂(ω/2)− ψ̂(ω) ω ∈ [−2π,−π] ∪ [π, 2π]. (2.44)

Because the supports of φ̂ and ψ̂ are disjoint, they are orthogonal. So, the inverse Fourier

transform ψ is a mother wavelet for the Shannon system and generates an orthonormal

sequence as for the Haar system in section 2.6.2. An important fact is that the requirement

for a function f to be represented by Shannon wavelets is only to have a Fourier transform

f̂ ∈ L1(R), and not compactly supported.
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2.6.4 Multiresolution Analysis

In the previous section we showed how multiresolution analysis (MRA) is developed nat-

urally for definition of orthonormal wavelets. This concept has been developed by Mallat

(1989) and Meyer (1993). As also outlined in the construction of the Shannon wavelet

in section 2.6.3, MRA helps to decompose a function or signal into non-overlapping fre-

quency bands. Therefore, it can be used for developing different filters. Moreover, MRA

provides the mechanism for creating the discrete wavelet transform and constructing an

orthonormal basis for L2(R).

Definition 4. Multiresolution analysis(Mallat, 1989)

A MRA of L2(R) is a sequence of closed subspaces {Vj}j∈Z of L2(R), such that for every

j, k ∈ Z (k is called the location and j is called the scale):

1. Vj ⊂ Vj+1

2.
⋂
j Vj = {0}

3.
⋃
j Vj = L2(R)

4. f(x) ∈ V0 ⇔ f(2jx) ∈ Vj

5. f(x) ∈ V0 ⇔ f(x− k) ∈ V0

6. There exists a scaling function (father wavelet) φ ∈ V0 with
∫∞
−∞ φ(x)dx = 1 such

that {φ0,k := φ(t− k)}k∈Z is an orthonormal basis in V0

We have already seen in the previous section that any function f ∈ L2(R) can be

approximated by its projections onto the spaces Vj — this is ensured by properties 1, 2

and 3. Properties 4 and 5 allow that:

φj,k(z) := 2j/2φ(2jx− k) k ∈ Z (2.45)
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is an orthonormal basis for Vj , j ∈ Z. The functions φj,k are called translations and

dilations of the scaling function φ. Finally, property 6 ensures that any function f ∈ V0

can be represented as a linear combination:

f =
∑
k

ckφ0,k,

where ck is the dot product in L2(R) given by:

ck =< f, φ0,k >=

∫ ∞
−∞

f(x)φ(x− k)dx.

Let Pj denote the projection on Vj:

(Pjf)(x) =
∑
k

cj,kφj,k,

where cj,k are the scaling coefficients calculated by

cj,k =< f, φj,k >=

∫ ∞
−∞

f(x)φj,k(x)dx. (2.46)

Equation(2.46) shows that ∀f ∈ L2(R) can be approximated by the elements of the sub-

spaces Vj and properties 2 and 3 of MRA mean that the quality of approximation increases

as j →∞.

Note on the filters h and g

Using the MRA from Definition (4), the scaling function or father wavelet φ itself can

be represented from finer spaces V by wavelet coefficients similar to (2.46). Since φ ∈

V0 ⊂ V1, we have φ(x) =
∑

k∈Z hkφ1,k(x) and hk =< φ, φ1,k > because {φ1,k} is an

orthonormal basis for V1. Then we have the relation:

φ(x) = 21/2
∑
k∈Z

hkφ(2x− k) (2.47)
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Equation (2.47) is called the scaling or dilation equation and hk is called a low-pass filter

associated with φ. This relation can be generalized for any Vj and Vj−1 from an MRA by:

< φj−1,k, φj,k > =

∫
φj−1,k(x)φj,k(x)dx

=

∫
21/2φ(t)φ(2t+ 2k − n)dt t = 2j−1x− k

= hn−2k (2.48)

and

φj−1,k =
∑
n∈Z

< φj−1,k, φj,n > φj,n(x)

=
∑
n∈Z

hn−2kφj,n(x), (2.49)

which is called the scaling function refinement relation.

Next we will explain how mother wavelet functions are constructed from an MRA.

Let Wj denote the orthogonal complement of Vj in Vj+1. Because Vj is a sequence of

closed subspaces, we have Vj+1 = Vj ⊕Wj which holds for all j ∈ Z. So, for a j > J we

get:

Vj+1 = VJ ⊕
j−J⊕
k=0

WJ−k, (2.50)

which means that a function in Vj can be represented by the sum of its approximation at

a lower scale J and the ‘detail’ lost by going from scale J to j. Then, by using properties

2 and 3 from Definition 4, we have:

L2(R) =
⊕
j∈Z

Wj. (2.51)

Therefore, each function f ∈ L2(R) can be partitioned over Wj subspaces by its orthog-

onal projections. Moreover, those subspaces have the scaling property 4 from Definition
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4 i.e.

f(x) ∈ Wj ⇔ f(2jx) ∈ Wj, ∀j ∈ Z.

Furthermore, for a ψ ∈ W0 we have the analogue of the scaling equation (2.47):

ψ(x) = 21/2
∑
k∈Z

gkφ(2x− k), (2.52)

where the gk is called the high-pass filter associated with the wavelet function ψ (see

Daubechies (1992)). Moreover, the filters hk and gk are called quadrature mirror filters

and are related by Daubechies (1992) page 326:

gk = (−1)kh1−k, k ∈ Z. (2.53)

Now, recalling from Definition 4 and equation (2.45), we can define similarly:

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z (2.54)

then we have the following chained relations: the set {ψj,k}j,k∈Z is a basis for L2(R);

{ψj,k}k∈Z i.e. for a fixed j is an orthonormal basis for Wj . Hence {ψ0,k}k∈Z is an or-

thonormal basis for W0.

Similarly to equation (2.49), a relation for the mother wavelet function can be shown:

ψj−1,k(x) =
∑
n∈Z

gn−2kφj,n(x). (2.55)

Using (2.55), (2.49) and (2.53), the filters can be written as:

hn−2k =< φj,k, φj+1,n > and gn−2k =< ψj,k, φj+1,n > . (2.56)

If the scaling function has compact support (e.g. the Haar wavelet), the actual coefficients
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of the filters from equation (2.56) can be calculated by taking k = j = 0. Moreover, in

the case of compactly supported scaling function the filters h and g have a finite number

of non-zero coefficients and the mother wavelet ψ can be represented by a finite linear

combination of functions with compact support.

Let δa,b = 1 if a = b and 0 for a 6= b be the Kronecker delta function. Vidakovic

(1999) shows that the filters have the following orthogonality properties:

∑
n∈Z

hnhn−2k = δ0,k ,
∑
n∈Z

gngn−2k = δ0,k ,
∑
n∈Z

hngn−2k = 0 (2.57)

2.6.5 The discrete wavelet tranform(DWT)

Function Representation given a Multiresolution Analysis

Section 2.6.1 shows that the wavelet transform in (2.32) and the L2(R) representation of

a given function via wavelet coefficients in (2.33). Given a MRA for L2(R) we know that

{φj,k(x)}k and {ψj,k(x)}k form orthonormal bases for Vj and Wj respectively. Then for a

fixed j0, the collection {φj0,k(x)}k∈Z ∪ {ψj,k(x)}j>j0,k∈Z forms an orthonormal basis for

L2(R). Hence, ∀f ∈ L2(R) can be written as:

f(x) =
∑
k∈Z

cj0,kφj0,k(x) +
∑
j>j0

∑
k∈Z

dj,kψj,k(x), (2.58)

where cj0,k =< f, φj0,k > and dj,k =< f, ψj,k >, because of relations (2.51), (2.50) and

property 2 of MRA from Definition (4). Furthermore, due to relation (2.51), ∀f ∈ L2(R)

can be written as

f(x) =
∑
j∈Z

dj,kψj,k, (2.59)

where the wavelet coeffficients dj,k provide the approximation of the function at scale j

and location 2−jk.
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Mallat’s algorithm for DWT

A fast and efficient way to compute both cj,k and dj,k without calculating inner products

at each scale and location is the algorithm is due to Mallat (1989) described as follows.

From the filter relation (2.56) and Vj⊥Wj , it can be deduced that:

cj−1,k =
∑
n

hn−2kcj,n (2.60)

and

dj−1,k =
∑
n

gn−2kcj,n, (2.61)

and let the sets of coefficients be denoted as cj = {cj,k}k∈Z and dj = {dj,k}k∈Z. Equations

(2.60) and (2.61) imply that coefficient vectors for coarser scales cj−1 and dj−1 can be

obtained from finer scale ones. That is a very important point practically, since in statistics

we usually have data which might be treated as a discretized function. For instance, let

us have a realization of a discrete stochastic process Xt, t = 1, . . . T,and T = 2J , J ∈

Z+ might be an observation of a function let Xt = f(xt). We will use equation (2.58)

with J = j0 which implies that cJ,t = f(xt) is the finest possible representation. Next,

using the filters h and g as in (2.60) and (2.61) recursively we can calculate all possible

coefficients, given a fixed finest scale J . At each step, the number of coefficients is halved

i.e. starting with #(cJ) = 2J , the first iteration yields cJ−1 and dJ−1 whose count is 2J−1

and so on to the last coefficient 20, i.e. c0. Conversely, the discrete wavelet transform can

be inverted by the process of calculating finer scale coefficients from coarser scale ones

recursively using:

cj,k =
2j−1∑
l=0

cj−1,lhk−2l +
2j−1∑
l=0

dj−1,lgk−2l (2.62)
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Filter notation and decimation

The h and g filters from equation (2.56) can be thought as discrete convolution operators

H and G on a sequence sn:

(Hs) =
∑
n

hn−ksn (2.63)

and

(Gs) =
∑
n

gn−ksn, (2.64)

respectively. We also define the decimation operator D0 which picks the even elements

out of a sequence sn:

(D0s)k = s2k (2.65)

Using those operators, (2.60) and (2.60) can be written as:

cj−1,k =
∑
n

hn−2kcj,n = {D0(Hcj,n)}k (2.66)

and

dj−1,k =
∑
n

gn−2kcj,n = {D0(Gdj,n)}k, (2.67)

and this is how the discrete wavelet transform is implemented in practice. Here we de-

scribed the decimated discrete wavelet transform which is orthogonal. However it is not

translation-invariant, meaning that if we start at a different position in the sequence of

datapoints we will get a different result. If we do not use the decimation operator D0 in

(2.67) and (2.66), we will end up with the non-decimated wavelet transform which is not

orthogonal, but is translation equivariant. For more information see Nason and Silverman

(1994) or Coifman and Donoho (1995).
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2.6.6 Vanishing moments

Definition 5. A wavelet ψ(x) has m vanishing moments if

∫
x`ψ(x) dx = 0, ` = 0, . . . ,m− 1, m ∈ Z+ (2.68)

This property means that when a wavelet transform is applied to a polynomial of a

degree less than m, then many of the dj,k coefficients will be exactly zero.

Daubechies extremal phase wavelets

The vanishing moments property in Definition 5 is a defining property for deriving Daubechies

extremal phase wavelets, denotedDn. The theory is developed in Daubechies (1992) chap-

ters 6 and 7. As in section 2.6.2, wavelet construction starts with the scaling function φ

from which the mother wavelet is then derived. However, in the case of Daubechies

extremal phase wavelets, the scaling function does not have a closed-form expression, ex-

cept for the Haar wavelets, which corresponds to the case of one vanishing moment. The

support of the scaling functon and the mother wavelet depend on the number of vanishing

moments m. If wavelet is to have m > 1 vanishing moments, then the (compact) support

of the scaling function is to be [0, 2m − 1] and the mother wavelet’s [1 −m,m] respec-

tively. Thus if we have m = 1, we get the [0, 1] support for the Haar father and mother

wavelts. The actual father and mother wavelets are constructed by a cascade algorithm

using the filters h and g, optimising the extremums with respect to the phase of the filters,

taking into account the orthogonality conditions for the vanishing moments i.e. if we have

m vanishing moments this would give 2m−1 equations to solve simultaneously. Then this

cascade algorithm yields the h and g filter coefficients.

For wavelet computation and creating figures in this thesis we use the wavethresh

package from ?. Fig. 2.1 shows Daubechies Extremal Phase wavelets with 1, 5 and 10

vanishing moments. Looking at the graph, it is now clearer why wavelets represent little

waves.
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Figure 2.1: Left: Scaling Function Right: Mother Wavelet Top: Haar wavelet: m = 1;
Middle: Daubechies Extremal Phase wavelet withm = 5 ; Bottom: Daubechies Extremal
Phase wavelet with m = 10 ;
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2.6.7 Haar in two dimensions

In this section we will briefly outline the two-dimensional Haar wavelet transform fol-

lowing Nason (2008) page 76 and Nason and Silverman (1994). This transform is due to

Mallat (1989). The 2D wavelet transform applies to square matrices Xn× n. Data types

that can be represented in such a way are images and spatial data. It is also assumed that

the n× n grid is regular and dyadic. The transform consists of the following three steps:

1. The filtersD0H andD0G from equations (2.66) and (2.67) are applied to the n rows

of Xn× n resulting in two n× n/2 matrices denoted H and G

2. D0H and D0G are applied to the columns of H and G resulting in four n/2 × n/2

matrices denoted HH , GH , HG and GG. The last three are stored as horizontal,

vertical and diagonal finest level wavelet coefficients respectively.

3. D0H and D0G are applied to HH , then step 2 is repeated over the resulting HHH

and GHH matrices yielding four n/4 × n/4 matrices. Then this current step is

applied to HHHH recursively until there is one scaling coefficient left.

The generic scheme of the transform 2.6.7 is shown in Fig. 2.2. We will be using the two-

dimensional Haar wavelet transform for spatial white noise and autocorrelation testing in

chapter 6 of the thesis.

2.6.8 Wavelets in statistics

Nonparametric regression

During the past two decades, wavelets have found different uses in statistics, the most

prominent being nonparametric regression estimation and time series analysis. This prob-

ably has to do with the fact that in both of those areas, we are dealing with function

estimation from an imperfect realisation i.e. with noise. Furthermore, for different classes

of problems, assumptions about the type of function such as smoothness can be made. In
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Figure 2.2: Illustration of generic steps 1 and 2 from the two-dimensional discrete wavelet
transform algorithm. Cj := Xn×n and D1, D2 and D3 are the horizontal, vertical and
diagonal coefficients resepectively. Reproduced with permission from Nason (2008).
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this section we follow Nason (2008). The common estimation problem for nonparametric

regression is:

yt = f(xt) + et, t = 1 . . . T, xt = t/T, (2.69)

where the noise et is often i.i.d. Gaussian i.e. et ∼ N(0, σ2). As we have seen in the

previous section, due to vanishing moments property, wavelets are good at representing

low order polynomials. In particular, since wavelet coefficients of a smooth function with

discontinuities can be sparse we can have an easy wavelet representation to work with.

Then, because of Parseval’s equality, we can apply techniques to the wavelet representa-

tion, which preserve the result to the function estimation.

One of the primary wavelet approaches for nonparametric regression is called wavelet

shrinkage which boils down to thresholding the noisy wavelet coefficients rather than the

observed data. It is due to Donoho (1993b), Donoho and Johnstone (1994), Donoho et al.

(1995). The basic principle is the following: the discrete wavelet transform is applied

to both sides of equation (2.69) and then some of the resulting wavelet coefficients are

thresholded to zero and the inverse DWT is executed which gives us back the estimate

of the function according to the data. Because of the sparsity of the DWT, it might be

that the energy of the function is spread out to only a few wavelet coefficients. Because

of the orthogonallity of the DWT, the wavelet coefficients of the noise et would again

be noise, therefore the noise would be distributed across all wavelet coefficients (Nason,

2008) page84. Similarly to kernel density estimation, where the bandwidth is the cru-

cial parameter, in wavelet thresholding there are different options for the threshold value.

For example, we might decide on an absolute quantity and all wavelets less than it, to be

equated to zero, so-called universal (hard) thresholding. Donoho and Johnstone (1994)

developed a universal threshold equal to σ
√

2 log T . However, depending on the prob-

lem there are other options for more flexible thresholding such as soft thresholding —

ηκ = sgn(d)(|d| − κ), where κ is the threshold and d is a wavelet coefficient — adjusting

the wavelet coefficients relative to their difference with the universal threshold.
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2.6.9 Spectral estimation with wavelets

We will briefly outline two papers that deal with spectral estimation by wavelet threshold-

ing. They are related to our work on white noise testing in chapter 4 in the sense that they

are trying to estimate the actual spectrum of a time series, whereas we would be trying

to find a departure from the white noise flat spectrum and gauge if there is enough evi-

dence to reject the null hypothesis of white noise. Thus, we would be looking for wavelet

coefficients of too large magnitude, based on a test for their distribution. On the other

hand, spectrum estimation with wavelets basically uses those wavelet coefficients above

the threshold in order to gauge the shape of the spectrum.

Donoho (1993a)

Section 4 of Donoho (1993a) shows an example of using the variance-stabilizing transfor-

mation of Wahba (1980) to the log of the periodogram yielding a so-called “Log-o-Gram”,

evaluated at the Fourier frequencies, of an AR(6) process. Then soft wavelet thresholding

is applied to the “Log-o-Gram” which results in an estimate of the desired spectrum.

Thresholding of a tapered log-periodogram

Walden et al. (1998) refines the work of Donoho (1993a), by using a multitapered estima-

tor of the log-periodogram. It is also explained that this helps with making the smoothed

log-periodogram closer to the Gaussian distribution. In the paper different options for

thresholding are explored — some depending on the scale of the wavelet coefficients.

Several simulations are shown which confirm the suitability of the technique for spec-

trum estimation and different high-order AR and MA processes are considered. In an-

other paper, McCoy et al. (1998) deal with the spectral estimation of so-called power law

processes — having a spectrum in the form f−β , where β is a positive exponent — by

tapering.
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Figure 2.3: Realization of the AR(4) process from equation(2.70).

Vanishing moments in practice

Here we will apply the discrete wavelet transform with Daubechies extremal phase wavelets

with five vanishing moments to an AR(4) process and its periodogram in order to illustrate

why they are useful. In chapter 4, we will be using these wavelet coefficients to construct

a test for a “flat spectrum”. Let us have an AR(4) process defined by:

Xt = ρ1Xt−1 + ρ2Xt−2 + ρ3Xt−3 + ρ4Xt−4 + εt, t = 1, . . . , 1024 (2.70)

where ρ1 = ρ2 = ρ3 = −0.1; ρ4 = −0.6 and εt is Gaussian white noise.

Due to its negative parameters, the process from equation (2.70) has a high oscillation

rate, in other words its spectrum is dominated by high frequencies, although due to the

small magnitude of the first three parameters, we could also expect some energy at the

lower frequencies. Its spectral density has two peaks. Fig. 2.3 shows the realization of

the AR(4) process. Fig. 2.4 shows the periodogram and its wavelet coeffcients. Although

erratic, the periodogram shows the two peaks — at lower and higher frequencies. The

few large wavelet coefficients reflect well the peaks of the periodogram and most of the

rest are very close to zero. Hence our assertions from the previous sections are confirmed

and when doing a statistical test of the wavelet coefficients we would expect that the large

coefficients’ p-values to be small. We will explore these assertions in chapter 4.
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Figure 2.4: Top: The raw periodogram of the AR(4) process from equation(2.70);
Bottom:Its wavelet coefficients of raw periodogram from a Daubechies extremal phase
wavelet with 5 vanishing moments.
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Conclusion and directions

Both techniques used for applying wavelet thresholding to the (log)periodogram use some

type of transformation that would help its distribution to be close to Gaussian. Smoothing

by tapering, on the other hand, helps in representing the periodogram closer to a polyno-

mial. Then wavelet thresholding achieves very good results because of wavelets decorre-

lation property as well as vanishing moments. For a detailed source of wavelet methods

for signal analysis and thresholding methods in both time and frequency domains, please

consult Percival and Walden (2000) chapters 9 and 10.

In this thesis we will use an approximation to the distribution of the wavelet coeffi-

cients of the raw periodogram in order to be able to discern whether or not the series is

(Gaussian) white noise. However, the mentioned properties of wavelets help us detect

non-whiteness even when the series are not Gaussian — shown in our simulation study in

chapter 4.
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Chapter 3

Literature Review — Functional Data

Analysis

3.1 Overview of Functional Data Analysis

Functional Data Analysis (FDA) is a branch of statistics that deals with data arising as

curves or surfaces. They can arise when we observe a continuous process via a discrete

grid of measurements. The term was coined in a seminal paper by Ramsay and Dalzell

(1991). Data as curves occur in many natural phenomena. Examples include spectro-

metric analysis and electricity load data as in Ferraty and Vieu (2006), temperatures from

weather stations and human growth curves as in Ramsay and Silverman (2002) and mag-

netometer curves in Hörmann and Kokoszka (2012). On the other hand, representing

continuous time stochastic processes as sequences of random variables in function spaces

is an established tool in probability and statistics, see Doob (1953) or Grenander (1981).

Mathematically, the functional paradigm means that we are dealing with functional

space such as the Hilbert L2 space of integrable functions, rather than standard Euclid-

ian n-dimensional space (Rn) i.e. our observations are entire functions and not points.

Statistics, in this domain, leads to theoretical challenges requiring more sophisticated ar-

guments compared to those found in multivariate analysis. For instance, when we know
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that our process produces data in the form of smooth curves, then we need an infinite-

dimensional vector space of functions which accounts for that e.g. Sobolev spaces and/or

regularization. Moreover, this means that many functional data must be pre-processed be-

fore analysis. For example, pre-processing is necessary because we know that the under-

lying function is either smooth or periodic, thus requiring an appropriate basis expansion

in order to emphasize those characterizing features.

Furthermore, we need a way to measure the dynamics of the curves within the space

i.e. the need for a different (semi)norm and (semi)metric than the Euclidian one. This

comes from the fact that we are interested in the difference or similarities in functions’

dynamics and not just in the distances between them. Moreover, when we think about

time series — consider how many curves might be on an interval - there are infinitely

many of them which necessitates the use of infinite-dimensional spaces. Also, if we wish

to predict or classify functions, we need a specialized metric to measure similarity of the

curves, leading to a way to construct an estimator in the regression sense or a kind of

nearest neighbour distance for clustering.

3.1.1 An early FDA problem

One of the first research articles dealing with the functional data problem is Besse and

Ramsay (1986). It poses for the first time the functional data problem, illustrated with

real data from human tongue dorsum movement.

The curves in Fig. 3.1 follow closely a linear differential equation. In order to accom-

modate this in the paper, the authors use information from a derivative metric in order

to model the data. The authors show that this is equivalent to a change of metric in the

row space of classical principal component analysis(PCA). Another important feature of

their article is that it shows how the standard least-squares regression is not very useful to

model such type of data because it cannot verify that the data come from regular functions

— the polynomial splines which have been used to pre-process the data.
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Figure 3.1: These curves represent the tongue dorsum height while pronouncing the sound
’Kah’. They are result of polynomial spline smoothing of tongue position sampled every
milisecond using an ultrasound sensing technique. Each record begins and ends at the
point where the slope is zero. Here the lengths of the curves have been standardized to
the interval (0, π). Picture reproduced with permission from Besse and Ramsay(1986)
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3.1.2 Tools for Analysis

In order to adapt to the nature of the curves, Besse and Ramsay (1986) make the as-

sumption that the sampled functions lie in a vector space Hm of functions with m − 1

continuous derivatives i.e. a Sobolev space, defined on an interval T = [a, b]. It is also

assumed that the m-th derivative has a finite Lebesgue integral over T. This means that

lower-order derivatives are differentiable. This setup leads to the idea that a function

T → R in this space might be represented as a signal function + noise function, where

the signal function satisfies a homogeneous linear differential equation. There are also

some boundary constaints which are not discussed here. An important feature is the us-

age of reproducing kernel for these Hilbert spaces (RKHS). RKHS for a Hilbert space of

functionsH , defined on an interval T , is a bivariate function k(., .) on T⊗T , called kernel,

which satisfies the reproducing equation:

< k(s, .), x >= x(s), x ∈ H (3.1)

where < ., . > is the dot product from Def. 3.2, the point in k(s, .) resembles a vari-

able that is integrated out in the dot product. The RKHS are closely related to Green’s

functions with respect to a differential operator. The idea of using RKHS in the concrete

examples with the tongue curves is that it will help dividing the space into a signal and

noise subspaces. This also supports the idea that the basis representation used for pre-

processing sampled functions is important with respect to their subsequent modelling.

The main finding of their paper is that reproducing kernels help in the formulation of

the spline interpolation problem and RKHSs help developing functional Principal com-

ponents analysis (fPCA) which is a cornerstone of functional data analysis. We will talk

more about fPCA in the next section.

Besse and Ramsay (1986) led to the crucial question what are the different metrics

and basis representations possible in the functional context. The greater freedom in basis
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and metric choice is good, but adds to complexity and scalar models cannot always be

straightforwardly extended to the functional context.

