
Multiscale, Multi-Dimensional Space
and Space-Time Function Estimation for

Irregular Network Data

Naventhan Mahadevan

School of Mathematics

September 2009

A dissertation submitted to the University of Bristol in accordance with the

requirements of the degree of Doctor of Philosophy in the Faculty of Science

Word count: 51,730.

Abstract

We explore non-parametric space and space-time function estimation for multi-

dimensional irregular network data. Recently a lifting based technique called

lifting one coefficient at a time (LOCAAT) was developed by Jansen, Nason and

Silverman. LOCAAT enables wavelet-like signal processing for irregular network

data in multi-dimensions.

A main focus of this thesis is to provide a “good” function estimation strategy for

network data collected through time. In order to carry out this task, we intro-

duce the concept of spatial network and spatio-temporal network estimation. We

propose several noise variance estimation techniques and thresholding strategies

for the LOCAAT transform which work well even with small number of nodes. In

addition to thresholding, we have explored other methods to further improve the

estimation efficiency such as avoiding sensitive coefficients from being thresholded

and smoothing temporal LOCAAT coefficients in wavelet domain.

The final part of the thesis provides a simple network forecasting strategy by pre-

dicting LOCAAT coefficient in wavelet domain which proves to work better than

time domain forecasting.

i

Dedication

I dedicate this thesis to my mom and dad.

ii

Acknowledgements

I would like to thank my supervisor Professor Guy Nason for his full support and

the care he has shown throughout my PhD. Without his help and motivation this

PhD would not have been possible. Thanks to Professor Guy Nason and Professor

Alistair Munro for initiating this PhD and providing access to the facilities in

both Departments of Mathematics and of Electrical and Electronic Engineering. I

would like to thank the Data and Information Fusion Defence Technology Centre

(DIF-DTC) for funding my PhD. I would also like to thank Professor Nishan

Canagarajah for his support and useful conversations we had at times.

Thanks to Douglas Harding from the Health Protection Agency for supplying

the example Mumps data set. Thanks to Matthew Nunes for providing code to

produce a network of counties in England and the useful conversations we had in

the past.

I would also like to thank my brother-in-laws Kugathasan and Rajakumar for all

their support and encouragement when I needed it. I would like to thank my

friends Nithin, Siva, Sun, Arindam, Anjulan, Georgios, Bernice, Meng and Judy

for all the encouragement they gave me at difficult times and all the good times

we had during my PhD.

Without all their support and encouragement this PhD would not have been

possible, so I thank all of them once again!.

iii

Author’s Declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University’s Regulations and Code of Practice for Research

Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the

candidate’s own work. Work done in collaboration with, or with the assistance

of, others, is indicated as such. Any views expressed in the dissertation are those

of the author.

SIGNED:.................................. DATE:................

