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Abstract

This thesis explores wavelet techniques for the problem of nonparametric re-
gression in situations other than the classical model.

The first part of the thesis attempts to address function estimation for
non-standard settings by introducing an adaptive wavelet lifting scheme. This
construction enables the basis in the resulting wavelet transform to be au-
tomatically tailored to the specific characteristics of a function, thus offering
better signal prediction as well as compression properties. The performance
of this algorithm is assessed thoroughly, through extensive simulations and
application to real data. The results show that the algorithm performs well
compared to traditional techniques.

Another aspect of wavelet transforms generated through the lifting scheme
is also considered, namely the primary resolution level or “stopping time” in
the transform wavelet basis. The study aims to provide further improvements
to the lifting algorithm through a judicious choice of this resolution level.
However, our procedure for automatically choosing the stopping time does not
produce good results for this difficult problem.

The second part of the thesis focusses on the area of wavelet methods for
binomial data. We propose a transformation to Gaussianize and variance-
stabilize a sequence of Bin(n,p) binomially distributed data, where the param-
eter p varies over the sequence. The transformation proves to show desired

properties and good results are obtained through simulations.
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Chapter 1

Introduction

Wavelets and their applications have only started to be fully developed within
the last twenty years, created in the mid eighties to solve geophysical prob-
lems, though their mathematical background has its origins further back in
history. Their applications are now widespread, lying in the fields of science
and technology, with data compression, image and signal denoising, time series
and numerical analysis to name but a few. Wavelets can be viewed as building
blocks for functions in L?(R). They are useful because of their simplicity and
their ability to represent functions with sparse expansions.

Wavelets have been applied to the classical problem of nonparametric re-
gression for many years. Early work in the area of thresholding the Discrete
Wavelet Transform by Donoho and Johnstone [39] has now become a popular
approach to take. The general idea is to wavelet transform the data, threshold
the resulting wavelet coefficients and then invert the transform. This has been
seen to be an effective way to estimate a signal from noisy input. However,
the DWT assumes some restrictive conditions on the observations of an under-
lying signal, namely that the data is regularly-spaced and that the length of
the dataset is a power of two. In addition, the data is often assumed to have
a unique observation for each z-value. The case of multiple observations at z-
values is often overlooked. In real-life situations, the assumptions made by the

DWT are unrealistic; experimental data are often irregularly distributed and



Chapter 1. Introduction

of any length. Certain datasets, for example, the motorcycle data introduced
by Silverman [89] do not have the unique correspondence between z-values and
observations.

Chapter 2 reviews the literature in the area of wavelet shrinkage. We intro-
duce basic wavelet ideas, including Mallat’s Discrete Wavelet Transform algo-
rithm. We give an overview of some techniques for nonparametric regression,
and discuss the lifting scheme, a method of constructing wavelets and wavelet
transforms suitable for situations involving departures from the assumptions
of the DWT.

In Chapter 3, we propose an adaptive wavelet transform based on the “one
coefficient at a time” lifting methodology of Jansen et al. [59, 60]. When using
classical wavelet transforms, it is often necessary to specify the wavelet family
which is used to decompose a signal. The best family to use is unknown, a
priori. Our method attempts to overcome this disadvantage by tuning each
individual wavelet to the data, thus automatically choosing the properties of
the decomposing wavelets to suit the situation in hand. We also modify our
lifting algorithm so that it is suitable for multiple point data.

An investigation into the sparsity and denoising capability of the adaptive
lifting transform is provided in Chapter 4 in the form of a simulation study.
The transform is compared to other wavelet and non-wavelet regression tech-
niques for the now standard test functions of Donoho and Johnstone. We also
apply our methodology to two real-life datasets.

The next chapter discusses the effect of the primary resolution level on our
algorithm’s performance. Simulations establish that there is indeed a variation
in denoising ability at different resolution levels. A method of automatic choice
of the primary resolution is tested to try to give improvements to the lifting
transforms.

The work of Chapter 6 explores the problem of binomial proportion es-
timation over a space. The transformation of observed data to bring them

closer to being Gaussian is one technique used in such problems. Fryzlewicz



and Nason [51] have introduced, for Poisson data, a successful Gaussianiz-
ing and variance-stabilizing algorithm based on an asymptotic result by Fisz
[47] and the properties of the Haar wavelet transform. However, for binomial
random variables, the Fisz result loses the ability to have constant variance,
although interesting distributional features are discussed as an aside to the
main focus of the chapter. Motivated by this observation, we propose an alter-
native transform to restore the constant variance property. The properties of
this transform are compared with that of the traditional arcsine Gaussianizing
transformation by Anscombe [6]. We introduce an equivalent preprocessing
algorithm to the Haar-Fisz transform, and test the properties of the method
against Anscombe; the algorithm for binomial proportion estimation is applied
to a real dataset.

Motivated by the work in Chapter 6, a short examination of Fisz-transformed
binomial random variables in given in Chapter 7. The discussion focusses on
the exact probability mass function of the random variables ¢! and (° for fixed
binomial sizes, and alternative forms for efficient computation of probabilities
for different values of the random variables.

Chapter 8 summarizes the work of this thesis and outlines ideas for further

research.



Chapter 2

Literature Review

Introduction

This chapter reviews aspects of the literature which are essential to the other
chapters of this thesis. Section 2.1 gives an overview of wavelets from a the-
oretical point of view, discussing their background and general construction.
Section 2.2 explores the lifting scheme, which forms the basis of work in Chap-
ters 3 and 5. Section 2.3 reviews the ideas of thresholding and nonparametric

regression, which are used throughout the thesis.

2.1 An Overview of Wavelet Theory

2.1.1 Fourier Series

Before introducing wavelets and wavelet bases, it is useful to give a few com-
ments on their predecessors, Fourier series. In classical Fourier analysis, sine
and cosine waves are used to form bases for functions in L?*(R). In the dis-
cussion below, we will restrict our attention to functions in the Hilbert space
L?([0,2m)), that is, the space of all square integrable functions over the interval
[0,27). In other words, if f € L?([0,27)), then 02” f2(t) dt is finite. For a

more detailed discussion of Fourier series and their properties, refer to [101] or

4
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[48]. We first recall the definition.

Definition 2.1. Let f be square integrable over the interval [0, 2m) and periodic

with period 2. Then the Fourier series representation of f is
f(z) = % + Xn: ay cos(nz) + by sin(nz), ne€Z

where the Fourier coefficients are calculated from

1 2 1 2w
Op = — (z) cos(nz) dz, b, = — (z)sin(nz) dz, n € Z.
T Jo T Jo

Note that the Fourier basis {cos(nz), sin(nz)},ecz is orthonormal, and that
the Fourier coefficients are calculated using the L? inner product. When using
Fourier expansions, we would like to have efficient expansions, in the sense that
only a few of the coefficients are non-zero. However, although trigonometric
functions are localized in frequency, they are non-local in time. This means
that, typically, many basis functions contribute to function reconstruction at
any one point. As a result, they cannot approximate “sharp” parts of functions
well: in order to represent singularities, we want the basis functions to have
short support. One answer to this problem is wavelets.

Simply put, a wavelet is a small wave which decays rapidly, and whose
translations and dilations form an orthonormal basis of L2(R). In this latter
respect, they are similar to Fourier series, but locality can be achieved in both
the time and scale domains simultaneously. Hence they can represent functions

with discontinuities well.

2.1.2 Multiresolution Analysis

This section is devoted to the notion of a multiresolution analysis (MRA), first
proposed by Mallat [72]. This mathematical structure is important in the con-

struction of wavelets and wavelet bases, such as the Daubechies wavelets [35].



Chapter 2. Literature Review

The MRA provides a way of analyzing signals by zooming in or out to examine
the function in detail or in an overall sense. It brings out the ideas of filters
associated with wavelet bases, and leads onto the Discrete Wavelet Transform,
which will be useful later in this literature review and is fundamental to the
work in the next chapters. Our aim is to construct an orthonormal wavelet

basis for L?(R). We follow the method of working as in [35].

Definition 2.2. A multiresolution analysis (MRA) of L*(R) is a system
of closed subspaces {V;} of L*(R) such that:

1. .. ViCVy,CViC

2' UjEZ‘/j = LQ(R)7 7’6 Ujez‘/‘vj iS dense Z'n, LQ(R)

co

ﬂjeZ Vi= {0}

4. fx) eVy = [f(2z) €V

©

feEVW < flea—k)eV,,VkeZ

6. 4 ¢ € Vg, called a scaling function or father wavelet, such that

{@ok := @t — k) }rez is an orthonormal basis in Vj.

The last assertion means that any function f € V, can be written as a

linear combination f = Zk ¢k Yo , where the coefficient ¢, is just the inner

product (f, o) 2wy = [0 f(a — k) dx.

Definition 2.3. A multiresolution analysis is said to be of order N if poly-
nomials of degree up to degree N — 1 can be written as a linear combination of

scaling functions, i.e. for 0 <p < N —1, d¢i € R such that

P = ch(p(x —k
k

Note that the spaces V; are just scaled versions of V{ from 4. The state-

ments 4 and 5 imply that for each j, the set {p; := 29/2p(2/x — k) }rez is

6



2.1. An Overview of Wavelet Theory

an orthonormal basis for the space V;. The functions ¢;; are known as the

translations and dilations of the function ¢.

Let P; denote the projection onto V;. From the projection

(Pif)(@) =D cinein(@),

where

cik = [ 0ir) L) = /_ f(@) jr(z) de,

every function in L?(R) can be approximated by elements of the subspaces
V;, and as j — oo, the precision of this approximation increases (from condi-

tions 2 and 3).

Let us return to our scaling function, ¢. Since ¢ € Vy C Vi, ¢ can be

written as p(x) = D,y hep1k(z) where hy = (@, @14), since {¢1x}rez is an

orthonormal basis for V;. In other words,

o(2) = V23" hepl2z — ). (2.1)

kEZ

Equation (2.1) is known as the scaling equation. The coefficients {hy }rez

are referred to as the (low-pass) filter associated with .
We also obtain

(0j1, by 0j, n) = /%’—Lk(-’r) Qjn(r) dv

= /\/§ o(t) p(2t + 2k —n) dt
= hn—2k; (22)

by using the substitution ¢ = 2/ 'z — k. Using {¢;}nez as an orthonormal

7
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basis for V;, and by considering ¢;_; ; as an element of V;, we have

pj-1k(T) = Z(%—l,ka%‘,n) ©jn(T)

nez

= Y - pjm(x). (2.3)

nez

This equation is known as the scaling function refinement relation.

Wavelet Functions

For each j, consider the orthogonal complement of V; in V;;4, and denote it
by W;. Since the V; are closed subspaces, we have V;;; = V; @ W,. This is

true for each j, so for j > J,

j—J
Vin=V,e @ W 4, (2.4)

k=0

and hence from the properties 2 and 3 in the definition of a MRA, we obtain

L*(R) = P W (2.5)

JEZ

So an L2-function can be split up into mutually exclusive parts, each part
being in one of the detail subspaces W;. This is achieved by the orthogonal
projection onto the subspace in question; we can define (); as the orthogonal

projection onto the subspace W;.

For each W, the scaling property 4 is inherited:
f(x) e Wy <= f(2'z) e W,.

Let ¥ € Wy. Since ¢ € Wy C Vi, there is an expression corresponding to

the scaling equation:
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Y(x) = V2 grp(2z — k).

The coefficients { g }rez are called the high-pass filter (associated with ).

Define a family of functions {9;};kez in the same way as {¢;x} above.
Then the large set {1, x};kez forms a basis of L*(R) <= {9 }rez forms an
orthonormal basis for W; for fixed j <= 3¢ € W, (called a mother wavelet)
such that {¢(- — k) }xez is an orthonormal basis of Wy. So a key development

of wavelet theory was the need to find this mother wavelet, 1.

From examining the structure of multiresolution analyses, for example the
Fourier properties of father wavelet function expansions, one can prove the

following theorem. For the proof, see [35].

Theorem 2.4. Let {V;} be a multiresolution analysis of L*(R) with scaling
function ¢. Then 3 an L? function 1, called the mother wavelet such that
{jr} is an orthonormal wavelet basis of W for fized j. Furthermore, one

such function is given by

V(@) = VIS b k(—1)p(2a — k).

kEZ

Filters linked as above by the relation g, = (—1)*h;_; are called quadrature
mirror filters. For a more detailed discussion of wavelet filters, see [94].
By following the same argument as with the scaling functions, we derive a

similar refinement relation to equation (2.3),

Vi1 k() = Zgn—% ©jn(). (2.6)

nez
Vidakovic [100] shows that these filters satisfy the internal orthogonality

9
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relations

> hnhn ok =60k and Y gngnok = o, (2.7)

neZ nez

and the combined orthogonality relation

nez

Remark. The conditions in Definition 2.2 require the integer translates of
the scaling function ¢ to form an orthonormal basis for V. However, Property

5 can be relaxed. We start with a definition.

Definition 2.5. Let g € L*(R). Then the system of functions {g(x — k)}rez
forms a Riesz basis if 3 A, B > 0 such that

2
<BY X, (2.9)

€A

AY N <

1€EA

Z Aig(x — )

1€EA

for any A C Z and any coefficient sequence (\)y € [*(R) (i.e. with
> kez | Akl* < 00).

For orthonormality of the functions {g(x — k) }xez, the quantities A and B
should be equal and one.

From a Riesz basis, it can be shown that a new basis can be constructed
which is an orthonormal basis for V; (see [58], [35]). Using this basis, the
rest of the MRA construction follows. So, provided that the integer translates
{¢(-— k) }rez (span the space V; and) form a Riesz basis for V4, a wavelet basis

for L?(R) can be found.

Example 2.6. Having seen how to obtain wavelets through the MRA process,
we know that we can construct many wavelets, just depending on the scaling

function used in the MRA which generated them. The wavelets generating

10
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the orthonormal bases of L?(R) can be chosen to possess different properties,

required for the situations in which they are to be used, for example:

fast asymptotic decay

vanishing moments (see below)

compact support

symmetry

We now describe some examples of wavelets. Both of these wavelets will
appear later in this thesis. For details of other wavelet bases, see for example

[100].

Haar wavelet

The Haar wavelet is the simplest example of a wavelet. The Haar scaling
function is given by ¢ (x) = Io,1), the indicator function taking the value 1 on
the interval [0,1) and zero elsewhere. It is clear that the set of integer translates
{gogk} of o form an orthonormal basis since they are indicator functions on
disjoint unit intervals along the real line. If we define gpfk as above, it can be
shown that

@H(m) = 2_1/2#7{{0(55) + 2_1/2€0{{1 (),

so that the comparing this to the scaling equation in equation (2.1), we see

that the Haar low pass filter is

2-12 fork=0,1
hy =

0 otherwise.

11
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Using the quadrature mirror filter relation, we have

(

2-12  for k=0,

gk =94 —2"Y%2 for k=1,

0 otherwise.

\

This results in the Haar mother wavelet ¢# = Iio,1/2) — L(0,1, i€

e

1 on0,1/2)

T =40 -1 on[1/2,1)

0 otherwise.
\

Figures 2.1 and 2.2 show the Haar scaling function and wavelet. The MRA
structure for the Haar wavelet can be seen if we define the approximation

subspaces V; by
V; = {f € L*(R)| f is constant on [2 7k,2 7(k + 1)) Vk € Z}.

Any function in L?(R) can be approximated arbitrarily well by linear com-
binations of Haar wavelets. At each scale, there is a unique subinterval corre-
sponding to each wavelet 1);;, defined by its support. These intervals partition
the real line. Due to the dyadic structure of the spaces Vj, the intervals nest

as the scale increases.

Daubechies’ Extremal Phase Wavelets

Definition 2.7. We say that a wavelet 1) has N + 1 vanishing moments if
k() = /ka(x) de=0 forke{0,...,N}.  (210)

The vanishing moment property of a wavelet affects its smoothness: the

12
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more vanishing moments it has, the smoother it is (see [35] for more details).
Note that if the MRA associated with a wavelet is of order N (Definition 2.3),
then the associated wavelet automatically possesses N vanishing moments due

to orthogonality: for 0 < p < N — 1, we have

(o7, () = <ch(:r - k>,¢(x>> =3 alele — B), b()) = 0.

k k

Vanishing moments lead to sparse function representations, since they im-
ply that expansion coefficients will be small or zero on smooth (e.g. like higher
order polynomial) parts of signals, and conversely, will be large at points of
discontinuity. A wavelet with N vanishing moments is sometimes referred to

as a wavelet of order N.

Named after a significant contributor to wavelet theory, the Daubechies’
Extremal Phase wavelets, Dy, have the minimum support possible for a given
number of vanishing moments, N. The scaling functions have support [0, 2N —
1] and the (mother) wavelets have support [1 — N, N|. They are very asymmet-
ric in appearance, apart from when N = 1, when the Haar wavelet (above) is
produced. A few of the mother and father wavelets from this family are shown
in Figures 2.1 and 2.2. The compact support of the basis functions can be eas-
ily seen. Note also that the smoothness of the wavelets and scaling functions
increases as N (the number of vanishing moments) does. The construction of

these wavelets as well as computation of the associated filters can be found in

[35] and [100].

2.1.3 The Discrete Wavelet Transform

From relation (2.5) and property 2 in the definition of a MRA, by projection

onto the resolution subspace Vj,, one can see that functions in L?(R) can be

13
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represented as

F@) =D dipthin(@) + Y ciokdion(®), (2.11)

3>jo kEZ kEZ
where the coefficients d;; and cj, . are calculated via the L? inner product.
These coefficients are referred to as detail or wavelet coefficients and scaling
coefficients respectively. The detail coefficients give local information about
the function f at scale 2/ and location 277k. The number j, is called the
primary resolution level. This decomposition parameter will be discussed in

more detail later in this thesis.

For efficient representation, we want sparse wavelet expansions, in the sense
that we want as many d;; as possible to be zero, so that fewer wavelets are
needed to approximate f. These representations are particularly useful in com-

pression applications, where efficient data storage is a major consideration.

In most practical applications, the function we want to decompose is sam-
pled, for example, from experimental data. In this section, we introduce Mal-
lat’s discrete wavelet transform (DWT), which is used to characterize sampled
functions as a set of wavelet coefficients. It is similar to the Fast Fourier Trans-
form for discrete data. The DW'T comprises of two filters, namely the low-pass
and high-pass filters, corresponding to the coefficients hy, and g;, := (—=1)%hy 4

in the last section.

Equation (2.3) from the last section leads us to have the following recursive
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relation between function expansion coefficients:

ci—ipg = (fr@i-1)

= (£,>_ hn-kPjn)

neEL

= Z hn—2k<fa @j,n)

neZ

= ) hn_sCin (2.12)

neZ

A similar argument starting from equation (2.6) results in the relation

dj1k = Zgn—Qk Cjn- (2.13)

neL

In other words, if we have the scaling coefficients at a particular resolution
level, we can obtain the detail and scaling coeflicients at the next (coarser)
level by implementation of formulae (2.12) and (2.13). These relations are
the decomposition steps of the DWT. The coefficients can be seen as being
filtered by h and g. Note that for compactly supported wavelets, for example
Daubechies’ Extremal Phase wavelets, the associated filters are finite, and so
these sums are also finite. In fact for this wavelet family, the filter length is

twice the number of vanishing moments.

From the definition of the detail subspace W;_; and the projection opera-
tors P;_; and ); 1, we can reverse the decomposition process and reconstruct

the finer scaling coefficients:

(Pif)(x) = (Pi-1f)(z) + (Qj-1f) ()
= ch—l,l wj—1,(z) +Z dj—1%j-1,(x)

lEZ lEZ
Y (z hn_m%,nu)) 4 (z gn_mnu)) |
IEZ nez lEZ nez

And then by expressing the projection in the basis of Vj, i.e. (P;f)(z) =

17
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> kez Cik ¢ik(x) and equating coefficients of ¢;;, we have

Cik = Z Cj—thk—o1 + Z di_1,9k—2- (2.14)

leZ leZ

This is known as the reconstruction step of the DWT. It gives a method of
inverting the DWT through repeated application of the equation (2.14).

Let us now assume that a function is sampled at n = 27 regularly-spaced
sites, t;. Let us denote the function values by the vector f. As explained
above, if we have the fine scale coeflicients c;;, for fixed J, we can calculate
all wavelet and scaling coefficients on resolution levels j < J. The algorithm
for the computation of the wavelet and scaling coefficients is referred to as

Mallat’s pyramidal or cascade algorithm.

However, since we only know the function of interest at the sites t;, in
reality we will not be able to calculate the finest scaling coefficients c;;. Hence
we need to approximate them in some way. We set the finest scaling coefficients

to be the function values, so we have

CJ7k:f(tk) :fk for k € {0,...,2‘]—1}.

If we now define a function

flz) = Z crkprk(T),

since f is clearly in the approximation space V;, the multiresolution anal-
ysis formalism is appropriate here. Note that this function essentially approx-
imates the function P;f by approximating the inner products (f,¢;x) with
the sampled function values f(t;); the functions ¢ are compactly supported
and localized around %, so for large J, the coefficients will be approximated

by the function at the point ¢,. We call these coefficients the empirical scal-

18
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ing coefficients. The expansion coefficients can then be calculated recursively
using the DWT decomposition relations (2.12) and (2.13). Denote the vectors
of scaling coeflicients and detail coefficients at each resolution level by c; and

d; (respectively) for j < J.

To recap: each filter A and g produces a new vector of length n/2, which
correspond to the “smooth” and “detail” (respectively) of the data, since c;_;
is a smoothed version of the original, whereas d;_; can be viewed as the “detail
lost” by the low-pass filter. This is a natural idea — every function in the present
function space can be expressed as a combination of a mother wavelet (detail)
basis expansion and a father wavelet (smooth) basis expansion. This process
is repeated to only the smoothed data, until we have transformed the original

sequence into the augmented data vector

d:= DWT(f) = (Cjo, djoa dj0_|_1, ce ey dJ_l). (215)

The DWT is implemented in S-Plus by the software package WaveThresh

maintained by Nason'.

A full decomposition of a vector of length n would have the first coefficient
as co (so that jy, the primary resolution level, is 0). Since the one element
vector cg is the result of repeated application of the low-pass filter A, it can
be seen as a measure of “global mean” of the function f. Note that the new
vector d also has length n. The total number of operations needed to transform
the data is nny, where ny is the length of the filter associated to a particular
wavelet. In terms of computation, this is fast, compared to the Fast Fourier

Transform equivalent of nlogn.

tNason, G.P. (1998) WaveThresh3 Software. Department of Mathe-
matics, University of Bristol, Bristol, UK. This software is available from
http://www.stats.bris.ac.uk/~wavethresh/ .
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Operator notation and Decimation

The filter sequences h and g are sometimes written in operator form on the
sequence space [2. In other words, we define convolution functions #, G : [? —

[2, such that Vs € 2,

(Hs)k =) hnrsn (2.16)

and

(G5)k =Y Gn-kn- (2.17)

Consider also the operator Dy, which takes every even element of a sequence
s, i.e.

(D()S)k = S9k. (218)

This operation is known as dyadic decimation. One could also define D; to

keep every odd element of a sequence s € 2.

Note that if we compose the operators Dy with G or H and apply it to the
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sequence ¢;, this is equivalent to the decomposition relations (2.3) and (2.6):

(DO(HCj))Ic = (DO (Z hn—lccj,n)>
= Zhn—ﬂccj,n

= Cj-1,k,

(Do(gcj))k = (DO (Z gnkcj,n>>
= Zgn—chj,n

= dj-1-

and

Thus the DWT filtering steps (2.3) and (2.6) can also be implemented by the
filter convolutions (2.16) and (2.17) followed by decimation at each step of the

transform.

Matrix representation

As well as the cascade algorithm, we can represent the DWT as a matrix
equation

d =Wt (2.19)

where IV is an orthogonal matrix. Recall that in fact we define the coarse
scaling coefficients to be the function values contained in f, so the argument in
the equation above can also be taken as c¢j. The matrix is orthogonal due to
the orthonormality of the wavelet bases from the associated MRA. The matrix
W can be seen as a change of basis matrix from the basis {4} reqo,...27-1} of
V; to the basis {¢} U {¥;r}jeq0,...7-1},k€{0,...21—1} of the full decomposition of
the DWT.
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DWT Boundary conditions

It often arises that the wavelet filter used in a DW'T decomposition reaches
outside the range of the data being decomposed. This does not happen with the
Haar wavelet, but is likely with Daubechies’ wavelets. Several methods have
been proposed in the literature to deal with this issue. Nason and Silverman

[76] suggest some choices for handling boundary problems:

symmetry. The function data is reflected at the endpoints, to extend further

than the original sampled function vector.

periodic. The function to be decomposed is taken to be periodic on the range

of the data, so that f_y ., = fy, =f; for k € {0,..., N — 1}.

zero padding. The function values are assumed to be zero outside the range

of the vector f.

Other solutions to this issue could be used. Cohen et al. [27] designs
wavelets specifically for the interval, which are wrapped outside the boundaries
of the interval [0,1]. The lifting scheme, which is introduced in the next section
and explored extensively in the following chapters of this thesis, can deal with

boundary issues.

2.1.4 Other wavelet transforms
Non-decimated wavelet transform

Coifman and Donoho [28] and also Nason and Silverman [78] explore the non-
decimated or stationary wavelet transform (NDWT). This transform uses the
convolution operators above, but does not decimate at any step of the DW'T.
Since a vector of function values can be completely represented using only
the augmented vector (2.15), the NDWT leads to an overcomplete wavelet
basis for an input signal, due to not decimating. Recall that the decimation

operators Dy and D, are defined to take the even or odd elements of an input
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sequence respectively. In the normal DWT, we use D, to decimate at each
stage. An alternate (and equally valid) way to decimate could be to use D,
instead. Nason and Silverman show that the non-decimated discrete wavelet
transform is strongly linked to the e-decimated discrete wavelet transform. In
this variant of the DW'T, a choice is chosen of how to decimate at each level

of the transform. Let € have the binary representation

E=¢Ep€1..-EJ-1-

Then for each coefficient vector c;, the number £;_; is used to determine
whether to decimate with Dy or D;. It can be shown that every coefficient
produced by an e-decimated transform can be found in the coefficient sets

resulting from the NDWT. For more details, see [78].

Wavelet packet transform

Wavelet packets are discussed in the papers by Coifman and Wickerhauser
[29]. These transforms, as well as using the smooth vectors c¢; to produce
new decomposition coefficients, use the wavelet coefficient vectors d;. This
also results in a redundant (overcomplete) set of decomposition coefficients. A
subset of these coefficients are then selected to form a representation of the
function being decomposed. Coifman [29] provides a method for searching the

coefficient subsets for the “best basis”.

Biorthogonal wavelets

Biorthogonal wavelets were first introduced in Cohen et al. [26]. Different
wavelets are used for the decomposition and reconstruction transforms. These
wavelets exhibit greater symmetry, whilst still keeping compact support. The
price, however, is that orthogonality is lost, and hence the wavelets satisfy
biorthogonality relations. The multiresolution analysis framework is reviewed

in the biorthogonal setting in Section 2.2. The lifting scheme [95, 96], which
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appears in Section 2.2, is a method of creating biorthogonal wavelet bases with

desired properties.

Multidimensions

The multiresolution analysis framework described above in Section 2.1.2 is
for L? functions on the real line. However, Mallat [72] shows the same ideas
can be extended to d dimensions, by considering wavelets ¢ € L%(R?). How-
ever, for practical examples, it is easier to construct multidimensional MRA
structures by using the tensor product of existing one-dimensional multireso-
lution analyses. For example in two dimensions, suppose we define a subspace
Vo = Vo ® Vi, and the orthogonal subspace Wy, similarly to above. Then
through the properties of tensor products, the two dimensional space inherits
the scalable and orthogonal structure of the original MRA. This results in or-
thonormal bases for orthogonal subspaces Wj in an analogous way to Theorem

2.4. This construction is often used in applications such as image analysis.

2.2 The Lifting Scheme

We have seen in the last section that wavelets provide a useful alternative
to Fourier transforms for decomposing functions, and through the DWT we
have a mathematical theory with which to construct wavelet bases for use on
sampled signals. However, there are limitations of classical wavelet methods.

In practical settings, for example for finite length signals (on intervals,
say), there is the problem of boundary handling. As suggested in the previous
section, there are corrections which could remedy this. However, the methods
described can be disadvantageous: if we pack out the signal at the boundary
with zeros, this increases the number of coefficients to decompose using the
transform; periodizing the signal over its range interval creates the possibility

of boundary discontinuities (if the values of the signal at the beginning and
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end of the interval do not match).

Also, the classical structure does not extend easily to more general settings,
such as irregularly-sampled data. Irregular data methods have previously in-
volved a modification of usual wavelet procedures, such as using pre-processed
data, which we would ideally like to avoid.

There are other settings in which classical wavelet transforms are unsuitable
or problematic. For example, recent work on bounded domains, curves and
surfaces appears in the literature [87, 88]. Wavelets are normally adapted
to these non-standard situations. Since the main focus of this thesis is to
explore nonparametric regression techniques for non-equispaced data, these
so-called second generation wavelets, used in general situations, will provide
the mathematical tools for work in the later chapters.

In this section, the lifting scheme [95, 96| is introduced. First developed
by Sweldens and others in the mid-nineties, it is a method now commonly
used to build general wavelet transforms with desired properties, which are
also computationally efficient.

Initially we present multiresolution analysis, considered in the last section,
but from the more general second generation wavelet viewpoint. The lifting
scheme will follow naturally from this theoretical background. A more intuitive

and practical approach to lifting is then outlined.

2.2.1 Multiresolution analysis for second generation set-

tings

The name lifting scheme comes from the fact that we first begin with a very
simple multiresolution analysis and then add more and more wavelet properties
until we have the desired structure for the situation in hand. Second generation
wavelets are no longer generated by one single (mother) wavelet. Our approach
follows [96].

We work on a general L? space. Let L? = L?(X, Y, 1) be a measure space,
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with X C R, ¥ a o-algebra, and mu a measure on Sigma.

Definition 2.8. A multiresolution analysis (MRA) of L? is a system of
closed subspaces {V;|j € J C Z} of L? such that:

Vi CVin
* m =17 ie UJ-EJV} is dense in L?

o for each j € J, V; has a Riesz basis (see 2.9), given by functions

{pjxlk € KC;} for some index set K;. Assume KCj C Kji1.

Sweldens considers the possible choices for 7 of N and Z, but for the pur-
poses of this exposition, and to relate ideas to the MRA wavelet construction
in Section 2.1.2, we will impose J = Z. In this case, there is the additional

condition corresponding to Property 3 of Definition 2.2:

[ Vi={0}
j€T
We want to keep the properties of first generation wavelets, but also relax
the conditions on the setting we work in. This is where second generation
wavelets come in. However, this flexibility comes at a price; the cost of the
extra flexibility to handle irregularity and bounded domains is in the loss of
translation and dilation of a single wavelet function. In general, orthogonality
of bases uses a lot of degrees of freedom and limits symmetric analysis and
synthesis systems. Hence properties of an orthogonal MRA are hard to achieve
- for example, the Haar basis forms the only orthogonal MRA for which the
(real) wavelets are compactly supported and symmetric. Instead, we consider
biorthogonal bases. As well as the primal MRA above, we now define a dual
multiresolution analysis with corresponding subspaces ‘N/] and scaling functions

¢; k- These dual scaling functions satisfy the biorthogonality relation

<$j,k; Pj k! >= 519’]9! for k, k' e ]Cj, (220)

26



2.2. The Lifting Scheme

where dj 4 is the Kronecker delta symbol.

Similar to the first generation setting, we define the order of the primal and
dual MRA to be N if any polynomial of degree at most N — 1 can be written
as a linear combination of {@o x}rer, Or {Pox}rex, respectively.

Since @;x € V; C Vjy1 and {@;114}kex; is a Riesz basis for Vj, 1, we have

the refinement relation

Pin(®) = Y hjks @iera(z). (2.21)
lEK 11
Note that now the filters have three subscripts; the coefficients are both
scale (j € J) and position (k € K;) dependent. We get a similar equation
from the dual MRA

Zir@) = D2 hiks Giraa(a) (2.22)
lEK:j+1
In practice, the filters above are finite, and so the sets L, = {l € ICj 1| hj 1 #
0} and IC), = {k € Kj| hjx; # 0} = {k € Kj|l € L} are finite and uniformly
bounded. For the rest of this discussion, we assume that the filters A (and

later g) are finite.

Recall that in the first generation wavelet case, each scaling function and
wavelet has a unique interval associated to it (for one-dimensional functions).
Due to the scaling property of the MRA, each interval is split into two equal
subintervals when going from the level j to the level j + 1. We now define the

analogue of this dyadic structure for the second generation setting. We follow

Sweldens [96].

