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Abstract

This thesis is centred on second generation wavelet constructions, and investi-
gates some of their possible applications to regression and time series analysis.
We start by proposing an adaptive lifting scheme which constructs second
generation wavelets that adapt locally to the signal features. We demonstrate
empirically that our proposed algorithms provide sparse wavelet representa-
tions and have competitive denoising properties for irregularly spaced datasets,
when compared to both established wavelet and non-wavelet based regression
techniques.

Next we address the problem of transmembrane segment prediction along
a protein sequence, which we ‘convert’ into a regression problem. Central
to our approach is the construction of inter-residue distance matrices, used
for estimating the protein’s hydropathy profile. In conjunction with this, we
propose using two adaptive algorithms for denoising the hydropathy signal.
Our approach is shown to improve prediction of transmembranar segments
when compared to results obtained using classical wavelets.

Finally, we investigate the problem of estimating the evolutionary wavelet
spectrum of a locally stationary wavelet process whose realizations are assumed
to feature missing observations. In order to obtain a set of detail coefficients
associated with each observed time location, we propose a modified lifting
scheme. Based on this, we construct a second generation wavelet estimator
of the wavelet spectrum and investigate some of its properties, both theoret-
ically and computationally. The obtained results indicate that our proposed

periodogram needs a bias correction, which is a direction for further research.
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Chapter 1

Introduction

Simply described, wavelets are localised functions that resemble a ‘small wave’,
as their name also suggests. Due to their ability of providing multiscale repre-
sentations of objects (of the type zoom in—zoom out) and to their good com-
pression properties, wavelets are found in applications in various fields from
signal processing and time series to proteomics or genetics.

Classical, or first generation wavelets as they are also known, suffer from
some limitations: usually they can only work on data that is regularly spaced
and of dyadic length. In this thesis we will concentrate on second generation
wavelet constructions based on the lifting scheme that removes one coefficient
at a time of Jansen et al. (2001, 2004), which allow for greater generality in
applications: second generation wavelets can work on irregularly spaced data,
irrespective of their length.

This thesis introduces a novel adaptive construction of second generation
wavelets, whose properties are investigated in the context of nonparametric
regression. A problem that appears in proteomics is then addressed, and a
solution that involves a combination between a new approach for modelling
the hydropathy profile of a protein and the adaptive wavelet construction pre-
viously investigated is proposed. Finally, we make use of second generation
wavelets for spectral estimation in the context of a locally stationary wavelet

time series that features missing observations.



Chapter 1. Introduction

Chapter 2 reviews the current literature on both first and second gen-
eration wavelets, as well as the use of wavelets in nonparametric regression
problems. Since chapter 5 is inter-disciplinary, it starts with a short introduc-
tion to proteins tailored for the needs of the problem addressed there, that of
transmembrane segment prediction. Chapter 6 is concerned with the problem
of spectral estimation from a realization with missing observations of a process
belonging to a certain class of nonstationary processes introduced by Nason
et al. (2000). Therefore, a small literature review on (locally stationary) time

series appears in its beginning.

Successful noise removal and function estimation in nonparametric regres-
sion problems are fundamentally dependent on choosing a wavelet basis of
appropriate smoothness. The work of chapters 3 and 4 is motivated by the
interesting problem of trying to overcome the user-directed choice of a wavelet
basis in nonparametric regression problems. In chapter 3 we propose an adap-
tive second generation wavelet approach that allows the circumvention of this
problem. In our construction, wavelet functions are built such that they adjust
locally to the signal smoothness. Taking such an approach relieves the user
from having to make a subjective choice, which should be based on informa-
tion such as signal smoothness that is not normally available. Our method also
naturally allows for handling datasets with multiple observations at the same
location. The detailed simulation study of chapter 4 shows that our adaptive
methods perform well when compared to established wavelet and non-wavelet

regression techniques also designed to work on irregular data.

In chapter 5 we address the problem of predicting hydrophobic segments
along the sequence of a transmembrane protein. This is done by estimating the
hydropathy level along a protein as a function of the protein’s amino acid com-
position and shape. Classical wavelet-based methods have already been used
for this problem, and the residues modelled as equally spaced. Our approach is
based on two main ingredients: (i) we model the protein as a (straight) chain

with irregularly spaced residues and (ii) for analysing its associated hydropa-

2



thy signal, we employ two of the adaptive algorithms from chapters 3 and
4. In order to estimate the distance between consecutive residues we derive
family-oriented dissimilarity matrices that use the resolved three-dimensional
information contained in similar proteins. We show that by incorporating
the information contained in similar proteins and introducing irregular amino
acid distances the prediction of transmembranar segments is improved, both
in terms of predicted segments compared to experimentally determined ones,
and also the proportion of correctly predicted segments.

In chapter 6 we investigate the problem of estimating the evolutionary
wavelet spectrum associated with a class of locally stationary wavelet pro-
cesses, whose realizations are assumed to feature missing observations. To
estimate the corresponding spectrum, we propose a second generation wavelet-
based periodogram. Its construction is based on first devising a ‘nondecimated’
lifting scheme which ensures that a set of empirical wavelet coefficients is avail-
able at each observed time point. We then theoretically investigate some sta-
tistical properties of the proposed periodogram, and make a first step towards
constructing a corrected wavelet periodogram, that would unbiasedly estimate
the spectrum. We also explore our proposed method computationally, and the
obtained results are promising.

The datasets used throughout the thesis can be found at

http://www.stats.bris.ac.uk/~maxmp/.



Chapter 2

An Overview of Wavelet Theory

Wavelet theory is a relatively new mathematical tool which has undergone ex-
tensive research in the last 20 years. From the 1980’s when wavelets were first
introduced, they have emerged as strong tools, useful in a variety of applica-
tions from signal processing and data compression to astronomy. Wavelets can
act not only on uni-dimensional objects, such as signals, but also on multidi-

mensional ones, such as images and even n-dimensional functions.

In this thesis we will only be concerned with the use of wavelets in statistical
problems, more exactly in signal denoising, compression and spectral estima-
tion. Also, all applications will involve one-dimensional functions, although

they can be adapted for higher dimensions.
But what are wavelets?

There are many ways of introducing the notion of wavelet, and the reader
interested in a detailed mathematical presentation of wavelets should refer to
the excellent monograph of Daubechies (1992), while Vidakovic (1999) provides

a comprehensive review of the subject.

Since wavelets are functions themselves, and since most commonly they
are used to represent functions, in this thesis we start by introducing nicely
behaved spaces of functions, Hilbert spaces, although not every Hilbert space

is a space of functions. Then we will formally introduce wavelets.
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2.1. Bases on Hilbert spaces

2.1 Bases on Hilbert spaces

In its most general sense, a Hilbert space H is a complete vector space endowed
with a scalar product, usually denoted by <-,-> (Rudin (1973)). Every scalar
product induces a norm, denoted by |- ||, on the space. Completeness means
that every Cauchy sequence in H converges in norm to an element of H, the
scalar product provides a measure of association between two elements of H
and the norm gives a measure of size of an element. As such, we can think
of Hilbert spaces as being a generalisation of Euclidian spaces, with whose
geometry we are familiar.

Hilbert spaces are most interesting when they are of infinite dimension, and
such situations commonly occur when their elements are functions or infinite
sequences.

Two common examples of infinite dimension Hilbert spaces are:

The space of square integrable functions, usually denoted by 2.

For functions f : R — C we say that f € L*(R) <& [* |f(z)|*dz < cc.

The inner product defined on this space is given by < f, g >2= [ f(z)g(z)dz,
so the induced norm is || || . = (/2 | f(z)|*dz)"/2.

The space of square summable sequences, usually denoted by /2.

For sequences £ = {z)}rcz We say that z € 2(Z) & 3,5 |w|® < 0.
The inner product defined on this space is < 2,y >p= ), .7 T+¥, and the
associated norm is [|z]|,, = (3 4ez [26[*)"/2

Convergence in a Hilbert space is to be understood as convergence in the
associated norm.

An essential property for function representation is that any (separable)

Hilbert space admits a (countable) orthonormal basis.

Definition 2.1.1. We say that a family { fx}rep C H is an orthonormal basis
for the Hilbert space H if < f;, f; >=6;;, Vi,j € B and span{ fy/ k € B} = H,
i.e. the family {fx}res C H has orthogonal elements of norm 1 and is dense

i H.



Chapter 2. An Overview of Wavelet Theory

Therefore any element f € H can be written as f =), .5 < f, fx > fi-
It would be instructive at this point to introduce one of the most widely
used orthonormal bases in a Hilbert space, from which the famous Fourier

series derive.

2.1.1 Example of an orthonormal basis

Let us take the space of square integrable functions defined on [—, 7), L?([—7, 7)).
It can be checked that an orthonormal basis for this space is given by the family

of functions {f,(-)}nez, where

1 .
n(r) = ——€"* forx € [—m, 7). 2.1
nle) = = ~m,7) )
Consequently, any f € L?([—m, 7)) can be written as the limit of a superpo-
sition of sinusoidal functions {f,(-)}nez, i-e. f(z) =D 00 < f, fo > fal2),
with < f, fo >= [" \/%7 f(x)e~™dz, and the convergence of the series takes
place in the L?-norm.

It follows that f can be decomposed as

o0
fla)y= > Fem, (2.2)
n=—00
where F,, = 5= ["_ f(z)e ™*dz. This result is known as the Fourier series
™ ™
decomposition of f.

The magnitude of the coefficients { F}, },, reveals the frequency content of the
signal f. However, due to the nature of the decomposing blocks, which span
the whole real axis, we are unable to (directly) extract localised information,
linking the frequency to the location on the z-axis.

Fourier series are often used in practice because of feasibility of com-
puting the coefficients F;,, but ignoring the conditions under which the se-
ries converges. For example, it can be proved that any periodic function

(say g) with period 2T, absolutely integrable over the interval (=7,T) (i.e.

6



2.1. Bases on Hilbert spaces

f_TT |g(x)|dz < o0) and with a finite number of discontinuities and a finite
number of extremes in the interval (—7,7T), has a Fourier series which con-
verges pointwise to g, except at the points of discontinuity (where the Fourier
series will converge to the average of the left and right limit). For functions
with discontinuities, this result leads to what in the literature is known under
the name of ‘Gibbs phenomenon’— a ringing in the Fourier series approxima-
tion at the points at which the signal has sudden jumps. Hence many basis
functions are needed for representing a discontinuity more accurately.

The decomposition of a periodic function into its corresponding Fourier
series can be further extended to non-periodic absolutely integrable functions,
f € LY(R) (ie. [7 |f(z)|dz < 00), which under certain assumptions can be

represented at any continuity point, say x, as

0 1 .

(@) = /_ o), (2.3)

where f(w) =< f(-),e® >p= [ f(z)e ™*dx is called the Fourier trans-
form of f.

The above formula shows how f can be represented at all its continuity
points as a ‘sum’ of sinusoids with complex coefficients describing the ampli-
tude associated to each frequency w. Note that unlike in the Fourier decompo-
sition of a periodic function, the frequency now varies on a continuous, rather
than discrete scale.

Here we have only introduced aspects of the Fourier transform and of the
Fourier series tailored for the needs of this thesis. For more details, Priestley

(1981) offers a beautiful discussion of the subject.

2.1.2 Other basis constructions

When approximating a function by a superposition of basis functions it is
desirable for the decomposition to use few basis functions (for example, if

many coefficients F,, in equation (2.2) are null). This would facilitate a bet-
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Chapter 2. An Overview of Wavelet Theory

ter understanding of the signal structure, and it would also ensure a sparse
representation of the signal on the chosen basis, hence better compression.
Such representations can be achieved if the basis functions are mirroring as
much as possible the properties of the function to be decomposed, such as its
smoothness degree and periodicity structure. Due to the nature of sinusoids,
the Fourier series approximation should be used for smooth functions, which
also exhibit a degree of periodicity.

Most of the time, the functions we deal with in practice do not have the
same degree of smoothness throughout their trajectory and may exhibit sud-
den jumps. Such signals cannot be successfully decomposed through a Fourier
approach, and hence other bases have been investigated. We are only briefly
mentioning here alternative approaches, and then we concentrate on introduc-
ing bases of wavelet functions.

Polynomial bases— the elements of such bases are monomials of various
degrees, {(z — a)*}ren— have been investigated and widely used. However,
they are also poor in representing local features of the signal, and usually
present problems in providing a good fit in the tails of the data (Ramsay and
Silverman (1997)).

Spline bases have been constructed in the quest of obtaining adaptiveness
to the local characteristics of the signal. Put simply, a spline is formed of more
polynomials of the same degree, which are smoothly joined at points called
‘knots’. One of the most common choices are cubic splines, i.e. piecewise
cubic functions of class C? (twice derivable functions with continuous second
derivative)— the condition of having a continuous second derivative ensures
the smoothness of the cubic spline. Polynomial splines have the capacity of
adapting themselves to the variable smoothness of the signal, but they are
influenced by the positioning of the knots. For details on this topic, the reader
can refer to Green and Silverman (1994).

Another basis construction, that proved to have remarkable properties in

representing many functions (including functions with discontinuities), is the
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2.2. Wavelet bases

one that led to wavelet bases, which we will now introduce.

2.2 Wavelet bases

The construction of a wavelet basis is centred on the mother wavelet, a function
usually denoted by %), assumed to have an oscillatory behaviour, hence the
name of wavelet, and to be square integrable. Mathematically, we express
these properties as ¢ € L?*(R) and ffooow(x)dx = 0. Standard references in
the wavelet literature are the monographs of Meyer (1992), Daubechies (1992),
Mallat (1999) and Vidakovic (1999).

2.2.1 Wavelet families

Wavelet families are built using translations (¢(x) — (x + b),b € R) and
re-scalings (Y (x) — ¥(ax),a # 0) of the mother wavelet, 1. The re-scaling is
most commonly termed as ‘dilation’, but it has to be understood as shrinking
as well as stretching. The dilation and translation parameters may be allowed
to vary either in a continuous or in a discrete manner, depending on their
ultimate use.

The mother wavelet ¥ and the dilation and translation parameters a, b € R,
a # 0 can generate a wavelet family, {1, () }ap, Where each element is nothing

else but a re-scaled and translated version of the mother wavelet:

sl =~ (7). (0.0

The wavelet family is indexed by two subscripts— the first one indicates

1

the wavelet scale, a=", and the second one its location. The normalisation

parameter ﬁ appears in order to preserve the L?-norm of ¢: ||tz =
a

9]l 22
Any f € L*(R) can be well approximated by a continuous linear superpo-

sition of wavelet functions, result known under the name of Calderén’s repro-
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Chapter 2. An Overview of Wavelet Theory

ducing identity (see Daubechies (1992) for details):
4 [T [
f(.T) = qul /OO /Oo 2 < f, Qﬁa,b >r2 ¢a,b(x)dadb, (25)

- 2
where Cy = [ %dw is assumed to be finite for the above formula to have

sense.

There is an obvious similarity between decomposition (2.5) and the func-
tion representation (2.3) using a Fourier transform. We should note though
that while the coefficients in the Fourier decomposition only provide infor-
mation about the amplitude associated with each frequency, in the wavelet
decomposition above the coefficients provide information on the amplitude of
the wavelet at both a given scale and location.

In what follows we will mainly concentrate on discrete wavelet construc-
tions. When the scale and location parameters a,b are discrete, first of all a
choice of values has to be made.

Possibly the most commonly used choice is ¢ = 277 and b = 27k with
J,k € Z, which leads to obtaining the discrete (decimated) wavelet family
{0 () }jkez, where 9, (x) = 27/%)(2/x — k). Information about the function
being decomposed with this family will be available at locations of the form
277k within each scale 2/. Note that with increasing j, the wavelet scale
also increases and the sampling gets finer— see figure 2.1. If 9 has compact
support, then with increasing j, 1, (- ) becomes ‘taller’ and narrower.

Another choice in applications is @ = 277 and b = k with j, k € Z, which
leads to the construction of the nondecimated wavelet family {1, x(-)}jkez,
where 1 () = 29/2)(27(z — k)). Here wavelets exist at all integer locations,
rather than at a dyadic pyramid.

So far we have only constructed families of wavelets, and we have seen
that when the scale and location parameters vary continuously, any square
integrable function can be represented as a linear continuous superposition of

elements from the wavelet family {1, 5(- ) }4p (formula (2.5)).
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Figure 2.1: Critical sampling: wavelet functions exist at dyadic rational loca-
tions within each scale.

A similar expansion can be obtained in the discrete setting. More exactly,
for certain choices of ¢ € L?(R), the decimated wavelet family {1, (- )};rez
forms an orthonormal basis for L?(R). This ensures that any f € L*(R) can

be represented as

F@) =) < fitbin > vin(@), (2.6)
JEZ keZ
i.e. any square integrable function can be written as the limit of a linear com-
bination of wavelet functions at different scales and locations. As in the case
of Fourier series, we can regard the function f as being converted into a set of
coefficients, only that this time they are doubly indexed.

A common way of introducing wavelet bases and highlighting their proper-
ties is by constructing them within the versatile framework of a multiresolution
analysis (MRA), introduced by Mallat (1989a,b). Essentially, a MRA of L?(R)
allows for the approximation of any f € L?(R) at different resolutions by pro-

jecting f on a sequence of approximation spaces. It is useful to think of the
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Chapter 2. An Overview of Wavelet Theory

approximations at different resolution levels as a ‘zooming’ process: a higher
resolution level is equivalent to zooming in and obtaining a fine, detailed rep-
resentation of f, while a lower resolution level is equivalent to zooming out

and getting a coarse representation of f.

2.2.2 Multiresolution analysis (MRA) construction

Definition 2.2.1. An (orthogonal) multiresolution analysis (MRA) of
L?(R) consists of a sequence of successive approzimation vector spaces Vi (note

that each V; is a space of functions), with the following properties:

1. V; is a closed subspace of L*(R), Vj € Z,

2. Njez Vi = 02w },

3. Ujezvj = LQ([R)z

4. V; C Vi, Vj€eZ, hence {02y} C---C Vo, CcVyCcViC---C
L*(R),

5. f()eV; e f(2) € Vi, Vi €L,

6. There exists © € Vy a scaling function with ffooo o(x)dx = 1, such that

{o(- —k) }rez is an orthonormal basis of Vj.

We will refer to the index j as the resolution level, or just briefly the level
or scale in the MRA ladder, although strictly speaking, functions at level j
have scale 2/. Larger j corresponds to a finer scale and a finer approximation
space V.

The MRA construction has important implications, as follows:

(i) Conditions 3 and 4 imply that limj_>+ooProjij = f, and the spaces
{Vi}jez can be used for approximating functions— any function f can be
gradually approzimated by its projections on the {V;},cz spaces, {Projvjf}jez,

(ii) Condition 5 gives the multiresolution property of the ladder: any V; is
a scaled version of Vo— f(-) € Vo & f(20-) e V}, Vj € Z,

12



2.2. Wavelet bases

(iii) The multiresolution property of the V}’s together with the fact that
{¢ox(-)}rez is an orthonormal basis of Vj, ensures that {¢;x(-)}kez is an
orthonormal basis of V;, Vj € Z, where ¢;;(z) = 20/2¢p(2/x — k).

As ¢ € Vo € V; and {¢1x(-)}kez is an orthonormal basis of V;, we can

write

o(x) = Z hi V20 (22 — k). (2.7)

kez

The above relation is known under the name of the scaling or refinement
equation, and its (unique) coefficients {hy}rez € [*(Z) form a vector that is
often referred to as a low-pass filter, for reasons that will soon become obvious.
We will see that this filter has an averaging or smoothing effect by preserving
the low frequencies and suppressing the high ones.

We note here that the MRA conditions are sometimes re-written into the
Fourier domain. For instance, fundamental properties of the filter taps hy
(D kez hor = D opez hovy1 = 1/v/2 and > kez Pkhi—2 = d1p) are obtained by
following a Fourier approach. For a presentation of the multiresolution ap-
proach in the Fourier domain, the reader can consult Vidakovic (1999).

The key property of the multiresolution approach is (Daubechies (1992))
that whenever a sequence of closed subspaces of L?(R) satisfies assumptions 1-
6, there ezists (but is not unique) an orthonormal wavelet basis {1, (- )}jkez
of L*(R) with v;4(x) = 217°¢(2x—k) such that Projy,,, f = Projy f+> .7 <
fs ik > Vjk, and the mother wavelet ¢ can be constructed explicitly.

Wavelets would not have become the important tool that they are today if
it had not been for the realisation that many wavelet bases, with various prop-

erties, can be constructed by starting from different mother wavelet functions.
Constructing the mother wavelet.

The construction of a mother wavelet is centred on the idea of representing
the information lost when moving from a finer approximation space to the next
coarser one (say from Vjiq to V;). Take W, to be the orthogonal complement

of V; in Vjy4, hence Vi1 = V; @ W;, Vj € Z (where ‘@’ denotes direct sum

13



Chapter 2. An Overview of Wavelet Theory

of spaces) and any function in V;; can be uniquely represented as a sum of a
function in V; and a function in W;. Therefore the space W; contains the lost
information when moving from a representation on Vji; to a representation
on V.

Condition 4 of the MRA and the way of construction for each W;, imply
that W; L W, Vj # j' and for any fixed j, € Z

Vi =V, @ (@' W;), VJ > jo+ 1.

This shows that any function in V; can be ‘recovered’ by taking the sum of its
approximation at a lower resolution (jy) and the functions that represent the
detail lost between levels J and j.

In the limit (J — o00), using property 3 of the MRA, the above formula
becomes

LQ([R) =V, ® (@]o'ijOWj)’ (2.8)

and together with property 2 we further obtain
LQ(R) = @jesz. (29)

These are equivalent ways of representing the space of square integrable
functions by using a multiresolution decomposition.

Due to the orthogonal nature of these decompositions, in order to ob-
tain an orthonormal basis for L?(R) it is now enough to find {9, (- )}rez, an
orthonormal basis for W;, Vj € Z. Furthermore, because the spaces W; in-
herit the scaling property (5) from the V}, it suffices to construct v such that
{%0 k(- ) }kez is an orthonormal basis for Wy.

It was proved (see Daubechies (1992) for the comprehensive construction)

that a possible choice that yields a desired mother wavelet, v is

Y(z) =Y (1) h xV2p(2x — k). (2.10)

kez
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2.2. Wavelet bases

Essentially, the decomposition in (2.10) follows the same rationale as the
refinement relation for the scaling function: decompose the mother wavelet
¥ € Wy C Vi on the orthonormal basis of the space V; and obtain a (unique)
set of coefficients {g }rez € 12(Z). The desired orthonormality of {to k(- ) }rez,
together with the properties of the MRA construction, yield a possible solution
gr = (—1)Fhi_y, k € Z, which corresponds to the mother wavelet 1 in the
above formula. When filters {hy}rez and {gx}rez are linked by the previous
formula, they are said to be quadrature mirror filters. We will see that the set

{9k }rez is a high-pass filter, only preserving the high frequencies in the signal.

The refinement relations can be written at any scale and translation as
wi(x) = Z hik—210j+1,6(x) and 1 41,(x) = Z Ir—20j41,(T). (2.11)
k k
As a consequence, we can express the filters as
hr—o1 =< ©j1, 0jr1k > and gr_oy =< Vi1, 0jy1x >, Vi, k, L. (2.12)

If the analytical form of the scaling function is available (note that this is
not always the case), by taking j = [ = 0 in formulas (2.12) we can obtain the
low- and high-pass filters hy =< ¢, 14 >, respectively g, =< ¥, 1 >.

Relations (2.12) also highlight that if the scaling function has compact sup-
port, then the low-pass filter is finite (i.e. it has a finite number of non-zero
filter coefficients), and consequently so is the high-pass filter. By using the
refinement relation (2.10) it follows that the wavelet function can be expressed
as a finite linear combination of compactly supported functions, and conse-
quently 7 is also compactly supported. We will see this principle illustrated

in the following example.
Examples of wavelet bases.

The Haar wavelet basis. The oldest wavelet basis is the Haar basis,

introduced by Alfred Haar in 1910. It also has the simplest construction, and
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Chapter 2. An Overview of Wavelet Theory

most introductory texts on wavelets would start with a presentation of this

basis due to its pedagogical value.

The construction starts with the simple scaling function

o(z) = 1po,1y(2), (2.13)

1, ifzeX )
where 1x(z) = , for a given set X.
0, otherwise

Since hy =< @, @1 >, it follows that the low-pass filters are defined by
ho =hy =22 and hy =0, Vk € 7\ {0,1}.

Consequently, due to the quadrature mirror relation, the high-pass filters
are given by go = —¢g1 = 272 and g, = 0, Vk € Z \ {0,1}. Hence t(z) =
2712 o(z) — 27121 1(z), which translates into the following expression for

the Haar mother wavelet function

Y(r) = T10,1/2) (z) — ]1[1/2,1)(3”); (2.14)

which generates the Haar wavelet family

Vi) = 2j/2{]l[2—fk,2—f(k+%))(m) = Ly (et 2),25 (k1)) () }- (2.15)

By construction, wavelets in the Haar family have compact support— supp (¢ ;) =
[277k,277(k 4+ 1)]. Haar wavelets at the same scale do not overlap (unless
they are the same), and if they are at different scales, they either have non-
overlapping supports, or the support of one of them is included in a region

where the other wavelet is constant.

Figure 2.2 shows the Haar scaling function and a few members of the Haar
wavelet family, corresponding to j =0, j = 1 with £ = 0 and 1. Note how the
change in scale affects the length of the wavelet support— the finer the scale,

the more wavelet functions are needed in order to cover the same interval.

It can be checked that the Haar wavelet family forms an orthonormal basis
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| I
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Haar scaling function Haar wavelet function

I ; ]
1 | ] H. B
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Haar wavelet at scale 2 Haar wavelet at scale 2

Figure 2.2: The Haar scaling function, and scaled and translated Haar
wavelets.

on which any square integrable function can be decomposed (for proof see
chapter 2 of Kovac (1998)).

We previously mentioned that a good basis for decomposing a signal is
one that would match the signal smoothness. This would ensure that few
basis functions are needed to describe the signal. Since the components of the
Haar basis are discontinuous functions, it easy to imagine that this wavelet
basis does not do a good job when representing a smooth function, and many
wavelet coefficients are needed to describe the signal.

It is therefore apparent the need of constructing smooth wavelet bases.

The Shannon wavelet basis. While Haar wavelets have compact support
in time domain, the Shannon wavelet family is based on a mother wavelet
with compact support in the frequency domain. Here we only outline its
construction, and the reader is directed to the monograph of Vidakovic (1999)
(page 63) for details.

The construction starts with the scaling function defined in the Fourier do-

main by ¢(w) = Lj_r» (w). In the time domain, this translates into having the
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sin(7x)

infinitely differentiable scaling function ¢(z) = , with infinite support.
The wavelet function can be expressed as 1(z) = ¢(z — 5) — 2¢(2z — 1), hence
it is also smooth. However, the consequent infinite length filters induce bad
localization properties, which is not desirable.

So far, two issues arise when designing wavelet bases: ideally, they would

have some degree of smoothness and finite filters. We will soon see that due

to Ingrid Daubechies such wavelet constructions are possible.

2.2.3 Function representation on a wavelet basis

Let us now come back to the issue of representing a function on a wavelet
basis. Using the orthogonal multiresolution representation (2.8) for the space
of square integrable functions, and since {¢; (- ) }x, {¢; k(- ) }x are orthonormal
bases for V;, respectively W, it follows that {¢;, x(-)/k € Z} U{vx(-)/] >

jo, k € Z} is an orthonormal basis for L?(R). Consequently, one can write

f(z) = Z < f, ok > (Pjo,k(l') + Z Z < fthje > wj,k(l'), Vfe LQ(IR)'
kez j>jo k€Z

(2.16)

The first component in the above sum gives the overall large-scale behaviour

of f at the coarse scale jy (and is in fact Projy, f (x)), while the second com-

ponent represents the fine-scale (detail) features of f, collected when moving
to the coarse scale.

Since {1 (- )}, is an orthonormal basis for L?(R), we obtain an equivalent

representation to Calderdon’s reproducing identity, that motivated this section.

Any f € L*(R) can be represented as

F@) =YY" < fhin > dul), (2.17)

jE€Z kez

which shows that any square integrable function can be written in the limit as
a linear combination of wavelet functions at different scales and locations.

The wavelet coefficients {< f, 1; >}j ez Provide information about f at
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scale 2/ near position 277k. Since together with the wavelet basis used for
decomposing the function, the wavelet coefficients completely characterize f,
we will be interested in computing them. The framework in which we set up
the computations of the scaling and wavelet coefficients is known under the

name of the discrete wavelet transform (DWT).

2.2.4 The discrete wavelet transform

The discrete wavelet transform makes use of the nested structure of the mul-
tiresolution analysis, and it provides a fast scheme for recursively computing
the scaling and wavelet coefficients, without having to evaluate the inner prod-
ucts < f,p;x > and < f,1;, >. Mallat (1989a,b) made the connection be-
tween the MRA and derived a fast algorithm for calculating the coefficients
that arise in the decomposition of f.

Let f € L2(R) and for a fixed level j, take its approximation on the space
Vit Projy, f(z) = 3 ycz ¢ikpik(x), where the set {c;, =< f, pjr >}x gives the
scaling coefficients. The detail produced by moving between two consecutive
approximation spaces V; and Vji1 is given by Projy, f(z) = > _yc7 djtin(2),
where {d;, =< f,¢;r >}r are the corresponding wavelet coefficients at level
],

Since ProjVHlf(a:) = Projvjf(x) + Projwjf(x), we obtain

Dok Gtk k() = 30y ¢aia(@) + 320 djpja(x)-

Relations in (2.12) and the orthogonality of the V; and W; spaces imply

Gl = Z Pre—21Cj 41,5k, (2.18)
k
dji = ngﬁlcjﬂ,k- (2.19)
k
In the literature, these formulas are known as the DWT of the function f

and they give a recursive way for computing the scaling, respectively wavelet

coefficients at each coarser scale 7 € Z associated to the multiresolution de-
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Chapter 2. An Overview of Wavelet Theory

composition of f.
The DWT can also be recursively reversed— the scaling coefficients at
each finer scale can be obtained from the scaling and wavelet coefficients at

the previous (coarser) scale:
Cijt1,k = Z hi—oicjp + Z -2, (2.20)
I I

For practical problems, the role of the DWT is invaluable, hence it is worth

presenting how the above methodology is adapted to an observed set of data.

2.2.5 The DWT for discrete data

In practice, we do not have a continuous function f to decompose on the
approximation spaces V;, but merely a collection of discrete observations of the
function values, f(z;), at equally spaced locations of the form z; = zo + A,
for some fixed xy and A. The number of observations is assumed to be of the
form 27 for some fixed .J, and for simplicity it is usually assumed that z¢ = 0
and A = 277, hence z; = 2774.

Therefore, we start with a sequence of observations (x;, f(x;)) In

i€0,27 -1
order to apply the above algorithm, first interpolate the observations by using
the basis of scaling functions from the space V;: denote ¢;; = f(z;) and
construct the function f € Vj by taking f(z) = 3 ,cz csi¢s:(2) (a treatment
of the data outside the boundaries must be established, but we postpone this
issue). Use the function f as an approximation for the observed function f.
It is important to realise that in consequence the wavelet coefficients of f
represent an approximation for the wavelet coefficients d;, =< f, 1, > of f.

However, by an abuse of notation, we will still denote by c;; and d;; the
scaling, respectively wavelet coefficients of f . Often, they are referred to as the
empirical scaling and wavelet coefficients of f, and mathematically they are

related to their continuous equivalents through a proportionality factor (see

Abramovich et al. (2000) for instance).

20



2.2. Wavelet bases

We start the DWT with the finest scaling coefficients ¢/ = {cx}x, and
by applying (2.18) and (2.19) obtain the sequences of scaling and wavelet
coefficients at the next coarser level, ¢/t = {c; 14}, and d/7" = {d; 14}

J—1

Repeat the procedure for ¢’~*, and re-iterate until the desired coarse level,

say jo, has been reached. At the end of this process, the initial sequence ¢’
in time domain has been replaced by the sequence (¢, d%, @' ... d’™) in
the wavelet domain.

For any level j < J, the sequence ¢’ is referred to as smooth, since it
provides a coarser description of the initial signal, while ¢’ is often referred to
as detail, since it extracts the features lost when representing the signal in a
coarser version.

The inverse DWT (2.20) can be applied to revert from the scaling and
wavelet coefficients decomposition (¢, d, d°** ... d’~') to the initial set of
values, ¢”.

When periodic handling of the boundaries is enforced (see next set of re-
marks, boundary issues), at each step of the DWT the sequence of scaling
coefficients is halved, and as such at each level j, the sequences ¢/ and & have
length 27 (see Nason and Silverman (1994) for details). Conversely, in the
inverse DWT, the number of scaling coefficients is doubled at each step. The
two sequences in time and wavelet domain have therefore the same number of
elements, 27.

Figure 2.3 (top right hand side) shows the decomposition of the HeaviSine
signal (see section 4.1 for its description) sampled at n = 2'° regularly spaced
locations, into smooth and detail coefficients, using the Haar filters. The co-
efficients correspond to Haar wavelets at 6 scales, and are represented in a
layered plot: the top row contains the finest details (corresponding to d® in

* in our notation).

our notation) and the last row the smooth coefficients (¢
Within level j, each coefficient d; ; is plotted at the location corresponding to
the midpoint of the support of the wavelet function v, i.e. 277(k + ). Note

how the magnitude of the coefficients increases with coarsening the scale.
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Figure 2.3: On the top row, (left) the HeaviSine signal sampled at 1024 lo-
cations and (right) its empirical Haar scaling and wavelet coefficients; on the
bottom row, two possible approximations of HeaviSine based on Haar wavelets.

In the second row of figure 2.3 we show two approximations of the HeaviSine
signal. The approximation on the left is obtained by using only the (empirical)
scaling coefficients (c*) and the lowest two levels of detail (d* d°). As Vs =
Vi® W, ®Ws it follows that the approximation is Projy, f. The approximation
on the right is obtained by using all levels of detail except for the last one,
(ct,d",---,d®), hence the approximation is Projy, f. Looking upwards from
the bottom row, each row of detail coefficients brings extra information on
the signal, and contributes to a finer representation of it— the more levels of
detail we include, the better the signal is represented. However, the quality of
an approximation depends not only on the level of projection, but also on the
wavelet basis used for decomposition: sparser wavelet coefficients will generally
ensure better signal representation at the same scale.

Let us make a few remarks now.

Remarks

1. Filters. The DWT formulas (2.18) and (2.19) justify the terminology of
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2.2. Wavelet bases

low-pass, high-pass filters for { hy }, respectively {gi }x: the filter {hy} is
used for smoothing the initial signal, while the {gx }« is used for extracting

the detail lost by moving from one level to the next coarser one.

. Filter notation of the DWT. The DWT formulas can be also viewed
as the result of filter operations on the initial sequence ¢’. The construc-
tion is based on the use of low- and high-pass filters, and on decimation,
defined next. The action of a filter H on a sequence ¢ = {c, }, is defined
by (Hc); = >, hn—jcn. The decimation operator acts on the sequence
¢ by retaining only its values on the even positions, (Zoc); = c2j. In
this notation, the DWT formulas can be re-written as ¢ = ZyHd !
and & = 2,Gc*', where H and G denote the low-, high-pass filters

respectively.

. Boundary issues. When filters longer than Haar are used, problems
may appear at the boundaries when the range of data indices does not
overlap the range of filter indices. Various approaches to this problem
have been taken, ranging from periodizing the signal or padding it out
with zeroes (see Nason and Silverman (1994) for a detailed discussion)
to an entirely new construction by Cohen et al. (1993), designed to build

wavelets on an interval.

. Matrix representation of the DWT. Another way of writing the
DWT comes from the realisation that at every step of the DWT, we
are in effect representing the signal on two different bases. In the first
instance f is represented on the basis {¢, (- )}x of the space V,. By
moving to the next coarser level, J — 1, we represent f on the basis
{{es-1.6(- )}k, {¥s—1k(- ) }x}, and so on. Since any change of basis of
this type can be represented by matrix multiplication, it follows that the
DWT itself can be represented by matriz multiplication. Hence if we de-
note the vector obtained by the DWT of ¢’ by d = (c/°, d%, d%**, ..., d"™1),
then d = W¢’/, where W € .#ys 95 is the matrix built in the DWT pro-
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Chapter 2. An Overview of Wavelet Theory

cess. As the bases used for representing the signal at each step are
orthonormal, it follows that W is an orthogonal matrix (WW7T = I,,,
where I, is the identity matrix of order n). The inverse DWT follows
as ¢/ = WTd. The matrix repesentation of the DWT is particularly
useful when tackling nonparametric regression problems, which we will

investigate later.