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Main contributions . 2

1.3 Thesis Organisation . 4

2 Literature Review 7

2.1 Introduction . 7

2.2 Introduction to wavelets . 7

2.2.1 Multiresolution Analysis (MRA) and the Discrete Wavelet

Transform (DWT) . 9

2.2.2 Discrete Wavelet Transform (DWT): Pyramid algorithm . 13

2.3 The lifting scheme . 15

2.3.1 A simple example: Haar transform 18

2.4 Lifting One Coefficient At A Time (LOCAAT) 19

2.4.1 Forward transform . 20

2.4.2 Inverse transform . 23

2.4.3 Variance approximation of the sample coefficients 24

2.5 Denoising with regular wavelets 26

2.5.1 Hard, soft and universal thresholding 27

2.5.2 Block thresholding . 28

2.5.3 NeighBlock and NeighCoeff 29

v

CONTENTS

2.5.4 Stein’s Unbiased Risk Estimator (SURE) threshold 31

2.5.5 Cross validation based thresholding 31

2.5.6 Empirical Bayes thresholding 33

2.6 Other smoothing methods . 34

2.6.1 Locally weighted polynomial regression 34

2.6.2 Smoothing splines . 36

2.6.3 Kernel smoothing . 37

2.6.4 Kriging . 37

2.7 Wavelet-based noise variance estimation methods 39

2.7.1 Classical Median Absolute Deviation (MAD) estimate . . . 39

2.7.2 Classical variogram method 40

2.7.3 A new variogram technique 42

2.8 Optimisation . 43

2.9 Sparsity . 44

3 Methodology 45

3.1 Introduction . 45

3.2 The spatial model . 46

3.2.1 Network information for spatial network 46

3.2.2 Network scenarios used for simulation studies 48

3.2.3 Test functions . 49

3.3 The spatio-temporal model . 50

3.3.1 Spatio-temporal networks: notations and basics 52

3.3.2 Non-overlapping moving window 57

3.3.3 Overlapping moving window 58

4 Noise Variance Estimation for Networks 61

4.1 Introduction . 61

4.2 MAD for LOCAAT . 64

vi

CONTENTS

4.2.1 Global MAD . 64

4.2.2 Local MAD for LOCAAT 66

4.3 Variogram method for LOCAAT 69

4.3.1 Estimation in time domain: Method-1 (TM1) 72

4.3.2 Estimation in Time domain: Method-2 (TM2) 74

4.3.3 Estimation in Time domain: Method-3 (TM3) 76

4.3.4 Estimation in time domain: Method-4 (TM4) 77

4.3.5 Estimation in time domain: Method-5 (TM5) 79

4.3.6 Estimation in wavelet domain: Method-1 (WM1) 79

4.3.7 Estimation in wavelet domain: Method-2 (WM2) 81

4.3.8 Variogram method in wavelet domain: Method 3 (WM3) . 82

4.3.9 Variogram method in wavelet domain: Method 4 (WM4) . 85

4.4 Estimation of B . 86

4.5 Conclusions . 89

5 Thresholding Methods 93

5.1 Introduction . 93

5.2 Experimental set up and Bias, Variance and MSE calculations . . 94

5.3 Hard and soft thresholding . 95

5.4 Block Thresholding - Across scale coefficient 96

5.5 Block thresholding - Box Block Choice (BBC) 98

5.6 Block Thresholding - Neighcoeff 100

5.7 Mean correction method . 101

5.8 Improving estimation by identifying sensitive coefficients of estima-

tion . 110

5.9 Ordinary Cross Validation (OCV) 113

5.9.1 Modified Ordinary Cross Validation (MOCV) 114

5.10 Stein’s Unbiased Risk Estimator (SURE) 115

5.11 Generalised Cross Validation (GCV) 117

vii

CONTENTS

5.12 Optimising the risk estimators . 118

5.13 Improving spatio-temporal denoising by smoothing coefficients . . 120

5.13.1 Via sequential and separate transforms using spatial network120

5.13.2 Via sequential transform using spatio-temporal network . . 122

5.14 Sparsity . 128

5.15 Stopping time for LOCAAT transform 131

5.16 Conclusions . 135

6 Network Forecasting 137

6.1 Introduction . 137

6.2 Basic theory of stationary processes 138

6.2.1 Stationary Process . 138

6.2.2 Purely random process . 139

6.2.3 Moving average process . 139

6.2.4 Autoregressive (AR) process 140

6.2.5 Mixed models: Autoregressive Moving Average (ARMA) . 142

6.2.6 Integrated models: Autoregressive Integrated Moving Av-

erage (ARIMA) . 142

6.3 Forecasting techniques . 143

6.3.1 Box-Jenkins forecasting . 144

6.3.2 Simple exponential smoothing (SES) 144

6.4 Simulation study . 145

6.4.1 Network simulation . 146

6.4.2 Time domain modelling 146

6.4.3 Wavelet domain modelling 149

6.4.4 Box-Jenkins forecasting . 152

6.4.5 Simple Exponential Smoothing (SES) 154

6.5 Real data study: Mumps data modelling 156

6.6 Conclusions . 164

viii

CONTENTS

7 Conclusions and Future Work 167

7.1 Noise variance estimation for networks 167

7.2 Thresholding methods . 169

7.3 Network forecasting . 170

7.4 Future work . 171

Appendices 173

A Separable form denoising of space- time functions 173

B Further Results 175

B.1 Further results from various thresholding methods 175

B.2 Optimised risk values . 180

C Qualnet 181

C.1 Changes made . 181

C.2 R . 182

D Some R codes 183

Bibliography 185

ix

List of Acronyms

acf autocorrelation function

AODV Ad-hoc On-demand Distance Vector

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

BBC Box Block Choice

BLUE Best Linear Unbiased Estimator

BT Block Threshold

DIF-DTC Data and Information Fusion Defence Technology Centre

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

GCV Generalised Cross Validation

GUI Graphical User Interface

HPA Health Protection Agency

HT Hard Threshold

xi

CONTENTS

iid. Independent and Identically Distributed

IQR InterQuartile Range

LOCAAT Lifting One Coefficient At A Time

LOWESS LOcally WEighted Scatterplot Smoother

MA Moving Average

MAD Median Absolute Deviation

MISE Mean Integrated Squared Error

MML Marginal Maximum Likelihood

MMSE Minimum Mean Squared Error

MOCV Modified Ordinary Cross Validation

MRA Multiresolution Analysis

MSE Mean Squared Error

MSPE Mean Squared Prediction Error

MST Minimum Spanning Tree

NC NeighCoeff

OCV Ordinary Cross Validation

pacf partial autocorrelation function

SAR Spatial Autoregressive

SES Simple Exponential Smoothing

ST Soft Threshold

xii

CONTENTS

SURE Stein’s Unbiased Risk Estimator

WSN Wireless Sensor Networks

xiii

List of Tables

4.1 Estimation of σ(% difference) using MAD for different test func-

tions based on spatial LOCAAT coefficients, SNR=2. Each entry

in the table shows an average of 100 repetitions. 65

4.2 Estimation of σ(% difference) using MAD for different test func-

tions based on spatio-temporal (network constructed with time

depth M = 3) LOCAAT coefficients, SNR=2. Each entry in the

table shows an average of 100 repetitions. 66

4.3 Estimation of σ(% difference) using M-1 and M-2 for a T-1 net-

work in a spatial setting (lifting coefficients produced using spatial

network), SNR=2. Each entry in the table shows an average of 100

repetitions. 69

4.4 Estimation of σ(% difference) using M-1 and M-2 for a T-2 net-

work in a spatial setting (lifting coefficients produced using spatial

network), SNR=2. Each entry in the table shows an average of 100

repetitions. 69

4.5 Estimation of σ(% difference) using M-1 and M-2 for a T-1 net-

work in a spatio-temporal setting (lifting coefficients produced us-

ing spatio-temporal network with time depth M=3), SNR=2. Each

entry in the table shows an average of 100 repetitions. 69

xv

LIST OF TABLES

4.6 Estimation of σ(% difference) using M-1 and M-2 for a T-2 net-

work in a spatio-temporal setting (lifting coefficients produced us-

ing spatio-temporal network with time depth M=3), SNR=2. Each

entry in the table shows an average of 100 repetitions. 70

4.7 Estimation of σ(% difference) using variogram in time domain:

TM1, T=100, SNR=2 . 73

4.8 Estimation of σ(% difference) using variogram in time domain:

TM1, T=3, SNR=2 . 73

4.9 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatial network)): TM2, B∗ = 0.48 for T-2 network

and B∗ = 0.33 for T-1 network, SNR=2 75

4.10 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatio-temporal network): TM2, B∗ = 0.48 for T-2

network and B∗ = 0.33 for T-1 network, SNR=2 75

4.11 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatial network): TM3, B∗ = 0.53 for T-2 network and

B∗ = 0.78 for T-1 network, SNR=2 77

4.12 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatio-temporal network): TM3, B∗ = 0.53 for T-2

network and B∗ = 0.78 for T-1 network, SNR=2 77

4.13 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatial network): TM4, B∗ = 1, SNR=2 78

4.14 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatio-temporal network): TM4, B∗ = 1, SNR=2 . . 78

4.15 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatial network): TM5, B∗ = 1, SNR=2 80

4.16 Estimation of σ(% difference) using variogram in time domain (es-

timation on spatio-temporal network): TM5, B∗ = 1, SNR=2 . . 80

xvi

LIST OF TABLES

4.17 Estimation of σ(% difference) using variogram in wavelet domain:WM1,

T=100, SNR=2. 81

4.18 σ Estimation using variogram in wavelet domain: WM1, T=3,

SNR=2 . 81

4.19 Estimation of σ(% difference) using variogram in wavelet domain

(spatial LOCAAT coefficients): WM2, B∗ = 0.44, SNR=2 83

4.20 Estimation of σ(% difference) using variogram in wavelet domain

(spatio-temporal LOCAAT coefficients): WM2, B∗ = 0.44, SNR=2 83

4.21 Estimation of σ(% difference) using variogram in wavelet domain

(spatial LOCAAT coefficients): WM3, B∗ = 0.51, SNR=2 84

4.22 Estimation of σ(% difference) using variogram in wavelet domain

(spatio-temporal LOCAAT coefficients): WM3, B∗ = 0.51, SNR=2 85

4.23 Estimation of σ(% difference) using variogram in wavelet domain

(spatial LOCAAT coefficients): WM4, B∗ = 0.52, SNR=2 86

4.24 Estimation of σ(% difference) using variogram in wavelet domain

(spatio-temporal LOCAAT coefficients): WM4, B∗ = 0.52, SNR=2 86

4.25 Estimated B∗ for time domain variogram methods. 88

4.26 Estimated B∗ for wavelet domain variogram methods. 88

4.27 Summary of variogram methods (requirement check list). 91

5.1 Maximum efficiencies and the corresponding p∗ = arg maxp eff for

various thresholding methods for g1 function on a type-1 network

with SNR = 2 and n = 500. Each entry is an average of 100 repetition.103

5.2 Maximum efficiencies and the corresponding p∗ = arg maxp eff for

various thresholding methods for g1 function on a type-1 network

with SNR = 2 and n = 500 in spatio-temporal setting. Each entry

is an average of 100 repetition. 104

5.3 Optimising the risk and corresponding efficiencies for type 1 net-

work (spatial network) with SNR = 2 and n = 500. 118

xvii

LIST OF TABLES

5.4 Optimising the risk and corresponding efficiencies for type 1 net-

work in spatio-temporal setting with non-overlapping window. SNR

= 2 and n = 500. 119

5.5 Optimising the risk and corresponding efficiencies for type 1 net-

work in spatio-temporal setting with overlapping window. SNR =

2 and n = 500. 119

5.6 Efficiencies compared for spatial network based denoising. The

first column shows estimation efficiency in an ordinary estimation

(no coefficient smoothing involved) and the second column show-

ing estimation efficiency by smoothing coefficients in the wavelet

domain. Type-1 network, SNR=2 , n = 500, Ebayesthresh is used

to perform thresholding. 122

5.7 Efficiencies compared for spatio-temporal network (extended from

type-1 network) with non-overlapping window case. The first col-

umn shows estimation efficiency in an ordinary estimation (no co-

efficient smoothing involved) and the second column shows esti-

mation efficiency by smoothing coefficients in the wavelet domain.