Definition 2.9. a set of partitionings is a set of measurable subsets {S; | j €

J, ke K(j)} such that
1. V5 € T, Upexg) Sik =X
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2. K(j) CK(j+1)
8. Sjt1,k C S;p for some ke K(®j)

4. For fized k € K(jo), ;5o ik = {jn}

In other words, every interval associated to a scaling function is wholly
contained in an interval at the next (coarser) level. Further, the points z;
defined by the last property are just the points which divide X into the disjoint
partition in the first condition. These points are known as interpolating points.
Note that the number of interpolating points increases as the resolution level
increases. The method used to decide where the interpolating points occur is
called a subdivision scheme. In the Haar wavelet case, the interpolating points
divide the interval [0, 1] by successively splitting subintervals into equal parts,
resulting in the intervals [277k, 277 (k + 1)) for fixed j and k € Z (see Example
2.6). In the next chapter, we introduce algorithms which use sets of interpo-
lating points to define scaling functions associated to subintervals of the real
line. Sweldens [96] describes how to use a filter and a set of partitionings to
construct scaling functions and dual scaling functions satisfying the refinement

relations (2.21) and (2.22).

Wavelet functions

In the first generation MRA, the orthogonal complement of the approximation
subspaces V; was used to define wavelet bases for L(R). From [96], we have

the equivalent definition.

Definition 2.10. A set of functions {¢; m}jes, mem;, where M; = Kj 1\ K;

1s a set of wavelet functions if

1. The space W; := span{y;m}mem;, is the complement of V; in V1 and
W LV,
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2. The set {%—m is a Riesz basis for L* *

[1%5,mll }jEj, mEM,;

We define the dual wavelet {bvj,m similarly for the complement spaces Wj
orthogonal to the primal approximation subspaces V. The orthogonality con-

ditions mean that the wavelets form a biorthogonal system, in the sense that
(Wjms Vit am') = 051 O (2.23)

From the filters, (primal and dual) wavelet refinement relations can be

derived of the form

Vim = Zgj,m,l ¢j+1,4 and
l
Vim = Zﬁj,m,l Djt1,0- (2.24)
I
Again, we assume that the filters are finite, which leads us to define the
sets Lim ={l € Kj11| gjmy # 0} and M, ,, = {m € M| g; 11 # 0}.

From the refinement relations, the filters {h, g, 71, g} can be seen to be a set

of biorthogonal filters :

Definition 2.11. A set of filters {h, g,%,’g}} is said to be a set of biorthog-

onal filters if the following equations hold

E Rjgahjr i = Opp E 9imilir =0,
p !

E 9jmi Gjm' i = Ok E Rkt Gjmy = 0.
! I

Note that the relations in this definition are analogous to the equations

(2.7) and (2.8).

!This condition is for when .7 = Z. There is a similar condition for when .7 = N, which

is that the set {”gj—:”} is a Riesz basis for L2.

U{ $0,k }
jeg, mem;  Uleorl Jrex,
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Similar to the first generation case, we can define the wavelets and dual

wavelets to have vanishing moments.

Definition 2.12. The wavelets and dual wavelets have N (resp. 1<T) vanish-
ing moments if for any polynomial P, of degree p with 0 <p < N —1 (resp.
N — 1) we have

(Pp,Vim)rz = 0 forjeJ,meM; or

<Pp77$j,m>L2 =0 fOTjEJ,mEMj.

Following the considerations of Example 2.6, the order of the primal and
dual MRA are linked with the number of vanishing moments of the primal and

dual wavelets.

Now suppose f € L2. Then f can be expressed as
f@) = djmtjm(2),
Jm

where the expansion coefficients are now djn, =<f (), ;m(z)>.

2.2.2 Fast wavelet transform

As in the normal DW'T, there is an equivalent fast method for the computation
of scaling and wavelet coefficients from the scaling coefficients at a finest chosen

scale. From the filter refinement relations, we obtain the forward recursions

Cik = Zhj,k,lcj+1,l, and (2.25)
€L, 1

djm = Zﬁj,m,lcjﬂ,z, (2.26)
lEZj,m
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and the inverse transform recursion

iyt = O _hjkiCik+ Y GimiCim (2.27)

kE’C]‘,l mEMj,l

for the finite filter sets defined in the text. As before, this allows us to start
with the coefficients at one level, and calculate coefficients at all coarser levels
by implementing the equations (2.25) and (2.26). Note that the filters & and
g are for the decomposition of a function, and h and g for reconstruction. The
four filters can be associated with the four operator functions {#, 7-NL, g, 5} as

before.

Remark. As well as the method of working in this section, the second
generation wavelets and MRA framework can be developed from an alterna-
tive viewpoint. Daubechies [35], and Cohen et al. [26] work through the
construction of (dual) multiresolution analyses, but instead starting with four
biorthogonal filters, subject to certain conditions (biorthogonal filters do not

necessarily give rise to biorthogonal functions — see Theorem 3 in [26]).

2.2.3 The lifting scheme

We now introduce the lifting scheme, which will become very useful in later
discussions. We restrict ourselves to finite filters, so as to ensure compactly

supported wavelets. Our description follows that of Sweldens [96].

Theorem 2.13 (The Lifting Scheme). Let {hOId,/NzOId,Q'Old, g°4} be a set of
(finite) biorthogonal filters. Then another set of biorthogonal filters {h,lNz, 9,9}
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can be found from

_ old
hike = hik
7 _ 7Jold ~old
Pk = hig,+ E :Sj,k,mgj,m,l
m
_ old __ ) old
9jmi = Yjmi E:Sjak,mhj,k,l
k

~ ~old
gjamal - gj,m,l'

From the remark, we can use these new filters to construct a pair of new
multiresolution analyses. Using these filters, the scaling functions and wavelets

are modified in the following way:

Yik = O (2.28)
Gik = D PG+ Y Sikmim (2.29)
l m
Vjm = ]?ig_zsj,k,mﬁpﬁlkd (2.30)
k
Vim = Y G5B (2.31)
!

This modification of the wavelet and scaling functions is called primal lift-
ing, since the primal scaling function is left unchanged. Note that in primal
lifting, instead of using scaling functions on the next finer level to express
the new wavelet (as in equation (2.24)), scaling functions and a wavelet on
the same level are used: we construct the new wavelet by simply subtracting
translates of the scaling function from the old wavelet. Note also that the dual
functions change. From the theorem, the filter g remains the same after primal
lifting. However, the dual wavelet produced in equation (2.31) changes, since
it is built from scaling functions which have been modified through equation

(2.29).

Through appropriate choice of the coefficients {s;m}jeskex;mem;, We

can build wavelets with desired properties, with the equation (2.30). Recall
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that a wavelet has IV vanishing moments if equation (2.12) holds. Using equa-
tion (2.30), this translates into choosing the coefficients {s;s,} such that
(Pp, ﬁi(ri) =k Sikm{ Fps Spﬁ}cd .

Sweldens notes that in imaging applications, for example other properties,
such as the shape of the resulting wavelet, could also be chosen by specifying

the coefficients.

As well as performing lifting on the primal MRA, the dual wavelets can
be lifted also. In the dual lifting scheme, the dual low-pass filter h and the
primal high-pass filter g remain the same. The filters {14, hold Gold gold} are
transformed into a set of new (finite) biorthogonal filters {h,?z, 9,9} by the

formulae

_ old § : >, old
h/jakal - h],k,l + S]=k7mgj,m,l
m

_ T old
hikt = Bk
_ old
gj7m5l - g],m’l
~ _ ~old } :~_ 7 old
gjym;l - gjvm,l - S],k,mhj,k,l'
k

and so the wavelet and scaling functions are changed by

Vjk = Zh('jf,l(toj+l,l+zgj,k,mwj,m (2.32)
l m
Gik = Ppk (2.33)
Vjm = zgﬁﬁ,l@jﬂ,l (2.34)
!
Vim = G — D SikmPri- (2.35)
k

We can specify the coefficients {5 s} in equation (2.35) according to the
properties of the dual wavelet we want to add for the situation in hand, for

example, vanishing moments.
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2.2.4 Fast lifted wavelet transform

Using the formulation of the lifting scheme, it is possible to adapt the second
generation fast wavelet transform described in equations (2.25), (2.26) and
(2.27) to incorporate the new (biorthogonal) filters. By applying the primal

lifting scheme to the fast wavelet transform, we obtain

_ old old
Cik = E : kl Ciyig T E :Sy,kmd .

= i+ Z Sik, md;ig, (2.36)

where ¢fi' and df}5 are the coarse scaling and detail coefficient from the
MRA with (unlifted) filters: we use the fast wavelet transform and then lift
the coarse scale coefficients using the (old) detail coefficients.

The equation (2.36) is known as the fast forward lifted wavelet transform.
The primal lifting scheme described above can be viewed as updating the coarse
scaling coefficients with the detail coefficients. This notion of update is exam-

ined in more detail below.

Similarly, we obtain the fast inverse lifted wavelet transform recursion

Cit1,0 = Zh](?,lkd,l (Cjk Zsj,km Jm) + Zgjoirdbl o (2.37)
k

In other words, we first unlift the scaling coefficient and then perform the

inverse transform using the old filters.

Now considering the dual lifting scheme, again by combining the fast wavelet
transform and the lifting equations for the new biorthogonal filters we get the
fast dual lifted wavelet transform. Essentially, this is performed by obtaining
the coarse coefficients from those at the finer resolution (using the fast wavelet

transform), and then using the scaling coefficients produced to predict (see
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below) the detail coefficient for the new MRA.

_ ~old old
djm = 95miCi+1.k — E:Sy,km

= dOId Z Sj.k,mC (238)
since the expression ), g;’}g lcjoidl . 1s just the old detail coefficient from the

fast forward transform equation (2.26).

The wnverse dual lifted transform is given by the equation

Ci+1,0 = Z i,k lco,ld + Zg?ﬁl (dj,m + Z Sj.k, mCJOIk:d> . (2.39)
k m

Note that the construction of the new biorthogonal filters using equations

(2.28)-(2.31) and (2.32)-(2.35) is unnecessary when implementing the fast

lifted wavelet transform: all computation is incorporated into the equations

(2.36)—(2.39).

Alternating primal and dual lifting steps can be used on a pair of dual
multiresolution analyses. This procedure thus builds up desired properties of
the MRA by first modifying the primal wavelets, and then the dual wavelets.
This is called the cakewalk construction. It can be shown (see Sweldens [96])
that lifting the old wavelet to the new wavelet does not change the number of
vanishing moments of the dual wavelets, and hence the vanishing moments of

the primal and dual wavelets can be increased in turn.

2.2.5 Stability of wavelet transforms

Now we make a slight digression about the stability of wavelet decompositions
produced by lifting transforms.

Classical wavelet transforms like the DWT use orthonormal wavelet bases,
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which result in stable transforms. The stability of wavelet transforms has been
well investigated, and it has been shown that orthogonality of wavelet bases
are strongly linked with transform stability: non-orthogonality of a basis will
introduce instability of the associated transform.

Instability in wavelet transforms basically means that there will be a de-
crease in reliability of thresholding of sparse wavelet coefficient sequences in
regression and smoothing applications: small changes in wavelet coefficients in
sparse expansions will have larger effects in resulting function estimates.

When constructing second generation wavelet bases, for example with the
lifting scheme, the wavelets in function representations are biorthogonal Riesz
bases from the underlying multiresolution analysis structure. Recall from equa-
tion (2.9) earlier, that a Riesz basis is a system of functions {g(x — k) } ez such
that 3 A, B > 0 with

2

Al < < BJAll, (2.40)

Z Aig(z — i)

1€EA

for any A C Z and any coefficient sequence (\);, € I*(R).

Definition 2.14. The condition number of a (Riesz) basis is the quantity

A

k = %, where A and B are the orthogonality constants as in the definition of

a Riesz basis.

The condition number gives us a measure of instability of a wavelet basis.
For stability (and orthogonality) of a wavelet transform, we would want the
condition number of a wavelet basis to be close to one. High values of condition
numbers indicate instability. An alternative definition of the condition number

of a (wavelet) basis is from the formula

K= Wl W, (2.41)
where W is the transform matrix obtained from the wavelet decomposition.
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Note that we use W to denote the transform matrix, as opposed to W in the
case of the DWT. This is due to the decomposition matrix being constructed
using the dual filters. The matrix associated to the inverse transform (denoted

W) is simply the inverse of the matrix W. Here, the norm || - ||:2 is taken to

mean ||W]| = \/Z?:l > i ij for W an n x n matrix.

The paper [91] features a recursive method of constructing a transform

matrix using the decomposition filters H and G.

Stability of lifting schemes

Unfortunately, for irregularly spaced data, it is not guaranteed that wavelet
bases produced through lifting are Riesz, and hence orthogonality (and there-

fore stability) does not necessarily hold.

The stability of lifting transforms was investigated in Simoens and Van-
dewalle [91]. The authors conclude that for stability of second generation
wavelet transforms using the odd/even split (described below in Example 2.15),
the weights in the prediction and update lifting steps need to be uniformly
bounded. A local semi-orthogonalization of the prediction operator is sug-
gested to try to improve stability. The wavelets are imposed to be orthogonal
to the scaling functions at the same level. This removes any vanishing mo-
ments that the dual wavelets possess, so to counteract this, an update stage is
performed afterwards to build the vanishing moments again.

Vanraes et al. [98] study the effects of stability. Their study discovers
that the update weights in the primal lifting step are affected by the scaling
functions from prediction. Highly irregular data can cause problems due to
using information in data that is relatively far apart in prediction and update
steps. This could result in undesirable scaling function properties. This is
exhibited by high transform matrix condition numbers.

In the next chapter, we will investigate the stability of our adaptive lifting

transforms.
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2.2.6 The lifting scheme: computational approach

Let us now introduce a more computational approach to the lifting scheme.
The viewpoint which follows demonstrates the thinking behind what has been

described above, and clarifies choices for dual and primal lifting.

The basic idea is as follows. Suppose we have a data vector, f, repre-
senting an L?(R) function, f. Our motivation, as usual in signal processing
and wavelet basis constructions, is to try and find a more efficient way of
representing the data vector. We accept that this may result in a loss of in-
formation about the signal, or approximation of the original signal, provided
that this loss is “small”. This is an obvious benefit in applications such as data
compression. Our aim is to try and take advantage of the correlations between
different parts of the signal. If we do this, then we can approximate some parts

with others, thus making the storage and reconstruction process more efficient.

As in Section 2.1.3, suppose the data vector is of length n = 27 and is sam-
pled regularly. Again, define c;j, to be the function values, i.e. ¢;, = f(tx) =
fr  for sites t, and k € {0,...,27 — 1}. Here J denotes the finest scale we are

working from.

First we subsample the data, that is, split the vector into two subsets. Let
us denote the two indexing sets of the data components by IC and M, so that
KUM = {0,...,n — 1}. In the notation of below, f = Merge(f®, fM). If
the two subsets of the signal are strongly correlated, then we will be able to

‘predict’ the whole signal fairly accurately from one of the subsets only.

However, it is normally not the case that a signal can be split into two
subsets to achieve perfect reconstruction from using one of them. Hence we
predict one subset using the other, and encode the difference between the
prediction and the original part of the data vector (dual lifting). In this way,

we can still reproduce the signal without any loss of information. With this
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operation, we create the two vectors {cj_1 }rex and {ds_1x}rerm. The vector
dj 1 contains the coded difference of the prediction. These form the scaling
coefficients and detail coefficients as in the discrete wavelet transform case.
So a good prediction will produce small detail coefficients and thus a sparser
representation of the function.

We now update the scaling coefficient vector, using the two vectors we have
at our disposal (primal lifting). The motivation for using an updating step is
that in many applications, we would want to preserve certain properties of the
low pass coefficients at each decomposition level. For example, in image pro-
cessing, a constant overall (average) brightness of an image is usually desired
at each level.

Computationally, the new scaling coefficients are stored in the same place
as the old scaling coefficients so the algorithm has efficient storage. This is

then repeated.

In operator notation, this can be formulated as
Split. (CJ’CJ, CJMJ) =: Split(CJ)

Prediction. dj ; := c;M’ — P(cy*), where P(-) is a prediction operator.
Typically, we choose P so that it makes use of the correlation between

c;M7 and cy*v.

Update. cj_1:=c3* +U(dj_1), where U(-) is an update operator based

on the wavelet coefficients.

Repetition of this procedure will completely decompose the signal as a
normal multiresolution analysis would. All classical filter banks can be de-
composed into an alternating sequence of predict and update lifting steps with
methods involving Euclid’s Algorithm and Laurent polynomials, as shown in

[36].
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Dual Lifting Primal Lifting

() -

A

V
f=c; | Split P U
A

~ chCJ {>@—> Cy_1

Figure 2.4: A diagrammatical view of the wavelet lifting scheme. The lift-
ing steps defined by the operators P and U can be combined for a cakewalk
construction of wavelet properties.

Note that this lifting scheme procedure is easily inverted as the steps:
Remove update: c;* =cy_; — U(dy_1)
Remove prediction: ¢y =dj_; + P(c;*V)
Merge: cy =: Merge(cs*7, c;*V).

Note that the same operators are used in the forward and inverse trans-

forms, only with a change of sign at each step.

This computational version of the lifting scheme agrees with the MRA ver-
sion introduced earlier. The lifting scheme is superior to the classical wavelet

transform in the following ways:

1. By an appropriate choice of P and U, one can build wavelets with desired
properties, for example vanishing moments, or resemblance to specific

features of functions (used in feature extraction and recognition).

2. There is an in-built way of calculating the wavelet transform: the wavelet
coefficients are just stored in the place of the function values f™ at each
stage, and the scaling coefficients are stored in the function positions f*.
In this way, the new filters do not have to be worked out explicitly,and

so no extra memory is required to preform the transform.
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3. It has a fast reconstruction and it can be easily inverted.

4. Tt can produce wavelets which are needed in a more general setting than
traditional transforms, for example on bounded domains, curves and sur-
faces, and irregular grids, thus having greater flexibility. We can adapt
the wavelet transform produced by lifting to a specific situation by choos-
ing the prediction and update operators carefully. In the next chapter, we
demonstrate an adaptive lifting scheme used for nonparametric regres-

sion, in which the predict and update steps are designed for efficiency.

Example 2.15. We will now briefly outline some simple lifting transforms.

The Haar transform

Firstly, we need to split the data into two groups. A trivial choice is to take
one set as the even coefficients and the other as the odd ones. These are known
as the polyphase components. For the purposes of this discussion, assume that
the data has length a power of two, so that K and M are the same size. If we
take the even coefficients as the scaling coefficient representation of the original
data, that is, ¢;® = {f;2}, then the other information is then contained in
the odd coefficients. If two consecutive function values are similar, then their
difference will be small on average. We predict an odd coefficient with its
(right) even neighbour (the next data point), encoding the difference between

the approximation and the original data vector in the wavelet coefficients

dJ—l,lc = fJ,2k—1 - fJ,Zlc-
We now update the even coefficients by
Ci—1k = Crp+ dy_1,/2.

This choice of prediction and update corresponds to the Haar wavelet. Note
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that with this update, the average is preserved, since, retracing the lifting steps,

cr—ik +di_1x/2= fron+ f‘]’%_lz_ Joan = Lo +2fJ’2k_1.

The prediction step ensures that the wavelet coefficients will be zero for con-
stant parts of the function, i.e. the dual wavelet has one vanishing moment.
Delouille et al. [37] and Delouille et al. [38] discuss an (unbalanced) Haar lift-
ing transform which generalizes the Haar wavelet for irregularly-spaced data,

and explores adapting the technique for higher order wavelets.

The Linear Wavelet

The linear wavelet uses a slightly more complex prediction step:

1
dj—1k = frok—1— §(fJ,2k + fro6-2), (2.42)

that is, the odd coefficients are estimated by the average of the two neigh-
bouring even coefficients. For the moment, we will assume that this sequence
is infinite, and return to the finite case a little later. This prediction has the
obvious property that if the original signal is (piecewise) linear between the
even coefficients, the corresponding wavelet coefficients will be zero. Hence
the coefficients can be seen to encode how much the signal fails to be linear.
Similar to above, if in the update stage the aim is to preserve the average of

the signal (level independently), we want to maintain

ZCJ—LIC = % ; fk. (243)
k

Using the same form as the prediction stage, we have an update

ci—ie = frox +oa(ds_1, + droip41) (2.44)

and using (2.42) and (2.44) to solve the average equation (2.43)
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NS
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2%—4  2%k—3  2%k—2  2k—1 2%k 2%+1  2k+2  2k+3
Figure 2.5: A linear prediction scheme. The diagram shows that for the next
(coarser) scale, linear prediction (dotted line) results in the shaded area being
redistributed to maintain the overall level average. This has the effect of
increasing for—2 and for by di/4 from the original signal (heavy line) to the
lifted approximation (thin line). This is captured in the scaling coefficients
cx—1 and ¢;. Here the previous and next wavelet coefficients are zero since the

function is linear over the even samples.

1
2 S fw=) crw = > {fsmt+aldiip+dien)}
P k P
= Z fr2k + 20 Z dy-1
k k

— mek + 2012]6‘1,21971 - 26;—'22&%
k k k
= QaZ froe—1+ (1 —2a) ZfJ,%
k k

we get o = 1/4. Hence to preserve the average, the update step is

Ci—1k = frok + Z(dJ—l,k +d_141)-

From equation (2.44), the (dual) wavelet is also ensured to have one van-

ishing moment.

The lifting scheme is clearly not restricted to these cases. One could use

more complex prediction steps, such as a cubic approximation of the odd scal-
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ing coefficient c;o,—1 using the even coefficients cjox—1,Cox—2,cor, and coxto (two
on either side). This would have the effect of making the wavelet coefficients
zero on cubic pieces of the signals, hence giving the wavelets four vanishing
moments. We are not limited to splitting the data into even and odd subsets
either; moreover, the subsets do not have to be the same size. In the next
chapter, we describe “one coefficient at a time” lifting [59, 60], where only one

wavelet coefficient is predicted at each lifting step.

Remark. At the start of this section, we remarked that first generation
wavelets do not generalize to non-standard situations easily. It was noted that
the classical DWT needs boundary considerations when used on finite length
signals. When lifting, if a high order prediction scheme is used on a finite
signal, there may be insufficient data points when lifting near or on the signal
boundary. However, where no value exists, the prediction can be made using
copies of neighbouring data points where needed and then using extrapolation.
In this way, the correlation structure of the data is used wherever possible in
prediction.

In the exposition above, the data was assumed to be on a regular grid, that
is, sampled at equally-spaced sites. On irregular data grids, we could still use
the prediction and update operators as above, but the prediction coefficients
could vary depending on the irregularity of the samples.

These issues are considered in the next chapter when we introduce work

on adaptive lifting schemes.

2.3 Nonparametric regression

In this section, we review the standard statistical problem of nonparametric
regression, that is, estimating a function g from noisy observations, assuming

no particular functional form for the signal. The model used extensively in the
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literature is as follows. Suppose we have n noisy samples of the form
fi= g(tz) +¢; forie {1, ceey 77,}, (245)

where the sites are usually assumed to be regularly-spaced on the unit inter-
val (t; = i/n) and the noise is taken to be independently identically distributed
and typically Gaussian: ¢; ~ N(0,0?). Classical wavelet methods also assume

that n is a power of two.

In usual estimation techniques, we assess the performance of an estimator

g by its mean integrated squared error

MISE(g, g) /{g z)}’ dz. (2.46)

In many applications, however, we do not know the function ¢, and since
the data is sampled, we usually compute the estimate g at the sampled points

t;. Using the [? error, we then assess the estimator by the mean squared error
~ 1 ~
MSE(g,9) = — > @) — g(t:)). (2.47)

We now review some popular methods for estimating the function g. Ini-
tially, we outline a few non-wavelet smoothing techniques, before concentrating

on some aspects of wavelet estimators. For a fuller overview, see for example,

100, 1, 83].

2.3.1 Non-wavelet regression techniques
Local polynomial regression

Local polynomial regression estimators use weight functions W over a window

to fit polynomials of order p according to the (weighted) least squares criterion
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Zz:;[fi = Bo— - = Bplw -z 'W (%) : (2.48)

The minimizer of this equation is an estimate for the nonparametric re-
gression model (2.45). The bandwidth parameter h specifies the width of
the window, and affects the smoothness of the resulting estimate of g. This
method assumes that the underlying signal g has a certain degree of smooth-
ness. The software Locfit [69, 70] used in the next chapter is a variant of a
local polynomial regression estimator.

Other basis functions can be used as the weight functions in the linear
superpositions above, some with similar local minimization criteria. Popular
choices are, for example, sines and cosines (Fourier expansions) and kernels

(kernel smoothers).

Smoothing spline estimators

Another type of regression estimator uses smoothing splines. A smoothing

spline method finds the function p(z) which minimizes
S {f - u@)¥ + ) [ @) do.

The estimate produced is a piecewise cubic polynomial on subintervals of
the real line defined by adjacent regression ordinates {z;} (see for example,
[92]). These are also called knots. There is a trade-off between how close
the spline estimate fits the data, and how “wiggly” the estimate is, which is
controlled by the parameter A. The Comte-Rozenholc method [30] used in
later simulations is similar to a smoothing spline estimator. This is described
fully in the next chapters.

It is possible to use local weights for smoothing splines as well as local
polynomial estimators. For more information on these smoothing techniques,

see for example [102], [92] or [15].
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2.3.2 Non-linear wavelet shrinkage

We now explain how wavelet shrinkage works. For a review of the ideas pre-
sented below, the reader is referred to [76], and also to the important papers
[39, 40, 41].

In 1994, Donoho and Johnstone [39] proposed the idea of thresholding,
which has now become the norm to remove noise in wavelet shrinkage. To
estimate the function vector g from the noisy observations f we proceed as

follows:

1. Decompose the vector with the DWT down to some primary resolution

level.
2. Threshold the wavelet coefficients to remove the noise.

3. Invert the DWT to obtain the estimate of f, denoted g.

The motivation behind this procedure is that thresholding in the wavelet
domain leads to smoothing in the time domain. We mentioned earlier that
wavelet representations are often sparse, i.e. most wavelet coefficients in the
expansion of a signal are zero, with a few large coeflicients.

With this in mind, if we apply the DWT to the noisy observations f, due

to orthogonality of the transform, we have
djk =dj . + €k, (2.49)

where d = WI is the discrete wavelet transform of f as in (2.15) and

e = We is the DWT of the noise {€,x}. Similarly, d* = Wg.

The regression problem now is how to find the true wavelet coefficients d*
from the noisy wavelet coefficients d. The i.i.d. Gaussian noise random vari-

ables from the original model (2.45) are transformed via the DWT into i.i.d.
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Gaussian noise random variables e. Since we expect that the true wavelet co-
efficients to be sparse, the aim of thresholding is to decide which of the noisy

coefficients in d are purely noise (near zero) or signal information (large).

Thresholding schemes shrink values in the coefficient vector towards zero,
or replace the values with zero if their size is below the threshold level, 7.
There are various thresholding methods, but two main rules are commonly

used. Suppose d is the coefficient to be thresholded. Then

Soft thresholding:

d = T*(d;7) = sgn(d) (|d| — ) I(d| — )

Hard thresholding:
d=T"d;7) = dI(|d — 1),

where 7 > 0 is the threshold level, and T is the indicator function.

Soft thresholding shrinks the coefficient d or sets it to zero, whereas hard

thresholding is a decision rule of whether to keep the coefficient or set it to zero.

Whichever threshold level is used, the extreme effects are the same: if too
low a threshold is used, the function estimate will still be noisy, whereas if too
high a threshold is used, the function estimate will lead to “oversmoothing”.
This leads us onto the question of how to choose the threshold, 7. A few

frequently used threshold selection methods are outlined below.

The Universal Threshold

It has been well documented and proposed in the now well-known paper by

Donoho and Johnstone [39] that the universal threshold performs well in many
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cases of denoising. Here the level is set to be

™ = /2log(n) o, (2.50)

where n is the number of datapoints (as above), and o2 is the noise variance

of the wavelet coefficients.

This threshold choice is motivated by the following result. If {Z;}icq1,...n)

are i.i.d. N(0,1) (white noise), then as n — oo,

P(max |Z;| < 4/2logn) — 1.

This means that using the universal threshold, any noise will be set to zero

with probability approaching one (as n increases).

To use this threshold, we need to know the variance of the noise, which
is rarely possible. The variance is usually estimated from the data, and [39]

suggests using

& = MAD(dy)/0.6745,

where MAD(x) = median(| z; — median(x)|). This estimate of the variance
uses the median absolute deviation of the finest level wavelet coefficients. The
rationale behind this quantity is that it is expected that the wavelet coefficients
at this level will be mostly noise, and the non-zero coefficients will not affect
the median of the absolute values. In practice, using the universal threshold

tends to oversmooth data, as shown by [75].

Donoho and Johnstone [39] implement soft thresholding of wavelet coeffi-

cients with the universal threshold under the name VisuShrink.
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Thresholding via Stein’s Unbiased Risk Estimate

Let p be the mean vector of a p-dimensional multivariate normal distribution
with observations z;, i.e. z; ~ N(u;1). A result proved by Stein gives a

method of estimating the risk of a nonlinear estimator of the mean vector.

Theorem 2.16. Suppose an estimator of u, [(x), is an estimator that can be

written as

B(x) = x + g(x),
where g = {gi}icq1,..p} 15 a function from R? to RP. If g is weakly differ-
entiable, then

E.|li(x) — pl* = p+ E{llg®)|* +2V - g(x)} (2.51)

15 an unbiased estimate of the risk, where
0
V.g= — ;.

At the beginning of this section, we introduced the soft thresholding func-
tion

T°(x; 1) = sgn(x) (|x| = 7) I([x] = 7).

By considering the cases when 7 > |x| and 7 < |x| separately, one can

easily derive the alternative form
T?%(x;7) = x — sgn(x) min(|x|, 7). (2.52)

Since this function is weakly differentiable, substituting this into (2.51)
gives that

p
SURE(x;7) = p — 2 #{i[ || < 7} + > _ min(|z[,7)? (2.53)

i=1
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is an unbiased estimate of the risk E, ||f2°(x) — p|*.

The natural choice to select the threshold, 7, is to choose the parameter

value

mSURY = argming., < 1555 SURE(x; 7). (2.54)

Donoho and Johnstone [40] show that the threshold 75URE will be at one

of the normal sample magnitudes |z;]|.

Donoho and Johnstone [40] also advocate a level-dependent thresholding
decision rule. Their Sureshrink procedure uses variance computations based
on wavelet coefficient sequences to determine whether to set the threshold for
the wavelet coefficient level j as 77UR" = argmin <re\/aiogn; SURE(d;; 7) or
the universal threshold. Here n; denotes the number of wavelet coefficients
in level j. In cases when it is suspected that the coefficients only represent
noise, that is, for sparse coefficient sequences, the universal threshold 7% is
used. This choice is motivated by the observation in Donoho and Johnstone
[40] that the noise content in the coefficient sequences tends to dominate the
SURE threshold computation, therefore resulting in oversmoothing due to a

low threshold value. The Sureshrink thresholding rule is implemented in some

of our simulation comparisons in later chapters.

Empirical Bayes thresholding

As mentioned before, the discrete wavelet transform produces sparse wavelet
coefficient sequences. There is a lot of work in the literature on Bayesian
thresholding, in which a positive prior is placed on the wavelet coefficients in
an expansion being zero. This prior is designed to capture the sparseness of
the wavelet coefficients. For summarizing texts, see for example [99], [74] or
[24].

Clyde et al. [25], Abramovich et al. [3] and Silverman [90] explore a nor-
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mal mixture form for the choice of the prior. Chipman et al. [21] discusses
thresholding methods arising from a mixture of two normals as a prior. The
latest incarnation of Bayesian thresholding comes from Johnstone and Silver-
man [61, 63]. Their method places a prior on the true wavelet coefficients of
the form

d5p ~ (1 —m)do + 77, (2.55)

where v is the density of the wavelet coefficient, conditional on it being
non-zero. Here 7 represents the (prior) probability of a wavelet coefficient
being non-zero. The authors suggest a heavy-tailed choice for v, such as the

Laplace distribution, or the “quasi-Cauchy” density described in [61, 63].

Recall from (2.49) that d; ~ N(d},,0?). For each wavelet coefficient d;,
we can find the posterior distribution of d}, (independently) conditional on
this observation, f(d;,[d;x). Based on this, the true wavelet coefficients d; ,
can be estimated using the median of the posterior distribution. Effectively,
this statistic acts as a thresholding method, since with a fixed 7, there exists
a value 7, with the median equal to zero whenever |d} | < 7, (see [63]). John-
stone and Silverman [61, 63] also consider different thresholding rules such as

the posterior mean, and soft or hard thresholding using 7.

Since it is expected that coarse resolution levels will result in important
signal information and sparse coefficient sequences at fine levels, this provides
motivation for assuming the mixture probabilities to be equal across each level,
and choosing them level-dependently. Johnstone and Silverman suggest that
m; are found with marginal maximum likelihood (MML) by assuming the ob-
servations are independent, and the noise level is estimated (if not known)
by the median of the absolute values of the wavelet coefficients at the finest
resolution level, as in [39]. The true wavelet coefficients are then estimated

with the Bayesian model above.
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2.3. Nonparametric regression

This thresholding technique is proved to possess good properties in a variety

of situations. Hence it is used heavily in the following chapters.