3.2 Functional Data Analysis Framework

In this section we will describe the main pillars on which FDA is founded.

3.2.1 Functional Space, Mean and Covariance Functions

As already mentioned in the previous section, functional data are curves X (t) ∈ H where

H is usually some Hilbert space with certain properties and t ∈ T , where T = [a, b] is

an interval. In this thesis, H will be the L2
[a,b] space of square-integrable functions on the

interval [a, b]. The standard setup of H is a separable space with dot product inducing the

norm:

Definition 6. Dot product in H . Let the dot product of x, y ∈ H be:

< x, y >=

∫ b

a

x(t)y(t)dt x, y ∈ H (3.2)

An important statistical consequence, from the change of paradigm, is the fact that the

mean value is no longer a scalar, but a function itself. Let us define our functional random

variable (f.r.v.) X ∈ H . Let also T = (0, 1). Then the observation of our f.r.v. is X(t)

and the mean function is:

E{X(t)} = µ(t). (3.3)

A similar adaption holds for the covariance/correlation which become operators. Loosely

speaking, an operator is a mathematical object that takes a function and then produces an-

other function. In Hilbert spaces this usually happens through dot product, denoted by
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<,> i.e. integration. For example the covariance operator of a zero-mean random vari-

able X , taking values in a Hilbert space H is:

CX (x) = E(< X , x > X ), x ∈ H. (3.4)

However, as we will always work with discrete data, we would use the sample covari-

ance function. Suppose data is zero-mean, then

CX,Y = E{X(s)Y (t)}, s, t ∈ T. (3.5)

In the FDA literature, CX,Y is called the covariance kernel. Thus, when one wants

to ‘look at the correlations’, there are different possibilities. For example, if we had just

two functional variables on a grid of size 100 points i.e. we have 100 values from 0 to

1 for t and s respectively, this means that there are almost 5000 correlation pairs to look

at, which can be unmanageable. Therefore, one must think of new ways to represent data

and relationships when they are functional.

A possible solution could be a contour plot of the correlation functions as in Ramsay

and Dalzell (1991)which builds on Besse and Ramsay (1986). More precisely, they show

how to build generalizations of the linear model in functional terms with the help of L-

splines and how the Green function links RKHS with the theory of ordinary differential

equations. Their methodology is applied to Canadian weather stations data. Moreover,

the authors clearly distinguish three main stages in functional data analysis:

1. Choice of function space in which the analysis is about to take place.

2. Specification of the analysis in functional analytic terms.

3. Determination of how a finite-dimensional observation vector is to be mapped into

a function space. For instance, for the regular curves as in Fig. 3.1, this step could

be realized through the use of smoothing splines.

Furthermore, the mean and variance functions themselves, being smooth curves the-

56



CHAPTER 3. LITERATURE REVIEW — FUNCTIONAL DATA ANALYSIS

oretically, would require some smoothing procedure. The first article that poses that

problem and shows an extended solution of the classical second derivative regulariza-

tion/penalization procedure is Rice and Silverman (1991).

3.2.2 The Ramsay and Silverman monograph.

The case for independent and identically distributed functional data is explored in a mono-

graph that deals with most of the conceptual, theoretical and practical issues as well as

the translation of classical parametric methods for functional data — Ramsay and Silver-

man (1997, 2002). The book describes ongoing research and discusses different ways

to generalize procedures to function spaces. It starts with exploring techniques for the

displaying of functional data in the first two chapters, such as pairwise plot of derivatives

and some tools such as contour plots and phase-plane plots. Chapter 3 explores the major

mathematical orthonormal bases that could be used to represent functions such as Fourier,

splines, B-splines, wavelets and polynomial — to name a few. Only then, the authors start

with generalizing least squares methodology to the functional case and regularization pro-

cedures, in chapters 4 and 5. Chapter 7 describes the techniques to display and recording

of functional data as this is a challenge in its own right. The rest of the book, apart from

the formulation of the general functional linear model, contains several chapters devoted

to the generalization of principal components analysis — such as principal differential

analysis which uses differential operator instead of projection operator for defining the

most important variance basis directions. There are also chapters on the functional gener-

alizations of canonical correlation and dicriminant analysis. Most of the necessary theory,

for example Green’s functions and RKHS, is provided in the appendicies of the book.

An important point is also made in several chapters — when thinking about statistical

modelling of functional, multivariate and scalar data together, there are mixed cases. For

example, we might have a functional predictor and a scalar outcome, or even, a multi-

variate dataset in which we have both types of predictors towards a functional or scalar

outcome. When thinking about functional data, we need a basis representation for them,
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but for the scalar data we do not. However, when we want to have a unified model for

such a mixed dataset there are different trade-offs to be made in order to balance practical

significance with theoretical foundations.

3.2.3 Nonparametric FDA: Ferraty and Vieu (2006)

The nonparametric paradigm for functional data is developed both theoretically and with

many real data examples in Ferraty and Vieu (2006). This book discusses practical ideas

in the first two chapters to set the scene. Then chapter 3 discusses the problem of an

appropriate space for functional data as well as closeness notions for functions such as

(semi)metric. In chapters 4, 5 and 7 the kernel estimation methodology is generalized

for functional data as well as some classical procedures such as conditional: mean, me-

dian and mode estimation and quantile estimation. Chapter 6 develops asymptotic theory

and introduces a rarely used concept such as almost complete convergence for infinite-

dimensional processes. The standard convergences in probability and almost surely are

special cases of this almost complete convergence. There are also separate chapters deal-

ing with nonparametric supervised and unsupervised classification procedures such as

k-nearest neighbours algorithms and heterogeneity indicies. Moreover, two theoretical

chapters — chapter 10 dealing with mixing conditions and chapter 11 with asymptotics

for dependent data — constitute a separate part of the book. The book contains many

real data examples and there is a companion website, hosting R scripts of most of the

computational procedures.

3.3 Some key tools in Functional Data Analysis

This section reflects briefly on the principal established tools in FDA: how they relate to

each other and how they can be combined.
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3.3.1 Functional Principal Components Analysis

Possibly the most common tool for dealing with functional data is the functional Prin-

cipal Components Analysis (fPCA). The method has deep foundations in what is called

Karhunen-Loeve expansion of functions which is the functional generalization of the ma-

trix eigendecomposition. The difference between standard and functional PCA is that for

the functional, some smoothing of the results is usually performed. This is required be-

cause the eigenfunctions are assumed to be smooth and also, as we do not observe the pro-

cess continuously, some noise is present in the empirical eigenvectors. The smoothing can

bea achieved either as a pre-processing step directly on the data or as a a posterior regu-

larization step to the standard principal components derived. The smoothing is repeatedly

shown in Ramsay and Silverman (2002). As with any basis problem, many mathematical

and orthonormal bases are possible. However, Ramsay and Silverman (2002) demonstrate

that good basis selection is highly problem-dependent.

Another distinguishing feature of FDA, compared to standard multivariate statistical

analysis, is the possible usage of the fPCA. In standard multivariate context, the PCA is

often an exploratory tool. However in functional data analysis, it can be used directly for

modelling as noted in Ferraty and Vieu (2006). This happens through the use of a semi-

metric, which we will explicitly define when we look at local weighting of functional

variables in section 3.3.4.

3.3.2 The Need for Different Norms and Metrics

Ramsay and Silverman (2002) explore different kinds of norms and metrics, for instance

those including derivatives. Derivatives arise naturally, because when we want to model

functions, we are not simply interested in the Euclidian distances between them. The dy-

namics of the functions themselves are often far more important if we want to classify or

forecast them. As we know from fundamentals, the velocity of a particle is the derivative

of its position vector with respect to time and the acceleration is the second derivative.
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This observation has a direct application for some functional datasets and can be used to

classify curves or to reveal interesting relationships among the different functional obser-

vations. A famous example in the FDA literature is the children’s gait data, analyzed in

Ramsay and Silverman (2002). For example, simple plotting of the estimated first deriva-

tives together with the average derivative could show anomalous records. Furthermore,

plotting first versus second derivatives could tell us much about the motion characteristics

of the subjects.

3.3.3 Combining of fPCA and derivative metrics

In the example of Fig. 3.1, Besse and Ramsay (1986) suggest the curves might be mod-

elled by a linear differential operator. This technique is matematically similar to standard

principal components derived from a multivariate covariance matrix. The essential op-

eratrion in PCA is projection on the eigenvectors of the covariance matrix. This can be

expressed with a projection operator. In Ramsay (1996); Ramsay and Silverman (2002)

the authors develop the concept called Principal Differential Analysis (PDA) which is

similar to PCA, but acts with respect to a linear differential operator. Another famous

dataset analyzed in Ramsay and Silverman (2002) is the Canadian weather stations data.

They are analyzed by the means of a linear differential operator. The initial hypothesis

is that the variation should be mainly sinusoidal, however it turns out that for continental

weather stations, there are strong spring and autumn systematic effects due to “change in

reflectance of the land”. Ramsay and Silverman (2002) explain that for those stations a

non-homogeneous differential equation could be a better model.

3.3.4 Other Aspects of Functional Data Analysis

In this section we touch on a few features of the already mentioned semimetrics. The

section follows Ferraty and Vieu (2006).
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Semi-metrics and PCA

As mentioned earlier, a crucial task in FDA is the possibility of using different norm from

the Euclidian one. Following Ferraty and Vieu (2006) chapters 3 and 4, let us start with

the definition of a semi-metric first.

Definition 7. d is a semi-metric on a normed space H iff

∀x ∈ H, d(x, x) = 0

and

∀(x, y, z) ∈ H ⊗H ⊗H, d(x, y) ≤ d(x, z) + d(y, z)

In fact, the only condition that distinguishes the semi-metric from the metric is that:

d(x, y) = 0⇒ x = y (3.6)

is not true for a semi-metric i.e. if the first derivatives of two functions are the same,

it does not mean that the functions themselves are the same.

Let H = L2
[0,1] be the Hilbert space of square integrable functions on the interval [0, 1]

and let X ∈ H Also let T = (0, 1) and t ∈ T .

An interesting semi-metric for functional data can be built from functional PCA which

arises from the Karhunen-Loeve expansion of the functional random variable X by writ-

ing.

X =
∞∑
k=1

(∫
X (t)vk(t)dt

)
vk (3.7)

where v1, v2, .. are the orthonormal eigenfunctions of the covariance operator of the

realization of X .

In terms of data, however, X is represented by a matrix X of dimensions n by p, with

n being the number of curves and p being the number of discretization points. Thus, for

i = 1, . . . , n and j = 1, . . . , p, t = j/p This expansion can be truncated at, say, the qth
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eigenvector which leads to the family of semi-metrics:

dPCAq (Xi, χ) =

√√√√ q∑
k=1

(∫
[Xi(t)− χ(t)]vk(t)dt

)2

(3.8)

Of course there is no a direct way to compute the above integral as we observe the

functions discretely. That is why the semi-metric must be estimated using some sort of

weights, depending on the grid or quadrature rules. Also, it is possible to use a semi-

metric within the PCA itself which would reveal features of the dataset.

3.3.5 Functional time series: Bosq(2000)

Bosq (2000) develops the theory of functional time series and deals predominantly with

Autoregressive Hilbertian Processes(ARH), defined next in section 3.4. It is a book that

develops mathematically the ARH process and also considers its extensions to Banach

spaces. Chapters 1 and 2 lay out the necessary probability theory for covariance operators,

random variables and their sequences in Hilbert and Banach spaces. Chapter 3 is devoted

to the ARH(1) process model and its existence and limit theorems — we use Theorem

3.6 from this chapter in order to develop our ARH(1) order verification procedure in

chapter 6 of this thesis. Chapter 4 deals with the theoretical estimation of the ARH(1)

from representation in a countable basis, the eigenelements of the covariance operator and

their convergence in distribution. Chapter 5 extends the theory to ARH(p) and chapter 6

does the extension from Hilbert to Banach spaces. Chapters 7 deals with general linear

processes in function spaces and their existence and invertibility conditions, while chapter

8 gives theoretical guidance of how the autocorrelation operator of the process could be

estimated within the space C[0, 1] and used for prediction. Finally, chapter 9 gives some

applied references and methodological guidances for estimation such as generalised cross-

validation (CV) procedure for the covariance operator.
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Figure 3.2: EDF daily electricity load time series from September 2002 till August 2009

3.4 Functional Time Series

FDA comes up as a natural framework when we consider time series processes that are ob-

served on consecutive intervals. These include transaction curves, electricity load curves,

wind speed curves. When we observe and measure such a process, it will often have a

seasonal component with period equal to the interval and may be repetitive over time. For

example, electricity load that is measured every half-hour producing 48 measurements ev-

ery day. Example daily data are plotted on Fig. 3.3. Fig. 3.2 shows daily data for 7 years

and there is inherent monthly and quarterly periodicity. Those data have been provided to

us by Xavier Brossat from Électricité de France. Depending on the representation, there

is also weekly periodicity not shown here. So, we could choose our interval to be one day

and our function is a curve throughout that day or we could decide to smooth it weekly —

many options are possible. Furthermore, we might even have irregularly spaced data and

then we could use a spline-smoother and thus to come up with regular design, resulting in

one smooth curve per day. In this section we will mainly follow Bosq (2000).

3.4.1 The Autoregressive Hilbertian Process of Order One

One of the seminal articles in functional time series is Bosq (1991). It formulates for

the first time the functional autoregressive model of order one, also called Autoregressive

Hilbertian process of order one (ARH(1)) which is a functional generalization of the clas-
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Figure 3.3: This picture shows the Electricite de France electricity load curves from 1 Sep
2008 to 31 Aug 2009. On the x axis we have the 48 instances of daily measurement and
on the y is the load in kw/h

sical autoregressive process of order one. The process is defined to be stationary similarly

to the scalar and multivariate AR(1) process cases. However, an interesting practical dif-

ference is that when one models functional data, trends/features are not always removed,

because they are contained in all curves, thus contribute to the modelling. The theory

for the order one process and for higher orders, as well as processes in Banach spaces is

developed in Bosq (2000). In the subsequent sections we will define the ARH(1) and the

sampling mechanism that is inherent with such continuous-time processes as well as state

some open problems.

3.4.2 Notation and Theoretical Setup for ARH(1)

Following Bosq (2000), functional time series are curves defined as: {Xn, n ∈ Z} where

each Xn is a function Xn(t), t ∈ [a, b]. As described, those curves reside in the Hilbert

space H = L2
[a,b] of square-integrable functions on the interval T = [a, b]. For the expo-

sition in this thesis, the interval T will be normalized to [0, 1] and thus each realization

will be defined on this interval. Then each Xn(t) ∈ H , t ∈ T is a function in H . This

paradigm may be represented by associating a sequence of random variables i.e. time
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series ξ = (ξt, t ∈ R) taking values in the function space H . This is obtained by setting:

Xn(t) = ξnh+t, 0 ≤ t ≤ h, n ∈ Z, t ∈ T (3.9)

Thus, {Xn, n ∈ Z} is infinite-dimensional discrete-time process. In our case h would

be 1 and t will correspond to the grid on which the function is evaluated in [0, 1]. This

is useful when the data contain a seasonal component of length h, for instance, when we

observe daily realizations of the process

Let us now lay down a set of definitions, necessary to define the ARH(1) process.

Definition 8. Compact Operator on a Hilbert Space H .

An operator l, on a Hilbert Space H is compact if there exists two orthonormal bases of

H , (ej) and (fj), and a sequence (λj) of real numbers such that:

l(x) =
∞∑
j=1

λj < x, ej > fj, x ∈ H s1, s2 ∈ S (3.10)

Equation (3.10) is called the spectral decomposition of l

Definition 9. Hilbert-Schmidt operator

A compact operator l is Hilbert-Schmidt if:

∞∑
j=1

λ2
j <∞ (3.11)

where λj is from Def.8

Definition 10. The Space of Hilbert-Schmidt Operators

The space S of Hilbert-Schmidt Operators is a separable Hilbert space with respect to

the scalar product:

< s1, s2 >S=
∑

1≤i,j≤∞

< s1(gi), hj >< s2(gi), hj > (3.12)
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where (gi) and (hj) are two arbitrary orthonormal bases of H and s1, s2 are Hilbert-

Schmidt operators.

Definition 11. The Hilbert-Schmidt norm on a space S

‖s‖S =

 ∞∑
j=1

λ2
j

1/2

=

 ∞∑
j=1

s(gi)
2

1/2

, s ∈ S (3.13)

where λj is from Def.8 and (gi) is an arbitrary basis of H

Definition 12. Weak and strong orthogonality

H-valued random variables X and Y are called:

• weakly orthogonal if E < X, Y >= 0

• strongly orthogonal if CX,Y = 0

Stochastic independence implies strong orthogonality, which implies weak orthogonality,

but not in reverse.

Definition 13. Functional white noise

A functional or H-valued strong white noise εn is a sequence of zero-mean, independent

and identically distributed random variables taking values in the Hilbert space L2
H . If

they are not mutually independent, but strongly orthogonal, they are called just H-valued

white noise.

Finally, The ARH(1) is defined in the following way:

Definition 14. Xn is an ARH(1) process if and only if

Xn = ρ(Xn−1) + εn n ∈ N (3.14)

where ρ is an infinite-dimensional linear autocorrelation operator i.e. ρ = CX1C
−1
X where

CX (x) = E(< X , x > X ) is the covariance operator, CX1(x) = E(< Xn, x > Xn+1) is

the lag one covariance operator εn is a functional H-valued white noise, for instance a

Brownian bridge or a Wiener process.
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The process (3.14) is defined to be stationary in a similar way to the scalar and mul-

tivariate autoregressive process of order one cases. The condition which ensures con-

vergence in the MA(∞) representation, similar to the scalar AR(1) case, is ‖ρj0‖S < 1

where j0 is an integer and S denotes the norm in the space of Hilbert-Schmidt operators

as in Def.11. It should be noted also that the autoregression in (3.14) could be more gen-

eral with a nonlinear operator, for instance, ρ could be estimated nonparametrically via a

functionally adapted kernel estimator as in (Ferraty and Vieu, 2006).

3.4.3 The Data Problem in Functional Time Series

Although we use continuous models such as (3.14), in practice they are presented to

us, and evaluated on, a discrete set of values e.g. points over a grid that represents the

interval. Fig.3.4 shows a simulated realization of ARH(1) using the far package in R

from Damon and Guillas (2010). This means that, in practical terms, functional data

analysis is similar to standard multivariate analysis, but the underlying model is different.

Hence, our functional data will be respresented as an n× p matrix where n is the number

of discretized curves and p is the number of points on the grid. Theoretically, the number

of gridpoints p goes to infinity to completely capture a curve. This means that the finer the

resolution, the better the representation. However, another practical problem is that when

we have a measurement instrument, say magnetometer, and we use it continuously its data

inevitably contain some measurement error. That is why, one way to model functional

data is to smooth the eigenvectors of their covariance matrix or to truncate the covariance

eigendecomposition and use projections of the original data on this set of basis vectors, as

considered in Ramsay and Silverman (2002). Hence, a key tool for building the functional

linear model is to upgrade the general linear model. Another typical technique is to use

some appropriate basis expansion to pre-process the data, such as spline or Fourier basis

functions.

With respect to functional time series, the grid nature also has more implications. For

instance, if we wanted to predict the future values of the function for a whole year and we
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Figure 3.4: 5 curves of a Simulated Realization of ARH(1) with Wiener Noise over a grid
of 100 points

had resolution of one observation per half hour, then it would not be wise to use all the

gridpoints in the estimation, because this might incorporate a substantial amount of noise

in the prediction. We could do some averaging or smoothing on the week level in order to

predict months and thus the year. We could also do some differencing or centering opera-

tion on the data or even to model the different level of resolutions with various techniques

— a good example is Cho et al. (2013). For example the weekly average curves could be

subracted from all curves.

Moreover, since later we will be interested in predicting a trajectory, it would not be

wise to use only the principal directions of variance, as in standard multivariate principal

component analysis, either. This phenomenon was shown with simulated data in Hörmann

and Kokoszka (2012). That is why the eigendecomposition of a covariance/correlation

matrix (in a particular lag) must be used carefully with respect to prediction of functional

data. A main trade-off in forecasting functional time series is how many principal compo-

nents of the data to use for prediction? There exist different cross-validation procedures

in order to do that as suggested in Bosq (2000) and Besse et al. (2000). The recommended
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approach is to choose the number of principal components based on a validation set of

the data and select the number of principal components which gives the least empirical

prediction error. We will use this approach and suggest another in chapter 7.

3.4.4 Interesting problems in time series FDA

Time-varying ARH and/or local stationarity and functional spectrum

An interesting model is the time-varying functional AR process. This means that our

autocorrelation operator changes over time. Let us have our data in a matrix form Xnp

where n is the number of curves and p is the number of discretization points. Then we

could have the model Xn = ρ1(Xn−1) + εn for n ≤ n1

and Xn = ρ2(Xn−1) + εn for n > n1 for some integer n i.e. if n = 1000, say n1 = 500

Most of the present literature deals with either stationary models such as ARH (1) or

use complicated curve clustering procedures, as in Antoniadis et al. (2013) in order to fit

the stationary model to segments. Another possible direction, which has not been much

explored is defining a functional spectrum and locally stationary versions of the theory.

Order Determination for ARH

Despite the popularity of the ARH model in the field, there appears to be little literature

addressing its suitability for a functional time series dataset. An exception is the paper

from Kokoszka and Reimherr (2013) dealing with this question. The ARH(p) model

is similar to AR(p) in having operators of higher lag in definition 14. Kokoszka and

Reimherr (2013) develop specific representation and estimation routines and a test statistic

for the ARH(p) order determination through a functional linear model, suited for the

testing problem of order determination. We intend to investigate an aspect of ARH order

determination later in the thesis in chapter 7.
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Chapter 4

Univariate Wavelet White Noise Tests

This chapter is based on our published paper Nason and Savchev (2014b).

Testing whether a time series is consistent with white noise is an important task within

time series analysis and residual checking. We develop three new fast and efficient white

noise tests by assessing spectral constancy via the wavelet coefficients of a periodogram.

Our first Haar wavelet-based test derives the approximate distribution of the wavelet co-

efficients of the asymptotic periodogram for independent and identically distributed data

under mild conditions. Our second test uses a single Haar wavelet coefficient obtaining

a test statistic as a linear combination of odd-indexed autocorrelation values. To achieve

greater power our third (general) test uses compactly supported Daubechies wavelets. We

prove that the general wavelet test coefficients are asymptotically normal and derive a

formula for its theoretical power for an arbitrary spectrum. We show examples for some

autoregressive moving average models for various sample sizes that exhibit close theo-

retical agreement with simulation. We present a simulation study showing that our tests

are broadly competitive, sometimes perform extremely well and exhibit them on a wind

speed time series.
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4.1 Introduction

Testing for white noise is a cornerstone in time series analysis. Such tests can be useful in

their own right or part of a larger procedure that assesses model fit residuals for remaining

stochastic structure. A process is white noise if and only if its spectrum is flat and if and

only if the wavelet coefficients of the spectrum are all zero. Hence, our new tests works by

statistically testing whether the wavelet coefficients of the periodogram are significantly

different from zero.

When using Haar wavelets it turns out that we can establish the exact distribution

of the coefficients from the asymptotic distribution of the normalized periodogram for

independent and identically distributed data under mild conditions (the null). We also

introduce a related test based on assessment of a single Haar wavelet coefficient that has

a simple representation in terms of odd-indexed autocorrelations. To improve statistical

power of our test we replace Haar wavelets by more general wavelets and show that,

asymptotically, the coefficient distribution is Gaussian with a specified mean and vari-

ance. Further, we develop a theoretical formula for the power of the general wavelet test

for fixed T for any spectral density function. The theoretical power function can give

guidance on questions such as ‘how large does my sample have to be to detect departures

from white noise against a specific alternative’?

Why do we need another white noise test? All tests are ‘directional’ in that they have

excellent power for some kinds of alternative, reasonable power for many alternatives and

poor power for others. Our test has excellent power for some alternatives that other tests

do not achieve and so, it is, we believe, a useful addition to the literature. Moreover,

our test benefits from an implementation in R, theoretical backup and a theoretical power

formula.
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4.2 Building blocks of our tests

4.2.1 Basic Components

Suppose that {Xt}t∈Z is a real-valued second-order stationary stochastic process with

mean µ < ∞, variance σ2
X < ∞, autocovariance γX(k) for integers k and associated

spectral density function f(ω) for ω ∈ [−π, π) = Π. We address the problem of testing

the hypothesis H0 : {Xt} is white noise versus the alternative HA that {Xt} is not white

noise given a realization Xt, t = 1, . . . , T for some positive integer T .