SNR=2 , n = 500, Ebayesthresh is used to perform thresholding. . 124

5.8 Efficiencies compared for spatio-temporal network (extended from

type-1 network) with overlapping window case. The first column

shows estimation efficiency in an ordinary estimation (no coefficient

smoothing involved) and the second column shows estimation effi-

ciency by smoothing coefficients in the wavelet domain. SNR=2 ,

n = 500, Ebayesthresh is used to perform thresholding. 125

5.9 Optimised values for p and q for a type 1 network (spatial network)

for various threshold methods. SNR=2, n=500, function g1 used.

Each entry is an average of 100 independent simulations. 134

xviii

LIST OF TABLES

B.1 Optimising the risk and corresponding efficiencies for type-2 (T-2)

network (spatial network) with SNR = 2 and n = 500. 180

xix

List of Figures

2.1 Nested vector space spanned by the scaling functions (see figure 2.1

in [9]). 11

2.2 Scaling and wavelet vector spaces (see figure 2.3 in [9]). 12

2.3 Two stages of the pyramid algorithm of [57] (see figure 3.3 in [9]. . 14

2.4 Sparsity of DWT for heavisine. Figure on the left shows the detail

coefficient at each scale. Figure on the right shows the plot of detail

coefficients as a single vector (fine scale to coarse scale) 15

2.5 Forward lifting transform. 17

2.6 Inverse lifting transform. 17

2.7 Plot of detail coefficients found using LOCAAT method for maarten-

func. The plot is in the order of removal and n = 500. 22

2.8 Toy network on which we assume the data [1, 1,−1,−1] is observed.

We also assume the nodes are separated by distance of 1 unit. . . 23

2.9 Example of hard and soft thresholding. x-axis shows the coefficients

θ and y-axis shows the thresholded coefficients θλ where λ = 0.2 is

the threshold. 27

3.1 Simple network and its edge entries 47

3.2 Two types of networks used in our simulation studies. n = 500 . . 48

3.3 Some test functions with spatial discontinuity. 50

3.4 Smooth test functions without spatial discontinuity. 51

xxi

LIST OF FIGURES

3.5 Some test functions from [47], n = 1000 52

3.6 Donoho Johnstone test functions 53

3.7 Extending the spatial network to the spatio-temporal network . . 54

3.8 Spatial network extended to spatio-temporal network 55

3.9 Window based approach, Mt = 3 59

4.1 MSE error function for σ estimation against the bias correction B

using time domain variogram methods. Blue line for TM2, green

for TM3, red solid line for TM4 and black for TM5, n = 500, each

point is an average over 100 independent experiments. 87

4.2 MSE error function for σ estimation against the bias correction B

using wavelet domain variogram methods. Blue line for WM2, red

solid line for WM3 and black for WM4, n = 500, each point is an

average over 100 independent experiments. 88

5.1 Hard and soft thresholded LOCAAT coefficients for g1 function on

T-1 network. The number of detail coefficients L = 498, number

of nodes n = 500, SNR =2. 97

5.2 Spatial plot LOCAAT coefficients of 2 −D Doppler function on a

T-1 network. The number of detail coefficients L = 498, number of

nodes n = 500, SNR =2. The detail coefficients are shown in red.

The scaling coefficients in blue and are numbered. 99

5.3 Efficiency results for g1 function on a type-1 network with 500 nodes

with SNR = 2, Hard threshold(=•), soft threshold(=N), block

threshold(=�), BBC(=�) and neighcoeff(=◦) against p=varying

percentage of universal threshold. Each point is an average of 100

experiments. 102

xxii

LIST OF FIGURES

5.4 Efficiency results for g1 function on a type-1 network with 500 nodes

with SNR = 2 in spatio-temporal setting, Hard threshold(=•), soft

threshold(=N), block threshold(=�), BBC(=�) and neighcoeff(=◦)

against p=varying percentage of universal threshold. Each point is

an average of 100 experiments. 103

5.5 Efficiency results for g1 function on a type-1 network with 500

nodes with SNR = 2 mean corrected, hard threshold(=•), soft

threshold(=N), block threshold(=�), BBC(=�) and neighcoeff(=◦)

against p=varying proportion of universal threshold. Each point is

an average of 100 experiments. 105

5.6 Various thresholding results for Type-1 network with 500 nodes

with SNR = 2, Average squared bias(=�), variance(=4) and mean

squared error(=◦) against pσ̂
√

2 log n, p=varying proportion of uni-

versal threshold. Each point is an average of 100 experiments. . . 106

5.7 Various thresholding results for Type-1 network with 500 nodes,

Average squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying proportion of universal threshold.

Each point is an average of 100 experiments. 107

5.8 Various thresholding results for Type-1 network with 500 nodes

with SNR = 2 in the spatio-temporal setting, figures on the left

hand side are non-overlapping moving window case and the fig-

ures on the right are the overlapping moving window case. Aver-

age squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying proportion of universal threshold.

Each point is an average of 100 experiments. 108

xxiii

LIST OF FIGURES

5.9 Various thresholding results for Type-1 network with 500 nodes

with SNR = 2 in the spatio-temporal setting, figures on the left

hand side are non-overlapping moving window case and the fig-

ures on the right are the overlapping moving window case. Aver-

age squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying proportion of universal threshold.