We end this section by noting that the DWT through its recursive way of
computing the smooth and detail (see (2.18), (2.19) and (2.20)) highlights how

desirable filters of finite support are, as they ensure finite summations.

2.2.6 Vanishing moments of wavelet functions

One of the most attractive features of wavelets is the property of vanishing

moments.

Definition 2.2.2. We say that a wavelet function ¥ has m + 1 vanishing
moments if

/00 t)(z)dz =0, VI € 0, m. (2.21)

—o0

Let us now examine the implications of this property. The most obvious
one, since < z!,¢(z) >= 0, VI € 0, m, is that the wavelet coefficients of any
polynomial of degree at most m are annihilated in a decomposition on such a
wavelet basis. Or, in other words, any polynomial of degree at most m can be
written as a linear combination of integer translates of the scaling function,
{©0k(-) brez-

The Haar wavelet basis for example, has only 1 vanishing moment (arising
from the admissibility condition), which means that it produces exactly zero
detail only for constant functions.

Daubechies (1992) established a connection between the number of van-
ishing moments of a wavelet function and its smoothness. More exactly, she

proved that any wavelet with the first m derivatives continuous and bounded,
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2.2. Wavelet bases

and which decays like [¢(z)| < a > m + 1, has m + 1 vanishing

_C
(1+]z[)e?
moments.

The first constructions of wavelet bases with compact support and with a
specified number of vanishing moments are due to Daubechies (1988). These
wavelet bases are the famous families Daubechies extremal phase and Daubechies
least asymmetric (the second family consists of wavelets which are by construc-
tion closer to being symmetrical, hence their name). Wavelets in these families
are indexed by a number which indicates the number of vanishing moments
the wavelet is designed to have (D1- Haar wavelet, D2— Daubechies extremal
phase wavelet with compact support and 2 vanishing moments, and so on up
to D10; the least asymmetric wavelets are usually denoted by S2 up to S10).
Such a wavelet with say m + 1 vanishing moments, has finite filters of length
2m+ 2, and the support of its scaling function is [0, 2m + 1], while the support
of the wavelet function is [—m, m + 1].

These wavelets can be designed by re-writing their properties, including
that of having a specific number of vanishing moments, in terms of their filter
coefficients. Having finite filters ensures that a solvable system in the filter
taps is obtained (see Vidakovic (1999), page 92).

Unlike the examples that we encountered so far, compactly supported
Daubechies wavelets do not have an analytical form. However, using the values
of the associated filters, the scaling function can be plotted by repeatedly using
the scaling equation (2.7) to compute its values first at integer locations ¢(k),
and then at dyadic rationals, p(277k) for j = 1,2,...; a similar procedure can
be used to plot the wavelet function. Other techniques for obtaining the values
of the scaling and wavelet functions have been developed— see for example
the cascade algorithm of Daubechies (1992).

It has been shown (see Daubechies (1992)) that wavelet and scaling function
regularity increases with m. Hence wavelets with a higher number of vanishing
moments are smoother and have longer support. The possible discontinuities

in the signal will then influence the wavelet coefficients more. Figure 2.4 gives
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Figure 2.4: D2 and D5 mother wavelets.

two examples of members of the Daubechies extremal phase wavelet family.
Note how the wavelet smoothness increases with its vanishing moments.

Let us come back to the example in figure 2.3. Although HeaviSine is fairly
smooth, there we used Haar wavelets for decomposing it, hence a very sparse
wavelet representation was not to be expected. Compare the Haar wavelet
decomposition to the one in figure 2.5, where the signal is decomposed using
the smooth D5 wavelet basis (which annihilates polynomials up to degree 4).
Remembering that the signal was sampled at 1024 locations, note that very few
wavelet coefficients are different from zero. Consequently, the approximation
using only the scaling coefficients and two levels of detail is now much better
than the one obtained by using Haar wavelets (see figure 2.5, right versus figure
2.3, left on the bottom row).

In general there is no rule as to which wavelet works best for providing a
sparse representation of the signal. For each type of signal a different wavelet
choice may be the best one, depending on the signal features, such as the
number of discontinuities it presents. As a simple rule of thumb, the signal
smoothness should be closely matched by the regularity of the wavelet used
to decompose it. In practice though, the smoothness of the signal is seldom
known, and this leaves us with a serious problem when it comes to choosing
the wavelet. The best number of levels down to which we decompose the signal

(jo) is another issue which is left as a choice. We will come back to these issues
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Figure 2.5: Empirical scaling and wavelet coefficients obtained by decomposing
HeaviSine using D5 wavelet basis (left). Reconstruction of HeaviSine based on
D5 wavelets and their corresponding details at the two coarsest scales (right).

when discussing nonparametric regression.

2.2.7 Other wavelet constructions

Several extensions of the wavelet methodology have been constructed, such as
wavelet packets, biorthogonal wavelets and periodized wavelets, which we will
briefly review.

Wavelet packets were introduced by Coifman et al. (1989). They are
generalisations of orthogonal wavelets, obtained by linear combinations similar
to refinement equations. Their construction enhances the oscillatory character
of the wavelet, so additionally they are indexed over an oscillation parameter;
the collection of all their dilations and translations forms the ‘library’ of all
packet functions, and any orthogonal basis selected from the library is a wavelet
packet basis of L?(R). Such an example is the Walsh basis whose construction
relies on Haar wavelets. When using a wavelet packet to decompose a signal,
in effect both filters (low- and high-pass) are applied at every step of the
transform not only on the scaling coefficients, but also on the detail and the
resulting coefficients are grouped into ‘crystals’. This representation facilitates
the selection of a best orthogonal basis (best according to a specified criterion),

for details see Coifman and Wickerhauser (1992).

27



Chapter 2. An Overview of Wavelet Theory

Biorthogonal wavelet bases. Orthogonality is a strong constraint in
wavelet constructions, which led to the impossibility of constructing symmet-
rical, compactly supported wavelets with more than 1 vanishing moments. In a
construction introduced by Cohen et al. (1992), orthogonality has been relaxed
for biorthogonality.

The biorthogonality approach allows for more flexibility in the wavelet
construction, and most biorthogonal wavelets are designed to have compact
support and symmetry. Biorthogonal wavelets are constructed in the frame-
work of two MRA’s, usually referred to as primal and dual. In each of these
MRA’s, the bases are not orthonormal anymore, and the approximation and
detail spaces lose their orthogonality. However, orthogonality exists between
the approximation and detail spaces each belonging to the other MRA. The
pairs of primal and dual scaling, wavelet functions are linked through a set of
biorthogonality relations.

In this instance, the signal is reconstructed using a basis comprising (pri-
mal) scaling and wavelet functions, and decomposed on a different basis of
(dual) scaling and wavelet functions. For the interested reader, a good review
of multiresolution analyses, wavelet families and their applications is found in
Jawerth and Sweldens (1994).

Wavelets on an interval. Often we work with functions that naturally
exist on an interval, rather than on the whole real line. However, the wavelet
bases that we have seen so far are constructed for L*(R). Much effort has
been put into solving this problem. Cohen et al. (1993) devised a construction
of wavelet bases for functions defined on an interval, and also proposed a
corresponding fast wavelet transform.

Another approach is that of using periodized wavelets which span L?([0, 1]).
Essentially, for each scale 7 and location k, the usual scaling and wavelet func-
tions, @, k(- ), ¥k(-), are ‘wrapped’ around the interval [0, 1]. The new scaling
and wavelet functions are periodic functions with period 1. This construction

is equivalent to periodizing the observed (finite) sequence of observations ¢”,
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and then applying the usual DW'T with the chosen wavelet basis. The wavelet
coefficients have indices restricted to scales j > 0 and locations k € 0,27 — 1,
so the approximation spaces are finite dimensional. However, unless the func-
tion is itself periodic, this approach will introduce edge effects (see Vidakovic
(1999)).

Multi-dimensional wavelet bases. We end this section by noting that
the MRA and the construction of wavelet bases can be generalised to spaces of
higher dimensions. This is especially useful when dealing with multi-dimensional
functions, such as images. Several such extensions exist, from the one due to
Mallat (1989b) in which the multi-dimensional wavelet functions are simply
tensor products of univariate wavelets, to more complex, ‘non-separable’ ones,
see for instance Meyer (1992). In Mallat’s construction for two-dimensions, the
approximation spaces become tensor products of their unidimensional equiv-
alents, and the wavelet functions correspond to three directions: horizontal,

vertical and diagonal.

2.3 The lifting scheme

We have already seen that classical wavelets cannot provide straightforward
solutions in certain situations. Such examples occur when the sampled data
lives on an interval, it is irregularly spaced or when its length is not of the form
27 for some J € Z. Several constructions designed to overcome these problems
are known in the literature— wavelets on an interval, wavelets on curves and
using wavelets on interpolated grids are just some examples, more will be
presented later in the context of nonparametric regression. Sweldens (1996,
1998) introduced a new way for building wavelets, known as the lifting scheme,
which can handle more general settings. Wavelet functions obtained through
the lifting algorithm are known in the literature under the name of second
generation wavelets, hence often the wavelet constructions that we presented

so far are referred to as ‘first generation’ or ‘classical’.
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The lifting scheme still aims to represent the contents of a signal by a
decomposition on a wavelet basis that uses few non-zero coefficients, as this
facilitates signal compression and structure representation.

To fix notation, let us start with a vector = {;},1 defining a (general)
location structure of length n, on which data is to be collected. The value of
a function of interest is then observed at each location z;, yielding a vector
f = {f (%) }icim, the sampled signal. Note that while previously the grid x
was considered to be regular, we now allow for its complete irregularity.

Let us start with an informal presentation of the lifting scheme, as in-
troduced by Sweldens (1996). The lifting construction essentially consists of
iterating three steps: split, predict and update.

Split. At this step the signal is subsampled (split) into two vectors: points
that correspond to the even positions in the grid, and points that correspond
to the odd positions in the grid.

Predict. The next task is to predict the f-values corresponding to the odd
positions by using the information contained in the f-values corresponding to
the even positions. The error in prediction (the difference between the true
and predicted function values on the odd positions) is then quantified in a
vector, called a detail vector.

Update. The f-values on the even positions are now updated by using
linear combinations of the current f-values on the even positions and the detail
vector obtained at the previous step. The purpose of this stage is to preserve
some quantity from the initial signal, such as its mean value.

After re-iterating these steps on the updated (sub)sample, the initial signal
S will be replaced by the remaining updated subsample (which reproduces the
coarse features of the signal) and the detail coefficients accumulated through-
out the process. This is similar to the DWT which replaces f with a set of
scaling and wavelet coefficients, but note that the DWT is incapable of taking
into account the irregularity of z.

Sweldens (1998) introduced the lifting algorithm also under the theoretical
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frame of a second generation (biorthogonal) MRA. This construction parallels
the orthogonal MRA for classical wavelets, but there are a few essential dif-
ferences: (i) the basis functions are no longer dilations and translations of one
function, (ii) the filters are now both location and scale dependent, allowing
for usage on irregular data. In this context, a Fourier approach to the wavelet
construction is no longer feasible.

In what follows we will give a brief presentation of the MRA for second gen-

eration wavelets. For further details, the reader can consult Sweldens (1998).

2.3.1 Second generation multiresolution analysis

Definition 2.3.1. The ‘second generation’ primal multiresolution anal-
ysis (MRA) of L*(R) is defined to be a sequence of approzimation subspaces,
(V;)jez such that:

1. Conditions 1-4 from definition 2.2.1 of the previously introduced (orthog-
onal) MRA hold,

2. The approrimation spaces are no longer scaled versions of each other,

i.e. condition 5 of definition 2.2.1 is not a requirement anymore,

3. Each V; has a basis {¢;i(-)/k € S;}, where ¢;i(-) are scaling functions
at level j and location xy, and S; is an index set with the property S; C

Sit1.

The index j still refers to the approximation level— the higher j is, the
finer the approximation. However, it should be noted that since V; and V;44
are not necessarily scaled versions of each other in the sense defined for the
classical MRA (f(-) € V; & f(2-) € Vj41), the level index j is no longer used
only on a log, scale, and its definition depends on the way the location index
spaces S; are defined with coarser/finer j.

It is important to observe that although the notation x; in condition 3 of

the previous definition does not explicitly state the location dependency on

31



Chapter 2. An Overview of Wavelet Theory

the level, it corresponds to the scaling points at level j— the finer the level,
the finer the sampling. Also note that in the second generation setting the
scaling bases have lost their orthonormality, and in this context only endowing

Vo with a basis is not sufficient.

Definition 2.3.2. A dual multiresolution analysis of the MRA just intro-
duced, consists of a sequence of spaces f/] with the same properties as the spaces
V;, each endowed with a basis of (dual) scaling functions, {@;k(-)/k € S;},
with the property

< Qjks @j,y >= 5]9,19’, VjeZ, Vk, S Sj. (2.22)

The scaling functions and their duals are said to be biorthogonal if relation
(2.22) holds.

As in the classical MRA, here the scaling functions are also defined itera-
tively. More exactly, since {¢;x(-)}res; C Vj C Vi1 and {@j41,4(-) hies;y, 18
a basis for Vj,,, it follows that it exists a sequence {h;x,}jez res; ies,,, Such

that:
Pin(r) = D hipipi(x), Vi € Z,Vk € S;. (2.23)

1€Sj 11
This is the equivalent of the familiar scaling or refinement equation, and the
coefficients b = {h;x}jez kes;1es;,, are the filter coefficients. The filters are
assumed finite, i.e. the sets {l € Sjy1/hjk; # 0} and {k € S;/h;x; # 0} are
finite and their sizes are uniformly bounded, Vj, k, [, hence the summation in
(2.23) is well defined.
Similarly, dual finite filters exist and the dual refinement equation is given
by:
Gin(@) = D hjpi@is(x), Vi€ Z,Vk € S;. (2.24)

leSjt1

Remarks.

1. Equivalence to dyadic intervals. In the classical construction, each
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@k is a scaled (in the log, sense) and translated version of ¢. This in-
duces a bijective correspondence with a dyadic interval 277k, 277 (k+1)]:
at each level j, the real line is covered by disjoint dyadic intervals which
get finer with larger j. Similarly, in the case of the second generation
multiresolution, we also need to partition R. In practical situations, a
set of partitionings is constructed based on the set of n initial locations,
z. At the finest level we start with a (disjoint) division of the initial
interval into n smaller intervals, each of which contains exactly one ini-
tial grid point, z;. The way of constructing the partition at the next
coarser level is directly linked to the proposed way of subsampling the
signal. If following the paradigm introduced by Sweldens (1996) of split-
ting the signal into odds and evens, at the next coarser level we have
[n/2] elements. Each of the cells at next coarser level is built such that
it contains exactly one of the points on the even positions, z9;. This can
be also thought of as fusioning two neighbouring intervals at the finer
level, or re-distributing the intervals associated to the removed points.

The procedure is then re-iterated until reaching the desired coarse level.

. Synthetising the primal and dual scaling functions. Sweldens
(1998) shows that by starting with the index sets {S;},cz, the filter i
and a set of partitionings, a set of scaling functions {¢;x(-)}jez res; sat-
isfying (2.23) can be synthetised through a cascade algorithm, provided
that the algorithm converges for all j, k. It is worth stressing here that
consequently not every filter leads to a set of scaling functions. Similarly,
the dual scaling functions {@; (- )}, can be obtained starting from a
dual finite filter A and the same set of partitionings, again conditional

on the convergence of the cascade algorithm Vj, k.

. Functions defined on other domains. The MRA construction in
Sweldens (1998) is more general than it appears from our presentation,

and it includes square integrable functions defined on any spatial domain
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X C R". So a second generation MRA can be naturally formulated for

functions defined on intervals, or other bounded domains.

Construction of second generation wavelet bases.

We can now introduce second generation wavelets, in a similar manner
to first generation wavelets.

First construct a set of spaces (W), ez, with W; the (non-orthogonal) com-
plement of V; in V;;; and W; L IN/; This permits a telescopic decomposition
of any approximation space— V; =V, & (@j:_jlowj), VJ > jo+ 1.

For each j, the signal is approximated in a coarser manner if projected
on the space V;, than if projected on Vj;, and the space W; contains the

‘difference’ in detail between the two approximations. This entirely parallels

the classical case.

Definition 2.3.3. We say that the set of functions {¢jm(-)/j € Z,m € D;},
where Dj = S; 11\ S}, is a set of wavelet functions if the set {{;m(-)/m € D;}
forms a basis for W;, Vj € Z.

In the dual MRA, for each j € Z, take the space Wj which complements
V; in Vj41 such that W; L V;.

Definition 2.3.4. We say that the set {1;n(-)/m € D;} is a set of dual
wavelets at level j if they form a basis for Wj and are biorthogonal to the

primal wavelets, i.e.
< Wiy Vit >= O, Vi € Z,Ym, m' € D;. (2.25)

The construction of the primal and dual wavelet spaces induces orthogo-
nality of the primal, dual scaling and wavelet functions, respectively. More

exactly,

< wj,ma gbj,k >= 07 < {l[’;j,ma (pj,k >= 07 v]a ka m (226)
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Definition 2.3.5. If relations (2.22), (2.25) and (2.26) hold, then the primal
and dual scaling and wavelet functions are said to be a biorthogonal set of

scaling and wavelet functions.

We now only briefly note the existence of refinement relations for the primal
and dual wavelet functions. Because v, € W; C Vj41 and {@j11,(-)} is a
basis for Vj,1, there exists the filter g = {gjm.}jczmep;cs;,, such that the

following refinement relation holds

Yim(z) = Z Gimipi+10(x), Vi € Z,Ym € D;. (2.27)

leSjt1
For dual wavelets, with dual filter § = {§;m.i}jezmen; ies;,., We have
Yim@) = D Gimiisra(x), Vi € Z,¥m € D;. (2.28)
leSjt1

The filters g and g are also assumed to be finite, and as such the previous

sums are well defined.

2.3.2 Function representation on second generation wavelet

bases
As bases for L?(R) we may now use {9 (-)/j € Z,m € D;} or {pjox(-)/k €
Sjo } U{¥jm(-)/7 > jo,m € D;}. Due to the biorthogonality of the scaling and

wavelet functions, for any f € L?(R) we obtain equivalent wavelet decomposi-

tions to (2.16), respectively (2.17):

flz) = Z < [y jok > Piok(T) + Z Z < fyBjm > Vim(2)(2.29)

kESj, §>jo meD,;
fl@) = D) < fithim > bim(2). (2-30)
JEZ meD;

Note that the sparsity of the wavelet decomposition is dictated by the choice

of dual, rather than primal wavelets.
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Implications of the second generation MRA construction on fil-

ters.

Since < @k, Pjk >= O, from the refinement relations for the primal

and dual scaling functions, it follows that

> hyrihiwg = e, Vi € Z, Yk, K € S, (2.31)

leSj+1

where the filters can be obtained as hjr; =< @jk, Pj+1; > and hjp; =<

Djs Pjt10 >-

Also, the biorthogonality of the primal and dual wavelet functions and their

corresponding refinement relations give

Z 9imiGjm g = Omms, Vj € Z,Ym,m' € D, (2.32)

leSjt1
where the filters are given by g;m; =< ¥ m, @j+1,; > and gjm; =< @Ej,m, Pj+1,0 >-

The refinement relations for the primal and dual wavelet functions, com-
bined with the construction of the primal and dual wavelet spaces, V; L W]-

and W; L V}, generate

Z hjk19img =0, Z Gimihjrs =0, Vi, k,m. (2.33)

leSj leSj

Definition 2.3.6. If the set of filters {h, h, 9,3} satisfies relations (2.81),
(2.32) and (2.33), then it is said to be a set of biorthogonal filters.

Biorthogonality of the filters is equivalent to biorthogonality of the scaling
and wavelet functions provided that the cascade algorithm converges both for

the primal and dual scaling functions.
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2.3.3 The fast wavelet transform

An equivalent of the discrete wavelet transform exists for the second
generation MRA as well. It also follows from the equivalent approximations
of any function f € L*(R) on V;;;— using the basis formed only of scaling
functions at level j + 1, or using the basis of scaling and wavelet functions at
the next coarser level j.

Denote the scaling coefficients at level j by ¢, =< f, §;r >, with k € 5},
and the wavelet coefficients at the same level by d;,, =< f, 1[~Jj,m >, with
m € D;.

The fast wavelet transform gives a recursive way of computing coefficients
at level j from the scaling coefficients at the next finer level, j + 1. Note that

at each step dual filters are used for decomposing the signal

Cjk = Z hjkicivin, Vi € 2,k € Sj, (2.34)
lESj+1

djm = Z 9jmiCi+1,, Vj € Z,m € D;. (2.35)
leSj

The fast inverse transform reconstructs the scaling coefficients at a finer
level from the scaling and wavelet coefficients at the next coarse level. Note

that this uses primal filters

Cjt1l = Z ke icin + Z Gjmajm- (2.36)

keS; meD;

At this point it would be helpful to illustrate some of the previously intro-
duced concepts in examples.

Examples of second generation wavelets.

The Lazy wavelet. Let us start with the given set of locations x and the
index sets {S;}, (hence {D;}, is also known). Let the filters i be defined by
hjri = Ok Vk € S;,1 € Sjy1 and g defined by gjmi = 0y Vm € Dj,l € Sjq1.
Take the dual filters & := h and § := g.
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Starting from these filters, a pair of scaling functions can be synthetised
through a cascade algorithm: ;,(z) = 1z,3(x), with the Dirac function as
their dual, ¢;(z) = 6(z — zx). From the refinement relations we can obtain
the primal and dual wavelets, 1, ,, = ©;j41,m, respectively ij,m = Qj+1,m-

By decomposing an initial signal with such filters we do nothing else but
split the scaling coefficients into two groups at each level j, ¢;x = ¢jq1,4, Yk €
S; and dj . = Cjp1,m, YMm € D;.

Interpolating scaling functions. In practical situations we start with
a set of observations f on the grid z. To apply the fast wavelet transform,
an initial set ¢’ is needed, where J denotes the finest level at which the data
was collected. The usual choice is ¢;; = f(x;), and we approximate f by
f(x) = X, cripsi(z), where {@s;(-)}i is a set of scaling functions at the
finest level. Choosing the scaling functions such that ¢,;(z;) = J;) ensures
that f interpolates the values f (x;). Such scaling functions are known as
interpolating, their duals are the Dirac scaling functions (the same as in the

case of the Lazy wavelet), and we will talk about their filters later.

2.3.4 Vanishing moments for second generation wavelets

Remember that in the classical construction we introduced wavelet functions
with vanishing moments. Having a wavelet function with /N vanishing moments
in an orthogonal MRA meant that any polynomial of degree at most N — 1

can be expressed as a linear combination of integer translations of the scaling

function {po k() }e-

Definition 2.3.7. In the second generation context, we say that a wavelet func-

tion has N vanishing moments if there exists a level j* such that < x', Yim(T) >=

0,VI€0,N—1,5> j*

Similarly, let us denote by N the number of vanishing moments of the dual

wavelet functions.
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Assuming N vanishing moments for the dual wavelets, from the decompo-
sition (2.29) on a second generation scaling and wavelet basis we obtain that
any polynomial of degree at most N — 1 can be written as a linear combina-
tion of {¢;x(-)/k € S;}, Vj > j*, which defines a primal MRA of order N.
Symmetrically, the number of vanishing moments of the primal wavelets gives
the order of the dual MRA.

This highlights an important aspect of second generation MRA’s: the dual
functions are the ones that should be chosen to match the signal smoothness,
as they determine the sparsity of the decomposition. Also, observe the duality
of the construction: the role of the primal and dual MRA’s and respectively

of the scaling and wavelet functions can be interchanged.

2.3.5 ‘Lifting’ a second generation MRA

At this point, one might wonder what is the connection between the split-
predict-update description of the lifting scheme, as given at the beginning of
this section, and the second generation MRA just introduced. So far, only
the ‘split’ stage has a correspondent in the MRA frame— applying the Lazy
wavelet with the index sets S;, D;. What about the predict and update stages?
What do they correspond to?

We have already seen that various families of classical wavelets have vari-
ous properties: if we want to decompose a signal on a smooth wavelet basis,
we choose a wavelet from one of the Daubechies families; if we want a com-
pact, symmetrical wavelet and do not require smoothness, we can choose Haar

wavelets.

Through the lifting scheme we can design wavelet bases that have sev-
eral useful properties, which is equivalent to designing a new MRA with some
desired properties, such as a higher order. The key to being able to ‘custom-
design’ MRA’s and consequently wavelet functions, stays in the versatility of

the filters used in the second generation setting: an initial set of filters (that
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leads to a MRA) can be ‘lifted’ by performing some simple operations, in order
to obtain a new set of filters that leads to a MRA with better properties. This
is equivalent to gradually generating a new MRA satisfying the desired prop-
erties, which translates into obtaining a better signal representation in terms
of the smooth and detail coefficients. For several examples on possible initial
MRA’s the reader is directed to Sweldens (1998) (the MRA generated by the
Lazy wavelet is a possibility, and so is the one generated by the interpolating
scaling functions). We shall see in what follows that each of the prediction and
update stages initially presented, refers to a certain type of transform in the
set of (initial) filters.

Primal lifting.

Assume we have an initial MRA, hence we start with an initial set of
biorthogonal filters {A, h, 9,9}

We will first introduce the primal lifting scheme, and show that this is in

fact the ‘update’ stage previously mentioned.

Definition 2.3.8. The primal lifting scheme is based on the following alter-
ation of the initial set of biorthogonal filters (where the set b = {b; . m}jez kes;meD; €

ly is a finite filter):

il = Pk (2.37)

N?:IZCZ:; = ﬁj,k,l+zb',k,m§j,m,la (238)
m

Gjmi = gj,m,l_zb',k,mhj,k,l, (2.39)
k

Gy = Gjgm.i- (2.40)

It can be easily proved that the new set of filters is still biorthogonal, by
using the biorthogonality of the initial set, while A, g and b finite ensure the
new filters are finite too.

Since the primal filter A is untouched, the primal scaling functions do not

change. However, the dual filter h changes, and consequently so do the dual
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scaling functions. Since the dual wavelet functions are obtained through the
refinement of the dual scaling functions, they change too. As the filters g

change, the primal wavelet functions also change, according to the formula

po () = Pim(@) = Y bjkmpin(2)- (2.41)

kES;
The new set of filters generates new primal and dual MRA’s (see for example
Simoens and Vandewalle (2003))— the new primal MRA has the same scaling
functions, while in the dual MRA both scaling and wavelet functions are mod-
ified. The new approximation and detail spaces can be defined as the closure

of the span of the scaling, respectively wavelet functions.

By choosing a suitable {b; s m }xm We can design at each level j new wavelet
functions with some desirable properties— such as a certain number of vanish-
ing moments. Overall, this is the same as setting the order of the (new) final
dual MRA. Most often, this step is used to preserve the initial average signal,
which is equivalent to setting the number of vanishing moments of the primal

wavelets to one.

This condition turns out to be a possible (and often used) way of design-
ing the filters {b; xm}x,m: as the (previous) scaling and wavelet functions are
known, from equation (2.41), at each level j conditions imposed on each 7¢"

J,m

translate into conditions on {b; . m}x, m € D;.

In practice, primal lifting is applied sequentially, at each level 7 down to
the desired coarse level.

In the fast wavelet transform, dual filters are used for decomposing the finer
scaling coefficients (¢/*!) into coarser scaling coefficients (¢/) and detail (d).
Since the primal lifting operates a change on A, but not on g, only the scaling
coefficients at the level at which the change is performed are being modified.

An application of the primal lifting can be described as follows

1. decompose ¢! using the ‘old’ filters, A, §; obtain (¢, &),

41



Chapter 2. An Overview of Wavelet Theory

2. ‘lift’ the scaling coefficients; the detail coefficients are unchanged

AW =cip+ Y bigmdim, k€S, (2.42)
mEDj
3. for the next step in the wavelet transform, operate using ¢/ := /",

& =d.

It is now obvious that primal lifting is indeed the ‘update’ stage as described
when we informally introduced it. Note that in order to compute the updated
scaling coefficients at level j there is no need to use the new filters, but only
the update filter, b.

Dual lifting.

Definition 2.3.9. Symmetrically, it is possible to alter the other two filters

(h, g) with a similar construction, known as dual lifting:

hiki = hjak,l+za'j,k,mgj,m,l; (2.43)
m

RS = Bk, (2.44)

Gima = Gimi (2.45)

Gmi = gj,m,l_zaj,k,milj,k,l- (2.46)
k

The new set of filters is still biorthogonal and finite, provided the initial
filter set is biorthogonal, finite and a is finite. A transform is induced in all
scaling and wavelet functions, except for the dual scaling functions.

The name of dual lifting is motivated by the ability of the construction to

allow the design of dual wavelets at level j through

7%0(55) = T;J',m(x) - Z @ km Pk (T)- (2.47)

kES;

The dual wavelets will usually be built to satisfy smoothness constraints. In

practice, dual lifting is applied at each level of the transform with the overall
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purpose of designing a higher order primal MRA.

In the fast wavelet transform, as the only dual filter changed through dual
lifting is g, the scaling coefficients remain unchanged, and only the details are
affected by such a filter transform. An application of the dual lifting at level

j can be described as follows
1. decompose ¢! using the ‘old’ filters, h, g; obtain (¢, d),

2. ‘lift’ the detail coefficients; the scaling coefficients are unchanged

djm' = djm = Z Ujk,mCiks VM € Dj, (2.48)

keS;

3. for the next step in the wavelet transform, operate using ¢/ := ¢/, &’ :=

dj,new

This shows that dual lifting is in effect the ‘prediction’ step (here at level
j). Note that only the ‘prediction’ weights, a, are used for lifting the detail
coefficients.

We previously mentioned interpolating scaling functions and their filters:
they can be obtained by applying dual lifting applied to the MRA generated
by the Lazy wavelet.

For details on how the scaling and wavelet functions are affected by primal
and dual lifting, the reader can consult Sweldens (1998).

Alternating primal and dual lifting.

We have so far seen that through lifting transforms we can (separately)
design primal and dual MRA’s of higher order. One natural question appears
at this point: is there any way in which we can design a MRA that has higher
order both in the the primal and dual frame?

The answer is yes, by alternating the primal and dual lifting transforms.
The key to successively using primal and dual lifting is that one does not alter
the vanishing moments that have been established through the other one. This

is easy to see if we think of the number of vanishing moments equivalently in
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terms of setting the order of the MRA. Dual lifting for instance sets the order
of the primal MRA, and by further using primal lifting, the primal scaling
functions do not change. Hence the order of the primal MRA will not be
affected, and nor will the number of moments for the (new) dual wavelets.
Alternating primal and dual lifting is known as the ‘cakewalk construction’,
and through it we obtain a MRA with desired properties for both the primal
and dual wavelets. In what follows we will see how this construction works in

practice.

2.3.6 The fast ‘lifted’ wavelet transform

A typical application of the lifting algorithm consists in starting with the
initial MRA generated by the Lazy wavelet (split the signal at each level j of
the transform), and then at each level iteratively apply dual lifting followed by
primal lifting. A lifting algorithm with a swap in the prediction and update
steps has also been introduced, see Claypoole et al. (1998). Both approaches
are equivalent to starting with a pair of biorthogonal filters, and then starting
from the finest level of the transform, perform a dual, and then a primal change
on these filters (or vice versa) at each level of the transform.

As we have already seen, naturally these filter changes induce changes in
the basis of scaling and wavelet functions used for function decomposition.
Consequently, new scaling and wavelet coefficients are obtained at each step
of the transform.

The fast ‘lifted’” wavelet transform sets the recursive algorithm used for
computing the (new) smooth and detail coefficients from the previous (old)
ones. This amounts to collating formulas (2.42) and (2.48) in an iterative way.

At each step j of the transform

1. Split. Split the signal {c;i1x}kes;,,: obtain c;i := cjii, for k € Sj,

dj,m = Cj+1,m, for m € Dj,
2. Predict. Predict the detail coefficients djm = djm — D 4es, GikmCik;
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mEDj

3. Update. Update the scaling coefficients c;x 1= ¢;x + ZmeDj b km@jm,
k € S;.

The first step is in fact the application of the direct fast wavelet transform
using the Lazy wavelets filters. Note how prediction and update effects inter-
lace: at each level j of the transform, we ‘predict’ and generate new details,
which will be used in the subsequent ‘update’; then the (new) updated scaling
coefficients will be used in the next ‘predict’ step, and so on.

The above algorithm can be reversed in a straightforward manner, by re-

versing the order of the steps and undoing the operations at each level j
1. Undo update. ¢ = Cjr — Y ep, bjkmdim, k € S;
2. Undo predict. djm := djm + Y ycs, @kmCik, M € Dj,
3. Undo split. cj14 :=c;i for k € S;, ¢jr1,m := djm, for m € D;.

The last step amounts to applying the fast inverse wavelet transform using the
Lazy wavelet filters.

We end this section by pointing out that the ‘split’ into odds and evens is
just one possible choice, which mostly resembles first generation constructions.
This split poses problems in higher dimensions, where it is no longer clear what
the odds or evens are. Jansen et al. (2001) introduces the concept of lifting
just one coefficient at each step, which has higher flexibility and can be used
in any dimension. We will investigate in detail this type of lifting transform
in the next chapter.

So far we have essentially discussed possible ways to represent functions
on various wavelet (and some non-wavelet) bases. We pointed out that a
desirable feature of the wavelet coefficients is sparsity, which would enable
data compression. We now turn towards regression, an important problem in

statistics, which we will connect with the concepts previously introduced.
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2.4 Nonparametric regression

Let us now put a probabilistic structure on the sequence fi,..., f,, which

we assume to be the noisy observations of an unknown function g, taken at

possibly irregularly spaced locations x4, ..., z,. Model this as
fi = g(z:) + &, (2.49)
where ¢;,...,¢, are random variables that denote the noise, usually assumed

to be independently distributed, with zero mean and finite variance, o2. The
locations z are assumed fixed and they usually span the interval [0,1], so ¢ :
[0,1] — R. The regression problem consists in estimating g.

We measure the quality of the estimator g through its mean integrated

square error,

MISE(§ [/ {3(z) — g(2))? dx} |

Since usually in practice g is estimated at the grid points x4,...,x,, we use

the average mean square error (also known as risk) to assess its performance

AMSE(g, g9)

Z{g ;) z)}zl :

In this section we will address the problem of nonparametric regression,
i.e. we do not assume any functional form for g to assist us in its estimation.
Although both linear and nonlinear techniques have been developed for esti-
mating g, here we only briefly review some linear smoothing methods, and

then focus on nonlinear ones, primarily on those involving wavelets.

2.4.1 Linear smoothing methods

A comprehensive treatment of smoothing methods in nonparametric regression
can be found in Simonoff (1996). A popular approach consists in using linear

smoothers to estimate g, i.e. estimate the value g(z) by using a weighted
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average of the noisy data in a window around z
9(z) = Zfiwi(x)a (2.50)
i=1

where w;(z) are weight functions that are non-zero only for those i values
such that z; is ‘close’ to x. The ‘closeness’ is defined by the window width,
which tunes the smoothness of the resulting function. Its choice is crucial:
narrow windows produce wiggly curves, and hence estimates with high vari-
ability, while too large windows may oversmooth the data, and consequently
produce highly biased estimates. The weights are usually constructed by using
scaled and translated transforms of a kernel function— kernel functions have
their mass concentrated at 0 and compact support, or rapid decay outside
the interval [—1,1]. For a classical example of a kernel estimator see Watson

(1964).

Another example of a linear estimator consists in using basis expansions
(see Ramsay and Silverman (1997) for a review), where the quality of the
estimator §(z) = Y n | cxpx(z) is tuned by the number K of basis functions
{@k(-) }x in the expansion, and by the chosen type of basis. The choice of basis
(polynomial, spline, Fourier, wavelet) should be based on knowledge about the
function g properties, such as smoothness, if this is available. The coefficients

in the basis expansion can be estimated by using a least squares approach, i.e.

n

minQZ (fZ — chgok(xi)> : (2.51)

i=1

A different way of looking at the regression problem is to find a function
that ensures both goodness-of-fit to the noisy data and also a certain degree
of smoothness. This is known as the smoothing spline approach (see for in-

stance Green and Silverman (1994), Silverman (1985)), and most commonly ¢
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is obtained as the solution to

n
mingec: (Z(fz’ — g(z:))* + /\Ilg"lliz> : (2.52)
i=1
It can be shown (Green and Silverman (1994)) that the solution to this problem
is a cubic spline with knots at {z;},.1;,- The parameter A controls the balance
between the smoothness of § and its fidelity to the data (the smaller A is, less
penalty is paid by roughness and we get closer to the usual linear regression
context, hence the curve becomes wigglier).