The process {Xt} is white noise if and only if its spectral density function f(ω) is

a constant function on Π. The spectral density function, f , can be estimated from a

realization {Xt}Tt=1 via the periodogram

IT (ω) = (2πT )−1

∣∣∣∣∣∣
T∑
t=1

Xte
−iωt

∣∣∣∣∣∣
2

, (4.1)

which can be computed at the Fourier frequencies Ip = IT (ωp), where ωp = 2πpT−1 for

p = 1, . . . , T/2.

Our tests will be based on wavelet decompositions of spectral densities defined as

follows.

Definition 1 (Wavelets). Let N0 = N ∪ 0. Let {ψj,k}j∈N0,k∈Z be an orthonormal periodic

wavelet basis for functions f ∈ L2(Π), where ψj,k(x) = 2j/2ψ(2jx−k), where ψ ∈ L2(Π)

is a (suitably rescaled) Daubechies’ compactly supported mother wavelet. The wavelet

expansion of a spectral density can be written

f(ω) =
∑
k∈Z

vkφ0,k(ω) +
∑
j∈N0

∑
k∈Z

vj,kψj,k(ω), (4.2)

for ω ∈ Π, where φ(ω) is the scaling function associated with the wavelet basis. Define

< ·, · > to be the usual inner product on L2(Π) given by < f, g >=
∫ π
−π f(ω)g(ω)dω.
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Wavelets provide a decomposition of a function, f(ω) which is localized in time and

frequency. The wavelet coefficients sets for a wide variety of functions (technically in

some Besov class) are sparse. This means that the essential information present in a spec-

trum can be represented in very few wavelet coefficients, generally fewer than presented

in other representations such as Fourier or orthogonal polynomials. Our testing proce-

dures exploit this sparsity, especially for the general wavelet test presented in Section 4.4.

Wavelet transforms have further advantages in that their implementations are extremely

fast and efficient and the coefficients provide useful information about location and scale

of non-constancies. For further information on wavelets see Daubechies (1992) or Mallat

(1998), Vidakovic (1999) or Nason (2008).

4.2.2 Assessing Spectral Constancy

Our approach investigates the constancy of the spectral density function f(ω) by examin-

ing its wavelet coefficients given by:

vj,k = σ−2
X

∫ π

−π
f(ω)ψj,k(ω)dω = σ−2

X < f, ψj,k > for j ∈ N0, k ∈ Z. (4.3)

For example, ψj,k(x) might be the usual Haar wavelet system defined by ψHj,k(x) =

2j/2ψ(2jx− k) where

ψ(x) =


1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

0 otherwise.

(4.4)

The white noise null hypothesis can be reformulated in terms of the wavelet coeffi-

cients: if f(ω) is constant then every vj,k = 0 and the null hypothesis is equivalent to

H0 : vj,k = 0 for all j ∈ N0, k ∈ Z. This is because a defining property of wavelets is that

the integral of every wavelet is zero.

In practice, we do not know the spectrum and hence estimate it using the periodogram.

For the white noise test we then apply the discrete Haar wavelet transform to the nor-
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malised periodogram to form the following estimates of vj,k:

v̂j,k = 2
J−j
2 σ̂−2

X

2J−j−1−1∑
r=0

I2J−j(k+1)−r −
2J−j−1∑
q=2J−j−1

I2J−j(k+1)−q

 , (4.5)

for (j, k) ∈ IT = {(j, k) : J = log2(T ), j = 0, . . . , J − 1, k = 0, . . . , 2j − 1}. Here

we assume T = 2J for some integer J , but the test can be extended to data sets by using

the Haar wavelet transform for arbitrary-n. A version of (4.5) exists for more general

Daubechies’ wavelets and a fast transform, called the discrete wavelet transform, exists

due to Mallat (1989).

To test constancy of f we perform multiple hypothesis tests for H0 : vj,k = 0 for

all (j, k) ∈ IT against HA : ∃(j, k) such that vj,k 6= 0 using the v̂j,k as test statistic.

Sections 4.3 and 4.4 explain how to compute the distribution of v̂j,k to a high degree of

accuracy for both the Haar and general wavelet situation. From this we can obtain a ‘per-

test’ p-value with respect to each j, k pair. We use multiple hypothesis test size adjustment

techniques such as Bonferroni correction or the false discovery rate method of Benjamini

and Hochberg (1995a) to obtain tests of size α from the multiple tests.

The idea of using Haar wavelet coefficients for testing constancy appeared in von

Sachs and Neumann (2000) in the context of stationarity testing. Here we test for con-

stancy over frequency, rather than over time, and use more general wavelets to improve

the statistical power of our tests.

4.3 A Haar wavelet test

Under the null hypothesis of independent and identically distributed data it is well-known

that the periodogram ordinates, Ip, are distributed asymptotically as independent expo-

nential random variables with mean σ2
X , see Brockwell and Davis (1991) page 344. If the

Xt are Gaussian then the periodogram ordinates are also uncorrelated.

We will model the periodogram ordinates as independent exponential random vari-
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ables with mean σ2
X .

4.3.1 All coefficient Haar Test

For now suppose that σ2
X = 1 is known. Then under H0 the distribution of v̂j,k from (4.5)

is given by the following proposition.

Proposition 2. The distribution of v̂j,k for (j, k) ∈ IT is given by

gm(x) =

√
2m exp(−

√
2m|x|)

22m−1(m− 1)!

m∑
j=1

(m+ j − 2)!

(m− j)!(j − 1)!

(
2
√

2m|x|
)m−j

, (4.6)

where m = 2J−j−1 for j = 0, . . . , J − 1 and σ2 = 1.

Proof: see appendix. We call gm(x) Macdonald’s distribution although g1(x) is the

scaled Laplace distribution with variance one. In the Kotz et al. (2001) chapter 4, a general

form of this distribution is called the Bessel distribution.

In practice σ2
X is unknown and so we estimate it using the standard sum-of-squares

sample variance formula. Then we operate our test on the normalized periodogram σ̂−2
X Ip

which is distributed, asymptotically, as an exponentially distributed random variable with

rate one.

We will abbreviate the all coefficient Haar wavelet test by HWWN.

Test HWWN procedure. To carry out the test we compute:

1. the normalized periodogram

2. then compute its Haar wavelet transform as specified by (4.5).

3. The Haar coefficients have distribution specified by (4.6) and the p-value for testing

H0 : vj,k = 0 versus HA : vj,k 6= 0 can be obtained by using the inverse cumulative

distribution of gm(x) from (4.6).

An important feature of the HWWN test is that no tuning parameters are required.
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Figure 4.1: Top left: probability density estimate (solid) of Haar wavelet coefficients v̂11,k

with g2(x) superimposed (dotted). Top right: equivalent but for cumulative distribution.
Bottom left: empirical histogram of p-values.

Figure 4.1 shows probability and cumulative density estimates of the wavelet co-

efficients with their theoretical g2(x) versions superimposed and associated empirical

p-values obtained by the test procedure operating on 214 independent Gaussian random

variables. The empirical p-values appear to be close to uniform random variables which

is what one would expect for the test statistic under the null hypothesis.

The result in Proposition 2 is approximate for the null distribution of v̂j,k. For a finite

sample the periodogram ordinates are only approximately independently exponentially

distributed. However, even for small T the approximation appears to be good. Further-

more, any small correlations in the periodogram ordinates are likely to be reduced further

by the well-known ‘decorrelation property’ of wavelet transforms, see Johnstone and Sil-

verman (1997), for example. A second factor is that the finite wavelet coefficients in (4.5)

are normalized by the sample variance σ̂2
X which causes normalized periodogram ordi-

nates to obey a F -distribution, see Koen (1990). However, in practice, the difference

between this F -distribution and the exponential is very small indeed, even for moderate

sample sizes.

4.3.2 Single coefficient Haar test

Any non-zero Haar coefficient in the test described above indicates departures from white

noise. We develop a second test based on the single coefficient v0,0, which we relabel d0,0

to indicate that it forms a different test. The coefficient d0,0 is the coarsest scale wavelet

coefficient and can be written in the frequency domain as:

d0,0 = 2−1/2σ−2
X

(∫ π/2

0

f(ω) dω −
∫ π

π/2

f(ω) dω

)
. (4.7)
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Due to the Fourier relationship between autocovariance and spectrum (and some algebra)

the coefficient d0,0 can be rewritten as

d0,0 = (4/
√

2π)σ−2
X

∞∑
m=0

γ(2m+ 1)/(2m+ 1) (4.8)

≈ 0.90ρ(1)− 0.30ρ(3) + 0.18ρ(5)− 0.13ρ(7) + · · · , (4.9)

where ρ(τ) is the usual autocorrelation, see Appendix A.4.

A test statistic can obtained from d0,0 by substituting the sample autocorrelation, rτ

for ρ(τ) and comparing |d̂0,0| to a critical value obtained either from the Macdonald distri-

bution from Proposition 2 or using a Gaussian approximation derived in the next section.

Although this test is based on only one wavelet coefficient it is surprisingly effective in

practice as it looks for gross scale departures of spectral constancy. The single coefficient

test is also particularly easy to compute from the sample autocorrelation which, in many

cases, would have already been computed and plotted.

4.4 A general wavelet test

A key property of wavelets is that wavelet expansions of a wide variety of functions are

sparse, see Wasserman (2005, p. 208) or Nason (2008), for example. This is illustrated

by the bottom-right plot in Figure 4.1 which displays the Haar wavelet coefficients of the

AR(1) spectrum with α1 = 0.9. Most of the coefficients in the plot are small or zero and

only four or five large ones are required to represent the spectrum. One reason for the spar-

sity of representation of wavelets can be explained using the vanishing moments property

of wavelets. A wavelet ψ(x) is said to possess m vanishing moments if
∫
x`ψ(x) dx = 0

for ` = 0, . . . ,m − 1. This property means that coefficients of wavelets, derived from

ψ(x), that overlap the spectrum, where it is locally like a polynomial of degree less than

m, will be small and in many cases zero. The consequence is that smooth spectral den-

sities, such as those belonging to ARMA(p, q) processes, will be sparsely represented in

wavelet bases and, in principle, the representation will be sparser when using wavelets
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with a higher number of vanishing moments.

Hence, we extend the test from Section 4.3 by using Daubechies’ compactly sup-

ported wavelets with ten vanishing moments in (4.3) instead of Haar wavelets. The dis-

crete wavelet coefficients, associated with these smoother wavelets, can be written as

v̂j,k = σ̂−2
X

∑
i g

(j,k)
i Ii where Ii are the usual periodogram ordinates and the gi are the

weights of the discrete wavelet transform. Formula (4.5) can be put into this form with

gi = ±2j/2 at scale j and then this window of coefficients is moved across the Ii sequence

to obtain the v̂j,k for k across this scale. Although the formula for computing v̂j,k, for all

the T/2 periodogram coefficients, seems to requireO(T 2) operations the discrete wavelet

transform introduced by Mallat (1989) performs the transform in a remarkable O(T ) op-

erations.

For a white noise test we need to understand the distribution of v̂j,k under the null

hypothesis of constancy of the spectrum. For more general wavelets no simple closed

form, such as in Proposition 2, seems to exist because the wavelet weights, gi, are not

constant and change from scale to scale. Alternatively, as long as we stay away from the

finer scales, the wavelet coefficients become asymptotically normally distributed because

of the central limit theorem.

The asymptotic normality can easily be established for the Haar wavelet case by the

following argument. Proposition 2 shows that the characteristic function of the Macdon-

ald distribution is essentially Student’s t-distribution which is well-known to tend asymp-

totically to the normal distribution as the number of degrees of freedom tends to infinity.

Hence, asymptotically, Macdonald tends to a normal distribution as the Gaussian density

is a fixed point of the Fourier transform.

Next, we establish asymptotic normality for the v̂j,k for general wavelets, specify a
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general wavelet test, and then a formula for power function of a test based on the v̂j,k at

medium to coarse scales is derived.

4.4.1 Specification of the General Wavelet Test

We will establish the asymptotic normality of the v̂j,k under the mild assumptions stated

by Neumann (1996) as follows.

Assumption 2 (Cumulant Rate of Decay). Let Xt satisfy

sup
1≤t<∞


∞∑

t2,...,tk=1

| cum(Xt1 , . . . , Xtk)|

 ≤ Ck
1 (k!)1+γ (4.10)

for all k = 2, 3, . . . where γ ≥ 0.

Neumann (1996) Remark 3.1 notes that if {Xt} is α-mixing with coefficients α(s) ≤

K exp(−b|s|) and E|Xt|k ≤ Ck(k!)γ for all k then the equivalent bound in (4.10) is

Ck(k!)3+γ and that many useful distributions, such as exponential, gamma, inverse Gaus-

sian and the F -distribution show that the condition is satisfied for γ = 0 and for more

heavy-tailed distributions for γ > 0.

Assumption 3. The spectrum f ∈ L2(Π) of {Xt} satisfies

TV(f) ≤ C2, ||f ||∞ ≤ C3, (4.11)

for some constants C2, C3 > 0, where TV(f) is the total variation of f . Additionally, we

assume that f ∈ Bm
p,q a Besov space.

For more details on Besov spaces see Abramovich et al. (1998) who note that “the

parameter m measures the number of derivatives of f , the existence of derivatives is re-

quired in an Lp sense, whereas the parameter q provides a further finer gradation”. Besov

spaces provide the realm for a wide variety of functions including those with spatial inho-

mogeneities such as point discontinuities or other singularities. However, Besov spaces
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can encapsulate Sobolev spaces Hm = Bm
2,2 which provide a natural realm for smooth

spectra for well-known processes such as ARMA.

Assumption 4 (Wavelet Assumptions). For any r > m assume that (i) φ, ψ ∈ Cr, the

space of continuous functions with r continuous derivatives; (ii)
∫
φ(ω) dω = 1; (iii)∫

ωkψ(ω) dω = for 0 ≤ k ≤ r + 1, i.e. the wavelet has r vanishing moments.

In practice, we set r to be high, e.g. r = 10 vanishing moments as this general results

in better sparsity of representation in (4.2) and faster progression to normality.

The asymptotic normality of the coefficients is now established.

Proposition 3 (Coefficient Asymptotic Normality). Let v̂j,k be the empirical wavelet co-

efficients of the normalized periodogram computed by (4.5) for Haar wavelets or
∑

i giIi,

for other Daubechies compactly supported wavelets. Then asymptotically, as T → ∞,

for 2j = O(T−1/2), we have v̂j,k ∼ N(0, 1) under H0 and v̂j,k ∼ N(vj,k, η
2
j,k) under HA,

where η2
j,k =< ψ2

j,k, {πσ−2
X f}2 >, the coefficients of the squared wavelet transform of the

square of the normalized spectrum.

The proof and more details can be found in Appendix A.2. The 2j = O(T−1/2)

ensures that we only consider coefficients away from the fine scales and is the same as-

sumption (A1) from von Sachs and Neumann (2000).

4.4.2 Power Function of the General Test

This section establishes the power function of the general test.

Proposition 4 (Test Power Function). Let the nominal size of the test be α, the Bonferroni

corrected size be αc = N−1
c α and the Bonferroni critical value Cαc = Φ−1(1 − αc/2),

where Φ is the standard normal cumulative distribution function. Then the (approximate)
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power function of the test is given by

P{Rej H0|f(ω)} =P(Cαc < max
(j,k)∈IT

|v̂j,k|)

=1−
∏

(j,k)∈IT

{
Φηj,k(Cαc − vj,k)− Φηj,k(−Cαc − vj,k)

}
, (4.12)

where vj,k and ηj,k are given by (4.3) and Proposition 3 respectively.

For the proof, please see appendix A.3. Figure 4.2 illustrates the utility and accu-

racy of our theoretical power function by comparing it to simulation results from four of

the models used in our simulation study below. The solid lines correspond to theoretical

power computed using (4.12) and the circles correspond to the simulation results and their

agreement is extremely good. The top left-hand plot in Figure 4.2 corresponds to inde-

pendent and identically distributed standard normal variates and so the power function

here is the Type 1 error or the statistical size. The nominal value for all these tests is 5%

and the top left plot shows good agreement with this.

4.5 Computational Details

4.5.1 Implementation

Our tests are implemented in the R (R Development Core Team, 2009) programming lan-

guage in our package hwwntest, Savchev and Nason (2015). The Haar wavelet test

is called hwwn.test and the general wavelet test using the asymptotic normal approx-

imation is called genwwn.test. In both cases the normalized spectrum is computed

using the fast Fourier transform and the regular var variance function. The normalized

spectrum is then subjected to a wavelet transform from the wavethresh package. The

wavelet coefficients are then compared to Macdonald’s distribution (for Haar) or the stan-

dard normal distribution (for general wavelets) and then the set of coefficient p-values is

adjusted by a Bonferroni correction (or alternatively, other methods such as false discov-
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Figure 4.2: All plots: solid line is theoretical power calculated from (4.12) for the gen-
eral wavelet test, circles are results from simulation study below. Top left: independent
and identically distributed normal random variables; Top right: AR(1) with α = 0.3, Ta-
ble 4.2; Bottom left: MA(2) with β1 = 0, β2 = 0.5, Table 4.3, Bottom right: AR(12) with
α1 = · · · = α11 = 0, α12 = −0.4, Table 4.3.
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ery rate could be used).

To compute the theoretical power for a general spectrum we first compute the wavelet

coefficients of the normalized spectrum. We then also need to calculate the variances

η2
j,k =< ψ2

j,k, {πσ−2
X f}2 >which could be computed inefficiently by brute force methods.

However, we choose to use the fast approximate methods due to Herrick et al. (2001) and

Barber et al. (2002) where ψ2(x) is represented as a linear combination of father wavelets,

φ`,m at finer scales. Then all the rescaled squared wavelets, ψ2
j,k in the calculation of η2

j,k

can be rapidly computed by using father wavelet coefficients at finer scales still.

Due to the use of fast wavelet algorithms operating on the periodogram the compu-

tational order of our test is O(T log T ). This order is shared by many of the other tests,

e.g. the Bartlett and Ljung-Box tests share this speed. The fast speed can be important for

applications that operate on long time series or situations where the test has to be applied

many times. Also, the speed is an issue when comparing tests: e.g. if test A produces

similar empirical power to test B, but operates slower by an order of magnitude, then test

B is preferable, and, in some sense, test B is using the information more efficiently for the

power assessment task.

4.5.2 Empirical distribution of the wavelet coefficients

The distribution of the Haar wavelets from (4.6) was derived under the Exponential as-

sumption from Proposition 10.3.2 from Brockwell and Davis (1991) and the type of con-

vergence is “in distribution”. It is probably interesting to go in more numerical detail as to

how the approximation is working and also with respect to the bias term. It is well known

that the periodogram is an unbiased, but inconsistent estimator of the spectral density. If

there is a bias it might be from the estimation of the wavelet coefficients which is based

on the results in Neumann (1996), specifically Theorems 4.1 and 4.2 with the latter shown

in appendix A.2 of the thesis which shows that the bias disappears in the asymptotic case.
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Indeed Neumann (1996) Proposition 3.1(i) states that under the Assumptions 1, 2, 3 and

4 from Chapter 4 of the thesis, the expectation of the empirical wavelet coefficients is:

E(v̂j,k) = vj,k +O(2j/2T−1log2T ) (4.13)

So, when using coarser scales this bias term from equation (4.13) goes to zero with

a rate of O(T−1). Let us consider the finest scale for having T=128 observations, this

means 64 for the periodogram, so the bias would be around 0.5, which is maybe a bit high

with respect to the finest-scale wavelet coefficients, however not near any large value that

would result in a type two false negative error.

With regard to the large number of observations shown on the graph on figure 4.1,

we will now show it step by step with smaller ranges. Furthermore, we will do a more

detailed simulation showing how the empirical distribution from data of the finest-scale

Haar wavelet coefficients compare with the theoretical Macdonald distribution from equa-

tion (4.6) from p.73 in the thesis. If this bias is large enough, it should be shown from the

empirical distribution.

Since we have T datapoints and T/2 for the periodogram’s positive Fourier frequen-

cies, then the number of finest scale wavelet coefficients would be T/4. Figure 4.3 shows

with 103 realizations, that even for T = 128, which results in only 32 finest scale coef-

ficients, there is no inherent bias present. Fig. 4.4 shows 103 realizations of Gaussian

white noise using the rnorm function in R with the standard normal curve superimposed

with red. The dataset sizes of 32, 64, 128, 256 correspond to the number of wavelet coeffi-

cients from Fig. 4.3. We can notice that the convergence to the theoretical Gaussian curve

seems to be the same or no worse than the one of the empirical wavelet coefficients to

the Macdonald distribution. Furthermore, it is probably worth mentioning that the stan-

dard Macdonald/Bessel distribution that we are using converges to the standard Gaussian

as T → ∞ drives the degrees of freedom parameter m = 2J−j−1 similarly to the way

the t-distribution converges to the Normal distribution, Kotz et al. (2001) chapter 4. Fig.
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Figure 4.3: Top left to bottom right respectively: black — Empirical distribution of finest-
scale Haar wavelet coefficients of 103 realizations from Gassian white noise with T =
128, 256, 512, 1024, red — theoretical Macdonald curve

.

86



CHAPTER 4. UNIVARIATE WAVELET WHITE NOISE TESTS

4.5 shows the Macdonald distribution, starting from Laplace distribution (m = 1, finest

scale j = J − 1). From the medium scale j = J − 3, the distribution is very close to

the standard Gaussian. Moreover, both the t and the Macdonald/Bessel distribution be-

long to the class of generalised hyperbolic distribution, thus the Cauchy as well, which

is the reason for the good empirical size with Cauchy white noise reported in section 4.6.1.

We have also run simulations with different values of σ and the results are no worse

than the ones with σ = 1, since in the HWWN procedure we are using the normalised

periodogram Iσ̂−2. With respect to time-varying σ, our tests do not do well since our

null hypothesis is not time-varying white noise under. With respect to the long-run vari-

ance as meant to a way of expressing σ2 as a linear combination of autocovariances, it

is true that we do not observe all covariances since we estimate the spectrum with the

raw periodogram at the Fourier frequencies. Indeed, a kernel or tapered estimate of the

periodogram might improve the statistical power under serial correlation alternatives and

that would in itself be an interesting direction of new methodological research.

4.6 Univariate White Noise Simulation Study

We carried out an extensive simulation study to evaluate the empirical size and power of

our new tests in comparison with the Box-Ljung, Bartlett and whitenoise.test()

test from Lobato and Velasco (2004). The study results appear in Tables 4.1 to 4.4. The

nominal size of all hypothesis tests was set to 5% and results established via 105 replica-

tions. A larger selection of results for a wider range of sample sizes and models can be

found in Nason and Savchev (2014a).

4.6.1 Size Estimation for the three Wavelet Tests and Others

Table 4.1 presents empirical size results for data that are independent and identically

distributed for both standard normal and Cauchy distributions for sample sizes of T =
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Figure 4.4: Top left to bottom right respectively: black — Empirical distribution of 103

realizations from Gassian white noise with T = 32, 64, 128, 256, red — standard Gaussian
curve N(0, 1)

.
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Figure 4.5: Shapes of the Macdonald distribution with varying the m parameter; red —
standard Gaussian curve N(0, 1)

.
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hwwn genwwn Box Bartlett normwhn
Model T lag=1 lag=20
N(0, 1) 64 3.0 4.8 4.6 2.8 2.9 4.7

256 3.8 4.7 4.9 4.3 3.7 4.7
1024 4.1 4.9 4.9 4.9 4.1 4.9

Cauchy 64 0.4 2.0 2.7 0.3 1.5 30.7
256 1.0 5.0 2.7 5.6 2.0 63.8

1024 2.0 5.0 1.9 7.5 2.1 87.3

Table 4.1: Empirical size for the five white noise tests for various sample sizes, T . True
model is independent and identically distributed variates. Approximate theoretical power
from (4.12) computed to be 4.9% for all T for the General Wavelet Test genwwn.

64, 256 and 1024. In most cases the empirical size is close to, and never exceeds, the nom-

inal size for all tests for the standard normal data. However, for Cauchy data, the empirical

size for the normwhn test dramatically exceeds its nominal value and hence we would

not recommend its use in scenarios where heavy-tailed noise might be present. There

is also some evidence that the Ljung-Box test exceeds its nominal size for the Cauchy

data. Tables 2 and 4 of Nason and Savchev (2014a) show further results for sample sizes

T = 16, 32, 128 and 512 for Student’s t-distribution variates on two and three degrees of

freedom and also show the normwhn test performing poorly for these other heavy-tailed

distributions. The periodogram based tests (hwwn, genwwn and Bartlett’s test) are not

affected presumably because of the fact that a periodogram’s asymptotic independent and

identically distributed exponential distribution happens under mild distributional condi-

tions.

4.6.2 Power Estimation for the three Wavelet Tests and Others

Tables 4.2 to 4.4 show empirical power results for different alternative models with Gaus-

sian innovations.

Table 4.2 compares three AR(1) models where there is not a lot of difference in the

performance of the tests for α = ±0.9 except that normwhn is less powerful for α = 0.9.