Each point is an average of 100 experiments. 109

5.10 Efficiency Vs Number of coefficients avoided being thresholded whose

error is large. Plot in red shows hard thresholding results and the

black one for soft thresholding. Network T-1 used with various test

functions with SNR=2, n = 500. 111

5.11 Detail coefficients (in the order of removal) for g2 function on a

T-1 network. The number of detail coefficients L = 498, number

of nodes n = 500, SNR =2. Detail coefficients in black, ordinary

thresholded coefficients in red (with p∗ = 0.8 for hard threshold and

p∗ = 0.35 for soft threshold), where p∗ is the proportion of universal

threshold that minimise the MSE for the chosen threshold method,

and preserved coefficients in blue with red circle on top. 112

5.12 MSE(—-), SURE(- - - -), GCV(....), MOCV(-.-.-). 115

5.13 Spatio-temporal non-overlapping window case. MSE(—-), SURE(-

- - -), GCV(....), MOCV(-.-.-). 116

5.14 Spatio-temporal overlapping window case. MSE(—-), SURE(- - -

-), GCV(....), MOCV(-.-.-). 117

5.15 Denoising along time for node 10 (a random choice) with coefficient

smoothing in wavelet domain. SNR=2, n = 500, ebayesthresh used

to perform thresholding. Original series is shown in red, noisy series

in black and the estimated series in blue. 126

xxiv

LIST OF FIGURES

5.16 Denoising spatial function via different methods using coefficients

smoothing in wavelet domain. SNR=2, n = 500, ebayesthresh used

to perform thresholding. 127

5.17 Sparsity and Efficiency plots against the number of zero coefficients

for two test functions, g1 and g2, SNR=2, n=500. Type-1 network

results in blue line and type-2 network results in red. The results

are average of 50 independent experiments. 129

5.18 Sparsity and Efficiency plots against the number of zero coefficients

for two test functions, g1 and g2, n=500. Type-1 network results in

blue line and type-2 network results in red. The results are average

of 50 independent experiments. 132

5.19 Sparsity and Efficiency plots against the % transform coefficients

for two test functions, g1 and g2, n=500. Type-1 network results in

blue line and type-2 network results in red. The results are average

of 50 independent experiments. 133

5.20 Contour plot of efficiency as a function of p and q. Test functions

g1 and g2 are used on T-1 network, SNR=2, n = 500. The results

are averaged over 50 independent experiments. 134

6.1 Time series data for node 1 and node 2 and the differenced time

series for those nodes. 147

6.2 acf and pacf for node 1 and node 2. 148

6.3 Time series, acf, pacf plot of LOCAAT coefficient for node 1 in

both spatial network method and spatio-temporal network method. 150

xxv

LIST OF FIGURES

6.4 Time series fit for node 1 using time domain fitting and wavelet

domain coefficient modelling methods. The data is shown in gray,

time domain fit is shown in black, wavelet domain spatial method

is shown in blue and wavelet domain spatio-temporal method is

shown in red. The fitted time series (from all three methods) is

differenced in the vertical axis for visual clarity. 152

6.5 Average squared error plot for each node by using time domain,

wavelet domain spatial method, and wavelet domain spatio-temporal

method time series fitting. The average squared error from time do-

main fit is shown in black, wavelet domain spatial method is shown

in blue and wavelet domain spatio-temporal method is shown in red.153

6.6 Prediction(10-step ahead) for node 1 using time domain, wavelet

domain spatial method, spatio-temporal method forecast. The data

is shown by the gray solid line, for the prediction interval it is shown

in a gray dashed line. Time domain fit in black solid lines and

prediction in black dashed lines. Wavelet domain spatial method

fit in blue solid line and prediction in blue dashed line. Wavelet

domain spatio-temporal method fit in red solid line and prediction

in red dashed line. 154

6.7 Squared error plot for 1-step ahead prediction using Box-Jenkins

approach. Time domain error in black and wavelet domain spatial

method error in blue and wavelet domain spatio-temporal method

error red. 155

6.8 Squared error plot for 1-step ahead prediction for ARIMA(1,1,0)

and ARIMA(0,1,1) simulation data using SES method. Time do-

main error in black and wavelet domain spatial method error in

blue and wavelet domain spatio-temporal method error red. . . . 157

xxvi

LIST OF FIGURES

6.9 The parameter αk for exponential smoothing. The figure on the top

shows αk for ARIMA(1,1,0) and the bottom figure for ARIMA(0,1,1).

The network (T-1) is shown in blue and the black circles are the

αk for time domain modelling and the red circles are αk for wavelet

domain spatial method coefficient modelling. The radius of the

circles are proportional to αk. 158

6.10 Number of Mumps cases recorded in year 2005 for Avon and Bed-

fordshire counties. 159

6.11 Autocorrelation function, partial autocorrelation function plots for

Avon, Bedfordshire and Berkshire counties. 160

6.12 Nearest cities in each county is linked to form a network 161

6.13 Prediction (3-step ahead) for Bedforshire county using time do-

main, wavelet domain spatial method, spatio-temporal method fore-

cast. The data is shown in gray solid line, for the prediction in-

terval it is shown in gray dashed line. Time domain fit in black

solid lines and prediction in black dashed lines. Wavelet domain

spatial method fit in blue solid line and prediction in blue dashed

line. Wavelet domain spatio-temporal method fit in red solid line

and prediction in red dashed line. 162

6.14 Squared error plot for 1-step ahead prediction using Box-Jenkins

and SES methods. Time domain error in black and wavelet domain

spatial method error in blue and wavelet domain spatio-temporal

method error red. 163

B.1 Various thresholding results for Type-1 network with 50 nodes, Av-

erage squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying percentage of universal threshold. . 176

xxvii

LIST OF FIGURES

B.2 Various thresholding results for Type-1 network with 50 nodes, Av-

erage squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying percentage of universal threshold. 177

B.3 Various thresholding results for Type-1 network with 150 nodes,

Average squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying percentage of universal threshold. . 178

B.4 Various thresholding results for Type-1 network with 150 nodes,

Average squared bias(=�), variance(=4) and mean squared error(=◦)

against pσ̂
√

2 log n, p=varying percentage of universal threshold. 179

xxviii

Chapter 1

Introduction

Wavelet theory is relatively new and has attracted many researchers to develop

the area. Wavelets are attractive for their simplicity and ability to represent

functions with sparse representations. Much wavelet work is based on the fast

Discrete Wavelet Transform (DWT) introduced in [57]. Traditionally, the fast

wavelet transform relies on regular data assumptions and number of data to be a

power of two. In the real world, data arise in an irregular fashion and in arbitrary

number. Therefore, these restrictions have to be relaxed. The following lists at-

tempts to relax the restrictions of regular wavelets.

The work in [55, 56] developed a theory for mapping irregularly spaced data to

a regular grid by linear transformation and then applying standard wavelet tech-

niques. A fast cross-validation method for work in [56] was proposed in [64]. Work

in [82, 84] introduced a method called the lifting scheme which can handle multi-

dimensional irregularly spaced data. An adaptation of lifting to curve estimation

problems can be found in [29]. Lifting for two dimensions can be found in [28, 30].

Work in [46] introduced a new paradigm, which we refer to as LOCAAT through-

out this thesis, for a multidimensional irregular data on graph. An adaptive lifting

approach was presented in [68].

1

Chapter 1. Introduction

1.1 Motivation

Many physical problems require the estimation of a function that varies in both

time and space. We consider estimating a function defined on a network subject

to noise and given information about the network. Our motivation for this prob-

lem comes from networks such as Wireless Sensor Networks (WSN) and transport

networks which have many potential irregularities. For example, in WSNs the

irregularities arise in irregular node placement and irregular data sampling [3, 4].

There is a lot of recent interest in wavelet-like signal processing for WSNs (see

references [18, 36, 37, 38, 85, 86]).

Generally, networks evolve over time and it would be useful to have some means

of signal processing to denoise and hence analyse the behaviour of these networks.

Although wavelet-based statistical signal processing holds much promise for net-

work data, there were few wavelet techniques available until recently to handle

these network irregularities. The development of LOCAAT opens up a new avenue

of interest into research on wavelet-like signal processing for network data.

1.2 Main contributions

Motivated by possible applications of LOCAAT to network data (such as WSN

data) we have carried out exploration of spatial and spatio-temporal function

estimation and network forecasting using the LOCAAT algorithm. We outline

our main contributions next.

• We have proposed and explored several reliable noise variance estimation

procedures for networks, even with small number of nodes.

– We propose two local Median Absolute Deviation (MAD) estimators

for LOCAAT.

2

1.2. Main contributions

– We propose a noise variance estimation for network data (when time

series is available for each node) based on a variogram technique. This

method is named TM1 in chapter 4.

– We propose several noise variance estimation methods purely based on

network data. The methods are named TM2, TM3, TM4 and TM5 in

chapter 4.

– We propose noise variance estimation based on LOCAAT coefficients

(based on differences of LOCAAT coefficients in current time and future

time). This method is named as WM1 in chapter 4.

– We propose several noise variance estimation based on LOCAAT coef-

ficients purely based on one snapshot of time. The methods are named

WM2, WM3 and WM4 in chapter 4.

– The variogram methods (such as TM2, TM3, WM2, WM3 and WM4)

require bias correcting constants. We propose a method to find these.

• We proposed and explored several function estimation (both spatial and

spatio-temporal) methods listed below.

– We explore several existing threshold methods (such as hard, soft, block

thresholding) for LOCAAT. We found most of them over smooth and

introduce estimation bias. Therefore, we explore using a lower thresh-

old.

– We propose a block thresholding-like approach called Box Block Choice

(BBC) for spatially distributed lifting coefficients.