Cross-validatory threshold selection

Cross-validation is a technique used in general statistical methods to obtain
optimal values of parameters, from minimizing errors in approximation. In
particular, it is often used in estimating the optimal smoothing or bandwidth
parameter in density estimation. Here, though, we want to estimate the opti-
mal threshold level, based on the data. There are various norms which can be
used to measure the approximation error from cross-validation, but for pur-
poses of regression, minimizing the mean integrated square error (MISE) is a

popular approach. We therefore want to minimize

MISE(r) = ]E/ {ﬁ(x) - f(a:)}2 dz (2.56)

which results from minimizing the integrated square error (ISE)

/{f(x)-f(:c)}2 dx:/f(x)de-l—/fT(a:)Qd:c—Q/ﬁ(x)f(x) dz. (2.57)

There are different cross-validation methods. A popular type is the so-
called leave one out (LOO) cross-validation method. All datapoints except one
are used to obtain an estimate of the function in question, therefore predicting
the one point left out.

Since there is often no natural choice as to which particular datapoint
to leave out, the approximation is performed, leaving out each datapoint in
turn, and then the n different approximations are averaged to find the overall
approximation. This is consistent with the approximation being an unbiased
estimator. Since the first term in (2.57) does not depend on the minimizing

parameter 7, minimizing the MISE requires us to minimize the cross-validation
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condition

V() = / 7 (@) d — %Z Fi(m), (2.58)

where ﬁ,,,- is the estimate of f when leaving out the ith sample point.

Whilst this particular type of cross-validation is suitable for wavelet tech-
niques applicable on datasets of arbitrary length (such as the lifting scheme), it
will not work for the classical DW'T, since it can only handle data with length
a power of two. Nason [75] adapts this technique for the DWT. A point is
removed, and then the remaining data is split into two groups, corresponding
to the datapoints before and after the removed point. These are extended
to a dyadic length and used to form two estimates for the “left” and “right”
function values. These estimates are then augmented and used to predict the
removed point.

The author also proposes a two-fold cross-validation variant, in which half
the data points are used to predict the others. This method is then suitable
for the DWT, since the subset used for the prediction is of length 27, for some
J.

In later chapters, we use the general method of cross-validation for smooth-
ing parameter selection in some regression methods. For a more general ex-

ploration of cross-validation, refer to [93].

False Discovery Rate thresholding

Another area gaining interest recently is thresholding based on False Discovery
Rate (FDR). The FDR of a set is the expected proportion of false predictions
from a set of predictions through, for example, a sequence of hypothesis tests.
For multiple hypotheses, Benjamini and Hochberg [12] propose a technique for
controlling the FDR.
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In the context of wavelet coefficient thresholding, the problem takes the
form of a multiple hypothesis test that the detail coefficients are zero, that
is the hypotheses H;; : d;, = 0. As a method of analyzing a thresholding
procedure, Abramovich and Benjamini [2] suggest using a FDR setup to con-
trol the proportion of wavelet coefficients which are erroneously included in
the wavelet representation by the procedure. With this in mind, a threshold-
ing procedure is designed to maximize the number of coefficients included a
wavelet representation of a function, subject to the constraint that the FDR

of erroneous coeflicients is at most ¢, for some control quantity q.

2.3.3 Other regression parameters

We have seen that there is already a choice between using linear and non-linear
(wavelet) smoothing techniques for regression, which will affect one’s ability
to recover signal information accurately. As well as the choice of threshold as
a smoothing parameter, varying other aspects of wavelet shrinkage will change

our estimates obtained through the methods above.

Firstly, an important issue to consider is the choice of wavelet used in
the decomposition—threshold-reconstruction procedure. As a general rule, it
is generally thought that it is good practice to use a wavelet that is suitable
(in terms of vanishing moments) according to the smoothness of the signal g.
However, in all regression problems, the true nature of g is unknown, and often
we have no prior information to use in choosing a wavelet basis.

Secondly, the primary resolution level above which thresholding is per-
formed can affect smoothing performance. If the primary resolution level is
set too low (coarse), then some important signal information could be lost; if
it is set too high, then thresholding could lead to undersmoothing, thus being
left with a noisy function estimate after wavelet shrinkage.

This issue is discussed in more detail in Chapter 5, where the primary

resolution of adaptive lifting algorithms (introduced in the next chapter) is
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studied to try and improve smoothing accuracy.
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Chapter 3

Adaptive Lifting

Introduction

This chapter explores adaptive lifting algorithms and their ability to be used
in smoothing in a variety of situations. The work of this chapter, together
with Chapter 4 is joint with my colleague, Marina Knight. The algorithms

described here are featured in the paper [79], accepted for publication.

In the previous chapter, we discussed general wavelet shrinkage methods,
and detailed the lifting scheme as a tool for constructing wavelet transforms.
Let us return to the problem of nonparametric regression described in equa-
tion (2.45). Our aim is to recover a sampled function vector g from noisy

observations f, where the noise is assumed to be Gaussian. We have
fi=g(x;))+e forie{l,...,n}.

Classical wavelet transforms also usually assume that

1. The sample sites x; are regularly spaced. Furthermore, the data is taken
to be sampled from the interval. In other words, x; = i/n for i in the

range {1,...,n};
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2. the number of observations is a power of two, i.e. n = 2/ for some J;

3. Each observation has one (and only one) function value f;.

The general procedure in wavelet shrinkage (Section 2.3) is to wavelet trans-
form the data into a set of detail coefficients; modify the wavelet coefficients
(by thresholding) to remove the noise; and then perform the inverse transform
on the modified coefficients to obtain an estimate of the true signal at the

sample sites.

Unfortunately, the assumptions listed above lead to severe limitations in us-
ing some wavelet transforms for real-world data. There are many applications
which produce datasets from real-life situations, such as industrial or exper-
imental data, which do not satisfy these criteria: they are often irregularly-
spaced, for example, because of being observed at certain time points; or are
datasets of unspecified length. Moreover, certain applications have more than
one observation at each regression point. An example of this type of data is
the well-known mcycle motorcycle data, introduced by Silverman [89].

To perform the above wavelet shrinkage on irregularly-spaced data, classical
wavelet transforms often need to be heavily modified. This sometimes involves,
for example, a transformation of the data to the equispaced situation, which
can introduce unwanted error and possibly other problems. This also applies
when trying to deal with datasets of general length.

In addition to these issues, when performing the classical DWT, there is a
matter of how to decompose the signal samples in the model above. This leads
us to two main questions when considering wavelet shrinkage with the DW'T":
which wavelet basis should be used to decompose the data, and in particular,
how many vanishing moments should the wavelets possess? Some examples
of wavelet bases were introduced in Chapter 2. As noted before, the general
recommendation is to use wavelets with smoothness characteristics similar to

the true signal g. However, the regularity of ¢ is unknown in most situations.
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Nason [77] has investigated the choice of (first generation) wavelet basis for
signal decomposition, but in this case, we want the smoothness and general
characteristics of the wavelet to be allowed to change at each regression ordi-

nate x;, to reflect the function behaviour around that point.

In this chapter, we propose a new regression technique for irregularly-
spaced data, based on the lifting scheme, as introduced in the last section.
We employ “one coefficient at a time” lifting schemes in the algorithms, moti-
vated by being able to use the local properties of the signal data to represent
the function more accurately. Our methods exploit the features of the lifting
scheme, taking advantage of it being applicable to irregular design datasets of
any length.

Furthermore, one feature of our algorithms is that it is not necessary to
specify the wavelet functions to be used for different parts of the signal. The
signal properties are used to select from a range of different dual lifting (predic-
tion) steps, and thus we are able to introduce an automatic choice of wavelet
(and number of vanishing moments) into the design of the procedure, without
any user input.

Our methodology also allows for more than one f value at each z value, to
be able to handle data such as the mcycle dataset mentioned above, which is

not generically possible with classical wavelet shrinkage methodology.

The chapter is organized as follows. We first give a brief overview of wavelet
and non-wavelet methods for handling irregularly-spaced data. We then de-
scribe lifting “one coefficient at a time”, used to capture the local features
of the data at hand. Section 3.3.1 explains how we introduce adaptivity into
this lifting framework, and we discuss a few different issues resulting from
this. Section 3.3.3 deals with the modifications to the original adaptive lifting
algorithms so that they can cope with multiple observation data. Sections

3.4 and 3.5 show how the sparsity and denoising capability of our algorithms
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are assessed, and how well they perform on simulated data compared to both
wavelet and non-wavelet methods. We compare our technique against Locfit
[69, 70], smoothing splines and the Comte-Rozenholc method [30]. In addition,
we perform thorough comparisons with the Kovac-Silverman wavelet method
for irregularly-spaced data [67]. We also give the examples of the motorcy-
cle and real inductance plethysmography datasets to illustrate how well the

methods work compared to other popular smoothing techniques.

3.1 Wavelet methods for irregular designs

As mentioned above, the classical DWT cannot handle irregularly-spaced data.
Many techniques have been developed to remove this restriction to regular de-

signs. In this section, we outline some of the popular methods.

Cai et al. [19] makes a correspondence between the irregular regression
ordinates {;}icq1,...n} and the regular grid {i/n}icq1,..n) using a strictly in-
creasing mapping H such that z; = H *(i/n). Thus if we know the function
H, through the composition g o H !, the function can be estimated on the
regular grid, and then mapped back using H to obtain an estimate of g. If H
is unknown, then this function is estimated. However this does not produce a
good estimator of g, especially when g is smoother than H. To remedy this, for

piecewise Holder functions, the projection Proj, n=/2%" | fiehy

(x) is used
to form a new estimator for g, which exhibits good properties for piecewise
Holder functions. The thresholding procedure VisuShrink [39] is generalized
to select the smoothing parameter.

Sardy et al. [86] introduce four simple extensions of the Haar wavelet
basis to irregularly sampled data. Piecewise constant interpolation of the
irregular datapoints is used to generate new Haar bases. Examples of these

bases are the isometric Haar and asymmetric wavelets. For each extension, the

Donoho and Johnstone Visushrink [39] wavelet shrinkage procedure is adapted
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to take advantage of the wavelet structure. The isometric Haar basis can be

generalized to wavelets with higher order.

The authors of [20] consider the model (2.45), but where the ordinates z;
are independently uniformly distributed on the interval [0,1]. Considering the
order statistics z;), it is well-known that their expectations have values which
are equispaced on the interval, that is E(zg)) = #1 Thus the datapoints
(#1, fi) are treated as regularly-spaced, and the usual shrinkage procedure is

followed to produce an estimate of the regression function. This estimate is

shown to have good convergence properties.

Kovac and Silverman [67] use linear interpolation of the given (irregular)
data to a regular grid, that is, f:=Rfis defined, where R is the interpolation
matrix. Through interpolation, the method is suitable for datasets of arbitrary
length. The usual DW'T is applied to the interpolated data. The effects of in-
terpolation on the covariance structure of the resulting detail coefficients is
investigated and taken into account when thresholding. Various thresholding
techniques are discussed. Nason [77] uses cross-validation to develop an algo-
rithm in this situation to choose the primary resolution level, threshold and
wavelet simultaneously. This fast algorithm is applied to the Kovac-Silverman
(KS) procedure.

A penalized least squares method for estimating the wavelet coefficients
d;) is presented in the paper by Antoniadis and Fan [7]. This is initially
applied to the equispaced grid model. The authors prove that if the penalty
function has certain characteristics, then there exists a unique solution to the
least squares minimization problem. The universal threshold is adapted to
the situation in hand to form a new thresholding technique. The resulting
estimators are shown to outperform classical DW'T methods when considering
the L? risk. Estimators for irregular grid data were then constructed using non-
linear regularized Sobolev interpolators, that is, estimators which minimise a
penalisation criterion based on their Sobolev norm. These estimators were then

improved forming a regularized one-step estimator. Other penalty functions
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are discussed, which lead to other thresholding rules.

The nonparametric regression problem is approached in [82] by imposing
a probabilistic model on the z-values. Let X be a random variable with den-
sity h. The underlying multiresolution analysis structure is used to obtain
an estimate for the regression function E(f|X = z) by projection onto the
subspace Vj, i.e. it is expressed as the linear combination ), ;1@ , where
the expansion coefficients ¢;; are estimates of the scaling coefficients c; us-
ing the density h and the scaling functions ¢ ;. The asymptotic properties of
the estimator are investigated, and provided that h is reasonably smooth, it is

shown that the estimator has good performance.

Whilst the methods outlined can handle irregularly-spaced data, they of-
ten impose assumptions which may not necessarily hold, for example on the
regularity of g or on the distribution of the z;. Furthermore, some of the pro-
cedures need other functions to be estimated, for example, H in Cai et al. [19],
or h in [82]. Using interpolation to adapt wavelet methods to irregular designs
often introduces unwanted error, depending on the choice of how the data is

mapped to a regular grid.

In later sections, we compare the sparsity and denoising performance of
our adaptive lifting algorithms to non-wavelet methods as well.

The first of our comparisons is to the local polynomial regression implemen-
tation Locfit [70, 69]. Locfit fits a low order (linear or quadratic) polynomial
to the data in a sliding window. Locfit can handle multiple observations at
x-values.

Secondly, we compare the adaptive lifting algorithms to the S-Plus function
smooth.spline(), which performs cubic smoothing spline regression. General
estimators of this type are discussed in Section 2.3.

We also see how our procedures perform against the Comte-Rozenholc

method in [30]. This algorithm fits piecewise standard and trigonometric poly-
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nomials to a collection of knots to estimate the signal, in a fashion similar to
smoothing splines. The authors add automatic adaptivity to the algorithm
by allowing a large set of knot configurations and polynomial degrees to be
chosen. Using the two user-specified inputs of maximum number of knots and
maximum polynomial degree, the data-driven procedure decides which knot
sites to use and selects an optimum (mixture) set of polynomials with different

degrees to fit to the data.

3.2 Lifting “one coefficient at a time”

In Section 2.2 we introduced the lifting scheme, a method of constructing
wavelet expansions with an underlying biorthogonal MRA structure. In the
general irregular setting, it is not unreasonable to expect that function values in
a (small) region will be correlated, so to take advantage of the local properties
of the function, a logical step is to change our aim to predict only one coefficient
at a time. Before focussing on our adaptive lifting algorithms in more detail, we
explore lifting schemes in which predictions of only one coefficient are made
using all other datapoints. This approach was first discussed by Jansen et
al. [59, 60]. In particular, in what follows, we give a brief description of
the idea of single coefficient lifting in one dimension. Although this has a
slightly computational emphasis, we should point out that the MRA structure
of Section 2.2 holds here. We will support our heuristic approach in the next
section and next chapter with extensive simulations.

Suppose we have an irregularly sampled signal of length n, with sample
sites x;. Since we have n points, we index the levels by k € {1...n}, in other
words, so that the level describes how many data points are yet to be removed.

Suppose we also have constructed initial scaling functions, ¢y, i, satisfying
the constraint that ¢, x(z;) = d;x for i,k € {1...n}. Initially, we have that

the function f is expressed as
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f(.’L') = Z cn,k(pn,k(x)a
k=1

since at this stage, no coefficients have been lifted.

Since our regression problem is on the real line, we can construct intervals
associated to each gridpoint by ordering the z-values, and using the midpoints
between successive gridpoints as the interval endpoints. In this way, we can
take the initial scaling functions to be the characteristic functions of the in-
tervals associated to the sample sites, so that the scaling functions satisfy the

constraint above. From the constraint, we have

fi= f(ﬂﬁz) = Z Cn,k@n,k(xi) = Z Cn,k5z‘,k = Cny-

Now the motivation for the constraint on the initial scaling function is
demonstrated: we can use the observed function values as the initial scaling

coefficients.

Since we are lifting one coefficient at a time, there is still the issue of which
order we use to estimate the wavelet coefficients. For lifting individual co-
efficients, one way of choosing the order in which the points are removed is
to proceed in order of increasing support of the scaling functions (associated
interval length), since then in some sense we start by encoding the finest detail
areas and continue to the coarsest areas with most effect. If we denote the
scaling function integrals by Z, , this choice corresponds to finding j,, with

7, ;, = mingeqr,..n} Lnk- Note that in the notation of Section 2.2, we take

M, ={jn} and K, = {1,...,n}\ {Un}-

Next, we choose a set of neighbours counted by our indexing set [,,. Note

that here, we also index the neighbourhood by the stage n, since there is a
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correspondence between neighbourhoods and the removal stage. We use a
particular coefficient’s “neighbours” in the prediction of the coefficient, using
linear regression. The choice of which set of neighbours we use in the prediction
of each point is important to the description of introducing adaptivity into the
algorithms, so this issue is postponed until later. As described in Section 2.2,
the detail coefficient is calculated as the difference between the (old) scaling

coefficient and the prediction:
dj, = Cogy = ) GCns (3.1)

i€,

where the coefficients a™ are the regression weights from performing the
regression over the neighbourhood I,,. Where there is only one neighbour
in I,, then the point j, is predicted by f(z;), and the wavelet coefficient is
obtained from

dj, = Cnj, — Cn,i- (3.2)

For a function which is constant over the prediction neighbourhood, the
wavelet coefficient should be zero; it is easily seen that prediction with weights

satisfying >, af =1 has this property.

We then update the neighbourhood I, using the single detail coefficient
produced. The update stage has the form

Cn—1,i 1= Cn; + b;'dj,, Vi € In,i # jn. (3.3)

Note that the only scaling coefficients to be affected by the update lifting

step are the neighbours, so we also have
Cn1:=Cn,; foranyid¢ I, (i # j,).

In the update stage, we want to keep the quantity > ¢, [ ¢ni(2) dz con-
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stant from level to level (after we remove a point). This translates into the

equation

Z Cn,kIn,k - Z Cnfl,kl—nfl,k- (34)
k k

Since the only integrals to change after lifting a datapoint are those in the
prediction neighbourhood, which take a proportion of the lifted point’s scaling

function integral, this reduces to the equation

Cn.jnTn,jn + Z Cnjilni = Z Cn—1,iln—1,i- (3.5)

i€l, i€l,
By using the relations for the update lifting step, and rearranging this, we

get

Y Wi =T,

i€y

This equation is used to calculate the update weights ™. Lifting does not
guarantee stability of the transform. To find the update weights, the minimum
norm solution b = 7, ;, T 1/ > ;c; Zn 1, to this equation is suggested by
Jansen et al. in [60] to try and minimize instability of the transform. This
is the formula for the update weights which we use in our adaptive lifting
algorithms detailed in the next section. Note that the computation of the
update weights needs no more information than the present function integrals.

Note that the operations can be inverted in the normal way as the mirror

of the lifted transform to get the inverse transform.

In the update lifting step, the lifted datapoint is removed, and the inter-
val associated to that point is then divided up and distributed among the
neighbour intervals. In other words, when the detail coefficient replaces the
predicted scaling coefficient, the vertex is removed from the dataset, which

leads to the coarser grid. This decomposes f into the following expansion:
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f(.’L') = djnwjn (,’13) + Z Cnfl,igonfl,i(x)a (36)
1€{1,...n}\{jn}

where 1), and ¢,_;; are wavelet and scaling functions.

We have now lifted one wavelet coefficient. To recap, the procedure for this
is to identify the coeflicient to be lifted, j,, through examination of the scaling
function integrals; perform prediction and update lifting steps and change the
scaling function ¢, ;, into the wavelet 1;, with associated wavelet coefficient
dj,; by doing this, we obtain the representation in (3.6).

The algorithm proceeds by using the minimum updated scaling function
integral to choose the next coefficient to be lifted and repeating the steps
above. For further clarity, suppose we have already performed the transform
until stage r. In this situation, we have lifted the coefficients j,, jn—1,-- -, Jr-

We then have the representation

f(z) = Z dj 5, (2) + Z Cr—1,ir-1,4(2), (3.7)

ke{n,n—1,..,r} 1€{1,c.n\{Jn dn—1,--sdr }

where the d;, are the detail coefficients corresponding to the n —r + 1
wavelets 105, . Therefore the whole procedure at each stage can be performed
using the objects j,, I, (which is a subset of the unlifted coefficients), together
with the prediction and update weight vectors a” and b*. Using the interval
construction, a full decomposition of a dataset will consist of n — 1 detail co-

efficients and one scaling coefficient.

To see the effect of the lifting transform on the scaling and wavelet func-
tions, we set the data function equal to a specific scaling function or wavelet,

and then invert the transform. For example, suppose we want to find how the
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scaling function ¢,_1,; (I € I,) changes. Then we set all d;, and ¢,_1,, i # [ to
zero, but with ¢,_;; = 1. By inverting the lifting steps (3.3) and then (3.1),
¢y = 1and ¢,; = 0 for ¢ # | at the previous level, which implies ¢, ;, = a;.

Hence using the function expansion equation (3.7),

Or—1,1 = Prg + a;(pnjr- (38)

By integrating this equation, we get formulae for finding the updated scal-
ing function integrals. In this way, do not need to find the actual scaling

functions at each stage, but just use the resulting equation
IT—l,l = I”‘al + a,{"z;r;jr (39)

with the vector of finer scaling function integrals to choose the next coefficient
to be lifted. Obviously, the other integrals outside the neighbourhood I, are
not affected and so do not change.

A similar calculation with d;, =1, d;, = 0 (k # j) and ¢,—1; = 0 Vi leads to
the coefficients ¢, ; = —b] in the neighbourhood I.. Then ¢ j, =13, ; ajb].

Whence the updated wavelet is computed

% = (1 - Za:b:> Prjr — Zbggpr,i

icl, icl,
= (p'r’j’l‘ - Z b: (SOT,i + G:QOT,]',)
icly
= Qrjo— > b 014 (3.10)
i€y

Note that after one step of the transform, the new scaling functions are a
combination of the present scaling function and the old scaling function, and
in the case of the wavelet, it is a linear combination of the unlifted wavelet
and the new coarser scaling functions. This is different from the standard

wavelet multiresolution analysis, where the wavelet is a combination of scaling
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3.2. Lifting “one coefficient at a time”

functions on the previous (finer) level.

Notice also, that integrating the equation (3.10) leads to the equation (3.6),
but with the left-hand side equal to zero. This shows that the update stage
assumption (3.4) is equivalent to requiring that the resulting wavelet produced

after lifting has integral zero.

Similarly, the dual scaling functions and wavelets change as follows

Or_1p = Qi+ b;/l;;jr forl e I,
ij = {b/r,j,« - Z a:&hi'
iel,

Remark. In the description above, we construct the intervals partitioning
the support of f by using the midpoints between adjacent z-values as the
interval endpoints. With this construction, there is the issue of where to set
the endpoints of the first and last intervals. There are different possibilities
to resolve this matter, but in our computations, we have reflected the end
intervals, so that the first and last datapoints are in fact the midpoints of their
associated intervals.

Based on the literature on transforms on the real line [38], another method
of interval construction is to create the intervals with the datapoints being
the endpoints of the intervals. With this construction, we are faced with the
problem of defining the last interval, including assigning its length (since the

only information we have about this interval is its left endpoint).

3.2.1 Single coefficient lifting in more than one dimen-
sion

One can generalize the single coefficient lifting into higher dimensions, as pro-

posed in [59, 60].
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For example, in two dimensions, we create a triangulation on the data grid
plane by joining the datapoints with non-overlapping edges, under the con-
straint that the circumcircle of the triangles (the circle passing through the
three points of the triangle) does not contain any other point of the triangu-
lation. This is the Delaunay triangulation.

Onto this grid, a tessellation of cells is overlaid. For a given vertex of the
triangulation, mark out cells such that the cells mark out the area closer to
a given triangulation vertex than any other vertex. This cell tessellation is
called the Vorono: diagram.

The cells of the Voronoi diagram are associated with scaling functions, their
areas being the support of the scaling functions. As with before, the scaling
coefficients at the start of the transform are just the data points (for conve-
nience we choose the initial scaling functions as the characteristic functions of
the Voronoi polygons). At each step of the transform, the datapoint corre-
sponding to the smallest scaling function integral is removed, and the grid and
triangulation becomes coarser through retriangulation. Jansen et al. [59, 60]
suggest prediction through least squares plane minimization, and an update
stage of Sibson’s Natural Neighbour method.

In the same papers, a multidimensional one coefficient at a time lifting
scheme is introduced using minimal spanning trees. With this notion, a weight
is associated to each node of the tree, which represents the scaling function
integrals above. The neighbouring nodes are used to predict the value at a
particular node. This tree-based lifting is suitable for any higher dimensional

space.

3.3 Adaptive lifting schemes

In this section, we introduce adaptive single coefficient lifting schemes, which
we will show to perform well against other nonparametric techniques. We first

review other existing adaptive lifting schemes in this area.
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3.3. Adaptive lifting schemes

Claypoole et al. [23] introduce adaptivity into the prediction stage of a
lifting scheme for image compression. The (1, N) Cohen-Daubechies-Feauveau
family (see [26]) is used as a set of predictors, and when lifting, a suitable
wavelet is chosen so that if an edge is detected in an image, the wavelet’s sup-
port does not overlap the edge. When using the algorithm for lossy coding,
the update step is applied first. The rationale behind this is so that informa-
tion about the chosen predictor is not sent, and also so that the update stage
preserves frequency localization. A quantiser is applied to all the scaling co-
efficients (computed from the update stage). These quantised coefficients are
then used in the prediction step. The detail coefficients produced from this
are then quantised themselves and transmitted.

The algorithm’s “update first” policy was first adopted in [22]. This paper
introduces two adaptive transforms. The first adapts the wavelet according
to the signal features at each scale. The second selects the wavelet which
minimizes the detail coefficient at each stage. The algorithms are compared to
classical wavelet denoisers on the Donoho and Johnstone test functions. The
simulations show that the adaptive transform perform similarly, and slightly
better in some cases.

The “update first” approach is also employed by [84]. However, adaptivity
is added to the update stage of the lifting transform, not the predict stage as
in [23]. The performance of the transform is compared to its non-adaptive
version on a few signals.

Adaptiveness is also introduced into the prediction lifting step in [97], using
Wiener filtering to minimize the /2-norm of the signal being decomposed. The
transform was applied to an AR(2) process to decorrelate its low-pass and
high-pass subbands. The algorithm was used again to smooth a noisy version
of the same process.

Boulgouris et al. [14] develop an adaptive lifting scheme for the still image

lossless compression.
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The adaptive transforms above all use the odd/even split as described in
Example 2.15. However, our approach is to modify the “one coefficient at a
time” lifting scheme outlined above and featured in [59, 60]. Our motivation
being that the wavelets will be individually tuned to the signal particularities.
In addition, our algorithms will be able to handle multiple observations for

each z-value.

3.3.1 Adaptive 1D single coefficient lifting transforms

Most work on adaptive lifting has been on images (2D), so introducing adap-
tivity to a 1D lifting transform could be beneficial. As mentioned before, the
main aim of our lifting transforms is to take advantage of the local properties
of a signal to create the sparsest wavelet representation. Lifting one coefficient
at a time lends itself particularly to this, since we can add features to every
wavelet in the representation one at a time. We now describe how we propose

to do this, through adaptive prediction lifting steps.

Prediction schemes using linear regression

In the last section, we deferred the question of prediction neighbourhood
choice. We now return to it. When deciding on how to obtain a detail co-
efficient, we could use symmetrical neighbours, that is, using an equal number
of neighbours on either side of the point to be lifted, and perform (linear) re-
gression to get a least squares prediction of the removed point. Alternatively,
we could choose the neighbouring regression points according to being the clos-
est datapoints to the lifted point (recall that we assume that our z-values are
irregularly-spaced). Both choices are catered for in our software implementa-
tion of the 1D lifting transform, with the possibility of any number of total
neighbours being used for the prediction. This choice can be made according
to some prior knowledge about the signal structure.

The prediction of a lifted point is done through regression (commonly used
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3.3. Adaptive lifting schemes

in statistical data modelling). We use orders of up to three in our algorithms.
This corresponds to linear, quadratic and cubic regression using the neighbour
z-values as explanatory variables. This adds vanishing moments to the wavelet

in question, which will aid in sparsity where the signal is locally smooth.

Recall that computationally, least squares regression can be formulated as
a matrix equation

y=XB+e, (3.11)

where y is a vector of responses, X is the design matrix for the problem, 8
is the vector of fitting polynomial parameters, and € is a (zero mean) vector

of errors with constant variance.

In our context, suppose we are performing a prediction of point j, with m,
total neighbours (irrespective of being symmetrical or nearest) in [,. Then if

the order of regression is p, the equation (3.11) will be

2 p
CT,I 1 331 331 PR .’L’l ﬁ
0 €1
Cr.2 1 ) 33% PN .’L’g . .
= 3 ST A I (3.12)
£

c 1 z x? P O "

Ty My me My My

Here, {c,;}icr, are the scaling coefficients of the neighbours, and {z;}ics,
are the z-values of the neighbours. This equation corresponds to the case
when an intercept is used. If no regression intercept is required, then the de-
sign matrix will not have the initial column of ones, and 8 will be the p x 1
vector without fy;. Note that with our lifting schemes, we only consider the
cases when p = 1,2 and 3 corresponding to linear, quadratic and cubic re-
gression respectively. For example, suppose we were using a prediction with
two symmetrical neighbours. If quadratic prediction is used with intercept,

2 B
X = <1 o ), and B = (g? ); if cubic regression without intercept is used,
2

1z x5
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_ ) _ (5
X=(nnd) mdB= (%)

Note that at each stage, the matrix equation (3.12) will be specific to the

neighbourhood used for prediction.

The usual least squares solution to the parameter problem (3.12) is given
by
B = (X"X)"'X"y, (3.13)

where XT is the transpose of X. This gives us the coefficients of the regression
curve fitted according to the neighbourhood around the lifted point, 7., using
equation (3.11).

Our prediction is then obtained by projecting the lifted point onto this

regression curve. If the regression is with intercept, this is
~ _ ) D =
Crgr = (L, ... %) B.

Thus the detail coefficient d, is calculated from ¢, — ¢, ;.. This is the
same as the prediction of the form (3.1), since the prediction weights a® are

obtained from

a' =1z, ... 25 )(X"X)"'X".

Adding adaptivity to prediction schemes

In the single coefficient algorithm described, the user has the choice as to
how many neighbours to use, and also which order of regression to use in the
prediction step. In addition, the neighbourhood configuration (symmetrical or
nearest neighbours) needs to be specified. There are few situations when the
user would know a priori or have an intuition how to decide between these
options.

Let us now describe our two adaptive algorithms. These allow for automatic
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selection of some of the choices above. In this way the wavelets are tuned to

the local features of the signal.

AdaptPred. After a point to be removed has been chosen, the detail coef-
ficients are computed for all possible combinations of predictions with
linear, quadratic, or cubic regression; the regression is also considered
with or without an intercept. The prediction scheme corresponding to
the minimum detail coefficient in absolute value is chosen at each step.
The user inputs the number of neighbours to use, and also the neigh-
bourhood configuration (symmetrical or nearest neighbours). For exam-
ple, suppose AdaptPred was chosen with three closest neighbours. Then
the algorithm would compute the detail coefficients resulting from lin-
ear prediction with three neighbours; quadratic prediction using three
neighbours, and cubic prediction using three neighbours. This would be
done using an intercept in the regression, and then also not using an
intercept, and the smallest detail coefficient in absolute value would be
selected and the combination of prediction and intercept recorded which

produced it.

AdaptNeigh. As well as the AdaptPred algorithm, we introduce more flexi-
bility by allowing the neighbourhood size and configuration to change at
each step. In this way, the wavelets’ support and smoothness are local
and particular to the lifted point. The neighbourhoods under consid-
eration at each step are symmetric configurations up to and including
a specified number of neighbours and neighbourhoods with neighbours
up to twice the specified number (for nearest neighbour configurations).
Again, the prediction scheme is chosen according to the minimum de-
tail coefficient in absolute value. Essentially, AdaptNeigh performs the
AdaptPred procedure for the different neighbourhood choices, and mini-

mizes the detail coefficient from all implementations of AdaptPred.

The linear and adaptive algorithms described above show O(n) computa-
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Figure 3.1: Plot showing choice of prediction scheme for the Ppoly test signal
decomposed with AN2 on an irregular grid. Horizontal placement of symbol
indicates location of following kinds of prediction: linear (O); quadratic (A);
cubic (+); scaling functions (o).

tional efficiency.

Example 3.1. The procedure AdaptNeigh with two neighbours was used to
decompose the Donoho and Johnstone test functions Ppoly and Bumps. Fig-
ures 3.1 and 3.2 show how the order of regression changes for different parts
of the signals.