For α = 0.3 the Ljung-Box test with lag=1 dominates, but this is not surprising since

there is a large lag one coefficient. In practice, of course, the best lag is not known and,
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hwwn genwwn Box Bartlett normwhn
Model T lag=1 lag=20

α = 0.3

32 6.1 17.1 26.0 4.4 12.5 7.9
64 16.2 28.7 58.1 18.0 41.6 12.9

256 79.1 89.4 99.7 83.7 98.7 40.7
1024 100.0 100.0 100.0 100.0 100.0 91.6

α = 0.9
32 86.0 95.5 98.9 84.3 96.3 61.1
64 100.0 100.0 100.0 99.9 100.0 84.0

α = −0.9
32 96.0 98.0 99.9 95.2 99.7 96.9
64 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.2: Empirical power for the five white noise tests for various sample sizes, T . True
model is AR(1) with parameter α with standard normal innovations.

e.g., for lag=20 the genwwn and Bartlett test dominate the Ljung-Box test, with Bartlett

being better for larger T .

Table 4.3 compares three ARMA models. The results for Box-Ljung vary depending

on the supplied lag. The general wavelet test genwwn dominates for the MA(2) model,

the Bartlett test dominates for the ARMA(1, 2) model but the genwwn general wavelet

test does well for larger T . For the AR(12) test the normwhn test performs well, but the

Haar wavelet test hwwn is second best, and the Bartlett tests poorly.

Table 4.4 reruns some of the power simulations with heavy-tailed innovations. The

general wavelet test, genwwn, works particularly well for Models a. and b., but not for

c. However, the Haar wavelet test hwwn works well for model c. Here we discount

normwhn as it has poor size characteristics for heavy tailed noise.

Overall conclusions from our study are (i) unless one was absolutely sure that their

time series was not heavy-tailed, one should probably avoid the normwhn test, (ii) per-

formance of the Box-Ljung test is highly variable and dependent on the number of lags

considered, (iii) all of the tests perform well against some alternatives and not against

others. Generally, the genwwn test performs creditably well.
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hwwn genwwn Box Bartlett normwhn
Model T lag=1 lag=20

MA(2)
64 26.7 55.0 17.0 34.7 38.3 29.8

256 93.6 99.9 17.8 99.8 98.8 77.0
1024 100.0 100.0 17.9 100.0 100.0 100.0

ARMA(1, 2)
16 42.5 19.4 93.3 ∗ 80.5 58.6
32 93.1 98.0 100.0 79.1 99.7 87.6
64 100.0 100.0 100.0 100.0 100.0 99.3

AR(12)
64 12.7 10.0 7.4 24.1 6.0 18.9

256 51.9 12.2 8.9 98.6 14.6 75.9
1024 98.9 13.2 9.4 100.0 36.1 100.0

Table 4.3: Empirical power for the five white noise tests for various sample sizes, T , all
with standard normal innovations. MA(2) model has β1 = 0, β2 = 0.5, ARMA(1, 2)
model has α1 = −0.4, β1 = −0.8, β2 = 0.4, AR(12) model has α1 = · · · = α11 = 0,
α12 = −0.4.

hwwn genwwn Box Bartlett normwhn
Model Box.lag=1 Box.lag=20

a. 81.2 90.5 99.4 76.0 98.8 29.2
79.1 89.4 99.7 83.7 98.7 40.7

b. 93.4 99.7 12.9 99.2 98.4 58.7
93.6 99.9 17.8 99.8 98.8 77.0

c. 39.4 7.2 6.7 96.6 10.2 60.0
51.9 12.2 8.9 98.6 14.6 75.9

Table 4.4: Empirical power for the three white noise tests for T = 256 for different models
with Student’s t distributed noise with two degrees of freedom in roman font. Results with
Gaussian innovations, reproduced from tables above, are in italic font. Model: a.) AR(1)
α = 0.3 from Table 4.2; b.) MA(2), (β1 = 0, β2 = 0.5) from Table 4.3; c.) AR(12),
α1 = · · · = α11 = 0, α12 = −0.4 from Table 4.3.
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4.6.3 Simulation Comparisons with Contemporary Papers

We also compared some simulation results to existing literature. For example, with inde-

pendent and identically distributed χ2
1 random variables, with sample sizes of T = 256

and 1024 all our simulations for both wavelet tests, the Ljung-Box test, the Bartlett test

and the whitenoise.test() were all less than 5% with the smallest being 2.91%, apart from

the Ljung-Box test with lag p = 10 where the size was 5.1% and 5.06% for both sample

sizes respectively. Hence, size control for all these tests is, in general, very good. Table 2

from Guay et al. (2013) reports results on equivalent models where their tests are shown

to have empirical size values quoted of 5.61%, 5.83% for their BP test and 4.7% and

5.17% or their Parz for sample sizes of T = 200 and T = 1000, respectively. They also

compare their tests to three others: the ELn test by Escanciano and Lobato (2009), an

adapted form of the Newey-West data-driven statistics used by Hong and Lee (2005) and

the CvM test from Deo (2000). The empirical sizes for these tests are, for T = 200, 8.7%,

10.37% and 6.32% and, for T = 1000, 7.18%, 10.37% and 5.76% which are maybe a bit

high.

Guay et al. (2013) perform further empirical power simulations with AR(1) and MA(1)

models with challenging o(n−1/2) parameters. Their results for MA(1) model, for the tests

mentioned above, give a best power of 10.76% for T = 200 and 34.4% for T = 1000

whereas the d0,0 single coefficient from Section 4.3.2 achieves a competitive power of

10.49% and 28.64% and, of course, the d0,0 test is very simple, requiring no tuning pa-

rameters and directly uses the sample autocorrelation for computation. For the AR(1)

model in their Table 4 the maximum power for T = 200 is 10.5% and for T = 1000 it is

35.1% and d0,0 gives 10% and 29.64% respectively.

Guay et al. (2013) also use a MA(4) and AR(6) model mimicking “hidden periodic-

ity” in their Table 4. Our general wavelet test achieves extremely high empirical power for

these models achieving 41% and 92% respectively whereas the several tests in Guay et al.

(2013) do not have power greater than 20% and 70%. Furthermore, our test has no tuning
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parameters whereas tests in Guay et al. (2013) combine results from lags ranging from

1.9 to 35.2 — those lags are not integer due to Guay et al. (2013) averaging procedure for

obtaining the final test result.

4.7 Real Data Examples

4.7.1 Wind Speed Example

Figure 4.6 shows a time series of T = 128 observations from a larger set of hourly wind

speeds recorded at Aberporth, Wales during 2010. The top left plot shows the actual

values of the series and the top right plot the first differences of the series which detrends

the original. It is of interest to determine whether there is a non-white noise structure

within the first differences to aid forecasting. Such short term forecasts are of value for

companies running wind farms and power companies to enable them to aggregate power

from a variety of sources efficiently. The autocorrelation function of the first differences

is plotted in the bottom left-hand plot of Figure 4.6 and one can see that it is close to white

noise, although there might be significant lags at τ = 1 and τ = 10. Other tests indicate

that there is little evidence of heavy tails.

First, we consider the Ljung-Box test. The p-value for this test with the lag p = 1 is

0.004 which indicates extremely strong evidence to reject H0 of white noise. On the other

hand, the Ljung-Box test for p = 20 gives a p-value of 0.08 which indicates that there

is no evidence to reject H0. Other values of the Ljung-Box lag give a variety of other

p-values which makes it impossible to know whether to reject H0 or not.

The p-values for the other tests are 10−15 for the whitenoise.test from Lobato

and Velasco (2004), 0.026 for the Bartlett test, 1.00 for the Haar wavelet test, 0.011 for

the single coefficient d0,0 test and 0.044 for the general wavelet test. The cumulative

normalized periodogram used to compute the Bartlett test statistics is the bottom right

plot of Figure 4.6. Our practical conclusion is that there is strong evidence that the series

is not white noise and we reject the null hypothesis.
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Figure 4.6: Top left: Aberporth wind speed time series. Top right: first differences of
Aberporth wind speed time series. Bottom left: Autocorrelation function of Aberporth
wind speed first differences. Bottom right: Cumulative normalized periodogram (solid
black) and ideal white noise line (red dotted) for Bartlett white noise test.
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Figure 4.7: Hadcrut4: Global ensemble medians of temperature anomalies from 01/1850
till 04/2014

4.7.2 The HADCRUT4 Global Dataset

Description of the Data

Here we examine an Instrumental Temperature Record, please see Jones et al. (1999).

We will be using data up to April 2014 which is called HadCRUT4. These data rep-

resent digitised measurements which include the climate error models for uncertainty

on a scale that represents temperature anomalies relative to 1961–1990 with data from

1850 till today, Jones et al. (1999). We will use HadCRUT4 time series: global ensem-

ble medians and uncertainties for the global level which average southern and northern

hemisphere estimates on a monthly level. The data can be downloaded from the link:

http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html.

Our Analysis

For our analysis, we will use the first 1025 monthly observations from the data which

corresponds with January 1850 until April 1935. They are plotted in Fig. 4.8.

Fig. 4.9 shows that the partial and regular autocorrelation of the total series was not

decaying. This pattern is largely preserved in Fig. 4.10 — for our chosen subset of

monthly data and we will work with the lag one differenced data. Fig. 4.11 shows the
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Figure 4.8: Hadcrut4: Global ensemble medians of temperature anomalies from 01/1850
till 04/1935 (first 1025 observations of the data from Fig. 4.7

Figure 4.9: ACF and PACF of the temperature anomalies monthly raw data from 01/1850
till 04/2014.

Figure 4.10: ACF and PACF of the temperature anomalies monthly raw data from
01/1850 till 04/1935.
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Figure 4.11: ACF and PACF of first order diffences of the temperature data.

auto and partial correlations of our 1025 monthly subset after differencing one time. They

suggest that a mixed ARMA model would be suitable. After consideration of several

models, based on AIC and 100 one-step-ahead forecasts, the best model we chose was

ARMA (1, 1) for the differenced data. Hence we model the anomaly data from 01/1850

till 04/1935 by an ARIMA(1, 1, 1) model .

Now we turn to residual analysis and application of several white noise tests. The

idea is that we hope to have captured most of the variance with our model. However, as

explained, this dataset describes a complex natural phenomenon, so there might be hidden

higher lag temperature periodicites that have been missed by the model. We will apply our

wavelet tests (Haar, General and d00), the tests of Bartlett and Lobato, and Ljung-Box.

Table 4.5 shows that the Haar wavelet test and the Lobato test reject the null hypothesis.

This is pointing in the direction that there is a hidden periodicity. We also performed the

Ljung-Box test for different lags to see if it would agrees with our findings. From the

results in table 4.6, we can infer that the hidden periodicity is between lag 12 and lag 18
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Figure 4.12: Auto and Partial (auto) correlations of the residual series from
ARIMA(1,1,1) model on the 1025 monthly obsevations — from 1850 till 1935 — of
the HADCRUT4 Global Dataset

as the L-B test rejects null hypothesis in this region. This confirms our assertions from

the simulation study in the previous section that the wavelet periodogram tests are suitable

for such a task. Indeed, if we look more closely at the autocorrelations of the residuals

from our model on Fig. 4.12, we can notice that both ACF and PACF are bordering and

crossing the confidence interval at lags 15 and 16 respectively. This finding might be

a random effect, though in climate data, there often are certain hidden periodicities or

complicated cycles. To sum up, our Haar wavelet test agrees with the tests of Lobato, and

Ljung-Box, when we specify the lag correctly. The test of Lobato is implemented in the

normwhn R package.
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Test hwwn genwwn d00 Bartlett normwhn

p-value 0.0028 0.7298 0.7982 0.2952 0.0020

Table 4.5: Results from applying white noise tests to the residuals of ARIMA(1,1,1)
on the 1025 monthly obsevations — from 1850 till 1935 — of the HADCRUT4 Global
Dataset

L-B Test lag 6 lag 12 lag 18 lag 24

p-value 0.1823 0.3441 0.0087 0.0004

Table 4.6: Results from applying the Ljung-Box test with different lags to the residuals
of ARIMA(1,1,1) on the 1025 monthly obsevations — from 1850 till 1935 — of the
HADCRUT4 Global Dataset

4.7.3 S&P 500 Annual Log Returns

Description of the Data

The dataset we are going to analyze in this section are the annual returns from Stan-

dard and Poor’s 500 (S&P), which is a major US stock market index of the top 500

companies. We will use data from 1871 till 1998 which totals 128 observations. The data

from 1871 till 1957 (when the index was officially introduced) are calculated from the top

500 companies at the respective year. The source is: http://data.okfn.org/data/core/s-and-

p-500

Those data are also analyzed in Lobato (2001).

Analysis and Test Results

We decided to use the natural logarithm of the ratio of the current year to the previous

one or what is known as the log-returns or the first differences of the logarithms of the

raw data. This is a typical transformation for such types of data since financial returns

are believed to be log-normally distributed, Baxter and Rennie (1996) page 6. The data

we use are shown on Fig. 4.13, where the big downward spike in the middle occurss at

the time of the Great Depression. Another basic idea in financial time series is that the

log-returns are usually not serially correlated, Samuelson (1965). On Fig. 4.14 we inspect
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Figure 4.13: Annual Log-Returns from S&P 500 from 1871 till 1998

Test hwwn genwwn d00 Bartlett normwhn

p-value 0.2882 0.1054 0.6959 0.2836 0.6748

Table 4.7: Results from applying white noise tests to the log-returns from S&P 500 for
1871-1998

the sample (and partial) autocorrelation function. We notice that most of the correlations

are within the confidence intervals, though lag two is on the borderline. However, this is

pretty common for white noise data. Overall, the correlogram looks pretty close to white

noise.

Now, looking at tables 4.7 and 4.8, we can conclude that all mentioned tests do not

reject the null hypothesis of white noise. The conclusion in Lobato (2001) is the same,

using their test and another modified Box-type test.

L-B Test lag 1 lag 2 lag 3 lag 10

p-value 0.6556 0.1173 0.1117 0.3415

Table 4.8: Results from applying the Ljung-Box test with different lags to the log-returns
from S&P 500 for 1871-1998
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Figure 4.14: ACF and PACF of the lLog-Returns from S&P 500 from 1871 till 1998
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Chapter 5

Local Alternatives and Nonlinear

Models

5.1 Introduction

The partial differences of average of Fourier periodograms over consecutive Fourier fre-

quencies in white noise testing have a different interpretation than stationarity testing as

in Nason (2013). The essential problem underlying the wavelet white noise tests in the

thesis is testing for constancy of the spectrum over Fourier frequencies or more precisely

over ’scales of frequency’. By scales, it is meant that for the ARMA alternative we might

have low or high-frequency processes as well as mid-low and mid-high ones and also mid-

frequency where the peak of the process in around π/2. Moreover, for higher orders such

as AR/MA(4) with negative parameter, the spectrum would have two peaks — one around

π/3 and the other at 2π/3. This means that depending on the alternative hypothesis, some

fine-tuning of our tests might produce better results.

For instance, considering the ARMA alternative hypothesis, we might have processes

with high or low frequencies peaks, for which d00 would be one of the best. However,

there are also cases where the peak of the spectrum is in the mid-frequencies range around

π/2. It is explained in appendix A4 that similar to d00, we can have d10 and d11, then
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Figure 5.1: Top left: Spectrum of AR(3) process with parameter αi = 0.1767 for i =
1, 2, 3 corresponding to local alternatives scenario α = 2/

√
(T ), T = 128. Top right:

the Haar wavelet coefficients of the normalised spectrum with T = 128. Bottom left and
right: spectrum of AR(3) with negative parameters and its Haar wavelet coefficients for
T = 128

.
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d20, d21, d22, d23 etc. One such example is illustrated on Fig. 5.1. The scenario plotted in

the top of Fig. 5.1 corresponds to a local alternatives scenario of order O(T−1/2), more

precisely an AR(3) process with parameters αi = 2/
√

(T ) for i = 1, 2, 3 and T = 128. It

is evident that the largest coefficients occur in scales j = 2 and j = 3. The approximate

theoretical power for the d00 test is 46% with the coefficient d00 = 1.84 and a critical

value of quantile Cαc = 1.959. Including d10 = 3.48 and d11 = 0.24 the power increases

to 84%, despite using three coefficients and Cαc = 2.39. Furthermore, we can notice on

Fig. 5.1 that the d20 is also large, it is 3.31. If we include all the 4 coefficients from scale

j = 2 in the test, despite that the rest are smaller in magnitude than 0.27, the approxi-

mate theoretical power goes to 91% and the quantile Cαc = 2.69 since we are testing 7

coefficients altogether. In contrast, bottom of Fig. 5.1 shows the same local alternatives

scenario with negative value of the AR parameter α which results in spectral peak in the

mid frequencies around π/2. This time if we used only d00 = −0.72, the approximate

theoretical power would be only 12% and when adding d10 = −2.22 and d11 = 0.39, the

power is 46%. In comparison, in the first local alternatives scenario (α > 0) of Fig. 5.1,

results in higher power using scales j = 2, 1, 0, whereas in the case α < 0 using scales

only j = 1, 0 is better.

In summary, the parable is that there are probably more scenarios that could be easily

caught by only the most global basis with the coefficient d00, however there are also more

subtle cases for which fine tuning is required such as considering the last three scales

j = 2, 1, 0, leading to d11 and d22 tests. Moreover, it is probably surprising that in an easy

case for AR(1), α = −0.9 plotted on the bottom of Fig. 5.2 — a high frequency process

— the largest Haar wavelet coefficient occurs in scale 3 rather than 0, which is well in-

between global and local basis. Of course, in this case the d00 = −8.64 coefficient is also

large, but d37 = −14.1. In the more moderate high frequency case on the top of Fig. 5.2

AR(1) with α = −0.6. we have that the largest coefficient in magnitude is d00 = −5.71.
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Figure 5.2: Top left: Spectrum of AR(1) process with parameter αi = −0.6. Top right:
the Haar wavelet coefficients of the normalised spectrum with T = 128. Bottom left and
right: spectrum of AR(1) with parameter αi = −0.9 and its Haar wavelet coefficients for
T = 128

.
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Last but not least, one of the practical contributions of this thesis is also a toolkit

for implementing the tests and approximate theoretical calculations in our R package

hwwntest, specifically the genwwn.thpower function which allows similar approx-

imate calculations for different wavelets.

5.2 Local Alternatives

In this section we will look into practical application of the approximate theoretical power

formula from Approximation 4, equation 4.12. In Engle (1984), a sequence of local

alternatives is formed as follows:

HT
a : θT1 = θ0

1 + δ/T 1/2 (5.1)

In our case δ ∈ Z. This type of local alternative (5.1) is useful to determine whether

or not we have invariant test depending on the sign of δ. Ideally, a researcher would like

to use invariant test, however not always possible.

For investigating our wavelet tests we suggest a scenario similar to the approach of

Guay et al. (2013), however without the restrictions to large lags. In Guay et al. (2013),

it is reported that the number of lags p which to consider for their test to detect such a

local alternative might rise to T 1/2. Their condition is to have “sufficiently many such

coefficients” In our case we suggest the following sequence of local alternatives:

5.2.1 AR/MA(p) local alternatives scenario

Let αp and βq for p, q = 1, . . . , log2 T be the parameters of an AR/MA process respec-

tively. Additional restriction is that
∑log2 T

p,q=1 αp + βq < 1, so in practice log2 T may or

may not be reached e.g. for T = 128 we can have at most 5 non-zero parameters of order

T 1/2. Additionally, if α and β are with opposite signs and the same magnitude for the

ARMA case, this would result in their cancelling out and producing flat spectrum. We
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will consider the following scenarios.

1. Scenario 1 (AR):

H0 : αp = 0 and Ha = αp = 2/
√

(T )

Scenario 1a: Ha = −αp

2. Scenario 2 (MA):

H0 : βq = 0 and Ha = βq = 2/
√

(T )

Scenario 2a: Ha = −βq

3. Scenario 3 (ARMA):

H0 : αp = 0, βp = 0 and Ha : αp = 2/
√

(T ) and βq = 2/
√

(T )

For each scenario we will start with p, q = 1 and gradually increase until reaching ei-

ther p, q = log2T or
∑log2 T

p,q=1 αp + βq < 1, or power in the range of 80-100%. We will also

explore the negative parameter scenarios since they produce spectra with peaks different

from low or high frequencies, thus more subtle to detect. We will do both the approximate

theoretical formula calculation as well as a simulation study.

5.2.2 Theoretical power results

Tables 5.1 and 5.2 show the approximate theoretical power of the d00 test in Scenario 1

for AR and MA alternatives respectively. We notice that the power is not increasing or is

even decreasing in AR(2) and AR(3) situations. This is due to the degree of the spectral

polynom which results in a smaller d00 coefficient. As indicated in section 5.3 of the cor-

rections, the very high frequency spectrum leads to the fact that the coefficient d10 will

be higher and more meaningful to introduce a test, comprised of the three coefficients:

d0,0, d1,0, d1,1 and we will call it d11. Similarly we can define d22 (which are the default

settings of the General wavelet test(genwwn) using the three coarsest scales j = 2, 1, 0,

resulting in seven coefficients to test.
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Alternative AR(1) AR(2) AR(3) AR(4) AR(5)

Power of d00 0.43 0.46 0.46 0.62 0.68

Table 5.1: Approximate theoretical power for d00 in Scenario 1: AR(p)

Alternative MA(1) MA(2) MA(3) MA(4) MA(5)

Power of d00 0.42 0.48 0.36 0.42 0.57

Table 5.2: Approximate theoretical power for d00 in Scenario 1: MA(q)

Alternative AR(1) AR(2) AR(3) AR(4) AR(5)

Power of hwwn 0.28 0.72 0.97 0.99 0.99

Table 5.3: Approximate theoretical power for hwwn in Scenario 1: AR(p)

Alternative AR(1) AR(2) AR(3) AR(4) AR(5)

Power of d11 0.35 0.67 0.84 0.89 0.88

Table 5.4: Approximate theoretical power for d11 in Scenario 1: AR(p)

Results for d11 are reported in table 5.4 and they are better than d00. Moreover, if we

just go back to the hwwn test (which uses the total number of wavelet coefficients) re-

ported in table 5.3, the power in the AR(3) case of Scenario 1 is 0.97 which is way higher

than the global bases d00 and d11. In this situation, this advantage has come at the cost of

lower power of 0.28 in the AR(1) local alternative case. Furthermore, tables 5.4, 5.1 and

5.3 for d11, d00 and hwwn tests show that the approximate power of d11 for Scenario 1 is

quite better than d00, but slightly worse than hwwn.
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Test Alternative AR1 AR2 AR3 AR4 AR5 AR6 AR7

d00

T = 256 0.44 0.4 0.15 0.13 0.2 0.18 0.11
T = 512 0.44 0.41 0.16 0.15 0.22 0.21 0.13
T = 1024 0.44 0.42 0.18 0.16 0.25 0.24 0.15

d11

T = 256 0.34 0.41 0.54 0.53 0.32 0.18 0.13
T = 512 0.33 0.43 0.59 0.58 0.36 0.22 0.15
T = 1024 0.33 0.45 0.62 0.61 0.41 0.26 0.18

d22

T = 256 0.27 0.33 0.46 0.46 0.35 0.42 0.53
T = 512 0.25 0.33 0.49 0.5 0.43 0.54 0.65
T = 1024 0.25 0.34 0.52 0.54 0.51 0.64 0.75

Table 5.5: Approximate theoretical power results for local Scenario 1a: AR(p)

Test Alternative MA1 MA2 MA3 MA4 MA5 MA6 MA7

d00

T = 256 0.43 0.32 0.11 0.09 0.12 0.09 0.06
T = 512 0.43 0.36 0.14 0.12 0.17 0.14 0.08
T = 1024 0.43 0.38 0.16 0.14 0.21 0.19 0.11

d11

T = 256 0.32 0.42 0.54 0.38 0.17 0.09 0.07
T = 512 0.32 0.44 0.6 0.49 0.25 0.14 0.09
T = 1024 0.32 0.46 0.64 0.56 0.33 0.2 0.13

d22

T = 256 0.25 0.32 0.45 0.41 0.45 0.5 0.44
T = 512 0.25 0.34 0.51 0.5 0.56 0.65 0.63
T = 1024 0.24 0.35 0.55 0.56 0.64 0.75 0.77

Table 5.6: Approximate theoretical power results for local Scenario 2a: MA(q)

Tables 5.5 and 5.6 show the approximate theoretical power against emphnegative local

alternatives scenario. The results in tables 5.5 and 5.6 were also validated by simulation

and resulted in standard deviation 0.01 by doing 100 runs each consisting of 103 realiza-

tions for T = 256, 512, 1024. The conclusion is that for AR(1)to AR(2) we have that the

largest coefficient in magnitude is d0,0. For AR(3) to AR(5) the largest is d1,0; and for

AR(6) and larger, it is d2,0. Jumping to figure 5.3, we can see the largest wavelet coef-

ficients for those spectra. Tables 5.7 and 5.8 report the results for negative alternatives

scenarios 1a and 2a with more observations for d22 test. The conclusion is that when the

parameters are negative, detection is harder since we have mid-low or mid-high frequen-

cies spectral peaks. In local alternatives scenario 3 and 3a (ARMA), we reach at least

80% power, even for (1, 1) and T = 27, 28, . . . , 212 by using the d22 test.
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Test Alternative AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8

d22

T = 512 0.25 0.33 0.49 0.5 0.43 0.54 0.65 0.65
T = 1024 0.25 0.34 0.52 0.54 0.51 0.64 0.75 0.75
T = 2048 0.24 0.35 0.55 0.58 0.59 0.73 0.82 0.82
T = 4096 0.24 0.36 0.57 0.62 0.65 0.78 0.86 0.86

Table 5.7: Approximate theoretical power results for local Scenario 1a: AR(p)

Test Alternative MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8

d22

T = 512 0.25 0.34 0.51 0.5 0.56 0.65 0.63 0.48
T = 1024 0.24 0.35 0.55 0.56 0.64 0.75 0.77 0.67
T = 2048 0.24 0.36 0.57 0.61 0.69 0.81 0.84 0.79
T = 4096 0.24 0.37 0.59 0.64 0.72 0.84 0.88 0.85

Table 5.8: Approximate theoretical power results for local Scenario 1a: MA(q)

5.2.3 Spectrum estimation and periodicities

From response to correction points 1 and 4, the magnitude and sign of the wavelet coeffi-

cients of an ARMA spectrum give information regarding where the peak of the spectrum

is located e.g. is it high or low frequency or in-between. However, this information alone

is not complete and, as reported in the literature review of the thesis, wavelet thresholding

is better used for curve estimation. In our situation, the largest and statistically signif-

icant wavelet coefficients could have been used in order to construct the spectral poly-

nomial. For instance, figures 5.3 and 5.4 show three different spectra and their wavelet

coefficients. While the Haar wavelets may result in higher power than, say, Daubechies’s

extremal phase with ten vanishing moments, using the latter results in better estimation of

the wavelet coefficients that are zero, thus more suitable for spectrum curve estimation.