– We propose a method for improving estimation efficiency by avoiding

sensitive coefficients being thresholded.

– We propose a cross-validation and SURE based threshold methods for

LOCAAT.

3

Chapter 1. Introduction

– We propose a method for improving estimation efficiency of spatio-

temporal network function by smoothing LOCAAT coefficients.

– We recommend a stopping time for the number of LOCAAT transform

steps.

• We have propose a simple network forecasting strategy by using LOCAAT

coefficient prediction.

1.3 Thesis Organisation

Chapter 2 reviews some background material used throughout this thesis. We

start by reviewing wavelets, the Discrete Wavelet Transform (DWT), and the lift-

ing transform from [83]. We then introduce the main candidate, which we use

to analyse the network data throughout the thesis, Lifting One Coefficient At A

Time (LOCAAT) introduced in [46]. We also review some wavelet-based smooth-

ing methods and noise variance estimation methods. For completeness, we have

also outlined briefly some other popular smoothing methods in the non-parametric

literature.

Chapter 3 introduces some test networks and test functions used throughout the

thesis. We also introduce the concept of spatial network methods and spatio-

temporal methods.

Chapter 4 explores noise variance estimation methods for networks. We intro-

duce the concept of local Median Absolute Deviation (MAD) estimation for our

network lifting coefficients. We also propose several variogram-based techniques

in the time and wavelet domains to estimate noise variance. We also introduce a

solution to the bias problem that arises in such variogram based methods.

Chapter 5 introduces function estimation using existing thresholding methods and

then proposes some new thresholding methods such as mean correction methods

and Box Block Choice (BBC). In addition to these thresholding methods, we

4

1.3. Thesis Organisation

propose an improvement strategy to the estimation by avoiding sensitive coeffi-

cients. We also explore cross-validation and SURE thresholding methods. Once

the thresholding methods are defined for spatial and spatio-temporal function es-

timation, we propose an improvement to the spatio-temporal function estimation

by smoothing the temporal wavelet coefficients. We then explore sparsity and pro-

pose an optimal stopping time for the number of steps for LOCAAT transform.

Chapter 6 proposes simple network forecasting techniques using Autoregressive

Integrated Moving Average (ARIMA) and Simple Exponential Smoothing (SES)

modelling on both raw data and lifting coefficients. We demonstrate this with

simulation experiments and a real data study.

Chapter 7 concludes the thesis and give some future directions.

5

Chapter 2

Literature Review

2.1 Introduction

In this chapter we review some fundamental theory and recent developments in

the area of nonparametric regression. We mainly focus on the wavelet and the

lifting transforms. The initial part of this chapter introduces a general overview

of wavelets and the lifting scheme. Then we introduce the Lifting One Coefficient

At A Time (LOCAAT) method, which we use as our main tool in this thesis. We

then review some existing thresholding and noise variance estimation methods in

the wavelet context. Finally, we introduce two standalone sections, optimisation

and sparsity, as some of our later work requires them.

2.2 Introduction to wavelets

There is much literature on wavelets. Good introductions to wavelets can be found

in [9, 17, 26, 27, 58, 61]. The description in this section closely follows [9].

A wave is an oscillating function in time or space, such as a sinusoid. A wavelet is

a “small wave”. Unlike Fourier analysis, wavelet theory is relatively new. Wavelet

theory has developed some promising ways for signal processing with various dif-

ferent wavelets. Key applications of wavelets are signal denoising, nonparametric

7

Chapter 2. Literature Review

function estimation and smoothing [33, 49, 78, 80]. Density estimation of station-

ary long memory processes has been studied in [2, 60, 87].

The goal of wavelet transform theory is to use the mother wavelet ψ(t), its di-

lations (scales) and their translations (shifts), as building blocks for a function

f(t) ∈ V0 where V0 ⊂ L2(R).

Definition 2.1. Let ψs,τ , s ∈ R \ {0}, τ ∈ R be a family of functions being

translations and dilations of a single function ψ(t) ∈ L2(R), called the mother

wavelet (see [26, 78]), and is defined as follows,

ψs,τ (t) = |s|−1/2ψ

(
t− τ
s

)
, (2.1)

where s denotes dilation (scale) and τ denotes translation (shifts). The fac-

tor |s|−1/2 is a normalising factor which is essential to preserve L2 norms, i.e.

‖ψs,τ‖2 = ‖ψ‖2. Typically ‖ψ‖2 = 1.

The mother wavelet is assumed to satisfy the admissibility condition,

Cψ =

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞, (2.2)

where Ψ(ω) is the Fourier transform of ψ(t). If ψ(t) ∈ L2(R), then Ψ(ω) is

continuous and the condition (2.2) can only be satisfied if Ψ(0) = 0 or

∫
R
ψ(t)dt = 0. (2.3)

See page 24 in [26] for the explanation of these choices. Condition (2.2) means that

ψ(t) should be localized in frequency domain. On the other hand, condition (2.3)

means that ψ(t) is localized in time and also oscillatory. Hence the name wavelet.

8

2.2. Introduction to wavelets

2.2.1 Multiresolution Analysis (MRA) and the Discrete

Wavelet Transform (DWT)

The idea of the multiresolution analysis was first presented in [57]. The following

review closely follows [9].

Scaling functions

The idea of scaling functions comes from the basis or expansion set. If one starts

with a vector space of signals, V0, then if any f(t) ∈ V0 can be expressed as

f(t) =
∑

k ckφk(t) then the set of functions {φk(t)} is called an expansion set for

the space V0. If the representation is unique, the set is a basis. Alternatively,

one could start with the expansion set and define the space V0 where all the func-

tions that belong to this space can be represented as a linear combination of the

expansion set. This is called the span of the expansion set [9]. The translation

(shifting) is defined as follows,

φk(t) = φ(t− k), k ∈ Z, φ ∈ L2(R). (2.4)

The subspace of L2(R) spanned by these functions is denoted as

V0 = Span{φk(t)}, ∀f(t) ∈ V0. (2.5)

Therefore, if the family of functions φk(t) span the subspace V0 then any function

f(t) ∈ V0 can be written as a linear combination of scaling functions φk(t) and

scaling coefficients,

f(t) =
∑
k

ckφk(t) for anyf(t) ∈ V0. (2.6)

9

Chapter 2. Literature Review

It is also possible to extend the size of the subspace spanned by changing the time

scale of the scaling function. A family of scaling functions is given as follows,

φj,k(t) = 2j/2φ(2jt− k), (2.7)

whose span over k is,

Vj = Span{φk(2jt)} = Span{φj,k(t)} ∀k ∈ Z, (2.8)

where j ∈ Z.

Definition 2.2. Multiresolution Analysis (MRA) of L2(R) is given by a system of

closed subspaces (Vj)j∈Z of L2(R) provided the following conditions are satisfied:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R)

or

Vj ⊂ Vj+1

2.
⋃
j∈Z Vj = L2(R), i.e.

⋃
j∈Z Vj is dense in L2(R)

3.
⋂
j∈Z Vj = {0}

4. f(t) ∈ V0 ⇐⇒ f(2jt) ∈ Vj

5. f(t) ∈ V0 ⇐⇒ f(t− k) ∈ V0, ∀k ∈ Z

6. ∃φ ∈ V0, called scaling function or father wavelet such that {φ0,k; k ∈ Z} is

an orthonormal basis in V0

Figure 2.1 shows the relationship of the spanned spaces.