The strength of these methods relies in employing them when estimating
a smooth function g, but their performance decreases when g displays discon-

tinuities. For this reason, other estimation methods have been developed.

2.4.2 Nonlinear smoothing using wavelets

Over the last decade, nonlinear smoothing using wavelets has been introduced
and became increasingly popular, due to its excellent properties. For excellent
reviews the reader can consult Vidakovic (1999), Abramovich et al. (2000).
We start by first noting some limitations imposed by the wavelet con-
struction, which force us to make the following assumptions throughout the

presentation of wavelet smoothing:

e The number of observations is assumed to be of the form 27, for some

JelZ.

e The observation locations are assumed to be regularly spaced, i.e. x; =
e For each i there is one (and only one) f;.

It is only fair to stress at this point that the nonparametric regression
techniques we presented so far are not as restrictive, they work on any type

of grids, of any length and can handle multiple data. However, as we already
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pointed out, their performance is limited when estimating functions which, e.g.
present, discontinuities.

Wavelet shrinkage.

Donoho and Johnstone (1994) introduced the wavelet shrinkage, a nonlin-
ear wavelet-based technique for estimating the true function in the regression
problem. Their method can be algorithmically described in a very simple man-

ner, assuming we adhere to the conditions presented in the beginning of section

2.4.2:

1. Apply the DWT to the data f = {fi},c7;. Assume we stop the decom-

position at primary level jg.

2. Modify the obtained empirical wavelet coefficients, {d;x};>jo.kez, With

the purpose of removing the noise.

3. Invert the DWT by using the untouched scaling coefficients {cj, s }rez
and the new (modified) wavelet coefficients. The obtained signal is an

estimate of g, obtained at the (regularly spaced) grid points {z;};c1 -

In what follows we will explore the rationale behind this algorithm, mostly
concentrating on step 2.

Step 1 is equivalent to transforming the model (2.49) into W f = Wg+Wse,
where g = {g(2) }ictm, € = {€i}iern and W is the matrix associated to the

DWT. Equivalently, this can be written as
d=d" +e, (2.53)

where d (d", respectively e) denotes the DWT of f (g, respectively g). The
choice of coarsest level j, was shown to influence the performance of the final
estimator (see for example Abramovich and Benjamini (1995), Hall and Nason
(1997)), with small values for jj suitable for smooth signals, and large values for
discontinuous ones. Hall and Nason (1997) suggest choosing j, on a continuous

scale, using cross-validation.
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In step 2 we obtain an estimate of d*, denote it by c_f, by ‘somehow’ re-
moving the noise. The logic behind ‘somehow’ is unveiled by considering some

fundamental consequences of the orthogonality of the DWT transform:

e If ¢ is independent Gaussian noise, then the DW'T maps it into indepen-

dent Gaussian noise, e, with the same variance 2.

Hence, from repre-
sentation (2.53), all the detail coefficients d are equally contaminated by
noise, and the regression problem (2.49) can now be formulated for the
wavelet coefficients: estimate d* using d, under the assumption that e is

independent, Gaussian noise.

e As many (noiseless) functions have sparse wavelet representations, in the
new regression (2.53) we have in fact an important piece of supplemen-
tary information. Sparsity of the (true) details d* means that most of
them will be zero, with a few large ones that essentially represent the
signal ¢g. In this scenario, small values of d represent the noise. In a
nutshell, the idea of Donoho and Johnstone (1994) consists of estimating
the true details d* by using a thresholding scheme that sets the small
observed wavelet coefficients to zero, and keeps or shrinks the large ones.
Setting the level of the threshold which separates true signal from noise
is of course essential, as a threshold that is too high can effectively elim-
inate features of the signal, while a too low one can allow for noise to

pass in the reconstruction.

Once the details have been estimated, through step 3 we obtain an estimate
of the true function g at locations z, g = WTQA*. Orthogonality of the ma-
trix W (i.e. WWT = I,,) implies that Parseval’s relation holds: [|g — g||% =
IWT(d - d")||% = |ld — d*||%, which in its turn means that the estimators in
the time and wavelet domains have the same risk.

We will now review some of the most popular thresholding rules and thresh-
olds, which are essential in completing step 2 of the wavelet shrinkage proce-

dure.
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Possible thresholding schemes and thresholds.

Thresholding schemes. In their paper, Donoho and Johnstone (1994)

propose two thresholding schemes, known as hard and soft thresholding

Na(djg, A) = djrl—oo -2 Uoo) (i), (2.54)

Ms(di ) = sen(d)max(0, [dyul — ). (2.55)

where ) is a set threshold.

Through the hard thresholding scheme, the details above (in absolute value)
the threshold A are kept, and all the others are set to zero (‘killed’). Soft
thresholding shrinks by A the details above the threshold (in absolute value),
while setting to zero the rest of them. By using one of these thresholding rules
with a set threshold ), one obtains estimated details d*, and the DWT can
then be inverted as described in step 3. It has been noted in the literature that
hard threshoding is better at reproducing discontinuities in the signal, while
soft thresholding produces visually smoother results (the function estimate has

smaller variance), but it has larger bias (e.g. Johnstone and Silverman (1997)).
Let us now review some of the most popular thresholds.

Universal threshold. In the same paper, Donoho and Johnstone (1994)
introduced the famous universal threshold, A = o+/2logn. This was motivated

by the following result

lim,, o P({max;|e;| > o4/2logn}) = 0,

where {&;};c15; are independent random variables, distributed as N(0,0?). If
a djy is above ov/2logn, then most likely its corresponding d7 , is not zero,
and that coefficient contains signal. Note that the universal threshold is only

related to the data through o.

With high probability, both hard and soft thresholding with the universal

threshold, set to zero the observed wavelet coefficients which are entirely due
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to noise (Donoho and Johnstone (1994)). It has been noted though, e.g. Nason
(1996), that in doing so, some features of g are usually lost and the estimate

obtained in practice is oversmoothed.

The estimator produced by using the soft thresholding rule with the univer-
sal threshold is known under the name of VisuShrink, and its risk was proved
(Donoho and Johnstone (1994)) to be close to the ideal one. The ideal (or
oracular) risk is the risk that would be attained had we known which empiri-
cal wavelet coefficients we should keep or kill based on the instructions of an

oracle.

SURE threshold. Another popular choice of threshold was introduced
by Donoho and Johnstone (1995), and is based on a result proved by Stein
(1981) on estimating the mean of a multivariate normal distribution. In his
paper, Stein introduced a way to obtain an unbiased estimator for the average
mean square error incurred by the use of a certain estimate for the mean of a

multivariate normal distribution.

More exactly, assume we have an n dimensional vector of observations
d ~ N,(d*,X) based on which we want to obtain an estimate for d*. If an
estimator of the form c_f = d + h(d) is constructed, where h : R* — R" is a
weakly differentiable function, then Stein proved that the average mean square
error (over all d*) generated by the use of this estimator can be unbiasedly

estimated by
S(h,d) = Trace(X) + ||h(d)||% + 2Trace(X Dh(d)), (2.56)

where Dh(d) is an n X n matrix with entries 0h;(d)/0d, .

The result above states in fact that Egx( d — d*||iz) = E(S(h,d)).

When using the soft thresholding rule (2.55) (with a set \) to obtain an

estimate for the true wavelet coefficients, we are in effect in the above situation
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with the function h given by h(d;x) = —sgn(d;,)min(|d;x|, A). Consequently,

S(A,d) =no®+ ) min(d},, \*) — 207 115 x(dj)- (2.57)

gk gk

This justifies the threshold choice
A = argming <, oz S (A, 4)- (2.58)

The threshold given by (2.58) is known in the field as the SURE threshold
(Stein’s Unbiased Risk Estimator), and it usually yields smaller values than
the universal one. However, it exhibits problems when the wavelet coefficients
are very sparse, and consequently Donoho and Johnstone (1995) proposed a

hybrid scheme for obtaining an estimator §, named by its authors SureShrink.

SureShrink is the estimator obtained by performing soft thresholding within
each scale of the wavelet coefficients, and using the universal threshold when
the data at that level is sparse or a scale-dependent SURE threshold otherwise.
Donoho and Johnstone (1995) have shown that SureShrink is asymptotically
minimax over a range of Besov spaces. We say that an estimator ¢* is minimax
in a certain function class .# (such as the smoothness spaces Holder or Besov)

if sup,c  AMSE(g*, g) coincides with the minimax risk, infzsup,. s AMSE(g, g).

Note that the above theory has been developed for noise assumed inde-
pendent and to follow a normal distribution. When the noise is stationary
and correlated, Johnstone and Silverman (1997) show that the wavelet trans-
form essentially decorrelates the data, and the variance of the details depends
on their scale, but not on location. Therefore the authors propose using a
scale-dependent threshold within the overall usage of the same thresholding

scheme.

Estimating the noise variance. In practice the standard deviation of
the noise is almost never known and needs to be estimated. For Gaussian noise,

Donoho and Johnstone (1994) proposed using the sparsity of the true details
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at the finest scale, which ensures that the observed details at the finest scale
mostly represent the noise. A robust estimate for ¢ is given by the median of

the absolute values of the finest observed details, divided by 0.6745, i.e.
6 = median(|d;_1 x|/k € 0,2771)/0.6745. (2.59)

The above quantity is known as median absolute deviation from zero, in short
‘mad’.
Other shrinkage approaches.

Nason (1996) proposed using a twofold (‘leave-half-out’) cross-validation
technique for selecting the threshold subject to minimising the mean square
error. Nason (2002) points out that the threshold choice is just one of the
parameters that heavily influence the smoothing performance, and therefore
addresses the problem of choosing simultaneously the wavelet smoothness and
primary level in the DWT to minimise the average mean square error. A
cross-validation approach is proposed to yield good combinations of threshold,
number of vanishing moments and primary level (most often there is no unique
solution). This technique uses the development of Kovac and Silverman (2000),
and as such it is capable of working with irregular data sets of any length.
Other cross-validation approaches have been developed, for a comprehensive

review see Vidakovic (1999).

Thresholding has also been looked at as a multiple hypothesis testing prob-
lem (i.e. test Hy : {d}, = 0} versus the alternative H, : {d}, # 0} and retain
in the model only the coefficients for which Hy has been rejected), and such
approaches can be found in Abramovich and Benjamini (1995) and Ogden and
Parzen (1996a,b). Since a large number of hypotheses is being tested simul-
taneously, there is an issue as how to control the error— classical approaches
either control it individually or simultaneously, with a Bonferroni type correc-
tion. Abramovich and Benjamini (1995) take a ‘false discovery rate’ (FDR)

approach to this problem. The FDR of coefficients is defined as the expected
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2.4. Nonparametric regression

value of the proportion (@) of the coefficients erroneously kept in the represen-
tation, and the proposal of Abramovich and Benjamini (1995) is to maximize
the number of wavelet coefficients kept in the model, subject to controlling
the FDR (E(Q) < a, where « is the significance level of the test). In Ogden
and Parzen (1996a,b), at every scale the wavelet coefficients are (statistically)
tested to determine whether significant signal is present or they are due to
noise. This enables separating the details within each level into a set of ‘large’
coefficients considered to contain signal, and a set of ‘small’ ones, considered
to be due to the noise. The ‘small’ coefficients are then ‘killed’, and the large
ones retained. In obtaining this split, statistical tests that take into account
the magnitude of the coefficients as well as their location are employed. The
significance level « of the tests tunes the final smoothness of the estimate (the

larger the a, the wigglier the estimate).

Thresholding and shrinkage techniques have also been built under a Bayesian
framework, and they have proved to work well. In this approach, prior distri-
butions are imposed on the true wavelet coefficients, and based on the observed
details (assumed to follow a normal distribution), the corresponding posterior
distribuitions are obtained. The true details are then estimated using a cho-
sen Bayesian rule. Typically, the posterior mean has been the usual choice in
the literature, and we mention here that this is in fact a shrinkage, and not
a thresholding rule. Abramovich et al. (1998) introduced the use of posterior
medians in wavelet thresholding, and showed that this corresponds to obtain-
ing a thresholding rule. Having estimated the true details, the DWT transform

is inverted, and an estimate for g is obtained.

The prior distributions are designed to capture the sparsity property of
the true details, and therefore they are usually mixtures of a point mass and
some other distribution— the normal distribution is used in Abramovich et al.
(1998), the ‘quasi-Cauchy’ or Laplace distributions are proposed in Johnstone
and Silverman (2004a, 2005)— although mixtures of normal distributions have

also been used, see for example Chipman et al. (1997). Section 3.6.2 contains
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a description of the empirical Bayesian method of Johnstone and Silverman
(2004a, 2005). A comprehensive review on Bayesian wavelet techniques used

for nonparametric regression appears in Vidakovic (1999).
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Chapter 3
Adaptive Lifting

In this chapter we will introduce and investigate a novel adaptive lifting con-
struction. The proposed method is the result of joint work with Matthew

Nunes and Guy Nason, and a description can be found in Nunes et al. (2004).

3.1 Motivation

Let us start with the nonparametric regression problem (see section 2.4 of the
previous chapter) of estimating a true function (g) from n noisy observations,
fi,---, fn, observed at locations z1, ..., x,. We have already seen that wavelet
thresholding/shrinkage methods have been developed and shown to perform
well in the task of estimating g, particularly when g presents discontinuities.
One of the major ingredients of wavelet shrinkage is to transform the initial
signal into a set of scaling and wavelet coefficients by means of a DWT. How-
ever, classical wavelet constructions have their limitations, and consequently
the application of many wavelet shrinkage methods is based on the following

assumptions

1. The grid locations, x4, ..., x,, are assumed to be equally spaced— usu-

ally z; = i/n, for i € 1, n,
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Figure 3.1: Experiment to determine efficacy of crash helmets. Plot showing
133 samples of motorcyclist’s head acceleration in simulated motorcycle crashes
versus time after impacts (points). The solid curve is the denoised version
using our proposed method AP1S (see sections 3.6.1, 4.3.1); dotted, dot-dashed
curves are the estimates using Locfit, smooth.spline (see section 4.3.1).

2. The number of observations, n, is assumed to be of the form 27 for some

JeZ,

3. There is one (and only one) corresponding observation f; for each location

ZT;.

Further questions appear at this point, which we have already pointed out in
the previous chapter: which wavelet (what smoothness) is most suitable for
decomposing this particular dataset? Which primary resolution level is best?

The reality is that many real data sets do not satisfy assumptions 1-3, nor
come with additional pieces of information such as the local degree of regu-
larity of the underlying function. Such an example is the well-known mcycle
motorcycle data (see figure 3.1) from Silverman (1985), which consists of 133
samples at 94 distinct irregularly sampled time points, and which therefore
fails all of the assumptions 1-3. We will provide a detailed analysis of this

dataset in the next chapter.
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3.1. Motivation

The wavelet literature has of course tried to provide answers to these lim-
itations. Several methods have been proposed to adapt the usage of classical
wavelet functions to irregularly spaced data, and we will review some them
in section 3.2. Concerning the choice of wavelet, the general rule of thumb
is to use a wavelet of a smoothness at least as high as the one of g. Nason
(2002) suggests using a cross-validation approach to obtain both the wavelet
smoothness and the primary resolution level that minimise the average mean
square error of the estimate. These techniques are useful for situations when
the underlying function possesses a constant degree of smoothness, which is

not always true.

In what follows we propose an adaptive second generation wavelet con-
struction, stemming from the lifting scheme paradigm, which automatically
circumvents assumptions 1 and 2. We will base our construction on the lifting
scheme which ‘removes one coefficient at a time’ introduced by Jansen et al.
(2001, 2004), which we will present in detail in section 3.3. In our approach
we shall exploit the flexibility of lifting and generate wavelet functions that
locally adjust to the signal features. As a consequence, the smoothness of
each wavelet function gets tuned adaptively and automatically to the varying
smoothness of the given data. We introduce two degrees of adaptivity, result-
ing in two adaptive lifting algorithms, described in section 3.4. Our approach
allows for a natural way of handling multiple data (situations that depart from
assumption 3), and as such the only remaining issue will be an equivalent of the
choice of primary resolution level. In section 3.5 we analyse the implications

of using adaptiveness in the lifting scheme algorithm.

When using wavelet shrinkage methods, the noise €4, ..., €, present in the
function observations is also subjected to some assumptions— it is usually
modelled as independent, identically distributed as N(0, %) random variables.
Through our development we do not intend to alleviate any of these assump-
tions, and we will thoroughly investigate the implications of our construction

on the thresholding procedure. We found that modified versions of the empir-
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ical Bayesian denoising technique of Johnstone and Silverman (2004a, 2005)
work well for shrinkage with our adaptive lifting transforms— in section 3.6
we will present the empirical Bayes procedure and then thoroughly analyse its
implications in the context of adaptive lifting.

We will demonstrate empirically that our proposed adaptive transforms
produce sparse wavelet representations and have competitive denoising prop-
erties for irregularly spaced datasets. In the next chapter, we will illustrate our
methods on real data and analyse in detail the results of an extensive simula-
tion study, including comparisons with the established wavelet and non-wavelet

techniques.

3.2 Adapting classical wavelet methods to ir-

regular designs

As we have seen before, a downside of the (classical) wavelet construction is
that it can only deal with data collected on regular grids. In the context of
nonparametric regression, various approaches have been proposed to transform
irregularly spaced data to the equally-spaced design of the DWT. In what
follows we briefly review some of these methods, and discuss their advantages
and disadvantages.

Cai and Brown (1998) proposed taking into account the irregularity by
using the correspondence z; = H'(i/n) between the irregular grid {z;};ci,
and a regular one, {i/n};cr,. Here H is a strictly increasing function which
usually needs to be estimated. This construction allows the mapping of the
(unknown) function g collected on the irregular grid into the function g o
H~! collected on a regular grid, and similarly for their noisy versions. Hence
classical wavelet methodology can be applied for this new function, which can
therefore be estimated. By composing this estimator with H, an estimator of g

can be obtained. When g is much smoother than H this proves not to be a good
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3.2. Adapting classical wavelet methods to irregular designs

estimator, so for piecewise Holder functions, an estimator of ¢ is constructed
based on the wavelet decomposition of Proj, n™'/237" | fioh7 (). Then a
new threshold is obtained by a generalization of the Donoho and Johnstone
(1994) VisuShrink. The final estimator is within a logarithmic factor of the
minimax risk over a wide range of piecewise Holder classes.

Sardy et al. (1999) proposed four ways (comparable in performance) of
extending the Haar wavelet transform to irregularly spaced data, and then
adapted VisuShrink to the modified transform. Out of the proposed trans-
forms, the isometric Haar wavelets are computationally simplest, and the au-
thors point out that they can be generalized to wavelets of higher order than
Haar.

In another approach, Cai and Brown (1999) showed that when the x; are
distributed independently, uniformly on [0,1], the wavelet method with uni-
versal threshold can be applied directly, as if the grid were regular. The mo-
tivation is the use of the approximation z;) ~ E(z()) = i/(n + 1), and so the
observations (i/(n + 1), f;) are considered instead of (z;, f;). This estimator
is also within a logarithmic factor of the minimax risk over a range of Holder
functions.

Kovac and Silverman (2000) mapped data sampled on an irregularly spaced
grid to data ‘collected’ on a regular grid, by linearly transforming the original
(noisy) function values f into new values f = Rf. The matrix R describes
the interpolation procedure. This transform allows taking into account the
correlational structure of Z by using Var( f) = RVar(f)R". The usual non-
parametric regression strategy can now be handled by using the DWT of z ,
and then thresholding the wavelet coefficients by making use of the variance-
covariance matrix of f . To simultaneously handle the choice of wavelet, pri-
mary resolution level and threshold for estimating the true function, Nason
(2002) developed a fast cross-validation algorithm, able to work on irregular
grids using the Kovac-Silverman (KS) procedure.

Antoniadis and Fan (2001) approached the nonparametric regression by
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formulating a penalized least squares problem in terms of the unknown wavelet
coefficients of § = {g(i/n)},c1,- They initially assumed a regular grid of length
of the form n = 27, and imposed certain conditions on the penalty function.
Under these restrictions, they proved the existence and uniqueness of a solution
to their penalized least squares problem. The final estimators were produced
by using a new universal threshold, that generated a smaller risk than the
classical universal threshold. The procedure was extended to irregular data
by constructing non-linear regularized Sobolev interpolators as estimators and

then improving them by constructing a regularized one-step estimator.

Pensky and Vidakovic (2001) tackled the problem of nonparametric regres-
sion with data collected on any type of grid z, by placing a probabilistic model
on the z;’s, considered to be generated from an unknown distribution with
density function say h, to be estimated. The regression function E(f|X = z)
is estimated by its projection on the space V; of a multiresolution analysis,
ie. Y, Crrpsk(x), where ¢, is an estimator of c;) based on ¢, and the
estimator of h. The final estimator has good properties, provided that h is

reasonably smooth.

All the above methods enable wavelet shrinkage to be carried out for ir-
regularly spaced data. However, some of them assume models for the grid
values that either might not apply (e.g. uniformly distributed z;), or require
the estimation of additional quantities (e.g. the function H or the density h)
that might be unreliable for small sample sizes. For interpolation methods
choices need to be made, such as location and spacing of the regular grid or
interpolation method, which will influence performance. For some of the other
methods, unreasonable assumptions on the smoothness of g are made which
might not hold in practice.

On the other hand, the lifting scheme provides a natural frame for handling
irregularity in the most general data situations. Since our proposed adaptive
lifting transforms are built on the lifting algorithm introduced by Jansen et al.

(2001, 2004) we review their construction next.
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3.3 MRA setting when lifting ‘one coefficient

at a time’

Suppose we have the values f1, ..., f, of a function f, sampled at n irregularly
spaced points z1, ..., x, on the real line. We aim at transforming the sampled
values f1, ..., f, by means of lifting into a set of scaling and wavelet coefficients.

As we work on the real line, the z-values can be ordered, and to each point
we will associate an interval. A possible way of doing this is by constructing
intervals which have the endpoints at the midpoints between the initial grid
points. Since the policy is to remove at each step one point from the set of
corresponding scaling points, at each coarser level one of the intervals from
the previous (finer) level will be redistributed. Once the criterion for choosing
the point to be removed at each step is set, this construction defines in fact a
partition of the initial interval.

Let us start with (primal) scaling functions defined to be the characteristic
functions of the intervals associated to each point, hence at the finest level we

have ¢, x(z;) = 0;x, for k,i € 1,n. Approximate the initial function f by
f(x) = Z cn,k@n,k(m)’ (31)
k=1

where ¢,; := f(z;). From its construction f interpolates the initial values
{fiYictmr 88 F(@i) = Yo py Cnbin = Cng = f(z:).

A wavelet coefficient will be produced at each step of the lifting transform,
and a criterion for selecting its location must be chosen. We shall refer to the
initial stage where the n observations are collected by phase n. At this step
the set of indices corresponding to the scaling coefficients is S,, = {1,...,n},
and the set of ‘wavelet’ indices is empty, D,, = 0.

At the next step, n — 1, we choose a point to be lifted and denote its
index by j,. This will be the point that will be removed from the current set

of scaling coefficients and ‘converted’ into a detail coefficient. The new set
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of indices corresponding to the scaling coefficients is S,—1 = Sy, \ {jn}, while

D, 1 = {jn} is the set of ‘wavelet’ indices constructed at this stage.

The point to be lifted, (z;,,¢s;,), is chosen such that [ ¢, (z)dz =
ming 15 [ ¢nk(x) do. Intuitively, by choosing the point with the smallest scal-
ing function integral, we choose the point with the finest detail. The integral
of a scaling function accounts for the interval length ‘spanned’ by that point,
and therefore smaller integral values correspond to regions where the function
has been densely sampled. The removal of such a point will only cause small

information loss in the signal.

Once the point to be removed is chosen, we identify a set of its neighbours,
I,,. Since there is a one-to-one correspondence between the point to be removed
and its removal stage, we index each set of neighbours only by the stage. We use
the neighbours to predict the function value at j, by using simple regression
techniques over its neighbourhood. As both neighbourhood definition and
choice of regression method are essential to our installation of adaptivity, we

defer their description to the next section.

The prediction phase yields a linear estimate in the predictors of the form
Y e 1, @i Cn,i, where a™ are the weights resulting from the chosen regression
procedure over the neighbourhood. If j, has only one neighbour, 7, then the

prediction is ¢, ;. The detail coefficient will be obtained from

dj, = gy = D 0iCns, (3:2)

i€l

or in the one neighbour case,
dﬂn ‘= Cn,jn, — Cnji- (33)
The update phase only affects the scaling coefficients of the neighbouring points

Cn—1,i i= Cnyi + bi'dj,, Vi € In,i # jn. (3.4)
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For any ¢ ¢ I,, (i # jn) the scaling coefficients are unaffected, ¢,_1; := cn -

When we initially introduced the lifting scheme in the context of a second
generation MRA (see section 2.3.5 of the previous chapter), we pointed out
that with each lifting step we build a new basis of (primal and dual) scaling
and wavelet functions. So through the above steps, equivalent of a cakewalk
construction, ‘in the background’ we construct new scaling and wavelet func-
tions at each step. Therefore, due to the prediction step (dual lifting) the

integrals of the new scaling functions change as well, and need to be updated.

Let us denote I,; = f ¢n,i(z) dz for future use (not to be confused with
the set of neighbours I, of the point indexed by j,). The change in integrals
is to account for the decreasing number of scaling points that remain to ‘span’

the same interval. Only the integrals corresponding to neighbours are affected

In—l,i = In,i + G?In,jna 1€ In; (35)

In—l,i = In,i; Z ¢ In (36)

We embed the ‘update’ of integrals of the scaling functions located at the
neighbouring points in the update stage, although in fact the prediction stage

is responsible for their change.

The aim of the update stage is to keep » cn,iln; constant across scales.

1ESH

In other words

ZC"’ 7”+C”7Jn Njn ch lz n—1y- (37)

€Iy i€l

Re-writing this constraint by using the previous equations, reduces it at

an anln 1,2y (38)

1€l,

and we will see that this is in fact equivalent to requiring the newly constructed

wavelet function to have one vanishing moment. Moreover, from this require-
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ment, the weights b will be obtained. Jansen et al. (2001, 2004) recommend
using the minimum norm solution b} = I j In 1/ > ke, 1214 to (3.8) for
numerical stability reasons.

After obtaining the detail coefficient and updating the corresponding scal-
ing ones, the point j, will be removed.

Reiterate then the lifting transform, and at stage r — 1 we start with r =
card(S,) scaling coefficients (where card(S,) denotes the number of elements
in the set S,), construct the detail coefficient on position j,., update the values
of the scaling coefficients and the corresponding integrals on the neighbouring
positions (with indices in I,.) and remove the index j, from S,— hence construct
new sets S,_1 = S, \ {j-} and D,_; = {j,}. The choice of index j, is subject
to minimising the integrals of the scaling functions at level r.

So at stage r — 1, the lifting steps can be summarised as follows:
e choose a point to be removed, j,. from the set S,,

e predictits function value by using regression over a chosen neighbourhood

: : S .
and generate the detail coefficient dj, 1= ¢, 5, — > .o, aicry,

e update the neighbouring scaling coefficients ¢,_1; := ¢,; + bjd;, for any
i€l,i# j, and ¢,y := ¢ ; for any i ¢ I,, i # j, and update their

associated integrals.

The remaining set of scaling coefficients to be used at the next stage (r — 2)
has indices in S,_;; reiterate the algorithm until the desired coarse level is
reached.

The new filter coefficients, {h*Y}; ;}ies,_, tes,, induced by the lifting con-

struction after removing n — r + 1 grid points (jn, jn_1, .- -,jr) have the form
r1i1 = Oigy, VIE Sp o, (3.9)
rtiy = alr (i), 1= jr. (3.10)
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The (high-pass) filters {g;'*} ; ;}ies, are given by

g:mf,]h = - ;7 Vi e Ir; (311)

G0 = 1= abf, I =, (3.12)
i€l

g?mf,]r,l = 07VZ € Sr—l \ Ir- (313)

A simple application of the refinement relations (2.23) and (2.27) reveals

the progressive construction of the scaling and wavelet functions

or-1i(®) = @ri(®) + aipr; (), i € I, (3.14)

or_1i(x) = @ri(z), 1 ¢ 1, (3.15)

Vi (@) = @, (@) = D bipr 14 (3.16)
i€lr

As the algorithm proceeds, at each step the scaling and wavelet functions
are recursively constructed from the scaling functions at the coarser level;
through the prediction and update weights, as well as through the choice of
point to be lifted, the scaling and wavelet functions depend on the initial grid
locations, z. However, for the application of the lifting algorithm itself, we do
not need to explicitly construct the scaling functions at each step, but merely
start with initial values for their corresponding integrals, which then need to
be updated at every step throughout the algorithm.

From relation (2.29), after j,, jn_1,---,j- have been removed, the initial

function f can be represented as

= Y @+ Y dty (o) (3.17)

1€Sr_1 ke{n,n—1,...,r}
In the classical wavelet approach, the scaling and wavelet functions cor-
respond to different scales (defined dyadically) and locations (translations);
within the same scale, the support length of the scaling, respectively wavelet

functions is the same. Consequently, when building the (classical) smooth and
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detail coefficients they will correspond to a certain scale and location.

In the second generation wavelet approach, although the signal is still rep-
resented on a fine—coarse range, the scaling and wavelet functions at the same
stage/level, say r — 1, are not scaled versions of the same function. This is
due to the second generation wavelet constructions being driven by the irreg-
ularities in the data locations. Lifting ‘one coefficient at a time’ highlights
this aspect even more by introducing just one wavelet function at each stage.
The notion of scale itself is not obvious in this approach. In our development
we will use the same definition for scale as suggested in Jansen et al. (2004)—
define the scale of the wavelet function ¢, to be I, ; , the length of the interval
associated to the location indexed by 7, at the last stage prior to its removal.
The irregularity in locations is therefore reflected in the scale, which becomes

a continuous quantity.

In the dual frame, the dual scaling and wavelet functions can also be ob-

tained recursively, as follows:

Grori(x) = @ri(x) + 050y, (2), i € I,
Or1,i(z) = @,i(x), i ¢ I,
qﬁjr (‘/I") = SOT,J’I' Z az Qpr ]

welr

Analogously, the corresponding (new) dual filters {h"e% . i YieS,_1,ies, Will have

the form:

hpew =0y, VigI,l€S, h, =0, Viel,l¢l,

7. new _ar . 7 new = —d"'b" . .
T—l,i,]r b 9 V’L E I?"7 T—l,i,l _ l’ Vl,l E Ir,-, Z # l,

prev =1 —g'h, Vi=le€l,.

r—1,2, AR
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The new dual filters, {g;“Y ; ;}ies, can be obtained as

qe = —ap, Ve, G =1, 1=jn, F =0, VIE S\

More details on the lifting algorithm based on removing ‘one coefficient at a
time’, as well as its applications when tackling regression in higher dimensional

spaces can be found in Jansen et al. (2001, 2004).

3.4 Introducing adaptivity in the lifting algo-
rithm

Let us remember that our goal is to obtain a transform that adjusts itself to
the signal characteristics, and as such produces a sparse decomposition into
wavelet coefficients.

Of course, our attempt of producing an adaptive transform is not the first
one known in the literature. However, most adaptive lifting constructions
introduced so far have been designed for image compression, rather than for
1D signals.

Claypoole et al. (2003) proposed an adaptive lifting scheme for image com-
pression. Adaptivity is constructed within the prediction step, which consists
of choosing from a set of linear predictors in such a way that if an edge is
detected in the image, then the wavelet is chosen such that its support does
not overlap the edge. An ‘update first’ approach is used, to skip sending in-
formation on the predictor being chosen. The scaling coefficients are obtained
through updating, and then quantised. The prediction stage is applied to the
quantised coefficients, and the detail coefficients are computed, quantised and
transmitted. As previously mentioned, the swap in lifting steps has first been
introduced by Claypoole et al. (1998). In their paper they propose two adap-
tive algorithms: one is scale-adapted— the predictor is chosen to match the

signal structure at each scale, and the other one is space-adapted— the predic-
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tor is chosen (from a family) to minimise each detail value. The transforms are
investigated on a small simulation study on the Donoho and Johnstone (1994)
signals sampled on regular grids. The proposed algorithms give very similar
results, sometimes slightly better than those obtained if using the Daubechies
wavelets.

Piella and Heijmans (2002) also follow an update first strategy, but they
introduce adaptiveness in the update stage. The behaviour of the algorithm
is briefly investigated by denoising a few signals, and only compared to the
results produced by its fixed version, no other comparisons being made.

Trappe and Liu (2000) built adaptiveness into the prediction step with
the goal of minimising the ly-norm of the signal by using Wiener filtering.
This adaptive algorithm was used for decorrelating the low-pass and high-pass
subbands of an AR(2) process, and then for the shrinkage of the same process,
corrupted by Gaussian noise.

All of the above adaptive lifting techniques use the usual odd/even splitting,
while we shall build adaptiveness in the ‘one coefficient at a time’ methodology
of Jansen et al. (2001). This allows for more flexibility for an eventual extension
to higher dimensions. In our development, we also explicitly analyse the case
of multiple observations per grid location.

Adaptiveness in our construction will be embedded in the prediction step of
the lifting algorithm. At a careful analysis of the lifting procedure, we come to
realize that the prediction step provides two potential sources of adaptiveness—
the regression order and the neighbourhood size and configuration.

Some questions arise: how do we choose the neighbourhood— how many
neighbours, in what configuration? What order of prediction should we employ
and how do we decide on it?

These are in fact inter-related issues, as well as distinct questions— inter-
related in the sense that the neighbourhood size dictates the maximum possible
order of regression and vice versa, distinct in the sense that informed choices

should be made, based on a prior information about the signal should this be
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available.

For neighbourhood configuration, we will use two possible choices: symmet-
rical neighbours (the same number of neighbours at the left and right of the
removed point) or closest neighbours to the removed point, irrespective of the
side on which they lie. However, we do not restrict the number of neighbours.

Next, a function value corresponding to the point to be removed is predicted
by fitting a curve over its (determined) neighbourhood. Regression of up to
order three is used, that is we fit either a line, a parabola or a cubic over
the cloud of points that are used as predictors. In the wavelet context this is
equivalent to constructing dual wavelet functions with two, three, respectively
four, vanishing moments.

The lifting algorithm as introduced by Jansen et al. (2001, 2004) needs the
specification of whether the neighbours will be chosen symmetrically or closest,
their number and the type of regression to be used— linear, quadratic or cubic.
Then at each step the algorithm chooses the point to be removed, assesses
its neighbourhood based on these pre-specified requirements, and predicts a
function value by fitting a curve of the desired (already established) degree. We
fully describe such a lifting algorithm by defining its type of prediction— either
linear, quadratic or cubic— with, say m neighbours in a chosen (symmetrical
or closest) configuration.

Our innovation consists of introducing two adaptive prediction steps that
will skip some/all of the prior choices that have to be made when using the
lifting scheme in its version described above. There are two levels of adaptivity
that can be built in the prediction stage, and these in turn induce two adaptive

lifting algorithms. The two methods we propose are:

1. AdaptPred. The construction is adaptive over the order of regression
used in the prediction scheme. The algorithm chooses at each step the
type of regression (linear, quadratic or cubic, with or without an inter-
cept) which generates the smallest detail in absolute value. The wavelet

bases constructed like this adapt themselves to the smoothness of the sig-
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nal, investigated within a user-specified neighbourhood configuration and
size. Hence this first adaptive method surpasses the problem of having
to choose the order of regression. Note though that at each step curves
of likely different orders are fit and used for generating the sequence of
detail coefficients. We will refer to this procedure as AdaptPred, and
for its complete description we will only need to specify the size and

configuration of neighbourhood to be used.

2. AdaptNeigh. The second adaptive method minimises the detail coef-
ficients not only over the regression schemes, but also over the neigh-
bourhood structure. In other words, several configurations of neighbours
are tested with the first adaptive transform, and the one yielding the
smallest detail coefficient in absolute value will be chosen. Hence the
wavelet bases constructed through this procedure adapt themselves to
the smoothness of the signal within the best predictive window at each
step. This construction completely frees the user of making any choice,
except for the neighbourhood size. We will refer to the lifting algorithm
that embeds this type of prediction step as AdaptNeigh, and observe
that it is completely described through the specification of the number

of neighbours to be used at each step.