The plots show that the adaptive lifting scheme is choosing the basis func-
tion as expected. For the Ppoly signal, cubic regression is chosen most of the
time, apart from when linear prediction steps are applied around the point
of discontinuity. With the Bumps signal, the regression scheme chosen across
the signal is more variable than for the Ppoly signal. However, near the dis-
continuities linear regression is performed, since the function is similar to high
gradient lines at the spikes.

Figure 3.3 shows examples of the basis functions occurring when the Bumps
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Figure 3.2: Plot showing choice of prediction scheme for the Bumps test signal
decomposed with AN2 on an irregular grid. Horizontal placement of symbol
indicates location of following kinds of prediction: linear (O); quadratic (A);
cubic (+); scaling functions (¢).

signal was decomposed on an irregular grid with AdaptNeigh and two neigh-
bours. The plots demonstrate that the decomposition basis functions can vary
in magnitude and support. They can also exhibit different smoothness and

frequency behaviour.

Implications of the adaptive lifting scheme construction

There are a few issues which arise from our adaptive lifting scheme construc-

tion which should be addressed.

Prediction weights. As noted in the description of lifting “one coefficient
at a time”, following Jansen et al. [59], the prediction weights a® sum to one.
Signals which are piecewise constant over the prediction neighbourhood 7, will
result in zero detail coefficients. When using least squares prediction schemes
as outlined above, this will occur if a regression intercept is included as one of

the parameters. If an intercept is not used, then it is not guaranteed that the
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Figure 3.3: Plot showing examples of basis functions produced by the Adapt-
Neigh adaptive algorithm with two neighbours. The appearance of the basis
functions can differ dramatically, depending on the grid structure and predic-
tion schemes chosen.
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weights a* will sum to one.

When using closest neighbours, it is possible that (some of) the prediction
weights will take negative values. As a consequence, the neighbouring intervals
corresponding to the negative prediction weights will decrease in size, instead
of increasing. This disagrees with the notion that all neighbouring associated
scaling functions will have greater support when the interval corresponding to
the lifted point is redistributed over the neighbourhood. Jansen et al. [60]
notes that the scale of wavelet functions (measured by the scaling function
integral Z, ;) is a monotonic function of the index 7. In the case when we have

negative prediction weights, this does not hold.

Insufficient neighbours. The user-specified choice of the neighbourhood
configuration to be used in the prediction stage may not be possible in some
cases. When the removed point is on the boundary, to avoid using artificial
boundary neighbours (for example, if symmetrical neighbours are required),
the nearest (single) neighbour is used for prediction. Also, when many points
of a dataset have already been lifted, there may not be enough unlifted co-
efficients for the neighbourhood configuration required by the user. In this
situation, the number of neighbours is decreased so that the maximum avail-

able can be used.

Regression order reduction. Non-degenerate curves ensure transform
stability. For higher order prediction schemes, namely quadratic and cubic
regression neighbourhoods, more neighbours are needed for non-degenerate re-
gression curves: for linear prediction, at least two neighbours are needed; for
constructing a parabola, at least three, and for cubic prediction schemes, at
least four neighbours are needed. At some steps of the lifting transform, we
will have too few neighbours to use the required prediction regression order. In
these steps, the regression order is decreased to be able to perform the lifting.

This means that even though a fixed (higher) prediction order is chosen by
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the user, the transform in reality, can be a mixture of orders (depending on
when the transform is stopped). Hence the order of the underlying MRA for

the transform will not be exactly 2, 3 or 4.

Nonlinearity of adaptive algorithms. Recall that for prediction schemes
which use least squares regression, the prediction weights are computed using
the grid values only. This means that for a fixed prediction order (and neigh-
bourhood configuration), the transform is linear. However, when we introduce
adaptivity into the transform design, the type of prediction used adapts to
the local signal structure. Hence the associated prediction weights will be sig-
nal dependent. Since the function integrals and update weights are changed
from this, the point chosen for removal next is also influenced by the signal, f.
The transform operator associated to the adaptive transforms is therefore not
linear, and is a function of the signal. This means that any measure of stabil-
ity, for example the matrix condition number defined in earlier sections, will
change according to the function values f. Hence the characterization of the
adaptive lifting algorithms by condition numbers is unsuitable, though some
overall measure of stability of some set 2 of function vectors {f}q could be

formulated.

Stability. We studied the stability of the adaptive lifting transforms, by
constructing the transform matrices for a range of test functions, grid irregular-
ities and (adaptive) lifting algorithms. We then computed the matrix condition

numbers as described in Section 2.2.5.

The results of the study were revealing. They suggest that higher or-
der prediction schemes were more unstable than when using linear regression.
Moreover, larger neighbourhoods (using more neighbours) introduced more in-
stability as well. This agrees with the conclusions of [91] and [98] pointed out
earlier. However, there was not an appreciable difference in stability when

increasing the irregularity of sample grids.
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Due to these findings, and in light of the sparsity and denoising simulations
in Sections 3.4 and 3.5, the adaptive lifting algorithms with two neighbours
(AP2T, AP1S and AN1 — abbreviations explained later) are recommended in

practice.

3.3.2 The inverse single coefficient lifting transform

When inverting a fixed prediction transform, the transform simply reverses
the steps performed during the forward transform, using inverse lifting steps
as made explicit in Section 2.2. However the order of removal of lifted points
and the removed scaling integral lengths is required.

For AdaptPred, the inversion needs the prediction scheme used at each step
of the transform (regression order and whether an intercept was used or not).

When an adaptive lifting scheme is inverted, in addition the information
mentioned above, the neighbourhood configuration of each lifted coefficient is
also needed by the inverse transform. This basically means the (indices of the)
neighbours of each lifted point, since otherwise the removed point’s position

relative to its neighbours could not be determined.

3.3.3 Single coefficient lifting transform for multiple ob-

servations

We have not yet explored the extension of lifting “one coefficient at a time”
for data with more than one observation at each x-value, for use with datasets
such as the motorcycle data. The algorithms work the same for multiple point

data, but with some important differences.

If the multiple observation datapoints were just treated as separate indi-
vidual datapoints, then the algorithm would cause these multiple points to
have zero integrals, since the interval construction would cause their intervals

to coincide. As a consequence, the multiple points would be chosen to be
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removed first, according to the minimal scaling function integral condition of
removal point selection. Hence the datapoints with more than one observation
are treated to be of the form (z;,f;), i.e. one z-value but with a vector of

function values.

When predicting the value of a removed point, if the neighbours are multi-
ple points, no modification is necessary, since the linear regression curve fitting

computations will still hold with these extra points.

When the removed point is itself a multiple point, then this will result in
possibly more than one detail coefficient for that point, due to the vector of
observations/scaling coefficients at that point. Cases of multiple detail coeffi-
cients would lead to problems when updating neighbour scaling coefficients, so
for these points we compute one detail coefficient, by averaging all the detail
coefficients corresponding to the multiple observations. Thus the lifted point
is replaced by one value. Another interesting treatment of multiple detail co-
efficients would be to choose the minimum detail coefficient in absolute value

as the associated detail coefficient, but this possibility is not treated here.

In the update step of the transform, when the neighbours have multiple
scaling coefficients, all coefficients are updated using the detail coefficient com-

puted from prediction.

If the forward transform is performed until a resolution level which leaves
(unlifted) multiple points, then before inversion, these points are averaged to
form a vector of single coefficients from which to invert. Also, similar to the
inverse transform in the normal situation, the neighbourhood information for
each lifted coefficient (including whether the neighbours were multiple or not)

is used.
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3.4 Sparsity performance of lifting algorithms

In the discussion below, we summarize the results of our sparsity simulation
study. The simulations were carried out on five test signals and three grid
jitters. Neighbourhoods of sizes up to four neighbours were considered. The
full study is detailed in the next chapter.

We use abbreviations for the single coefficient lifting schemes according
to their prediction scheme as follows: LP=Linear Prediction, QP=Quadratic
Prediction, CP=Cubic Prediction. For the adaptive algorithms, the codes
AN=AdaptNeigh and AP=AdaptPred are used. The methods are also coded
by a number, N, which gives the number of neighbours used in the prediction.
The neighbourhood configuration is also described by an extra letter, which is
denoted by S in the case of symmetrical neighbours (regression is performed
using an equal number of datapoints on either side of lifted points) or N in the
case of when the neighbours were chosen according to being the closest to the
removed point. It should be noted that when symmetrical neighbours are used,
then the actual total number of neighbours is twice the number given by N.
For example, LP1S denotes (fixed) linear prediction, with the regression being
performed with one neighbour on either side of the removed points. Note that
the AdaptNeigh methods do not need a characterization by either N or S, since

they are adaptive over all configurations with a given number of neighbours.

3.4.1 Sparsity results

Out of the non-adaptive lifting transforms, the fixed linear prediction schemes
with two neighbours (LP2N, LP1S) shows the best sparsity. The LP methods
also have small matrix condition numbers across all three grid jitters (d;, dy and
ds3). Increasing the grid irregularity did not affect either the magnitude of the
condition numbers or the compression performance for these two algorithms.
The adaptive algorithms AP2N, AP1S and AN1 all exhibit small condition

numbers, irrespective of the grid jitter, thus showing the algorithms’ stabil-
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ity. The adaptive algorithms demonstrate better compression than the linear
transforms, with AdaptNeigh methods being the best in terms of sparsity. As
justified earlier though, the algorithms with larger neighbourhoods have the
potential of being unstable, and hence AN1 is recommended as the algorithm
of choice, since it achieves a good balance between stability and sparsity. The
other adaptive methods AP2N and AP1S are also good. These results hold
for all the test functions, even though on HeaviSine, there was less difference
between the three algorithms AN1, AP2N and AP1S. The grid irregularity did
not alter the sparsity performance of the adaptive algorithms. The adaptive
algorithms are also competitive when compared with the classical Daubechies

Extremal Phase wavelets and KS algorithms.

3.5 Adaptive lifting and wavelet shrinkage

We now explore the method for signal smoothing with our adaptive lifting

schemes. Again we refer to the model (2.45)
fi=g(t)+e forie{l,...,n},

where the vector f are our observations. & is taken here to be indepen-
dently identically distributed with distribution N(0,02). This means that
fi ~ N(gi,0%). In Section 2.3, we noted that using the DWT, this equation

transforms into (2.49)

*
d]’k = d],k + ejak’

where d is the DWT of f, d* is the DWT of g and e is the DWT of e.
In other words, if W is the forward transform matrix, the equation above is

equivalent to

WE=Wg+ We. (3.14)
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Note that here, we use W for the forward transform matrix, for generality
(even though when talking about the DWT in earlier sections we used W). Due
to the orthogonality of the discrete wavelet transform, the transformed noise e
is also i.i.d. Gaussian N(0,0?) vector. With the DWT, there is no correlation
between the coefficients, i.e. the variance-covariance matrix is just the noise
o? multiplied by the (n x n) matrix identity. The noisy detail coefficients can

be seen to be distributed as dj ~ N(d},, 0?).

For our linear transforms (LP, QP and CP), the equation (3.14) also holds,
but with the alteration that the noise vector after performing the wavelet
transform is now {e;, }xenn-1,.,13 (for some [), the equivalent vector for single
coefficient lifting. For the 1D single lifting schemes in Section 3.2, a full de-
composition would be with [ = 2. The stopping time of our lifting transforms

is explored extensively in Chapter 5.

For the adaptive lifting algorithms, the transform matrices depend on the
observations f as well as the grid locations {z;}. Since they are nonlinear,
we cannot write the transform of f as a combination of the form of (3.14).
However, we still assume the detail coefficients to satisfy equivalent form of

equation (2.49):

dj, =d; +e5, ke{nn—1,... 1} (3.15)

In other words, when we transform the vector f, the resulting coefficients
are assumed to be noisy and of the form (3.15), where the vector e = {e;, } is
the noise. Conditioning on the local structure of the signal f, though, the noise
can be written e = \7\76, and since the original noise vector € is i.i.d. normal
noise, the vector e will also be normal noise with zero mean. Consequently,

the detail coeflicients produced by the transform are also normally distributed.

However, since out transforms are not orthogonal, the transformation in-
duces a correlation structure between wavelet coefficients, and so the coeffi-

cients will have different variances. The correlation structure of the noise can
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be described as ¥, = o?WW?. This variance-covariance structure transfers to
the detail coefficients to give g = 02WWT, so that the variance of the detail
coefficient dj, is o2 diag(WWT)k, where diag(A)r = ag for a square matrix

3.5.1 Correlation induced from lifting steps

What follows explains the correlation structure inherent in our lifting trans-
forms. This section is a development of considerations in Jansen et al. [60].
Since the adaptive algorithms are not linear (and so dependent on the signal
f), the working below should be taken to be conditional on the local structure
of the signal, f.

At the first step of the lifting transform, the coefficient j, is predicted by
(3.1) dj, = cnj, = Dicr, GiCni- Due to the assumption that the initial data f

is iid.,

cov(cn i, dj,) = cov(cpi, Cnjn) — Zcov(cn,i, Cn,i)
i€l
= —alo® foric€I,. (3.16)

For i ¢ Iy i # ju,

cov(cy i, dj,) =0,

and for 7 = j,,

cov(cp,i, dj,) = o?.

We also obtain

var(d,) = o? {1 + Z(a?)Q} : (3.17)

i€,
Also, using update step (3.3), we have, for all 1 € I,,, 1 # jq,

var(cp,—1,:) = var(cn;) + (b?)2 var(d;, ) + 20} cov(cn,, dj,)- (3.18)
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3.5. Adaptive lifting and wavelet shrinkage

We also have, for i,5 € I,,,1 # j, 1,7 # jn,

coV(Cn-1isCn-15) = €OV(Cns, Cu1,j) + b} cOV(dj,, Cno15)
(0 cOv(engr i) + (B2 cov(d,, cag) + B! cov(dy,, ds,))

= (—afb} — a}b})o® + b} b} var(d;,). (3.19)
For when i € I,,, j ¢ I, i,j # jn we have

COV(Cn—1,i,Cn—1,j) = COV(Cn—1,z',Cn,j)

= 0 (3.20)

Since the update step does not affect coefficients outside the prediction

neighbourhood, for any 4, j ¢ I,, cov(cp—1,,n—1,;) = 0.

All of this shows that the lifting steps create correlations between the
coarser level coefficients produced, and that these correlations will transfer

down through later levels of the transform.

3.5.2 Empirical Bayes shrinkage with adaptive lifting

Recall from Section 2.3 that the general approach to wavelet shrinkage is
e transform the noisy data f into detail coefficients
e threshold the detail coefficients to remove the noise
e invert the transform to obtain an estimate of the underlying signal.

In our denoising simulations, we have used a modified version of the empir-
ical Bayes thresholding technique as proposed in [61, 62, 63]. These techniques
adapt well different situations. The authors of these papers exploit the proper-

ties of sparse coefficient sequences produced by the DW'T by imposing a prior
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on the true wavelet coefficients

djp ~ (1 —m)do + 77,

where the prior probability that a detail coefficient is nonzero is given by
m, and the conditional density of the coefficient is the function . Section
2.3.2 gives a review of this thresholding method in more detail, and describes
how to compute the probabilities 7 and associated thresholds. Since from
Section 3.4, our lifting wavelet methods are shown to transform signal data
to sparse coefficients sets, the FEbayesThresh methodology is appropriate for
our transforms. In our denoising procedures, the “quasi-Cauchy” prior (see
[61, 63]) is taken for -y, and the posterior median is chosen as the thresholding
method.

We now give some adjustments to this Bayesian technique to make it suit-

able for our lifting algorithms.

Artificial levels

In previous sections, we have associated the scale of a wavelet coeflicient d;,

as the integral Z, ; , following Jansen et al. [60], since the “scale” in “one

Jro
coefficient at a time” lifting is no longer a purely dyadic notion. However, to
mimic the dyadic scale structure of the DW'T, we can partition the wavelet
coefficients into artificial levels as suggested in [59, 60]. Arranging the detail
coefficients in ascending order of their scale, we can define the “finest” level
detail coefficients by the first half of the scales (those with scale Z, j, less than
the median of all scales). If we then find the upper quartile of the scales, we
have the next finest level as those detail coefficients corresponding to the scales
7, ;, between the median and this upper quartile. For coarser levels we proceed
in this way. The next level would be defined by the 87.5th quantile, and so on.

We can now use the level-dependent empirical Bayesian thresholding pro-

cedure. We assume each coefficient in a specific artificial level has the same
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3.5. Adaptive lifting and wavelet shrinkage

probability of being non-zero (7;), and so we compute a threshold for each

artificial level.

Correlation treatment

In Section 3.5.1, we saw that propagating correlations between decomposi-
tion coefficients are introduced by the lifting steps during a single coefficient
lifting wavelet transform, and the non-orthogonality of our lifting transforms
leads to the detail coefficients with different variances, even though the initial
observations all have equal variance, 02. The correlation structure of the co-
efficients is ignored, as in [59, 60]. However, to compensate for the different
coefficient variances whilst using the FEbayesThresh procedure, we make the

following modifications.

We noted before that the variance of the coefficient d;, can be described
as o2 diag(WWT),. Since EbayesThresh is designed to work on equal variance
coefficient vectors, Jansen et al. suggest preprocessing the detail coefficients
before thresholding. The coefficients defined by d;, {diag(WWT)k}l/2 will
all have equal variance of 02, and hence we apply the thresholding procedure
to these coefficients. We then renormalize the thresholded coefficients by mul-

— 1/2
tiplying by {diag(WWT) k} . These coefficients can then be inverted to form

an estimate of g.

Other modifications: heteroscedastic coefficient variances

Our work has also considered unequal coefficient variances. This has lead us to
also adapt the empirical Bayes technique for when the coefficient variances are
heteroscedastic, but known up to proportionality, i.e. var(f;) = 0?72, where
the variance is unknown, but the proportionality constants «; are known. After
the lifting transform the variance of the detail coefficients are then calculated
as var(d;,) = 0°> i %2@17]2“ where W is the (j,4)th entry in W. As

with the previous situation with different coefficient variances, we divide the
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wavelet coefficient sequence so that it becomes homoscedastic, and suitable for

empirical Bayes’ thresholding using EbayesThresh. In this case, the normaliz-

ing factor is \/Zie{l ) ’nyfz Since the quantity o is unknown, we estimate
it using the MAD of the coefficients from the first artificial level, as suggested

in [67]. After thresholding and renormalization, the transform is inverted.

If we do not have any prior knowledge about the heteroscedastic variances,
we use the approach in [67] to estimate the variance Od;, - They propose using
a window centered on the datapoint z;, to identify any detail coefficients in the
finest artificial level which correspond to z-values which lie close to z;,. The
detail coefficients which occur in this window and are in the finest artificial
level are then used to estimate the variance through the MAD of these coeffi-
cients. After thresholding, inverting the transform will lead to an estimate of

the true signal.

To summarize, to use EbayesThresh for our lifting transforms, we use the

following steps

1. Transform the data f with a lifting algorithm;
2. Use the modifications above to deal with heteroscedastic variances;

3. Partition the detail coefficients into artificial levels, and if necessary use

the finest level coefficients to estimate the overall noise variance o?;

4. Threshold the modified detail coefficients level-dependently according to
the artificial levels, using EbayesThresh;

5. Invert the lifting transform to obtain an estimate of the signal.

3.5.3 Denoising simulation results

In this section we give a summary of the conclusions from the simulation study

we performed to test the denoising capability of the lifting transforms. Full
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3.6. Conclusions and further work

details of the results obtained can be found in the next chapter.

We compared our smoothing techniques against wavelet and non-wavelet
function estimators: the local polynomial fitting estimator Locfit [69, 70]; the S-
Plus function smooth.spline(), which fits smoothing splines to the data; the
Comte-Rozenholc [30] (CR) method, a denoiser based on adaptive polynomial
basis selection; and the irregular interpolation wavelet algorithm by Kovac and
Silverman (KS) [67]. Descriptions of these algorithms can be found at the start
of this chapter.

The study was performed on the five test signals Doppler, Bumps, Blocks,
HeaviSine, and Ppoly, over irregular grids with three levels of jitter. We also
used three different additive noise levels in the denoising simulations. Several
different variants of our linear and adaptive lifting schemes were compared to
the denoising methods listed above, with different neighbourhood configura-
tions up to and including four neighbours. The algorithms’ performance was
also tested on the real examples of the inductance plethysmography data, and
also the motorcycle data (described in the next chapter).

Overall, our methods were very competitive, with AN1 being significantly
better on the signals with discontinuities over all grid irregularities and noise
levels. For smoother signals, AdaptPred worked best, outperforming the other
smoothers over all degrees of grid jitters and noise level, apart from one of the
signals, where the Kovac-Silverman algorithm was best. These conclusions are
expanded in the next chapter. The application of the lifting algorithms to the
two real datasets showed that the curves produced are competitive with other

data smoothers.

3.6 Conclusions and further work

This chapter proposes a lifting wavelet transform suitable for nonparametric
regression on irregularly-sampled data, which is hard to achieve with classical

wavelet transforms, since it often involves serious modification to the regular
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grid transform framework. Furthermore, we are able to introduce adaptivity
into the technique, so that through the use of “one coefficient at a time” lifting,
the algorithm can tune every wavelet in the decomposing basis to automat-
ically adapt to the local features of a signal. This facilitates sparse wavelet
representations, which can be exploited in denoising applications. The algo-
rithms can be modified for use with datasets with multiple observations for
each z-value, a situation which is often overlooked in regression techniques.
Results from sparsity and denoising simulations show that our methods
perform very well against other current wavelet and non-wavelet denoising

techniques.

Further work on adaptive lifting algorithms could involve trying to use the
wavelet coefficient correlation induced by lifting to improve shrinkage tech-
niques. The treatment of multiple point data is still fairly open: other ideas
could be incorporated into the lifting algorithms for these datasets. In addi-
tion, the issue of transform stability could be addressed more fully, perhaps by

building on the suggestions in [91, 98].
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Adaptive lifting simulations

Introduction

When assessing the merits of a wavelet transform, two main qualities are
judged to be important: sparsity and denoising capability, and in some sense,
these two aspects are strongly linked. Good sparsity indicates efficient repre-
sentation of functions and good data compression. In many real life situations,
noisy data is common, for example, due to experimental or measurement error.
It is therefore desirable to be able to “estimate the truth” from the given data,
so that this estimate can be a base from which to perform data prediction,
forecasting or modelling. Hence the ability to denoise functions well is also
essential for a wavelet transform. In this chapter, we detail the results of the
simulation study on sparsity and denoising performance of our adaptive lifting

algorithms explored in the last chapter.

This chapter is organized as follows. Firstly, we explain the general setup
of our simulations, common to both the sparsity and denoising sections. This
includes a description of the test functions and the irregular grids used in the
study, and also a summary of the notations used in the later sections.

The sparsity section will compare our lifting algorithms against the other

nonparametric regression techniques mentioned in the last chapter. We mea-
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Chapter 4. Adaptive lifting simulations

sure the sparsity of a smoothing method through a sparsity plot. This construc-
tion is fully described below. The improved sparsity of our lifting transforms
over its competitors is supported with plots for different test signals.

The section on the denoising performance of the lifting transforms will show
how well our transforms smooth noisy data input. In the extensive study, we
compare our methods against the other competitors, on all test signals and
grids. We use the numerical error measure of the AMSE, as well as visual
evidence. The algorithms are then applied to real examples, to demonstrate

their ability to produce suitable function estimates.

4.1 Simulation preliminaries

We now give some initial details and remarks on the nature of our simulations.

4.1.1 Test signals

We will demonstrate the sparsity and denoising capability of our transforms on
the Donoho and Johnstone test signals Doppler, Bumps, Blocks, and HeaviSine,
first used in simulations in [39]. These functions are commonly used as stan-
dard test signals for simulations, because they exhibit a range of smoothness
properties and also different numbers of discontinuities. Donoho and Johnstone
[39] state that these features are typical of functions appearing in scientific ap-
plications such as imaging and spectroscopy. As well as these functions, we
use the Ppoly piecewise polynomial function of Nason and Silverman [76]. All
functions are defined on the interval [0,1]. We now give a brief description of

these functions.

Blocks. This is a piecewise constant function. There are jumps at the sites
{0.1,0.13,0.15,0.23,0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81}, which makes the
signal difficult to denoise. The blocks have the different heights of
{0,4,-1,2,—-2,3,-1.2,0.9,5.2,4.2,0} respectively.
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4.1. Simulation preliminaries

Bumps. This function is a combination of “bumps” described by the function
1/(1+1t)* at the same sites as for Blocks above. The heights and widths

of the bumps vary.

HeaviSine. A sinusoid with two discontinuities created by jumps at t=0.3
and t=0.72. The function has formula g¢(¢) = 4 sin(4nt) —sgn(t — 0.3) —
sgn(0.72 — ).

Doppler. The well-known signal from sound modelling, described by g(t) =

V/t(1 —t)sin(27 - 1.15/t + 0.05).

PPoly. A piecewise polynomial with a jump discontinuity at t=0.5. The func-

tion equation given by
.
41%(3 — 4t) 0,1)

12

g(t) = 442 —10t+7) - 2 [L, 3]

Dot —1)? [2,1].

\

4.1.2 Construction of irregular (jittered) grids

To demonstrate the applicability of our transforms to irregular data, we sim-
ulated irregularly-sampled z-values from which to sample the test functions.
To generate the irregular grids on which to sample the test signals, we
jittered a regular grid uniformly with varying degrees of jitter. More precisely,
suppose we have a regular grid of n points in the interval [0,1]. Each point
is moved from its original location by adding a value randomly taken from a
uniform distribution on the interval (—d/(n + 1),d/(n + 1)), where d signifies
the amount of jitter. We use three values of d: d; = 0.01; dy = 0.1; and
ds = 1. The rationale behind generating irregular grids this way is that we
can use different values of d to tune the irregularity of the grid: small values

of d will be irregular, but will resemble the regular grid, so we can compare
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the sparsity of our methods with classical wavelet methods on regular grids.
As we increase d, the grids will become “more irregular”, until with d = dj,

the grid will resemble a grid sampled uniformly from the interval [0,1].

For both the sparsity and denoising simulations, grids of length n = 256
were used. This enables us to compare our methods with classical wavelet
transforms, even though with our algorithms there is no restriction of grid

length.

4.1.3 Lifting algorithm notation

The different prediction schemes are abbreviated by a two letter code: LP
for linear prediction; QP for quadratic prediction; CP for cubic prediction;
AP for the AdaptPred adaptive lifting scheme and AN for the fully adaptive
AdaptNeigh algorithm.

This code is then augmented with a number, denoting the number of neigh-
bours used in the prediction, and then a choice of the letter N or S, describing
the neighbourhood configuration. For symmetrical neighbours, the letter S
is used, with the number of neighbours, N, being the number of neighbours
on one side of the removed point at each lifting step. In other words, when
symmetrical neighbours is chosen, the total number of neighbours used in the
prediction steps will be twice N. When using closest neighbours, that is, ab-
breviated by the letter N, the number N will be the total number of neighbours

nearest the removed point throughout the transform.

For the adaptive algorithm, we only need to use its code (AN) with the
number of neighbours (we take the number N according to the symmetrical
neighbourhood specification, so that AN1 will denote the AdaptNeigh algo-
rithms which searches for the minimum detail coefficient from the results of

AP1S and AP2T).
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4.2 Sparsity investigation

Throughout this thesis, the advantages of sparsity of wavelet decompositions
has been stressed, the main benefits of which is the ability to achieve efficient
data compression. In this section, the investigation into the sparsity of our
lifting transforms summarized in Section 3.4 is detailed.

There are many variants of the lifting scheme which we could use in our
investigation of sparsity and denoising, based on different prediction schemes,
neighbourhood configuration and number of neighbours used in the prediction.
As outlined in Section 3.4, we have devised a notation for our lifting schemes,

which we will refer to in this section.

4.2.1 Sparsity plots

To examine the sparsity of the wavelet transforms, we want to measure how
error changes with sparsity of wavelet coefficient sequences. To this end, we
use a tool called a sparsity plot. This is constructed as follows.

First of all, we decompose the sampled signal down to two scaling coeffi-
cients*. Then we put the detail coefficients in increasing order of magnitude (in
absolute value). Next, we invert the transform, but with the smallest wavelet
coefficient replaced with zero. We compute the error between the original sig-
nal and this estimate by the ISE. For the next ISE calculation, we compute
the error between the sampled signal and the estimate produced from setting
the two smallest detail coefficients to zero. We proceed like this until the last
time, when we invert the transform with only the two scaling coefficients (all
the detail coefficients are zero).

The number of non-zero wavelet coefficients is then plotted against the

corresponding ISE value. In other words, if # denotes the number of non-zero

*Even though one more lifting step can be performed, we consider this last step as
somewhat forced, so we view n — 2 as the maximum number of detail coefficients for the
interval single coefficient lifting construction.
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wavelet coefficients, 1 = 0 corresponds to the estimate with only the scaling
coefficients, and we have ISE(i) = Y, (f; —]?j")2, where [ is the reconstruction
based on 7 non-zero wavelet coefficients.

For each jitter value, the results illustrated will be the average performance
over 50 jittered grids, i.e. the plots show the average of the 50 ISE sparsity

curves.

The motivation for this construction is that when i is low, there should be
only a small difference between ISE(i) and when ¢ = 0, with this difference

increasing dramatically as ¢ approaches the grid length.

Remark. We expect that the sparsity plot will show a decreasing trend in the
error of reconstruction as 7 increases. However, because of possible instability
of our lifting algorithms, due to aspects mentioned before in Section 3.3.1 (e.g.
higher order prediction schemes and large neighbourhoods), the ISE may not

necessarily be a decreasing function of i.

We compare our results with the Kovac-Silverman method for irregular data
[67], and also the classical DWT. We denote the Kovac-Silverman method by
KS. A few remarks should be made about the sparsity constructions for these

wavelet transforms.

KS method. The Kovac-Silverman method works on irregular grids, so is
suitable for comparison with the lifting transforms. With this algorithm,
there is a choice of wavelet basis to use in the wavelet decomposition. We
use KS with Daubechies Extremal Phase wavelets, featured in Section
2.6. For the choice of decomposition wavelet, we used the best wavelets
as judged by the denoising study in [80]. This choice is discussed fully in
the next section, where we assess the denoising performance of wavelet

transforms.
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Moreover, as described in Section 3.1, the KS algorithm works by trans-
forming the irregular grid data to a regular one by linear interpolation.
A drawback to the KS method is that after the signal is decomposed and
inverted, the resulting estimate is given on the regular interpolated grid.
With this in mind, to enable ISE computations, we sample the (original)
signals on the interpolated grids, and compare these values with the es-
timate values. So all ISE values for this method actually correspond to

values for the regular interpolated grids.

Classical DWT construction. We have seen before that the DWT is only
suitable for regular grids. To enable sparsity comparisons with classical
wavelet transforms, a similar construction to the sparsity plot diagnostic
tool is made. Unlike the methods for irregular grids, where we show
the transform behaviour averaged over 50 grids, there is no source of
variation for the DWT because we apply the transform to one regular
grid. Hence the ISE values only have to be computed once for each

signal.

4.2.2 Sparsity results

The sparsity of the linear lifting algorithms was best with fixed linear predic-
tion with two neighbours (LP2N and LP1S). The nonlinear transforms had
better sparsity than the fixed regression transforms, with the fully adaptive
algorithms showing better compression than the AdaptPred methods. Figures
4.1 and 4.2 show examples of the sparsity behaviour of our algorithms for two
test signals.

In general, there was no significant difference in compression when increas-
ing the irregularity of the grid. This is shown, for example, in Figure 4.3,
where the HeaviSine test function was decomposed with varying number of
non-zero detail coefficients used in the transform inversion. The first section

of this plot is shown in more detail in Figure 4.4. For this signal, even on the
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Figure 4.1: The sparsity of our lifting algorithms when decomposing the Bumps
signal on irregular grids with jitter value dg = 1: LP1S (dotted); AP1F (solid);
AN1 (dashed).
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Figure 4.2: The sparsity of our lifting algorithms when decomposing the Ppoly
signal on irregular grids with jitter value do = 0.1: LP1S (dotted); AP1F
(solid); AN1 (dashed).
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Figure 4.3: The sparsity of AP2N when decomposing the HeaviSine signal on
irregular grids: d; (dotted); dy (dot-dashed); d3 (dashed).

blowup, the sparsity is very similar across grids. However, sometimes a slight
difference is observed, such as for Bumps (see Figures 4.5 and 4.6).

However, from signal to signal, the sparsity showed different characteristics.
For the signals Blocks and Bumps, the rate of decrease in ISE was slower than
with the other three smoother signals. This can be seen by comparing the
Figures 4.1 and 4.2.

Comparing the lifting algorithms with the other wavelet transforms (KS
and DWT), we found that our methods remained competitive. For the smoother
signals, there is not as much difference between the methods, than for the more
discontinuous signals. This is shown in Figures 4.7, 4.8 and 4.9. For the Heav-
1Sine signal, all methods show a dramatic decrease in ISE error by adding only
a few non-zero detail coefficients into the coefficient sequence before the trans-
form inversion. The KS and classical wavelets have identical sparsity, having
better compression than our methods for + < 10. However, this is relatively
insignificant when considering the whole range of i.