Wavelet functions

Important features of a signal are revealed not when the the signal is represented

by the linear combination of scaling functions φj,k(t) but when they are represented

10

2.2. Introduction to wavelets

...v3⊃v2⊃v1⊃v0

v0v1v2v3

Figure 2.1: Nested vector space spanned by the scaling functions (see figure 2.1
in [9]).

by the slightly different functions ψj,k(t), called wavelets, that span the differences

between the spaces spanned by the various scales of scaling functions [9]. Let the

wavelet spanned subspace W0 be defined by,

V1 = V0 ⊕W0,

V2 = V0 ⊕W0 ⊕W1,

L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · · ,

(2.9)

where Wj are the orthogonal complement of Vj in Vj+1 (see figure 2.2). This

means that all members of the Vj are orthogonal to all members in Wj, i.e.

〈φj,k(t), ψj,l(t)〉 =

∫
φj,k(t)ψj,l(t)dt = 0, (2.10)

for all appropriate j, k, l ∈ Z.

Definition 2.3. Let φj0,k(t) be a family of scaling functions at scale j0 and let

ψj,k(t) be the wavelet functions that span all of L2(R) space. Then the Discrete

11

Chapter 2. Literature Review

...v3⊃v2⊃v1⊃v0...⊥w2⊥w1⊥w0⊥v0

w0w1w2 v0

Figure 2.2: Scaling and wavelet vector spaces (see figure 2.3 in [9]). .

Wavelet Transform (DWT) of any function f ∈ L2(R) is given by,

f(t) =
∑
k

cj0,kφj0,k(t) +
∞∑
j=j0

∑
k

dj,kψj,k(t), (2.11)

where

cj0,k = 〈f(t), φj0,k(t)〉 =

∫
f(t)φj0,k(t)dt,

dj,k = 〈f(t), ψj,k(t)〉 =

∫
f(t)ψj,k(t)dt.

(2.12)

The choice of j0 determines the coarsest scale whose space is spanned by

ψj0,k(t). The coefficients dj,k in the expression (2.11) are called the Discrete

Wavelet Transform (DWT) or the detail coefficients of the signal f(t).

The DWT can be computed by the pyramidal approach found in [57] which is com-

putationally fast and efficient compared to the Fast Fourier Transform (FFT). The

DWT requires computational complexity O(n), where n = 2J for some J ∈ N is

the number of data points. The complexity of FFT is O(n log n).

12

2.2. Introduction to wavelets

2.2.2 Discrete Wavelet Transform (DWT): Pyramid algo-

rithm

In here, we present a method proposed in [57]. If φ(t) is in V0, then it is also in

V1. The space V1 is spanned by φ(2t), this means that φ(t) can be expressed as a

weighted sum of translates of φ(2t), i.e.

φ(t) =
∑
n

h(n)
√

2φ(2t− n), n ∈ Z, (2.13)

where the coefficients h(n) are a sequence of real or complex numbers called the

scaling filter coefficients [9] (page 13).

A general scaling function is therefore can be expressed as,

φ(2jt− k) =
∑
n

h(n)
√

2φ(2(2jt− k)−n) =
∑
n

h(n)
√

2φ(2j+1t− 2k−n), (2.14)

replacing m = 2k + n we get,

φ(2jt− k) =
∑
m

h(m− 2k)
√

2φ(2j+1t−m). (2.15)

The scaling coefficients, cj,k, are calculated by the following inner product [9]

(page 32),

cj,k = 〈f, φj,k〉

=

∫
f(t)2j/2φ(2jt− k)dt,

(2.16)

which, by using (2.15) and interchanging the sum and integral, can be written as,

cj,k =
∑
m

h(m− 2k)

∫
f(t)2(j+1)/2φ(2j+1 −m)dt, (2.17)

13

Chapter 2. Literature Review

which leads to the following expression,

cj,k =
∑
m

h(m− 2k)cj+1,m. (2.18)

Similar derivation can be drawn for the detail coefficients (see [9, 57]),

dj,k =
∑
m

h1(m− 2k)cj+1,m, (2.19)

where h1(n) are the detail filter coefficients.

The expressions (2.18) and (2.19) can be obtained by convolving the expansion

coefficients cj+1 by the time reversed/mirrored recursion coefficients of h(−n) and

h1(−n) and then down-sampling or decimating the coefficients [9, 57] (page 33).

Down-sampling or decimation means taking every other term (e.g. even terms).

See figure 2.3. The pyramidal method finds n/2 detail coefficients at each scale

2

2

h1−n

h −n

2

2

h1−n

h −n

c j

d j

c j1

c j−1

d j−1

Figure 2.3: Two stages of the pyramid algorithm of [57] (see figure 3.3 in [9].

and it can run until there is no more decomposition possible, i.e the number of

scaling coefficient available is one.

In order to demonstrate the sparsity (see section 5.14 for detail) of the DWT,

we use a test function heavisine, which was used in the work [33]. We take the

14

2.3. The lifting scheme

number of samples n = 1024 and number of scales possible for this case is 10.

Figure 2.4 shows the plot of wavelet coefficients (detail coefficients) using DWT

implemented in wavethresh package. We can see majority of the coefficients are

zero (965 out of 1023).

Wavelet Decomposition Coefficients

Daub cmpct on ext. phase N=2
Translate

R
es

ol
ut

io
n

Le
ve

l

9
8

7
6

5
4

3
2

1

0 128 256 384 512

(a) Wavelet coefficients in each scale

0 200 400 600 800 1000
−

20
0

20
40

60

fine to coarse scale

M
ag

ni
tu

de
 o

f w
av

el
et

 c
oe

ffi
ci

en
t

(b) Wavelet coefficients plotted as a single
vector (here we notice most of coefficients are
zero and significant coefficients are at coarser
scales)

Figure 2.4: Sparsity of DWT for heavisine. Figure on the left shows the detail
coefficient at each scale. Figure on the right shows the plot of detail coefficients
as a single vector (fine scale to coarse scale)

2.3 The lifting scheme

Lifting is a second generation wavelet technique introduced in [82]. Formal analy-

sis of lifting scheme is presented in [83, 84]. Unlike traditional wavelets, so-called

first generation wavelets, the lifting scheme does not rely on the Fourier transform.

Therefore the lifting scheme can be used in situations where the Fourier transform

is not defined. One such situation is that of irregularly spaced data which often

occur in statistics.

The lifting transform consists of three stages, split, predict, and update. Lifting is

an iterative process which is illustrated in figure 2.5.

15

Chapter 2. Literature Review

Split: An abstract data set c0 can be split into two streams of data. One could say

odd-indexed and even-indexed data, or by just splitting into two sets of data by

separating them in the middle. This latter split is a bad way of splitting because

the two sets of data will have much less correlation as the points in these subsets

are far apart from each other and hence this will result in bad prediction. The

aim of lifting is to have good compression of signals therefore one would like to

choose the two subsets of data to be maximally correlated. For example, we could

write,

cJ = dJ−1 ∪ cJ−1, (2.20)

where cJ−1 is a vector which contains even-indexed elements in cJ and dJ−1 is a

vector which contains the odd-indexed elements in cJ. The reason for splitting

data in such a way is to increase the correlation between the subsets of data cJ−1

and dJ−1, because two adjacent elements in cJ will be more correlated than the

ones that are far apart.