To illustrate how our transforms choose various orders of prediction as a func-
tion of the local signal structure, it is instructive to refer to figures 3.2 and
3.3. Note how linear prediction is predominantly employed for Blocks while
the smoother character of HeaviSine induces the usage of the other two types
of prediction, except at the jumps which are mostly represented using linear
prediction.

Our construction starts with an initial MRA generated by compactly sup-
ported scaling functions, and through iterating the lifting steps, we gradually
build a new MRA. The filters used at each stage are finite, and therefore the

resulting scaling and wavelet functions (primal and dual) will be compactly
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Signal value

x-value

Figure 3.2: Plot showing choice of prediction scheme for the Blocks test signal
decomposed with AN2 (see section 3.6.1) on an irregular grid. Horizontal
placement of symbol indicates location of the following kinds of prediction:
linear (O); quadratic (A); cubic (+); scaling functions (o).
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Figure 3.3: Plot showing choice of prediction scheme for the HeaviSine test
signal decomposed with AN2 (see section 3.6.1) on an irregular grid. Horizontal
placement of symbol indicates location of the following kinds of prediction:
linear (O); quadratic (A); cubic (+); scaling functions (o).
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Figure 3.4: Wavelet functions at different locations (0.45, 0.54 respectively),
obtained when decomposing a Doppler signal using AN2 (see section 3.6.1).
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supported. It is possible to visualise the wavelet functions by performing a
forward transform on a zero function at locations z, then inserting the value 1
at the location of the wavelet coefficient whose wavelet function you want to
construct and applying the inverse lifting transform. Figure 3.4 provides two
examples of wavelet functions, obtained when decomposing a Doppler signal
sampled at 256 irregular locations. The first one corresponds to the fourth
observed point, which gets removed towards the end of the transform, hence
the wider support of the corresponding wavelet; the second one corresponds to
the 192" point, which is removed around the middle of the transform, hence

its narrower support.

3.5 Implications of the adaptive construction

3.5.1 Prediction weights

Obtaining the prediction weights in the usual lifting algorithm.

Let us assume the neighbourhood definition is established.

At each step, say r — 1 (when we remove the point j.), we fit a curve
through the cloud of points {(x;, ¢,;) }icr, by using the least squares approach,

i.e. model the data in neighbourhood I, as

{critier. = X; B8, +¢, (3.18)

where {ci}icr, € A1,,1(R), X, is the matrix that contains the grid values
of the neighbouring points of z;, (hence it has |I;| rows) and its number of
columns depends on the choice of fitting a curve through the origin or not (i.e.
with or without an intercept) and on the order of the curve to be fitted to
the data; ¢ is the random error vector with each of its components assumed
to have mean zero and constant variance. The least squares estimator of the
(column) vector of coefficients, 3 , that ultimately gives the curve, is obtained

through the well known formula @r = (XTI X)) "X {critier, -
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Next assume that the point to be lifted (z;,, ¢,,;,) belongs to the estimated
curve, so we predict its corresponding function value by ¢, ;, = X, ; ér, where
X, j, is a row matrix having the same number of elements as the number of
columns of the matrix X,, filled in with the corresponding values z;, .

The matrices X, and X, ; reflect the type of prediction as well as the use
of an intercept. For linear prediction with an intercept, the matrices will have
the form X, = (1), {i}ier,), Xrj, = (1,2;,), where 1;,| denotes the column
vector with |I,.| entries, all equal to 1.

In the case of quadratic prediction with intercept, X, = (17,|, {Zi }ier,, {z2}icr,),
Xrge = (L2, 25).

And finally when using cubic prediction with intercept,

Xo = (L) {@ibier, {2l bier,, {2 }ier,), Xoj, = (]"'/'Lljr7$§r’x?,«)'

Not using an intercept results in the above matrices losing their first col-
umn.

Using the least squares expression of ér obtained above, we can express
Crjr = D icr, 04 Cri, With the prediction weights a” = {a] }ics, given by

a =X, ; (XIX)' X (3.19)

Observe that regardless the used regression order, the prediction is linear in
the values of the scaling coefficients.

Influences of adaptiveness on the prediction weights.

When regression with an intercept is used, the prediction weights within
each step sum to one (3_;.; aj = 1), so the areas where the function is constant,
yield exactly zero detail coefficients. When an intercept is not used, the weights
are not guaranteed to sum to one. This is intuitively obvious since we fit curves
that will always have a slope.

For the usual lifting scheme with fixed prediction order (be it linear, quadratic
or cubic), formula (3.19) reveals that the prediction weights a” only depend on

the grid structure and on the chosen type of prediction, but not on the initial
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function.

However, when using an adaptive procedure, at each step of the algorithm
the choice of regression order is dictated by the signal structure, as the al-
gorithm seeks to obtain the smallest detail in absolute value. For a better
picture, let us consider what happens at stage n — 1, when the first point, with
index j,, is chosen for removal. In the prediction stage, the curve to be fitted
is obtained once we minimize |cj, — Y ;c; af'ca;| subject to type of predic-
tion, and eventually to neighbourhood selection (for AdaptPred, AdaptNeigh
respectively). As a consequence, the prediction weights depend not only on
the locations z, but also on the signal.

The dependence of the prediction weights on the signal induces a depen-
dence of the updated integrals on the initial function. Hence the choice of the
point to be removed next and the update weights also depend on the signal.

In other words, adaptiveness comes at the cost of building filters which
depend on the initial signal, as well as on the locations z. Therefore the
adaptive lifting algorithm is not a linear transform (unlike the lifting scheme
using linear, quadratic or cubic prediction), and various properties, such as its

stability are difficult to assess.

3.5.2 Stability of the transform

Classical wavelet constructions produce stable wavelet bases. In simple terms,
the elements of a stable basis are close to orthogonal, rather than arbitrarily
close to each other.

Formally, a stable basis is defined as a Riesz basis, i.e. {¢x}, is a Riesz
basis of L*(R) if, Vf € L*(R), there exists {dx}, such that f(z) =", dpt)x(x)
and

mlldll, < [fllz> < Mld]|s,, (3-20)

where m, M are finite, depend only on the wavelet basis and are of comparable

magnitude. The ratio k = M/m is called the condition number of the basis
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{¥x}k- In the ideal case of working with an orthonormal basis, it equals 1
(as m = M = 1), while large values of the condition number illustrate an
ill-conditioning of the basis.

We denote here the basis by {9y}, to suggest that we are interested in the
stability of a wavelet basis and that {dy}, refers to the decomposition of f on
a wavelet basis; however, the above definition is general.

For second generation wavelet constructions using the lifting scheme, al-
though we may start with an initial MRA which defines stable bases, there
is no guarantee that the resulting wavelet basis is stable— preservation of
biorthogonality achieved through lifting is a necessary, but by no means suffi-
cient condition for stability. Second generation wavelet bases have been shown
in the literature to exhibit serious stability problems, discussed for example in
Simoens and Vandewalle (2003), Vanraes et al. (2002).

Simoens and Vandewalle (2003) investigate the stability of wavelet bases
obtained through the lifting algorithm using the odd/even split as introduced
by Sweldens (1996). They show that prediction and update weights that are
uniformly bounded in norm are required for a stable transform. They note
that, loosely put, if the update weights are large, then the wavelet functions
constructed through the update step will be close to the scaling functions from
the same stage. To stabilize the wavelet basis, a modification of the update
step is proposed, which consists in using a local semi-orthogonalization— con-
struct wavelet functions that are orthogonal on the space spanned by a subset
of scaling functions from the same level. This brings the basis closer to orthog-
onal, but it destroys the number of vanishing moments for the primal wavelets,
hence this method is combined with the standard update to restore it.

From their study, it appears that higher irregularity in the locations induces
higher instability in the wavelet basis. Also, while the number of vanishing
moments for primal wavelets does not seem to influence stability, the dual
number of vanishing moments considerably does (the higher the order of the

MRA, the higher the instability of the wavelet basis).
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Vanraes et al. (2002) observe that at each level of the lifting scheme, the up-
date weights, which are responsible for the degree of non-orthogonality /overlap
between the primal scaling and wavelet functions at the same stage, are in-
fluenced by the scaling functions obtained through the prediction step, and
therefore they propose an alteration of this step. Irregularities in the initial
observations translate in the potential use at the prediction step of data cor-
responding to locations that may be far apart. This is referred to as ‘mixing
of scales’ (note again that scale in this context is influenced by the irregularity
in observations, and it does not refer to a dyadic dilation of a basis function).
The new scaling functions built in such conditions appear to have unwanted
features, such as negative integrals, when designing MRA’s of higher order
than 2. This induces instability in the resulting basis, hence they propose to
change the split procedure to prevent from such mixing, and then to modify
the prediction step accordingly.

Potential instability of a wavelet basis may seriously affect the thresholding
process. We have already seen that the main ingredient of thresholding is the
sparsity of the true wavelet coefficients, which allows for interpreting small
observed wavelet coefficients as due to noise.

Since sparsity of a wavelet decomposition is determined by the number of
vanishing moments in the dual wavelets, any attempt to ‘stabilise’ the wavelet
basis which affects the prediction stage of the lifting algorithm can result in
altering the final sparsity of the wavelet coeflicients.

Lack of orthogonality in second generation wavelet bases means that the
signal energy is not preserved in the wavelet domain anymore. Small wavelet
coefficients may potentially carry a substantial amount of information, and if
no attention is paid we could end up thresholding essential coefficients and
therefore losing significant amounts of information on the true signal. Also,
altering the value of a detail coefficient may result in an unexpectedly large

effect in the reconstructed signal.

In what follows we will investigate stability issues in our transforms.
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Computing the condition numbers.

In an extensive simulation study, we investigated the stability of our trans-
forms, along with their sparsity and denoising performance. Sparsity and
denoising capacity will be thoroughly demonstrated in the next chapter, and
for now we are discussing stability issues.

A practical way to assess the stability of a basis is by computing its con-
dition number. The definition given before establishes that k = M/m, where
M, m are the Riesz bounds associated to the wavelet basis, which is not easy
to implement in practice. However, there is an alternative way of computing
k, which involves the matrix associated with the fast wavelet transform.

We have already seen that the discrete wavelet transform can be put under
a matrix multiplication form; on the same principle, we can also associate a
matrix to the fast wavelet transform in the second generation wavelet context.
Since the direct transform uses dual filters, we will denote the matrix associated
to it by W, as opposed to the notation W used for the matrix associated to
the DWT.

Due to the orthonormality of the classical wavelet bases, the matrix W
is orthogonal, and therefore the matrix associated to the inverse transform is
just WT. This property does not hold for second generation MRA’s, where
we will denote the matrix associated to the inverse transform by W (since it
uses primal filters) and it is nothing else than W~'. The condition number
can then be computed as k = |W||2||W||2, where norm || - |2 of a n x n square

n ~2
ij=1 Wi

matrix is given by ||W|2 = 32 In what follows we will show how to
obtain the matrix generated by any of our transforms, as this means that we
can compute their corresponding condition numbers.

In section 3.3 we obtained the expressions for the filters used at each step
(r —1) of the lifting algorithm removing one coefficient at a time. When using
an adaptive transform, the filters can be obtained by using the same formulas,
but with the appropriate prediction and update weights generated through the

adaptive selection process.
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Write now the filters from each step (say r, after the point indexed j,,;
has been removed) under matrix format, H, = {Br,i,l}iesr,lesr+1 € My r+1(R),

and similarly G, = {3,,...1}ies,.. € #1,+1(R). Denote by

A, = , (3.21)

the (r + 1) x (r + 1) matrix that comprises all the filters used at stage r for
decomposing the signal (hence at step n — 1 when the first split is performed,
A, is of size n x n). Then W can be expressed as a function of A, with
re{n—1,...,r9}, where rq is the coarsest level down to which the transform

is performed (where the point indexed by j,,+1 is removed)
W= Wnrro, (3.22)

with the notation explained in what follows. We denote by Wf the r X r matrix
(for any s) generated by a wavelet decomposition that started at stage r (where
r scaling coefficients are available) with s counting the number of stages used
in the wavelet decomposition (i.e. s = card{r —1,...,r — s}). The matrix W
can be obtained for r := n by using the following recursive construction as a

function of s

N wehoof )
We = A, (3.23)
0 1

with W! = A,_;,Vr and 0 € 41,1 (R).

We have already noted that our adaptive transforms come at the cost of
building filters that depend not just on the data locations, but also on the
initial function. The formulas above highlight the dependence of the matrix
W on the filters used at each step of the transform, hence for our adaptive
constructions W depends both on the irregularities of the data locations and
on the features of the signal. Note that the matrix W can also be computed

by performing n forward lifting transforms on functions determined by the
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Kronecker vectors of length n corresponding to locations z, with the value of
1 sequentially inserted on positions 1,...,n. When 1 appears on position k,
the corresponding lifted sequence gives the ™ column of W.

We have numerically computed the condition numbers for our adaptive lift-
ing algorithms with neighbourhoods of sizes 2 to 4, using both symmetrical and
closest neighbours. The interpretation of their values is of course influenced
by the dependence on the characteristics of the actual test function.

Additionally, we have also computed the condition numbers of the lifting
scheme as introduced by Jansen et al. (2001, 2004), with linear, quadratic and
cubic predictions respectively, neighbourhood sizes ranging from the minimal
one (2 for linear, 3 for quadratic and 4 for cubic) to 4, in both configurations
(symmetrical and closest). Their corresponding condition numbers however,
only reflect the irregularity in the grid.

All transforms were tested on functions that display a wide range of be-
haviours and smoothness levels, observed at locations with various degrees
of irregularity (see section 4.1). We postpone the presentation of the test
functions until the next chapter, where we give a detailed exposition of the
simulation study we performed.

Analysing the results, some conclusions emerge: the usage of larger neigh-
bourhoods induces instability in the resulting wavelet basis, and so does the
usage of higher prediction order. These findings are consistent with those men-
tioned in the reviewed literature. We saw that Vanraes et al. (2002) suggested
that scale mixing induces instability. In our construction, scale mixing is most
likely to appear when using neighbourhoods of larger sizes, which automati-
cally include distant points. Also, Simoens and Vandewalle (2003) noted that
MRA’s of higher order are associated with high condition numbers. In our
algorithm, this is the equivalent of using a prediction step that fits curves of
higher order to the neighbourhood data. However, our construction does not
seem to be very sensitive when increasing the degree of irregularity in data

locations.
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3.5.3 Characteristics of the adaptive lifting construc-

tion

In the light of our analysis, we took the following strategy in order to ensure

stable transforms:
(i) Choosing the neighbourhood.

In both adaptive algorithms the neighbourhood size has to be specified by
the user, and a choice can be made based on the prior knowledge of the signal.
We do however advise against using large neighbourhoods, as this increases

the chances of using points that do not belong to the same scale.

In our algorithm, when at a particular stage the point to be removed
happens to be on the boundary, rather than using the requested number of
neighbours (which would then come only from one side), we only use its clos-
est neighbour to prevent against using ‘artificial’ neighbours. Also, after re-
iterating the algorithm several times, when the number of scaling coefficients
has significantly decreased, the requested number of neighbours might not be
available. In this case, we decrease the number of used neighbours to the max-
imum available. This in turn results in decreasing the number of vanishing
moments for the dual wavelets, which potentially diminishes the sparsity of

the resulting wavelet coefficients.

Our investigations have shown that using asymmetrical neighbours does
not seem to have an impact on our transforms, as long as we make use of
the appropriate number of neighbours. If closest neighbours are chosen, the
prediction weights can take negative values. When updating the corresponding
integrals, some of them will in turn become smaller rather than larger, which
contradicts the intuition that if we remove a point each of the remaining points
should span a larger set to account for the removed point. In this situation the
observation from Jansen et al. (2004) that the scales of the wavelet functions

are a monotonic function of the order of removal, does not hold.

(ii) Regression order.
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Unstable transforms are generated using curves of higher order than the
available number of neighbours would allow (i.e. curves of the highest possible
order, forced through the origin). Hence we use each type of prediction with its
appropriate number of neighbours— the higher the order of prediction we use,
the more neighbours we will have to request in order to get non-degenerated
curves. In order to determine a line with a slope, we will need at least 2
neighbours, for a parabola at least 3, while for a cubic at least 4. At certain
steps of the transform we will be in the situation of not having enough neigh-
bours, hence the order of prediction needs to be decreased, while for boundary
points we will always predict using step functions. In consequence, we need
to be aware that if we go low enough in our decomposition when requesting
a higher order polynomial prediction, in fact we will obtain a mixture of re-
gression orders (although we required a fixed order). So the final order of our
primal MRA will not be exactly the requested one, and this again may have
an effect on the approximation capacity of the wavelet basis. However, the
update weights are obtained at each step such that the primal wavelets have
one vanishing moment, so the final dual MRA will always have one vanishing

moment.

(iii) Update weights. The update weights are also responsible for higher
condition numbers, and in our algorithm we used b = I, ; I, _13/ > .o, I 1 4,
as suggested by Jansen et al. (2001). This choice ensures that the obtained
weights have minimum norm, which prevents the new wavelet and scaling func-
tions at each stage (here r) from being too close to each other. For the future,
it would be interesting to investigate a possible transformation (perhaps simi-
lar to the local semi-orthogonalization suggested by Simoens and Vandewalle

(2003)) that would bring our bases closer to orthogonality.
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3.5.4 Inverting an adaptive lifting scheme

Inverting an adaptive transform is straightforward and it follows the same
basic steps as the inversion of the usual lifting scheme. However, we need
to record the prediction operator used at every step (for instance at stage r,
quadratic prediction with an intercept), and in the case of AdaptNeigh, we
also need to record the type of neighbourhood that generated (at each step)
the smallest detail in absolute value (say, at stage r one neighbour at the left

and two neighbours at the right).

3.5.5 Handling multiple observations at a single grid-
point

Although so far we have only considered the situation where each location z;
is associated to exactly one observation f;, we encounter many real situations
where we can have several values f; at the same location z;. The famous
motorcycle data of Silverman (1985) is one such example (see figure 3.1, which
shows the resulting estimated curves by using our adaptive transform AP1S
and two linear smoothing methods).

For such situations, if we were to change nothing in our algorithm, then we
would find ourselves in situations where some points are assigned zero integrals,
as the distance from a point to itself is zero. Hence the multiple points would
always be the first ones to be removed. To prevent against this situation,
multiple points are considered to have only one location value.

Next, let us inspect what happens if (some of) the neighbours of the point
chosen to be removed next have multiple f values. The prediction step uses
a linear least squares approach to estimate the unknown parameters of the
regression curve to be fit to the data, which can naturally cope with multiple
observations. When an adaptive transform is used, the usual procedure can
be applied with no modification, i.e. fit various regression curves and choose

the one that provides the smallest detail in absolute value.
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In the update step, all multiple neighbours get updated using the corre-
sponding detail obtained in the prediction stage. So neighbour points that
were multiple remain multiple after the update step.

If the point to be removed is itself multiple, then we inspected more pos-
sibilities of handling it. Multiple detail coefficients can be obtained, but this
raises problems in the next step when we have to update the neighbours, some
of which might also be multiple points. We have therefore chosen to produce
one detail coefficient by taking the mean of the distinct individual coefficients,
although other quantities, such as the minimum, can be interesting alterna-
tives.

Finally, when the coarsest level for decomposition has been reached, if some
of the scaling points are multiple, we replace them by their means, and then

invert the lifting transform.

3.6 Sparsity and denoising performance of the

adaptive algorithms

3.6.1 Sparsity results

Here we only present conclusions regarding the sparsity properties of our trans-
forms. These claims are based on a thorough investigation of the behaviour of
our transforms on various test functions and degrees of grid irregularity. The
next chapter will provide full details on setting the simulation study and its
results.

We use the following abbreviations to refer to the names of the methods
investigated: the lifting algorithm with simple linear/quadratic/cubic predic-
tion will be referred to as LP/QP/CP respectively. AdaptPred will be denoted
by AP and AdaptNeigh by AN. After this two letter code we use a number
to indicate the used number of neighbours, and a letter N/S to indicate if

nearest /symmetrical neighbours have been used (hence when the code is S,
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twice the number of neighbours is used). The letter N/S is not needed for
AdaptNeigh, since this procedure searches through both types of configura-
tions anyway.

As mentioned before, along with testing the behaviour of our transforms
with neighbourhood sizes up to 4, we have also investigated the linear trans-
forms (LP, QP and CP), also with neighbourhood sizes up to 4.

Out of all linear algorithms, LP with 2 neighbours gives the best compres-
sion results, and it is also associated to small condition numbers. However, in
terms of sparsity, the adaptive procedures perform better than any of the linear
ones, with AN producing the sparsest outcomes. Hence increasing the adap-
tiveness increases the sparsity of the results. Due to stability considerations,
we recommend the use of AN1, followed by AP2N and AP1S.

When compared to classical wavelet methods (on regular grids), our AN1
produces competitive results, and it additionally has the advantage of not
needing to specify a wavelet basis for decomposition (a choice that can seriously
influence the sparsity of the classical wavelet coefficients).

Also, our simulations showed that increasing the irregularity of the data
locations x does not affect the sparseness of the detail coefficients obtained by

decomposing the signal through any of the linear or adaptive techniques.

3.6.2 Wavelet shrinkage using adaptive lifting

Assume we are in the familiar nonparametric regression setting, and the ob-

servations f are modelled as

fi = g(z;) + &, (3.24)

where the locations z are assumed irregular and fixed, g = {g(2;) };c75 are the
true signal values, to be estimated, and ¢; is identically distributed, indepen-
dent noise assumed to follow a N(0,0?) distribution.

Remember that the wavelet shrinkage/thresholding approach consists in
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three steps: (i) decompose f into a sequence of scaling and detail coefficients,
(ii) shrink/threshold the wavelet coefficients and (iii) invert the wavelet trans-
form, which gives an estimate g of g. A successful classical wavelet shrinkage
approach relies on how efficient the wavelet transform is at sparsely repre-
senting functions. Since our transforms produce sparse sets of details, using
a shrinkage technique is feasible with adaptive lifting. In our shrinkage ap-
proach we shall use an adapted version of the empirical Bayes thresholding
technique of Johnstone and Silverman (2004a,b, 2005), modified to suit the
characteristics of our transforms. Hence we start by presenting this method in
the context of the DWT, as it was initially introduced, and then we will discuss
and present the modifications needed to suit the adaptive lifting transform.

The empirical Bayesian approach to wavelet shrinkage.

The empirical Bayes method relies on the sparsity of the true DW'T wavelet
coefficients corresponding to many classes of functions. This allows for placing

a prior distribution on the true wavelet coefficients, d,, that expresses the

VLR
initial sparsity ‘belief’, which will then be updated by using the information
contained in the observed wavelet coefficients, d;. For each d}, its posterior
distribution is obtained, and an estimate d;‘k can be obtained by taking the
mean or median of its corresponding posterior distribution. Heuristically, this
is equivalent to assuming that the function g is not fixed, finding the distri-
bution function corresponding to the ‘class’ of functions to which g belongs
(based on its noisy observation f), and then taking the mean or median of this
distribution to obtain a representation of g.

Since (true) wavelet coefficients at different levels differ in sparsity, with the
finest levels mostly consisting of zero details, while the coarsest levels mostly
containing bigger coefficients that carry a lot of signal, in their work Johnstone
and Silverman (2004a) carry out thresholding in a scale dependent fashion.

More exactly, the true wavelet coefficients within a level j are modelled
by a prior distribution describing each of them as being zero with probability

m; (to be estimated) or to have come from a heavy-tailed distribution v, with

38



3.6. Sparsity and denoising performance of the adaptive algorithms

probability 1 — m;. So for the true DWT wavelet coefficients at level j, we
assume

&y ~mido + (1 —m5)y, ke {0,...,27 —1}, (3.25)

independent random variables.

As dj = dj ; +ej, With e;, independently distributed as N (0, 0?) we have
djk ~ N(d, 0?), independently conditional on the 5 -

Johnstone and Silverman (2004a) set out the details for obtaining the pos-
terior density of d};, given d; for two choices of v, Laplace and quasi-Cauchy.
In our work we will use a prior mixture involving the quasi-Cauchy density
function. Each of the true wavelet coefficients d; , will then be associated to a
posterior distribution, and an estimate d;k can be obtained by taking the re-
spective posterior mean or median. The DWT transform can then be inverted,
and an estimate for g obtained.

To estimate the probability 7; within each level j, use a marginal maxi-
mum likelihood approach involving the tractable common (marginal) density
of {d;r}x. The probability 7; gives the proportion of zero (true) wavelet co-
efficients at level j, and is high for fine levels, which corresponds to a high
threshold, and low for coarse levels, where a small threshold is used.

Since the noise is assumed Gaussian, it is appropriate to estimate its stan-
dard deviation o by the ‘mad’ of the finest observed details, which are assumed
to be mostly representing the noise.

The empirical Bayesian approach for adaptive lifting.

When the locations z are irregular, using the DWT to decompose f is
no longer appropriate. In what follows we investigate the model obtained by
using the linear or adaptive lifting transforms to decompose the signal. Hence
W f= Wg + We, where W is the matrix associated to the lifting transform.
Equivalently, we have

dj = d; + ey, (326)
where d = {d;}; is the observed detail, d* = {d}}; is the true detail and
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e = {e;}; represents the noise in the wavelet domain.

If one of the linear lifting transforms is used, then 114 depends only on z
and d*, e are the details obtained by applying the same lifting transform on

the sequences g, respectively .

However, if an adaptive transform is used, the matrix W depends on the
structure of f, and Wg no longer represents the details obtained by applying
the same adaptive lifting transform to g, but merely the details obtained by
applying a pre-determined lifting scheme generated by the local structure of
f- The approximation we make here is to assume that the two functions f
and ¢ have similar structures, and therefore consider d* to be the sequence of
true details. The vector e is considered to represent the noise, although it is
not obtained by applying the same adaptive lifting scheme to the initial noise
€. Conditional on the local structure of the initial signal, e can nevertheless
be expressed as a linear combination of the initial noise &, e = We. As the ini-
tial noise components ¢; are assumed to be independent, normally distributed
random variables with zero mean, it follows that e; are normally distributed
with zero mean too.

However, cov(ej, ej) = cov(d _p_, Wjker, 2y Wi wErr), Where ;; is the

(j, k)th entry of the matrix W. Hence
n n

COV(Ej, ejf) = Z Z UNJj,k’uN}jl,kl COV(é‘k, é‘kl). (327)

k=1 k'=1

As the initial noise is uncorrelated with variance o2, we have
n
COV(@j, ejf) = 02 Z '(I)j,lcwj’,ka (328)
k=1

or in short cov(e;, e;) = o?(WW?); . This shows that the errors e are corre-
lated, and different coefficients e; have different variances. From model (3.26)
it follows that the observed details d are also normally distributed and corre-

lated, with the same variance-covariance matrix as the errors.
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3.6. Sparsity and denoising performance of the adaptive algorithms

We now list the issues that appear when applying an empirical Bayesian

procedure to the detail coefficients of (3.26), and our modifications

e In the empirical Bayes approach previously introduced, the observed de-
tail coefficients within a level (here d;) are assumed to be independently
distributed conditional on the true details (d}). This obviously does not
hold in our construction, and as suggested in Jansen et al. (2004), we
will ignore the existing correlations between the observed details. This is
backed up by Johnstone and Silverman (2004a) who ensure that although
ignoring correlations results in loss of information in the estimation pro-
cedure, as long as there is not too much dependence the procedure will

still perform well.

e Note that while in the empirical Bayes procedure for DW'T data the
wavelet coefficients are thresholded/shrunk according to their scale, the
detail coefficients in model (3.26) have an associated scale of a continuous
nature (a scale measure was introduced in section 3.3). We will therefore
construct artificial levels to which we assign the details as a function
of their scale, as suggested by Jansen et al. (2004). More exactly, we
create levels by dividing the sequence of integral lengths {I, }, into
smaller sequences— up to its median, beween its median and its upper
quartile, between its upper quartile and the 87.5th quantile, and so on.
The coeflicients are assigned to their corresponding ‘level’, with the finest
scale coefficients corresponding to the finest artificial level, etc. Making
use of the division into artificial levels, we can estimate the probability
7; for each level by maximum likelihood, and the observed details at the

finest level can be used for estimating o.

e The last problem we need to deal with in order to be able to use an
empirical Bayes technique for thresholding the details d; is the fact
that different details have different variances, as we have seen above—

cov(dj,dj)) = o*(WW?T), i, so var(d;) = o?diag(WW?);, where by
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diag(A); we denote the (j, j)th entry of the matrix A.

To overcome this we will take the natural approach of renormalizing the
data, i.e. the likelihood of the normalized details d;{diag(WW™);}~/?
is given by N (d;{diag(WW?);}~"/2,5?) conditional on the true normal-
ized details d}{diag(WW7);}~'/2 (and assume conditional independence
within each level). Since the true details are modified only through mul-
tiplication by a fixed quantity, the prior of sparsity can now be translated
to the modified details, d}{diag(WWT);}~"/2 ~ mdy+(1—m)y, indepen-
dently for all details that belong to the same artificial level . In this con-
text, o can be estimated by mad(d;{diag(WW7);}~'/2, jsuch that d; €
finest artificial level), and the posterior distribution can be worked out as
usual. The final shrunk/thresholded coefficients are given by the poste-
rior mean/median of the normalized details, multiplied by {diag(WWT);}/2.
The modified detail coefficients are then inverted to obtain the denoised

signal.

We note here that we have also developed procedures to take into account
situations when the initial signal observations are subject to heteroscedastic
noise. Assuming the initial observations variances are known up to proportion-
ality, i.e. var(f;) = o?n?, where 7; is a known proportionality factor and o? is
unknown. After applying the lifting transform, the variances of the detail coef-

2
)

ficients are given by var(d;) = 0", n7w,;. The procedure entirely parallels
the one described above. To estimate o we normalize the wavelet coefficients
by dividing by {}°7, n?w?;}*/* and then use the ‘mad’ of the normalized de-
tails belonging to the first artificial level. After normalizing, thresholding and
un-normalizing, we can invert the transform to form an estimate.

If the variance is heteroscedastic and we do not have any other structural
knowledge about it, then we take an approach similar to that suggested by
Kovac and Silverman (2000) and estimate the variance o; associated to the

detail coefficient d; as follows: identify all detail coefficients within a window
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centered on the z; in the data domain, estimate o; by taking the ‘mad’ of those
identified coefficients that belong to the finest artificial level and threshold. We

can then invert the transform and obtain an estimate for g

Remark. The way the correlation structure builds in the transformed
data is more obviously revealed by inspecting how the prediction and update
steps build upon each other. Again, since the structure of the adaptive lifting
transforms is dependent on the input function, f, the following results are

obtained by conditioning on the local structure of the signal.
The first step of the lifting transform (3.2) gives
d]n = Cn,jn, — Z azncn,ia
i€l
where ¢, ; = f; are independent random variables, distributed as ¢, ; ~ N(g(z;), 0?).

It follows that d;, is itself a normally distributed random variable, with

variance given by

var(d;,) = o {1 + Z(aw} (3.29)

icl,
and cov(cp,d;,) = —alro?, for all i € I, (i # jn), cov(cns,dj,) =0, for i ¢ I,

(i # jn) and cov(cn;,d;,) = o2, for i = j,.

From the update step (3.4), ¢,—1,; = ¢, +b}d;,, forall i € I, (¢ # j,,), hence

var(c,_1,;) = var(cn;) + 2b cov(cn;, d;, ) + (b)? var(d;, ), so var(c,_1;) = 0 —

2a2b70? + (bF)? var(d;,), for all i € I, (i # jn). Also, from (3.4), ¢u1; = ¢ny,
for all ¢ ¢ I,, (i # jn), hence var(cp_1,) = o

From the update step it follows for 4,5 € I, (i, # jn)
cov(Cn_1,, Cn1,4) = i j0° + (—ai'b} — a;-‘b?)az + b}'b} var(d;,), (3.30)
forieI,,j¢ I, (i,j # jn) we have

COV(Cn_l,Z’, Cn—l,j) = COV(Cn’,’ + b?djn, Cn,j) =0 (331)
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and for all i, ¢ I (i,§ # ju),
COV(Cn_l’i, Cn—l,j) = COV(Cn,Z’, Cn,j) =0. (332)

Hence the update step induces correlations between the scaling coefficients at
the next coarser level (n — 1), and also between the newly generated detail
and (some of) the scaling coefficients at the upper level. As the algorithm
proceeds with formula (3.2) for the next coarser level n — 1, we see that in
order to obtain the variance of the next detail coefficient we need to use the
correlations between the scaling coefficients obtained above, so the correlations
propagate from level to level.

However, although such an approach unveils the way the correlations are
built through the transform, at the same time it hides an obvious understand-
ing of the normality of the coarse and detail coefficients. This is due to the
recursiveness in computing the scaling and wavelet coefficients. By combining
the update relations ¢,_1; = ¢,; for i € S,_1 \ I, and ¢,_1; = ¢,; + b} d;, for
i € I, with the definition of the detail d;, = ¢, ;, — ) .. 1, @; Cri, 1t follows that
for any 7, all ¢,_1,; and d;, can be written as linear combinations of {c, x }kes, -
Recursively, this leads to the fact that c¢,_;; and d;, can be expressed as lin-
ear combinations of the initial ¢, = fx with & € S;,, which are independent,
normally distributed random variables, so the normality of the coefficients ob-
tained by the lifting transform is now apparent. This is just another way of

obtaining the matrix representation of the lifting transform.

3.6.3 Denoising performance of our adaptive algorithms

As for the sparsity results, here we will only synthesize the main results from
our simulation study in which we tested the denoising capacity of our methods.
The next chapter will provide full details on setting the conditions of the study
and on the comparisons performed.

We investigated the denoising capacity of our adaptive lifting transforms,
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AP and AN, as well as the linear lifting transforms LP, QP and CP, all of
them with neighbourhoods of up to size 4. Various degrees of irregularity
in the locations have been considered (see section 4.1), together with various
degrees of noise level (see section 4.3 for details). Additionally, we compared
our methods with the wavelet technique developed by Kovac and Silverman
(2000) (we will refer to it as KS) which is able to work on irregular data, as
well as with Locfit (Loader (1997, 1999)), the smoothing spline function in S-
Plus (smooth.spline()) and the denoising algorithm of Comte and Rozenholc
(2004).

We found that our adaptive methods perform very well. For signals that
present a lot of discontinuities, AN1 works extremely well, and it outperforms
all four competitors. For smoother signals, the best denoising performance is
obtained by using AP with neighbourhoods of size 2, regardless their configura-
tion. With the exception of one smoother tested function, our AP outperforms
all other methods, and the competitor coming closest is generally KS.

The results for our methods display a high degree of homogeneity within

the level of grid irregularity for each noise level.

3.7 Conclusions and further work

In this chapter we introduced two novel nonparametric regression methods
based on introducing adaptivity into the ‘one coefficient at a time’ lifting al-
gorithm of Jansen et al. (2001, 2004). The proposed methods have the flexi-
bility of handling any type of location irregularity and signal length, as well
as naturally working on multiple observations at the same location. Simula-
tion results (detailed in the next chapter) show that our proposed methods
are very competitive when compared to established wavelet and non-wavelet
techniques designed to work on irregular data. By locally building wavelet
functions adapted to the signal smoothness, our proposed adaptive methods

have the benefit of not having to deal with the (possibly) subjective choice of
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what wavelet to use, encountered in the classical wavelet approaches.

Several aspects can be studied in further work, such as extending the pro-
posed adaptive methods to work on data of higher dimension, investigate pos-
sible ways of bringing our transforms closer to orthogonality and devise a way
of shrinking the wavelet coefficients that could deal with the coefficient cor-
relations. A challenge would be to further study the statistical properties of

adaptive lifting.
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Chapter 4

Adaptive Lifting: simulations

and results

In this chapter we describe the details of the simulation study through which
we investigated the behaviour of our adaptive lifting transforms, as well as
that of the lifting transforms using linear, quadratic and cubic prediction. All
these transforms are based upon the lifting scheme removing ‘one coefficient
at a time’ and have been introduced in the previous chapter.

This chapter discusses and interprets the obtained results. The conclusions
we reach will substantiate the various claims made in the previous chapter
regarding the performance of our adaptive lifting algorithms.

The presentation is organized as follows: first we introduce the test func-
tions that we will use, then move onto investigating the sparsity properties
of our transforms and finally we establish the denoising performance of our
algorithms.