5.3 Nonlinear Models

The homogeneity of the variance is a strong assumption in the definition of white noise

and in the performance of our tests as well as most white noise tests. Table 5.9 shows

the empirical power results for 1000 realizations of the Time-modulated White Noise

(tmWN) model such that: Xt ∼ N(0, 1) for t = 1, . . . , 512 and Xt ∼ N(0, 2) for
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Figure 5.3: Spectra and their Haar wavelet coefficients for local alternatives Scenario 1a.
Top: AR(1), middle: AR(4), bottom: AR(6).
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Figure 5.4: Spectra and their wavelet coefficients (10 vanishing moments) for local alter-
natives Scenario 1a. Top: AR(1), middle: AR(4), bottom: AR(6).
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Test hwwn d00 genwwn 00 genwwn genwwn 11 d 11 bartlett box
Power 0.141 0.113 0.107 0.15 0.117 0.122 0.129 0.111

Table 5.9: Empirical power of various tests on 103 realizations following tmWN with
T = 1024

t = 512, . . . , 1024.

For GARCH(1, 1) models, the situation is better. There are different options with

respect to the combination of the parameteres. For computations we use the R package

fGarch from Wuertz et al. (2016). Let εt ∼ N(0, σ2
t ), t = 1, . . . , T , the following

parametrisation of GARCH is considered:

yt = σtεt, (5.2)

where

σ2
t = ω + α1ε

2
t−1 + · · ·+ αpε

2
t−p + β1σ

2
t−1 + · · ·+ βqσ

2
t−q

= ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i. (5.3)

The main parameters are αi and βi which determine the order of the model (p, q)

similar to ARMA. We have selected six different combinations of parameter values for

GARCH(1, 1). The model parametrizations we test for are six with the convention m =

(α, β) which gives: m1 = (0.3, 0.6),m2 = (0.05, 0.3),m3 = (0.05, 0.9),m4 = (0.1, 0.89),

m5 = (0.4, 0.4), m6 = (0.89, 0.1), 103 realizations with T = 1024. Table 5.10 shows the

results. We have added different versions of our wavelet tests, following the recommen-

dations from section for more “global” wavelet basis to use in the tests. We notice that the

genwwn test performs best in this study and the larger the quadratic serial dependence,

governed by α1, the better the statistical power. Furthermore, for financial applications,

we know that the autocorrelation is evident when we consider the absolute values of the

observations or their squared values. Doing 103 realizations with T = 1024 testing with
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Model hwwn d00 genwwn 00 genwwn genwwn 11 d 11 bartlett box
m1 0.15 0.25 0.25 0.37 0.34 0.32 0.33 0.24
m2 0.06 0.08 0.08 0.07 0.06 0.08 0.07 0.08
m3 0.07 0.08 0.09 0.1 0.1 0.1 0.09 0.08
m4 0.2 0.15 0.15 0.28 0.22 0.21 0.21 0.15
m5 0.15 0.25 0.21 0.33 0.34 0.32 0.33 0.28
m6 0.51 0.58 0.56 0.77 0.76 0.75 0.73 0.59

Table 5.10: Empirical power results for various white noise tests against GARCH(1, 1)
models m1 to m6: 103 relizations with T = 1024

genwwn gives the following results.

• For models — m1, m4, m5 and m6 we reach 0.99 power.

• For model m2 we have powers of 0.13 with absolute values and 0.17 with squares

respectively.

• For model m3 we have powers of 0.42 with absolute values and 0.54 with squares

respectively.

5.4 Simulation Study with low-magnitude parameters

We will investigate the case which is in-between local alternatives and “regular alterna-

tives”. As explained in chapter 4, Proposition 4 the general wavelet test genwwn test

has a theoretical power function, which allows us to evaluate the statistical power of the

test against a specific alternative hypothesis. Such procedures are common in medical

statistics or design of experiments when one needs to calculate the needed number of

observations to achieve a certain power of the test. A common specification in most ar-

eas is 5% threshold for type 1 error or statistical size, and 80% statistical power i.e. 0.2

probability for type 2 error. However, in practice, a trade-off may arise either:

1. when the number of observations is small

2. when the magnitude of the model parameter (assuming it is related to the test statis-

tic) has a small magnitude, thus making itself hard to detect.
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So, when thinking about ARIMA models, the latter case seems interesting. This is so,

because when we have a large sample, we could detect very small efffects or parameters.

On the other hand, when we have a moderate sample size (say range of 100−500 observa-

tions), some small effects i.e. having an AR or MA parameter with magnitude 0.1− 0.15

may not be detected and the statistical power to be low, say, 15 − 50%. Furthermore, in

the previous section, we saw that d00 test performs well in the scenario of o(n−1/2) Guay

et al, compared with their tests as well as a version of the Ljung-Box test, averaged over

different lags.

We carried out a simulation study with the objective to see how our d00 and genwwn

test would perform against Ljung-Box with different number of lags, 1 and 5. This aim

is to help us for the ARH(p) verification which we are going to do via multiple testing

procedure in chapter 7.

Next, we perform comparisons between the d00 test vs the Ljung-Box test in terms

of empirical power for the AR(1) model i.e. Xt = ρ1Xt−1 + εt and MA(1) model Xt =

θ1εt−1 +εt respectively, for the following parameter values for ρ1 and θ1: 0.1, 0.125, 0.15.

Furthermore, the crucial parameter for the Ljung-Box test is the lag. Usually, when we

know the lag at which to look for dependence, this test works extremely well. However,

selecting the lag p too large would decrease the empirical power of the test for smaller

lag as shown in our simulation study in chapter 4. On the other hand, selecting p too

small would miss dependence from higher lags, since the autocorrelations for the larger

lags would not be included in the Ljung-Box test statistic. As we have illustrated in the

previous section, for example, the application to the meteorological HADCRUT4 global

dataset — there are situations when we do not know the exact lag beforehand.

So, Figures (5.5), (5.6) and (5.7) were created with 1000 replications for each scenario

and 128, 256, 512 and 1024 observations for each replication. In all figures, the empirical

power graph of Ljung-Box with lag 1 is with black, with lag 5 is red, d00.test with green

and genwwn test with blue. We can also see that when the parameter and the number
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Figure 5.5: AR1 (ρ1 = 0.1) Power

Figure 5.6: AR1 (ρ1 = 0.125) Power
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Figure 5.7: AR1 (ρ1 = 0.15) Power

of observations increases then the statistical power increases. We performed the same

analysis for the MA model, with similar results, shown in Figures (5.8) and (5.9)

5.4.1 What about moderate values of parameters

We also evaluated the performance when the autoregressive or moving average parameters

are moderately large. In 5.10, we can notice, that even for 128 observations both the d00

and Ljnug-Box with lag 1 have over 80% empirical power.

5.5 Conclusion

So, based on those empirical findings for the statistical power, we may conclude that

when we do not know the lag for the process we are analyzing, then it would be better

to use the d00.test, because it has comparable power to Ljung-Box, when we know the

lag, and better power when extra lags are included in Ljung-Box. Moreover, when we

are faced with a multiple testing situation e.g. have a number of series and want to find

their autoregressive or moving average order, the d00 might be helpful. The reason is

in the number of comparisons that we need to perform when doing a multistage testing
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Figure 5.8: MA1 (θ1 = 0.1) Power

Figure 5.9: MA1 (θ1 = 0.15) Power
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Figure 5.10: AR1 (ρ1 = 0.3) Power

procedure as we will in chapter 7. For instance, if there is an AR(5) process where lag-5

parameter has the largest magnitude, we might first test it with low lags such as 2,3. On

the other hand, if we start with lags 10 or 15, we might decrease the empirical power, if

the process is of low order. This would be essentially important in case we would like

to design an automated system for making those decisions. An infamous example is the

performance of Google Flu Trends (GFT) whose forecasts were found very inaccurate

from 2013 onwards, Lazer et al. (2014). Lazer et al. (2014) analyzed the issue and found

that the aurocorrelations of the errors exceed the confdence interval up to lag 8 (Fig. S3

of supplementary material from Lazer et al. (2014)). An immediate question might be

why not use AIC/BIC for univariate series? The answer is that we did a simulation study

for order one univariate autoregressive/moving average process and we found out that, as

long as the parameter is moderately large(> 0.2), using AIC of the R ar routine, it is

correct 75% of the time. Thus, if want consistency of our test i.e. the empirical power

to go to 1 when the number of observations are going to infinity, then d00 or Ljung-Box

would be better since their power reaches 100% even for 256 observations.
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Chapter 6

Two-dimensional Wavelet White Noise

Tests

6.1 Introduction

In this chapter we are going to develop a two-dimensional wavelet test for white noise.

We are primarily concerned with data that are recorded on a regular grid isomoprhic

to an integer lattice. Typical examples of data include the yield of crops from a field

or the colour-intensity of the pixels of an image. For example, Fig.6.1shows how two-

dimensional white noise looks like on a grey scale. The statistical problem is the detection

of spatial autocorrelation or trend. Similarly to univariate time series, when the data are

white noise, then this is equivalent to a flat two-dimensional spectral surface. However,

the situation in two-dimensions is more complicated than in one dimension, since there is

more than one direction for the autocorrelation to take i.e. the lag has a direction.

6.2 Basic components for the two-dimensional test

This section defines the main components and their extensions from the univariate time

series case to the spatial domain.
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Figure 6.1: Two-dimensional 128× 128 white noise as a grey-scale image

6.2.1 The 2D Periodogram

Starting with a square matrix of data Xts for t, s = 1 . . . T, T ∈ N, we can calculate the

2D periodogram by the following:

IT,S(ω1, ω2) = (2π)−2T−2

∣∣∣∣∣∣
T∑
t=1

T∑
s=1

Xt,se
−i(tω1+sω2)

∣∣∣∣∣∣
2

, (6.1)

which can be computed at the Fourier frequencies Ip,q = IT,S(ωp, ωq), where ωp =

2πpT−1 and ωq = 2πqT−1 for p, q = 1, . . . , T/2 respectively.

6.2.2 Usage and properties of the two-dimensional periodogram

Borrowing from our work in one dimension in Chapter 3, we would like to use (6.1) for

white noise testing. However, we need to be careful since, in two dimensions, things are

more complicated. For example, if we start with an n×nmatrix, then the two-dimensional

periodogram at the positive frequencies would be of dimension n
2
× n. However, since

we intend to use the two-dimensional Haar wavelet transform, we would need our input

to be of dimension n×n. Thus, we will need to replicate the periodogram row-wise. This
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will be a replication of already available information, so it would not alter anything in this

setup. To explain this further, let us rearrange the periodogram equation:

IT,S(ω1, ω2) = (2πT )−2

∣∣∣∣∣∣
T∑
t=1

[
T∑
s=1

Xt,se
−isω2

]
e−itω1

∣∣∣∣∣∣
2

, (6.2)

The term in the square brackets represents the univariate discrete Fourier transform of

the t-th row of the input data matrix. Thus the 2D discrete Fourier transform of a square

matrix is computed as the univariate Fourier transform of each column from Cooley and

Tukey (1965), while each row is replaced with its univariate Fourier transform. Conse-

quently, similar to the one-dimensional case, the first row of the DFT matrix will contain

the DC component. Then, there will be n/2 positive frequencies and, in the case of real

data, the positive frequencies will be inversely repeated in rows n/2 + 2 to n. So our

row-wise replication of the periodogram is essentially a rearrangement of the resulting

two-dimensional discrete Fourier transform matrix.

6.2.3 The Theoretical Basis

The result for the univariate periodogram ordinates’ distribution, from Brockwell and

Davis (1991) page 344, applies to the two-dimensional case. The asymptotic probability

distribution of the two-dimensional discrete Fourier transform, of an independent and

identically distributed bivariate random vector (at the Fourier frequencies, apart from

1
2
), is derived in Brilliger (2001), Theorem 4.4.1 — as a complex Gaussian distribu-

tion. Therefore, the squared magnitude of a standard complex Gaussian random variable

z = X+iY , whereX, Y ∈ Rk will be Exponentially distributed with parameter λ = 2σ̂2,

where σ̂2 is the estimated variance of the input data, taken as a univariate series. Thus,

we will model the two-dimensional periodogram ordinates as independent and identically

distributed Exponential random variables. Moreover, the same result is used in Pawitan

(1996) for deriving an automatic method for cross-spectrum estimation of a bivariate time
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series. Another example, where this property has been used in two dimensions, is Rao

et al. (2014).

6.2.4 The 2D Haar Wavelet Transform

We are going to use the 2D decimated (orthogonal) Haar wavelet transform as described

in section 2.6.7 and Nason (2008) page 76. However, unlike the univariate transform

where there are only detail-level and scaling function coefficients, in two-dimensions we

are going to have four sets of wavelet coefficients — horizontal, vertical and diagonal

(detailed) — and scaling function coefficients. In the next section we will derive their

distribution under the null hypothesis of Xts being white noise.

6.3 Distribution of the 2D Haar wavelet cofficients

Proposition 5. Assuming an Exponential(λ) distribution for the two-dimensional peri-

odogram ordinates from section 6.2.3, then for a general scale l = J − j, the character-

istic function of the diagonal coefficients will be:

φWd[l] =
λ[22l]

(λ2 + t2/4)[22l−1]
(6.3)

with density function given by :

gm(x) =

√
2m exp(−

√
2m|x|)

22m−1(m− 1)!

m∑
j=1

(m+ j − 2)!

(m− j)!(j − 1)!

(
2
√

2m|x|
)m−j

, (6.4)

where m = 2[2(J−j)−1] for j = 0, . . . , J − 1 and, we assume that σ2 = 1 i.e. λ = 2.

Proof: See Appendix A.5.
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The difference with the univariate HWWN test is only in the scaling m parameter for

a given scale l i.e. munivariate = 2[(J−j−1] for j = 0, . . . , J − 1 and σ2 = 1. Similarly,

whenm = 1, the distribution is the Laplace distribution. It is probably interesting to men-

tion that a form of this distribution, using the Macdonald/Bessel function of the second

kind, has been derived in Fisher (1915) as a the limiting distribution of the correlation

coefficient of a bivariate Gaussian random vector.

6.3.1 Empirical distribution of the 2D wavelet coefficients

Similar to the details outlined in section 4.5, the convergence of the wavelet coefficients to

the limiting Macdonald distribution is good enough for our implementation of the wavelet

tests. Furthermore, in the 2D case, the parameter m of the Macdonald distribution is

growing faster than the 1D since m1D = 2J−j−1 and m2D = 22(J−j)−1, therefore the

convergence of the Macdonald to the Normal distribution. For example, for the finest

scale j = J−1, the parameter m1D = 1, whereasm2D = 2; then for j = J−2: m1D = 2

and m2D = 8, and so on. Figure 6.2 shows the empirical distribution of the finest-scale

diagonal wavelet coefficients against their theoretical Macdonald curve with m = 2 and

dimensions 16 × 16, 32 × 32, 64 × 64 and 128 × 128 for 1000 realizations. As we have

seen in the 1D case, for coarser scales, the distribution would be closer and closer to the

standard Normal. The situation for the horizontal and vertical coefficients is similar. For

example, the top left graph of figure 6.2 shows the 64 diagonal coefficients corresponding

to T = 256 (16 × 16) — if we compare with the top right picture of figure 4.4, which

shows 1000 realizations of 64 Gaussian observations using rnorm in R, the convergence

of the empirical wavelet coefficients to the Macdonald seems to be no worse than the one

for the Gaussian.
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Figure 6.2: Top left to bottom right respectively: black — 1000 realizations of Empirical
distribution of finest-scale diagonal 2D Haar wavelet coefficients of 103 realizations from
Gaussian white noise with T = 256, 1024, 4096, 16384, red — theoretical Macdonald
curve

.
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6.4 Two-dimensional HWWN test procedure

In this section we propose the algorithm for two-dimensional wavelet white noise testing.

We will also mention some computational details that need to be considered at each step.

Suppose we have a square matrix of data Xts = {xts} of dimension n × n i.e.

t, s = 1 . . . n. Let x̄ = 1
n2

∑n
i,j=1 xij be the global mean of the data and we denote the

estimated variance of Xts (considered as univariate series for the moment) by σ̂2, where

σ̂2 = 1
n2−1

∑n
i,j=1 (xij − x̄)2.

The 2D HWWN algorithm is:

1. Standardize the data Xts by subtracting the mean x̄ from each xts and dividing each

xts by the estimated standard deviation (i.e. (σ̂2)−1/2). In R we use the scale

function.

2. Form the two-dimensional periodogram of Xts, take the positive frequencies, repli-

cate them row-wise and execute the 2D wavelet transform on the resulting n × n

matrix.

3. Obtain ordinary p-values for all of the wavelet coefficients according to the their

cumulative distribution functions (cdf). The distribution function can be calculated

numerically from the density function — for which we already have the analytical

form from (6.4).

4. Use Bonferroni correction or other multiple comparisons’ adjustment technique.

5. Take the minimum value of the resulting list of adjusted p-values and assign it as

the p-value of the test.

This procedure will be used for our simulations later.
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6.5 Spatial Statistics White Noise Tests

This section briefly reviews white noise testing in spatial statistics. We will focus on two

of the most popular tests: Moran’s I and Geary’s C.

In order to conform with other sources, we will change notation here. The idea is that

the usual spatial lattice has regions that can be numerated from 1 to their count. Our data

matrix X of dimensions n × n will be stacked into a n2 × 1 vector y, let also N = n2,

thus y = (x11, x12, . . . , x1n, x21, x22, . . . , xnn) = (y1, y2, . . . , yN)T

6.5.1 Popular Measures of Spatial Autocorrelation

A popular spatial autocorrelation measure is Moran’s coefficient for autocorrelation from

Moran (1950). Its test statistic is:

I =
N∑N

i=1

∑N
j=1 wij

∑N
i=1

∑N
j=1wij(yi − ȳ)(yj − ȳ)∑N

i=1(yi − ȳ)2
(6.5)

where N = n2, yi are the observations i.e. y = (y1.y2, . . . , yN)T , ȳ is the mean of y

and W = wij is a N × N matrix of spatial weights such that wii = 0. The idea is that,

when evaluating the spatial autocorrelation, Moran’s I would include the neighbouring

observations with different weights, for example, but not the observation itself.

Under the null hypothesis of two-dimensional Gaussian white noise, E(I) = − 1
N−1

,

from Moran (1950), which is close to zero when N is large. As with Pearson’s product-

moment correlation, Moran’s I varies from −1 to 1. Similarly to regular correlation,

positive values indicate positive autocorrelation and negative values indicate negative au-

tocorrelation. Thus, in order for the significance to be evaluated, one needs to construct

a test statistic that studies the deviation of this expected value. The usual test, Cliff and

Ord (1972), treats the empirical value of I as a standard normal deviate (under the null

hypothesis of Gaussian white noise) and tests it via the usual normalisation — the test
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statistic, say, K would have the following form: K = I−E(I)√
V ar(I)

Another measure is Geary’s C from Geary (1954) is defined as:

C =
(N − 1)

2
∑N

i=1

∑N
j=1wij

∑N
i=1

∑N
j=1wij(yi − yj)2∑N
i=1(yi − ȳ)2

(6.6)

where N is the number of spatial units, ȳ is the mean and Wij is a matrix of spatial

weights. It is also known as the contiguity ratio. Geary’s C varies from zero to two, with

the value one indicating no spatial autocorrelation, values from zero to one indicating

positive autocorrelation and values from one to two indicating negative autocorrelation.

The measure from Moran seems to behave like a global one, whereas Geary’s is more

local. This is so, because, after close inspection of their formulae, one can notice that

the numerator in Moran’s I is the weighted variance of all the n2 datapoints, whereas in

Geary’s C, the numerator expresses the deviations among the possible pairs of observa-

tions themselves rather than deviations from their mean value.

6.5.2 Brief literature review of spatial autocorrelation tests

We will concentrate on Moran’s coefficient (6.5), since it has been popular in the spatial

statistics literature, and examine its relations to standard time series methods.

One of the first extensions of Moran’s test for spatial autocorrelation among residuals,

meaning to test the null hypothesis that it is zero, is developed in Cliff and Ord (1972).

This test is essentially based on one of the early tests for time series residual autocor-

relation — Durbin and Watson (1950), later refined by Durbin and Watson (1971). A

procedure, which is suited for estimating parameter of spatial autoregression, is provided

in Ord (1975). Eventually, Burridge (1980) shows that the test from Cliff and Ord (1972)

is a special case of a Lagrange multiplier test, based on a more general mathematical op-
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timization paradigm from Silvey (1959). Similarly to other time series portmanteau tests,

the limiting distribution is Chi-squared. More recently, Robinson and Rossi (2014) de-

velop an improved Lagrange multiplier test for small spatial datasets in the autoregression

setting. Another approach is taken by Li et al. (2007) which uses the spatial autoregres-

sive model and profile likelihood estimator to show that when (6.5) is close to 1, another

estimator is needed. However, they conclude that (6.5) is a good estimator when the true

autocorrelation coefficient is close to zero.

6.5.3 An illustrative example: the wheat data

In this section we will analyse on one of the classical spatial statistics datasets: the wheat

data from Mercer and Hall (1911). This dataset is extensively used for examples in Cressie

(1993). The dataset has also inspired interesting discussions among generations of statis-

ticians. For example, the following quote from Cressie (1993), page 457 considering the

models for spatial autoregressive Gaussian model of Whittle (1954), says:

“In my opinion, Whittle’s conclusion about the poor fit of spatial models to the Mercer

and Hall data is less due to the inconsistent likelihood approximation chosen and more

due to his not accounting for the large scale variation (trend) in the data”

Description of the Data and its Issues

We will now explain the dataset and its issues in detail. The agricultural experiment con-

siders the yields (in pounds) from wheat grown on a certain region of fields at Rotham-

sted’s Experimental Station in England (where R.A. Fisher also worked). The region for

the experiment consists of a 20 × 25 grid (lattice) of plots (500 in total), with 25 coordi-

nates running East to West and 20 running from North to South. The object of the study

was determining the plot size that would “reduce the inevitable error within working lim-

its”, Cressie (1993), chapter 7. The conclusion of Mercer and Hall (1911) was that 5 plots

or 1/40 of an acre should give adequate precision. “A uniform area of 1 acre was har-
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vested in separate plots, each 1/500 acre in area. The wheat sheaves were then threshed

out by hand and weighed”, Cressie (1993). Furthermore, Mercer and Hall (1911) say that

“since the [frequency] curve fits the [Gaussian] one as well as may be expected ... we

may conclude that the material is fairly homogeneous” However, Cressie (1993), chapter

4 undertakes exploratory analysis in detail with a median-polish procedure and shows that

the Gaussian assertion was not plausible because there was a trend in the east-west direc-

tion. Moreover, Besag (1974) and Besag (1977) say that their model fits were also not

good. Afterwards, Cressie (1985) shows that there is a non-linear trend in the east-west

direction.