In Figure 4.9, which gives an example for the Blocks signal, the behaviour of
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Figure 4.4: A blowup of Figure 4.3, showing sparsity for when few non-zero
detail coefficients were included in the wavelet decomposition: d; (dotted); ds
(dot-dashed); ds (dashed). Even on this graph, it is difficult to separate the

curves for the three grid jitter values.
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Figure 4.5: The sparsity of AN1 when decomposing the Bumps signal on ir-

regular grids: d; (dotted); dy (dot-dashed);

102

d3 (dashed).



4.2. Sparsity investigation

N

84

\
N
e R
\
N,
N

o
L © | \
Z) \\‘\\

SN
- O
< \\ ‘ |
~ N \\
ST
~ T
IS : -
N T \\\
T | ‘ ‘ .
0 10 20 i 40

Figure 4.6: A blowup of Figure 4.5, showing sparsity for when few non-zero
detail coefficients were included in the wavelet decomposition: d; (dotted); do
(dot-dashed); ds (dashed).

each algorithm is clearer. Our algorithm, AN1, has best sparsity out of all the
algorithms, being closely followed by Haar wavelets (it should be stressed that
the sparsity curve is for the DWT on a regular grid). Note that unlike the other
algorithms, the ISE curve corresponding to the KS algorithm does not decay
to zero. Remember here that the last points in a sparsity curve represents
the ISE computation when nearly all coefficients are left alone (only a few
small detail coefficients are set to zero). So for this region, the curve should
tend to zero, since the ISE computations are increasingly closer to a straight

decomposition-inversion implementation (where the ISE value would be zero).

As mentioned before, the KS algorithm uses interpolation to form its func-
tion estimates. If the signal values on the regular grid (obtained through
interpolation) are not close to the actual “true” signal values on the interpo-
lated grid, then the ISE for this algorithm will not be zero at the end of the
ISE curves. This phenomenon will occur especially when the algorithm in-

put shows some degree of erratic behaviour, or for example signals with many
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Figure 4.7: The sparsity of different algorithms when decomposing the Heauvi-
Sine signal. For the lifting algorithms and KS, irregular grids with jitter value
dy = 0.1 were used: AP2N (solid); AN1 (dashed); KS with D5 (sparsely dot-
ted). Regular grid curves (DWT with Daubechies Extremal Phase wavelets):
best sparsity was using D5 (dotted); worst sparsity was using Haar wavelets
(dot-dashed).
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Figure 4.8: A blowup of Figure 4.7, showing sparsity for the different al-
gorithms when few non-zero detail coefficients were included in the wavelet
decomposition: AP2N on dy = 0.1(solid); AN1 on dy = 0.1 (dashed); KS with
D5 on dy = 0.1 (sparsely dotted); DWT using D5 (dotted); DWT using Haar
wavelets (dot-dashed). Note: the DWT using D5 and KS with D5 coincide.
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Figure 4.9: The sparsity of different algorithms when decomposing the Blocks
signal. For the lifting algorithms and KS, irregular grids with jitter value
dy = 0.1 was used: AP2N (solid); AN1 (dashed); KS with Haar wavelets
(sparsely dotted). Regular grid curves (DWT with Daubechies Extremal Phase
wavelets): best sparsity was using Haar wavelets (dotted); worst sparsity was
using D7 (dot-dashed).

discontinuities.

4.3 Investigation into denoising performance
of lifting algorithms

In this section, we explore the denoising capability of our lifting transforms
compared to other existing nonparametric regression techniques, by means of

a simulation study and application of the methods to real data examples.

The test signals used in the denoising simulations have already been de-
scribed in Section 4.1. We performed the study over the three irregular grid
values d; = 0.01, dy = 0.1 and ds = 1, and for three signal-to-noise (SNR) ra-
tios 3,5 and 7. The signal-to-noise ratio is given by SNR = \/var—(m /o, where
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g is the signal. The SNR gives a measure of how big the noise contribution is
compared to the signal. The lower SNR levels have more noise content and so
are harder to smooth successfully. In practice, we rescaled the signals to have
unit variance, so that the standard deviations of the added noise were 1/3, 1/5
and 1/7 respectively.

For each signal, the function was sampled on an irregular grid (of length
n = 256) and zero mean Gaussian noise was added according to a chosen
SNR to form f*. The function is then smoothed with a denoiser to obtain an
estimate of the true signal. We denote this by g*. We compared this to the true
function sampled on the irregular grid, g¥. This procedure was repeated for
k=1,..., K =100 simulations. We are interested in the average estimation
of the function at the sample points. The measure of error we use for this is

the average mean square error (AMSE), defined by

K n

AMSE = (nK) " 373" (g — g4 (4.1)

k=1 i=1

Our lifting methodology is compared to the following denoising algorithms,

all of which have been described in Section 3.1.

Locfit. This is a local polynomial fitting algorithm. Locfit [69, 70] has a
bandwidth smoothing parameter. To create the Locfit's best estimate,

we choose the parameter by cross-validation.

Smoothing spline. The S-plus function smooth.spline() was used to per-
form cubic spline regression on the test signals. The smoothing parame-

ter for this function was also chosen by cross-validation. This method is

denoted by SSCV.

Comte-Rozenholc. This algorithm fits a polynomial basis to the data, simi-
lar to smoothing splines [30]. The parameters of this method were taken

according to the authors’ recommendations in [30], with the maximum
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number of partition knots Dmax = n, and the maximum polynomial
degree of rmax = 74. The noise variance is estimated by the algorithm.

In the simulation results, we give this method the abbreviation CR.

KS method. As with the sparsity simulations, Daubechies Extremal Phase
wavelets were taken for the choice of wavelet family for the KS algo-
rithm. With this basis, the specific wavelet (characterized by its van-
ishing moments) and primary resolution level also need to be chosen.
Furthermore, there is the issue of which thresholding technique to be
used with the KS method. Nason [77] investigates these choices for the
KS method with soft and hard thresholding. In order to answer these
decisions in our context, we ran simulations for every wavelet D1,...,D10
and every primary resolution level 0,...,7 for SureShrink [40] threshold-
ing. The SureShrink thresholding technique is summarized in Section
2.3. We also ran the simulations with EbayesThresh thresholding, but
since [63] state that this technique is insensitive to the choice of primary
resolution level, a maximum level decomposition (primary resolution set
to zero) was made. The full results of these simulations are given in
[80]. The investigation shows that there is a lot of variability of de-
noising performance when using SureShrink. The KS method has less
variation when changing the wavelet and using EbayesThresh. However,
the AMSE values are higher with this thresholding method on all sig-
nals apart from Bumps. When reporting the AMSE results, we only
give the values from the best wavelet/primary resolution/thresholding
combination for each of the five signals — Blocks: (Haar,2,SureShrink);
Bumps: (D2,0,EbayesThresh); HeaviSine: (D4,4,SureShrink); Doppler:
(D4,5,SureShrink); and Ppoly: (D5,4,SureShrink).

Note that similar to the sparsity simulations, estimates for the KS algo-
rithm are actually computed on regular interpolated grids, so the AMSE

values are also computed on these grids, not the generated irregular

108



4.3. Investigation into denoising performance of lifting algorithms

datasets. Hence when comparing the values, this should be kept in mind.

In all simulations relating to our lifting algorithms, we used EbayesThresh
[61, 63] empirical Bayesian thresholding, with the “quasi-cauchy” prior and
posterior thresholding choice. This technique is modified as in Section 3.5.2.
Since our methodology lifts one detail coefficient at each stage, there is a similar
choice to the primary resolution level in the KS algorithm for our method —
the number of lifting steps to perform. We perform full decompositions for
our denoisers (down to two scaling coefficients) since simulations in the next
chapter show that this choice is not critical,as long as the stopping time is kept

low.

Example 4.1. The test function Doppler was sampled on an irregular grid of
length n = 256 (jitter value dy = 0.1, and Gaussian noise added with SNR=5
(see Figure 4.10). The noisy function was then denoised with the AP1S version
of our lifting algorithm, and also the other smoothers KS, smooth.spline(),
and Locfit. For KS, Daubechies’ Extremal Phase wavelet D4 with primary
resolution 5 and SureShrink thresholding was used, since for Doppler, this
wavelet-primary resolution combination generally worked best. The graphs
in Figure 4.11 show the four estimates of the original Doppler signal. It is
apparent that for both the smooth.spline() and Locfit estimates, there is a
certain amount of “wiggliness”. This is due to the smoothness assumptions
used in the techniques. The KS estimate is better, but seems to be sharper,
with a number of “glitches”. Our estimate successfully smooths the noisy data.

However, there is a small unexplained spike at around x=0.6.

We repeated this test for the Blocks function, which was sampled using a
jitter value of d; = 0.01. Gaussian noise with signal-to-noise ratio SNR=7 was
added. The sampled signal and its noisy version can be seen in Figure 4.12.

The Haar wavelet with primary resolution 2 and SureShrink thresholding was
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Figure 4.10: An irregularly-sampled Doppler signal (jitter value dy = 0.1) and
the same signal with added Gaussian noise, SNR=5.
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Figure 4.11: Estimates for the Doppler signal in Figure 4.10, using different
denoising algorithms. Top left: AP1S; top right: KS using D4, resolution
level 5 with SureShrink thresholding; bottom left: smooth.spline(); bottom
right: Locfit. The plot shows our method AP1S to smooth the noisy data more
successfully than the other smoothing procedures.
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Figure 4.12: An irregularly-sampled Blocks signal (jitter value d; = 0.01) and
the same signal with added Gaussian noise, SNR=7.

used for the KS estimate. None of the four resulting estimates are particularly
visually pleasant (see Figure 4.13), but this is not surprising, since this function
is more difficult to denoise due to the discontinuities across the range of the
signal. Again, the two non-wavelet methods do not denoise the signal well. The
Kovac-Silverman method and our algorithm (AN1) produce similar estimates,
but it could be said that our estimate preserves the lower constant parts of the

signal slightly better.

4.3.1 Denoising results

Tables 4.1, 4.2 and 4.3 show the denoising simulation results for the three
different noise levels. For each of the five test signals and jitter values dy, the
recorded value is the AMSE x10? of the 100 runs. The tables do not include
results from our quadratic and cubic fixed lifting schemes or the AdaptNeigh
algorithms with neighbourhoods larger than 2, since these did not work so
well.

The AMSE tables show that there is the obvious trend of decreasing AMSE
as the SNR level is increased (the noise content is decreased). The grid irreg-
ularity does not seem to have a significant effect on denoising performance of

the lifting algorithms.
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Figure 4.13: Estimates for the Blocks signal in Figure 4.12, using different
denoising algorithms. Top left: AN1; top right: KS using Haar wavelet, res-
olution level 2 with SureShrink thresholding; bottom left: smooth.spline();
bottom right: Locfit. The plot shows our method AP1S to smooth the noisy
data more successfully than the other smoothing procedures.

Table 4.1: AMSE (x10%) simulation results for test signals with SNR=3 with
three levels of jitter, dy, for various denoising methods described in the text.

Blocks Bumps HeaviSine Doppler Ppoly
Method dl d2 d3 dl d2 d3 dl d2 d3 dl d2 d3 dl d2 d3
LP1IS| 72 71 68| 8 8 73|20 20 21| 54 53 52|16 16 18
LP2N| 70 73 67| 8 8 7320 20 22| 55 56 51|16 16 17
AP1S| 72 68 59| 77 77 6220 20 23| 52 50 48|16 17 18
AP2N | 69 70 59| 78 75 64|21 21 22| 53 52 48|15 16 17
AP3N| 69 68 68| 76 74 73|46 44 41| 64 65 61|42 39 36
AN1| 55 54 52| 66 67 61|36 39 37| 61 61 59|38 33 32
Locfit | 73 72 641|110 108 101 (11 11 11| 58 58 54|21 20 19
SSCV | 74 74 67307 315 25012 11 12| 61 60 53|20 20 19
KS| 79 78 87179 181 259 |13 12 15| 51 52 57|18 17 18
CR | 119 119 133|332 313 284 |25 25 25|155 155 148 |13 13 13
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Table 4.2: AMSE (x10%) simulation results for test signals with SNR=5 with

three levels of jitter, dy, for various denoising methods described in the text.

Blocks Bumps HeaviSine Doppler Ppoly
Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
LP1S |24 25 22| 31 28 27|10 10 10| 23 23 23 6 7
LP2N |23 23 22| 30 30 27|10 10 11| 23 23 22| 6 6 6
AP1S |22 23 20| 30 29 23|10 10 10| 22 22 21| 6 6 7
AP2N |23 23 20| 30 29 23|10 10 11} 22 21 21| 6 6 7
AP3N |27 27 26| 30 30 29|18 18 16| 26 26 26|16 15 14
AN1 |19 20 18| 26 26 24|15 16 16| 25 24 24|13 13 12
Locfit |35 35 34| 40 40 39| 7 7 7| 25 26 25|12 12 11
SSCV |51 51 46 | 277 285 227 7 7 7| 3r 37 30|11 12 11
KS|52 52 591|130 134 213| 8 7 8| 29 28 33| 9 9 10
CR |8 85 101|288 272 247 |23 23 23|136 137 133 |11 11 12
Table 4.3: AMSE (x10?) simulation results for test signals with SNR=7 with
three levels of jitter, dy, for various denoising methods described in the text.
Blocks Bumps HeaviSine Doppler Ppoly
Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3
Lp1s|j11 11 11} 15 15 14} 6 6 6| 12 12 13| 3 3 3
LP2N |11 11 10} 16 15 13} 6 6 6| 13 12 12| 3 3 3
AP1IS |10 10 10| 15 14 12| 6 6 6| 12 12 11| 3 3 4
AP2N |11 10 10| 15 14 12| 6 6 6| 12 12 12| 3 3 4
AP3N |14 14 14| 16 16 16|10 10 10| 14 14 14} 8 8 7
AN1 |10 10 9| 14 14 13| 9 9 8| 14 14 13, 7 7 6
Locfit |20 20 19| 21 20 20 5 5 5| 13 13 16| 9 9 8
SSCV |44 44 391|269 273 2200 5 5 5| 30 30 23| 8 8 8
KS|45 45 52119 122 195| 6 6 5| 22 22 25| 5 5 6
CR |78 79 921|280 269 230 |22 22 22132 130 128 |11 11 11
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Table 4.4: Results of the Simulation Study, n = 100, SNR=4. ANI1 result
computed here, all other results as computed by [38]. First row: square root
of median MSE value; Second row: interval shows square root of 1st and 3rd
quartiles of the MSE results over 500 simulations. All results x103.

Delouille et al.
AN1 With Update | No update | ANTO/FAN KS SUPSMO

588 610 792 819 775 706
[517,654] | [526,675] | [661,989] | [759,875] | [688,856] | [629,807]

Examining the AMSE tables, the adaptive algorithms are shown to be able
to denoise the test functions well. In particular, AN1 performed very well,
especially on Bumps and Blocks, where it outperformed the competitors on
all noise levels. On the three smoother signals, AP methods with 2 neigh-
bours prove to denoise best. Our method is outperformed on HeaviSine with
SNR=3 and 5 though with SNR=7, the AP methods produce similar results to
the other denoisers. For the Doppler signal, the KS algorithm comes close to
our denoising performance with SNR=3, but on the other two noise levels, our
method outperforms the competitors, with Locfit being closest. On Ppoly, the
KS method is again the algorithm which comes closest to our denoising per-
formance, though our method outperforms all competitors. The CR method
does not perform well at all, probably due to oversmoothing in a lot of cases.

The algorithm also takes a lot longer to run than the other denoisers.

Extra simulations

A simulation study was also run on a modified HeaviSine function, as used
in [38]. The function is altered so that the discontinuity jumps are of size
4 instead of 2. The simulation was run for K = 500, with the z-values
{z;}ieq1,..., 100y being distributed N(0.5, (0.2)?). The performance is compared
with the ANTO/FAN method [7] and SUPSMO is the “super smoother” of
[50].

Table 4.4 shows the results of the simulation. There is a slight improvement

with our method. However, it should be pointed out that HeaviSine was the
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signal on which our algorithm performed worst.

Our method performs well against the KS method according to Table 4.4,
but in Tables 4.1 and 4.2, it does not. This is due to the modification to the
HeaviSine signal. The bigger jumps in the modified signal cause the wavelet
coefficients to be larger (relatively); the signal content can be viewed as being
more significant around the discontinuities, and so it is as if the SNR is locally
higher. It is in this case that our methods are more competitive (see Table

4.3).

4.3.2 Real data examples

We now show how our lifting methods perform on two real datasets.

4.3.3 Inductance plethysmography data

The original plethysmography dataset introduced by Nason [75] consists of
4096 datapoints. A plethysmograph is an instrument which measures the flow
of air whilst breathing of a patient.

For analysis with the different denoising techniques in this study, the dataset
was sampled to form a new irregularly-spaced dataset of length n = 700. For
the KS method, since the algorithm only has scope to handle data defined on
[0,1], we first preprocessed the data by (linearly) translating it to the unit in-

terval. After denoising, the estimate was translated back to the original range.

All estimates apart from the Comte-Rozenholc method preserved the gen-
eral shape of the data, removing the noise successfully, as observed by Nason
[75] for wavelet methods on the original regular grid (Figure 4.14). The CR
estimate oversmooths the data drastically, not picking up any of the features
of the signal, and moreover does not eliminate the noise from the data fully.
We believe in our estimate the peaks are slightly better discovered than the

other methods (the shapes of the individual peaks represent the data more ac-
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Figure 4.14: Estimators of the inductance plethysmography data (irregularly-
sampled dataset of length n = 700). Noisy data shown with estimates shifted
up by 0.1 to enhance visibility. Top left: smoothing spline with cross-validated
smoothing parameter; top right: KS estimate using D6, primary resolution
3, using SureShrink thresholding; bottom left: CR estimate; bottom right:
adaptive lifting using AP1S and EbayesThresh posterior median thresholding.
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Figure 4.15: The motorcycle crash dataset. The left plot shows the original
dataset (113 points); the right plot shows the same dataset joined with a line.

curately). However, our estimate has a short glitch around 1300 ms, which is
not present in any of the other estimates. This is unlikely to be a true feature

of the signal.

Motorcycle data

Figure 4.15 shows the motorcycle crash dataset, an example of a dataset with
multiple observations at each z-value. This dataset was introduced by Sil-
verman [89]. The dataset describes the head acceleration through time from
simulated motorcycle crashes, to test crash helmets for efficacy. The dataset
consists of 133 acceleration measurements at 94 time points. A linear depiction
of the data is also given in Figure 4.15, since from this plot it is easier to see
the job the smoothers have to “denoise” the motorcycle data.

This dataset was denoised using the smoothers described in the simulation
study.

For the KS method, since the algorithm cannot handle data with multiple
observations, for this smoother, we treated the dataset as being of length
n = 94. The acceleration values for the distinct z-values were taken to be the
means of the corresponding multiple observations. Similar to the inductance
plethysmography data, for the KS algorithm, the motorcycle data was also

translated to the unit interval prior to denoising, and then shifted back after
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Figure 4.16: Motorcycle crash data and denoised estimates. Small cir-
cles=data; solid line=estimate. Top left: smoothing spline with cross-validated
smoothing parameter; top right: KS estimate (applied to “averaged” dataset)
using D6, primary resolution 3 with SureShrink thresholding; bottom left: CR
estimate; bottom right: adaptive lifting using AP1S with heteroscedastic vari-
ance computation (see text) and EbayesThresh posterior median thresholding.

smoothing.

For our estimate, we used AP1S. The changing variance of the signal was es-
timated using the sliding window heteroscedastic variance procedure described

in Section 3.5.2.

Figure 4.16 gives the estimates of the trend of head acceleration during
motorcycle crashes for various denoisers. The four estimates are all quite
different. Our method is less erratic than the KS method, but we should
report that Kovac [66] applies the motorcycle data to an improved procedure
to remove outliers, which produces better estimates. The peak of our estimate

occurs later than the smoothing spline estimate, but this feature is also present
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in some of the estimates for this dataset produced in [66]. The CR smoother
does not seem to represent the data very well, producing a very conservative
estimate. The overall trend of the data is present in the estimate for the first
half of the signal, but it is obvious that the flat part of the estimate does not
describe the true signal. The authors propose a second run of the algorithm
using a variance estimate based on the first signal estimate (see [30]). For the
motorcycle data, this causes the estimate to have a linear downward trend for
the second half of the data. Even though this is an improvement over the first

estimate, it does not pick up the clear variable nature of the tail of the data.

4.3.4 Further examples

Knight and Nason [64] apply our lifting methods to a proteomics problem. The
transforms are used in the application of predicting transmembrane protein
segments. Classical wavelet methods assume a regularly-spaced model for
protein chain segments. However, the approach taken by the authors of [64]
is to incorporate information from the 3D structure of the proteins to form
an irregularly-spaced model for the residues based on the known structure of
proteins of similar classifications. The paper shows improvements of up to
13% over the classical Daubechies wavelets when using the adaptive lifting

algorithms.

4.4 Conclusions

In this chapter we have provided substantial evidence in support of the advan-
tages of using our adaptive lifting algorithms over classical wavelet methods.
Our methods are consistently competitive, and show better compression than
competitors.

They outperform existing wavelet and non-wavelet methods for irregular
design nonparametric regression problems in nearly all cases. The simulations

show that the algorithms are particularly suitable for signals which have dis-
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continuities. The application of the lifting transforms to the real examples

demonstrate that the procedures produce good estimates.

The software (and associated help pages) for the adaptive lifting schemes

are available from the website
http://www.stats.bris.ac.uk/ “maman/computerstuff/Adlift/

or alternatively, it is available from the CRAN R package resource
http://cran.r-project.org/

The next chapter discusses the choice of stopping times in the adaptive

lifting schemes, to try to give further improvements in denoising.
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Chapter 5

Stopping times in adaptive

lifting

Introduction

The previous two chapters have introduced adaptive lifting transforms, follow-
ing the lifting “one coefficient at a time” approach proposed by Jansen et al.
[59, 60]. These algorithms are suitable for use on irregular data of any length.
Alongside these transforms, we have proposed a modified version for use on
data with multiple observations for each xz-value. The simulations in the last
chapter show that the methods are very competitive in terms of both sparsity

and denoising performance.

In the last two chapters, we did not discuss the primary resolution (PR)
level in the lifting transforms, but assumed data to be decomposed to as many
detail coefficients as possible. In this chapter, we will discuss the choice of
primary resolution in the adaptive lifting transforms. The primary resolution
level will also be referred to as the stopping time of the transform. We want to
establish the importance of the stopping time for the adaptive lifting schemes

through simulation, and based on the findings, we will attempt to devise an
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automatic way of choosing the primary resolution level.

The first section of this chapter reviews the previous and existing work on
primary resolution level selection. Section 5.2 examines the choice of primary
resolution level in the context of the adaptive lifting schemes introduced in
Chapter 3. The next section investigates the effect of stopping times in lifting
schemes through simulation, and analyzes the results. Afterwards, a method
for automatically selecting the stopping time for the adaptive lifting transform

is suggested and assessed.

5.1 Previous work on primary resolution level
in wavelet transforms

In classical wavelet transforms, such as the DWT, we have seen that a sam-
pled signal vector f can be decomposed by a wavelet basis through Mallat’s
pyramidal algorithm as in 2.15

d := DWT(f) = (cj,, djo, djo+1, - - -, da—1),

where the number j, is the primary resolution level associated to the

wavelet transform.

When addressing the nonparametric model in equation (2.45), the primary
resolution level will affect the signal estimate, as well as the thresholding tech-
nique and threshold level chosen. A low choice of primary resolution level
corresponds to coarse (as well as fine) level wavelet coefficients being thresh-
olded, whereas when the primary resolution is chosen to be high, only the
fine coefficients are thresholded. Wavelet estimators are generally forgiving of
oversmoothing: too low a value for the primary resolution will have relatively

little undesired effect, since the thresholding usually compensates for the low
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resolution. Due to this resistance against oversmoothing, wavelet estimators
provide a bound for the order of magnitude of the associated ISE. However,
wavelet estimators are not forgiving of undersmoothing, so choosing the PR
too high will cause noisy estimates. This is the reason why in standard imple-
mentations of wavelet transforms, the primary resolution level is taken to be

fairly low.

The effect of the primary resolution parameter in wavelet decompositions

has already been discussed in the literature for different settings.

Early work on the choice of the truncation parameter (resolution level)
for general wavelet transforms is investigated in Hall and Patil [54]. The au-
thors address the choice of truncation parameter and threshold level for differ-
ent types of wavelet estimators on uniform and non-uniform design regression
problems. Both light-tailed (normal or bounded) and heavy-tailed error dis-
tributions are considered. Suggestions for the form of the optimal resolution
level are made for the different situations set out in the paper.

Hall and Nason [53] discuss the choice of the primary resolution level with-
out the restriction to integer values, which is often assumed to make use of
Mallat’s pyramidal algorithm for the DWT (see Section 2.1.3). Integer choice
of resolution level parallels a certain choice of bandwidth parameter for kernel
methods, which is stated to be often unacceptable. The authors also point
out that dyadic choice of resolution level in wavelet estimators is sometimes
inappropriate, and can lead to under- or oversmoothing. The advantages of
non-integer primary resolution level are quantified and a density estimation ex-
ample given, showing that the extra computational effort involved in choosing
non-integer primary resolution levels is insignificant. However, the computa-
tional implications of using non-integer primary resolution levels in nonpara-
metric regression is not addressed.

The paper [55] by Hall and Penev introduces a cross-validatory technique
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for choosing the primary resolution level for nonlinear wavelet estimators. The
algorithm works by obtaining an initial estimate of the true curve, and then
dividing the range of the signal into subregions according to where the esti-
mator has similar roughness. Then cross-validation is used to select a primary
resolution level chosen for each subregion. The minimum of these resolutions
taken as the final chosen primary resolution level, and an estimate is made
using this resolution across the whole signal region. Theoretical properties of
the estimator are discussed.

The denoising effect of decomposing a signal to different primary resolu-
tion levels becomes especially apparent when combined with other smoothing
parameters, such as shrinkage rules and thresholding values. For example, in
[77], cross-validatory techniques are used to find the optimal primary resolu-
tion level, while simultaneously choosing other parameters. A simulation study
is provided which shows the cross-validation method selects good values of pri-
mary resolution level for certain unknown functions. A fast algorithm to select
these denoising parameters is implemented by Nason for the Kovac-Silverman
denoising method (see [67]).

Recent work in [79] and [80] has also shown the choice of primary level in
the Kovac-Silverman algorithm combined with other thresholding techniques
to affect its ability to smooth noisy signals.

In Johnstone and Silverman [62, 63|, the empirical Bayesian thresholding
technique EbayesThreshis introduced. This method has been shown to perform
well in many situations and with different wavelet methods. The authors
propose that if EbayesThresh is used, it is insensitive to the choice of the
primary resolution level in wavelet transforms.

Barber and Nason [10, 11] investigate the effect of the primary resolution
level as part of their simulation study on thresholding rules for real and com-
plex wavelet transforms. They find that certain thresholding techniques are
sensitive to the choice of primary resolution level, whereas wavelet transforms

combined with other methods (including EbayesThresh) show similar perfor-
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mance across resolution levels.

The adaptive lifting algorithms from the previous chapters discussed here
are nonlinear since their transform matrices depend on the input signal. Chang-
ing the primary resolution could hence have an interesting effect on their de-
noising capability. Because of this, as well as the factors of prediction lifting
step, neighbourhood choice and thresholding methods, there is motivation for
determining whether the primary resolution level affects the ability of the

transform to smooth a noisy data input.

5.2 The role of primary resolution level in sin-
gle coefficient lifting schemes

The adaptive lifting schemes of this thesis use the “one coefficient at a time”
lifting procedure introduced in [59] and [60]. We now recap a few details of this
variant of the lifting scheme, in order to place the notion of primary resolution
level in our context. For more details on the adaptive lifting schemes, refer to

the previous chapters.

Suppose we have a dataset of length n, representing a sampled function.

The algorithm is as follows:

1. Associate scaling functions to each datapoint, by the interval construc-
tion detailed in Section 3.2 (the intervals correspond to the scaling func-

tion integrals);

2. Choose a point to lift by considering the data point corresponding to the

interval with minimum length;

3. Perform prediction and update lifting steps on this coefficient to produce

its detail coefficient and new scaling function integrals;
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4. Repeat this for as many steps as required.

Due to the dyadic nature of classical wavelet transforms, the primary res-
olution level in this case can only take a limited number of values, namely 0
to log,m — 1, where n is the length of the signal. In our lifting transforms,
however, due to lifting only one coefficient at a time, we can have a much
wider choice of possible values for the stopping time; for single coefficient lift-
ing transforms, the choice of primary resolution level translates into choosing
the number of lifting steps to perform (equivalent to deciding how many scal-
ing coefficients to have in the function decomposition). Because of the interval
construction used to represent the scaling function integrals, the maximum
number of lifting steps in the transform is n — 1, though in simulations we take

the maximum to be n — 2.

5.3 Simulation Study: does the stopping time
affect denoising performance of adaptive

algorithms?

5.3.1 Simulation preliminaries

To determine the effect of the stopping time in the adaptive lifting algorithms,
a denoising simulation study was run for the standard Donoho and Johnstone
test signals Doppler, Bumps, Blocks, and HeaviSine first used in [39], as well
as the now well-known Ppoly function introduced in [76]. These signals are
described fully in Section 4.1.

The same jittering method described in Chapter 4 was used to produce
100 irregularly-sampled vectors of length 256 for each signal, which were then
corrupted with Gaussian noise having signal-to-noise ratio equal to 3. The
simulations were then repeated for SNR=5.

Different variants of the “one coefficient at a time” lifting algorithm were
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used together with Ebayesthresh empirical Bayesian thresholding to eliminate
the noise: the “quasi-cauchy” prior and posterior median thresholding were
chosen for the FEbayesThresh parameters.

For each algorithm, the transform was performed to every resolution level
possible. Due to the interval construction described above, we take the maxi-
mum number of lifting steps which can be performed to be n — 2. Hence, for
each primary level in the range 2 to 255, the error between the denoised esti-
mate and the true signal was computed. This resulted in an integrated squared
error (ISE) curve for each simulation run, showing the variability in denoising
performance for different primary resolution levels. This was repeated for each
of the 100 simulation runs and for each function.

Examples of the ISE curves obtained from the simulation study can be seen

in Figure 5.1.

5.3.2 Simulation results: frequency plots

In what follows, we follow the same abbreviations for the lifting algorithms as
explained in earlier sections. Frequency plots were constructed to show how
often different numbers of scaling coefficients produced the best denoised es-
timates: for each of the 100 signals denoised in the MISE simulation study in
Section 5.3, the individual ISE curves were examined to find when the lowest

error value was obtained, and the results recorded.

When examining the results from the frequency plots, a few observations
become apparent. The denoising behaviour of the lifting algorithms is not
affected significantly by the level of jitter in the irregular grids on which the
test signals were generated. This holds no matter which signal was denoised
and which algorithm was implemented. A typical example of this is shown in
Figure 5.2.

However, the number of lifting steps needed for optimal denoising seems
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Figure 5.1: True ISE curves corresponding to four different datasets: (a)
Bumps on grid d3 with added SNR=3 Gaussian noise, denoised using AN1
(top left); (b) Bumps on grid ds with added SNR=3 Gaussian noise, denoised
using LP2N (top right); (¢) Doppler on grid d; with added SNR=3 Gaussian
noise, denoised using AP2N (bottom left); (d) Ppoly on grid d, with added
SNR=5 Gaussian noise, denoised using AN1 (bottom right).

to change dramatically across signals, and also across the denoisers used for
the smoothing. The higher order non-adaptive algorithms, namely QP2S and
CP2S, have greater spreads in the indices for best denoising, especially for
Blocks and Bumps where the lifting steps required in the 100 runs can range
over most of the possible values (see Figure 5.3). There is also sometimes
no obvious choice for how many lifting steps should be performed in these
algorithms to give the best denoised signal. This reinforces the unpredictability
of these transforms, and their erratic behaviour when used in denoising, shown

by the simulations in [79].
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The linear prediction scheme was more stable in view of the range of stop-
ping times appearing from the simulations. However, the adaptive schemes
showed a more pronounced indication as to the best number of lifting steps,
with AN1 selecting the fewest number of stopping times. In general, the sig-
nals with discontinuities produced the most erratic behaviour with all denois-
ers. There was a marked difference compared to the smoother HeaviSine and
Ppoly signals, which seemed to give more similar histograms across the denois-

ing algorithms (Figure 5.4).

5.4 Automatic prediction of stopping times

The simulation study illustrates evidence for the link between the stopping
time of the adaptive lifting schemes and their denoising performance.