For decomposing signals we will use our adaptive lifting transforms, Adapt-
Pred (AP) and AdaptNeigh (AN), and also the linear lifting algorithms with
linear, quadratic and respectively cubic prediction (LP, QP, respectively CP).
We shall investigate their behaviour when using appropriate neighbourhoods
of sizes up to 4, in both configurations, nearest (N) or symmetrical (S) neigh-

bours. The methods QP, CP with their corresponding number of neighbours
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needed to prevent from fitting degenerate curves, and AN with more than two
neighbours did not do very well (see section 3.5.2), so we will not present them
in our report.

In the sections that analyse the sparsity and denoising performance, we will
compare our algorithms with competitive methods, wavelet and non-wavelet
based, which are suitable for our type of observations. At that stage, we will
also give a brief presentation of these ‘competitors’.

We will end the chapter by presenting a real-life example.

4.1 Test functions: construction and sampling

Test functions. The behaviour of our adaptive transforms, as well as that
of the ‘competitor’ methods, will be tested on the test functions Blocks,
Bumps, HeaviSine and Doppler introduced by Donoho and Johnstone
(1994), which attempt to model various signals that arise in practice,
and on the Ppoly function introduced by Nason and Silverman (1994)—
see figure 4.1. Blocks is a piecewise constant function with jumps of var-
ious heights, representative of functions that appear in imaging. Bumps
is constructed as a sum of ‘bumps’ located at the same points as the
jumps of Blocks, of varying heights and widths— such signals appear,
for instance, in nuclear magnetic resonance (NMR) spectroscopy. Heav-
1Sine is a sinusoid of period 1 with two jumps, Doppler is a signal with
variable (decreasing) frequency and Ppoly is a piecewise polynomial with

a jump.

Grid locations. Let us now construct the locations at which these functions
will be sampled. Start with a regular grid of length n = 256 that spans
the interval [0,1], and generate irregularities in the distribution of loca-
tions by gradually ‘jittering’ this initial (regular) grid. Throughout our
study we shall use grids with three degrees of irregularity, constructed

as follows.
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Figure 4.1: Bumps, Doppler, HeaviSine and Ppoly signals sampled at 256 ir-
regular locations.

Start with the initial regular locations, and shift each location with
a random value generated from a uniform distribution on the interval
(—d/(n —1),d/(n —1)). The degree of grid irregularity is dictated by
the magnitude of d. We used three choices d; = 0.01,dy, = 0.1 and
ds = 1, each of them corresponding to higher location irregularity. This
construction ensures a gradual departure from regularity, and therefore
we will have a scale of comparability with techniques that only work on

regular observations.

We now have the test signals (say g) constructed as described above, which
we shall sample at n = 256 locations, . The sampled function values are the
‘true’ values and correspond to the notation g of the previous chapters.

Having constructed the (true) signals and established in the previous chap-

ter how to decompose them, we are now ready to start investigating the sparsity
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of the wavelet representations obtained through our transforms.

4.2 Sparsity investigation

For evaluating how successful our constructions are at sparsely representing
functions, we will consider the test functions introduced in the previous sec-
tion, sampled both at regular and irregular locations. Sampling on regular
grids facilitates the comparison with classical wavelet methods. We shall use
the three degrees of jitter previously introduced to check if our adaptive repre-
sentations are affected by the increasing degree of irregularity in the grid. As

a diagnostic tool, we will use a sparsity plot, constructed as follows.

4.2.1 Sparsity plot construction

First fully decompose (with the chosen lifting algorithm) the test function (g)
down to two scaling coefficients, all the other coefficients being transformed
into details, then order the details in a decreasing sequence as a function of
the absolute value of their magnitude.

Invert the wavelet transform first using only the information in the two
scaling coefficients (i.e. consider all the details equal to zero), and then grad-
ually introduce detail coefficients, one by one, starting from the largest one in
absolute value, inverting the lifting algorithm each time.

Denote by 7 the number of wavelet coefficients that are included when
inverting the transform. At first 4 = 0 (when only the two scaling coefficients
participate in the reconstruction) and we obtain the reconstructed signal §(0),
followed by i = 1 (the two scaling coefficients and the largest detail in absolute
value are used for inverting the transform), corresponding to §(1), then ¢ = 2
and so on up to i = n — 2, which provides perfect reconstruction of the initial
signal, since all the scaling and detail coefficients are used in the inversion
process, g(n —2) = g.

Through this construction we are able to identify how many (large) wavelet
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coefficients are needed to provide a reconstruction that virtually coincides with
the test signal— the smaller their number, the sparser the wavelet decompo-
sition.

To obtain an average behaviour of our methods, we perform this procedure
over K = 50 data sets (gj,gj), j€1l,...,K, within each jitter level and each
test function. We shall measure the overall degree of closeness between the
reconstructed function using ¢ detail coefficients and the true function, by the

integrated squared error

K n
ISE(i) = K'Y ) "(41(6) — g1)*. (4.1)
j=1 k=1

For each jitter level and test function, the sparsity plot consists in the curve
obtained by making the correspondence between the number of (large) details
(7) included in the inverse transform and the overall amount of error in the
reconstructed signals (ISE(7)), see for instance figure 4.6.

As previously mentioned, we will also employ the same procedure, but
using classical wavelets. More exactly, first take a regular grid and sample
the test functions on it. Then fully decompose the signal using the DWT
with a Daubechies wavelet with a specified number of vanishing moments, and
arrange the wavelet coefficients in a decreasing sequence according to their
absolute size. Sequentially invert the DWT as explained above, starting with
the largest wavelet coefficient in absolute value, and then gradually introducing
the detail of the next size down.

For our lifting algorithms, for each combination of test signal and level of
jitter, we repeated this procedure several times. The source of variation in
this case comes from the grid irregularity. In the classical wavelet approach
however, the grid is fixed through its regularity, so there is no point in repeating
the same procedure several times. Consequently, the curve obtained in the
sparsity plot for classical wavelets is not an average curve.

At a first thought it might seem that the integrated squared error should
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decrease with increasing ¢ since we bring in more information. This is indeed
the case when using classical orthogonal bases of wavelets— the orthonormality
of the wavelet basis ensures the norm equivalence between the (reconstructed)
signal and its wavelet coefficients. Hence the more coefficients are brought
into the description, the smaller the error is. As we have seen in the previous
chapter, second generation wavelet bases are not guaranteed to be stable bases,
and consequently there is no norm equivalence between the signal and its
wavelet coefficients. Since the reconstruction error in the signal cannot be
tightly bound by the error in the wavelet coefficients, there is no guarantee
that using say 15 largest coefficients is surely an improvement over using 12
largest coefficients. This explains the vague ‘wiggliness’ that appears in the

sparsity curves associated to our transforms.

4.2.2 Sparsity results

Analysing the sparsity plots corresponding to each type of signal, jitter and
lifting ‘one coefficient at a time’ algorithm, we conclude that the adaptive
transforms produce sparser results than the algorithms using a fixed type of
prediction (as an example, refer to figure 4.2). We recommend working with
techniques that do not use large neighbourhoods, due to stability issues. There-
fore our results and figures will mostly concentrate on presenting AP1S, AP2N

and ANT.
Out of the linear lifting algorithms, LP1S, LP2N generally give the best

compression.

Our adaptive techniques are also competitive with those using classical
wavelet bases on regular grids (see figures 4.5 and 4.6), with the added ben-
efit that they can work on any type of observations and do not require the
specification of a certain wavelet, which can seriously affect the sparsity of the

details.

The irregularity in the locations does not dramatically affect the sparsity
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of the outcome, as it can be noticed for instance in figures 4.3, 4.4.

The type of signal however does influence the sparsity of its wavelet co-
efficients, and zero reconstruction error is achieved much faster for smoother
signals than for signals that present many discontinuities— see for example
the difference in the ‘drop’ rate in figure 4.2 between HeaviSine and Blocks.

We have also decomposed our test signals sampled on irregular grids using
the method introduced by Kovac and Silverman (2000), suitable for any type
of signals (see section 4.3 for its complete description). We will refer to this
method as KS.

KS works by first performing an interpolation of the original data onto
a regular grid, and we then use the same procedure as in the case of clas-
sical wavelets on regular grids for assessing sparsity. However, the signal is
reconstructed at the new regular locations, and the quality of interpolation
influences the way it compares to the initial (true) signal. If the interpolated
function values are not a good approximation of the true values, then the
sparsity curve will not tend to zero, even when a reconstruction using all de-
tails is performed. The lack of smoothness of the signal will accentuate this
phenomenon— compare for example figure 4.5 to figure 4.6.

Our analysis leads us to conclude that
e The adaptive lifting algorithms produce sparse wavelet representations.

e Qur proposed methods are competitive when compared to classical wavelet-
based techniques, and have the benefit of not having to deal with a pre-

choice of wavelet.

e The wavelet coefficients constructed adaptively are sparser than the ones

obtained by a non-adaptive lifting algorithm.

e Sparsity of the wavelet coefficients is not adversely affected by an increase

in grid irregularity.
Since sparsity of the wavelet coefficients is an essential ingredient in wavelet
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Figure 4.2: Top: Comparison between LP1S (dotted), AP1F (solid) and AN1
(dashed) on HeaviSine sampled on an irregular grid (d = 0.01). Bottom:
Comparison between LP1S (solid), AP2N (dot-dashed) and AN1 (dashed) on
Blocks sampled on an irregular grid (d = 1).
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Figure 4.3: Top: Sparsity plot for Doppler signal using AP2N over the three
different jitter values: d; (dotted); dy (dot-dashed); d3 (dashed). Bottom:

Blowup of the above figure.
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Figure 4.4: Top: Sparsity plot for Blocks signal using AN1 over the three
different, jitter values: d; (dotted); ds (dot-dashed); d3 (dashed). Bottom:
Blowup of the above figure.
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Figure 4.5: Top: Comparison between AP2N (solid), AN1 (dashed) and KS
using D5 wavelets (sparse dotted) on Ppoly sampled on an irregular grid (d =
0.1). Regular grid for Daubechies’ Extremal Phase wavelets: best sparsity
attained with D5 wavelets (dotted), worst sparsity was Haar wavelets (dot
dashed). Bottom: Blowup of the above figure.
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Figure 4.6: Comparison between AP1S (solid), AN1 (dashed) and KS using
D2 wavelets (sparse dotted) on Bumps sampled on an irregular grid (d = 0.01).
Regular grid for Daubechies’ Extremal Phase wavelets: best sparsity attained
with D2 wavelets (dotted), worst sparsity was D10 wavelets (dot dashed).

shrinkage, we can now proceed onto investigating the denoising performance

of our adaptive transforms.

4.3 Denoising performance

While the ‘true’ signals are all we need for investigating the sparsity of our
transforms, in order to assess the denoising performance, we shall first con-
struct ‘noisy’ versions of the test signals.

Noisy versions of the test functions. In what follows we describe our
construction for obtaining noisy versions of the signals introduced in section
4.1. To ensure comparability with other studies, such as the one in Barber and
Nason (2004), the signal shall first be normalized as follows.

The new ‘true’ signal is given by (z;, gi//var(g));cin- For ease of notation,
we shall denote §; = g;/,/var(g) for all i € 1, n.

Then we generate three levels of homogeneous noise, ; ~ N(0,0?), by
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Figure 4.7: Plot showing on the left the normalized Ppoly test function, sam-
pled at 256 irregular locations (d = 0.1), and its noisy version with SNR=5.
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Figure 4.8: Plot showing on the left the normalized Bumps test function, sam-
pled at 256 irregular locations (d = 0.01), and its noisy version with SNR=7.

setting the signal-to-noise ratio SNR = , /var(g)/o. to take values 3, 5 and 7

(where by construction var(g) = 1).

The noise obtained as such will be added onto the original signal, creating

a noisy version of it (z;, f;);c1;, where f; = g; + &;.

Figures 4.7 and 4.8 show noisy versions of the test functions, corresponding
to SNR=5, respectively SNR=7. The lower the SNR, the higher the noise level

is, and the more difficult the task of denoising will be.
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4.3.1 Comparisons performed

Once a decision has been made upon the lifting transform to be used for
decomposing the signal (s, fi);c77, we shall employ the modified version of
the empirical Bayesian thresholding procedure with posterior median to try
and filter the noise out (see section 3.6.2 of previous chapter for details on the
method and its adaptation to our transform). Simulations in Nunes and Nason
(2005) have shown that an exact choice of resolution level in the adaptive lifting
algorithms using the modified empirical Bayes thresholding procedure is not
essential and a decomposition carried to a low enough level should provide good
results. Therefore with the adaptive lifting algorithms a full decomposition of
the signal is carried out, and the obtained n — 2 wavelet coefficients are then
subjected to thresholding.

In order to quantify the performance of the used lifting method, for each
grid type and each level of noise we performed the denoising procedure K = 100
times, i.e. for K grids of size n pertaining to location jitter d;, we sample a
test function to obtain g’“, and then add noise at a set level, to generate noisy
observations f“ Then decompose the noisy signal i’“ , threshold the obtained
detail coefficients and obtain an estimate of the true function, ék A measure
of the overall accuracy of the estimates is given by the average mean square

error,

S

AMSE = (nK)™ 37 S (3 - g, (4.2)

k=1 i=1
Additionally, we tested and compared our methods against Locfit of Loader
(1997, 1999), the smoothing spline function implemented in S-Plus, smooth.spline()
(Green and Silverman (1994)), the Comte-Rozenholc method (Comte and
Rozenholc (2004)) and the Kovac-Silverman wavelet procedure (Kovac and
Silverman (2000)).

Let us now briefly discuss the methods we chose to compare with ours.

Locfit is a local regression technique capable of working on irregularly spaced
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4.3. Denoising performance

data with multiple observations at the same location. The unknown func-
tion is assumed to be smooth (Loader (1997), page 1), and we will see
this assumption reflected in the results obtained when denoising curves
with severe jumps using Locfit. A polynomial model is fitted within
a sliding window along the signal, and a weighted least squares crite-
rion is used for locally estimating the curve. The window bandwidth
acts as a smoothing parameter— too large, and the estimate will be
oversmooth, too narrow and the estimate will preserve too many of the
original (noisy) features. In order to optimise Locfit’s behaviour, we will
choose the window bandwidth by cross-validation. In tables 4.1-4.3 this
procedure appears under the name of Locfit. The code can be found
at http://cm.bell-labs.com/stat/project/locfit and can be run
under S-Plus.

smooth.spline() function of S-Plus fits a cubic spline (i.e. a piecewise cu-
bic polynomial with continuous second derivative, Green and Silverman
(1994)) to the data, and is also able to work on irregular grids and multi-
ple observations. The spline function is estimated by minimizing a crite-
rion that involves both the variance and the bias of the estimate (hence
it is similar to the mean square error), but in unequal proportions—
minimize Y, (fi — §(z;))?+ A [ §"(z)* dz. The parameter A sets the bal-
ance between the fidelity to the data and the curve smoothness, so it is
equivalent to the window bandwidth in the case of local regression. In
our simulations we choose A by cross-validation to ensure an optimal fit
of the estimate to the data. This procedure is labelled SSCV in tables
4.1-4.3.

The Comte-Rozenholc method (CR) is a data-driven algorithm that aims to
estimate the true (unknown) regression function g by fitting to the data
piecewise standard and trigonometric polynomials. Their procedure is

capable to handle irregularly spaced locations and multiple observations,
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and it (automatically) searches for the model (i.e. number and position
of the knots, polynomial degrees, up to a maximum of 74, associated to
each interval and type of polynomial) that produces an optimal estimator
for g, in a sense to be specified next. For each model, an estimator of
g is computed by minimizing the usual least squares criterion, over all
functions in the class of piecewise polynomials defined by Comte and
Rozenholc (2004). Out of the obtained collection of estimators, one
will be chosen based on a criterion that realizes a trade-off between the
bias and variance terms (see Comte and Rozenholc (2004) for details).
The Matlab code for this method has been kindly supplied by Yves
Rozenholc, and in our simulations we allowed for searches up to the
maximal polynomial degree, 74. In tables 4.1-4.3 the results obtained

by using this method appear on the row labelled CR.

The Kovac-Silverman procedure (KS) is a wavelet technique able to work on
irregular grids, so it is suitable for comparison with our adaptive lifting
methods. However, for data with multiple observations at a single lo-
cation, the user must decide how to handle them. A description of this
method can be found in section 3.2 of the previous chapter. It is impor-
tant to note at this point that KS produces function estimates at interpo-
lated regularly spaced locations, rather than at the original irregular loca-
tions as our adaptive methods do. Hence the AMSE values for KS are cal-
culated on the regular interpolated grid, and therefore they are only ap-
proximately comparable to ours, which are computed at the initial (irreg-
ular) data points. With KS, as with all classical wavelet based methods,
several choices have to be made: wavelet family and wavelet smoothness,
primary resolution level used in the wavelet decomposition and finally,
the denoising technique. For a comprehensive study, we investigated the
members of the Daubechies Extremal Phase wavelet family with vanish-

ing moments from one to ten (D1,...,D10). Furthermore, since Kovac
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and Silverman (2000) recommend using SureShrink for thresholding the
wavelet coefficients, and since empirical Bayesian thresholding (imple-
mented in EbayesThresh, Johnstone and Silverman (2004b)) is a more
recent methodology that proved to have good theoretical and practical
properties, we tested both techniques: EbayesThresh with posterior me-
dian thresholding and SureShrink. Johnstone and Silverman (2005) com-
ment that EbayesThresh is largely insensitive to the choice of primary
level, as long as this is low enough, so we fully decomposed the signal
when using it. When using SureShrink, we decomposed the noisy func-
tion using all possible primary resolution levels. The software that imple-
ments the KS procedure is available in the R-package WaveThresh (Na-

son (1998)), available at http://www.stats.bris.ac.uk/~wavethresh.

Note that unlike KS, our adaptive algorithms automatically choose the
wavelet to use, so this choice no longer rests with the user. The choices that
bear similarity to the classical wavelet denoising methods are the primary
resolution level, and of course that of thresholding method. Due to the char-
acteristics of EbayesThresh and of our adaptive lifting, as mentioned before
we will fully decompose the signals down to two scaling coefficients when us-
ing our method. Our algorithms are available in the R-package Adlift, at

http://www.stats.bris.ac.uk/~maman/computerstuff/Adlift.html.

4.3.2 Simulation results on Kovac-Silverman method

Tables 4.1-4.3 report the AMSE values (x10?) obtained for our linear and
adaptive lifting methods that do not use large neighbourhoods, and also for
the ‘competitor’ methods described in the previous section.

However, for the KS method, we only report the best results obtained for
certain (wavelet, primary resolution level, thresholding technique) combina-
tions. More exactly, the AMSE values are reported for the following choices

Blocks: (D1, 2, SureShrink), Bumps: (D2, 0, EbayesThresh), HeaviSine: (D4,
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4, SureShrink), Doppler: (D4, 5, SureShrink) and Ppoly: (D5, 4, SureShrink).
It is important to realise though that in practice we would not know which
combination is best, and the choice can seriously influence the final perfor-
mance of the estimator (so, in practice the KS results would be somewhat
WOorse).

In order to assess the combination (wavelet, primary resolution level, thresh-
olding technique) that produces the best estimates using KS, we carried out
a separate simulation study: for each test function, each wavelet (D1,...,D10)
and each primary resolution level for SureShrink, or maximum resolution level
for EbayesThresh, we simulated data sets of length n = 256 on the three types
of irregularly spaced locations (corresponding to jitters d;—ds) with three noise
levels (corresponding to SNR 3, 5 and 7). For full details on the simulation
study for KS, the reader can refer to the technical report accompanying Nunes
et al. (2004).

Simulations showed a high degree of variation in estimation accuracy across
the wavelet smoothness and primary resolution when using SureShrink. With
EbayesThresh the results are much more homogeneous across wavelets, but the
performance is poorer than SureShrink on all test signals except for Bumps.

We conclude that

e For Blocks signal, SureShrink with Haar wavelet (D1) and primary levels
2, 3 and 4 give the best results. The wavelet smoothness appears to

influence more the estimation accuracy than the primary level.

e For Bumps, EbayesThresh with any wavelet D1 up to D4 give best
results, and the AMSE values are generally quite homogeneous across

wavelet smoothness.

e For HeaviSine test function, more combinations become available with
decreasing the noise level. However, for all SNR’s, SureShrink using any

wavelet D3 up to D10 with primary resolution level 4 are good choices.
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Table 4.1: AMSE (x10%) simulation results for test signals with SNR=3 with
three levels of jitter, dy, for various denoising methods described in the text.

Blocks

Bumps

HeaviSine

Doppler

Ppoly

Method

di

da

ds

dy

da

ds

dy

da

ds

dy

dy

ds

dy

dy

LP1S

72

71

68

81

80

73

20

20

21

o4

93

52

16

16

18

LP2N

70

73

67

84

83

73

20

20

22

95

o6

51

16

16

17

AP1S

72

68

29

7

7

62

20

20

23

92

o0

48

16

17

18

AP2N

69

70

99

78

75

64

21

21

22

93

52

48

15

16

17

AP3N

69

68

68

76

74

73

46

44

41

64

65

61

42

39

36

AN1

95

o4

52

66

67

61

36

39

37

61

61

99

38

33

32

Locfit

73

72

64

110

108

101

11

11

11

o8

o8

o4

21

20

19

SSCV

74

74

67

307

315

250

12

11

12

61

60

93

20

20

19

KS

79

78

87

179

181

259

13

12

15

o1

52

o7

18

17

18

CR

119 119 133

332

313

284

25

25

25

155 155 148

13

13

13

Table 4.2: AMSE (x10%) simulation results for test signals with SNR=5 with
three levels of jitter, dy, for various denoising methods described in the text.

Blocks

Bumps

HeaviSine

Doppler

Ppoly

Method

dy

da

ds

dy

da

ds

dy

da

ds

dy

da

ds

dy

da

ds

LP1S

24

25

22

31

28

27

10

10

10

23

23

23

6

6

7

LP2N

23

23

22

30

30

27

10

10

11

23

23

22

6

6

6

AP1S

22

23

20

30

29

23

10

10

10

22

22

21

6

6

7

AP2N

23

23

20

30

29

23

10

10

11

22

21

21

6

6

7

AP3N

27

27

26

30

30

29

18

18

16

26

26

26

16

15

14

AN1

19

20

18

26

26

24

15

16

16

25

24

24

13

13

12

Locfit

35

35

34

40

40

39

7

7

7

25

26

25

12

12

11

SSCV

51

ol

46

277 285 227

7

7

7

37

37

30

11

12

11

KS

52

52

29

130 134 213

8

7

8

29

28

33

9

9

10

CR

85

85

101

288 272 247

23

23 23

136 137 133

11

11

12

e On Doppler, SureShrink with wavelets D4 and D5, both with primary res-

olution levels 4 and 5 provide good results across all SNR’s. On SNR=7

more choices are available.

e On Ppoly, the best combination (wavelet, primary level) changes within

SureShrink with the noise level, and a compromise is D5 with primary

resolution 4.
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Table 4.3: AMSE (x10%) simulation results for test signals with SNR=7 with
three levels of jitter, dy, for various denoising methods described in the text.

Blocks Bumps HeaviSine Doppler Ppoly
Method | dy dy d3| di do d3|dy do ds| di dy ds|dy dy ds
LP1S |11 11 11| 15 15 14| 6 6 6| 12 12 13| 3 3 3
LP2N |11 11 10| 16 15 13| 6 6 6| 13 12 12| 3 3 3
AP1S |10 10 10| 15 14 12| 6 6 6] 12 12 11| 3 3 4
AP2N |11 10 10| 15 14 12| 6 6 6] 12 12 12| 3 3 4
AP3N |14 14 14| 16 16 16|10 10 10| 14 14 14| 8 8 7
AN1 |10 10 9| 14 14 13| 9 9 8| 14 14 13| 7 7 6
Locfit |20 20 19| 21 20 20| 5 5 5| 13 13 16| 9 9 8
SSCV |44 44 391269 273 220 5 5 5| 30 30 23| 8 8 8
KS|45 45 52119 122 19| 6 6 5| 22 22 25| 5 5 6
CR |78 79 92280 269 23022 22 22132 130 128 |11 11 11

4.3.3 Simulation results and comparisons for adaptive
lifting

Let us now carefully analyse tables 4.1-4.3. The simulation results indicate

that

e Our adaptive methods perform very well, with AN1 being the best choice
for signals presenting sharper discontinuities, such as Blocks and Bumps,
while AP methods with 2 neighbours are suitable for smoother signals,

such as the test functions HeaviSine, Doppler and Ppoly.

e The irregularity in locations does not influence the denoising performance
of our methods. With decreasing the noise level though, of course we

obtain better estimates of the true function.

e On the more discontinuous test functions, Blocks and Bumps, AN1 out-
performs all four competitors across all noise and irregularity levels. Loc-
fit comes closest to AN1 and its behaviour gets better with decreasing

the noise level, but it still underperforms when compared to AN1.

e On the smoother HeaviSine, our adaptive method (AP1S/AP2N) is out-
performed by all three competitors except for CR for SNR 3 and 5, while
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4.3. Denoising performance

on SNR=7 all methods have similar denoising performances, except for

CR which underperforms all of them.

e For Doppler, AP1S, AP2N display better denoising capability than their
competitors, with KS being the only method that approaches our results

at SNR=3, while for SNR’s 5 and 7, Locfit comes closest to it.

e Finally, on Ppoly, our adaptive method (AP with neighbourhood of size
2) gives better results than all its competitors, and KS comes closest to

it. Only for SNR=3, CR outperforms our adaptive method.

It would be now useful to visualise the differences in the denoised signals
from figures 4.7 and 4.8, when employing the above methods. Refer now
to figures 4.9 and 4.10. For Ppoly, the estimated curve obtained by using
our adaptive method AP1S, corresponds to a mean square error (MSE) of 3,
considerably lower than than the MSE for the other estimated curves (12-13).
Note that our estimate picks well the location and magnitude of the jump, as
well as the true function’s behaviour immediately after it. Some small artifacts
however, are displayed along the curve. Visually, amongst the competitors,
the closest to the true curve is the one estimated using KS, but none of them
accurately picks the steepness of the discontinuity. In figure 4.10, we notice
that Bumps is a much more difficult signal to denoise due to its discontinuities.
In terms of the MSE, AN1 provides best results (12), followed by Locfit (17).
The estimate obtained by smooth.spline is worst— note the inaccuracies in
the estimated height of peaks and number. KS also gets some of the peak
heights wrong, and it seems completely unable to smooth the areas between

them.

4.3.4 Comparison on a modified version of HeaviSine

Delouille et al. (2004) perform a comparison between the lifting methods intro-

duced in their paper, and the method of Antoniadis and Fan (2001) (to which
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Figure 4.9: Denoised versions of the noisy Ppoly signal shown in figure 4.7. Top
left: estimated curve obtained using AP1S and EbayesThresh with posterior
median thresholding, top right: KS estimate using Daubechies’ D5 wavelet, 4
primary resolution levels and SureShrink. Bottom left: estimated curve ob-
tained with smoothing spline with cross-validated smoothing parameter, bot-
tom right: denoised curve using Locfit with cross-validated window bandwidth.
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Signal value
3
1

Signal value
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Figure 4.10: Denoised versions of the noisy Bumps signal shown in figure
4.8. Top left: estimated curve obtained using AN1 and EbayesThresh with
posterior median thresholding, top right: KS estimate using Daubechies’ D2
wavelet, 0 primary resolution levels and EbayesThresh. Bottom left: estimated
curve obtained with smoothing spline with cross-validated smoothing param-
eter, bottom right: denoised curve using Locfit with cross-validated window
bandwidth.
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Table 4.4: Results of the Simulation Study, n = 100, SNR=4. ANI1 result
computed here, all other results as computed by Delouille et al. (2004). First
row: square root of median MSE value; Second row: interval shows square root
of 1st and 3rd quartiles of the MSE results over 500 simulations. All results
x103.

Delouille et al.
AN1 With Update | No update | ANTO/FAN KS SUPSMO

588 610 792 819 775 706
[517,654] | [526,675] | [661,989] | [759,875] | [688,856] | [629,807]

they refer as ANTO/FAN), KS and the super smoother of Friedman (1984)
(SUPSMO). The test function used was a modified version of HeaviSine with
steeper jumps. The z; locations follow a normal distribution with mean 0.5
and standard deviation 0.2, and the noise level was set with SNR=4.

We performed 100 simulations on signals constructed as above, using our
denoising technique based on decomposing the signal with AN1, and we report
the resulting AMSE values in table 4.4. Our method provides the best result,
also slightly better than the lifting procedure proposed by Delouille et al.
(2004).

It should not come as a surprise that while AN1 underperforms KS for
the usual HeaviSine test signal, it performs better than KS for this modified
version of HeaviSine, since the discontinuities in this modified signal version
are much steeper, and therefore a behaviour similar to that on Blocks or Bumps

was to be expected.

4.3.5 Real data example: the motorcycle experiment

We have already mentioned the data from Silverman (1985), the outcome of an
experiment for assessing efficacy of crash helmets. It consists of readings taken
through time of an accelerometer that monitored the head of a motorcyclist
in a simulated motorcycle crash. The time points are irregularly spaced, there
are multiple observations corresponding to some time locations and the obser-

vations are subject to error. Figure 4.11 shows the observations; note that the

120



4.3. Denoising performance

Acceleration
Acceleration

Acceleration
Acceleration

10 20 30 40 50 10 20 30 40 50

Time (ms) Time (ms)

Figure 4.11: Motorcycle crash data and denoised estimates. In each case the
small circles show the data and the solid line denotes the estimate. Top left:
CR estimate with rmax=74, lmax=data length, Imin=1, sigma2 and Dmax au-
tomatically chosen; Top right: smoothing spline with cross-validated smooth-
ing parameter; Bottom left: KS estimate, multiple y-values are averaged re-
sulting in 94 points input to KS, D6 Daubechies’ wavelet, primary resolution
of 3 and SureShrink thresholding; Bottom right: adaptive lifting using AP1S
with heteroscedastic variance computation (see section 3.6.2), EbayesThresh
posterior median thresholding.

variance of the data appears to be heterogeneous, hence it will be treated as
such.

Our estimate shows most similarities to the ones produced using smooth.spline
and Locfit with cross validated smoothing parameters (we do not show here the
curve obtained by using Locfit, as it is virtually identical to the one generated
by the smoothing spline approach— see figure 3.1). However, our estimate does
not have the same degree of smoothness (as the basis functions are linear) and
the peak is estimated to occur at a slightly later time (some estimates pro-
duced in Kovac (1998) display the same feature). Also, our curve has a ‘glitch’

near the bottom, which we do not believe to be a true feature— the same
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kind of behaviour can be noticed in denoising Ppoly, see figure 4.9. The KS
estimate shown here is very noisy, as we used the basic algorithm with no
allowance for the changing variance. Kovac (1998) first analyses the data for
presence of outliers, which next get removed, and consequently gets a much
better looking estimate. Completely contrasting, the CR method estimates a
constant behaviour after reaching the peak, estimated to happen at an earlier
time than the other methods indicate.

Since the curve we try to estimate describes acceleration in a physical
process, we believe that most likely it is a smooth curve, so it might be that
Locfit and the smoothing spline approach produce the best results here. Our
adaptive lifting estimate does a reasonable job in this situation, but its main

potential lies in denoising signals with sharp jumps.

4.4 Conclusions

In this chapter we detailed the simulation study through which we investigated
the performance of the adaptive lifting algorithms we proposed in the previous
chapter. We evaluated the sparsity of their corresponding wavelet decomposi-
tions and how successful our algorithms are at denoising signals with various
degrees of smoothness. In this process, we identified which methods are ap-
propriate for analysing functions with various smoothness degrees, and then
compared their performances against wavelet and non-wavelet methods able
to work on irregular data. The simulation results showed that our proposed
techniques display a competitive behaviour and many times they outperform

their competitors.
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Chapter 5

Transmembrane segment

prediction

In this chapter we shall examine the problem of predicting hydrophobic seg-
ments along the sequence of a transmembrane protein, when no information
on the protein is available, other than its primary structure. The work we shall

present is based on Knight and Nason (2004).

5.1 Motivation

In the speciality literature, proposed methods for transmembrane segment pre-
diction range from the use of simple regression techniques (Kyte and Doolittle
(1982)) to neural networks (Rost et al. (1995, 1996)). Established prediction
methods are often based upon hydrophobicity analysis, and a section of the
current literature is devoted to the use of classical wavelet methods in this con-
text (Lio and Vannucci (2000); Fisher et al. (2003)). Such methodology proved
successful, but as with all classical wavelet constructions, certain assumptions
are needed. In the ‘real-life’ context of proteins, a serious assumption is that
the protein residues are modelled as equally spaced.

Our work is motivated by the intuition that we might improve transmem-

brane segment prediction if we were somehow able to take into account the
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resolved three dimensional (3D) information available in proteins that were
similar to the protein of interest. Therefore, in our approach we shall chal-
lenge the assumption of regularly spaced residues, and construct family-based
dissimilarity matrices for estimating the distance between residues. The ma-
trices will be derived from resolved 3D structures of similar aligned proteins.
Furthermore, this new construction will call for wavelets able to work on irreg-
ular settings. For predicting the highly hydrophobic segments, we will propose
methods that involve adaptive second generation wavelets, constructed follow-
ing the approach in chapter 3. We shall show that incorporating 3D resolved
structure by introducing irregular distances improves prediction both in terms
of the existence of predicted segments compared to experimentally determined
ones, and also the proportion of correctly predicted segments.

Outline of the chapter. Briefly, this chapter is structured as follows:
we shall start by introducing a few basic notions on proteins, tailored to the
needs of this chapter. Then we shall formulate in detail the problem we ad-
dress, review existing approaches for solving it and propose our methodology.
We provide a study on proteins from Rost et al. (1995), where we shall anal-
yse, compare and discuss our proposed methods. Comparisons with methods
involving classical wavelets proposed in the current literature will be provided,

and we shall demonstrate the superiority of our methods.

5.2 An introduction to proteins

Amino acids. The building blocks of proteins are amino acids. They are
organic molecules that contain a carbon atom (known as the alpha carbon,
C.) bonded to a hydrogen atom (H), an amino group (NHy), a carboxyl group
(COOH) and a side chain (R). The structure of the R-group is the one that
determines the chemical identity and special properties of each amino acid.
Naturally, different amino acids have different properties, such as hydrophobic

or hydrophilic, basic or acidic, sulfur containing etc. Many amino acids fall into
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more than just one group, because their side chain can have several properties.

There are 20 different amino acids used in synthesizing proteins— Alanine
(ALA), Arginine (ARG), Asparagine (ASN), Aspartic acid (ASP), Cysteine
(CYS), Glutamine (GLN), Glutamic acid (GLU), Glycine (GLY), Histidine
(HIS), Isoleucine (ILE), Leucine (LEU), Lysine (LYS), Methionine (MET),
Phenylalanine (PHE), Proline (PRO), Serine (SER), Threonine (THR), Tryp-
tophan (TRP), Tyrosine (TYR) and Valine (VAL).

Peptide bonds. Amino acids have the property of reacting inter-molecularly
through the two groups with opposite chemical characters, the amino and car-
boxyl groups— with elimination of water, a covalent bond is formed between
these groups. This bond is known as a peptide bond, and what is left after
the elimination of water is called the (amino acid) residues.

This way, more amino acids can be joined together, resulting in a peptide
chain. Longer peptides (usually containing more than fifty amino acids) are
known as polypeptide chains. A protein is made up of one or more polypeptide
chains, and it contains tens and hundreds of residues. All proteins have a rigid
spatial structure, to which we will usually refer as its 3D structure.

Proteins. A protein is therefore a long chain of amino acids covalently
linked through peptide bonds, although many proteins contain more than just
one chain.

Polypeptide chains are directional— one end contains the amino group and
the other end contains the carboxyl group, hence they can be represented as
an ordered sequence of amino acids. The ordered and directional sequence of
residues is known as its primary structure. Note that the reversed sequence
does not correspond to the same molecule, and the same happens for a sequence
where two amino acids have been interchanged. As a protein can contain more
polypeptides, each chain comes with its own primary structure.

One of the goals of bioinformatics is to predict protein’s 3D shape from its
primary structure. The 3D structure of some proteins can be experimentally

obtained, mostly by using X-ray crystallography or nuclear magnetic resonance
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(NMR) spectroscopy. However, for the vast majority of proteins sequence
information is all that is available.