Due to the ambiguity regarding the plot size, there have been some variations in the

literature — for example Whittle (1954) and Besag (1974) use 10.82×11 ft whereas Rip-

ley (1981) uses a square with 11ft sides. For our analysis we will use the plot dimensions

in metres used in Cressie (1993), chapter 4, of 3.30m (north-south) ×2.51m (east-west).

They will serve as local latitude and longitude respectively i.e. we have 500 wheat yield

measurements in total 20× 25 plots, each 3.3× 2.51m which form our grid.

Cressie’s Median-polish analysis of the data

We will follow Cressie (1993), chapter 4 for the analysis of the data. For the algorithmic

details of the median-polish procedure, we refer to Cressie (1993), chapter 3 or the origi-

nator of the procedure — Tukey (1977). Essentially, this procedure is similar to two-way

analysis of variance (ANOVA) in the regard that it tries to estimate a median total effect

(rather than mean), and column and row effects of the grid respectively. The difference

with the ANOVA is that median-polish can be thought as of minimising the modulus of

the errors rather than the square.

To summarize, Cressie (1993), page 250 discusses the possible and previous analyses

of those data with respect to the already mentioned trend. A total surface of the data with
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Figure 6.3: Wheat Raw Data Total Surface

respect to the local latitude and longitude can be seen in Fig. 6.3. We can notice that some

kind of trend appears in the longitude direction.

Ripley (1981) found a spectral peak in the east-west direction which confirms what

is visible from the figure. Now, for comparison, let us have a look at the surface of the

median-polish residuals in Fig. 6.4 — we notice that the trend has been considerably

reduced, though there is still some irregularity left.

Our Analysis of the Data

Since our wavelet test requires a square and dyadic input, we decided to select 256 data-

points our of the 500, based on their coordinates. We selected a set of datapoints and we

already know it contains a suspected trend — out of the 20× 25 regions grid, we selected

4 : 19× 4 : 19, total of 256 observations.

Firstly, let us simply test the selected subset of raw data with our test — the p-value is

0.026, so we have evidence to reject the null hypothesis of spatial white noise. Secondly,

let us examine the raw data surface in Fig. 6.5 — we can notice the sharp direction of
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Figure 6.4: Wheat Data — Residuals Surface after Median-Polish

the trend. Next, let us do the median-polish decomposition on the selected subset — on

Fig. 6.6 we can notice the already-discussed trend’s disappearance with some remaining

effects on the right. Eventually, we also did the test on the median polish residuals of the

256-datapoints subset (first using medpolish from stats package) and the p-value

was 0.227. Therefore, our conclusion is that, after removing the trend, the process is

white noise.

Furthermore, for illustration, we can use the image function in R, which can be seen

on Fig.6.7 — the reddish nuance is quite clear in the upper right corner of the left image,

which are the raw 256 datapoints. For comparison, Fig.6.8 is a realization of Gaussian

white noise, plotted with the image function in R.

As part of the analysis, Cressie (1993) also looks at a graph of the column effects only

(which correspond to the east-west direction trend). On Fig. 6.9, we can check that in our

subset they are largely preserved.
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Figure 6.5: 256 Wheat datapoints subset’s surface — raw data

Figure 6.6: 256 Wheat datapoints subset’s surface — residuals after median-polish
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Figure 6.7: Wheat 256 datapoints subset’s images — total (left) and residuals after median
polish(right)

Figure 6.8: Image of 256 observations of Gaussian white noise
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Figure 6.9: Total column effects vs plot number (east-west) (left) and the same for our
256-datapoint subset(right)

Augmenting the wheat data

Since we have 500 wheat yields, we will expnad them to 1024 = 32 × 32 by ’fill-in’

the data with Gaussian noise bearing the same mean value and standard deviation as the

original data. For the wheat data, the average yield ȳ = 3.95 with standard deviation σy =

0.46. So, we will take a 32×32 matrix Y = [yij] with values {yij} ∼ N(3.95, σy = 0.46),

i, j = 1, . . . , 32 and then plug the 20 × 25 wheat data inside Y. If X = [xmn], m =

1, . . . , 20, n = 1, . . . , 25 are the wheat data, then by putting Y7:26,4:28 := [xmn], the ma-

trix Y is to be the augmented wheat data. Figure 6.10 shows the original 20× 25 wheat

data on the left and the augmented wheat data on the right. Despite the increased resolu-

tion, the downward trend is still visible (the dark nuance spot around of the original data

at coordinates (0.8, 0.6) versus the augmented data at (0.7, 0.6)). Performing both the 2D

HWWN test and Moran’s I on the augmented data results in rejecting the null hypothesis.

In summary, the dyadic restrictions might be meaningful to low-resolution data. A

way to by-pass the restrictions would be to pad with zeros or mean value and then discard

those coefficients. An implementation of non-dyadic wavelet transform from Whitcher

(2015) could be used to implement such tests.
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Figure 6.10: Left: image of the original 20 × 25 wheat data. Right: image of the aug-
mented 32× 32 wheat data.
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6.5.4 Software for Spatial Statistics

One of the popular and comprehensive R packages for spatial statistics is spdep from

Bivand and Piras (2015); Bivand et al. (2013). The package can define spatial weights

— via a matrix, via a list and via neighbours, which are special kind of objects for spa-

tial statistics. Furthermore, there are functions for testing the significance of Moran’s I ,

Geary’s C as well as a range of similar tests based on Lagrange multipliers as in Silvey

(1959). Moreover, the functions also support permutation tests for the mentioned statisti-

cal tests, which are applicable when we are not sure of for the distribution under the null

hypothesis of spatial white noise.

6.6 Spatial Autocorrelation Testing

6.6.1 The Matrix of Spatial Weights

At first sight, it might not seem appealing why our 2D wavelet test should be used for

spatial autocorrelation. However, examining closely equation (6.5), one notices that the

crucial bit is the matrix of weightsW = Wij . Because spatial statistics is primarily driven

by applications (e.g. geostatistics, petroleum drilling, map coordinates), this means that

there are different weighting schemes in existence. For example, the first and logical

thing to do (for measuring something on a spatial grid) would be to design the weights

properly. For example, having an n ⊗ n matrix and setting weights of 1
j

for each spatial

unit e.g. starting from position (2, 1) for j = 2 . . . N would mean that the farther the

location, the lesser the weight e.g. heat or disease maps. Essentially, this represents the

Euclidian distance used for weighting of the points when calculating the Moran’s spatial

autocorrelation from equation (6.5).

Moreover, for some problems, we could be more stringent and want only the immedi-

ate neighbours of an entry to have a non-zero weight. Furthermore, there is also the issue

for boundary conditions i.e. if we have a 16 by 16 dataset and we want (in the calculation
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of eq. (6.5)) every entry to be weighted with its nearest neighbours (being 4 — left, right,

above, below). This means that all entries in the first row do not have a neighbour above.

The (1, 1) entry has only 2 neighbours (right and below) and so on. So, for computa-

tion in the spdep package, there is the option to choose type of weights and boundary

conditions — rook (based on contiguity, a common boundary) and queen (also common

corners), and torus — the last meaning that we can fold our lattice/grid which will ease

and unify computation for all entries. This is similar (but not exactly the same) as the

wavelet boundary conditions options in wavethresh where the user can select periodic or

symmetric boundary extension.

Furthermore, let us illustrate how an arbitrary weighting matrix would look like when

we want to have nearest neighbour contiguity:

WN,N =



0 w w 0 0 · · · 0 w w · · ·

0 0 w w 0 · · · w w 0 · · ·
...

... . . . ...
...

...
...

... · · · ...

w 0 w 0 0 · · · w w 0 · · ·


(6.7)

We can notice that (6.7) is a sparse matrix — there are four non-zero entries in each

row denoted by w - a real number, but the matrix is of dimensions N ×N . When we want

to have rook contiguity with torus linkage, this means that every observation’s attribution

to correlation (i.e. in the numerator of equation (6.5) ) is weighted together with its four

immediate neighbours. The torus means that our lattice can be folded. For instance,

the (1,1) entry of an input matrix Xn,n has the entries (1, 2), (2, 1), (1, n) and (n, 1) as

immediate neighbours. Say, we have an input of 8×8 square matrix. This means thatN =

n2 = 64, y is 64×1 vector andW is 64×64. The first row ofW would have four non-zero

entries — they would be precisely in positions (2), (8), (9) and (57) which correspond to

(2, 1), (8, 1), (1, 2) and (1, 8). The first step in calculating the spatial autocorrelation from

equation (6.5) would be to multiply — W × y
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6.6.2 Weighting and the 2D Haar Wavelet Transform

However, if we look closely at the 2D Haar wavelet coefficients formation, we can see

that, depending on the scale, different regions of the input matrix participate in the detailed

coefficients calculation (with different observation blocks). Thus, a direct comparison of

our test with any modification of Moran’s test might be hard, though not impossible. For

instance, if we consider only the finest scale detailed Haar coefficients, we can check that

we are analyzing our lattice in orthogonal fourplets (though in spectral domain, rather

than time) which corresponds to having four neighbours; on the next scale that would be

16, next 64 and so on.. On the other hand, we could think of the wavelet approach as a

generalization of several tests with different weighting schemes. This is so because we

are working in the frequency domain, thus violation of uniformity for any (two or more)

frequency bands (e.g. contrast between high and low frequencies across locations) would

be caught although, it may not correspond to a specific weighting scheme. For example,

we could try doing the wavelet test using only finest scale coefficients or coarsest scale

for that matter.

From our univariate work in chapter 4, we have seen that the approximate distribution

of the wavelet coefficients of Gaussian white noise performs well in comparison with

other tests. In the 2D case, the limiting distribution of the Haar wavelet coefficients is the

same, but even closer to Gaussian. This situation makes it worthwhile to pursue statistical

testing. Furthermore, in two dimensions we have three types of wavelet coefficients to use

as a proxy for testing constancy of the spectrum. For example, figures 6.11 and 6.12 show

the periodograms of a spatial autoregressive model(SAR) model with parameter ρ = −0.8

from section 6.7.1 of the thesis for both low and high frequency 2D spectrum. There is

notable difference in the shapes of the surfaces. Moreover, if we look at the images of the

2D periodograms, the contrast is even more striking — shown on figure 6.13.

In similar setting, the 2D test might be used for analysis of images i.e. to detect if

there is a non-random pattern emerging.
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Figure 6.11: Left: 2D periodogram of 32 × 32 Gaussian white noise. Right: 2D peri-
odogram of 32× 32 SAR model.

Figure 6.12: Left: 2D periodogram of 32 × 32 Gaussian white noise. Right: 2D peri-
odogram of 32× 32 SAR model.
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Figure 6.13: Left: image of the 2D periodogram of 32× 32 Gaussian white noise. Right:
image of the 2D periodogram of 32× 32 SAR model (ρ = −0.8).

6.7 Simulation Results

In this section we will compare the 2D Haar wavelet test procedure HWWN (as described

in section 6.4) with the Moran’s test from (6.5) on spatial white noise and autoregressive

process of order one with the procedures from the R package {spdep}.

The next section reviews spatial autoregressive models since as they differ from their

univariate time-domain counterparts.

6.7.1 The Spatial Autoregressive Model (SAR)

A direct extension of the univariate autoregressive process(UAR): xt = ρxt−1 + εt, where

|ρ| < 1 and ε ∼ N(0, σ2) to spatial domain is possible, however, it must be done with

caution. This is because, in the time domain, time only flows in one direction (say, from

left to right), whereas on the lattice, there are many directions possible. Following Cressie

(1993), page 405, let us denote the square integer lattice by D = {s = (u, v)T : u ∈

Z, v ∈ Z i.e. s is an ordered pair indexing the positions on the lattice. If there are N
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regions on the lattice they are indexed by si, i = 1 . . . N . The first approach, called

simultaneous SAR, dates back to Whittle (1954). Let {Z(s) : s ∈ D} ⊃ {Z(si) : i =

1 . . . N} is defined on the lattice D. Let also ε ∼ N(0, Λ) be a n-dimensional joint

Gaussian distribution with mean vector 0 and a diagonal covariance matrix i.e. Λ = σ2I

where I is the identity matrix of dimensionN×N . AlsoW = {wij} is theN×N weight

matrix as in (6.7) and the SAR model for Z = (Z(s1), . . . , Z(sn))T can be expressed in

matrix form:

(I −W )(Z− µ) = ε. (6.8)

For this model to hold, it is assumed that (I − W )−1 exists. Details can be found

in Ripley (1981). A distinguishing feature from the time-domain UAR is that there is a

dependence between the errors of the model and the lagged variables i.e. cov(ε,ZT) =

E(εZT) = Λ(I − W T )−1 which is not diagonal, unlike the UAR case. Consequently,

least-squares estimators of the parameters will not achieve consistency (Whittle (1954)).

Another possible specification of SAR restricts the possible dependence, so that the

issue with the correlation of residuals and lagged regressors is mitigated. This is called

the conditionally specified spatial Gaussian model. It includes a restriction on only pair-

wise dependencies in the lattice and using Markov properties for the conditional density.

We could think of it as paths on a graph, where every entry is conditionally independent

of all others given its neighbours. Details can be found in Cressie (1993), page 407.

Similarly, the extension of the whole plethora of time series ARIMA models to spa-

tial ARIMA is more complicated e.g. we could have a space-time moving average, a

regression-type spatial ARMA i.e. if we have regressors in (6.8), then, say, µ = Xβ can

be non-trivial — to fit the mean of a spatial dataset correctly — exactly because of the

multiple directions of the dependencies possible. For example, let our spatial correlation

coefficient from equation (6.5) be a scalar ρ. Then equation (6.8) would simply become:
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Figure 6.14: The empirical distribution of Moran’s I for a SAR model with ρ = 0.5 for
1000 realizations from a 32× 32 grid

(I − ρW )(Z− µ) = ε. (6.9)

Thus, we can say the the dependence from the autocorrelation coefficient ρ is trans-

ferred to the generated data via the weights matrix W . Furthermore, this can become very

complicated — imagine that ρ was not a scalar, but rather an N × 1 vector , then this

would correspond to spatially varying autocorrelation.

6.7.2 Relationship between Moran’s I and SAR parameter ρ

As already explained in the previous section, the SAR model from (6.9) is different from

the standard UAR model. For example, Fig. 6.14 shows that most of the time (for a

nearest neighbour grid weighting scheme) I is half of ρ— the empirical mean of I is 0.27

for 103 realizations with ρ = 0.5. This can intuitively be explained by the mere fact, that

in the spatial world, “time” goes in two directions rather than one as in univariate time

series.
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Simulation results
Grid Moran HWWN HWWN(BH)

16 by 16 0.059 0.01 0.03
32 by 32 0.046 0.02 0.04
64 by 64 0.044 0.03 0.05

128 by 128 0.047 0.03 0.05

Table 6.1: Statistical Size for MVN ∼ (0, I) for Moran’s test, our HWWN and
HWWN(BH) - with using False Discovery Rate instead of Bonferroni.

6.7.3 Empirical size simulations

Here we are going to compare the 2D HWWN and the Moran test (using the function

moran.test from spdep R package). For the Moran test, we also have to specify the

weighting scheme. We chose to have 4 links for each observation on the grid (“rook” type

weights) and the “torus” option for boundary conditions. The model is (6.8). We evaluated

both tests’ statistical sizes by simulating from the white noise model Z ∼ MVN(0, I)

where I is the identity matrix as the covariance matrix. The empirical sizes (with 103

replications) of our test from section 6.4 and Moran’s test can be found in Table 6.1.

We can conclude that Moran’s test matches statistical size, whereas our 2D HWWN is

a bit conservative. We also used another version of our test, where in the last step in

the procedure from section 6.4 we used false discovery rate (FDR) from Benjamini and

Hochberg (1995b), rather than Bonferroni — in that case, the empirical size is closer to

the theoretical size.

As a conclusion, our test is a bit conservative, whereas Moran matches statistical size.

However, this is a first version of our test and it might be further tuned (we might take

only the finest scale coefficients for example). We tried the same simulation, for Moran,

using “queen” type contiguity which translates to 8 links per observation on the grid and

its size largely remained the same. For illustration,Fig. 6.15 shows that the distribution

of the raw p-values of all the coefficients tested (16380) from 2D HWWN seems to be

uniform.
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Figure 6.15: Histogram of ordinary p-values from 2D HWWN test of a 128 × 128 white
noise data — for all coefficients at all scales

Simulation results
Grid Moran HWWN

8 by 8 0.06 0.01
16 by 16 0.06 0.02
32 by 32 0.05 0.03
64 by 64 0.06 0.03

128 by 128 0.05 0.04

Table 6.2: Statistical Size for U ∼ (0, 1)
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Data Simulation results
Grid Moran HWWN

8 by 8 0.30 0.42
16 by 16 0.88 0.76
32 by 32 1.00 1.00

Table 6.3: Statistical Power for Gaussian UAR with ρ = 0.3

Data Simulation results
Grid Moran HWWN

8 by 8 0.60 0.82
16 by 16 1.00 1.00

Table 6.4: Statistical Power for Gaussian UAR with ρ = 0.5

Another layer of validation of the performance of the 2D HWWN test for spatial statis-

tics is if we use uniform distribution. Again, under the null hypothesis, we generated n

realizations of U(0, 1) distributions for the columns of the matrix Xts. The empirical size

of 2D HWWN for uniform noise on the interval (0, 1) is 4.1%. For different number of

observations, a range of simulations appears in Table 6.2. So, we can conclude that Moran

matches theoretical size, but sometimes exceeds, whereas our 2D HWWN is slightly con-

servative.

6.7.4 Empirical power simulations

For statistical power, firstly we used series of independent univariate AR(1)( of variable

length n and different values of the parameter ρ1) process for all columns of our input

n × n matrix and both tests reach 100% power when the magnitide of the parameter and

the number of observations are increasing. A range of powers for different AR1 parame-

ter values is available in tables 6.3, 6.4 and 6.5. Similar features for univariate white noise

Data Simulation results
Grid Moran HWWN

8 by 8 0.82 0.98
16 by 16 1.00 1.00

Table 6.5: Statistical Power for Gaussian UAR with ρ = 0.7
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Data Simulation results
Grid Moran HWWN

16 by 16 0.63 0.01
32 by 32 0.92 0.03
64 by 64 1.00 0.03

Table 6.6: Statistical Power for Gaussian SAR with ρ = 0.2

Data Simulation results
Grid Moran HWWN

16 by 16 0.64 0.01
32 by 32 1.00 0.97
64 by 64 1.00 1.00

Table 6.7: Statistical Power for Gaussian SAR with ρ = 0.5

tests were explored in the simulations in chapter 3. We will note however that this does

not corresponds to (6.9), since we are inducing dependence only in one direction, rather

than two. Thus it is a more simplistic scenario. However, in spatial regression residual

analysis for example, there would be certain, say small, regions which could exhibit auto-

correlation and are of interest. Thus, as a future work, it might be interesting to simulate

such processes.

Next, we are going to do some comparisons for a genuine SAR example. We use (6.9)

with different scenarios for both the grid size and the magnitude of the SAR parameter

ρ — 0.2, 0.5 and 0.8. We can conclude that Moran’s test is very good when the grid is

of small size, whereas our test performs very poorly. When the SAR parameter is of low

magnitude Moran performs reasonably well, whereas HWWN does not do well. Those

results also confirm the finding from Cliff and Ord (1972) that Moran’s test performs very

well when the parameter is of small magnitude. This assertion has also been explored in

Robinson and Rossi (2014).

Looking at Tables 6.7 and 6.8, we notice a jump in the empirical power from 16× 16

to 32×32 grid. Unofortunately, we cannot test 24×24 grid size due to the dyadic wavelets

we use. However, we did additional simulations with ρ = 0.4 for a 32 × 32 grid and the

power of our test is 70%.
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Data Simulation results
Grid Moran HWWN

16 by 16 0.60 0.01
32 by 32 1.00 0.97
64 by 64 1.00 1.00

Table 6.8: Statistical Power for Gaussian SAR with ρ = 0.8

Data Simulation results
Grid Moran HWWN

16 by 16 1.00 0.06
32 by 32 1.00 0.33
64 by 64 1.00 1.00

Table 6.9: Statistical Power for Gaussian SAR with ρ = −0.3

We did also simulations with negative values of the SAR parameter — in Tables 6.9

and 6.10 — the results are good and show that it is easier for both Moran and our test to

reject the null hypothesis of white noise when the parameter is negative.

6.7.5 Refining the test as univariate d22

We have better results when using the 2D analogue of the univariate d22. To add.

6.7.6 Homogenizing and contaminating of white noise

In this section we will do a simple experiment with grid data. We will start with a matrix

of 128× 128 matrix of Gaussian data with mean three and standard deviation of two and

will try to homogenize and contaminate it. The mean is not zero on purpose and standard

deviation is different from one for better visualization.

Homogenizing will be the following operation:

Data Simulation results
Grid Moran HWWN

16 by 16 1.00 0.29
32 by 32 1.00 0.99
64 by 64 1.00 0.99

Table 6.10: Statistical Power for Gaussian SAR with ρ = −0.5
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1. Starting from 128×128 white noise (Fig. 6.16), take the upper and lower diagonals

and assign them the mean value of the main diagonal.

2. Then repeat this for off-main-diagonals 2 to 7, assigning the mean of the previous

diagonal i.e. for the second diagonal, assign the mean of the first off-main diagonal

and so on to the seventh diagonal.

Then we will do 103 simulations to see if our test and Moran’s test still not reject the

null hypothesis. We are trying to assess how the 2D HWWN and Moran’s test sizes would

respond to a systematic statistical effect without adding new data.

For illustration, Fig. 6.16 shows the image of the generated white noise of dimensions

128× 128. Then, on Fig. 6.17 we can see what happens to the image after the described

homogenizing operation. We evaluated the empirical size — Moran’s size is 5.6% and for

our 2D HWWN test is 2.8% which corresponds to the results from other simulations in

the previous section. Similarly, the empirical size for our test, with using FDR instead of

Bonferroni, is 6.7%. This conforms to the results from the previous section and we will

expect the using FDR would increase the empirical power of the test, at the expense of

light oversizing.

Contaminating will be the following operation:

1. Starting from 128×128 white noise (Fig. 6.16), take the upper and lower diagonals

and replace their entries with a realization UAR with parameter ρ = 0.5.

2. Then repeat this for off-main-diagonals 2 and 3, replacing them with UAR realiza-

tions with parameters of 0.4 and 0.3 respectively.

Then we will do 103 simulations to estimate the empirical power of 2D HWWN and

Moran’s test . We are trying to assess if both tests would detect would respond to a

systematic statistical effect when a fraction of non-white noise datapoints i.e., 2(127 +

126 + 125) = 756 out of 16384(128× 128), are inserted throughout regions of the lattice.
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Fig. 6.18 shows the red “motorway” with the alternating colours line in the middle,

since the main diagonal was kept unaltered. The empirical power of Moran is 100% and

ours is 85%. However, if we use the FDR method from Benjamini and Hochberg (1995b),

then our power is 95%. Those results conform to our previous findings regarding the

power of our 2D HWWN test.
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Figure 6.16: Image of 128 × 128 observations of Gaussian white noise with mean of 3

and variance 4

Figure 6.17:

Image of 128 × 128 Gaussian white

noise, after the homogenizing operation

Figure 6.18:

Image of 128 × 128 Gaussian white

noise, after the contaminating operation
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6.8 Conclusion and Further Work

In this chapter we developed a two-dimensional wavelet test for white noise using Haar

wavelets. We also analysed the performance of the classical spatial autocorrelation test of

Moran (1950) and our HWWN test against spatial autoregressive alternative hypotheses

and custom scenarios. The results are encouraging since our test performs well for em-

pirical size and reasonably for empirical power for a range of magnitudes of the spatial

autoregressive model (6.9) parameter ρ. As a first version, our two-dimensional test has

some deficiencies, especially low power when the size of the grid is small and when the

SAR parameter is of low magnitude. However, those flaws might be expected given the

preliminary form of the test.

For example, due to our replication of the positive frequencies of the two-dimensional

periodogram, we are inducing more tests than is needed. Undoubtfully, this operation has

affected the statistical power of the test. This could be alleviated by selecting only the

wavelet coefficients that correspond to the “first half” of the replicated periodogram since

that would reduce the number of multiple comparisons the test is evaluating. Another

option is to correct the nominal size of the test.

Another direction for research might be the orthogonal two-dimensional Haar wavelet

transform itself. For example, since spatial autocorrelation is a phenomenon that has

multiple facets, the use of the non-decimated wavelet transform might yield more power-

ful results. Moreover, there exist more complicated two-dimensional wavelet transforms

such as wavelet packets which could provide further insight into the two-dimensional

white noise testing problem.