The time taken to denoise a dataset of length n = 256 to every primary
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Chapter 5. Stopping times in adaptive lifting

resolution level, using AP2N and AN1 is, on average 10 minutes 14 seconds
and 25 minutes 20 seconds respectively. This is taken from above simulations,
running the lifting algorithms with a 2.8 GHz processor. From this, one could
then find the best primary resolution level and hence best estimator for a
particular dataset. Though this is not excessively long, for larger datasets this
time could increase dramatically. There is an obvious trade-off between finding
the best estimate for a signal, and the computation time involved in using the
lifting transform to denoise data for every resolution level. Hence there is clear
motivation for finding an efficient way to obtain the optimal stopping time, and
in turn the best signal estimate. This would be of interest in situations where
large datasets are to be denoised, or for example when speed of computation

is of importance.

Having established that there is indeed a connection between the number of
lifting steps to perform and the denoising capability of the various transforms,
the question arises of how to develop an efficient automatic way of choosing the
resolution level which would give improved performance in eliminating noise

during smoothing procedures.

When denoising a general signal, we are just given the noisy data from
which to estimate the true signal. We would like to know the ISE curve for the
dataset, so that we could then choose the primary resolution level accordingly.
However, since the true function is unknown, this is not possible, so our aim

is to somehow estimate the ISE curve for a particular dataset.

5.4.1 ISE curve prediction procedure

To achieve this aim, we now present a method which attempts to recreate
the ISE curve for a given dataset. We proceed as follows. Suppose we have
an estimate for the true signal (we discuss this matter in more detail below).
We could then compute estimates for the underlying signal at certain other

resolution levels and use this information to calculate estimates for the ISE
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5.4. Automatic prediction of stopping times

values at those points. From this an estimate for the true signal’s ISE curve

can be formed. There are a few issues about this general procedure to discuss.

Initial estimate for true signal. Since we have no idea (a priori) of what
the underlying true signal is, we could pick one resolution level and then
use the smoothed version of the data based on this resolution as our
estimate of the true signal. One disadvantage of doing this though, is
that our initial true signal estimate would be heavily dependent on which
resolution we choose, and may look very different to an estimate using
a different resolution level. There would be some degree of uncertainty
as to which one is a “good” or more suitable estimate, since the actual
function is unknown. One way round this issue is to form an initial
estimate for the true signal using some “average” of the curves obtained
from denoising the dataset from several resolution levels. This estimate
will more likely be a balance of the individual “good” and “bad” function

estimates.

Signal estimate update. We may then decide to pick more resolution lev-
els to get a better estimate of the signal’s ISE curve. The current true
function estimate can be updated by the new information gained. This
update will give a better overall estimate of the true function. The re-
sulting errors will then be judged according to this new current estimate.
In this way we have an “in-place” improvement of the original function

estimate.

Alternatively, the ISE values could be computed by comparing all the
thresholded estimates with some global “average” of all the thresholded

estimates.

Choice of resolution points. There is also an issue of how to pick subse-
quent resolution points to use for the ISE curve prediction. Suppose we
have an estimate for the true function. The next resolution level could be

chosen by considering a curve of best fit through the ISE values already
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computed, picking the number of scaling coefficients to be used in the
next decomposition corresponding to the minimum of the predicted ISE
curve. Alternatively, we could just use the ISE information we have to
pick the next stopping time, choosing it near the present resolution level

giving lowest error.

Let us recap: our aim is (after some prechosen number of denoising iter-
ations) to be able to recreate the shape and therefore minimum of the ISE
curve of a given dataset. This will enable us to select the number of scaling
coefficients to keep in the function decomposition to give the best denoised

signal. Our procedure will be:

1. Pick a number of initial stopping times, and create an estimate for the

true signal, M. Then for £ > 1:
2. Pick another resolution level, PR;q;

3. compute thresholded estimate using the primary resolution level P R;y).

Call this fy;
4. Compute ISE}, between f, and My;
5. Update My with fi: My = U(My, fr);

6. Choose next resolution level ix1 e.g. by fitting curve of best fit through

all ISE points already computed.

Then (after say, K iterations), we then predict optimal number of scal-
ing coefficients by either a curve of best fit through the ISE points already

obtained, or recalculating the errors from some global function estimate.

5.4.2 ISE curve prediction: simulations

To test this method of simulating ISE curves, different datasets and denoisers
were chosen, and the true ISE curves computed (see Figure 5.1). Best stopping

times for the four datasets are (a) 9; (b) 35; (c) 22; (d) 42.
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5.4. Automatic prediction of stopping times

The various methods outlined in the prediction procedure above were then
implemented to try and reconstruct them. Two “starting values” for the initial
function estimate, namely m = 5, 10 were used, with either the mean or median
of the m denoised functions as the estimate.

To choose subsequent stopping times, either a smoothing spline or the
present ISE points were examined. The motivation behind fitting a smoothing
spline to the ISE points is that it provides a method of predicting the ISE
curve when we only have a relatively small number of points. It must be
noted, however, that even though (ideally) we would like an ISE curve to be
smooth, in reality most true ISE curves will have some degree of “spikiness”.
When we used the ISE points already calculated, the resolution level closest
to the current optimal stopping time was chosen.

The procedures were stopped after K; = 20, Ky = 30, and K3 = 40 total

iterations.

Updates

When we employed the mean as our initial function estimate, one of the fol-

lowing update choices was selected for the “true” signal estimates:

(none) The function estimate M was not updated from the initial estimate,

ie. My =mean(f1,..., fm) Vk.
(m1) The mean of all previous denoised estimates: My,; = mean(fi, ..., fr)-

(m2) A weighted mean of the present estimate and the new estimate: M, =
mean(My, fr). The idea behind using this update is to weight the up-

dated function estimate towards the estimate just computed.

(ts) A mean of the estimates after the initial primary resolution levels had
been used to form M: if there are m initial primary resolutions, My, =
mean(fpy11,.-., fr) (for £ > m). Our hope is that since these points are

chosen later in the procedure, they are more likely to lie on (or close to)
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the true ISE curve, and hence predict a more accurate estimate of the

best stopping time.

When the median was chosen to form the initial function estimate, we made

a choice from two updates:

(none) The function estimate M was not updated from the initial estimate,

i.e. My = median(fi,..., fm) Vk.

(m3) The median of all previous estimates: M1 = median(fi,..., fi).

Two global function estimates were also used. These were computed from
(K) function estimates, resulting from primary resolution levels chosen regu-

larly over the range 2,...,255 (all possible primary resolution levels):
(mean) A global mean of all estimates: M = mean(fi, ..., fk).

(median) A global median of all estimates: M = median(fy,..., fx). For
consistency, this was only computed when the median was also taken for

the initial signal estimate.

The global estimates were then used to produce new ISE curves by com-
paring them to each individual thresholded function estimate, f;. The best

stopping time was recorded from these alternative ISE curves.

5.4.3 ISE curve prediction: results

The results from the prediction procedure proved to be disappointing. There
was no appreciable difference in between the shape of the ISE curves from
starting values m = 5 and 10. The mean and median updates produced very
erratic and spiky ISE estimates, not reliable at all for predicting the best
resolution level. The other updates, although more stable, did not represent

the shape of the true ISE curves in Figure 5.1.
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5.4. Automatic prediction of stopping times

One of the problems with the updating methods in the ISE curve prediction
is that the curve is inherently dependent on which resolutions are used for the
initial signal estimate. For example, if initially the resolution levels 10, 20,
30, 40, and 50 were chosen instead of picking them regularly over the range
2 to 255, then the resulting signal estimate and therefore ISE curve could be

significantly different.

Computing the global mean and median produced, in general, smoother
ISE curves. Increasing the total iterations in the prediction procedures in-
creased the overall error magnitude, though this is not necessarily an indica-
tion of an worsening of the update scheme, since the error is only relative to

the current function estimate.

Using the smoothing spline to select resolution levels after the initial esti-

mate seemed to increase the “spiky” features of the predicted ISE curves.

The behaviour of the prediction schemes was independent of which of the
four datasets were denoised to form the error curves, in that all the datasets

produced similar ISE curve estimates.

The poor performance of the update methods in these simulations could
be attributed to the fact that they are very sensitive to the stopping times
which are chosen from which to form the ISE predictions. The resolutions
tend to be clustered around certain parts of the stopping time range, and so
some primary levels which would produce globally minimal error might not be

used, therefore skewing the ISE information in the procedures.

Tables 5.1 — 5.4 show the predicted optimal stopping times corresponding
to the ISE curves in Figure 5.1 for the datasets (a) — (d). Although there are
update scheme/initial function estimate combinations which predict stopping
times the same or near to the true optimal resolution levels (given in Section

5.4.2), there is no combination which remains consistent over the four datasets.
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No curve fitting:

Starting value m = 5 | Starting value m = 10
K | Ky K K | Ky K

none | 127 | 127 127 138 | 138 138

Mean ml | 127 | 127 127 138 | 138 138
Updates | m2 | 16 | 21 21 13 | 13 24
ts 6 6 6 10 | 10 10

Median | none | 127 | 127 127 138 | 138 138
Updates | m3 | 16 | 24 127 16 | 21 24

Total iterations
K, | K, K,
Global mean | 121 | 130 131
Global median | 131 | 121 128

Smoothing spline fitting:

Starting value m = 5 | Starting value m = 10
K, | K, K3 K, | K, K3
none | 129 | 128 130 128 | 129 128
Mean ml | 158 | 139 182 254 | 254 217
Updates | m2 | 143 | 141 144 126 | 122 118
ts | 137 | 138 138 127 | 126 128
Median | none | 128 | 126 128 128 | 127 127
Updates | m3 2 | 64 176 149 | 157 103

Total iterations
K, | Ky K,
Global mean | 130 | 129 129
Global median | 130 | 134 130

Table 5.1: Predicted stopping times for dataset (a) (target=9) for initial func-
tion estimate types mean and median, and starting values m = 5, 10. Predicted
stopping times are after K; = 20, K, = 30 and K3 = 40 total iterations of
signal estimate update methods described in the text. Mean update methods:
no update (none), mean (ml); weighted mean (m3) and global mean (mean);
median update methods: no update (none); median (m3) and global median
(median). Top: no ISE curve interpolation to choose resolution points in algo-
rithm; bottom: smoothing spline ISE curve interpolation to choose resolution
points.
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No curve fitting:

Starting value m = 5 | Starting value m = 10
K, | K, K3 K, | K, K3
none | 127 | 127 127 115 | 115 138
Mean ml | 16 | 26 36 115 | 21 32
Updates | m2 | 16 | 26 26 10 | 10 26
ts 6 6 6 10 | 10 10
Median | none | 127 | 127 127 115 | 138 138
Updates | m3 | 127 | 127 127 16 | 19 26

Total iterations
K, | K, K;
Global mean | 121 | 130 131
Global median | 131 | 133 130

Smoothing spline fitting:

Starting value m = 5 | Starting value m = 10

K]_ K2 Kg Kl KZ KS
none | 129 | 131 131 123 | 120 134
Mean ml 96 2 2 38 2 2

Updates | m2 | 144 | 111 109 131 | 132 133
ts | 119 | 118 122 130 | 130 130
Median | none | 85 | 144 16 110 | 86 87
Updates | m3 | 129 | 131 131 123 | 134 134

Total iterations
K, | Ky K,
Global mean | 128 | 130 129
Global median | 126 | 135 130

Table 5.2: Predicted stopping times for dataset (b) (target=35) for initial func-
tion estimate types mean and median, and starting values m = 5, 10. Predicted
stopping times are after K; = 20, K, = 30 and K3 = 40 total iterations of
signal estimate update methods described in the text. Mean update methods:
no update (none), mean (m1l); weighted mean (m3) and global mean (mean);
median update methods: no update (none); median (m3) and global median
(median). Top: no ISE curve interpolation to choose resolution points in algo-
rithm; bottom: smoothing spline ISE curve interpolation to choose resolution
points.
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No curve fitting:

Starting value m = 5 | Starting value m = 10
K1 K2 Kg K1 K2 Kg
none | 127 | 127 127 138 | 138 138
Mean ml | 16 | 26 36 138 | 21 32
Updates | m2 | 14 | 23 23 14 | 14 32
ts 5 5 5 13 | 13 13
Median | none | 127 | 127 127 138 | 138 138
Updates | m3 | 16 | 25 32 16 | 4 30

Total iterations
K, | K, K,
Global mean | 133 | 136 131
Global median | 123 | 133 134

Smoothing spline fitting:

Starting value m = 5 | Starting value m = 10

K]_ K2 K3 Kl K2 K3
none | 129 | 132 127 139 | 139 139
Mean ml 93 2 2 2 2 121

Updates | m2 | 118 | 114 107 129 | 124 122
ts 122 | 123 123 129 | 127 127
Median | none | 130 | 127 131 134 | 139 135
Updates | m3 | 88 | 254 31 135 | 88 166

Total iterations
K, | Ky K,
Global mean | 133 | 133 133
Global median | 132 | 127 130

Table 5.3: Predicted stopping times for dataset (c) (target=22) for initial func-
tion estimate types mean and median, and starting values m = 5, 10. Predicted
stopping times are after K; = 20, K, = 30 and K3 = 40 total iterations of
signal estimate update methods described in the text. Mean update methods:
no update (none), mean (ml); weighted mean (m3) and global mean (mean);
median update methods: no update (none); median (m3) and global median
(median). Top: no ISE curve interpolation to choose resolution points in algo-
rithm; bottom: smoothing spline ISE curve interpolation to choose resolution
points.
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No curve fitting:

Starting value m =5 | Starting value m = 10
K | K, K; K | Ky K

none | 127 | 127 127 138 | 138 138

Mean ml | 127 | 21 127 138 | 138 138
Updates | m?2 5 5 31 10 | 10 31
ts 6 6 6 10 | 10 10

Median | none | 127 | 127 127 138 | 138 138
Updates | m3 | 13 | 22 127 8 3 22

Total iterations
K1 K2 K3
Global mean | 139 | 136 139
Global median | 139 | 139 134

Smoothing spline fitting:

Starting value m = 5 | Starting value m = 10

K, | Ky K K, | Ky K

none | 129 | 129 133 135 | 135 142

Mean ml | 154 | 87 64 100 | 201 204

Updates | m2 | 129 | 122 117 147 | 150 156
ts | 139 | 141 142 2 7 8

Median | none | 129 | 133 127 135 | 142 139

Updates | m3 | 95 | 65 177 175 | 138 249

Total iterations
K, | Ky K,
Global mean | 142 | 134 143
Global median | 142 | 143 130

Table 5.4: Predicted stopping times for dataset (d) (target=42) for initial func-
tion estimate types mean and median, and starting values m = 5, 10. Predicted
stopping times are after K; = 20, K, = 30 and K3 = 40 total iterations of
signal estimate update methods described in the text. Mean update methods:
no update (none), mean (m1l); weighted mean (m3) and global mean (mean);
median update methods: no update (none); median (m3) and global median
(median). Top: no ISE curve interpolation to choose resolution points in algo-
rithm; bottom: smoothing spline ISE curve interpolation to choose resolution
points.
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5.5 MISE curve investigation

To examine the results from the simulation study further, the ISE curves from
the 100 simulation runs were averaged for each signal/grid/SNR combination
to form mean integrated square error (MISE) curves, to see how the lifting

transforms behave on average.

5.5.1 Graphical interpretation

The three best denoising methods, namely LP2N, AP2N and ANI1, have a
relatively smooth change in performance as the number of scaling coefficients
increases, and whilst the MISE curves of the quadratic (QP2F) and cubic
(CP2F) transforms are more variable, they too have resolution levels which
give better smoothing performance than others. The unpredictability of the
higher order transforms is illustrated by their sometimes erratic behaviour.
There is often a big difference in the shape of the MISE curves as we change
the grid jitter, whereas for the better algorithms there is only a slight change
in behaviour in certain cases (see Figure 5.5). The third plot shows that the
irregular grids with jitter value d3 = 1 are denoised similarly to the irregu-
lar grids with jitter values d; = 0.01 and ds = 0.1, which nearly coincide.
This observation substantiates the findings in Chapter 3 that the higher order
prediction schemes and the lifting algorithms employing larger neighbourhood
configurations are “ill-conditioned” and unstable.

Figure 5.6 shows the effect of changing the primary resolution used in
the signal denoising for different lifting transforms. The graphs reinforce the
conclusions from simulations in Chapters 3 and 4 that the quadratic and cubic
algorithms are not competitive with the adaptive lifting transforms, since their
estimates have relatively high error compared to both AP2N and AN1 at most
primary resolution levels. In view of this, and the observations highlighted
above, we do not discuss QP2S or CP2S further in this section.

Considering how the resolution level affects the three main denoisers in
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Figure 5.5: Examples of MISE curves
for different lifting algorithms on ir-
regular grids with the three jitter val-
ues: d; (solid); dp (dashed); ds (dot-
. ted). Top left: QP2S when denoising
the Doppler signal; top right: CP2S
when denoising the Ppoly signal; bot-
. tom: AN1 when denoising the Heavi-
Sine signal. In all cases, SNR=3. The
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more detail, we note from Figure 5.6 that for the Doppler signal, the fully
adaptive transform AN1 cannot outperform either LP2N or AP2N, with these
two transforms being very similar in performance. Comparing this now to
Figure 5.7, where the Bumps signal is denoised, we notice that AN1 has lower
error than the other two algorithms when fewer scaling functions are included
in the signal decomposition (more lifting steps are performed in the transform).
Indeed in general, this behaviour is characteristic of the better denoisers — for
the signals with discontinuities, AN1 performs the best with a low stopping
time, whereas the other two algorithms denoise better on Doppler, HeaviSine
and Ppoly. This property agrees with the simulation study in Chapter 4,
where a full decomposition down to two scaling coefficients was performed:

AP methods are better for the smoother signals, and AN1 outperforms the
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Figure 5.6: MISE curves of the lifting algorithms when smoothing the Doppler
signal with added SNR=3 Gaussian noise on irregular grids with jitter value
di: LP2N (solid); QP2S (dashed); CP2S (dotted); AP2N (dot-dashed); AN1
(long-dashed).

other lifting algorithms for Blocks and Bumps.

5.5.2 Optimal stopping times from MISE curves

Table 5.5 shows the number of scaling coefficients in the signal decompositions
giving the best denoising performance (i.e. the number of scaling coefficients
corresponding to the minima of the MISE curves). The erratic behaviour of
the worse transforms is reflected in the varying number of coefficients across
the grid jitters. Focussing on the better denoising methods, the performance
when denoising the smoother test functions (Doppler, HeaviSine and Ppoly) is

best irrespective of the denoiser at approximately 20 scaling coefficients. With
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Figure 5.7: MISE curves for the better lifting algorithms when smoothing the
Bumps signal with added SNR=3 Gaussian noise on irregular grids with jitter
value di: LP2N (solid); AP2T (dashed); AN1 (dotted).

the signals with more pronounced discontinuities, namely Bumps and Blocks,
the fully adaptive algorithm performs best with a low (less than 10) number
of scaling coefficients in the decomposition, whereas the other two algorithms

need slightly fewer lifting steps to obtain minimal error.

When SNR=5, the transforms exhibit similar MISE curves as when SNR=3.
Corresponding patterns can also be seen in how the algorithms perform on the
functions with discontinuities versus the smoother signals. Table 5.6 shows
the number of scaling coefficients which give the best denoised signal for the
different jitter values and signals for SNR=5. Again, with this signal-to-noise
ratio, we draw the conclusion that to produce a good signal estimate, a low

stopping time is needed.
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Blocks Bumps HeaviSine Doppler Ppoly
Method | a b c a b ¢ a|b ¢ al|b|c|lal|b]|ec
LP2N | 55 | 41 | 45 | 41 | 41 | 43 | 7 | 7 | 17 [ 302019 7 | 7 |10
QP2S [ 121 | 101 | 135|121 | 128 | 146 |17 |18 | 14 |73 |46 |72 |13 |15 | 2
CP2S | 122|123 | 250 | 122 | 204 | 247 |17 |18 | 251 | 74 |79 |97 |14 |14 | 15
AP2N | 15 | 17 | 32 | 27 | 39 | 20 |20 (21| 5 |20(25| 7 |2 |2 |7
AN1 9 6 3 12 | 11 2 31 71| 5 7183|1322

Table 5.5: The resolution level (number of scaling coefficients in the signal
decomposition) giving the best denoised signal, when considering the average
ISE curve of 100 denoised estimates, SNR=3.

Blocks Bumps HeaviSine Doppler Ppoly
Method | a | b | c|a|b|c|a|b|c|la|b]|cla]b|c
LP2N |26 |37 |28 34|38 |27 |23[22|21 |27 (34|19|2]|2|2
AP2N | 6 [ 15120139 (35|17 |24 (29|21 |9 (2027 |2]|2|2
AN1 |14 9 |2 |8 |7 |2 |3 |8 |3 |13|18]9 |2]|2]2

Table 5.6: The resolution level (number of scaling coefficients in the signal
decomposition) giving the best denoised signal, when considering the average
ISE curve of 100 denoised estimates, SNR=5.

5.6 Conclusions and further work

In this chapter, we have shown through simulations that varying the stopping
times in the adaptive lifting schemes presented in Chapter 3 does affect the
algorithms’ denoising capability.

We proposed an automatic method for finding the best stopping time,
although we were we were unable to correctly predict the optimal resolution
level. Increasing the total iterations and starting values could give better
results. It would be informative to use the automatic procedure on every
primary level, to see if the ISE curve obtained resembled the true curves shown

in Figure 5.1.

Collating the histogram information with the MISE curve simulation re-

sults in section 5.3, all algorithms show variation in the best resolution levels
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from the 100 denoised signals. The range of this variation was sometimes quite
big, whereas we would prefer to have the histograms showing more localized
ranges with clear modes for the best stopping times. This would allow us to
give definite best stopping times for each of the lifting algorithms. However,
one could argue that 100 runs is not enough to give a true representation of

this information, and so increasing the number of simulations might be useful.

In addition, the results are still informative. From Chapter 4, it is recom-
mended to use AP2N (or something similar) for the smoother signals and AN1
for Bumps and Blocks. For these algorithms, both the MISE curves and the
histograms are more consistent, and hence the conclusions drawn from them
more reliable. Consequently, we suggest using these algorithms with low stop-
ping times, e.g. 10 and 20 scaling coefficients respectively (nkeep=10,20 in
the adlift software) for signals similar to these as optimal stopping times, since

on average this choice will give good denoising results.

An interesting idea also arises from the work in this chapter. Denoising
with many lifting steps is obviously more computationally intensive compared
to keeping a higher stopping time. Further work could be to attempt to provide
an “in-place” decision-making process in the adaptive lifting algorithms to
choose whether or not lifting an extra coefficient would be beneficial when

denoising.
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Chapter 6

A Haar-Fisz Algorithm for

Binomial Probability estimation

Introduction

This chapter investigates the problem of estimating the proportion parameter

associated with a binomial process.

Let us introduce the general set up for this problem. Suppose we have
n observations x, from a sequence of binomial random variables X, k£ €
{1,..., N}, where we assume the variables to be independent: X ~ Bin(ny, py)-
Our aim is to try and estimate the proportions p; from the observations xy,
where the binomial sizes are often chosen to be equal. We assume py = P(k/N)
for k € {1,..., N}, where P denotes the underlying (unknown) binomial pro-
portion function; we also assume that P has some degree of regularity, for
example that P is piecewise constant. In practice, this type of problem is
difficult, since the classical ‘function plus noise’ model usually assumed for

nonparametric regression problems may be unsuitable.

A similar situation often arises in applications where it is of interest to
discover change points in the binomial probabilities during long periods of fairly

homogeneous behaviour. This type of problem is interesting from a theoretical
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point of view, and it also has many applications, especially in genetics.

For example, the Eisenberg and Levis simulated data [43] is often analyzed
for this type of situation. Ion channels are large proteins controlling some
aspects of cell function, which exist in a finite number of states, according
to their ion conductance. The Eisenberg and Levis time series describes the
current through a single ion channel with two states. The problem can be set
up in the framework of a Bernoulli times series, with the model of being (in-
dependently) in one state with a certain (unknown) probability. Hodgson and
Green [57] test their MCMC methodology on this data to investigate models
for ion channel data. This setting is similar to the isochore prediction situation
described in Oliver et al. [81] and Zhang and Chen [103], where the predic-
tion of change points between DNA segments of homogeneous G+C nucleotide

content is desired.

This chapter is organized as follows. In the first section, we give an overview
on estimation methods for binomial processes.

Section 6.2 discusses the Fisz transform, an operator on two random vari-
ables which, in the limit, has a Gaussian distribution for variables with suitable
properties [47]. This discussion provides motivation for our Gaussianizing ap-
proach to the binomial count estimation problem described in later sections.

Afterwards, the Haar-Fisz algorithm [51] is reviewed in Section 6.3. This
procedure uses the Haar wavelet transform and the Gaussianizing and vari-
ance stabilizing properties of the Fisz transform to bring data closer to being
normally distributed. In view of these properties, a more detailed exposition
of previous work with the Haar-Fisz algorithm for intensity estimation is in-
cluded.

The Fisz transform, although applicable to binomial random variables, does
not possess the same variance stabilizing properties in the binomial case as
for other random variables, for example, for Poisson variables. Hence in the

subsequent section, we propose an alternative Gaussianizing transform to the
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Chapter 6. A Haar-Fisz Algorithm for Binomial Probability estimation

original Fisz transform for the particular case of binomially distributed input
random variables.

We conclude this chapter by providing numerical evidence for the asymp-
totic properties of this new transform, and compare its performance with the
traditional inverse sine Gaussianizing technique of Anscombe [6]. We also
propose a technique for binomial proportion estimation and apply it to real

data.

6.1 Previous work on binomial proportion es-

timation

We now give a brief outline of work in the literature for binomial distribution

estimation problems.

6.1.1 Wavelet methods for binomial processes

Antoniadis and Leblanc [8] consider linear wavelet smoothers for the binary
regression situation. A generalized linear model is imposed on the regression
function, and via usual wavelet projection an estimator of the smooth model
function s(z) (see Section 6.1.2). A particular form of empirical wavelet coef-
ficient is proposed to obtain smoother regression estimators than other coeffi-
cient estimators. The estimator is then modified to give a suitable estimator of
the regression function P(x). The choice of resolution parameter in resulting
wavelet expansions is implemented in the binary regression context by general-
izing existing selection criteria. The estimators’ properties are shown through
simulations and examples.

Wavelet shrinkage is used in the methodology by Antoniadis and Sapatinas
[9], extending the idea to exponential families of functions with quadratic vari-
ance functions, a class of functions which includes the binomial distribution.

An estimator of the risk is formed by assuming the function estimate to be
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6.1. Previous work on binomial proportion estimation

a diagonal linear shrinker and using a cross-validation approach. The func-
tion estimate is then constructed using a function which minimizes the risk
estimate. A simulation study is carried out for the binomial case of an expo-
nential family, and the estimates produced are shown to have good properties
compared to traditional techniques.

Sardy et al. [85] propose a generalization of the WaveShrink wavelet
smoother [39] to include a range of non-Gaussian distributions such as the
binomial and Bernoulli distributions. The procedure uses interior point nu-
merical techniques to find the (unique) solution to a penalized log-likelihood
problem based on the /'-norm of the wavelet coefficients in a wavelet estima-
tor representation, and generalizes the notion of the universal threshold for
distributions with log-likelihood function possessing certain properties.

Kolaczyk and Nowak [65] present a multiscale generalized linear model
for the estimation of functions in a general one-dimensional nonparametric
regression setting. Piecewise polynomials defined on recursive partitionings of
the unit interval are used to construct estimators of the regression function,
optimizing a penalized likelihood criterion to choose a piecewise polynomial
fit. The method is applied to real-life examples, including estimation of packet
loss rates in computer network information transmission. This can be modeled

as a Bernoulli (or with modification, binomial) process.

6.1.2 Other techniques for binomial processes

Nonparametric regression techniques for proportions usually assume that the
underlying proportion function has a certain degree of smoothness. For ex-
ample, generalized linear models assume that the proportion function P(zx)

follows the relation

where ¢ is a monotone smooth function called the link function, and s(x)
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is a smooth function which is estimated by methods suitable for smooth (con-
tinuous) regression functions. The choice of the link function is obviously an
important issue for this model, since it affects the fit of an estimator to the
data. For a more involved discussion of generalized linear models, see for ex-
ample [56, 73]. For different assumptions and estimation techniques for s(z),
and also link function choice, see [45, 46]. Antoniadis and Leblanc [8], de-
scribed in Section 6.1.2, also uses a generalized linear model construction for

their wavelet regression technique.

Altman and MacGibbon [5] use cross-validation for the bandwidth selec-
tion in kernel estimators for binary regression. The asymptotic risk of the
kernel estimators is shown to have good convergence properties under certain

smoothness conditions on the regression function.

Another approach to the binomial problem also includes Gaussianization of
the original observed data, which involves a transformation of the observations
so that the (transformed) data can be assumed to be normally distributed.
There are many suitable estimation techniques in the literature which can

then be used on this data.

Anscombe [6] suggests transformations to bring data from well-known dis-
tributions closer to normality. For the binomial distribution, the following
transformation is proposed. Suppose {z;} are realizations from i.i.d. binomial

random variables X; ~ Bin(n,p). Then the transformed data given by

Az; = sin ! (zi—:_;c) (6.1)

for the original data {z;} will be distributed more normally. Anscombe

states that the value ¢ = % is optimal for u and n — p large (where p is the
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6.1. Previous work on binomial proportion estimation

mean of the binomial distribution). Donoho [42] uses Anscombe’s similar result

for Poisson data, applying it to low light photon counts.

Freeman and Tukey [49] discuss a similar transformation for binomial data

which takes the form of an averaged inverse sine function

- 11
sin™! Yi_ ) 4sin~! i )
n+1 n+1

This is said to have good variance stabilization for almost all cases when the

binomial mean is at least one.

An alternative Gaussianization transformation is given in Fisz [47]. This
function acts on pairs of random variables, and takes the form of a ratio of
powers of their sum. The properties of Fisz’s result are discussed fully in the

next section.

Fryzlewicz and Nason [51] combine the properties of the Fisz transform and
the Haar wavelet transform and propose a preprocessing algorithm for Poisson
count, data to stabilize the variance of the data and to convert it so that any
Gaussian denoiser can be used. This procedure uses a simple modification
to the wavelet coefficients produced from the Haar wavelet transform, so can
be performed without adversely affecting computational time. The Haar-Fisz
algorithm is also applied to chi-squared data in [52] to denoise the wavelet
periodogram with similar benefits. The Haar-Fisz transform is described in

more detail in Section 6.3.

Other recent related work concerns providing reliable confidence intervals
for binomial proportions. The classical so-called Wald interval, used for confi-
dence intervals for a binomial success probability in standard statistical texts,
is now known to have erratic interval coverage for many situations, especially
near the boundaries zero and one. Agresti and Coull [4] in particular show
that the true coverage probability for the 95% confidence interval to be vari-

able for small binomial sizes. Brown et al. [16, 17] consider alternative intervals
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for binomial proportions motivated by different mathematical reasoning, and
present recommendations on the use of the proposed intervals, based on their
merits in different binomial size situations.

Cox and Snell [32] study many different aspects of binary (Bernoulli) data.
Examples of where binary data arises in applications are explored, and statis-
tical models for these data are discussed. The authors also analyze departures
from the classical Bernoulli problem, including abandoning the constant suc-
cess probability, the introduction of dependence between responses, as well as

more complex situations.

6.2 Fisz Gaussianization

As mentioned above, Fisz [47] proved a theorem which asserts the asymptotic
normality of a special ratio of random variables under certain conditions. This
theorem was used to develop a successful transform with good Gaussianiza-
tion and variance stabilization properties for Poisson and chi-squared variables
[61, 52]. Since its implementation with the simple Haar wavelet transform is
both effective and not computationally intensive, we hope to achieve similar

success for binomial random variables.

We now give some notation and recall a couple of definitions which are

used in the Fisz theorem and which we will use later.

Let & (A1) and &(Aq) be two independent non-negative random variables

based on distributions with respective parameters \.. We denote, for r =1, 2,

Oy

m, =E(&), o2=var(§), ¢ =+/o}+03, and B, = o (6.2)

Definition 6.1. A random wvariable £()\) converges in probability to a
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number c if, for any e > 0,

Jim P(E(A) = ¢| > £) = 0.

Definition 6.2. A random variable £(\) is asymptotically normal N (u(A),v(A))
if there exist functions u(\) and v(A) > 0 such that Vz € R,

lim P

A—00

(9552 <) Lo

As motivation for our approach to the binomial problem, we now state and

discuss the Fisz theorem and its application to binomial random variables.
Theorem 6.3. (Fisz, 1955). If

(a) the variable £(N)/m(\) converges in probability to the number 1,

(b) the variable £(X) is asymptotically normal N(m(X),o(X)),

(c) the variables & and & are independent and

lim — =1, (6.3)
A1—00 m2
/\2—)00
then the variable
&—&
(A, Ao) = —>—, 6.4
%0, 22) (& +&)> (6.4

where o is an arbitrary positive number, is asymptotically normal

N( my —my 0

hen A1 — oo, Ay — 00. 6.5
(m1+m2)a7 (m1+m2)a)7 wnen Ay 0, A2 o0 ( )

We use the convention here that if & and & are both zero, then (% takes
( :

the value zero as well).
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We now explicitly define the Fisz transform of two random variables.