So far we have only mentioned the primary structure of a protein. How-
ever, proteins are fully characterised by also providing information on their
secondary, tertiary and quaternary structures.

The secondary structure of a protein refers to the 3D shape taken by
residues which are close to one another. The most common structures are
known as alpha helices and beta sheets. In an alpha helix, the residues are
arranged such that they resemble a spiral twisting clockwise. Although there
is a standard model in which each turn contains 3.6 residues, most helices are
somewhat distorted in comparison— they can be tighter (only 3 residues per
turn), or longer (4 residues per turn). When the protein chain is extended into
an almost linear geometry, the residues are said to form a beta strand. Beta
strands run alongside each other (in a parallel or anti parallel fashion), and
they are said to form beta sheets. The protein can also change direction, and
such regions are known as turns. Some regions simply do not have a regular
secondary structure, and they are known as random coil.

Covalent bonds between atoms are not the only forces that act towards
obtaining the final protein fold. Hydrogen bonds between residues of the same
or different chains, nature (for example aqueous or lipidic) of the medium in
which the protein exists, possible formations of disulfide bridges (SH-SH) that
arrange two residues close in space even though they may not be close in se-
quence, are only a few examples of forces that contribute to protein folding.
The folding of the total chain, the way in which the elements of the secondary
structure are arranged to form the overall 3D structure of that chain is de-
scribed in the tertiary structure of the protein.

Finally, the quaternary structure refers to the combination of tertiary struc-
tures of two or more chains, in forming the complete unit. So the interest at
this stage are the inter-, rather than the intra-chain interactions.

Here we have only provided a brief overview of some elementary notions on
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proteins. However, for a detailed presentation, the interested reader can refer

to Stryer (1988).

5.3 The problem

Membrane proteins (named like this because of their location at the cell mem-
brane) are an important class of protein structures, but experimental determi-
nation of their 3D structure can often be very difficult, both for X-ray crystal-
lography and NMR spectroscopy. Therefore, for this type of protein, predic-
tion of various structural aspects using only the information contained in the
residue sequence is a problem of interest, see for example Lio and Vannucci
(2000).

Membrane proteins can be either intrinsic or integral (they have one or
more segments embedded in the plasma membrane) or extrinsic (they are
only bound to the membrane indirectly through various interactions). Most
integral membrane proteins span the entire lipid bilayer, hence their name
of transmembrane proteins. Transmembrane proteins, whose 3D structures
have been experimentally resolved, have revealed that the transmembranar
segments consist of either alpha helices or, less commonly, beta strands.

So far, methods for predicting the locations of transmembrane segments
have been primarily directed towards helical transmembrane proteins. Helices
embedded in the lipid bilayer primarily consist of residues with hydrophobic
R-groups, pointing outwards in the lipid bilayer, and this feature can be used
in order to identify them.

Typical methodology for predicting transmembrane helices includes hy-
drophobicity analysis, see for example Kyte and Doolittle (1982), Engelman
et al. (1986), Lio and Vannucci (2000). However, hydrophobicity analysis as a
tool for prediction is not limited to transmembrane segments only, and it has
also been used for hydrophobic cores of globular proteins (see Hirakawa et al.

(1999) for instance).
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Chapter 5. Transmembrane segment prediction

Our approach is also based on hydrophobicity analysis.

5.4 The hydropathy plot

Hydrophobicity analysis is centred on analysing the hydropathy profile associ-
ated to each protein, obtained by using a measure of hydrophobicity associated
with each amino acid.

Various measures for the hydrophobicity of amino acids have been con-
structed (for example the scale of Kyte and Doolittle (1982), or the scale of
Eisenberg et al. (1984)), and also combined measures of hydrophobicity and
helicity to be used in the context of helical transmembrane proteins (see for
instance the Lio and Vannucci (2000) scale).

By means of these scales, the primary structure of the protein can be con-
verted into a hydropathy profile: we obtain a signal which on the horizontal
axis has the residues in their order of appearance in the protein primary struc-
ture, and on the vertical axis their corresponding values from the hydropho-
bicity index.

After investigating the compatibility of our method with the previously
mentioned scales, we decided to use in our study the Kyte and Doolittle mea-
sure of hydrophobicity.

As already mentioned, in previous studies the residues were processed as-
suming that they were equally spaced. However, if each residue is thought
of as a 3D structure determined by its atoms, then plausibly one should not
automatically consider the distances between any two residues to be equal.

If additionally one was presented with supplementary secondary and ter-
tiary structure information, then precise local information (which typically
we do not have) would be gained on the residue positions, and a 3D para-
metric function could be fitted in order to accurately obtain the inter-residue
distances.

We will use the resolved 3D information contained in proteins that are

128



5.4. The hydropathy plot

similar to our protein of interest in order to estimate the residue locations.
Our intuition is that making use of this additional information would help
improve upon the estimation of the function that ‘models’ the hydrophobicity
level along the protein.

Hence, as explained in the introduction, we will challenge the assumption
of equally spaced residues, and estimate the distances between consecutive

residues.

5.4.1 The distance matrix

We shall first determine which protein sequences with resolved 3D structure
are similar to the sequence of a query protein. This can be established by
using local alignment methods that identify regions where the sequences are
similar and then score the aligned residues in those regions by means of a scor-
ing matrix. Scoring (or substitution) matrices estimate the probability of a
change of each possible residue in a sequence into any another residue. Henikoff
and Henikoff (1992) introduced the BLOSUM(BLOcks SUbstitution Matrix)z
scoring matrices, computed using blocks of clustered related sequences that
share at least % sequence identity (inside each block). Henikoff and Henikoff
(1993) showed that fast alignment methods, such as FASTA (Lipman and
Pearson (1985)) or BLAST (Altschul et al. (1990)), using scoring matrices
derived from distantly related proteins display high accuracy in scoring align-
ments, with the best results obtained by using BLOSUMG62. Therefore, in our
approach we used FASTA with BLOSUMG62.

Our aim is to use the known 3D structure of aligned protein sequences in
order to estimate the distance between each pair of consecutive residues in the
primary structure of the protein of interest. We will work with the 3D struc-
tures as given in the Protein Data Bank (PDB), available at http://www.rcsb.org/pdb/.

First we identify all the appearances of each specific residue pair in the pri-

mary structures of the aligned chains, and then compute all the corresponding
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Euclidean distances. Their average will provide an estimate for the distance
between the two (consecutive) residues. In computing the Euclidean distance
between two residues, the z, y, z coordinates given by their corresponding PDB
file of all their atoms are used. Typically, distances between atoms are mea-
sured in Angstrom units, where an Angstrém (A) equals 107° meters. The
result is a 20 x 20 matrix D, where D;; is measured in A and it contains the
average of the FEuclidean distances computed between the residues 7 and j,
from all the aligned chains where they appear in this order.

Let us emphasize here that D is not a symmetric matrix, hence the distance
from ARG to LYS, say, is different to that from LYS to ARG.

At this point one might like to refer to Figure 5.1, which gives an indication
of the range of estimated distances between different pairs of amino acids, as
well as their variation. This distance matrix has been computed using 402
matching proteins, each with various sequence lengths.

The amino acids are clustered according to their R—group nature, and
separated in Figure 5.1 by white lines. So, GLY-ILE form the first group of
amino acids with aliphatic R—groups, SER and THR are non-aromatic amino
acids with hydroxyl R-groups, CYS and MET have sulphur containing R—
groups, ASP-GLN are acidic amino acids and their amides, ARG-HIS are
basic amino acids, PHE-TRP are amino acids with aromatic rings and PRO is
the sole imino acid. It is notable, for example, that pairs consisting of amino
acids with aromatic rings typically have low standard deviations, but middling
mean distances.

Note that some residue pairs will only appear in the primary structure
of the protein being investigated, and not also in the primary structures of
the chains aligned to it. In such situations, we use the distances supplied
by a family-oriented distance matrix. In the calculation of a family matrix,
the chains with determined 3D structure that have been aligned to protein
sequences belonging to that family are used. Hence the missing distances for a

protein will be imputed from its corresponding overall family distance matrix.
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Figure 5.1: Overall ‘average’ distance matrix (in Angstrom units). The inten-
sity of a pixel (dark/light) corresponds to the mean distance for that residue
pair. The colour of a pixel (blue/red) corresponds to the standard deviation for
that amino acid pair. The brightest pixel in the figure occurs at MET-THR,
with a distance of 10.2. It is also one of the most variable, with a standard
deviation of 16.7- MET-PHE is the most variable (most red) with a standard
deviation of 18.7. The darkest combination is GLY-TRP, with a distance of
4.5, while the least variable is MET-TRP, having a standard deviation of 0.28.
The lower and upper quartiles of the mean distance (standard deviation) are
5.2 and 6.1 (0.74 and 2.52).
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The distance matrix in Figure 5.1 is less ‘specific’ and hence less variable
than family-based distance matrices. See for instance the family-based distance
matrix in figure 5.2, computed using chains with known 3D structure coming
from 128 proteins, similar to 22 investigated proteins from the ligand-gated
ionic family.

If the sequence of interest has no aligned sequences with resolved 3D struc-
ture, then the overall family matrix can be used for estimating inter-residue

distances.

5.4.2 Using the distance matrix for constructing the hy-

dropathy plot

Having estimated the distances between each pair of consecutive residues in
the primary structure of the protein of interest, we compute a coordinate value
for each residue in the chain, based on its distance to the previous residue. The
coordinate associated to each residue will indicate its estimated distance to the
previous and next residues.

The residues will then be plotted on the horizontal axis according to these
coordinates. Therefore, rather than considering them to be equally spaced,
they will have an uneven distribution. Let us denote the location (coordinate)
corresponding to residue 7 in the protein chain by z;, for use in the next section.

A shortcoming of this matrix approach is that it only takes into considera-
tion the distances between consecutive residues, and hence models the protein
as being a straight chain, rather than modelling its 3D shape. Overcoming this
restriction and trying to estimate the 3D function behind the protein shape
is an interesting point for future research, and we suspect that it would bring
us even closer to correctly estimating the hydrophobicity level as a function of
the protein’s amino acid composition and shape.

Figure 5.4 shows an example of hydrophobicity signal constructed as de-

scribed above. Note that an exact visual assessment of the segments consisting
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Figure 5.2: Distance matrix corresponding to the ligand-gated ionic family (in
Angstrém units). The intensity of a pixel (dark/light) corresponds to the mean
distance for that residue pair. The colour of a pixel (blue/red) corresponds
to the standard deviation for that amino acid pair. The brightest pixel in
the figure occurs at MET-PHE, with a distance of 28.2. It is also the most
variable, with a standard deviation of 43.56. The darkest combination is CYS—
MET, with a distance of 4.4, while the least variable is CYS-CYS, having a
standard deviation of 0.12. The lower and upper quartiles of the mean distance
(standard deviation) are 5.1 and 6.0 (0.58 and 0.88).
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of highly hydrophobic residues is virtually impossible, hence proper statistical

tools are needed.

5.5 Wavelets and the hydropathy profile

Since transmembrane helices are sequences of predominantly hydrophobic residues,
our purpose is to detect the points at which sharp changes occur in the hy-
drophobicity signal. This amounts to modelling the profile as noise-contaminated,
and estimating the underlying signal.

We model each of our hydrophobicity observations as f; = g(x;) +¢;, where
n is the length of the protein chain of interest, f; denotes the observed (accord-
ing to the chosen scale) hydrophobicity level of residue i (located at z;), g(z;)
is the true hydropathy value of the same residue, to be estimated, and {e;};
models identically distributed, independent noise, assumed to follow a N (0, o)
distribution. In other words, based on just one observation, f;, at each location
x; in the protein chain, we want to estimate the true signal value, g; = g(z;).
The assumption of independent observations is a necessary mathematical re-
quirement, which we are aware that is likely to hold only approximately in the
biological context.

We shall address the statistical problem of denoising the above hydropathy
signal ({ fi};c15;) by using wavelet methodology. So far, wavelet based smooth-
ing methods using classical wavelets (Lio and Vannucci (2000), Fisher et al.
(2003)) have been used and shown to perform well in the task of transmem-
brane segment prediction.

However, as the construction of our hydropathy profile uses an uneven
distribution for residue locations, we shall use the adaptive lifting scheme in-
troduced in chapter 3 in order to construct second generation wavelets that
adjust to the protein hydropathy features. As explained in section 3.6.2 of
chapter 3, by means of these wavelet functions, the noise corrupted signal will

be converted into d; = d} + e;, with {d;}; being the observed wavelet co-
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efficients, {d}}; the ‘true’ wavelet coefficients and {e;}; the transform of the
noise {¢,};. Estimates {CZ;‘ }, of the true wavelet coefficients will be obtained by
shrinking the observed details using the modified empirical Bayesian technique
described in 3.6.2. The adaptive lifting transform can then be inverted, which
yields an estimate g of the true hydropathy profile at the residue locations
{witi.

In the previous chapter, we have seen that in the task of denoising smooth
signals, or signals with a small number of discontinuities, AdaptPred with
neighbourhoods of size 2 performs best, while for denoising non-smooth sig-
nals, AdaptNeigh using up to 2 neighbours at each stage, gave the best re-
sults. Hence for denoising our version of the hydropathy profile (obtained as
explained in section 5.4.2), we shall use these methods combined with either

the posterior mean or median of the corresponding posterior distributions.

5.6 Prediction of transmembrane segments

For obtaining an estimate of the true hydropathy level g; corresponding to each
residue, ¢, in the sequence of a protein of interest, we propose the following

procedure

1. Estimate the distance between any two consecutive residues in the pro-
tein sequence, and use the Kyte and Doolittle hydrophobicity scale to
generate the hydropathy profile associated to the protein of interest (see

section 5.4).

2. Use adaptively constructed wavelets and statistical shrinkage to estimate

the ‘true’ hydropathy signal. We propose 4 alternatives

e AdaptPred with 2 neighbours, combined with the modified empiri-
cal Bayes shrinkage using posterior mean and median of the corre-

sponding posterior distributions (see sections 3.4 and 3.6.2).
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e AdaptNeigh using up to 2 neighbours, combined with the modified
empirical Bayes shrinkage procedure, using both posterior mean and
median of the corresponding posterior distributions (see sections 3.4

and 3.6.2).

3. Classify all residues corresponding to smoothed hydrophobicities larger
than the estimated (smoothed) average as transmembranar, provided
that they are part of hydrophobic stretches longer than 11 residues, as
recommended in Rost et al. (1995).

We will refer to the proposed methods as AP2 mean, AP2 median, AN1
mean and AN1 median, respectively.

In a study that we will present in what follows, we will compare the perfor-
mances of our proposed methods against the methodology involving classical
wavelets. Since simulations in the previous chapter showed that the AdaptPred
methods with neighbourhood of size 2 have similar denoising performances re-
gardless the type of neighbourhood configuration, (see tables in section 4.3.3),
we investigated AdaptPred with a prediction step that uses the 2 closest neigh-
bours.

For clarity of exposure, we also describe the methodology involving classical
wavelets, which essentially consists of the same steps as above, dealt with in a

different manner

1. Use the Kyte and Doolittle hydrophobicity scale to generate the hydropa-
thy profile associated to the protein of interest, assuming its residues are

equally spaced (see section 5.4).

2. Use classical wavelets and empirical Bayesian shrinkage with posterior
mean, median policies to estimate the ‘true’ hydropathy signal (see sec-

tion 3.6.2).

3. Classify all residues corresponding to smoothed hydrophobicities larger

than the estimated (smoothed) average as transmembranar, provided
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that they are part of hydrophobic stretches longer than 11 residues.

When using classical wavelet methods, a choice of wavelet and primary
resolution must be made, hence we tested Daubechies wavelets from the least
asymmetric family with vanishing moments from 2 to 10. We chose to work
with the wavelet family generated by the least asymmetric wavelet with 8

vanishing moments, ‘s8’

, and use 4 resolution levels in the hydropathy signal
decomposition. The same choice has been previously reported in the literature
by Lio and Vannucci (2000).

We will refer to these methods using the above choice of wavelet and reso-
lution level as Daub mean, respectively Daub median. We note here that in the

decomposition using adaptive wavelets, we kept the same number of scaling

coefficients as in the decomposition using Daubechies ‘s8’.

5.7 Case study

We tested our proposed methods using 46 of the 48 proteins from Rost et al.
(1995) (the double-blind set, available from

http://www.embl-heidelberg.de/~rost/Papers/1996_phdtop/Blind.html).
The search on the AD1 antigen retrieves the entry ‘cd63-rat’, which sub-
sequently appears in the database, and the glutamate receptor A precursor
contains a much longer sequence than the rest, causing computer memory dif-
ficulties with our algorithms (on our machine with 2Gb memory size, S-Plus
cannot allocate a vector of size 4.1Gb). All proteins in this study are inte-
gral membrane proteins of helical nature, for which reliable experimental data
assessing locations of transmembrane helices is available.

In the above dataset, 15 proteins belong to the tetraspanin family (TM4SF),
22 belong to the ligand-gated ionic channel family (TC 1.A.9), and the rest be-
long to different families. The last group consists of only 9 proteins, hence we
added another 10 proteins randomly selected from the set of 83 cross-validation

proteins used in the same study by Rost et al. (1995). This way the size of
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this group was boosted to 19 proteins.

The natural division of the dataset into families has led us to construct
average distance matrices corresponding to each of the two main families. In
the calculation of each matrix, the chains aligned to the sequences belonging
to each family have been used. Hence for each of the proteins in one of these
families, the missing distances will be imputed from its corresponding overall
distance matrix.

Along with these two matrices, we have also computed another two family-
specific distance matrices, based this time on the structure of the entire pro-
teins (rather than only on the chains) that were aligned to sequences belonging
to each family. If the family-specific matrix computed based on the aligned
chains contains no information on a particular residue combination, the miss-
ing value is taken from the family-specific matrix which uses the entire protein
structure.

When a protein that does not belong to one of these two families is being
analysed, we use the distances supplied by an overall ‘average’ distance ma-
trix (see figure 5.1), computed from a database comprising 402 proteins with
determined 3D structure— the ones aligned to all the proteins investigated.

On this protein dataset, we shall show that transmembrane segment pre-
diction improves by incorporating the inter-residue distances. As mentioned
above, a set of 10 proteins has been added to the 46 proteins dataset, in order
to boost the number of proteins that do not belong to either of the two fam-
ilies. As a consequence, we will report the overall results obtained on all 56
proteins.

We compared our proposed methods versus the classical ones (all described
in 5.6). Since the results obtained by using AP2 median and Daub median are
systematically underperforming the other methods, we shall not report them,
and concentrate instead on AP2 mean, AN1 mean, AN1 median and Daub
mean.

In order to assess the behaviour of any method, we will first introduce the
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measures for performance we used.

5.7.1 Measures of prediction accuracy

All methods produce their corresponding predicted transmembranar helices
which we have to compare against the experimental data available, and assess
which is the better prediction.

In the context of segment prediction, we believe that there is no obvious
measure that would give a concise answer as to which of the predictions is
better, hence we used several measures for the accuracy of prediction.

Measures referring to the residue accuracy. (see for example Rost

and Sander (1993))

e the percentage of residues predicted correctly in either of the two states

(transmembranar or not), denoted @,

e the percentage of residues which are correctly predicted as transmem-
branar, relative to the number of transmembranar residues observed,

denoted @ yps,

e the percentage of residues which are correctly predicted as transmem-
branar, relative to the predicted number of transmembranar residues,

denoted @ preq-

Measures referring to the segment accuracy. (see for example Rost

et al. (1996))

e the number of observed (true) transmembrane segments, denoted N ,ps,

the number of predicted transmembrane segments, denoted Npyeq,

the number of correctly predicted transmembrane segments, denoted
Neorr, where a segment is considered to be correctly predicted if there is

an overlap of at least 5 residues with a true one,

139



Chapter 5. Transmembrane segment prediction

e sensitivity, i.e. the percentage of observed transmembrane segments that

were correctly predicted, Sens=N o/ Nops,

e specificity, i.e. the percentage of predicted transmembrane segments that

are correct, Spec=N corr/ Npred,
e average observed segment length, < L >,
e average predicted segment length, < L >4,

e segment overlap Sov,ps, S0Upreq, Which are more sophisticated measures
for evaluating (on a scale from 0% to 100%) respectively the correctness
of segment prediction versus the true segments and the fraction of the
predicted segments that is correct; these measures take into account the
degree of overlap between predicted and observed segments, rather than
considering a segment to be correctly predicted if there is an overlap of

at least 5 residues (for more details see Zemla et al. (1999)).

5.7.2 Discussion of results

Using the above measures, we evaluated the performances of our methods
versus the performance of the method employing Daubechies ‘s8” on equally
spaced grids.

Out of our methods, we concluded that ANI mean gives the best results
throughout the study, hence this is the method we recommend, followed by
AN1 median. Occasionally (even though very rare), it happens for these meth-
ods to produce predicted segments that are too short (average length under
14 residues, see Lio and Vannucci (2000)) or too long (average length over 34
residues, see Rost et al. (1995)), situation when AP2 mean should be chosen.

Results on the TM4SF family.

We found out that on the proteins belonging to the tetraspanin TM4SF
family, the classical method mostly gives very good prediction, with only a

few exceptions. On the leukocyte antigen CD37 (UniProt entry ‘cd37-human’)
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Daubechies ‘s8’ fails almost completely to recognize the true segments, giving
Soveps and Sovyeq values of 0.5 and 0.34 respectively.

The results show that all of our methods have similar performances. Over-
all, our segment prediction accuracy is very similar to the one obtained through
the classical method, as shown by the results in table 5.1.

We obtain higher sensitivity (i.e. the percentage of observed transmembra-
nar segments that were correctly predicted), and very similar specificity, as
well as very similar Sov values. These values indicate an accurate segment
prediction, judged not only by the simple criterion of considering a segment
correctly predicted if there is an overlap of at least 5 residues with a true one,
but also by the better measure provided by Sov, which takes into account the
change points as well.

The per-residue measures indicate a better behaviour for the classical method,
but we should keep in mind that these measures should be considered with care,
since we are primarily interested in sequences of residues and their positions
within the chain.

At a close examination of the results based on which we obtained table 5.1,
we notice that our method provides more homogenous estimation, and there
is no failure of prediction for any of the proteins, unlike the classical method.
Example. We now illustrate the above discussion with an example: we will
investigate the tumor associated antigen L6 (UniProt entry ‘t4sl-human’) pro-
tein. It has a 202 residues long sequence, to which 4 proteins with known 3D
structure have been aligned and used for estimating the inter-residue distances.
The values for the missing pairs have been taken from the overall distance ma-
trix associated with this family.

The transmembrane segments, determined experimentally, are thought to
be: 10-30, 50-70, 94-114, 162-182.

We chose this example because it is one of the very few on which our
methods ANI mean, median prove to split the segments too much (producing

< L >preq= 12.25), and hence the second best method, AP2 mean will be used.

141



Chapter 5. Transmembrane segment prediction

= E E —

True/predicted segments

] [0 [ oo (D

T T T T T
0 50 100 150 200

Residue position in the chain

Figure 5.3: True and predicted segments for ‘t4sl-human’: horizontally filled
rectangles=True, diagonally filled rectangles=A P2 mean, vertically filled rect-
angles=Daub mean.

Our method predicts the following transmembrane helices 14-24, 52-70,
90-117, 161-192, while the classical wavelet method gives 9-27, 49-70, 89-116,
160-179, 181-192. It is easier if we simultaneously visualise the segments, as
in figure 5.3.

The hydropathy profile corresponding to this protein appears in figure 5.4.

Figure 5.5 shows the centred denoised hydrophobicity profiles correspond-
ing to both our method (top) and the classical one (bottom).
The accuracy measures for both methods are

1. Our method:

QZ = 085: Qobs = 0867 Qpred = 0807 < L > 5= 2]-7 <L > pred= 2257
Novs = 4, Nprea = 4, Neoyr = 4, Sens = 1, Spec = 1, Sovgs = 0.93,
S50Upreq = 0.96.

2. Classical method:
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Figure 5.4: Hydropathy profile of ‘t4s1-human’.

Q2 = 0.88, Qups = 0.95, Qpred =079, < L >,5=21,< L > pred= 20.2,
Nopvs = 4, Npred = 5, Neopr = 4, Sens = 1, Spec = 0.8, Sovyps = 0.83,
S0vpreq = 0.90.

In this example we see that Daub mean predicts an extra segment, of length
12, while AP2 mean does not identify correctly the upper bound of the last
transmembrane helix, overextending it.

Results on the TC1A9 family.

On the ligand-gated ionic channel (TC 1.A.9) family, classical based wavelet
methods give quite poor predictions most of the time, with (S0v,ps,S0Upreq) val-
ues ranging from (0.51,0.3) to at most (1,0.51). For 4 proteins, values around
(0.5,0.3) are obtained, hence the classical method fails to make a good pre-
diction for them. Most of the Sov values are concentrated around (0.8,0.45),
indicating that there is a tendency of overpredicting segments (predicting seg-
ments that are not truly transmembranar), and also of not being able to cor-
rectly detect the boundaries of the true segments. This generally translates in

predicting a segment as being the merging of 2 or, in a few cases, even 3 true
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Figure 5.5: Centred denoised hydrophobicity profiles of ‘t4sl-human’:
using AP2 mean; bottom, using Daub mean.

top,
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segments.

Our methods give an improved prediction for most of the proteins. This
time AN1 mean is superior to AN1 median, which is similar to AP2 mean; all
of them provide better performances than Daub mean. Most of the Sov values
for AN1 mean are within the range of (0.8-1,0.5-0.8), considerably higher than
the results obtained using the classical wavelets.

By examining table 5.2, we notice that while improving the sensitivity (the
boundaries of the true segments are correctly identified, and segments are sel-
dom merged), we do not seem to be able to significantly improve upon the
specificity of our prediction (some segments are falsely predicted as transmem-
brane).

Also for this family, the prediction performance given by our method is
more homogenous than in the classical case.

Example. We now examine a protein belonging to this family: we chose
the gamma-aminobutyric-acid receptor gamma-3 subunit precursor (UniProt
entry ‘gac3-mouse’), which displays the typical behaviour of both methods. It
has a sequence of length 467 residues, to which chains coming from 8 proteins
with determined 3D structure have been aligned. The inter-residue distances
were computed based on these proteins, and the values of the missing pairs
were imputed from the overall distance matrix corresponding to this family.

The experimentally determined transmembrane segments are believed to
be 255-277, 281-303, 315-337, 444-467.

Our method predicts the following segments 5-15, 77-88, 116-133, 232-249,
253-277, 288-303, 317-332, 447-467, while by the usage of Daubechies wavelets,
we obtain 1-15, 72-92, 118-134, 157-173, 230-296, 306-337, 443-467.

Figure 5.6 helps us ‘see’ the predicted segments versus the true ones.

The hydropathy profile of ‘gac3-mouse’ appears in figure 5.7. Note how
due to its longer sequence, it is even more difficult to visually assess which
could possibly be the hydrophobic segments.

Figure 5.8 shows the corresponding coarse versions of the hydropathy profile
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Figure 5.6: True and predicted segments for ‘gac3-mouse’: horizontally filled
rectangles=True, diagonally filled rectangles=AN1 mean, vertically filled rect-
angles=Daub mean.

T
—_ N -
[])
>
3
>
=
Q
o |
OO
e
o
o
o
he]
>
I(|\17

< |

]

\ \ \ \ \ \
0 500 1000 1500 2000 2500

Residue coordinate

)

Figure 5.7: Hydropathy profile of ‘gac3-mouse’.
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of ‘gac3-mouse’.
When measuring the performance of the predicted transmembrane seg-

ments for ‘gac3-mouse’, we obtain the following results

1. Our method:

Q2 = 0.83, Qops = 0.82, Qpred = 0.55, < L >pp= 23.25, < L >ppeq=
17.12, Nops = 4, Nprea = 8, Neorr = 4, Sens = 1, Spec = 0.5, Sovgps = 1,
S0Upreq = 0.57.

2. Classical method:

o = 0.75, Qobs = 0.92, Qpred = 0.44, < L >,p= 23.25, < L > pred=
2771, Nops = 4, Nprea = 7, Neorr = 3, Sens = 0.75, Spec = 0.43,
S0vpps = 0.72, S0vppeq = 0.44.

We notice in this example the behaviour described earlier, in that both
methods overpredict the transmembrane segments, and the classical wavelets
are also merging some of the true segments.

Remark. All of the methods mentioned in the beginning of this paper (see
for example Rost et al. (1995, 1996) or Fisher et al. (2003)), besides the math-
ematical filtering, employ a bio-chemical filtering as well, which we keep to a
minimum (we only cut predicted helices containing at most 10 residues). Such
further filtering and inspection of the already predicted segments will consid-
erably improve the prediction specificity and sensitivity (and will also improve
S0Upred, S0Ugps), by eliminating some of the unlikely segments, or splitting the
segments considered to be too large into two or more segments.

In our study, a closer examination of the obtained predicted segments in the
ligand-gated ionic channel (TC 1.A.9) family shows that a lot of the segments
wrongly predicted as transmembranar are very short (11-15 residues), and
hence unlikely to ‘survive’ a bio-chemical filtering procedure. It may also be
that some of them are too long, and splitting them into more segments might

be a solution.
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Figure 5.8: Centred denoised hydrophobicity profiles of ‘gac3-mouse’:
using AN1 mean; bottom, using Daub mean.
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In our approach, we kept exclusively a mathematical filtering procedure and
investigated its behaviour with and without the information given by multiple
aligned sequences with known 3D structure. Having improved upon the basic
mathematical prediction, various other procedures (such as the bio-chemical
filtering discussed above) could then be added, and contribute to an improved
final prediction.

Results for the rest of the (19) proteins. Finally, for the rest of pro-
teins, the ones belonging to different families, the predictions of our methods
and of the one employing classical wavelets are quite good, with the exception
of 3 proteins which have only one (true) transmembranar segment. For these
proteins, our methods and the classical one have very similar performances,
in that the Sov values are around (0.9-1,0.2-0.6), indicating that the meth-
ods correctly identify the true segment, but additionally predict false ones.
For the remaining 16 proteins, none of the methods fails and the range of
(S0U,bs,S0Uprea) values is (0.64-1,0.67-1) for AN1 mean, and (0.67-1,0.51-1) for
Daub mean.

Analysing the results obtained on the whole set of 19 proteins, we see that
our method either outperforms the results obtained through the Daubechies
wavelets or gives similar results, and in only 3 cases we obtain worse results
than by using the Daubechies ‘s8’. For this group of proteins, the best results
are obtained by predicting through AN1 mean too.

Examining table 5.3 we notice that we obtain improved specificity values for
ANI1 mean as compared to the results obtained through the usage of classical
wavelets, and a similar sensitivity value. This is reflected also by examining
the Sov values.

Example. We will now examine the results for the undecaprenyl-phosphate
galactosephosphotransferase (UniProt entry ‘rfbp-salty’), which has no re-
solved 3D structure, and belongs to the bacterial sugar transferase family.

Starting from its primary structure of 476 residues, one protein with known

3D structure has been aligned to it and used in the computation of inter-residue
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Figure 5.9: True and predicted segments for ‘rfbp-salty’: horizontally filled
rectangles=True, diagonally filled rectangles=AN1 mean, vertically filled rect-
angles=Daub mean.

distances. The values for the missing pairs have been taken from the overall
‘average’ distance matrix.

Experimentally determined data is available for the transmembrane seg-
ments, which are thought to be 15-35, 52-72, 93-113, 115-135, 283-303.

After employing our method (AN1 mean), we obtain the following predicted
segments 15-40, 60-72, 94-107, 116-135, 284-301, while through the usage of
Daub mean we obtain 12-40, 55-72, 89-110, 116-139, 170-186, 240-260, 279-304,
459-475, corresponding to figure 5.9.

The estimated versions of the true hydropathy signal obtained through
AN1 mean, and through Daub mean respectively, appear in figure 5.10.

The prediction performance is characterised by the following values of the

indices previously introduced

1. Our method:

Q> = 0.95, Qops = 0.82, Qprea = 0.95, < L >pp= 21, < L >ppeq= 18.2,
Novs = 5, Nprea = 5, Neoyr = 5, Sens = 1, Spec = 1, Sovgs = 0.98,
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Figure 5.10: Centred denoised hydrophobicity profiles of ‘rfbp-salty’: top, us-
ing AN1 mean; bottom, using Daub mean.
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S0Upreq = 0.99.

2. Classical wavelets:

Q2 = 0.83, Qops = 0.93, Qpred = 0.56, < L >,p5= 21, < L >ppeq= 21.75,
Novs = 5, Nprea = 8, Neoyr = 5, Sens = 1, Spec = 0.63, Soveps = 1,
S0Upreq = 0.68.

We see that our method does not predict extra segments, and it correctly
identifies the true segments. The classical method falsely predicts as trans-
membranar three segments of lengths 17,21,17, which would be more difficult
to eliminate through a further filtering step.

Overall conclusions. To conclude, examine table 5.4, which combines all
previous data to show the overall tendency.

We compared the Sov values (since these are the most complete measures
for the segment prediction accuracy) obtained through our methods versus
the ones obtained by using classical wavelets. For performing the comparisons
we used paired t-tests, since the sample size is large enough so that the tests
should be robust against non-normality. For each of our methods, and both
for Soveps and Sovpreq, We tested the null hypothesis of no difference between
the mean Sov value of our method and the mean Sov value of the classical
method, versus the alternative that our method provides a higher Sov value
than the one obtained through the classical wavelets. We indicated the highly
significant differences in table 5.4.

Based on a careful examination of the data and on the results of the sig-
nificance tests, we conclude that we improve the quality of prediction by us-
ing resolved 3D structure of proteins that are similar to the proteins to be
analysed— both in terms of the correctness of the segments with respect to
the true segments and the proportion of predicted segments that are correct.

Wavelet methods using a second filtering step based on the chemical prop-
erties of the residues, report final sensitivity and specificity values of 0.93 and

over. With no such further filtering, we obtain a value of 0.90, indicating that
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if we additionally use such a procedure, we should obtain even higher sensitiv-
ity values. We refer to the sensitivity and specificity values since they are the
measures usually reported in the literature, but we stress again that a much
better measure, indicating more accurately the behaviour of the method, is
Sov. Its observed value also confirms an improvement of the prediction accu-
racy. Due to the ligand-gated ionic channel family (TC 1.A.9), the specificity
value in our study drops to 0.70, a higher value than the one corresponding to
the classical method — 0.62, but yet a smaller value than the ones reported
by the previous studies (Lio and Vannucci (2000), Fisher et al. (2003)), in
which further to the mathematical filtering, a step of biochemical filtering is
employed. The value of Sovpq (0.76) is higher than the one provided by the
specificity index, and it also points towards the existence of an improvement

with respect to the classical method (which has Sovys of 0.67).

Remark. For the initial dataset consisting of 46 proteins, we have also
tested our methodology using two different types of matrices for imputing the
missing values when computing the coordinate of each residue. We remind the
reader that so far we primarily used two matrices, one for each family. In the
calculation of these matrices we used the chains with determined 3D struc-
ture that were aligned to the sequences belonging to each family, respectively.
Solely for estimating the missing values in these matrices, we used another two
matrices computed based on the structure of the entire proteins aligned to se-
quences belonging to each family. Now, we have also tested our methods using
imputed values straight from the distances provided by these matrices. And
finally, regardless the family to which the protein belongs, we have used the
overall matrix computed based on 376 proteins, all the proteins aligned to the
46 proteins being analysed. Our intuition was that prediction should slightly
decrease in accuracy by using less specific information. The tests proved that
the specificity has slightly decreased, from the overall 0.76 to 0.74 (this dif-
ference being mainly due to the specificity decrease in the ligand-gated ionic

channel family, from 0.59 to 0.55), while the sensitivity was not influenced.
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5.8 Conclusions and further work

In this chapter we developed a new technique for transmembrane protein seg-
ment prediction. This improves on earlier wavelet methods by utilising re-
solved 3D structure information from similar proteins to provide irregularly
spaced residues. The irregular spacing is generated by order-20 distance ma-
trices which calculate inter-residue distances over families of similar proteins
(and also a generic ‘all-protein’ matrix for use when a family matrix can-
not produce a distance for a particular combination). This construction aims
at obtaining a better estimate of the true function that models the level of
hydrophobicity along the protein. We tested our method on helical transmem-
brane proteins, and consequently we generated distance matrices that reflect
the helicity property. An interesting direction would be to further extend the
study to beta-barrel transmembrane proteins. For the future, the ‘paradigm’
provides a way of generalising multiscale algorithms for irregularly spaced ob-
jects (such as proteins) and hence lifting shows great promise for directly util-
ising 3D resolved information in a mathematical multiscale manner which is

informed by the biochemical reality.
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Npred Ncorr Sens SPEC <L >obs | < L >p1€d Sovabs Sovpmd QZ Qabs Qpred
AP2 mean 62 60 | 1.00 | 0.97 22.08 25.45 0.96 095 |0.88 094 0.78
AN1 median | 63 60 | 1.00 | 0.95 22.08 22.05 0.95 094 |0.880.87| 0.81
AN1 mean 62 60 | 1.00 | 0.97 22.08 20.36 0.93 093 |0.88)|0.82| 0.84
Daub mean 58 57 | 0.95 | 0.98 22.08 28.90 0.93 092 090|096 | 0.80

Table 5.1: Results obtained on the TMA4SF family (15 proteins, 60 experi-
mentally determined transmembrane segments). Npeq, Neorr give the number
of predicted, respectively correctly predicted transmembrane segments; Sens,
Spec give the sensitivity, specificity of prediction; < L > g5, < L >ppeq are the
average length of the observed, predicted segments; Sovgps, S0Upreq evaluate
the correctness of prediction versus the true segments, and the fraction of the
predicted segments that is correct; (), is the percentage of correctly predicted
residues, Qops, Qprea Measure the percentage of correctly predicted residues
relative to the number of observed, respectively predicted transmembranar
residues.