Predict: Find a prediction operator P independent of the data so that cj could be

used to predict dj. Then replace dj with the residuals from this prediction. The

residuals can be thought of as wavelet coefficients. In other words,

d̃j = P(cj),

dj := dj − d̃j.
(2.21)

Update: After the prediction step, cj needs to be carried forward to the next

level j − 1 and therefore for stability one has to find a suitable update operator

U to preserve a certain scalar quantity, for example, expectation, E[cj] = E[cJ],

which relates the original data to the scaling coefficients. The predict step can be

written,

cj := cj + U(dj). (2.22)

After obtaining the forward lifting transform, it is easy to construct the inverse

16

2.3. The lifting scheme

Split Predict Update

+

d j

c j c j

d j

Updated

Detail coeff

c j1

(a) Single Step

Split Predict Update

+

d J− 2

cJ−2 cJ−2

d J−2

Updated

Split Predict Update

+

d J−1

cJ−1 cJ−1

d J−1Detail coeff

cJ Detail coeff

Updated

(b) First Two Steps

Figure 2.5: Forward lifting transform.

lifting transform. Basically, the order is reversed and the signs are toggled. Easy

inversion is one of the advantages of the lifting scheme over the traditional wavelet

transforms:

cj := cj − U(dj),

dj := dj + P(cj),

cj+1 = dj ∪ cj.

(2.23)

The forward transform in illustrated in figure 2.5 and the inverse lifting transform

is illustrated in figure 2.6.

JoinPredictUpdate

+

c j c j

d jd j

c j1

(a) Single Step

JoinPredictUpdate

+

cJ− 2 cJ−2

d J−2d J−2

cJ−1

JoinPredictUpdate

+

cJ−1

d J−1d J−1

cJ

(b) Last Two Steps

Figure 2.6: Inverse lifting transform.

17

Chapter 2. Literature Review

2.3.1 A simple example: Haar transform

We illustrate the lifting transform through the Haar example below (this example

is taken from [46]). The abstract data set cJ = {xm} for m = 1, 2, ... is split into

even-indexed and odd-indexed data sets. At stage one the abstract data is split

into two sets of data, cJ−1 = {x2m}, dJ−1 = {x2m−1}. We can now use elements

in cJ−1 to predict the elements in dJ−1,i.e.

x̃2m−1 = x2m. (2.24)

The ‘wavelet’ coefficients are given by the residual from this prediction,

x∗2m−1 = x2m−1 − x̃2m−1,

= x2m−1 − x2m,
(2.25)

where x∗2m−1 corresponds to the detail coefficients resulting from the lifting trans-

form. The next step is to update the elements in cJ−1. This is done as follows,

x∗2m = x2m +
1

2
x∗2m−1,

=
1

2
(x2m−1 + x2m).

(2.26)

By following the update step above maintains the mean of the data throughout

the transform. Carry out the steps described above iteratively on x∗2m until one

element is left in the set c0 and at this point one would have performed a complete

lifting transform. Note that the lifting coefficients here are identical to the Haar

wavelet coefficients.

To illustrate the above Haar transform we suppose that we have the set c3 =

{x1, x2, x3, x4, x5, x6, x7, x8} = {1, 1, 1, 1,−1,−1,−1,−1}. We split the data into

an odd indexed set d2 = {x2m−1} = {1, 1,−1,−1} and an even indexed set

c2 = {x2m} = {1, 1,−1,−1}. Now we use the set c2 to predict d2 using (2.24)

18

2.4. Lifting One Coefficient At A Time (LOCAAT)

and find the lifting coefficients at scale 2 according to (2.25). Therefore d2 now

becomes as, d2 = {x∗2m−1} = {0, 0, 0, 0}. Now perform updating on the set c2 ac-

cording to (2.26) which leads to, c2 = {x∗2m} = {1, 1,−1,−1}. We see no change

in c2 because of the detail coefficients in d2 being zero.

Now we progress to the next scale where we start with the set c2 = {x1, x2, x3, x4} =

{1, 1,−1,−1}. After splitting we have the sets d1 = {x2m−1} = {1,−1} and

c1 = {x2m−1} = {1,−1}. Again we use the set c1 to predict the elements in d1 us-

ing (2.24) and find the lifting coefficients at scale 1 according to (2.25). Therefore

the lifting coefficients are given by the set d1 = {x∗2m−1} = {0, 0}. After updating

the set c1 using (2.26) which again leads to no change in c1.

Now we progress to the final scale of lifting where we start with the set c1 =

{x1, x2} = {1,−1}. Again split the data into odd indexed set d0 = {1} and even

indexed set c0 = {−1}. Using (2.24) and (2.25) we have the detail coefficient set

d0 = {2}. We get c0 = {0} by performing update on c0 using (2.26).

2.4 Lifting One Coefficient At A Time (LOCAAT)

Based on the idea of lifting technique, the work in [45] introduces a new paradigm

called “lifting one coefficient at a time”, which we refer to as ‘LOCAAT’, to han-

dle multidimensional irregular data.

The standard lifting transform, like the one considered in the example in the

previous section, splits the data into two sets, odd- and even-indexed elements.

However, the lifting one coefficient at a time scheme, as the name implies, cal-

culates only one detail coefficient at each step. The following explanation is for

spatially irregular data and taken entirely from [46].

We observe values fi = f(ti) of a function at n points or sites. Initially the

19

Chapter 2. Literature Review

function can be approximated as follows

f(t) =
n∑
k=1

cnkφnk(t), (2.27)

where φnk are scaling functions such that,

φnk(ti) = δik, (2.28)

where δik is the Kronecker delta. The stages of the procedures are numbered

downwards from n. So the order is, n, n − 1, n − 2, At stage r, let Sr be the

indices of the scaling coefficients and Dr be the indices of the detail coefficients.

Initially the process starts with Sn = {1, 2, ..., n} and Dn = ∅. At stage r, let

Dr = {ir+1, ir+2, ..., in} be the indices of detailed coefficients already found. Note

that the first removed point is the last element in the set. At stage r the function

f can now be written as,

f(t) =
∑
l∈Dr

dlψl(t) +
∑
k∈Sr

crkφrk(t). (2.29)

We will explain how the coefficients dl and crk are calculated in the following sub-

section. The next stage is stage r−1 and if the next point to be removed is ir then

Sr−1 = Sr\ir, Dr−1 = Dr∪ir. Therefore the order in which the wavelet coefficients

will be obtained is in, in−1, ..., ir+1. Each removed point ir is determined by the

size of the integral of the scaling function, i.e. the scaling functions with smallest

integrals will be removed first (see [46] for more detail).

2.4.1 Forward transform

For each ir there are a number of neighbours nr whose indices are stored in a set

Jr. The values cj for j ∈ Jr will be used to construct an approximation for cir .

Each removed point ir requires the definition of two vectors air , bir each of length

20

2.4. Lifting One Coefficient At A Time (LOCAAT)

|Jr|. From here onwards, to avoid confusion in notation, ir is replaced by i and

Jr is replaced by J . Now the subscript r means the stage r in the multiresolution

context.

Predict:

The detail coefficient di is obtained by the difference between the value at the

removed point i and the sum of weighted values of its neighbours j ∈ J ,

di = cri −
∑
j∈J

ajcrj. (2.30)

The weight vector ai will depend on the particular lifting strategy. The lifting

scheme we used to produce results in the next section employs inverse distance

weights as the weight vector ai. This means that the larger the distance between

the removed point i and its neighbours j ∈ J the smaller the weight it carries.

Therefore, when predicting the value at the removed point, if the distance is large,

the impact of the neighbour is small.

ai =

{
1

distj∑
j∈J

1
distj

}
∀j ∈ J. (2.31)

From equation (2.31), the form of the weight vector ai will ensure that it satisfies,

∑
j∈J

aj = 1. (2.32)

Update:

After obtaining the detail coefficient for the removed point i, the value of the

neighbours are updated as follows,

crj := crj + dibj, ∀j ∈ J. (2.33)

21

Chapter 2. Literature Review

Refer to [45] for the definition of the weight vector bi. Since this is lifting one

coefficient at a time, the next level scaling function coefficients can simply be

written as,

cr−1,j = crj, ∀j ∈ Sr−1. (2.34)

The operations of predict and update steps are carried on recursively until the

stage required or there are no more points to remove.