Definition 6.4. The Fisz transform with exponent a of two non-negative

random variables X1 and Xo is

Xo— X4

Ca(leXz) = ma

with the convention that 0/0 = 0.

Example 6.5. As an example, let us apply the Fisz theorem to two binomial
random variables, as in [47]. Suppose X; ~ Bin(n,p;) and Xy ~ Bin(n, py) are
independent random variables. The random variables are clearly non-negative,
and due to the Law of Large Numbers and the Central Limit Theorem respec-
tively, assumptions (a) and (b) in Theorem 6.3 are satisfied. Assuming that
condition (c) holds with m, = np, for r = 1,2, we conclude that (*(X, X,) is

asymptotically normal

(1 +p2)* (p1+p2)° (6.6)

N (nl_”‘(pz —p1) 2/ (L= pr) +pal = p2)) |

Fisz notes that the hypothesis of equal binomial probabilities p, can be
tested for binomial random variables, since in this case (p; = ps = p), the

asymptotic Normal distribution reduces to

1/2
N( o s e H)- (6.7)

(n1 + nz)a ’ (n1 + 77,2)0‘_1/2

For the random variables X; and X, in Example 6.5 (i.e. of equal size),

this asymptotic distribution simplifies further to

(1- p)1/2 1/2—a
N (0, 7(271)&_1/21) .

In this last case, the assumption (c) of Theorem 6.3 is automatically satis-

fied, since the ratio of the binomial means is exactly one.
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Note that in all of these cases of binomial random variables, the variance
function of the asymptotic normal distribution depends on p, and so the vari-

ance is not stabilized by the usual Fisz transform.

6.3 The Haar-Fisz transform

I will now digress briefly to provide motivation for the mathematical structure
to tackle the binomial proportion estimation problem. A special case of the
Fisz theorem is used in [51], and a preprocessing procedure is proposed for use

with Poisson intensity estimation.

Applying the Fisz transform to Poisson random variables &.(),) ~ Poi()\;),
r = 1,2, the distribution in (6.5) becomes

N(AQ_Al m) (6.8)

A1+ A2)e” (A1 + Ap)e
when A\ — 00, Ay — 00.

The Haar-Fisz transform is motivated by the fact that for Poisson random
variables, a choice of & = 1/2 leads to an asymptotic Normal distribution with
unit variance. Fryzlewicz and Nason [52] also take advantage of the variance
stabilization properties of the Fisz transform for Chi-square random variables

(Fisz transform with exponent o = 1).

Let us explore the transform in a bit more detail. Suppose a positive data
vector, v, of length N = 27 has been observed. The algorithm proposed is as

follows:

1. Perform the Haar discrete wavelet transform on the data, to transform

v = ¢y into (¢g,do,ds,- - . ,dj_1), where as usual, ¢ denotes the smooth
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component and the d; represent the detail components in the transform.

However, as each level is computed, perform the modification

0 if Cijk = 0,
dik/\/Cir otherwise

2. Perform the inverse Haar DWT on the vector (co, fo,f1,---,f7-1). Call

the result u.

These two steps are known as the Haar-Fisz transform of v. We denote
the transform as an operator by w:=Fv. Note that these steps can be easily
inverted.

The motivation as to why the modification is applied to the detail coeffi-
cients needs a few words of explanation. The Haar DWT is performed on the

input data, v by iterating the steps
ik = (Cjy1,2k + Cit1,264+1)/2
dik = (Cj+1,26 — Cit1,26+1)/2,
forj=J—1,...,0.
The inverse DW'T can be expressed in the two equations
Cit12k = Cjk + djk
Cjt1,2k+1 = Cjk — dj k-

(Note that the forward and inverse steps described above translate into
using £(1,1) and (1, —1), which differs from the filters in Example 2.6, which

make the Haar basis orthonormal).
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Using the last two equations, the original data vector, v=cy, can be ex-
pressed in terms of a linear combination of the smooth component and the
detail components, and then in turn each of the detail and smooth compo-
nents can be again expressed in terms of the original data vector. As an

example, suppose N = 4. Then using the inversion equations,
Vg = €20 = C10 T d1p = Coo + doo +dip

v =Cy1 = C19 — d1p = Co o+ doo — dip
Vo =cCo2 =C11+d11 = coo— doo+dia

Vg =C23 =C1,1 — d1,1 = Co,0 — do,o - d1,1-

Repeating the forward equations, we can express the scaling and detail

coefficients in the transform in terms of the original data:

1 1 1
Co0 = 5(01,0 + 01,1) = Z(CZ,O +co1 + (02,2 + 02,3)) = Z(Uo + v1 + vy + v3)

1 1 1
doo = 5(01,0 — 1) = 1(02,0 + o1 — (co2 + C23)) = Z(Uo + v — vy — v3)
and

dio = 5 ) = =(v —v1)
= —(c99—Ca1) = =(v9 — v
10 = 5(C20 = €21 50 1
1 1
d1,1 = 5(02,2 - 02,3) = 5(02 - U3)
1
C10 = 5(02,0 +c1) = 5(1)0 + v1)
1
C11 = 5(62,2 —+ 02,3) = 5(’02 + ’1}3).

However, if we incorporate the coefficient modification described above in
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step 1 by combining the last two sets of equations, we get

3 1 1
1 (Vo +v1 —vy — “(vg — v
qu—Zvi+4(01 s 3) 12(" 1); (6.10)
1 (3 2 im0 vi)? (3(vo +v1))2
3 1 1
1 —(Uo + v — Vo — U3) —(’UO — ’1)1)
= szi +4 A3 w)s (12(1) L (o1
i=0 7 2ui=0 Vi 2\Yo v1))?
3 1 1
1 —(U() + v — Uy — Ug) —(’UQ — ’U3)
=1 ui— - ; (6.12)
i=0 (4 > io Vi) (2(U2 + v3))
3 1 1
1 (Vg +v1 —v2 — (v — v
U3——ZUZ'—4(O 1 21 3)_ 2(2 3)1' (613)
4 1 3 1 1 1
i=0 (Z D im0 Vi)? (5(”2 +v3))2

Each of the transformed points are thus expressed as linear combinations of
ratios of the form of the Fisz theorem (with o = 1/2). Hence if the observations
v; come from independent Poisson random variables, then all the terms in
(6.10) — (6.13) will be approximately normal, provided that the Poisson means
satisfy the conditions at the beginning of the theorem. Fryzlewicz and Nason
[61] provide a general formula for the terms in the Haar-Fisz transform.

The choice of @ = 1/2 in equation (6.8) demonstrates the variance sta-
bilizing property of the Haar-Fisz transform: it causes the asymptotic nor-
mal distribution in (6.5) to have unit variance (for Poisson random variables).
Fryzlewicz and Nason [51] also prove that if the Poisson observations are from
i.i.d. random variables, then, the above observation can be used to prove the

following result

Proposition 6.6. If v is a sequence of observations (of length n) of i.i.d Pois-
son random variables with mean \. Let u=Fv be the Haar-Fisz transform of

v. ThenVk € {1,...,n}

uk—)\Zl/-i-Yk,

where v — 0 as Ak — 0 and Yy, — N(0,1) as (A, k) — (00, 00).
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6.3. The Haar-Fisz transform

In other words, the vector u is just the Poisson intensity with additional
Gaussian noise. This result motivates Fryzlewicz and Nason [51] to propose a

method for Poisson intensity estimation as follows:

1. Perform the Haar-Fisz transform on a vector of Poisson observations, v,

to bring the data closer to normality.

2. Use any wavelet denoiser suitable for Gaussian noise.

3. Invert the Haar-Fisz transform to obtain the estimate of the Poisson

intensity.

Now let us look at the general form for coefficients in the decomposition
stage of the Haar-Fisz transform. As an example, let us take a vector of length

27 = n = 8 representing observations from independent random variables X.

X: X1 X2 X3 X4 X5 X6 X7 Xg

£, - %(leXz) %(X3*X4) %(Xstﬁ) %(X7*Xs) (6 14)
2 (3(X1+Xa))>  (3(X3+Xa))*  (5(Xs5+X6))*  (5(X7+X35))> )

£, - 1 (X1+X2)—(X3+X4)) 3 ((X5+X6)—(X7+Xs)) (6 15)
1 (L(X1+ X2+ X3+ Xq))™ (I (Xs5+X6+X7+Xs5))™ :

fy : 3(E Xim2hs X) (6.16)

(§ 251 Xi)e

The numerators in the level decompositions (6.14) — (6.16) are just the
Haar transform detail coefficients, and the sums in the denominators are the

corresponding (scaled) smooth coefficients. The detail coefficients at level j

161



Chapter 6. A Haar-Fisz Algorithm for Binomial Probability estimation

of the transform can be described as d;;, = 20/=9)0-2(%(Y;,Y;), where V)
and Y5 are both sums of 2/79=! original random variables X;. These are the
components which are used to express the data X as linear combinations of

Fisz-transformed random variables.

Let us now return to the case when the X} are binomial (or simply Bernoulli)
random variables. The random variables Y; and Y; will also be binomial ran-
dom variables, provided that the binomial probabilities are equal.

We would like to have variance stability on each decomposition level j. Un-
fortunately, the variance stabilizing properties of the Fisz transform for Poisson
variables (with exponent v = 1/2) and Chi-square variables (with exponent
a = 1) cannot be achieved for binomial random variables - there is no choice

of o in (6.7) which produces an asymptotic variance constant in p.

However, for X, ~ Bin(n,p), through examination of the distribution of
¢*(X4,X>) for different values of «, some interesting mathematical parallels
can be observed. Since these distributional features somewhat deviate from
the aim of this chapter, the (direct) numerical computation of the mass func-
tions are explored in Chapter 7. The left hand side of Figures 6.1 — 6.4 give
graphical representation of the probability mass function of ¢!(X;, X5) for dif-
ferent binomial sizes and proportions. The sequence of graphs show that the
shape of the distribution does indeed resemble a normal distribution for larger

n. More remarks are made about the distribution of ¢! in Example 6.12.

6.4 An alternative Fisz transform for binomial

random variables

In this section we introduce a new Fisz-like transform for binomial random

variables. The idea is based on the original Fisz theorem [47], but since the
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exponent in the denominator of (%(A1, A2) cannot be chosen to achieve asymp-
totic variance stabilization, we must approach the problem from a different
direction.

We essentially divide the Haar difference Xy — X; by its standard error,

V/var(X;) + var(Xs). We use the observations from X; and X, as estimates
for the individual binomial means n,p (r = 1,2) in the expression for the
standard error, so that the common proportion p estimated by % Note
that this is the Haar sum divided by the joint binomial size. This is similar to
the Poisson Haar-Fisz case; since the mean and variance of Poisson variables
are equal, the denominator of the transform is simply the square root of the

Haar sum.

We first state and prove our alternative theorem to Theorem 6.3.

Theorem 6.7. (Nunes, Nason) Let X, ~ Bin(n,,p,), for r = 1,2 with p, €
(0,1) (fized). Let m, and ) be as in Theorem 6.5. If the random variables X,

and Xy are independent and

lim =1, (6.17)
A1 —00 m2
)\2—>OO

Then the random wvariable defined by

Xo — Xu
1/2
(—X1+X2 (n1+mne — (X1 + X2)))

ni1+nz

CB(nl, n2) =

is asymptotically normal N(up, o) when n; — 00, ny — 0o, where

. mo — MMy
mp = 1/2
(222 (g 4y — (1 +m0))
and
Y
op = - (6.18)
(222 (2, 40y — (0 +m0))
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In the definition of (g, we assume that the random variable takes the value

zero when both X; and X5 are zero.

Proof. The proof of this theorem follows the ideas used for the proof of

Theorem 6.3 in [47]. We begin by presenting some introductory lemmas.

Lemma 6.8. If & and & are independent and &.(\.)/m.(N;) converges in
probability to 1, then

lim P(‘m—l‘ >5) =0, (6.19)
A1—00 mi + Mo
A2—00

where € is an arbitrary positive number.

Proof of Lemma 6.8. This proof is taken directly from Fisz (see [47]). The

assumption of the lemma says that for \; and A, large enough, the inequalities

mp(l—e) <& <mp(l+e¢) r=1,2

happens with probability greater than 1 — 4, where § > 0 is an any positive
small number. Since the two random variables are independent, the probability
that both inequalities will occur is at least (1 — §)2. The probability of the
inequality

(m1+mo)(1 —¢) <& +& < (mg+my)(l+¢)

is greater than the probability of the occurrence of both the inequalities

above; since ¢ can be arbitrarily small, the lemma is proved.

As we noted before, X, /m, converges in probability to 1 for p, € (0,1) and

r = 1,2. Thus, taking & to be the binomial random variables X, it follows
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that R(ny,ng) = % also converges to 1 in probability when n; — oo and

Ng — 00.

n1+n2—(X14+Xs)

Lemma 6.9. For the random variable Ri(ni,ne) = e ()

Jim P (|Ry(n1,m5) — 1] > €) =0, (6.20)
na— 00

where € is an arbitrary positive number.

Proof of Lemma 6.9. For £; > 0, Lemma 6.8 implies that for sufficiently

large values of n; and no, the inequality
—£1<1—- R(’I’Ll, ng) <é€r (621)

occurs with probability greater than 1 — §, for 6 > 0 an arbitrarily small

positive number. Then using the definition of R and R,

—1 < 1—=R(n,ng) <&
—(m1 + mo)ey (m1+ma)— (X14X5) (my1 + mg)ey
ny +ng — (my + my) nitne=(mitms) ny +ng — (my + my)
—(my + mg)er (my + my)e;
ni +ng — (M1 + my) ni +ng — (my +mg)

R1 (TLl, TLQ) -1

Now let € = Tif;, where p = max{p;, p2}. Since

(my + mg) mi + me (n1 + no)p
S ntm)d-p) = (mtn)d—p

0<
~ ny+ne— (Mg + me)

] =¢/ey,

for the values of n; and ny such that the inequality (6.21) holds, we have

9
P( i) 11 <) = P (IR, —1] < 25L)
> P(]1 - R(ni,ns)| <e1) >1-5,
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where the numbers ¢, €; and J are arbitrarily small. Hence

n{g}noo]P’ﬂRl(nl,ng) — 1| > 6) = 0, (622)
n2—00

i.e. Ri(n1,n9) converges in probability to 1.
I

Lemma 6.10. (Fisz [47]) If &.(\.) is asymptotically normal N (m,(\,), o.(\)),
then the random variable & — & is asymptotically normal N(mq—my, ) when

)\1 — 09, )\2 — OQ.
For the proof of this lemma, see Fisz [47].

We now state a theorem by Cramér [33]* which we will also use in the proof

of our theorem.

Theorem 6.11. (Cramér, [33]) Let &,&, ... be a sequence of random vari-
ables with distribution functions Fy, Fs,... . Suppose that F,(z) tends to a
distribution function F(z) as n — oc.

Let my,ma, ... be another sequence of random variables and suppose that n,

converges in probability to a constant c. Put

n

Then the distribution function of X, tends to F(x — c). Further, if ¢ > 0,
the distribution function of Y, tends to F (%), while the distribution function
of Z, tends to F(cx).

We can now prove our theorem, Theorem 6.7. Let

X+ X,
n1+n2’

A B:(n1+n2—(X1+X2)),

*Theorem 6.11 and its proof can be found in Cramér [33], Section 20.6, p.254.
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6.4. An alternative Fisz transform for binomial random variables

my +m
C = ﬁ D = (ny +ng — (M +my)),
and
)= (amyep) - (K0 (mtm = ()
mi + me n1+n2—(m1+m2) )
Then
T(ni,ne) = (g —mp
OB

Xo—X1 mo—mi1
. (AB)1/2 - (CD)1/2
- Y

(CD)1/2
_ (CD)'2(Xy — Xy) — (my — my)(AB)'/? o (CD)*?
B (ABCD)'/2 Y
_ (CD)1/2(X2 — X1 — (mg - ml)) + (CD)I/Q(TI'LQ — ml) - (’I’)’LQ - ml)(AB)1/2
(AB)Y2y
_ (CD)'*(X3 — X1 — (ma — m1)) + (mg — mu)((CD)'? — (AB)'/?)
(AB)Y2y
_ y 12Xy — Xy — (ma —my)) N (my —my)(y~ /% — 1)
(0 (0

n + mziml (1 _ yl/Q)

= 7 , (6.23)
where n(ny,ny) = %(mﬁm) is the random variable defined in the

proof of Lemma 6.10 for our specific binomial case (see Fisz [47]). Note that

y(ni, ng) = <X1+X2) (n1+"2_(X1+X2)) = R(ny,n2)R1(n1,ns), where R and R;

mi1+ms ni+ng—(mi+msa)

are as defined in Lemma 6.8 and Lemma 6.9.

Note also that 7(ni,ns) is the random variable (g (n1, ny) standardized by
the asymptotic normal mean and standard deviation from equation (6.18). To

prove the theorem, we need to show that 7 is asymptotically normal N(0,1).

Due to Lemmas 6.8 and 6.9, the random variables R(n, nq) and Ry (n,n2)

both converge in probability to 1. It follows from a proposition due to Slutsky',

tThis proposition can be found in Cramér [33], Section 20.6, p.255.
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a corollary to Theorem 6.11, that their product y(ni,n2) also converges in

probability to 1.

Using the same proposition again, this in turn implies that the function
y'/2(n1,ny) converges in probability to 1'/2 = 1, since this is a rational func-

tion in y(ny, ng).

Since X; and X, are asymptotically normal N(m,,o,), then Lemma 6.10
applies here; thus n(ny,ng) is asymptotically normal N(0,1), i.e. its distribu-

tion function converges to ®(z).

Let us now consider the other expression in the numerator of 7. Note that

when regarded as a function of y, we can write
(1-y"%) = (1/2+0)(1 - y),
where 0(y) = =9 Note that 6 — 0 as y — 1, which means that

2(1+vy)”

389 > 0 such that |y — 1] < §p = |0 < &, (6.24)

for any positive number £y. Since y converges in probability to 1, for

sufficiently large ni, ny we also have
P(ly — 1] < o) > 1 -1, (6.25)

for the §; > 0 as in equation 6.24 and for any arbitrarily small number .

Combining equations 6.24 and 6.25, we obtain
P(|6] <eo) =2 P(ly — 1| <bo) >1 -1,

for the values of n; and ns valid for the relation in equation 6.25; since 7y

can be arbitrarily small, # converges in probability to 0.
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6.4. An alternative Fisz transform for binomial random variables

Let us now write

mo — TN

= (1-y/2) ="

1/2+0)(1—y).

Now y = (M) g, using the quantities B and D defined earlier. Thus

mi1-+m2

|y = 1 (2t X)B
vy = my + Mo D
(m1 + mQ)D — (X1 + XQ)B
(m1+m2)D )
So
Mmoo — My (X1 + XQ)B - (m1 + mg)D
= 2" "11/2+46
? m1+m2(/ + ) ’(ﬁD
mo — My
= —————(1/2+ 0)p(n1,ns),
T (1/2+ 0)g(m, )

(Xl—I—Xg)B—(ml—I—MQ)D

where o(n1,n2) = oD

Note that o can be expressed as o(ni,ny) = (X1+X2)R11p_(m1+m2).

A slight modification to the proof of Lemma 6.10 shows that (X; + X3)

is asymptotically normal N(m; + ma, ). Due to Theorem 6.11, the random

variable (X7 4+ X5)R; is also asymptotically normal N(m; +my, 1), since from

Lemma 6.9, R; converges in probability to 1. It follows that o is asymptoti-
cally normal N(0,1).

We want to show that z converges to zero in probability, in order to use

Theorem 6.11 again to complete the proof of our theorem.
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Let £, 6 > 0 be arbitrary given numbers. Then

P(|2] > ¢) =]P’<|z\ > g\|e| > 5) P(|6] > 8) + P <|z| > 5‘|9| < 5) P(|6] < 6).
(6.26)

Now

P (|2 > g‘\0| >6) P(6] > 6) = 0, (6.27)

since f converges in probability to zero, and thus it remains to show that
the second summand in the expression (6.26) converges to zero. From the

definition of z, we have

]P(|z| >g‘\o\ <5) < P(‘M

mq —|—m2
mg — My
]P) [
my + Mo

Let the event in the last expression above be denoted by E. Then condi-

(1/2+ 0Dt na) > <[] <)

IN

(1/2 4+ 0)|o(n1,n2)| > s‘|0| < 5) .

tional on |f| < §, the probability of E° can be expressed as

mo — My
Pl |——|(1/2+6)|o(n,ne)| < e
(|2 a2 o)l o) < )
mo — My g mo — My —&
= Pl|—— ) < — | =P |——— ,Mg) <
(‘m1+m2 o, ma) 1/2+5> (‘m1+m2 ol ma) 1/2+5>
— 1-0=1,
since ‘Z:ZQ < |smitmamy| = 0 (due to the assumption (6.17) of the

theorem) and the fact that o(ni,ns) is asymptotically normal N(0,1) .

This implies that

]P,(‘Wm—ml
my + me

(1/2+ 8)|o(n1, n)| > g‘|e| < 5) 0. (6.28)
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6.4. An alternative Fisz transform for binomial random variables

The two relations (6.27) and (6.28) together imply that z converges in
probability to 0.
Recall that we have

n(ny, ng) + z(n1, n2)
y(nla n2)

T(n1,ng) =

Using the Cramér result, we see that the distribution of (n + z)(n,ns)
tends to ®(z —0) = ®(x), since n(nq, ny) is asymptotically normal N(0,1) and

z converges in probability to 0.

Using the result again, the distribution of 7(ny,n2) = (’%Z) (n1,n2) tends
to ®(1-z) = ®(x), since the distribution of (n + z)(ni,ny) tends to ®(x) and

y converges in probability to 1. This completes the proof of the theorem.

Example 6.12. Let us now give an example of Theorem 6.7. Suppose X, ~
Bin(n,,p) for r = 1,2, i.e. the binomial random variables have equal trial
probabilities. Then according to our theorem, the random variable (5 (X7, X5)

will be asymptotically normal

(ng — ny)pt/? )
N 1], 6.29
((( 2 (6:29)

ni +ny)(1 - p))

when n; — 00, ng — oo. In other words, using the transform (p(X7, X5)
will stabilize the variance of the asymptotic distribution.

Note also, that if in addition, we impose the constraint that the binomial
sample sizes are the same, i.e. ny = ny, the asymptotic distribution will be

N(0,1), which is what we want.
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Figure 6.1: Distribution of ¢'(Xy, X5) (left) and (5(Xy, X2) (right) with p; =
p2 = 0.3 for n, = 50.

Comparing the distributions of the Fisz transform for binomial random
variables to this new Fisz-like transform is illustrative. Figure 6.1 shows the
“exact” distribution of (! against (g for fixed n, = 50 and fixed p, = 0.3,
computed using the binomial probabilities associated to the variables X; and
X5. The graphs show a characteristic spike at zero. This represents where the
random variables X; and X, are equal, i.e. where (! and (g take the value
zero. This is discussed further in Chapter 7.

Figures 6.2-6.4 demonstrate the convergence of the distribution of the ran-
dom variables (! and (g to the normal distribution, for trial probabilities p, =
0.3,0.5,0.7 (respectively) and for increasing binomial sizes n, = 10,50, 200.
The spike at z = 0 has been omitted for graphical clarity.

Note that for (g, the shape of the distributions are much more similar to
the normal distribution than ¢!, even for smaller n. For some of the plots, the
probabilities for a specific value of ¢! or (g can be quite large compared to its
neighbouring values, though this is less marked for (. This phenomenon is
due to the values having different probability contributions (for a fixed n) from

repetitions in the mass function table (see for example Table 7.1 in Chapter 7).

The properties of the new Fisz-like transform are discussed in the next

section.
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Chapter 6. A Haar-Fisz Algorithm for Binomial Probability estimation

6.5 (Gaussianization and Variance stabilization
properties of the alternative Fisz trans-

form

Note: this section should be read together with Appendix A; for clarity of
presentation of the ideas, we limit the number of figures in this section, giving

additional plots in the appendix.

In this section we demonstrate, through simulations, how well the trans-
form (g can bring binomial data closer to normality, whilst stabilizing the
variance of the data. We might also like to know how fast the mean of (5 con-
verges to the asymptotic normal mean. Even though the asymptotic normal
distribution in equation (6.18) only holds when the means of the two binomial
random variables are close (and large) through the condition (6.17), it is in-

teresting to study these properties when this is not the case.

In some of the simulations below, we compare properties of our transform
with that of the angular transformation (6.1) outlined in Section 6.1. We follow
a similar approach to these simulations as FryZlewicz and Nason [51]. However,
since the size of the binomial means depends on the trial success probability,
p, as well as the binomial size, n, the effect of both of these parameters feature

in our simulations.

Let X, ~ B(n,p,) for r = 1,2. For each experiment, we sampled 10° val-
ues of X, for binomial sizes n = 1, 2,4, 32,128 and for each probability lattice
point (p1, p2), where p, ranged from 0 to 1 in steps of 0.05. The binomial sam-
ples were then used to compute 10° values of the random variable (g(X1, X3),
denoted z,(p1, p2). For the comparisons with Anscombe’s inverse sine transfor-

mation, the values of the binomial variable corresponding to the larger of the
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Fisz transform

two probabilities p, was used. Since Anscombe’s transformation works better

for larger means, doing this would be favourable to Anscombe.

6.5.1 Mean simulations

To investigate the convergence of the samples of (5(X7, X5) to the asymptotic
mean in equation (6.18) (which we will denote by (,(m1, ms)), we computed
their difference |z, (p1,p2) — mp|, where the mean z is taken over the 10°
samples.

Figure 6.5 shows the surface plots across the lattice of binomial probabili-
ties (p1,p2) for increasing binomial size, n. The surfaces show that for larger n,
the difference approaches zero across the whole lattice, which only a slight dif-
ference at the lattice boundary. Figure A.1 in Appendix A shows an equivalent

figure with the surfaces converted to contour plots.

6.5.2 Variance simulations

Similar to the mean simulations, the sample variance was computed over the
10° samples of (p arising from the samples of X; and X for each point (pi, po).
Figure A.2 in Appendix A gives a 3D representation of the sample variance
for each of the binomial sizes n = 1,2,4, 32,128, renormalized so that the
asymptotic distribution will have unit variance.

The plots show a “flattening” of the surface peaks as the binomial size
increases, with the variance of the peak approaching one. In fact, this feature
happens most near the line p; = py. This reflects the observation in Example
6.12 that equal binomial probabilities will result in an asymptotic distribution
with unit variance. This characteristic is seen more clearly in Figure 6.6, which

show contour plots corresponding to the surfaces of Figure A.2.

To further examine when the two binomial proportions are equal, Figure

A.3 and Figure 6.7 display this case graphically for (g and Anscombe’s trans-
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6.5. Gaussianization and Variance stabilization properties of the alternative
Fisz transform

Figure 6.6:  Contour plots showing

the sample variance of (g across the

binomial probability lattice for differ-

ent binomial sizes: n = 1 (top left);

2 . n = 2 (top right); n = 4 (left mid-

00 0z o4 os 05 o dle); n = 32 (right middle); n = 128
Pt (bottom).
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formation, A, for increasing n.

Figure A.3 compares the sample variances for p; = ps € (0,1). It is evident
that for small n, both transforms have samples variances far from one, though
our transform does better. In the middle of the interval, Anscombe’s transform
has a low sample variance, whereas our transform, (g tends to have a sample

variance above one.

To compare the two transforms on this interval more closely, Figure 6.7
plots the squared residual of the variance from one against the (equal) binomial

proportion.

From this plot, it is more obvious that for small binomial sizes, our trans-
form has variance closer to one for low and high proportions, and comparable
to Anscombe’s transformation for the middle half interval (0.25,0.75). For

larger n, both transforms do well at stabilizing the variance at one.

6.5.3 Gaussianization simulations

For judging the relative Gaussianizing properties of the transform (g, we
computed the Kolmogorov-Smirnov statistics for both (g and for Anscombe’s
transformation over the binomial proportion lattice. Lower Kolmogorov-Smirnov
statistics are representative of samples which are more Gaussian. Figures A.4
and 6.8 show perspective and contour plots (respectively) of the difference
in Kolmogorov-Smirnov statistics between Anscombe’s transform and (5. A
positive difference in these plots corresponds to our transform being more

Gaussian.

Though some of the behaviour is slightly erratic as n gets large, the over-
all trend is that for any binomial size, the difference in Kolmogorov-Smirnov
statistics is positive, irrespective of the binomial proportions p; and py. This
demonstrates that our transform has better Gaussianization properties than

Anscombe.
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Fisz transform
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Figure 6.7: Plots showing the squared
residual from 1 of the sample variance
of (g (solid) and A (dotted) when p; =
py for different binomial sizes: n = 1
(top left); n = 2 (top right); n = 4
(left middle); n = 32 (right middle);
n = 128 (bottom).
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6.6. Alternative Haar-Fisz transform for binomial random variables

6.6 Alternative Haar-Fisz transform for bino-

mial random variables

In this section we introduce an algorithm similar to the Haar-Fisz transform
described in Section 6.3, based on the asymptotic result from the preceding

section.

Let us describe the alternative Haar-Fisz transform. Suppose we have an
input vector v=(vg, vy, ...,vx_1) of length N =2/, with 0 < v; < n, for some

integer n.

1. Perform the Haar DWT on v to obtain the vector (cg,do,d1,...,dj_1).
As each level is produced, modify the coefficients as follows:
0 iijk:OOI'Cj’k:TL,

Tik = (6.30)
Jk/\/cjk —¢jk)/2n  otherwise

2. Perform the inverse Haar DWT on the vector (¢g,fo,f1,---,f7—1). Call

the result u.

We denote this transform by u:=Fzv. As with the usual Haar-Fisz trans-

form, Fp can be inverted by “undoing” the steps 1 and 2.

Let us examine the effect of the modification in step 1 of the above proce-
dure. Consider the coefficients vy and v;. The modified detail coefficient f;_i o

is produced by

fJ 1,0 — %(Ul — UO)
T (B o+ vr) (n— mp) j2n)
(Ul - Uo)

((vo +w1) (20 — (vo +w1)) /2n)"/*
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Similarly, for the next coarsest level coefficient, we have

%(@-1,1 - CJ—1,0)

1 _ Cj—1,0tCi-1,1 1/2
5 (Crm10+cy1) (n— === ) /20
T ((vo +v1) — (v3 +v4))
(vo+v1—:vg+v3 (n _ vo+v1—£v2+v3) /2n) 1/2
((Uo + Ul) — (U3 + U4))
((’Uo + v + vy + ’Ug) (477, — (U() + v + vy + Ug)) /2n)

fJ—Q,O -

1/2°

This computation is similar for every coefficient within a level, and for each
DWT decomposition level. If the data vector v is representative of observations
from i.i.d. binomial random variables Xy ~ (n,p), then the detail coefficients
can be expressed as d;j, = 20/717Y/2(5(Y},Y,), where Y; and Y5 are both sums
of 277971 of the random variables X, and thus are binomially distributed as
well. This is the analogue of the implications from equations (6.14) — (6.16)
for the usual Haar-Fisz case.

Since the application of the inverse Haar transform is identical for Fgv as
for Fv, after performing the transform Fgv, the original data can be expressed
as a linear combination of quantities of the form (g(Y7, Ys) for some binomial

random variables Y7, Y5, analogous to equations (6.10) — (6.13).

6.7 Gaussianization and Variance stabilization
properties of the alternative Haar-Fisz trans-

form

The following investigation compares the Gaussianizing and variance-stabilizing
properties of the transform Fpg, introduced in Section 6.6 with Anscombe’s

transformation (6.1), and the identity transformation.

For these simulations, we have chosen a binomial proportion vector, p
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Figure 6.9: Mean intensity vector A based on p and binomial size n = 2,
together with an example sample path (dotted).

of length N = 1024 sampled from a (normalized and stretched) version of
the Donoho and Johnstone Blocks test signal [39]. For each binomial size
n = 1,2,4,32,128, we will denote by A := np the mean intensity vector
corresponding to n. It should be noted that although the mean vector depends
on the binomial size, n, this is not included in the notation explicitly, since
it will be obvious from the context which value of n we will use. A sample
path generated from binomial random variables with the mean vector A will
be denoted by v. Figure 6.9 shows the (mean) intensity vector for n = 2,
overlaid with a sample path generated from it. As expected, the sample path
takes the value 1 more often when p is near 1, and hits zero more frequently

when p is near zero.