Npred | Neorr | Sens | Spec | < L > g5 | < L >prea | S0Ugps | S0Vpreq | Q2 | Qobs | @pred
AP2 mean 168 72 | 0.82 | 0.43 22.34 25.21 0.85 0.49 |0.77 | 0.95 | 0.45
ANI1 median | 173 73 | 0.83 | 0.42 22.34 21.71 0.84 0.50 | 0.76 | 0.84 | 0.44
AN1 mean | 148 73 1 0.83 | 0.49 22.34 19.77 0.84 0.59 | 0.821]0.79| 0.52
Daub mean | 165 63 | 0.72 | 0.38 22.34 27.07 0.75 0.44 |0.75]0.96 | 0.43

Table 5.2: Results obtained on the TC 1.A.9 family (22 proteins, 838 experi-
mentally determined transmembrane segments). Npreq, Neorr give the number
of predicted, respectively correctly predicted transmembrane segments; Sens,
Spec give the sensitivity, specificity of prediction; < L > g5, < L >ppeq are the
average length of the observed, predicted segments; Sovgps, S0Upreq evaluate
the correctness of prediction versus the true segments, and the fraction of the
predicted segments that is correct; Q5 is the percentage of correctly predicted
residues, (Qops, Qprea Measure the percentage of correctly predicted residues
relative to the number of observed, respectively predicted transmembranar
residues.

Npred Ncorr Sens Spec <L >obs | < L >pmed Sovobs Sovpred QZ Qobs meed
AP2 mean 98 82 | 0.90 | 0.84 23.89 23.59 0.90 0.77 10.82|0.79 | 0.75
AN1 median | 106 83 | 091 | 0.78 23.89 19.13 0.91 0.78 1080 |0.71| 0.76
AN1 mean 95 82 |1 0.90 | 0.86 23.89 17.99 0.89 0.82 | 0.83|0.66 | 0.84
Daub mean 98 80 | 0.88 | 0.82 23.89 24.02 0.92 0.75 |0.81|0.80 | 0.73

Table 5.3: Results obtained on the rest of the proteins (19 proteins, 91 exper-
imentally determined transmembrane segments). Npreq, Neorr give the number
of predicted, respectively correctly predicted transmembrane segments; Sens,
Spec give the sensitivity, specificity of prediction; < L > g5, < L >ppeq are the
average length of the observed, predicted segments; Sovsps, S0Upreq €valuate
the correctness of prediction versus the true segments, and the fraction of the
predicted segments that is correct; (), is the percentage of correctly predicted
residues, (QQops, (pred Measure the percentage of correctly predicted residues
relative to the number of observed, respectively predicted transmembranar
residues.
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Npred Ncorr Sens Spec <L >obs | < L >pred Sovabs Sovpred Q? Qabs Qpred

AP2 mean | 328 | 214 | 0.90 | 0.65 22.80 24.73 0.90° | 0.71% [0.80 | 0.88 | 0.60
AN1 median | 342 | 216 | 0.90 | 0.63 22.80 20.93 0.897 | 0.71° [0.80 [ 0.79 | 0.60
AN1 mean | 305 | 215 | 0.90 | 0.70 22.80 19.32 0.88 | 0.76* [0.83]0.75 | 0.68
Daub mean | 321 | 200 | 0.84 | 0.62 22.80 26.52 0.86 0.67 |0.80|0.89 | 0.59

Table 5.4: Overall results (56 proteins, 239 experimentally determined trans-
membrane segments). Ny, Neorr give the number of predicted, respectively
correctly predicted transmembrane segments; Sens, Spec give the sensitivity,
specificity of prediction; < L >4, < L >,.q are the average length of the
observed, predicted segments; Sovgps, S0V, evaluate the correctness of pre-
diction versus the true segments, and the fraction of the predicted segments
that is correct; ()2 is the percentage of correctly predicted residues, Qops, @ pred
measure the percentage of correctly predicted residues relative to the number
of observed, respectively predicted transmembranar residues; « indicates a sig-
nificantly higher Sov value for the corresponding method than for Daub mean
at 99% confidence level, while 3 corresponds to a significantly higher result for
our (corresponding) method at 95% confidence level and + indicates a signifi-
cantly higher result for our (corresponding) method at 90% confidence level.
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Chapter 6

Spectral estimation for locally
stationary time series with

missing observations

6.1 Motivation

Time series with missing data frequently appear in practice. The ‘patterns’
of the missing observations are various: for instance a whole sequence of data
might be missing due to a malfunction of the machine recording the observa-
tions, the data may be censored, observations may be missing at random or

following a systematic pattern.

In this context, data analysis cannot take place within the well-specified

framework devoted to discrete time series measured at equal time intervals.

Quite commonly, when missing observations are present in the data, they
are imputed following various recommendations— ‘common sense’ is one of
them, or some computations may be performed on the ‘gappy’ data (see Chat-
field (2004)). If the missing observations occur with a periodic structure,
Jones (1962) provides a development for spectral estimation of a stationary

time series (i.e. time series for which the first and second order structures do
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not exhibit time dependency), while Clinger and Van Ness (1976) discuss the
problem of sampling stationary time series at fixed, unequally spaced time

points such that spectrum estimation is still possible.

The existence of missing observations induces irregularities in the time
locations, while certain types of data have by nature irregularly spaced obser-
vations: finance data sampled at high frequencies (such as records of traded
stocks at a certain stock exchange) are such an example (Engle (2000)). Meth-
ods for autocovariance and spectral estimation for stochastic processes sampled
at irregular locations have been developed (Hall et al. (1994); Bos et al. (2002)).
These constructions are valid for stationary time series. However, in various
fields, such as finance (Mikosch and Starica (2004)) and medicine (Nason et

al. (2001)), modelling the observed data as stationary is not appropriate.

In this chapter we will investigate the problem of spectral estimation for
a non-stationary process with missing observations. In our approach, non-
stationarity is to be understood in the sense introduced by Nason et al. (2000).
Our construction will make use of second generation wavelets, built following

the ‘one coefficient at a time’ paradigm introduced in chapter 3.

This chapter is organized as follows: we will first briefly introduce (sta-
tionary) time series, and then we shall move towards ways of modelling time
series data without imposing the strong assumption of stationarity. In this
context, we will mention the concept of rescaled time introduced by Dahlhaus
(1997), and then present the main results (needed for our development) in
the construction of LSW processes from Nason et al. (2000). In order to es-
timate the wavelet spectrum of a LSW process with missing observations, we
first construct a ‘nondecimated’ lifting scheme, and based on it we propose a

periodogram and investigate some of its properties.
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6.2 Brief introduction to time series

So far, we have been concerned with the estimation of a deterministic function,
g, at some locations z, from a sequence of noise contaminated observations of
gatz ( i) We modelled the noise, and hence the observations, as independent
random variables, and this assumption assisted us in estimating g.

When the observed data is modelled as a time series, a completely different
framework is used. Each observation is again modelled as a random variable,
but unlike before it is not assumed to be the noisy observation of a true value,
but to be merely one value out of a possible range. In other words, at each
location (usually denoting time), the observed value is a random variable com-
ing from an (unknown) probability distribution. Successive observations are
not assumed independent anymore, and the function that describes the values
of the observations as a function of their location, and as such describes the
whole process, is also assumed to be random. This is referred to in the liter-
ature under the name of a stochastic process, or simply a random function or
process. Here we refer to it as a time series to emphasize that the observa-
tions are a function of time. If the experiment that produced the initial data
could be repeated under identical conditions, for each repeat we would obtain
a completely different ‘realization’ of the process (observations versus time).
The data we obtain in practice is just a ‘portion’ of a single realization, based
on which we want to describe the process behaviour over all time points.This
is equivalent to considering an infinite dimensional probability distribution.
Fortunately, it has been proved (see Priestley (1981) for references) that it
suffices to analyse the joint distribution of the values of a process at an ar-
bitrarily large, but finite number of time points. Although this substantially
reduces the problem, imposing some assumptions on the process behaviour is
still necessary.

In what follows we will first formally introduce time series.

Definition 6.2.1. A time series is a stochastic process indexed over time, i.e.
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an application X(-,-): D x Q — R, where D is the time space and S) is the

space of events, such that:
1. for each fized time point t € D, X(t,-) : Q2 — R is a random variable,

2. for each fized event w, X(-,w) : D — R is a function of time, called the

trajectory of the process associated to w.

We used the notation w in the above definition since this is the usual
notation for events; however, it should not be confused to the notation that
appears everywhere else in this thesis, in which w is used for the frequency of
a sinusoidal type function.

If D C R, then the process is denoted by X (¢) and is said to be a continuous
time process.

If D consists of a discrete set of values then we have a discrete time process,
usually denoted by (X¢)tep. In this case D is often taken to be Z or {0, 1, ..., N}
due to mathematical necessity, rather than as a true model for the data at hand
(which might feature missing observations or irregularly spaced time points).

We shall denote the observed data by Xy, ..., X7_1. This is often referred
to under the name of time series, although we should bear in mind that there
is a fundamental difference between the ensemble of all possible realizations
and just (a ‘portion’ of) one realization.

In practice, time series data routinely crop up in practice in various fields,
from marketing (for example the records of monthly sales of say plane tickets
on a certain route, available from say, January 2000 to December 2004) to
medicine (the heart rate of an infant, sampled at every 1/16Hz during a night,

Nason et al. (2001)).

6.2.1 Stationary time series

As we have already mentioned, in order to be able to make inferences on the

characteristics of a time series (such as its variance), certain assumptions must
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be imposed on its evolution. Most often, the process is assumed to be such
that if we divide any of its realizations into smaller sections, then each section
looks very much like any other section of that realization, i.e. the statistical
properties of the time series do not change with time. Such processes are
called (strictly) stationary time series, and some excellent monographs entirely
devoted to studying them exist— see for instance Priestley (1981), Chatfield
(2004) or Brockwell and Davies (1991).

Definition 6.2.2. We say that (X;)icz is a (strictly) stationary time series if
the joint distribution of (Xy,,X4,,---,Xy, ) is the same as the joint distribution
Of (Xt1—|—T;Xt2+T;"';th—|—T); Vn, tl, ceey tn, TEeL.

This definition has several important implications:

e X, are identically distributed for each ¢, hence E(X;) is the same for any

t, so the series has no trend, and var(X;) is constant with respect to ¢,

e cov(Xy, Xyy,) only depends on the time shift 7 (often referred to as ‘lag’):
cov(Xy, Xeyr) = 7x(7), where rx (- ) is called the autocovariance function

associated with the process (X;);.

Most often, the definition above is relaxed and it is assumed that the process
is wide sense stationary: the first and second order structures of the process
do not exhibit time dependency (i.e. the series has no trend, it has the same
variation regardless of the time point and its autocovariance function only
depends on the time shift). Wide sense stationarity does not imply that the
probability distribution of X; is the same for each ¢, but only that their main
features are the same— the moments up to order 2. In the case of Gaussian
processes, wide sense stationarity implies strict sense stationarity.

The autocovariance function associated with a process (X;);cz is a valuable
tool that helps describe the behaviour of the process over time. Hence often
it is of interest to model and estimate it. The process properties can also

be analysed in the frequency domain, by analogy with the Fourier analysis of
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deterministic functions. Of course, certain modifications are required, since we

are now dealing with a stochastic process.

In the frequency domain, the goal is to understand how the process variance
is accounted for by various frequencies of sinusoidal components. This can be
achieved thanks to one of the most important results in the theory of stationary
processes, the Cramér representation of a stationary process (Priestley (1981)),
which states that any stationary time series can be represented in the limit as
a ‘sum’ of sine and cosine waves with uncorrelated random coefficients. More

exactly, a zero-mean, stationary discrete time series (X;);cz can be written as

X = /7r A(w)e™dé(w), t € Z, (6.1)

-

where w is the frequency of the building blocks, A(w) is their corresponding
amplitude and {{(w)}, is a random process with orthonormal increments,
ie. B{d{(w)} = 0 and cov{df(w),dE(w)} = dwdy,_,y(w). Note that for
each realization of the process, we make use of a different {{(w)},, but all
realizations are linked through the same deterministic function A(-). The
‘energy’ distribution of the time series (X;);cz can then be characterised by

the squared amplitudes, |A(-)[%.

Remark. The above formula can be viewed as an ‘equivalent’ of the repre-
sentation (2.3) for deterministic functions. We should however note that there
are some fundamental differences between (2.3) and its stochastic counterpart,
(6.1). In the above formula for each frequency w, d€(w) is a random variable
and the integral is in fact a stochastic integral. The equality (6.1) has there-
fore to be understood in the mean square sense. Also, since we are analyzing
discrete time series with a unit time sampling, the range of frequencies is re-
stricted to the interval [—m, 7] due to a phenomenon called aliasing, by which
frequencies {w + 2kw}, are indistinguishable for w (see for details Priestley

(1981)).

For a process (X;)icz having the representation (6.1), it can be shown
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(Priestley (1981)) that its autocovariance function can be written as

rx(7) = /W |A(w) e dw, T € Z. (6.2)

-7

The following notation is usually used
fx(w) =AW)]*, w € [-m,], (6.3)

and fx(-) is called the spectral density function of (X;)iz. Formula (6.2)
shows that the autocovariance function and the spectral density function cor-
responding to a process are a Fourier pair.

Priestley nicely summarizes the interpretation of the spectral density func-
tion: fx(w)dw represents ‘the average (over all realizations) of the contribution
to the total power (variance of the process) from components in X; with fre-

quencies between w and w + dw’.

6.2.2 Locally stationary time series

We have already noted that in practice it is not always reasonable to assume
that certain time series have a stationary behaviour. Once the stationarity
assumption is dropped, other assumptions on the process, although less re-
strictive, still have to be imposed in order to be able to make inferences on the
process characteristics, such as estimation of its variance.

Throughout this chapter we shall concentrate on trend-free processes with a
second order structure that varies slowly with time. Such time series are called
locally stationary (Nason and von Sachs (1999)), since they appear to have
a stationary behaviour over short stretches of time. This ensures that their
statistical characteristics (such as the autocovariance function) can be (locally)
estimated by pooling the observed data over the regions of local stationarity.

One of the first attempts to formulate a spectral theory for nonstationary

processes is due to Priestley (1965). In his paper, Priestley (1965) introduced,
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by means of time-dependent amplitudes A;(-), a class of nonstationary pro-
cesses: the oscillatory processes. The variation of their amplitudes as a func-
tion of time is assumed to have a degree of regularity, which ensures the local
stationary character of the process. A time-dependent evolutionary spectrum
is also defined, which describes the frequency content of the process over time
neighbourhoods.

Motivated by the need to construct a framework that would allow for
asymptotic inference (such as establishing the consistency of various estima-
tors), Dahlhaus (1997) introduced a new concept of rescaled time by controlling
the evolution of the individual amplitudes A;(w) through a function depen-
dent on rescaled time, A(t/T,w), where t € 0,T — 1. In his construction, with
larger T" more information is collected on the local behaviour of the function
A(-,w), defined on the fixed interval [0, 1]. Consequently, the model structure
may be asymptotically obtained by addressing the familiar problem of curve
estimation.

The formal definition of the locally stationary processes introduced by

Dahlhaus (1997) is given in what follows.

Definition 6.2.3. The sequence of zero-mean stochastic processes {(Xt,1),c57—1,
T =1,2,...} is said to be locally stationary with asymptotic transfer function
A(+,+) 1 [0,1] x R = C, continuous in the first argument and 2m-periodic in

the second one, if there exists a representation

Xip = [ b w)edee), (6.4)
where 3 K such that
t K
Supt,w|A7(§),T(w) - A(Taw” < Ta VTa

and {&(w) }w s a random process satisfying some specific properties (see Dahlhaus

(1997) for a detailed description).
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Notice that in the above model a different process (X¢r);.g7— corresponds
to each T. Therefore, an increase in 7' must not be understood as extending
a fixed time process further into the future, nor as discretizing it on a finer
grid. The common factor of all these processes is the asymptotic transfer
function A(-,-) which regulates the behaviour of the time varying individual
amplitudes. The smoothness of A(-,-) in the first argument tunes the degree

of local stationarity of each process.

An associated evolutionary spectral density function is defined in terms
of rescaled time (z = t/T), fx(z,w) = |A(z,w)|?>. This has the advantage
of being uniquely defined, unlike the spectrum that arises through Priestley
(1965)’s approach.

6.2.3 Locally stationary wavelet (LSW) processes

Wavelets have been so far used for a wide variety of problems that arises in
time series analysis, as Nason and von Sachs (1999) show in their review paper
and Percival and Walden (2000) in their comprehensive monograph.

Due to their nature, wavelets deliver a time-scale representation, com-
plementary to the time—frequency interpretation that arises from a Fourier
analysis. The classical Fourier spectral analysis is replaced by a wavelet spec-
tral analysis. For stationary processes, Chiann and Morettin (1999) used the
decomposition on an orthonormal wavelet basis to develop an alternative to
the classical (Fourier) periodogram, the wavelet periodogram, used to estimate

the wavelet spectrum.

This chapter builds upon the work of Nason et al. (2000), who proposed a
new way to model time series with a time-dependent second order structure,
based on a family of discrete nondecimated wavelets {1); x(¢)},; x which replaces
the set of sine and cosine waves ({€/w € [—m,7]}), and on the concept of
rescaled time of Dahlhaus (1997). Their process is assumed to have a local

stationary behaviour, ensured by constraining the model coefficients to change
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slowly within each scale.

The authors refer to processes built as above under the name of locally
stationary wavelet (LSW) processes.

In what follows, rather than making the usual assumption that the observed
data lives on scale J(T') = log,(T), the observed time series is assumed to live
on scale 0, so the finest level is —1 while the coarsest level is —J(T) (in a
multiresolution analysis frame ... C V_yp) C ... CV_; C Vp).

Discrete wavelets.

We shall first introduce the building blocks of a LSW process, the discrete
nondecimated wavelets, as introduced by Nason et al. (2000).

Their construction is based upon a low and a high-pass filter (h = {hg }«,
g = {9k}, respectively) which satisfy the quadrature mirror filter relation
(gr = (=1)*hi_;) and have a finite number of non-zero coefficients, which we

denote by N, = card{k/hy # 0}.

Definition 6.2.4. The family {v;x(t)}j<-1,kez s a nondecimated collection
of discrete wavelets associated to the filters {h, g} if

1. at each scale j < —1 we have the discrete wavelet vector ; = (Vj0, ..., ¥j1,-1),

where L; is the wavelet length, given by L; = (277 — 1)(Np — 1) + 1,

2. we define ¥, k(t) = Yjp—t,k € Z.

The vector sequence {1;}j<_1 is recursively given by the following equations:

Yok = Y Gr-ombom =gk k€0, L1 —1,

wj—l,k = th—anj,n; ] < _1, ke O,Lj_1 — 1.

Since ;. (t) = 1,0(t — 7), it follows that within each scale j, the wavelet
functions are translated versions of each other, each with compact support of
length L;, which increases with the coarser scale (i.e. with decreasing j). By
assuming that the time series lives at scale 0, the support of the wavelets on

the finest scale is fixed, L_; = N, and independent of T'.
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We shall now also introduce the discrete autocorrelation wavelets of Nason

et al. (2000).

Definition 6.2.5. The discrete autocorrelation wavelet at scale j < —1 1s

defined as

L;—14+min{0,7}

Ui(r)= Y l0)ie(r), TEZ (6.5)

k=maz{0,r}
Each ¥,(-) is symmetric about 0, has compact support [1 — L;, L; —1] and
the family {U;(-)},<_1 is linearly independent (Nason et al. (2000)).
The inner product of any two discrete autocorrelation wavelets, ¥;(-) and

U, (-), is given by

min{L;,L;}—1

gt = Z \II]'(T)\III(T)) jal S _]-7

7=1-min{L;,L;}

A

and we will denote Ay = (4;,),; ,c=7em=7-
LSW processes.
In what follows we give the main points of the formal definition of a LSW
process, and the interested reader can refer to Nason et al. (2000) for the

complete definition.

Definition 6.2.6. A sequence of stochastic processes {(Xy 1)o7, T = 2/(T) =

1,2,...} is a zero-mean LSW process if it admits the following representation

-1
Xt,T = Z ij,k;T¢j,k(t)€j,ka (6-6)
j=—J(T) k€Z
where ) (t) is a nondecimated discrete wavelet at scale j and location k,
Wj gt U8 its corresponding amplitude and {&;x};x is a sequence of zero-mean,
orthonormal random variables.
Within each scale j, the evolution of the amplitudes {wj,k;T}lceO,T——l 18 reg-
ulated by the Lipschitz continuous function W;(-), defined for rescaled time
k
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Note that as before, we (somewhat abusively) refer to the non-random part
of the building blocks coefficients under the name of amplitudes. The functions
{W;(-)}; are the equivalent of the asymptotic transfer function in definition
6.2.3, and control the degree of local stationarity of the process by forcing the
amplitudes {w; v}, to vary slowly within each level.

By analogy with the evolutionary spectral density (see previous subsec-
tion), for the LSW process defined above, an evolutionary wavelet spectrum

{S;(: )}jem can be defined by

2 where z € (0, 1) (6.7)

S](Z) = ‘WJ(Z)|2 = limT_)oo‘wj,LzTJ;T

and |27 | denotes the largest integer not exceeding z7. Note that asymptot-
ically, when T — oo it follows that J(T') — oo, which consequently expands
the ‘span’ of the scale j to j < —1. The spectrum defined above quantifies
the contribution to the process variance made at location z and scale j. Na-
son et al. (2000) proved that any stationary process with absolutely summable
autocovariance is also a LSW process, and in this case {W;(-)}; is a constant
function within each scale, hence {S;(-)}, also depends only on the scale j.

For fixed T, the autocovariance of the process (Xt,T)tem depends both on
the lag, 7 and on the rescaled time location, z, and it is denoted by cr(z,7) =
cov (X |zr), X |z1]41)-

Nason et al. (2000) show that the autocovariance function czp(-,-) tends
to an (asymptotic) local autocovariance c(-,-): |er(z,7) — e(z,7)| = O(T™1),

where ¢(z,7) is defined in the following.

Definition 6.2.7. The local autocovariance function of a LSW process defined

i 6.2.6 is given by

c(z,7) = i Si(2)¥;(T). (6.8)

j=—00

Although representation (6.6) of a LSW process is not unique, the evolu-

tionary wavelet spectrum is unique in terms of the local autocovariance, and
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vice versa (Nason et al. (2000)).

The linear independence of the family {U;(-)},<_1 ensures the invertibility

of the covariance—spectrum representation (see Nason et al. (2000) for proof)

S;(z) = i Al (Z c(z, ﬂ%(ﬂ) , (6.9)

where A7' = (A7]) jie=7m,—1 1S the inverse of the matrix A; previously intro-

7>l
duced.

Hence while for stationary time series the associated covariance function
and spectral density function are Fourier pairs, for LSW processes they are

‘wavelet conjugated’.

Relations (6.8) and (6.9) highlight that if we can estimate the spectrum
{S;(-)};, then we can produce an estimate for the local autocovariance c(-, - ),
and vice versa. Let S;(z) be a spectrum estimator, then taking é(z,7) =
j_:l_J(T) S;(2)¥,(7) we obtain an estimator for ¢(z,7). For certain choices of

S'j(z), the estimator é(z,7) enjoys good properties, such as consistency (see

proposition 5 of Nason et al. (2000)).

So the focus is to obtain a well-behaved estimator for the spectrum. To
achieve this, Nason et al. (2000) introduced the wavelet periodogram of a LSW
process (Xir),57—1, this time constructed with respect to the nondecimated

discrete wavelet family {; () };x,
Ii,T = dj g, (6.10)

where d; y.r = tT:_Ol X1, ,(t) is the empirical wavelet coefficient at scale j

and location k.

For z € (0,1), denote by I, (z) = (I’

L)1) je—aem,—1 the (vector) wavelet

periodogram and by 5(z) = (5j(2)) ;c—7 -1 the (vector) evolutionary wavelet

spectrum.
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Nason et al. (2000) show that

E(I;(2)) = A;S(2) + O(T ™), z € (0, 1), (6.11)

which implies for z = £

E(Il;) = Z A; lSl ) +0(T™Y). (6.12)

I=—J(T
So the expected value of the wavelet periodogram is (asymptotically) a linear
combination of wavelet spectrums, and a corrected vector of periodograms,

L(z) = (L{zTJ 1) je=7em—7 Will be used instead for estimating S(2):
L(z) = 47 Iy (2).

Relation (6.11) shows that L(z) is asymptotically an unbiased estimator for
the evolutionary wavelet spectrum, S(z) for all z € (0,1).

However, Nason et al. (2000) show that I,(z) has an asymptotically non-
vanishing variance, so it is not a consistent estimator for the wavelet spectrum.
To obtain consistency, IszJ T will be first smoothed as a function of z within
each scale j. Then correction with A" of the smoothed I5(z) will provide a

wavelet spectrum estimator, (S;(2)) . For properties of this estimator,

jE—J(T),—].
the reader is referred to Nason et al. (2000).

6.3 LSW processes with missing observations:

heuristics of the problem

As we have already pointed out, time series with missing observations fre-
quently arise in practice. In what follows, we shall assume that we observe a
nonstationary time series that belongs to the class of LSW processes (intro-

duced in section 6.2.3) which features missing observations. In this context,
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we will address the problem of estimating the evolutionary wavelet spectrum
{S;(-)}; associated with the process, analyze the problems that arise due to
the missing observations and propose a second generation wavelet-based con-
struction for estimating the spectrum.

In this section we will give a heuristic explanation of the proposed ap-
proach, and illustrate the discussion with an example. The next section will
be concerned with formalising our proposal and investigating some of its prop-
erties.

We shall assume that for some 7" we observe (Xt,T)tem’ where X, r

admits the representation from definition 6.2.6,

—1
Xir = Z ij,k;ﬂbj,k(t)fj,k;
j=—J(T) k€Z
but unlike before, we do not have an observed value X, r for each t € 0,7 — 1.
For a LSW process, defined as a sequence of stochastic processes (see definition
6.2.6), there are two ways in which the locations of the missing values can arise
for different values of 7— we can either assume that the locations change with
T, or that the missing time locations corresponding to the smaller 7" are fixed.
These issues need to be further considered for an asymptotic development.

As we have seen in the previous section, for the estimation of the pro-
cess’ characteristics of interest, such as the evolutionary wavelet spectrum or
the local autocovariance function, we first need to obtain the wavelet peri-
odogram, I/ﬁ,T = dj ;. for each j € {-=J(T),..., =1} and k € {0,...,T — 1}.
In the computation of the empirical wavelet coefficients d; ., all process values
(X¢1) 57— are involved since dj 1 = o Xortik().

We now confront the fact that the previous sums would involve missing
observations, due to our model formulation. Possible ways for circumventing
this problem are: (i) estimate ‘somehow’ the missing values, or (ii) use a
different wavelet decomposition to produce wavelet coefficients at the non-

missing locations within each scale, by making use only of the observed process
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values.

In the absence of information that would lead to informed estimation of
the missing values, in this chapter we shall concentrate on providing a way for
estimating the evolutionary wavelet spectrum when the process presents miss-
ing observations, by addressing the possible solution in (ii). Since the missing
observations induce irregular spacing of the time points, we will propose an
approach based on second generation wavelets, constructed using the lifting
scheme based on the ‘remove one coefficient at a time’ paradigm of Jansen et
al. (2004), presented in chapter 3.

However, once we decide to decompose the observed process using a dif-
ferent wavelet family to {1; (- )}k, another problem arises. We have already
seen that the use of discrete nondecimated wavelets ensures that the empirical
wavelet coefficients d; . are generated within each scale j € {—J(T),...,—1},
at each location k € {0,...,T — 1}. The lifting scheme however, produces ex-
actly one detail coefficients at each design point, which is therefore associated

to only one (artificial) scale. This poses the first challenge in our approach.

6.3.1 ‘Nondecimated’ second generation wavelet approach

We shall propose a second generation wavelet method to generate (at least) a
wavelet coefficient corresponding to each time location within each scale, where
the notion of scale is to be understood in the sense introduced by section 3.3
of chapter 3. We propose a bootstrap type approach for this problem.

We shall modify the lifting scheme removing one coefficient a time intro-
duced by Jansen et al. (2001). In the original approach, at each step the point
to be removed is chosen according to the size of the integral of its associated
scaling function. We propose to modify this approach and consider all possible
permutations that define the removal order of the time points. Each ordering
consequently generates its corresponding empirical wavelet coefficients. If n

observations of the process are available, the number of such permutations is
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n!, which is too large to be feasible for implementation. Hence we shall take
a ‘large enough’ sample of these permutations, and generate the empirical

wavelet coefficients correspondingly.

Such a construction ensures that within each artificial scale (defined in

section 3.6.2), a distribution of details associated to each location is obtained.
We now illustrate the above discussion with an example.
Example.

Let us take the evolutionary wavelet spectrum {S;(-)};<_1, described in
formula (6.13), which at the finest level (-1) exhibits a burst of activity, and

at the coarser level -4 exhibits a squared sinusoidal behaviour (see figure 6.1).

(

1, forj =—1, z € (353, 23),
Sj(z) = { sin(4nz), forj = —4, (6.13)
0, otherwise.
\

Using the ‘LSWsim’ function implemented in the R-package WaveThresh,
available at http://www.stats.bris.ac.uk/~wavethresh, we shall first sim-
ulate a LSW process of length 7' = 256 corresponding to the above spectrum.
We take a random sample of n = 200 time points out of the 256, and then
record their corresponding ‘observed’ process values in order to obtain an ex-
ample of a LSW process with missing observations. An example of such a
process (with missing data) appears in figure 6.2, and is represented on an
irregular time grid. Note that the sinusoidal character might be guessed in the
first half of the realization, but in the second half the burst is masking it. The
distribution of the 56 missing time points is represented in figure 6.3, and their
locations can be also seen in figure 6.2. We note that the region which features
the activity burst has slightly more missing observations, which will probably
influence the accuracy of the final spectrum estimator. Also, the estimation

will be influenced by the overall proportion of missing observations.
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Figure 6.1: Evolutionary wavelet spectrum. The scale runs from finest (bot-
tom) to coarsest (top).
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Figure 6.2: Simulated LSW process corresponding to the spectrum in figure
6.1 and featuring missing observations. Triangles indicate locations of missing
time points.

174



6.3. LSW processes with missing observations: heuristics of the problem

N
—

o
-

© -
© -
< 4
~ 4
o J

T T T T T |
0 50

100 150 200 250

14
|

Time locations

Figure 6.3: Distribution of the missing time points.

For the lifting procedure there are 256! possible removal orderings of the
time points that can be used in order to generate the detail coefficients. In
what follows we shall take a simple random sample of m = 1000 trajectories
out of the total 256!. Each trajectory gives the order in which the empirical
wavelet coeflicients will be produced. For each case, we will modify the lifting
scheme such that it follows the corresponding random path. We leave the
prediction and update steps unchanged, and use a prediction step that employs
linear regression with an intercept and with 2 neighbours in a symmetrical

configuration in order to generate the details at each step.

The lifting algorithm generates 5 artificial levels in which the details are
arranged, rather than 8 scales as for the initial signal. Except for the obser-
vation at time 157 which never appears at the finest artificial level, all the
other points appear at all levels. Note that we could increase the number of
random sampled trajectories, m, until we ensure that all points appear at all
artificial levels. Following this procedure, each time point is associated with a

distribution of empirical wavelet coefficients within each artificial level.
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Figure 6.4: Number of times each time point is represented with details within
each artificial level. The artificial levels are from finest (1, bottom) to coarsest
(5, top). The intensity (darkness) of a pixel corresponds to a higher number
of appearances. White lines extending over all artificial levels correspond to
the missing time points.

Let us take as an example the observation at time 15. This time point has
associated wavelet coefficients as follows: in the first artificial level (the finest
level) it appeared 542 times, in the second level 206 times, in the third level
97 times, and 58 and 86 times in the last two levels respectively. Figure 6.4
represents the frequency of appearance of each time point with detail within
each artificial level. Since by its construction the finest artificial scale incor-
porates half of the initial time points, it comes as no surprise that most time

points are well represented with detail at this level.

Continuing to investigate the behaviour of the same time point, figure 6.5
gives the histograms of its corresponding detail values within artificial levels 1,
2 and 5. Note how the values of the empirical wavelet coefficients change with
the artificial level: the coarser the level, the larger the span of their values,
and the less ‘concentrated’ they are. A direction for future work would be

to investigate a possible way of modelling the detail coefficients within each
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artificial level, perhaps by using a mixture of normal distributions.

Therefore, in the light of the issues that arose in this example, we are
confronted with the next problems. So far, we have obtained a distribution of
details within each level, while the approach of Nason et al. (2000) generates
an unique detail for each time location and scale. Also the scale in the wavelet
spectrum is understood in the usual sense for classical wavelets, while in the
second generation wavelet approach we construct a different, ‘artificial’ scale

(section 3.6.2).

6.3.2 Proposed second generation wavelet periodogram

As a first approach to constructing a periodogram associated with our model,
at each observed time location and at each (artificial) scale we used the squared
average of the corresponding details, although further refinements are of course
needed.

Figure 6.6 shows that even in such a naive approach, the power burst (and
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Figure 6.6: Squared average of the details at each sampled time point, within
each artificial level (finest scale at the bottom, coarsest scale at the top).

its approximate location) and the sinusoidal component of the true spectrum
are vaguely detected. However, there is an obvious ‘leak’ of power between lev-
els, which was to be expected given the different division into scales induced
by second generation wavelet constructions. An issue is therefore to try to
understand the correspondence between the initial and new scale decomposi-
tion, and construct a wavelet periodogram that parallels the one of Nason et
al. (2000).

Let us remember that scale in the second generation wavelet context ap-
pears as a concept of continuous nature (see section 3.3), and that the artificial
levels were constructed to ensure similarity between the detail representation
in the lifting scheme using one coefficient at a time and the classical wavelet
approach.

In what follows, we decide to explore the consequences of the continuous
character of scale, rather than use its artificially constructed discreteness. For
each observed time location, we first investigate the magnitude of the squared

detail coefficients as a function of the scale to which they are associated.
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Magnitude of squared details

Figure 6.7: Magnitude of the squared details associated to the observation at
time 15, versus (log, of) their associated integral lengths. The superimposed
curve is obtained by smoothing using a cubic spline.

In practice, to ensure that the final periodogram representation parallels
the classical one, instead of the actual scale values (i.e. the integral lengths

corresponding to the scaling functions) we used their log, values.

Figure 6.7 shows that there is lot of variation in this representation, so we
followed a nonparametric regression approach and estimated by means of a
linear smoother the (true) function that links the magnitude of the squared
details to their corresponding scale.

For each observed time location, we obtain the estimated values of the
smoothed squared details corresponding to a discrete set of ‘evaluation’ scales
(on the log, range mentioned above). This set can be tuned as a finer or coarser
division of the scale range, whichever is more appropriate to the problem at
hand.

The array that gives the estimated squared detail at each time location and

‘evaluation’ scale is our proposed periodogram.