Eventually, we believe that wavelet-based spectral tests have prominent future in spa-

tial statistics, and this chapter represents one attempt of this endeavour.
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Chapter 7

ARH Order Verification Methodology

7.1 ARH(1) Order Verification

7.1.1 Background

A key point for ARH(1) processes is that the autoregressive structure is propagated through

all the coordinates of the process with respect to the Karhunen-Loeve basis. The main re-

sult from Bosq (2000), concerning the propagating structure is Theorem 3.6, which we

reproduce here.

Definition 15. Symmetric Operator in Hilbert Space H

An operator l, defined on a Hilbert space H , is symmetric if

< l(x), y >=< x, l(y) >, x, y ∈ H. (7.1)

Note: A linear operator on an infinite-dimensional space can be expressed as an in-

finite matrix. However, with our discretized functional data, the matrices will always be

finite thus the discretized lag one autocorrelation operator will actually be a lag one au-

tocorrelation matrix of dimensions p × p, where p is the length of the grid on which our

realizations are recorded. Also, symmetric in the sense of Definition 15 will just mean
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that a finite square matrix that is symmetric.

Suppose we have the ARH(1) model: (Xn) = ρ(Xn−1) + εn as defined in Def. 14,

where εn is defined as in Def. 13. Let {ej} be the Karhunen-Loeve eigenbasis of the

functional autoregressive operator ρ i.e. ρ(ej) = αjej, j ≥ 1 and limj→∞ |αj| = 0 is a

decreasing sequence of numbers.

Theorem 4. (Bosq(2000), Theorem 3.6)

If ρ =
∑∞

j=1 αjej ⊗ ej is a symmetric compact operator over H, then (Xn) is a zero-

mean ARH(1) associated with (ρ, ε) if and only if

(< Xn, ej >) is an (eventually degenerate) AR(1) associated with (αj, < εn, ej >)

where <,> denotes dot product in the Hilbert space H = L2 space.

A note on the implementation of Theorem 4

The ARH(1) process is defined through its operator i.e. Xn = ρ(Xn−1) + εn. The pa-

rameter’s ρ Euclidian norm determines the process i.e. if ‖ρ‖L2 = 0, then the process is

functional white noise. The condition for validity of the ARH(1) process, see (3.14) is

‖ρj0‖S < 1 where j0 is an integer and S denotes the norm in the space of Hilbert-Schmidt

operators as in Def.11 from the literature review. However, when we work with dis-

cretized functional data Xn×p the operator ρ is a p × p matrix thus, the Hilberd-Schmidt

norm is the Frobenius norm which is the same as the L2 norm. That is why, the αj in

Theorem 4 are a decreasing sequence and are required to be in (−1, 1) (so that the au-

toregressive corrdinates (i.e. the principal components), the ηj from equation (7.3), in the

eigenbasis are valid stationary AR1 processes), see section 7.1.2, since αj, j = 1, . . . , p

are the univariate autoregressive parameters that are the result of the projection of ρ on

the eigenbasis.
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7.1.2 Our methodology for verification of ARH(1)

Usually, when an eigendecomposition of an ARH process is obtained, its validity is

judged by the amount of variance explained through the eigenvalues and various cross-

validation (CV) scores. There are different ways to do that as outlined in Besse et al.

(2000) and Bosq (2000). Another important question, that we adress in this chapter, is

how do we conclude that a particular process is of the ARH(1) kind similar to order veri-

fication in the scalar and multivariate cases.

Theorem 4 is a theoretical and idealized case, because the lag one autocorrelation op-

erator ρ of such a process could only be symmetric in the sense of Def.15 in a limiting

case. Nevertheless, Theorem 4 might have an interesting practical application within the

context of discretized functional time series. The rationale is that, in theory, when both the

number of observations n and the number of gridpoints p goes to infinity or, in practice, it

is sufficiently large, then we will be close to the asymptotic case of Theorem 4. Then we

can use the symmetrized version of our autocorrelation lag one matrix in a particular way.

Here we are considering verification of order for ARH(1) process as defined in (3.14).

Suppose we have n × p discretized functional data denoted by Xnp that come from

an ARH(1) process. Consider the lag-1 autocorrelation matrix R1 of those data and then

form its symmetrized version which will be denotedRsym
1 :

Rsym
1 =

R1 +RT
1

2
(7.2)

Now, we can form the principal components which are defined as the projections of

the data onto the eigenbasis of the matrix Rsym
1 (which is of dimension p × p). Let the

eigenvectors ofRsym
1 be denoted by ej for j = 1 . . . p, then the principal components are:

ηj = Xnp × ej. (7.3)
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Here× denotes matrix multiplication. Now we will apply Theorem 4. As the data are

of dimension n × p and the eigenvectors ej are of dimensions p × 1, then the principal

components are of dimensions n× 1 i.e. they are just projections of the original Xnp data

on the eigenbasis. Theorem 4 implies that each principal component ηj for j = 1 . . . p

follows an AR(1) process in the form ηjt+1 = αjηjt + εjt where αj is a number ∈ (−1, 1),

t = 1, . . . , n−1 and εt is Gaussian white noise. Based on this, we propose the following

statistical procedure for verification of ARH(1) in the next section.

7.1.3 Algorithm for verification of ARH(1) — VERARH

1. Form theRsym
1 matrix and its spectral decomposition.

2. Perform a principal component analysis with respect to Rsym
1 and project the data

on each of its eigenvectors which will give p principal components — the ηj .

3. Assume the model ηjt+1 = αjηjt + εjt for each principal component then test:

H0: The series ηjt is white noise versus

Ha: The series has an autoregressive structure, up to lag log n.

Test this using Ljung-Box (L-B) with lag log n and size s/p% that accounts for

multiple testing as per Bonferonni correction method.

4. Record the number, k, of statistically significant principal components from the

previous step.

5. Take the k components from the former step and fit scalar AR(1) process to each of

them.

6. Test the residual time series from each principal component and do the same test,

using Ljung-Box up to lag log n, correcting the degrees of freedom. In case the

selected k residuals of principal components are determined white noise, then the

process is ARH(1).
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The principal components correspond to the ordered eigenvalues, thus representing

variance in the functional data. A suggested threshold in Kokoszka and Reimherr (2013)

is to select the principal components that account for at least 90% of the variance which

we apply here.

Note that in step 3 we are using higher lag, in case the process is of higher order. In

step 4 we are testing all the principal components that have rejected the null hypothesis,

however, we can test only the ones that cumulatively account for 90% of the variance.

Verification of ARH(p)

In chapter 5 of Bosq (2000), there are limiting theorems similar to Theorem 4, but for

higher orders of the ARH process. Therefore, we can design a more general test for order

ARH(p) via successive AR fitting to the principal components (equation 7.3), for which

an example will be shown section 7.3.1.

7.2 Simulation study for ARH(1)

7.2.1 Setup of the Simulation Routine for ARH(1)

So, we work with discretized data and the operator ρ will be approximated by a matrix

with dimensions p×p, where p is the number of discretization points. The simulation rou-

tine simul.far.wiener computes the operator in the Karhunen-Loeve basis which,

in the matrix case, is the eigenbasis. This means that the ηj are the projections of the

data over the eigenbasis, using the eigenvectors of the covariance/correlation matrix. The

linear operator — ρ — in this basis, i.e. a p× p matrix, admits bloc structure of the form:

ρ =

 d.rho 0

0 eps.rho

 (7.4)

Here d.rho is provided in the call of the function and defines the αj from Theorem 4
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i.e. say we have p principal components which is also the number of discretization points,

then we decide that the scalar value for the autoregressive parameters for the first k of

them is a number, thus our d.rho bloc will be just rep(value,k). This corresponds

directly to having k number of scalar AR(1) process in the eigenbasis admitting the form

ηjt+1 = αjηjt + εjt for j = 1 . . . k and t = 1 . . . n− 1. The eps.rho bloc is providing the

dependence in the rest p−k principal components via the following perturbation scheme:

rho.eps = (εk+1, εk+2, . . . , ε2p) where (7.5)

εi =
perturbation

i2
+

1− perturbation
ei

(7.6)

For i = k + 1 . . . 2p and perturbation is a perturbation coefficient, by default equals

0.05 which means that the expression will drop fast from the predefined values. The ex-

pansion in the eigenbasis goes up to 2p and to get the discretized functional data, the

routine then projects the n × 2p data from the eigenbasis to n × p data in the canonical

basis. For more details please see the help of the far package.

Simulation scenario setup

1. Generate 1000 realizations, each consisting of n = 500 curves and p = 100 dis-

cretization points.

2. Use 2 parameter values (for d.rho i.e. αj) — 0.8 and 0.5 for half of the principal

components ηjt , t = 1, . . . , 50 i.e. in the call of the simulation routine we will

use rep(0.8, 50) and rep(0.5, 50) for d.rho respectively.

3. Apply VERARH from section 7.1.3 — for step 6 with the Ljung-Box test, up to lag

6, on each of the residuals from AR(1) fitting to the 100 principal components for

every realization and the tested null hypothesis will be d.rho[i] = αi = 0 and the

alternative d.rho[i] = αi 6= 0 for i = 1, . . . , 100. The nominal sizes are 5 × 10−7
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and 1 × 10−7 and they also account for multiple comparisons by Bonferonni cor-

rection scheme(10−3 for realizations ×10−2 for principal components ×5(1).10−2

for nominal size).

4. For each of the sizes its empirical power will be calculated.

7.2.2 Results from applying VERARH for the verification of ARH(1)

We can see the results in table 7.1 are very good and confirm our assertion that our VER-

ARH procedure can be used for verification of ARH(1) for functional time series. By the

empirical size for the performed tests, we can conclude that the test is very conservative

and reaches 100% power.

αj Empirical size Power

0.8 1× 10−7 1.00

0.8 5× 10−7 1.00

0.5 1× 10−7 1.00

0.5 5× 10−7 1.00

Nominal size (αj = 0) Empirical size

0.05 0.0012

0.01 0.0004

Table 7.1: Empirical power (left) and size (right), testing 100 principal components for

1000 realizations of ARH(1) with VERARH

It is also illuminating to look at the empirical distributions of the autocorrelation

coeffient(αj) of each principal component. Figures 7.1 and 7.2 show the αi and their

respective p-values. We see that the first 50 principal components have their autoregres-

sive paramaters (autocorrelation coefficients) centered around their respective predefined

values, 0.8 and 0.5. Then from principal component 50 onwards the perturbation scheme

comes into effect. This is way more visible in the right pictures of Figures 7.1 and 7.2

where p-values for principal components 50 onwards become larger and dispersed.
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7.2.3 Conclusions from the simulation Results

The proposed VERARH methodology, from section 7.1.3, for verification of ARH(1) pro-

cess is feasible and reliable as shown and validated from simulated data. Usually, when

doing principal components analysis of functional data, we get most of the variance (80

to 90 %) concentrated in the first 3 to 5 eigenvalues — Hörmann and Kokoszka (2012).

This means that doing 5 tests would be enough in practice to determine whether or not a

functional dataset follows an ARH(1) process.
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Figure 7.1: left: distribution of the value of the autocorrelation coefficient, defined as αj =

0.8 for the first 50 pricinpal components and right: its p-value, for all 1000 realizations

with n = 500 curves and p=100 discretizations points/principal components

Figure 7.2: left: distribution of the value of the autocorrelation coefficient, defined as αj =

0.5 for the first 50 pricinpal components and right: its p-value, for all 1000 realizations

with n = 500 curves and p=100 discretizations points/principal components
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7.3 Simulation Study for ARH(2)

This section considers modifying testing procedure VERARH by using the d00 single co-

efficient Haar wavelet test from chapter 3 instead of Ljung-Box. The modification of the

VERARH is provided in section 7.3.3Furtheremore, we introduce slight changes in the

multistaging procedure in order to be ables to verify higher orders than one for ARH.

We will compare our new procedure to the one from Kokoszka and Reimherr (2013) by

simulation. Furthermore, Kokoszka and Reimherr (2013) procedure is also multistage in

the sense that it tests sequentially ARH(0) vs ARH(1), then ARH(1) vs ARH(2) and so

on. We will also show an empirical size calculation when doing the ARH(2) simulation

study in this section.

In order to be able to test for ARH(p), the modifications of our algorithm from section

(7.1.3) consist of the following: Extended VERARH

• In step 5 fit an AR(2) process to each of the k statistically significant principal

components from step 4

• In step 6 consider the residuals from the AR(2) for making the decision.

7.3.1 Setup of the Simulation for ARH(2)

We are not aware of any R packages that have a routine for simulating ARH(2) process.

That is why here we used the procedure mentioned in Kokoszka and Reimherr (2013).

We express our gratitude to the authors for providing it.

The ARH(2) is defined in the following way:

Definition 16. ARH(2) process

Xn = ρ1(Xn−1) + ρ2(Xn−2) + εn n ∈ N (7.7)
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size Power
1× 10−5 100%
5× 10−5 100%

Table 7.2: Results from Ljung-Box test up to lag 6, testing the residuals of AR(2) fits to
the first 5 principal components for 1000 realizations of ARH(2)

where ρ1 and ρ2 is an infinite-dimensional linear autocorrelation operators and εn is a

Brownian Bridge.

Note on the operators ρ1 and ρ2

In this simulation they are again discretized as p × p matrices and the crucial quantity is

the norm. As explained in the appendix ?? we are considering the L2 norm and this is the

quantity that governs the ARH process, be it order one (as in Definition (3.14)) or two as

just defined in Definition(7.7). However, for ARH(2), we have an additional condition for

stationarity, similar to scalar AR processes, that the sum of the norms of the two operators

must be less than one, for the ARH(2) model to exist.

The simulation will be performed as follows:

1. Generate 1000 realizations, each consisting of n = 500 curves and p = 100 dis-

cretization points. We use a burn-in of 200 curves.

2. The L2 norm of the operator ρ1 is 0.6 and for ρ2 it is 0.3

3. The extended VERARH will be performed with sizes — 0.05/5000 and 0.01/5000,

as per Bonferonni correction scheme for the empirical power to be calculated.

7.3.2 Results from applying extended VERARH for the verification

of ARH(2)

Note: In Fig.7.3 for all the 1000 realizations we always had that over 90% of the variance

is in the first 5 principal components that is why the nominal sizes are such. The empirical

size is the same as in the ARH(1) simulation, so we will not consider it here.
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Figure 7.3: Percentage of explained variance by the first 5 principal components for 1000
realizations of ARH(2)

7.3.3 The upgraded VERARH procedure, using d00 wavelet test

Algorithm for verification of ARH(m) — VERARHm

1. Form the regular correlation matrix and its spectral decomposition.

2. Perform a principal component analysis i.e. project the data on each of its eigen-

vectors which will give p principal components — the ηj .

3. Assume the model ηjt+1 = αjηjt + εjt for each principal component with H0: The

series is white noise versus

Ha: The series is not white noise.

Test this using d00 with size s/p% that accounts for multiple testing as per Bonfer-

onni correction method.

4. Record the number, k, of statistically significant principal components from the
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previous step.

5. Take the k components from the former step and fit scalar AR(1) process to each of

them.

6. Test the residual time series from each principal component and do the same test,

using d00

The principal components correspond to the ordered eigenvalues, thus representing

variance in the functional data. If the residuals from the AR(1) fits of the principal com-

ponents, accounting for most of the variance — 90%, do not reject the null hypothesis

from d00 test, then decide that the process is ARH(1).

If, in step 6, we reject the null hypothesis, the we conclude we have ARH order greater

than one. To find the correct order we have to re-iterate through the procedure:

• In step 5 fit an AR(2) process to each of the k statistically significant principal

components from step 4.

• In step 6 consider the residuals from the AR(2) for making the decision.

This procedure can be adapted to any reasonable order. Now, let us see it in practice. We

will do a comparison with Kokoszka and Reimherr (2013) for the ARH(2) example from

the paper, with norms of 0.5 and 0.3 for ρ1 and ρ2 respectively which corresponds to c1

and c2 from model(18) in their paper and their Table 2. We generated 200 curves with 100

gridpoints, a burn-in of 200 curves and 103 replications. For statistical size, our procedure

is conservative — for nominal 5% level, the size we get is 1.3% and theirs is 5.9%. The

statistical power, when comparing ARH(0) versus ARH(1), is 100% for both ours and

Kokoszka and Reimherr (2013). The power, when comparing ARH(1) versus ARH(2),

we get is 93.4% while they get 96.1%. Furthermore, we tried to reiterate and check with

the upgraded VERARH for ARH(2) vs ARH(3), and (as this becomes a statistical size

calculation) the size was 0%.
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Conclusion from ARH(2) simulation study

So, based on this simulation experiment, and comparison with the method of Kokoszka

and Reimherr (2013), we could conclude that the suggested extended version of the VE-

RARH algorithm, defined in section 7.3.3, using d00 test, is a reliable tool for verification

of the order of ARH processes.

7.3.4 A Real Functional Time Series Example

Description of the Data and the Problem

The Elelctricity de France(EDF) data are observations of the electricity load of the EDF

network in France. They start on 1 Sep 2002 until 31 Aug 2009, which equates to 2557

days. The data are sampled every half-hour i.e. there are 48 observations for every day.

The functional representation of the data is a curve for each day, comprised of 48 points

on a grid. So, we will have a matrix Xnp of n = 2557 rows (these represent days) and

p = 48 columns (these representing the half-hour intraday sampling). We will use the

term daypoints/curves to refer to the rows of the matrix and the term gridpoints to refer to

its columns.

These type of data are very popular in the functional time series literature. For in-

stance, in Cho et al. (2013), they have been modelled with Generalized Additive Models

and Dimension Reduction Techniques. Whereas, in Antoniadis et al. (2010), they have

been modelled with ARH processes, however, after complicated curve clustering proce-

dures. This is usually necessary as curves from real processes usually contain plenty of

different modes of variation and nonstationarity. So, the clustering is needed to come with

similar clusters in which one model could be fit for each. We will try to analyze the data

as a whole, without incorporating other informations. This will allows us to see whether

our procedure is adaptive enough to verify higher orders of ARH processes.

Figure 7.4 shows the daily data for EDF from 2002 till 2009. Figure 7.5 shows all
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Figure 7.4: EDF daily electricity load time series from September 2002 till August 2009

the curves for the last one year of data. They look nice and smooth as curves, however,

they are difficult directly to model with ARH(1) or ARH(2) because they possess strong

correlation structure over intervals grater than lag 1. Moreover, as their vertical alignment

suggests, they contain a lot of trends and increasing variance due to the seasonal character

of the electricity consumption over the year, including intra-weekly, weekly, monthly,

quarterly and year-to-year variation. That is why, for analysis and forecasting, we will

use transformed data, using square root and then taking the lag 7 difference of order 1,

both being done in this order and columnwise with respect to the multivariate n× p data

matrix. The square root was chosen instead of the natural log, because it resulted in

less correlations in lags other than 1 and 7. Lag 7 was particularly chosen as the most

important variance driver, present in all seasons. For illustration Fig. 7.6 shows the

autocorrelation and partial autocorrelation for 1st, 24th and 36th gridpoint representing

midnight, noon and evening (6 pm) respectively.

Results from Verification Test on the Transformed Data

Looking closely at Fig. 7.6 we may notice that there is inherent periodic behaviour. No-

tably, lag 1 PACF has longer effect in periods of 7 lags, slightly decreasing. This might

be a hint for monthly variation. On the other hand, there is a negative PACF at lag 7,

repeating itself againg in periods of 7 lags and diminishing at the fourth instance. This is

again in support of a monthly variation. It might be possible though that there are other
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Figure 7.5: All the curves for the last 1 year of data i.e. Sep 2008 - Aug 2009

Item Quantity Share of Variance
Number of significant PCs 35 99.91%

Number of not significant PCs 13 0.09%
First 5 PCs by order of magnitude 5 99.57%

Table 7.3: Results from standard PCA and the method for the transformed EDF data.

transformations of the data which could help us get rid of this regular variation. However,

we proceed as is, and this gives us a hint that probably ARH(1) would not suffice. We

tried fitting successively AR(1) to AR(7) to the 48 principal components, however their

residuals stil had structure. That is why, in step 5 of VERARH, we used AIC criterion in

the ar procedure in R. It fitted AR models varying from 28 to 34 lags, which confirmed the

monthly variation suggestion. In table 7.3.4 we can notice that the first 5 principal com-

ponents are accounting for most of the variance. We could try fitting one single model to

all 5 of them and then check if their residuals confirm the white noise hypothesis. We did

fit an AR(31) to all of them and our residuals were not showing evidence of autoregres-

sive structure anymore with the following p-values: 0.94, 0.92, 0.99, 0.98, 0.95 for each

of the 5 principal components respectively. So this agrees with the aforementioned refer-

ences which show that these data are highly heterogeneous and require either higher order

models or other techniques to be used in order to model them succesfully.
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Figure 7.6: Autocorrelations for transformed daily data taken at the: a - 1st grid-
point(00:30 hrs), c - 24th gridpoint(12:00 hrs), e - 36th gridpoint(18:00 hrs)
Partial autocorrelations for transformed daily data taken at the: b - 1st gridpoint(00:30
hrs), d - 24th gridpoint(12:00 hrs), f - 36th gridpoint(18:00 hrs)
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7.4 Simulation study with GCV and VERARH for ARH(1)

prediction

7.4.1 Forecasting of ARH processes using the VERARH method

With the same arguments as in section 7.1.3, it is possible to select the number of principal

components in the eigendecompositions of the regular and lag one covariance kernels.

Then we could construct predictions using the principal components that conform to some

rule.

When one is interested in forecasting functional time series, the most crucial question

is the number of eigenvectors to use for projecting the original data as explored in (Bosq,

2000; Ferraty and Vieu, 2006; Besse et al., 2000; Damon and Guillas, 2005). There are

at least two issues with this proposal. One is that there might be some measurement error

in the data, as they are discretized functions. The second one is that, if only few principal

directions of the variance (i.e. eigenvectors accounting for at least 90% of the variance)

are retained, then the predictions are too smooth and very far from reality Hörmann and

Kokoszka (2012). Those two reasons lead to the assertion that when using too few prin-

cipal components, the predictions are too smoothed and do not catch the dynamics of the

function well, but when using too many principal components, then we will be putting

too much noise and our predictions might be incorrect. What is usually recomennded is

using generalized cross-validation chosen by minimizing the empirical prediction error

and thus varying the number of principal components to arrive at the optimal quantity

using a data-driven procedure.

Functional Time Series Estimation from Data

Suppose that we have a functional dataset, denoted by Xnp i.e. we have n curves over

p gridpoints in an interval. We can form the functional principal components and test
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whether or not the first few of them are cumulatively accounting for over 90% of the

variance. If we reject the null hypothesis of VERARH, then we are dealing with ARH(1)

process. Furthermore, we can test all the principal components and record the ones that re-

ject the null hypothesis. Then we have come up with a decomposition consisting of scalar

AR(1) processes and we could use it for forecasting because, according to Theorem 4, the

rest would be just white noise which we do not want to incorporate into the predictions.

In this section, we will compare the performance of our method and the generalized em-

pirical prediction error crossvalidation procedure, suggested in Bosq (2000) chapter 9 and

Besse et al. (2000). Next we will introduce some notation and the quantities we need to

calculate in order to do the forecasting experiment.

Let us have our discretized functional data in a matrix form Xn×p and they centred i.e.

E[X1:n,p] = 0 ∀p (7.8)

Then the covariance matrix of our n× p functional data with dimensions p× p is:

V0 = E[XT
npXnp]. (7.9)

The covariance matrix of lag 1 is:

V1 = E[XT
n+1,pXnp]. (7.10)

Based on the model (3.14) and Yule-Walker equations, the estimator of ρ from data is:

ρ̂ = V1V
−1
0 . (7.11)

The hat on ρ is because we are dealing with a discretized version of the model (3.14)

over a grid of points and (7.11) is an estimator using all the gridpoints. Next, we will

define our empirical estimators following Hörmann and Kokoszka (2012)
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Now we want to apply the criterion from the procedure described in section (7.1.3)

and have a functional estimator ρ̃. There are two possibilities for it. In both of them

the matrix V −1
0 will be replaced by the approximate inverse using the number of chosen

eigenvalues k in section (7.1.3) defined by:

Definition 17. Let Ṽ −1
0 approximated lag zero covariance given by

Ṽ −1
0 = EΛ−1

k ET ,

where E is the matrix of the k AR(1)-like eigenvectors of V0 selected by section 7.1.3

and Λ−1
k is the diagonal matrix with k nonzero elements, each equal to (1/λj) for j =

1 . . . k that are eigenvalues of V0 and k is, as previously, chosen in section (7.1.3)

Definition 18. Let Ṽ1 be the approximated lag one covariance given by

Ṽ1 = E ′Λ′kE
′T ,

where E ′ is the matrix of the eigenvectors of the symmetrized lag one covariance i.e.