6.7.1 Gaussianizing simulations

We compared the Gaussianizing properties of the different transforms by con-

sidering the Q-Q plots of v—A (identity transform), Av—AX (Anscombe)
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and Fgv—FpA (alternative Haar-Fisz), averaged over 100 sample paths, v.
These paths were created from the mean vector A for the binomial sizes
n=1,2,4,32,128.

Figures 6.10 — 6.12 show this comparison for the binomial sizes n = 2,4

and 128.

0.5 1.0 15

Mean raw quantiles
0.0
l

-1.0
|

-15

Quantiles of Standard normal

Figure 6.10: Q-Q plot comparison for three different transforms, averaged over
100 paths sampled from binomial variables with size n = 2 and proportion

vector p: v—XA (black); Av—AX (red); Fgv—FpA (green). Solid line has
slope 1, indicating unit variance.

For the lowest binomial sizes, namely n = 1,2, the raw data (marked
in black) is quite “stepped”. This is expected since the data are discrete.
The Anscombe transformed data still exhibits this characteristic, whilst our
transform, Fpg, has lost most of this stepped character; the data lies closer to
a straight line, showing that the data is more Gaussian. Moreover, the data is
closer to the solid line, which indicates a variance of one (it has a slope of 1).

As n increases, the Q-Q lines become similar, although it can be said
that our transform displays slightly better Gaussianization (and also variance-

stabilization), since the quantile points do not deviate from the (solid) straight
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Figure 6.11: Q-Q plot comparison for three different transforms, averaged over
100 paths sampled from binomial variables with size n = 4 and proportion
vector p: v—A (black); Av—AX (red); Fpv—FpA (green). Solid line has
slope 1, indicating unit variance.

line as much as the other transforms, especially at the tails.

For large n, both the Anscombe transform and our transform do very well
at bringing the data to normality: both lines are straight (and coincide). Fur-
thermore, the variance is very close to one. However, this is mostly expected
due to the high value of n, since at this large binomial size, the Central Limit

Theorem comes into effect.

6.7.2 Variance simulations

To assess how well the transformations A and Fg force the data to have vari-
ance nearer to one, we plotted the squared residual |Av—AM\|? and |Fpv—FpA|?
for Anscombe’s transformation and our transform (respectively). The resid-
uals were averaged over 1000 sample paths, which were generated from the
mean intensity vector A for binomial sizes n = 1, 2,4, 32,128.

The squared residuals for the two transforms are given in Figures 6.13 —
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Figure 6.12: Q-Q plot comparison for three different transforms, averaged over
100 paths sampled from binomial variables with size n = 128 and proportion
vector p: v—A (black); Av—AAX (red); Fgv—FpA (green). Solid line has
slope 1, indicating unit variance. Here, both red and green lines coincide.

6.15 for n = 2,4 and 128.

When the binomial size is small, the simulations show that our transform
does much better than the competitor, A, at stabilizing the sample path vari-
ances. For example, for n = 2, the Anscombe transform has the squared
residual in the range 0.6 to 0.8, whereas for our transform, the residual is near
1 for most of the sample path range. Further, our transform does relatively
well compared to Anscombe when the binomial proportion is small, that is in
the three non-zero ‘troughs’. However, there is a degree of erratic behaviour
near the discontinuities in the proportion vector.

Moderate binomial sizes have the Anscombe transformation beginning to
achieve similar stabilization as our transform; when n = 128, both transforms
do very well at variance stabilization, though Anscombe can be considered to

do slightly better in performance in this case, due to the occasional downward
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Figure 6.13: Squared residuals for different Gaussianizing transforms, av-
eraged over 1000 sample paths from binomial variables with size n = 2 and
proportion vector p: |Av—AA|? (left); |Fpv—FpA|? (right).
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Figure 6.14: Squared residuals for different Gaussianizing transforms, av-
eraged over 1000 sample paths from binomial variables with size n = 4 and
proportion vector p: [Av—AA|? (left); |Fpv—FpA|? (right).

spikes (see Figure 6.15).

6.8 Binomial proportion estimation

Motivated by these observations about the properties of the transform Fp, we
now propose an algorithm for binomial probability estimation, similar to that

in Section 6.3.

Suppose v=(vy, ..., v,_1) is a vector of observations of length n = 27 from
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Figure 6.15: Squared residuals for different Gaussianizing transforms, aver-
aged over 1000 sample paths from binomial variables with size n = 128 and
proportion vector p: |Av—AX|? (left); |Fgv—FpAl? (right).

a binomial process with size N (with N large) and unknown probability vector

p.

1. Perform the transform Fz on v to produce u=Fgv. The vector u should

be approximately normally distributed.

2. Use any wavelet denoiser suitable for Gaussian noise.

3. Invert Fp to obtain the estimate of the binomial probability vector.

6.8.1 Application: DNA Isochore detection

There has been substantial work in the field of bioinformatics in recent years,
and the quest to improve existing methods and computational techniques is
also of great importance. In particular, DNA sequencing and gene expression
methods are a couple of the hot topics in this area.

One of the problems in these areas is the modelling and prediction of iso-
chore clusters in DNA sequence data. This information is useful to know for

a range of biological applications.
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In this section we hope to use the Gaussianizing and variance stabilizing

properties of the random variable (g(X1, X3) for a bioinformatics application.

Biological background to the isochore problem

Before expressing the problem in a mathematical context, we now outline the

problem in a biological setting.

DNA sequences are strings (polymers) of nucleotides, which store genetic
information. Nucleotides are chemical compounds which play important roles,
for example in cellular behaviour and enzyme regulation.

Each nucleotide is characterized by its nitrogen base, represented by a
letter: A (adenine); C (cytosine); G (guanine); and T (thymine). These four
nucleotide bases come from two compound groups, namely purines (adenine
and thymine) and pyrimidines (cytosine and guanine), differing in structure.
The nucleotides from a specific compound group are referred to as base pairs.
For a more detailed discussion of the structure of DNA, see any introductory
text on genomics, for example [18, 34, 31].

A DNA isochore is a long DNA segment which are (fairly) homogeneous in
G+C content [81]. G+C content can be seen as the ratio between the number

of pyrimidine nucleotides to the total number of nucleotides in a DNA segment.

A school of thought in bioinformatics accepts an isochore model for DNA,
which asserts that genomes (chromosome DNA sequences) are mosaics of long
DNA segments with different G4+C content in adjacent segments; under this
model, the G4C content mosaics differ for different organisms, especially be-
tween warm- and cold-blooded vertebrates [13], and so these features of DNA
G+C content could be used, for example, in organism classification applica-
tions.

Although the isochore features of certain vertebrates have already been

investigated, an effective prediction method is of obvious interest.
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IsoFinder: an existing approach to the isochore problem

In [81] and [103], a procedure of sequential hypothesis testing is implemented
to attempt to model the distribution of G+C cluster sizes of a DNA sequence.

The procedure works as follows. The G+4C content of the sequence is
counted, and a t-statistic is used to assess the significance of the difference in
mean G+C values on either side of a sliding pointer moving along the DNA
sequence. After heterogeneity is filtered out, the information is used to split
the original sequence into two distinct regions of differing G4+C mean value.
This is method is then repeated on successive blocks until the original sequence
is divided into a number of regions with significantly different mean G+C lev-
els. These obtained clusters are predictions of isochores of the original DNA

sequence. We call this method the IsoFinder procedure.

The similarities between this method and the multiscale structure of a
wavelet decomposition motivates us to investigate whether there is a way of

predicting isochores more efficiently using wavelet methods.

Haar-Fisz approach to the isochore problem

Our aim is to use the Haar-Fisz algorithm, applying it to the isochore situa-
tion. To set up our procedure, we shall consider a DNA sequence. Since we
are interested in the sections of the strand containing G+C content, we can
view the DNA section as a binary sequence with a corresponding sequence of
indicator values at each nucleotide site, showing whether or not a particular

nucleotide comes from the pyrimidine (G or C) base pair:

Example DNA sequence:

ATGCGCTACGTGCATGCAGTACCATGGACGGTACGGTGACGT
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Converted sequence:

001111001101100110100110011011100111010110

For an unseen strand, if we assume each molecule along the sequence is from
one of the two nucleotide base pairs independently, we can assign (independent)
Bernoulli random variables on the nucleotide sites as follows. Suppose we have
a DNA sequence of length n = 27. Let X} indicate the type of nucleotide k.
Then X ~Bernoulli(p), and so

P(nucleotide k£ has G+C content) = P(X; =1) = p;

P(nucleotide £ has A+T content) = P(X; =0) =1 — p = gx.

Examples

To test the GC proportion estimation procedure, two chromosome strands
were acquired from the Wellcome Trust Sanger Institute Human Genome Se-
quencing Group?, namely the chromosome 6 MHC strand (examined in Oliver
et al. [81]) and chromosome 20 of the human genome. To make it feasible
to process this data with our method, the sequence strands were cropped to
221 = 2097152 bases, and then converted into binary sequences indicating GC

content as outlined above.

In the denoising step of the algorithm in Section 6.8, we used the Haar DW'T
with Sureshrink thresholding (with primary resolution level 3). However, we
modified the smoothing procedure. Recall that in the IsoFinder procedure,
there is an in-place heterogeneity filtering. This is usually applied to filter out
isochores of less than 3 kilobases from the resulting isochore maps, so that these

map estimates resemble mammalian genomes [81]. To mimic this filtering, in

tAll sequences produced by the Sanger Institute are available online from the website
http://www.sanger.ac.uk/HGP/ .
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the denoising step of the procedure, we set the finest 11 detail coefficient levels
to zero (after thresholding) before inverting the discrete wavelet transform.
This has the effect of ensuring that isochore regions of less than 2!! = 2048
bases do not feature in our estimates of GC content produced after inversion

of the DWT.

To assess our isochore map estimates, the IsoFinder method was applied
to the original (cropped) nucleotide sequences, using the online IsoFinder im-

plementation. Figures 6.16 and 6.18 were also created using this web interface?.

Figures 6.16 and 6.17 show the isochore maps of the MHC nucleotide se-
quence for the two estimation procedures, whereas Figures 6.18 and 6.19 give
the corresponding estimates for the chromosome 20 of the human genome.
Whilst the estimates produced using our method are more “spiky” and show
shorter isochore regions, it could be said that the estimates for both procedures
represent the same underlying proportion function. It should be noted here
that our estimates use SureShrink thresholding, with no consideration for the
effect of the primary resolution level. More complex thresholding procedures,
for example, EbayesThresh (described in Chapters 3 and 4) could produce
estimates more similar to the Isofinder procedure, though this increased com-
plexity would lead to increased computation time, due to the length of the

datasets being analyzed.

6.9 Conclusions and Further work

This chapter has investigated the classical regression problem of binomial pro-
portion intensity estimation. Since the Fisz transform has no variance stabi-
lizing properties for binomial random variables, we proposed a new transform,

(B, that has.

$This can be found at http://bioinfo2.ugr.es/IsoF /isofinder.html.
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Isochore Predictions by IsoFinder {0liver et al. NAR 32 H287-H292)}
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Figure 6.16: Isochore map of the chromosome 6 MHC nucleotide sequence as
estimated by the Isofinder procedure (with 3 kilobase filtering).
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Figure 6.17: Isochore map of the chromosome 6 MHC nucleotide sequence
as estimated by our Haar-Fisz Gaussianizing procedure (with 11 finest detail
coefficient levels set to zero).
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Isochore Predictions by IsoFinder (0liver et al, NAR 32 M287-W292)
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Figure 6.18: Isochore map of chromosome 20 of the human genome as esti-
mated by the Isofinder procedure (with 3 kilobase filtering).
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Figure 6.19: Isochore map of chromosome 20 of the human genome as esti-
mated by our Haar-Fisz Gaussianizing procedure (with 11 finest detail coeffi-
cient levels set to zero).
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An asymptotic result was established about this transform similar to that
of Fisz, and simulations for different binomial sizes and probabilities were per-
formed to show how well it Gaussianizes and stabilizes the variance compared
to the Anscombe transformation. The results indicate that our transform does
very well for smaller binomial sizes, n, and/or for extreme binomial propor-
tions. As n is increased, the two transforms are comparable.

Section 6.6 introduced a new Haar-Fisz transform using our Gaussianiz-
ing transform. This was compared to the Anscombe transform also, and it
was found to again outperform the traditional transformation for smaller bi-
nomial sizes and /or binomial proportions nearer the boundaries of the interval
(0,1). This improvement for small n and extreme proportions is important,
since in practice, large binomial sizes and “nice” success probabilities could be
unrealistic. Both methods perform well when n is large.

The evidence of good properties from the simulations lead us to suggest an
algorithm for binomial proportion estimation. We used a real data example to
test the performance of the procedure. The example showed the algorithm to
perform well, and using more sophisticated thresholding procedures or Gaus-

sian denoisers may lead to predicted isochore maps with more distinct regions.
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Chapter 7

Distributional features of
Fisz-transformed Binomial

Random Variables

7.1 Introduction

This chapter describes results about the distribution of the random variable

X-Y

(Y, X) = X4v)>

where we take the random variables X, Y to be i.i.d. Bin(n,p). The func-
tion (* is discussed in more detail in Chapter 6. We modify the notation above

= XY where

slightly to include the binomial size parameter. Let (Y, X) X

X,Y ~ Bin(m,p).

Recall from Example 6.12 that due to the Fisz theorem, the asymptotic
distribution of % (Y, X) is

N (0’ M 1/2a> )

(2m)a—172P
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When considering the Fisz transform of the above random variables, for
the lower m values, the asymptotics do not necessarily hold; in these cases, it

would be useful to know the actual distribution of the coefficients.

We now give a definition which we use in the distributional results for

(Y, X).

Definition 7.1. The generalized hypergeometric function with numerator pa-

rameters ai, ..., a, and denominator parameters by, ..., by 1s defined by

7 Fs(ar, ... 0501, ...,bs;0) = zoo: (al)k(%)k:::(ar)ko—k (7.1)

where (a) is the Pochhammer symbol

(a)y=ala+1)---(a+k—1) for k> 0.

Note that the generalized hypergeometric functions should not be confused
with the well-known hypergeometric distribution. I do not discuss them here,
but for a more detailed description of (generalized) hypergeometric functions,

see for example, [68],[44], and [71].

7.2 The distribution of (! (Y, X)

For o = 1, the coefficients take the form of a straight ratio of Binomial random

variables i((—jr); With a little work, it can be shown that the distribution has a

nice form.

We denote by S}, the set of unique values of ¢} . Through inspection of the
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X

o 1 2 3 4 5 6 7 8

ol o 1 1 1 1 1 1 1 1
1 -1 0 3 3 5 3 ¥ 1 3
2 1 -3 0 ¢ 3z % 3 §
3] -1 -3 =5 0 % 1 3 3 %
Y 4/ 1 -2 -3 -7 0 5 5 4 3
5 -1 -3 =% -1 -5 0 § § 5
6] -1 -3 -3 -3 —5 —uw 0 5 3
-1 -1 -3 -8 % 5 1w 0 3
8| -1 —-§ -2 -% -3 -5 -7 -5 0

Table 7.1: Possible values of the random variable ¢!(Y, X) for m = 8. The
table gives the values of (g(V, X) produced when X takes the integers on the
column headings and Y takes the integers on the row headings.

ratios for different values of X, Y € {1,...,m}, we see that

T —y
LR S
" {$+y

z>ye{l,...,m} and are coprime} U {0,£1}.

It is interesting to notice that the size of S} is 2p,, — 1, where p,, is the

mth prime number.

For example, the set of unique values attained by the random variable (g is

I_4f1 1 11111313 123351532537
SS - :t{lf)’ 132117977267 57 137471173757 7711727975737 774 9’1}U{0} Table

7.1 shows the values of X and Y which produce these elements of S;. The

number of elements in this set is 45.

For simplicity, we introduce the further notation S}, = £S5 U {0, £1}.
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Let us now consider a value of ¢}, = z € Sh U {1}. We note that if

ﬁ = %, then this implies that xo = kx; and y, = ky;. The random

variable ¢}, thus takes the value z with probability
[m/x]
P(Gn =2)= Y P(X,Y) = (kz, ky)),

k=1

where (z,y) is the coprime pair corresponding to z. Then, due to the indepen-

dence of X and Y, we have

- 2@ )

. kz:;<kl‘> (ky)ﬁ K where 5= (). (72)

Here, g = 1 — p, where p is the binomial success probability. In the penul-

timate equation, we use the fact that (}) := 0 for kz > m (where k > |m/z]).

Similarly, for ¢}, = 0 € S}, since the ratio is zero when X and Y take equal

values, we get

PG, =0) = P(X = k) ="y (m) 5. (73

Equations (7.2) and (7.3) are particular cases of an expression for the prob-

ability mass function of (5 for general o.

The generating pair in S}, corresponding to z = 1 is (z,y) = (1,0). Appli-
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cation of formula (7.2) gives
1 2m - m m p ’ m - m [T p * m m
o= §(0)(0) 0 e B () oo

noting that the summand is just the p.m.f. of a binomial random variable.

We now state the distributional result for ¢.,.

Proposition 7.2. Let ¢}, S} and 8 be defined as above. For any z € S},

/

=) if z=+1
P(Crln _ Z) .y q2m (z+ny+y—1([’Y, 6], ['r],p’ 1]; (_/B)x—l-y) . 1) Zf .= i%
(with (z,y) coprime)
"o F ([—m, —m]; 1; 57) P

where . Fy denotes the generalized hypergeometric function, and v, 6, n and
p are the sequences

y—1

Y= (%H)ile’ 6= (%) o M= (%)tz:_f’ and p = (é>z:1'
Proof. The z = +1 case is shown in the discussion above. It suffices to
show the result for z € S}*U{0}, since the negative values of ¢}, have the same
probability as their positive counterparts.
Firstly, note that the generalized hypergeometric functions in the proposi-
tion converge: Luke [71] states that for , Fy(a; b; @) with r = s+1, the functions

converge for || < 1 and converge absolutely for |§] = 1 if
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In our case, this quantity is —1 — 2m < 0.

Using Definition 7.1, for (z,y) with x > y, the generalized hypergeometric

function in Proposition 7.2 is

3 S P 3 S 9 O
kZ:; ~(Me—1)k(P1)k(p2)k -+ (Py—1)k(1)k k! '

From the definition of the Pochhammer symbol and by substituting the

sequences elements of v, §, n and p , this is equal to

[T (Hn 0(% + n)) =1 <Hi;é((5]— + n)) [(—B)=+]F
pary | iy (H o(me + n)) -1 (Hz;é(pl + n)) k!?

51-1-71
Hle+n

=1 n=0

[z—1 k—1

ST

k=0 Lt=1n=0 +n

k-1

H7 +n)

=0

k-1

H(dy +n)

n=0

k!?

< [z k] m—nr—t+1
=2 HH t+ na

k=0 Lt=1 n=0

y—1k-—1
m-—ny—1+1
HH l+ny

=1 n=0

[ﬁm—l—y]k
YR

_ k—1 m—(n+1)z+1 _ k—1 m—(n+1)y+1
where v = [[, y === and w = [, —— .

We can now reduce the products over ¢ and [:

i—[lkl—[lm—nx—t—i-l ﬁﬁm—ny—l+1
t=1 n=0 t+na =1 n=0 l+ny
k—1

(m — ny)!(ny)!

[(=p)=*]*

n=0

Then by cancelling numerator and denominator factors in successive prod-

uct terms over n, we obtain
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i[ﬁﬁ m—nr—t+1 lﬁ’ﬁm—ny—l—i—l w[ﬁw“’]k

12
k=0 Lt=1n=0 t+nz 1=1 n=0 L+ ny k!
o k—1 k—1 a:+yk
=3 (") [t G ) (T oo P
prs kx —1 S n—mr+1 ky—1 san—my+1 k!

Reintroducing the expressions for v and w and again cancelling denomina-

tor and numerator terms, this expression is equal to

i( m )( m >(k+1)!2m—/m+1m—ky+1[B”y]k'
— kx—1) \ky—1

x Yy k2

Simplifying this further, we finally obtain

corFersa(b: 8 I 1 (977 = 3 (1) (1) e,

k=0

The upper limit of this sum can be taken to be £ = m, since all values of
the sum are zero for k¥ > m. Also, noting that the £ = 0 term in the sum is 1,

and multiplying the sum by a factor of ¢*™

" (styFrgr (17, 81 [, . 1) (<B)%) 1) = qmi(;j’) (1)

= P, =2),

from equation 7.2. Thus the proposition is proved for z = € Sk

therefore for any z € +5* by symmetry of z and y.

It remains to prove the proposition for ¢} = 0. Taking the last part of the

equation in Proposition 7.2,
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¢ ([=m, —m L A% = ) (i)k K
o o= [(=m) (1 —m)(2 —m)---(k — 1 —m)]? g
., ;[( = (2= ) e g
om S [(M)(m = 1)(m = 2) -+ (m — k +1)]? g%
= g ;[( )( )( k') ( )] -

This equation then simplifies to

m 2 2k
@m Z(ZL) <%> since (—m)g = 0 for k > m

= Z]P’(W =k)*> for W ~ Bin(m,p)
k=0

= P(¢}, =0) from equation (7.3).
0

Note the similarities between the form of the generalized hypergeometric
function for general z and for z = 0 in Proposition 7.2. We noticed before that
every unique value in S} \ {0} had probability contributions from positive
integer multiples of a coprime pair (x,y), hence we sum over & > 1 in (7.2).
However, for z = 0, we need contributions from all values of (X,Y) where X
and Y are equal, which includes zero itself. This is the reason why the sum in
(7.3) is over k£ > 0. So if we were to view the z = 0 case as being generated
by the (x,y) pair (1,1) for & > 0, using the hypergeometric form for general z

(ignoring the coprime assumption), we would have

]P’(Cl =0)= q2m(2F1([—m, -m; 1; ﬁz) -1)= q2m2F1([—m, —ml; 1; ﬂQ) - q2m>

which can be thought of as the contribution from all the positive integer
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multiples of the pair (1,1). Hence for the actual probability P(¢!, = 0), we
just need to add on the zero multiple contribution, which is ¢?™. This hence
justifies the generalized hypergeometric function equation in the proposition
for z = 0. Also note that this functional form of P((}, = 0) will be the same
for any value of the exponent « in ¢, since the random variable will be zero

when X =Y, irrespective of the denominator.

7.3 The distribution of (Y, X)

Even though the original Fisz theorem in Section 6.2 is only valid for positive
exponents of the denominator, in this section we explore the distribution of
¢% to demonstrate that the generalized hypergeometric form can be obtained
for other values of . For a = 0, % = X —Y is the difference of two Binomial
distributions. This random variable takes values in SO, = {—m,...,0,...,m}.
Since the distribution is symmetric, let us consider [ € {0,...,m}. It can be

easily shown that

reco-e (60T e

A similar generalized hypergeometric function form can be proved for (2.

Proposition 7.3. Let (%, S° and 8 be defined as above. For anyl € SY,

'q2m2F1([_m, —m}; 1; 5%) if 1=0

Bl (1) B F([1,1 —m, 1 +1—m);[2,1+2]; 62) + (7))
Plom =1 if le{l,...,m—2}

mg*" " (1+ B?) if l=m—1

(" (L—q") if l=m
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where ,Fy, denotes the generalized hypergeometric function.

Proof. From equation (7.4), the proposition is proved for ¢, = m,m — 1.
When | = 0, equation (7.4) takes the same form as (7.3). Hence we can
follow the (! = 0 part of the proof of Proposition 7.2 for the ¢% = 0 case
of this proposition. It then remains to prove the proposition for (¢ =1 €
{1,...,m — 2}: again, the negative values of (% have the same probability as
when the variable takes positive values.

Note that the hypergeometric function in Proposition 7.3 converges in the
same way as the functions in Proposition 7.2, since the quantity >, _; ap —

S bp=—1-2m<0.

We start with simplifying the generalized hypergoemetric function term

sF([1,1 —m, 1 4+1—m];[2,1 4 2]; 5°):

ad (l)k(l — m)k(l + l — m)k ﬂQk
> (2) (1 + 2)% k!

_ E(=1)%m - D)I(-1)*(m—-1-1)11+1)! p*
-2 k+D)(m—k—-0)(m—k—1—-1)!(k+1+1) k

from the definition of the Pochhammer symbol. Then we have

mﬂ2 (l T1>3F2([1, 1-— m, 1+1— m]; [2’l+ 2];ﬁ2) + <77>

m—(l+1) "
= m. " m
= 52 kZ:% (k+1)!(m—k—1)!(m—k—l_1)!(k+l+1)!ﬂ2 +(l)

m—(l+1)
. 2 m m 2% m
=) (k+1)(k+l+1>/3 +(l>

k=0
m—I
. m m %
= S (7))

from which the result follows, by considering equation (7.4).
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O

The functional form of the probability mass functions of the random vari-
able (% for a = 0,1 is an illustration of how the probabilities of the ratios
could be computed more efficiently using successful algorithms for generalized
hypergeometric functions. One could no doubt find other similar expressions

for random variables with different values of «.
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Chapter 8

Conclusions and Further work

This chapter gives a summary of the work in this thesis. Each of the main
ideas in the Chapters 3—7 is taken in turn, and both the advantages and disad-
vantages of the new methods introduced are outlined. We give some directions

in which the work in the thesis could take for further research.

8.1 Adaptive lifting

The discrete wavelet transform (DWT), described in Chapter 2, can handle
regularly-spaced observations. The dyadic nature of classical wavelet trans-
forms means that the number of observations in a dataset is limited to a
power of two. Any departure from these conditions involves major modifica-
tions of the wavelet transforms or preprocessing of the data, which can lead to

unwanted artifacts.

We have introduced a lifting scheme based on “one coefficient at a time lift-
ing” work by Jansen et al. [59, 60] for use in the nonparametric regression sit-
uation. The algorithm is suitable for data of any length, including irregularly-
sampled observations, addressing limitations of some classical wavelet trans-
forms.

We introduced two sources of adaptiveness into the algorithm: the ability to
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choose minimum detail coefficients over linear regression orders; and the added
freedom to consider different neighbourhood configurations as well. Since the
procedure is fully adaptive, it is able to reflect the local properties of the data
to recreate an underlying signal without any choices to be made by the user.

The algorithm is also of low computational order.

We have also proposed a modified procedure for use on data with multi-
ple observations at each z-point. This aspect is often not accounted for in
nonparametric regression techniques.

Our simulations compared the adaptive wavelet transform to other (wavelet
and non-wavelet) regression techniques, namely the Kovac-Silverman method
[67], Locfit [70, 69], Comte-Rozenholc [30] and the Splus smooth.spline method.
Simulations show that the adaptive lifting transforms perform well in compar-
ison to the other estimators, both in terms of sparsity and denoising. This
is especially true for the fully adaptive transform, AN1, when applied to test
signals with discontinuous behaviour. Applying the procedure to real datasets,
has shown good results.

A disadvantage of our algorithm is that it can exhibit some stability prob-
lems for larger regression neighbourhoods. This could be reduced by using

ideas proposed by [91, 98|.

8.2 Primary resolution levels in adaptive lift-
ing

Previous work on classical wavelet transforms has shown that the choice of
primary resolution level when used in conjunction with thresholding methods,
such as SureShrink [40], affects how well the transforms are able to smooth
noisy data. Hence an obvious question to ask is whether the same notion of
primary resolution is important for the adaptive lifting transform proposed in

Chapter 3.
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8.2. Primary resolution levels in adaptive lifting

Motivated by this, we investigated the effect of the primary resolution
level in the adaptive lifting scheme proposed in Chapter 3. We concluded
that it does affect the denoising performance of our algorithm; the simulations
performed show that there is quite a wide variation in best stopping times for
all the denoising test signals, grid irregularities and noise ratios.

A method of automatically predicting the resolution level was proposed,
based on attempting to predict a signal’s resolution level ISE curve. However,
this prediction algorithm was unsuccessful, producing erratic results.

Based on the simulation results into optimal stopping times, recommenda-
tions for stopping times can be made according to which type of signal were to
be denoised; for an unknown signal structure, it is recommended to keep the

denoising resolution level low, corresponding to performing many lifting steps.

Further work in this area could include trying to have an efficient lifting
algorithm which has the feature of an in-built stopping time decision process.
This could be set up using sequential hypothesis testing to investigate the
“significance” of detail coefficients. A possibility is to keep track of the detail
coefficients as they are produced, assessing each to be “significant” according
to some criterion (for example, if they exceed a certain threshold). As the
algorithm progresses, we would get an idea of which coefficients have been
judged as signal or noise. If a lot of details have been judged significant, then
we could use this information to decide to stop the transform, especially if the
last few details have been judged as noise.

As it stands, our transform imposes an order on the data by lifting the
coefficient with the smallest corresponding scaling function integral. An alter-
native to the idea above is to consider “signal clustering”. When a point comes
to be removed, the issue of whether it will have the same significance (meaning
whether it was classed as noise or signal content) as its lifted neighbours is an

interesting question to consider - the transform could somehow make use of
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this information to choose which coefficients to lift/whether to stop the trans-
form according to whether its location is near lifted points which have already

been assessed to be signal or noise.

8.3 Binomial proportion estimation

There are many techniques in the literature which tackle the classical non-
parametric regression situation of observations assumed to be a signal with
added Gaussian noise. However, nonparametric methods specifically for bino-
mial data problems, for example, binomial proportion estimation, are not so

widespread.

Motivated by previous Gaussianizing methods in the literature using the
Fisz transform [47], we looked at using the same technique for binomial data.
However, the equivalent Fisz transform for this type of data does not pos-
sess the same desired variance stabilizing properties, though it does lead to
interesting distributional results.

We proposed a new Fisz-like transform for binomial random variables, and
proved that it does have a certain asymptotic normal distribution.

Simulations provided evidence of the transform’s Gaussianization and variance-
stabilizing properties, with our transform converging to normal faster than
Anscombe’s inverse sine Gaussianizing transform [6]. It also stabilizes as well
as Anscombe for high binomial sizes, and better than Anscombe for low and
high binomial proportions.

Based on this new transform, we have proposed an alternative to the Haar-
Fisz transform, replacing the square root division by our Gaussianizing trans-
form. Investigating the properties of this transform, we found that it too is
able to bring data closer to normality as well as Anscombe’s transformation
for large binomial sizes, and better than Anscombe for small n and extreme

values of the binomial proportion.
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8.4. Fisz-transformed random variables

We then presented a method for binomial proportion estimation, using
the alternative transform to the Haar-Fisz transform [51] as a preprocessing
algorithm. This technique was then applied to an example to demonstrate its

capability.

8.4 Fisz-transformed random variables

The initial work in Chapter 6 on the Fisz transform lead to interesting results

when applying this transform to binomial random variables.

In particular, the exact distribution of the variable ¢} (X, X3) was ex-
amined for different binomial sizes m, so that it could be compared to the
proposed transform of (g in Chapter 6. A functional form for this exact dis-
tribution was discovered, based on generalized hypergeometric functions. This
form for Fisz-transformed random variables could be used to bring improved
computation times for large binomial sizes.

This functional form was also extended to give a similar result for the

random variable (% (X1, X3), where X; and X, are binomial random variables.
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Appendix A

Properties of (5 and Fp:

simulation plots

Introduction

This appendix gives extra graphical representation of the findings in Chapter 6;
the plots are related to the investigation into the Gaussianization and variance-

stabilizing properties of (g corresponding to Section 6.5 in the main text.

e Contour plot for convergence of the sample mean to the asymptotic mean

(Figure A.1)
e Perspective plot for the (normalized) sample variance (Figure A.2)

e Comparison between (g and Anscombe’s transformation of sample vari-

ance for equal binomial proportions (Figure A.3)

e Perspective plot for difference in Kolmogorov-Smirnov statistics between

Anscombe and (p (Figure A.4).
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0.0

0.2 0.4 0.6

Figure A.1:  Contour plots showing
the convergence of the sample mean
of (g to the asymptotic normal mean
(n(my, my) across the binomial prob-
ability lattice for different binomial
sizes: m = 1 (top left); n = 2 (top
right); n = 4 (left middle); n = 32
(right middle); n = 128 (bottom).

215



Appendix A. Properties of (g and Fpg: simulation plots

/‘\‘i‘i\‘isx\‘\:‘;\

Figure A.2: Plots showing the sam-
ple variance of (g across the binomial
probability lattice for different bino-
mial sizes: n =1 (top left); n = 2 (top
right); n = 4 (left middle); n = 32
(right middle); n = 128 (bottom).
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Figure A.3: Plots showing the sam-
ple variance of (g (solid) and A (dot-
ted) when p; = py for different bino-
mial sizes: n =1 (top left); n = 2 (top
right); n = 4 (left middle); n = 32
(right middle); n = 128 (bottom).
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Figure A.4: Plots showing the dif-
ference between Kolmogorov-Smirnov
statistics computed on Anscombe
samples with binomial probability
max(p1, po) for different binomial sizes:
n = 1 (top left); n = 2 (top right);
n = 4 (left middle); n = 32 (right
middle); n = 128 (bottom). Positive
difference indicates that (g is closer to
Gaussian.
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