Figure 6.8 gives two examples of such a periodogram, each corresponding
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to a different ‘evaluation’ scale. The range of these scales is roughly 0 to 8 (in
a continuous manner, with smaller values corresponding to finer scale), and
an approximate correspondence can be established with the initial discrete
levels —1,...,—8. Note though that since not all time points are associated
to integral lengths spanning the whole 0 to 8 range, missing values appear at
the bottom and top rows of the matrices represented in figure 6.8. However,
the use of the finer scale diminishes this problem to some extent. Observe that
both the burst and the (4) squared sinusoidal peaks are detected within the
correct scales. However, the region approximately between times 150 to 175
does not contain much signal. This might be due to having a slightly higher
proportion of missing observations from that area (figure 6.3), than from the
rest.

In what follows, guided by the previous heuristic discussion, we shall embed
our proposed approach into a formal framework. We will also establish a
connection between the initial evolutionary wavelet spectrum and our proposed

periodogram, in order to make a step towards a corrected periodogram.

6.4 Formal approach

This section, although organised as a theorem-proof environment, is not in-
tended to provide an asymptotic theory for our construction. Its purpose is to
help the understanding of the relationship between the evolutionary wavelet
spectrum and our proposed estimator, and provide the grounds for future
constructions which would deal with the estimator’s bias and power diffusion
between scales. For the future it would be interesting to set up a rigorous
framework that would allow for asymptotic considerations of our approach.

We shall start with a realization of a LSW process, (Xir);cg7— (for some
T), which features missing observations, i.e. at some time points we do not
have the corresponding X values.

We define T independent identically distributed Bernoulli random vari-
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Figure 6.8: Proposed ‘raw’ wavelet periodograms to estimate the wavelet spec-
trum of figure 6.1. The smoothed squared details are represented on two dif-
ferent ‘evaluation’ scales (with 17, respectively 27 equally spaced divisions for
the interval 0-8), with the bottom picture corresponding to the finer scale di-
vision. In each plot, the scale gets coarser from bottom upwards and darker
pixels correspond to a higher estimated spectrum value.
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ables, which model the appearance of each time point ¢ € 0,7 — 1 in the final
set of data, i.e. I; ~ Bernoulli(p), where (1 —p) is the probability of each initial
time point of being missing from the final collection of observations.

The number of observations on the process, let us denote it by n, is then
given by n = ZtT;()l I;, and consequently n ~ Bin(T,p). Let us denote those
t € 0,7 — 1 for which I; =1 by t,1s, ..., ts, and the whole set of time points
corresponding to observations on the process by . = {t1,t2,...,t,}. We will
use the notation I» for the vector of (I, I,, ..., I;,), and similarly for the set
of missing time points, I = (I,);c» where . = {0,1, ..., T — 1} \ .7,

Throughout this section we will be working conditional on the time lo-
cations corresponding to observations on the process being fixed. In other
words, we will assume that (I» = 1,17 = 0), which in practice means that we
have available information at n locations, ¢4, ...,t, and we ignore the random

character of these locations.

6.4.1 Constructing a ‘nondecimated’ lifting transform

In what follows, we shall exploit the construction of the lifting scheme removing
‘one coefficient at a time’, presented in section 3.3 of chapter 3. We aim to
propose a second generation wavelet method through which we obtain (at
least) an empirical wavelet coefficient for each location (¢;);c1;, at all scales,
where the notion of scale is to be understood in the sense implied by the lifting
scheme (see section 3.3).

We will focus on the flexibility generated by the order of producing the
detail coefficients. In the approach introduced by Jansen et al. (2001), the
order of transforming scaling coefficients into detail coefficients is established
by using the integral lengths of the scaling functions, which account for the
‘span’ of each point. Here we propose to generalize this criterion, and allow
for full flexibility in choosing the order of obtaining the detail coefficients.

We will modify the lifting transform to accommodate a random order
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of generating the wavelet coefficients, while the prediction and update steps
will be left unchanged. Then our proposal is to repeatedly apply the modified
version of the lifting transform wusing one coefficient at a time, every time
following a different ‘path’. Here by ‘path’ (or trajectory) we mean the vector
that gives the order of removing the points, and consequently of generating
the detail coefficients.

The n time points ti,...,t, can be arranged in (ordered) vectors of length
n in n! ways. Out of this sample space, we will randomly extract say m such
orderings, which will give the ‘paths’ that the (modified) lifting algorithm will
take.

For each selected trajectory, the modified lifting transform will generate a
set, of detail coefficients. Let us denote the n-dimensional (row) vector of detail
coefficients by d” = (dy, r);crz-

Using the matrix representation of the wavelet transform, we can write

dtl T th,T

dtn ;T Xt'n :T

where R € .#,, is the matrix built in the process. This is in fact the matrix
W from section 3.5.2, but here we chose not to use this notation in order to
avoid any confusion with the notation of definition 6.2.6.

From the above it follows that d;, 7 = 7

TijXt;, 5 Vi € 1,n, and each
detail is a linear combination of the observed Xy, r’s, i € 1, n.

The vector of details, d* has a random character, inherited from the pro-
cess (X4;,7)ictrm- The elements of the matrix R depend on the prediction and
update filters (see section 3.5.2), which in their turn depend only on the time
locations for a linear transform, and of course on the regression order used
in the prediction step. Therefore, since we work conditional on having fixed

design points, (tx)yc1n, the elements of the matrix R can be assumed non-

random. Moreover, due to the characteristics of the lifting construction that
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Figure 6.9: Matrix R for the process in the previous example and LP1S (see
section 3.6.1). Darker pixels correspond to higher (absolute) values of the
elements of R.

removes one coefficient at a time, at each stage of the transform, the prediction
and update weights are non-zero only for those locations corresponding to the
neighbourhoods used at each step for prediction, hence the matrix R is sparse
(for an illustration refer to figure 6.9). For each of the m ‘paths’, we apply the
lifting algorithm and generate a different matrix R!, ..., R™. Correspondingly

we get m sets of wavelet vectors, d"7, ..., d™7.

Hence for each time location t, we obtain a set of details, {df ;},ctmm-
Each detail df, 1 is associated to an interval that intuitively accounts for the
‘span’ of time location ¢, at the respective stage in the algorithm. We shall
denote the length of this interval by I 7, which will provide our measure of
scale. Therefore, at each time location we obtain a set of details, which we can

model as a function of their scale.

Simply in order to make a parallel with the wavelet decomposition obtained
using nondecimated classical wavelets, we can consider the scale division in

artificial levels, as explained in section 3.6. Then for each time location and
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each artificial scale, we obtain a set of details (rather than exactly one empirical
wavelet coefficient, as in the classical approach using nondecimated wavelets).

As we have already pointed out in the previous section, an approach would
be to further model and investigate the distributions of details that appear
for each time location and artificial scale. However, in what follows we shall
not pursue this avenue, but rather exploit the continuous nature of scale that

arises in the second generation wavelet context.

6.4.2 Periodogram associated with the ‘nondecimated’

lifting transform

In section 6.2.3 we introduced the periodogram proposed by Nason et al. (2000)
for estimating the evolutionary wavelet spectrum. This was an array filled in
with the values of the squared detail coefficients corresponding to each level
and time location, where the level had the usual multiresolution meaning on
a log,(T') scale (see equation (6.10)).

Our aim is to construct an array similar to the wavelet periodogram de-
scribed above. Since for second generation wavelet constructions the scale
associated to each detail coefficient has a continuous character, we shall ‘dis-
cretize’ the scale in a different manner than when constructing the artificial
levels.

To ensure comparability with the construction from Nason et al. (2000),
we shall choose a set of ‘evaluation’ lengths, which we denote by },12,...,1'
for some J*. Through J*, we are in fact tuning the proposed discreteness of
the scale.

For each scale [* with ¢ € {1,...,J*} and each time location t; with k €
{1,...,n}, we need to ‘manufacture’ a corresponding value of the squared
detail.

This can be achieved by taking for each fixed location (say t;z) a non-

parametric regression approach in modelling the magnitude of the associated
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squared details (d _r)?, ..., (df! 7)* as a function of the corresponding interval
lengths ltlk,T, -, 1t p (vefer to figure 6.7). For each time location #;, we will
denote by f;, r the function we want to estimate. In practice, we are interested

in its values at the set of ‘evaluation’ lengths, I*,1%,...,17".

In other words, for each ¢, with k € 1,n we model the data as

() = for(f 7) +€a, a€lm, (6.14)

and we want to obtain an estimate f;_7(I") for each i € 1, J*.

We will estimate each fi, r(-) by using a linear smoother, hence

m

Fror (1) =" Ko (I(d3, )%, Vi€ LT, (6.15)

a=1

where K,(I') are weight functions that are non-zero only for those o values
such that [? ; is in a neighbourhood of /. We note that the weights K,(-) are

different for each ¢, but we do not indicate it to avoid cluttering the notation.

The above value of f,, 1(I?) is an estimate of the magnitude of the squared

detail ((d? ;)?) at time #; associated to the interval length [".

The matrix (ftk,T(li))iel,T,keTn (e.g. figure 6.8) corresponds to the raw

periodogram (d?,k;T)je—J(T),—l,kGO,T—l introduced by Nason et al. (2000), and it

represents our proposed periodogram.

In what follows we aim to obtain E(f, r(I")|I» = 1,1, = 0, fixed paths),
in order to highlight the relationship between our corresponding ‘raw’ peri-
odogram and the (unknown) evolutionary wavelet spectrum of the process.
This can be viewed as trying to establish the equivalent formula to (6.12) from

the LSW approach for our setup here.
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6.4.3 Relationship between the proposed periodogram

and the evolutionary wavelet spectrum

We are interested in obtaining a formula that would show how the proposed
lifting operations work for spectral estimation. In particular, we are interested
in an analogous derivation to E(I,ﬁ"T) = Zl_:l_J(T) AjSi(E) + O(T71) from
Nason et al. (2000). The following development is only meant to parallel such
a formula and is not, at this stage, a rigorous asymptotic development. It is
clear from the illustrations shown thus far (e.g. figure 6.8) that some kind of
blurring is present in our proposed periodogram, and the formula we derive in
this section suggests that the blurring can, in principle, be corrected.

We shall first obtain the covariance structure of the wavelet coefficients as a
function of the initial spectrum, both for each run of the lifting scheme, and be-
tween different runs. In other words, we are interested in cov(df. r, dZ oy =
1,15 = 0,fixed paths), Vi,i' € 1,n,Va, 3 € 1,m. Notice that we are condi-
tioning on the trajectories being fixed, rather than take into account their ran-
domness, as this would in turn induce randomness in the matrices R!, ..., R™.

As a first step, the following lemma will establish a link between the

variance—covariance matrix of the detail coefficients and the (sample) auto-

covariance matrix of the initial LSW process at the observed time points.

Lemma 6.4.1. Under the previous notation, the following relations hold:

cov(dg, 1, di, 71y = 1,15 =0, fired paths)

= Z Z 7"2‘]— COV(th1T’ th,’T|Iy = la Ij = Q)rg,jla (616)

j=1 j'=1
forVo,B € 1,m, Vi,i' € 1,n.
Proof.
For any a € 1, m, let us denote
¥l = var((d*")"|1y = 1,15 = 0, fixed paths) € A, .
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Also, for any «, 8 € 1, m, we shall use the notation

AT = cov((d®™)T, (") |15 = 1,15 = 0,fixed paths) € M.

Therefore, the variance-covariance matrix of the vector (d*7,d*")” e

Mon,1 takes the form

(da,T)T o, T Aa,,B,T
var I+ =1,17=0,fixed paths | =
(C_ZB,T)T (Aa,ﬂ,T)T E’B’T
(6.17)
Since
(da’T)T = Ra((Xti,T)ieﬁ)T’ a€clm, (618)

it follows that for any «, 8 € 1, m we have

(C_la,T)T Ra
(dﬂ T)T = R ((Xti,T)iel n)T
Hence
(C_la’T)T RCEE(T) (Ra)T Raz(T) (Rﬂ)T
var I+ =1,17=0,fixed paths | =
(dﬂ,T)T REX(T) (Ra)T RﬂE(T)(Rﬂ)T

(6.19)
where ST = var(((Xy, 1)icts) "Ly = 1,17 = 0) = (0 4:7) j ket is the (sym-
metric) variance-covariance matrix of the observed signal (with missing obser-
vations), having assumed that the missing points are deterministic rather than

random quantities.
Using relation (6.17), we obtain
yol = RESD(RYT, Va € T,m, (6.20)
AT = ReSM(RAT . Yo, B €T, m. (6.21)
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Written explicitly, equation (6.21) takes the form

n

cov(dy: T,dflT|Iy—1 I; =0, fixed paths) = ZZr”cov Xy, Xeyrlly =1, I;=0)rb Tir i
Jj=1j=1

(6.22)
forVo,3€1,m, Vi, €1,n. N

So far we expressed cov(dg’T,dZ, oIy = 1,17 = 0, fixed paths) as a lin-
ear combination of sample autocovariances of the initial process (X;r);c57—1
tnvolving only the observed locations.

Next, we will extend this relation and link COV(dZ,TadZ,,TUY =115 =

0, fixed paths) to the local autocovariance of the process.

Proposition 6.4.2. For Vo, 3 € 1,m, Vi, i € 1,n we have

cov(dg 1, dy, T|Iy =1,15 =0, fized paths) = ZZT”C b i —15) iﬂ,,j,-i-RT,

Jj=1j3=1
(6.23)
where Ry is a term of order O(T—).
Proof.
If we let z; = % € (0, 1), then the process autocovariance can be written as

cov(Xy, 1, Xe, rlly = 1,15 = 0) = cov(X o), X1 4,15 Ly = 1,15 = 0).
Therefore, we can write

t.
cov (X1, Xiyr| Iy = 1,157 = 0) = er (7,

Lty — 1)), (6.24)

where cr(-,-) is the autocovariance of the LSW process (Xir);cg7—7, intro-
duced in section 6.2.3, and we assume the conditioning still holds.

From the result in the previous lemma and equation (6.24), we obtain

cov(dy; t;,T t T|I§’ = 1,157 =0, fixed paths) = ZZTHCT . )Tﬂjl.

Jj=1j'=1
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Nason et al. (2000) proved that the process autocovariance and local auto-
covariance functions are linked through cr(z,7) = ¢(z, 7)+ Ry, for any rescaled
time location z and lag 7, where Ry is a term of magnitude O(7!). From the

above relation, the following becomes apparent:
cov(d;: 7, dy, T\Iy_l I; = 0, fixed paths) = ZZTHC i L —tj) 5,j’+

Jj=1y4=1
n n
a B
+> > iRty

j=1 ji=1
for Vo, B € 1,m, Vi, i’ € 1,n.

Denote Ry = Ry Y7, >0, T Z, ;. Therefore, RT—RTZ] DI Z, -
We have pointed out that the matrices associated to a lifting transform remov-
ing one coefficient at a time have a sparse character, so for a fixed ¢ the sums of
the type > j=1Ti;j only involve a finite number of elements, independent of the
magnitude of n. If more data is collected, then there is a chance that the new

observations will be involved in }_" for a fixed 7, but the combination will

j=1 z]
i iy = C* < oo. As Ry = O(T™"), it follows that
3k < oo such that |Ry| < kT~'C*CP < 00, so Ry has magnitude O(T~1).

still be sparse, hence Y "

Using the definition of the local autocovariance (6.8) and equation (6.23),
we can obtain an expression of cov(dy 1, d;, 7T|]y = 1,1, = 0, fixed paths) in
terms of the evolutionary wavelet spectrum of the LSW process, {S;(- ) };, and

the discrete autocorrelation wavelets, {¥;(- )}, from definition 6.2.5.

More exactly, by replacing the local autocovariance

T) = i Si(2)¥, (7

l=—o00
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in equation (6.23), we obtain

cov(df: 1, d}, 7|17 = 1,1, = 0, fixed paths) = Z i > rern )Sl( )+RT,
l=—c0 j=1 j'=1

(6.25)
for Va, B € 1,m, Vi, i € 1,n. In the above formula we used the symmetry
around 0 of {U;(-)};. Fryzlewicz (2003) observes that in order to achieve
the convergence of the autocovariance cr(-,-) (proposition 1 of Nason et al.
(2000)), the ‘tail’ of the sequence {S;(-)};j<—1 needs to be controlled. An
approach to this would be to allow non-zero contributions to {S;(-)},;<—1 only
from levels say j € {—J',...,—1} for a large enough J’, which would in turn
mean that | would have a finite range in the above formula (and therefore in
the next ones).

Equation (6.25) links cov(df! ., dfi, rlly = 1,17 = 0,fixed paths), and im-
plicitly E(dZ,Tdﬁ 71z = 1,17 = 0,fixed paths), to the (unknown) wavelet
spectrum at the (rescaled) locations corresponding to the observed time points,
{Si(%)},;, by involving only tractable coefficients.

We shall now re-write the previous expression in terms of E (dg’TdZ 7y =

1,15 =0, fixed paths).

Proposition 6.4.3. For Vo, 8 € 1,m, Vi, i' € 1,n we have

E(d 1dy}, 7Ty = 1,17 =0, fiwed paths) = Z ZZ e )S,( N+ Ry,

l=—00 j=1 j'=1

(6.26)

where Ry is a term of magnitude O(T™1).

Proof.
In the LSW model, the sequence of processes (X, T)tem, T =1,2,...1is
assumed to have zero mean, i.e. E(X;r) =0,Vt €0,T — 1, VT.

As E(dgpdy ;) = cov(dg p,dy, 7) + B(d2 0)E(dy, ;) and E(dg 4|15 =
1,17 =0, fixed paths) = 377, 72, E(Xy;,r), from formula (6.25) we obtain the

desired equation. W
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We are now in position to obtain E(f,, r(I*)|I» = 1,17 = 0, fixed paths),
which will give us an insight into the relationship between our proposed peri-

odogram and the wavelet spectrum of the process.

Theorem 6.4.4. For the wavelet periodogram estimators ftkT() constructed

in (6.15), and for Vi € 1,J*, k € 1,n we obtain the following
E(fy, 7))Ly = 1,15 = 0, fized paths) = Trace(A"*ST) + B, (6.27)

where Rﬁ“ = O(Til)f S = (Sl,])l< 1,j€L,n with Sl] - Sl(t]) Al b= ((J,é ]k)l< 1,j€1,n
with aﬁl]k =i {3 Ka(lY) rk,jrk,j,} U, (t; —tj) and {K,(-)}a are as de-
fined in equation (6.15).

Proof.
Since fy, r(I') = Yoo Ko(I)(dg 1), Vi € 1,.J%, Vk € 1,n, it follows that

E(fu (1| Ly = 1,15 = 0, fixed paths) = Y _ K, (I)E((dg. +°)| Ly = 1,15 = 0, fixed paths).

a=1

By taking a = f and i = ¢ := k in (6.26), we obtain

(ftk T( Z’)|I5ﬂ = 1,17 =0, fixed paths) =

ZK“ { Z ZZTMTM’% tir)Si(= )+RT}

l=—o00 j=1 j'=1

-1 n n m
=22 L ZKa(li)Tg,jT/?,j'} Wu(ty — )

Sl( +RTZK (1),

a=1

Viel,J* Vk €1,n.
As aé;’-k =3 {2y Ka(l)rgr i} Wit — ), the above equation can

be equivalently written as

B = 1, T = 0, fixed paths) = 3 Sl #52 +RTZK (v.
l=—00 j=1

(6.28)
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Therefore,

-1

E(ﬁgk’T(lZ)‘Iy = l, Ijﬁ = Q, ﬁxed paths) = Z (Ali’kST)lyl —+ RT Z Ka(ll)

[=— a=1
) m
= Trace(A"*S") + Ry Y Ko (I').

a=1
Observe that in order to obtain (A"*#ST),, for a fixed time t; and scale I,
only the terms corresponding to time locations ¢;, t; such that (¢; —t;) does
not exceed the support of the autocorrelation wavelet ¥;(-) are contributing

to the sum.

Let us denote R} = Ry Y7, K,(I'). For finite m, R; has magnitude

O(T~') as Ry has magnitude O(T~") from the previous proposition. M

The result in the previous theorem corresponds to (6.12) in the develop-
ment of Nason et al. (2000). However, our result is conditional on the time
locations corresponding to the observations on the process being fixed, and on
ignoring the randomness in the lifting trajectories. For further work, it would
be interesting to try and eliminate these restrictions, as well as rigorously set a
framework in which to investigate the asymptotic behaviour of our estimator.

Equation (6.27) shows that our proposed ‘raw’ periodogram is not an un-
biased estimator for the wavelet spectrum, and it therefore needs correction.
This does not come as a surprise, given the similar result that follows from
(6.12) for the simpler case of observing a LSW process with no missing obser-
vations. Formula (6.27) also highlights that the used smoother will influence

the amount of bias.

6.4.4 Matrix formulation

Relation (6.27) indicates a way for proposing a better estimator (than the

raw periodogram) for the spectrum matrix S curtailed down to J(T) rows,

t.
S = (Sl(%))le—J(T),q,jel,_n'
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To achieve this, we shall first re-write the unknown spectrum values S into

vector format,

5= (S 1) jetm | (S2i))jcta |- | (S-s)j)icin) € Ar5(T)xn-

On the same principle as above, let us put each matrix A into vector

format, as follows

~ i Ik 1tk Ik
Qll’k = ((a—’l,j)jeﬁ | (a—’Q,j)jel,n [ (a—,J(T),j)jel,n)’

— Ik . . .
where for each | € —J(T), —1, (a; ") je1 is an n-dimensional row vector, hence

a"* e M yryxn, Yk € Tm, Vi€ 1, J*.

For each observed point tj, i.e. for each k € 1,n, define the associated

matrix

Also define for each k € 1,n

P = o), foox @), .., fox(7)) € ..

In this notation, an estimator for the vector of wavelet spectrum values
corresponding to the observed locations, §, can be obtained by solving the

following system with J(7') x n unknowns and J* x n equations

Al (z )T
Al = () : (6.29)
121" (f )T

As a direction for future research, it would be very interesting to establish
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Figure 6.10: Evolutionary wavelet spectrum. The scale runs from finest (bot-
tom) to coarsest (top).

various possible solutions for the above system, and investigate their properties
as estimators for S.

In what follows we shall give two examples, to furthermore illustrate our

construction.
Examples.

1. Let us start with a LSW process corresponding to a evolutionary wavelet
spectrum that at the (finer) level -2 has a squared sinusoidal character, as in
figure 6.10 (see equation 6.30). A realization of length 7" = 256 of such a
process is displayed in figure 6.11 (top).

sin?(10mz), forj = —2,
Sj(z) = (6.30)

0, otherwise.

In order to simulate a process with missing observations, we shall take a

random sample of n = 200 time points out of the 256, and record the pro-
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cess observations corresponding to these time locations. The sampled process
now has an irregular time spacing, and is represented in figure 6.11 (bottom).
Figure 6.12 shows the roughly uniform distribution of the missing values (re-
member that our process times were only running up to 256, hence the shorter
last bar in the plot).

To construct our proposed periodogram, we shall first take a simple random
sample of m = 1500 trajectories out of the total 256!, and for each trajectory
obtain a set of corresponding empirical wavelet coefficients by applying the
modified lifting scheme using linear regression with an intercept and with 2
symmetrical neighbours.

The algorithm generates 5 artificial levels, and in this example all time
points are represented within all artificial levels.

Therefore, each time point is associated with a distribution of wavelet co-
efficients at each artificial level. We will investigate the observation at time
183. This location has associated wavelet coefficients as follows: in the first
artificial level (the finest level) it appeared 929 times, in the second level 271
times, in the third level 148 times, and 52 and 89 times in the last two levels
respectively. Figure 6.13 represents the frequency of appearance of each point
within each artificial level.

Figure 6.14 shows the histograms associated to the same time point at the
first, fourth and fifth artificial levels. Again, note how the characteristics of
the details change with the level. Here we also display the squared details
from the finest (artificial) level corresponding to the same time point. In what
follows, rather than try to model their distribution within each level, we will
investigate their magnitude as a function of the associated integral lengths.

As a note, figure 6.15 shows for each time point and each artificial level,
the squared average of the corresponding empirical wavelet coefficients. The
squared sinusoidal behaviour is somewhat detected, and again we notice a dif-
fusion of power between the new scales, although the (true) activity is located

at level -2. This shows that there must be a re-distribution of the initial levels
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Figure 6.11: Top: simulated LSW process with spectrum as in figure 6.10. Bot-
tom: the LSW process of above featuring missing observations; the locations
of the missing observations are indicated by triangles.
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Figure 6.12: Distribution of the missing time points.
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Figure 6.13: Number of times each time point is represented within each arti-
ficial level. The artificial levels are from finest (1, bottom) to coarsest (5, top).
The intensity (darkness) of a pixel corresponds to a higher number of appear-
ances. White lines extending over all artificial levels correspond to missing
time points.
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Figure 6.14: Top left, right, bottom left respectively: histograms of the details
associated to observation at time 183 within artificial levels 1,4 respectively 5.
Bottom right: histogram of the squared details in artificial level 1, associated

to the same time point.
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Figure 6.15: Squared average of the details at each sampled time point, within
each artificial level (finest scale at the bottom, coarsest scale at the top).

into the new artificial ones. However, as we have already seen, we chose not
explore this avenue any further for now.

As previously explained, we take a nonparametric regression approach to
estimate the values of the squared details corresponding to each time point
and to a set of scale values (see figure 6.16 for an example). Here we used scale
values on a log, range of the integral lengths and two levels of division (hence
we generated two scales spanning approximately the range 0 to 8, one of them
with a finer division).

The matrix that gives the estimated squared detail at each time location
and ‘evaluation’ scale is our proposed periodogram, and it appears in figure
6.17. At each evaluation scale [*, the intensity (darkness) of a pixel at time
is higher if it corresponds to a higher value ftk 7(1%).

Note that the (10) peaks of activity at level -2 are detected in the correct
region, although closer investigation is needed into the correspondence between
our continuous scale and the initial discrete scale of Nason et al. (2000). Also,

we have seen that our proposed periodograms are biased estimators of the true
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Figure 6.16: Magnitude of the squared details associated to the observation at
time 183, versus (log, of) their associated integral lengths. The superimposed
curve is obtained by smoothing using a cubic spline.

evolutionary wavelet spectrum. In these circumstances, correction is expected

to improve the periodograms in figure 6.17.

2. Let us now investigate a LSW process corresponding to a wavelet spec-

trum that at each of the four finest levels has a burst of activity spanning 64

time points, that does not overlap any of the other bursts (see equation (6.31)

and figure 6.18).
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(6.31)

As we have done so far, we take a random sample of 200 time points out

of the 256, and use this to simulate a LSW process with missing observations.
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Figure 6.17: Proposed ‘raw’ wavelet periodograms to estimate the wavelet
spectrum of figure 6.10. The smoothed squared details are represented on two
different ‘evaluation’ scales (with 17, respectively 27 equally spaced divisions
for the interval 0-8), with the bottom picture corresponding to the finer scale
division. In each plot, the scale gets coarser from bottom upwards and darker
pixels correspond to a higher estimated spectrum value.

202



6.4. Formal approach

v | AR
w AR

o~ ]
< RNy

Resolution Level

I T T T I
0 0.25 0.5 0.75 1

Rescaled time

Figure 6.18: Evolutionary wavelet spectrum. The scale runs from finest (bot-
tom) to coarsest (top).

A realization of such a LSW process, and its sampled version appear in figure

6.19.

We then use 1000 randomly selected trajectories and obtain for each one
a set of empirical wavelet coefficients by applying the modified lifting scheme
using prediction with linear regression with a neighbourhood of size 2 in sym-
metric configuration and with an intercept. The lifting algorithm generates 5
artificial levels and all time points are represented within each artificial level,
except for time 147 which does not appear in the first artificial scale (see figure

6.20).

Each time point is now associated to a set of empirical wavelet coefficients,
which in their turn correspond to a set of scales. If the artificial levels are used
as a scale division, then the squared average of the details associated to each
time point and each level appear in figure 6.21. We notice that while activity
is identified at the finest four scales, it is not correctly localized within each

scale. The same diffusion of power between levels that we have seen in the
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Figure 6.19: Top: simulated LSW process with spectrum as in figure 6.18. Bot-
tom: the LSW process of above featuring missing observations; the locations
of the missing observations are indicated by triangles.

204



6.4. Formal approach

Artificial levels
3
|

e

100 150 200 250

Time

Figure 6.20: Number of times each time point is represented within each arti-
ficial level. The artificial levels are from finest (1, bottom) to coarsest (5, top).
The intensity (darkness) of a pixel corresponds to a higher number of appear-
ances. White lines extending over all artificial levels correspond to missing
time points.
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Figure 6.21: Squared average of the details at each sampled time point, within
each artificial level (finest scale at the bottom, coarsest scale at the top).

previous examples appears here too, and one of the explanations is that the
artificial scales provide a different scale division to the one used for defining

the wavelet spectrum.

By estimating the magnitude of the squared detail that corresponds to
each time point and (continuous) scale, we obtain the matrix that gives our

periodogram, see figure 6.22. As before, we used two scale divisions.

Note that the activity is detected in the correct regions. However, due
to the same power leak between scales that we noticed so far, there is not a
clear ‘cut’ between levels. For the future, further investigation is needed into
the correspondence between the proposed periodogram and the true evolu-
tionary wavelet spectrum, both in terms of scale diffusion and correction for

localisation (bias).
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Figure 6.22: Proposed ‘raw’ wavelet periodograms to estimate the wavelet
spectrum of figure 6.18. The smoothed squared details are represented on two
different ‘evaluation’ scales (with 17, respectively 27 equally spaced divisions
for the interval 0-8), with the bottom picture corresponding to the finer scale
division. In each plot, the scale gets coarser from bottom upwards and darker
pixels correspond to a higher estimated spectrum value.
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observations

6.5 Conclusions and further work

In this chapter we addressed the problem of spectral estimation for a non-
stationary process that exhibits missing observations. Nonstationarity was
understood here as local stationarity, and the wavelet model introduced by
Nason et al. (2000) was adopted. In this context we proposed a ‘nondecimated’
lifting transform which ensured that a set of empirical wavelet coefficients is
available at each (observed) time location throughout a continuous distribu-
tion of scales. Exploiting the flexibility behind the continuous nature of scale
in second generation wavelet approaches, we proposed a ‘raw’ periodogram
for estimating the wavelet spectrum at the (rescaled) observed locations. We
have shown that the proposed periodogram is not an unbiased estimator for
the evolutionary wavelet spectrum, and made a first step towards constructing
a corrected periodogram. For the future, it would be interesting to work out
the correction and the properties of the corresponding estimator, as well as
its asymptotic behaviour. Also, to the moment we have not investigated the
consequences of using adaptive lifting in our development, which would give
our method the potential of not having to choose the wavelet basis. A chal-
lenge would be to set up a locally stationary wavelet type model, that would

directly handle the problem of irregular data.
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Chapter 7

Conclusions and further work

This chapter summarizes the main contributions of the novel work introduced
in this thesis through chapters 3 to 6. Each section encapsules an idea and its
development, together with its positive and negative aspects, as well as with

directions for future research.

7.1 Adaptive second generation wavelets

Classical wavelet constructions are based on a few assumptions: the signal
length is of the form 27, the observations are regularly spaced and there are no
multiple observations at one location. For a successful application of wavelet
shrinkage in nonparametric regression problems, the smoothness of the wavelet
basis has to be suitably chosen for each particular dataset, and so should the
primary resolution level.

Second generation wavelets are designed to work on sequences of any length,
with observations at irregularly spaced locations. Stemming from the lifting
scheme which removes one coefficient at a time of Jansen et al. (2001, 2004), we
constructed second generation wavelet functions that adaptively adjust to the
signal features (chapter 3). As a consequence, the smoothness of each wavelet
function gets tuned adaptively and automatically to the varying smoothness

of the data. Also, our approach allows for a natural way of handling multi-
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ple data, hence the only remaining issue will be the equivalent of setting the

primary resolution level.

We proposed two degrees of adaptiveness, which resulted in two adap-
tive lifting algorithms, which we call AdaptPred and AdaptNeigh. A detailed
simulation study (chapter 4) showed that our adaptive transforms produce
sparse wavelet representations and have competitive denoising properties for
irregularly spaced datasets, when compared to both established wavelet and

non-wavelet based regression techniques.

Therefore, our construction enables the work on general datasets, unre-
stricted by their size or by the existence of multiple observations at the same
location or irregularities in locations. In nonparametric regression problems,
when compared to classical wavelet methods, our approach also circumvents

the issue of having to choose the wavelet smoothness.

However, the adaptivity in the transform makes the theoretical assessment
of its statistical properties very difficult, as each application of the algorithm
becomes dependent on the dataset it is used on. The work we have done so
far is conditional on the local structure of the data. A future challenge would
be to obtain unconditional results on the statistical properties of the empirical

wavelet coeflicients.

Second generation wavelet constructions based on the lifting scheme have
been shown in the literature to generally display stability problems (see Simoens
and Vandewalle (2003) for instance). Since the adaptiveness of our construc-
tion induces a dependence on the signal being analysed, assessing the stability
of our transforms is more complicated. When done computationally, we must
bear in mind that for each transform, the degree of irregularity in observa-
tions influences the result, but so does the test function, hence the results
cannot easily be generalised. An interesting line for future research would be
to investigate a possible transformation that would bring our bases closer to

orthogonality, and hence to stability.
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7.2. Transmembrane segment prediction along a protein sequence

7.2 Transmembrane segment prediction along

a protein sequence

Classical wavelet methods have been so far used in predicting hydrophobic
segments along the sequence of a transmembrane protein (Lio and Vannucci
(2000)). As with all classical wavelet constructions, certain assumptions are
needed and consequently for this particular problem the residues along the
protein chain are modelled as regularly spaced.

We challenged this assumption and constructed family-based dissimilarity
matrices for estimating the distance between consecutive residues (chapter 5).
In order to do this, we made use of the resolved 3D information available for
proteins similar to the protein of interest.

Introducing irregularities in the residues called for wavelets capable to work
on such data. Guided by the simulation results obtained in chapter 4, we
proposed using two of our adaptive algorithms to predict transmembrane seg-
ments.

By comparing our method to the classical wavelet approach, we have shown
(chapter 5) that by introducing irregular distances in the residues we improved
prediction both in terms of the existence of predicted segments compared to
experimentally determined ones, and also the proportion of correctly predicted
segments.

A downside of our technique is that it requires more information (the re-
solved 3D structures of similar proteins) than the method involving classical
wavelets (which makes use only of the length of protein sequence), and there-
fore our approach is more computationally expensive. Also, its real strength
relies in the cases when there is available 3D information in similar proteins,
which might not always be the case.

So far we modelled the protein sequence as a straight chain. An inter-
esting direction for further research would be to model the 3D shape of the

protein. This would also call for developing/generalizing an adaptive wavelet
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construction able to work on 3D objects.

7.3 Spectral estimation for LSW processes with

missing observations

Due to their capacity of delivering time-scale representations, first generation
wavelets have been used for spectral estimation of both stationary and nonsta-
tionary time series (Chiann and Morettin (1999), Nason et al. (2000)). When
the process realization features missing observations, which frequently happens
in practice, classical wavelet methods are unable to work unless the regularity
in time locations has been restored, for instance by somehow imputing the
missing data.

We first proposed a ‘nondecimated’ lifting transform which ensures that
a set of empirical wavelet coefficients is available at each observed time lo-
cation, throughout a continuous distribution of scales (chapter 6). Based on
this, we constructed a second generation wavelet periodogram for estimating
the wavelet spectrum that corresponds to a class of nonstationary wavelet
processes introduced by Nason et al. (2000) and assumed to feature missing
observations (chapter 6).

Our approach is based upon second generation wavelets constructed using
a modified variant of the linear form of the lifting scheme that removes ‘one co-
efficient at a time’ of Jansen et al. (2001, 2004). The modified lifting scheme we
propose accommodates a random order of generating the wavelet coefficients.
The random order is referred to as path or trajectory. Conditional on the ob-
served time points being fixed and not taking into consideration the random-
ness of the trajectories, the proposed second generation wavelet periodogram is
shown to be biased, and therefore it needs a correction. Computationally, the
raw periodogram visually performs well in estimating the evolutionary wavelet

spectrum, although more research is needed into establishing a more exact
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correspondence between the two quantities.

For future research it would be very interesting to specifically work out
the correction needed to produce an unbiased estimator of the spectrum, and
the statistical properties of the corrected estimator. Also, so far we have not
investigated the consequences of using our adaptive lifting transforms on the
properties of our raw periodogram. An asymptotic development for the lifting
construction in spectral analysis is another challenging direction arising from

this work.
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