V sym
1 = 1/2(V1+V T

1 ) and Λ′k is the diagonal matrix with elements (λ′j) for j = 1, . . . , k

that are eigenvalues of V sym
1 and k is, as previously, chosen in 7.1.3.

Now two possibilities for our functional estimator are suggested. The first one, which

we will call standard, is:

Definition 19. Definition of the Standard Estimator, ρ̃1, is

ρ̃1 = V1Ṽ
−1
0 . (7.12)
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The second option, which we will call smoothed, uses the approximate version of the

lag one covariance given in Definition 18

Definition 20. Definition of the Smoothed Estimator, ρ̃2, is

ρ̃2 = Ṽ1Ṽ
−1
0 . (7.13)

Then, the predictions are given by:

X̂n+1 = ρ̃1(Xn) and X̂n+1 = ρ̃2(Xn) (7.14)

Prediction Equations

So, to summarize, in order to do prediction for ARH(1), using the proposed method in

section 7.1.3 for selecting the number of principal components, we have to do three steps:

1. Select the number of principal components which have rejected the null hypothesis

by using the algorithm in section (7.1.3)

2. Use the result from step 1 in calculating the estimators in (7.12) and (7.13)

3. Use the calculated estimators from step 2 in constructing the actual predictions,

using (7.14)

Generalized Cross-validation (CV) by minimizing Empirical Prediction Error

As already emphasized, a crucial quantity in defining any functional estimator, is the num-

ber of principal components (k) to retain in the expansion of the covariance/correlation.

The procedure, recommended by Bosq (2000); Ferraty and Vieu (2006); Besse et al.

(2000) is by minimization of empirical prediction error function by generalized cross-

validation (CV). The CV measure estimates the true prediction error and thus is most
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natural when forecasting any kind of time series stochastic process. The criterion to min-

imize, then, is the following function of k:

∆̂n(k) =
1

n− n0

n−1∑
v=n0

‖ρ̂(k)
v (Xv)− Xv+1‖2 (7.15)

where:

• ρ̂(k)
v is an estimator such as (7.11), (7.12) or (7.13) and the superscript k is indicating

the number of principal components used to calculate it.

• n0 is a quantity which defines the proportion between training and validation set

that is usually chosen such that the first 80% of data are used for training and last

20% used for validation

• The norm in the sum could be L1, L2, L∞ or any other applicable functional/matrix

norm.

Then the optimal k for ρ̂(k)
v will be chosen as:

k = arg min
1≤k≤p

= ∆̂n(k) (7.16)

Our method (VERARH) will be compared with the generalised CV approach, with

respect to forecasting simulated ARH(1) data in section 7.4.

The simulation routine that we will use for generating data for the ARH(1) fore-

casting experiment in section 7.4 is from the R package far from Damon and Guillas

(2010). Their routine simulate.far.wiener is based on Theorem 4 and it defines

an ARH(1) with Wiener noise. Details of the routine as well as the setup of the simulation

and the results of the application of VERARH for order verification of ARH(1) appear in

appendix section ??. The results are very good. Moreover, the idea is to numerically show

that the theoretical foundations of our method are applicable in practice.
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In this section we will use the performances of the two estimators (7.12) and (7.13)

to construct predictions (7.14) in order to assess how our method VERARH, proposed in

section(7.1.3), performs for forecasting in comparison to the generalised CV method from

7.15, proposed by Bosq (2000).

Obviously, the GCV method can be used to any time series. However, if our method

performs at par with it, this is another layer of validation of our assertion that our method

is good for verification of the order of an ARH(1) process.

7.4.2 Results from Forecasting Simulated Data

We generated n = 2000 curves over p = 100 gridpoints using the simul.far.wiener

routine from the far package from Damon and Guillas (2010). We then used the follow-

ing procedure:

1. The first n1 number of curves will be used to define the training sample.

2. The lag 0 and 1 covariance/correlation will be calculated with data up to n1 − 1

inclusive i.e. V0 = E[XT
(n1−1)pX(n1−1)p]

V1 = E[XT
(n1−1)pX(n1−2)p]

3. The forecast will be calculated by X̂n1+1 = ρ̃1(Xn1) and similarly for ρ̃2.

The settings for the CV method in far package are the default which is 80% training

and 20 % validation.

4. The above step will be repeated 100 times by sliding the curves with one step ahead

each iteration.

5. We will vary n1 by 100 to illustrate performance accordingly for different portions

of the data, each with a sliding forecast horizon of 100 curves.

In table 7.4 the last two columns were calculated in terms of MAPE(mean absolute

percent error) and the comparisons were made curvewise i.e. for the 100 one-step ahead
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n1 k by CV k by VERARH Relative time ρ1 is better Relative time ρ2 is better
1000 28 88 45 % 48%
1100 18 88 48 % 48%
1200 17 87 48 % 59%
1300 16 88 48 % 40%
1400 50 88 42 % 47%
1500 43 87 47 % 42%
1600 33 88 53 % 52%
1700 35 88 49 % 55%
1800 18 88 49 % 45%
1900 18 89 49 % 46%

Table 7.4: Table of the forecast comparisons using our method versus the CV method for
defining the number of eigenvalues to retain in the expansion of the lag 0 covariance for
ρ1 and symmetrized lag 1 autocorrelation for ρ2 respectively

forecasts the 100 errors from each method — CV and ours — were compared. We show

percentages, but as they were 100 curves forecasted with each subset of data, they are also

absolute results. The average number of times ρ1 was better is 47.80 % and for ρ2 this

is 48.20 %. Our method’s performance is slightly worse than the CV method. Another

interesting thing to notice in table 7.1 is how the number of eigenvalues chosen, k, varies

by each method. We may notice that the generalised CV method is very sensitive and

changes are frequent. However, our method is quite robust with respect to k, in the sense

that the amount is almost constant, which is a good thing, especially if we have to have

an automatic forecasting system.

Furthermore, if we look at a typical picture which shows the two errors for the 100

steps, things look interesting. Firstly, let us have a look at the standard predictor (7.12) —

On Fig. (7.7) we can see that our predictor (in green) is doing better at the extreme cases,

when the MAPE is more than 1000%, Then, let us have a look at the smoothed predictor

(7.13) on Fig. (7.8), it looks smoother than the standard one, and again, our method is

slightly better at the extremes.
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Figure 7.7: Plot of typical MAPE distribution over the 100 curves forecast horizon for the

ρ̃1 predictor. Green — our method for choosing k, Red — generalised CV

Figure 7.8: Plot of typical MAPE distribution over the 100 curves forecast horizon for the

ρ̃2 predictor. Green — our method for choosing k, Red — generalised CV

Summary and Implications of Forecasting Results

When used for prediction, our method for choosing the number of principal components

k, performs at par with the standard empirical error GCV. In detail, it performs slightly

worse for small errors and slightly better for extreme errors. This is a good indication

that also the method is good for detection, bearing in mind the fact that the number of the

principal components does not change almost at all when using different subsets of the

data.
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7.5 Conclusion and Further Work

A new technique was proposed for verification of ARH process for functional time series.

The method performed well in simulation studies for ARH(1) and ARH(2). It could also

be extended to ARH process of any reasonable order. The procedure was also applied to a

real functional dataset with practical importance. An interesting question in this direction

would be to do a seasonal ARH(p) in the fashion of seasonal ARIMA. On the other hand,

the seasonal correlation structure might be varying in magnitude, so this gives rise to the

question of time-varying ARH process.

Furthermore, our method gives a decomposition which could also be used for forecasting.

Its performance was very close to the one of the GCV criterion, which is a further level

of validation that our method is good for verifying the order of an ARH process.
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Conclusions and Innovations

White noise testing

In this thesis we used wavelets in order to construct tests for white noise for both

univariate time series and two-dimensonal(spatial data). Our results from univariate white

noise testing confirmed the usability of our tests and showed situations in which they are

better than established tests and, naturally, vice versa. Furthermore, in chapters 4 and

5, we showed that our tests are applicable to a range of alternative hypotheses. This is

achieved by the different types of wavelets that are used. We also developed a theoretical

power function for the general wavelet test genwwn against an alternative of an ARMA

process. The power function is a very useful tool in practice since it gives answer to the

question “How large does my sample have to be in order to detect an alternative hypothesis

of class ARMA(p, q)?”. Moreover, many tests in the literature do not have a theoretical

power function. We also showed a range of real data examples. Another important feature

of our univariate wavelet white noise tests is that they do not require any manual tuning

parameters to be determined by the user. This is in contrast to many of the available tests

in the literature.

A wavelet test based on a single coarsest scale wavelet coefficient was shown to be

equivalent to a weighted sum of the odd-lagged autocorrelation coefficients which ex-

plores a contrast beween high and low frequencies.The d00 test is an interesting area for
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further research itself, since a similar test can be created from even-lagged autocorrela-

tions. The test performed very well against alternatives such as ‘hidden periodicity’ and

small magnitude autocorrelation, which are subject of contemporary reseach. We also

showed a range of real data examples and our tests performed well.

Although approximate, our result for the distribution of the Haar wavelet coefficients

of the periodogram (from Proposition 2, equation (4.6)) seems to have very good perfo-

marmance in the simulation study. An area of further methodological research for the

hwwntest would be to analyse it with respect to an arbitrary standard deviation σ (we

used σ2 = 1 for the proof) since this would have an implication on the distribution. For

instance we might have white noise with changing regimes i.e. σ(t), which would be

an interesting topic for further work. Last, but not least, we have created an R package

hwwntest (Savchev and Nason, 2015) implementing the tests and providing functions

for simulations and theoretical power calculations.

We extended the univariate hwwntest white noise test to two-dimensional spatial data

in chapter 5. To the best of our knowledge, we are not aware of other spatial autocorre-

lation tests based on wavelets. We compared our 2d hwwntest with the classical spatial

autocorrelation test of Moran in a simulation study. Our test performed reasonably, though

it has some deficiencies — low power for a small size dataset. This has to do with the

fact that due to the setup of the two-dimensional orthogonal Haar wavelet transform, we

had to replicate the periodogram which induced more tests for each wavelet coefficient,

thus requiring more multiple comparisons to adjust for. An interesting avenue for further

work would be to revise our test by selecting the wavelet coefficients that correspond to

the ‘first half’ of the two-dimensional periodogram or correct the nominal size of the test.

Another direction would be to use a non-decimated wavelet transform or even wavelet

packets, since spatial autocorrelation is a phenomenon that can be expressed in many dif-

ferent ways. Wavelet methods have future in spatial statistics and our test is but one initial

step in this endeavour. Last but not least, we also did analysis of one of the well-known
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spatial datasets, the Mercer and Hall(1911) Wheat data, and our test detected correctly

that there is a spatial trend in the data.

ARH order verification

In chapter 6, based on an established theoretical result for ARH(1) process existence,

we developed a testing procedure that can be applied for checking if a functional time

series dataset follows an ARH(1) process. We validated our methodology by a simulation

study. Furthermore, since there are more supporting theoretical results, we extended our

methodology by a multistaging procedure for verification of the order of an ARH(p) pro-

cess. We did a comparison with one of the few available such procedures in the literature,

for an ARH(2), and our results were good. Moreover, it turned out that our methodol-

ogy for order verification of ARH(1) could also be used for forecasting. We performed

an experiment with simulated data against a well-known generalised CV procedure and

our results were on par with it. Given the fact that our procedure is simpler than gen-

eralised CV, we believe it is worth further research. For instance, many functional time

series datasets that come from observation of continuous processes, such as electricity

load or magnetic field measurement, could have strong seasonal characteristics similar to

seasonal ARIMA processes. Thus, it would be interesting to develop a methodology for

seasonal ARH(p) estimation. Moreover, seasonality gives rise to time varying parameters,

so a time-varying ARH(1) process would be an important direction to pursue.

To sum up, the main conclusions of our work are:

1. White noise testing is a tricky problem since the possible space of alternative hy-

potheses is vast and there are no universal tests which can cover all of them with

uniform power.

2. There is a much room for development of white noise tests and using wavelets in

the spectral domain provides a flexible way to design different tests .

3. There exists theoretical basis from which a methodology can be derived for testing
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of ARH processes of any order.

4. The same methodology could be used for forecasting of ARH processes.

The main innovations of this work are:

1. Developing wavelet-based tests for white noise in the spectral domain as opposed

to contemporary tests which are mostly heavily-modified Box-Pierce-Ljung type

tests, each with a few tuning parameters.

2. Developing a theoretical power function for the genwwn test.

3. The different wavelet tests serve different purposes and thus with one paradigm

we cover different subsets of alternative hypotheses e.g. ‘hidden periodicity’ or

small magnitude autocorrelation. Moreover, our tests do not require any tuning

parameters to be provided or guessed by the user.

4. Developing a wavelet test for spatial autocorrelation, without specifying a spatial

lag, i.e. number of neighbours.

5. Implementation of the wavelet tests in a separate R package hwwntest.

6. Suggesting a feasible methodology for order verification of ARH processes and

facilitating its interface with the mathematical foundations of ARH processes.

7. Using this methodology also for forecasting and showing a fair performance against

a technique (generalised CV) which is explicitly suited for forecasting of any time

series process.
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Appendix A

Proofs, ARH simulations and software

A.1 Proof of Proposition 2

Recall that the characteristic function of an exponential random variable with parameter

λ is φ(t) = (1 − it/λ)−1 where
√
−1 = i. Hence, if X, Y are independent exponential

distributed variables then the characteristic function of W = 2−1/2(X − Y ), the finest

scale wavelet coefficient, is given by

φW (t) = φW (u) = φX(u)φY (−u) = (1− iu/λ)−1(1 + iu/λ)−1

= λ2/(λ2 + u2) = λ2/(λ2 + t2/2), (A.1)

which is the characteristic function of the double exponential or Laplace distribution,

where t =
√

2u.

More generally, for scale ` = J − j of the Haar wavelet transform the wavelet co-

efficient v̂j,k is the difference, W , of two random variables, X, Y each of which are 2`/2

times the sum of 2`−1 exponential random variables. Hence, the characteristic function of
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v̂j,k is given by

φW (t) = φX(u)φY (−u) = (1− iu/λ)−2`−1

(1 + iu/λ)−2`−1

=
{
λ2/(λ2 + u2)

}2`−1

=
{
λ2/(λ2 + t2/2`)

}2`−1

, (A.2)

where t = 2`/2u. For example, for the finest scale wavelet coefficient j = J − 1 which

implies ` = 1 and formula (A.2) coincides with (A.1).

Formula (A.2) is precisely the probability density function of a Student’s t-distribution

whose characteristic function can be found in Stuart and Ord (1994, Ex. 3.13). Hence,

due to the duality property of Fourier transforms the probability density of v̂j,k is given

by (4.6) and is of a similar form to the characteristic function of a Student’s t-distribution.

We refer to the density in (4.6) as Macdonald’s distribution as it is essentially Macdonald’s

special function, a cylinder function or a modified Bessel function of the third kind, see

also Gneiting (1997). The distribution for v̂j,k in (4.6) has mean zero and variance one.

A.2 Proof of Proposition 3

Our wavelet coefficients v̂j,k are a discrete version of the integral version of the wavelet

coefficient defined by (Neumann, 1996, 2.3)

ṽj,k =

∫
ψj,k(ω)IT (ω) dω, (A.3)

where IT (ω) is the periodogram in (4.1). Neumann (1994) establishes that the asymptotic

behaviour of both is the same.

Following Neumann (1996) let σ2
j,k denote var(ṽj,k), define

J = J (T ) = {(j, k)| 2j ≤ CT 1−δ, k ∈ Ij},
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where C <∞, 0 < δ ≤ 1/3 are arbitrary constants and Ij = {1, . . . , 2j}.

This range is not restrictive to any practical dataset size T . Let us show this by an

example:

2j ≤ CT 1−δ ⇐⇒ j ≤ (1− δ)J ⇐⇒ δJ ≤ 1 (A.4)

where we have taken C = 1, J = log2T and j = J − 1 for the finest scale. Since

δ can be arbitrarily small, let δ = 0.05 and T = 1024, thus J = 10 and j = 9 then

δJ = 0.5 ≤ 1. For scales coarser than J − 1 the right hand side of the last inequality in

(A.4) can only increase.

Define ∆γ = o{∆1/(3+4γ)} where ∆ = T δ/2(log T )−1 and γ is specified in Assump-

tion 2. Further define

σT = max{ max
(j,k)∈J

(σj,k, C0T
−1/2)}

for some fixed C0 > 0 and θj,k ∼ N(0, σ2
T − σ2

j,k). Then the following theorem, which

relies on the large deviation result Lemma 1 from Rudzkis et al. (1978), establishes the

asymptotic normality of the ṽj,k.

Theorem 4.2 Neumann (1996). Assume Assumptions 2–4. Then

P[±{(ṽj,k + θj,k)− vj,k}/σT ≥ x]

1− Φ(x)
→ 1

holds uniformly in (j, k) ∈ J , −∞ < x ≤ ∆γ .

Neumann (1996) Proposition 3.1(ii) shows that

σ2
j,k = 2πT−1

∫
Π

ψj,k(ω){ψj,k(ω) + ψj,k(−ω)}|f(ω)|2 dω + o(T−1) +O(T−12−j),

for our situation and our wavelets this reduces to σ2
j,k = 2πσ−2

X T−1
∫

Π
ψ2
j,k(ω)f 2(ω) dω.

Under H0 the spectrum is constant f(ω) = (2π)−1σ2
X for ω ∈ Π. Hence, under the
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asymptotic regime above, the mean of ṽj,k is zero from (4.3) since the wavelet coeffi-

cients of a constant function are zero. The variance of ṽj,k is given by σ2
j,k = T−1 since

||ψj,k(ω)||2 = 1. For the discrete coefficients the normalization is different by T−1/2 so,

asymptotically v̂j,k ∼ N(0, 1). (Compare, for example, with the Haar wavelet test where

the null Macdonald distribution in (4.6) has mean zero and variance one and asymptoti-

cally tends to the normal distribution).

Under HA ṽj,k ∼ N(vj,k, σ
2
j,k) asymptotically.

A.3 Proof of Approximation 4

Under H0 the v̂j,k ∼ N(0, 1) from Proposition 3 and assume that there are Nc coefficients

to test. The nominal size of the test is α and the corrected Bonferroni size is αc = N−1
c α.

Let the p-value of the (j, k)th test be p(j,k). We will reject H0 if min(j,k)∈Nc pj,k < αc.

Now, for a given (j, k),

p(j,k) < αc ≡ 2{1− Φ(|v̂j,k|)} < αc ≡ |v̂j,k| > Φ−1(1− αc/2).

So, define the critical value for the test to be Cαc = Φ−1(1− αc/2).

For the power we now assume HA is true and hence v̂j,k ∼ N(vj,k, σ
2
j,k) asymptoti-

cally. Hence the power function is:

P{Reject H0|f(ω)} = P
(
Cαc < max

(j,k)∈IT
|v̂j,k|

)
= 1− P

(
max

(j,k)∈IT
v̂j,k ≤ Cαc

)
= 1−

∏
(j,k)∈IT

P(|v̂j,k| ≤ Cαc)

= 1−
∏

(j,k)∈IT

{
Φηj,k(Cαc − vj,k)− Φηj,k(−Cαc − vj,k)

}
, (A.5)
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A.4 Derivation of the d0,0 index

Suppose we want to base a hypothesis test just on a single wavelet coefficient of the

spectrum. We choose d0,0. The point of this section is to show that there is a combination

of autocorrelations which will furnish an identical test. We know that from the above

theory that under H0 this will be distributed N(0, 1) asymptotically, and since it is the

coarsest scale coefficient the asymptotics should kick in quickly.

The coefficient is defined by

d0,0 =

∫ π

0

f(ω)ψ0,0(π−1ω) dω (A.6)

= 2−1/2

∫ π/2

0

f(ω) dω − 2−1/2

∫ π

π/2

f(ω) dω, (A.7)

where ψj,k(ω) is the standard Haar wavelet on [0, 1]. The spectrum can be expressed in

terms of autocovariances by f(ω) = π−1
∑∞

k=−∞ γ(k) exp(−iωk) so

d0,0 = (
√

2π)−1

∞∑
k=−∞

γ(k)rk (A.8)

= (
√

2π)−1

r0γ(0) + 2
∞∑
k=1

(rk + r−k)γ(k)

 , (A.9)

where

rk =

∫ π/2

0

e−ikω dω −
∫ π

π/2

e−ikω dω (A.10)

It can be shown that (after some algebra) that r0 = 0 and

rk + r−k =
8 sinπk/42

k
sinπk/2. (A.11)

Then substituting (A.11) into (A.9) and only using the odd-indexed values (as the even
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ones are zero) we get:

d0,0 =
4√
2π

∞∑
m=0

γ(2m+ 1)/(2m+ 1), (A.12)

which is the formula coded into d00.test, except that we used autocorrelations there

which normalizes (i.e. so you don’t have to worry about the variance).

Similar formulae could be derived for d1,0, d1,1 and d2,k for k = 0, 1, 2, 3 and into

further scales. Then by combining the results of these test you’d end up with a test like

hwwn.test but only for these coarse scales. The point being that the autocovariances

can be computed for arbitrary T easily. So, even though the test is wavelet based you

don’t use the wavelet transform to compute the values.

A.5 Proof of Proposition 5

Firstly, we need to derive the form of the distribution of the wavelet coefficients for the

finest scale and then generalize it to any coarser scale l. However, each type of detail-level

wavelet coefficient (diagonal, vertical and horizontal) has two additions and two subtrac-

tions in its definition, thus their distribution will be the same. Let us show it by a 4 × 4

illustration with the diagonal coefficients at the finest scale.

Datann =



x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44


,

Now, let us denote the first diagonal coefficient at the finest scale by Df :

Df = x11 − x12 − x21 + x22, (A.13)

Recall that the characteristic function of an exponential random variable with param-
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eter λ is φ(t) = (1− it/λ)−1 where
√
−1 = i. Hence, if we want to check the distribution

of the diagonal coefficient Df from eq. (A.13), we set a random variable:

Wd = 2−1(X1 −X2 −X3 +X4), (A.14)

whereX1 toX4 correspond to the independent and identically distributed Exponential

random variables, corresponding to the first 4-block of data in the matrix from equation

(A.13). Next we write down the characteristic function of this sum (A.14) of random

variables :

φWd
(t) = φW (u) = φX1(u)φX2(−u)φX3(−u)φX4(u)

= (1− iu/λ)−1(1 + iu/λ)−1(1 + iu/λ)−1(1 +−iu/λ)−1

= {λ2/(λ2 + u2)}{λ2/(λ2 + u2)}

=
λ4

(λ2 + u2)2

=
λ4

(λ2 + t2/4)2
(A.15)

which is the characteristic function of the sum/difference of two Laplace distributions

or difference of Erlangs (Gamma) i.e. the Macdonald/Bessel, where t = 2u.

In order to derive the distribution for the coarser scales of the diagonal wavelet coeffi-

cients, we need firstly to think about the scaling functions coefficients in our four by four

setup. The scaling function coefficients at the finest scale are defined as:

Ws = 2−1(X1 +X2 +X3 +X4), (A.16)

We note that the scaling coefficients at the finest scale are just sums of Exponential

random variables i.e. Erlang/Gamma Thus their characteristic function is:
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φWs(t) = φWs(u) = φ4
X1

(u) =
λ4

(λ− iu)4
(A.17)

Now, the next coarser level wavelet diagonal coefficients are going to be the same

linear combination as eq. (A.14), just we need to replace each of the Xi with a Ws from

eq. (A.16):

φWd[finest+1]
= φ4

X1
(u)φ4

X1
(−u)φ4

X1
(−u)φ4

X1
(u)

=
λ16

(λ− iu)4(λ+ iu)4(λ+ iu)4(λ− iu)4

=
λ16

(λ2 + u2)4(λ2 + u2)4

=
λ16

(λ2 + u2)8
=

λ16

(λ2 + t2/4)8
(A.18)

which has the same form as (A.15) and is the characteristic function of the sum of eight

Laplace random variables i.e. Macdonald/Bessel where t = 2u.

More generally, for scale ` = J − j of the 2D Haar wavelet transform, the wavelet

coefficient Wd` is the difference, W , of two random variables, X, Y each of which are 2`

times the sum of 22`−1 exponential random variables. Hence, the characteristic function

of Wd` is given by

φWd`
= φX(u)φY (−u) = (1− iu/λ)−22`−1

(1 + iu/λ)−22`−1

=
{
λ2/(λ2 + u2)

}22`−1

=
{
λ2/(λ2 + t2/22`)

}22`−1

, (A.19)

where t = 2`u. For example, for the finest scale diagonal wavelet coefficients j =

J − 1 which implies ` = 1 and formula (A.19) coincides with (A.15). Thus, we conclude

that the characteristic function for the detailed coefficients for a fixed scale l = J − j is
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(6.3).

Q.E.D.
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