In order to demonstrate the sparsity of the LOCAAT transform, we use a test

function maartenfunc (see section 3.2.3) with n = 500 and plot the detail coef-

ficients in the order they are calculated in figure 2.7. Although the sparsity is

less compared to the other wavelet transforms, we can still see that the fine scales

have less significant coefficients than the coarser scales.

0 100 200 300 400 500

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Coefficients in the order of removal (fine to coarse scale)

M
ag

ni
tu

de
 o

f d
et

ai
l c

oe
ffi

ci
en

ts

Figure 2.7: Plot of detail coefficients found using LOCAAT method for maarten-
func. The plot is in the order of removal and n = 500.

22

2.4. Lifting One Coefficient At A Time (LOCAAT)

2 3 41 Node Indices

1 -1 -11 Data

Edges
1: 2
2: 1 3
3: 2 4
4: 3

Distance
1: 1
2: 1 1
3: 1 1
4: 1

Figure 2.8: Toy network on which we assume the data [1, 1,−1,−1] is observed.
We also assume the nodes are separated by distance of 1 unit.

2.4.2 Inverse transform

Again the inverse is easy to construct by just reversing the order and changing

the sign.

crj := crj − dibj,

cri := di +
∑
j∈J

ajcrj, j ∈ J.
(2.35)

These steps are carried out recursively for all i ∈ Dr−1 for complete reconstruction.

Numerical example of LOCAAT transform

We demonstrate a simple LOCAAT transform via the following example. Suppose

we have a set of data c3 = {1, 1,−1,−1}. In order to apply LOCAAT transform

to this data, we have to first define a network on which the data is observed. Since

this is a simple 1-D signal, we define the network as in figure 2.8. Once we have

available requirements such as a defined network and the data, we can perform

23

Chapter 2. Literature Review

the LOCAAT transform. First identify the first node to be removed which in this

case is node 1. See [46] to find the argument for selecting the removed points.

Node 1’s neighbour is node 2 and the inverse distance weight a2 = 1. Now by

directly using (2.30) we get the LOCAAT coefficient d2 = 0. Next step is to

update the scaling coefficients. In this case we only have to update the node 2’s

value. Since the LOCAAT coefficient is zero, by using (2.33), we get unchanged

value for node 2’s observation. Therefore we end up with the next scale coefficients

c2 = {1,−1,−1} and the detail coefficient set d = {0} after first scale.

At the second scale, we start with the set c2 = {1,−1,−1}. Now identify the

second removed point which is node 4 in our example. Node 4’s neighbour is node

3 and the inverse distance weight a3 = 1. Again, by using (2.30), we get the

LOCAAT coefficient d4 = 0. We update the scaling coefficient (node 3’s value)

using (2.33). After the second scale, we end up with the next scale coefficients

c1 = {1,−1} and the LOCAAT coefficient set d = {0, 0}.

Now we progress to the final lifting step. The last removed point in our example is

node 2 whose neighbour is only node 3 because node 1 has already been removed

in the earlier step (see [46] for detail on how the network is modified in each scale).

We find the detail coefficient using (2.30) which is d2 = 2. After performing update

on the scaling coefficient (node 3’s value) using (2.33) we get the scaling coefficient

c0 = {0}. After the complete transform we end up with the scaling coefficients

c0 = {0} and the LOCAAT/detail coefficients d = {d2, d4, d1} = {2, 0, 0}.

2.4.3 Variance approximation of the sample coefficients

Since the LOCAAT method operates linearly it is possible to calculate the covari-

ance matrix for each lifting step. However with large data this is not computa-

tionally efficient. Suppose the original data ck are independent random variables

24

2.4. Lifting One Coefficient At A Time (LOCAAT)

with variances Vk. Consider a single prediction step of the lifting transform,

c∗i = ci −
∑
j∈J

ajcj. (2.36)

Therefore the modified variance after a single step, is given by,

var c∗i = Vi +
∑
j∈J

a2
jVj, (2.37)

and the covariance,

cov(c∗i , cj) = −ajVj, j ∈ J. (2.38)

The update step for the lifting one coefficient at a time scheme is as follows,

c∗j = cj + c∗i bj, (2.39)

and it follows that,

V ∗j = Vj + b2
j var c∗i + 2bj cov(c∗i , cj)

= (1− 2ajbj)Vj + b2
j var c∗i .

(2.40)

Therefore single step of the lifting transform approximates the variances Vk with

V ∗k ,

V ∗i = Vi +
∑
j∈J

a2
jVj,

V ∗j = (1− 2ajbj)Vj + b2
jV
∗
i , j ∈ J.

(2.41)

The approximation used is to neglect any correlation between the coefficients

that are obtained in the next level [46]. This variance approximation will be

used in estimating the noise variance and thus remove the noise by some means of

thresholding (e.g hard thresholding using universal threshold). Refer to section 4.1

for how this variance approximation is used to estimate the noise variance in a

denoising (noise removal) problem.

25

Chapter 2. Literature Review

2.5 Denoising with regular wavelets

Most wavelet based function estimation is based on the model assumption ex-

pressed by the following equation,

fi = gi + εi, (2.42)

where εi is iid Gaussian with mean zero and variance σ2
i . Generally the variance

σ2
i is assumed to be constant and i = 1, ..., n. Wavelet based analysis usually

require a regular grid, i.e. ti = i/n and often n = 2J for some J ∈ N.

As mentioned earlier, data representation as wavelet coefficients di is often more

sparse than its original representation. However, iid Gaussian noise is not com-

pressed by the wavelet transform because the transform is orthogonal. So an

effective denoising strategy is to,

• take the wavelet transform of noisy data

• the true function gi usually gets compressed into a sparse wavelet represen-

tation. The noise εi remains ‘spread evenly’ across all coefficients.

• Since the wavelet transform is orthogonal it preserves energy, so the wavelet

coefficients of the signal tend to ‘stick out’ above the noise more than with

the original representation.

Hence a good denoising strategy is to threshold the wavelet coefficients [9, 32]. In

the wavelet domain, the expression (2.42) can be written as,

di = θi + ε̃i, (2.43)

where di is the wavelet transform of fi, θi is the wavelet transform of gi and ε̃i is

the wavelet transform of the noise component εi.

We can apply the following thresholding methods to the wavelet coefficients di to

26

2.5. Denoising with regular wavelets

get an estimate for θi.

2.5.1 Hard, soft and universal thresholding

Now, to suppress noise, empirical wavelet coefficients are shrunk toward 0 by

some shrinkage rule. Work in [32, 34] proposed two shrinkage methods, hard-

thresholding and soft-thresholding, for suppressing the noise present in a signal.

Hard thresholding:

θ̂H` =

 d`, if |d`| ≥ λ,

0, if |d`| < λ.

Soft thresholding:

θ̂S` =

 sgn(d`)(|d`| − λ), if |d`| ≥ λ,

0, if |d`| < λ.

Figure 2.9 shows an example of both thresholding rules. One popular choice for

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Hard Thresholding

θ

θ λ

(a) Hard Thresholding

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

Soft Thresholding

θ

θ λ

(b) Soft Thresholding

Figure 2.9: Example of hard and soft thresholding. x-axis shows the coefficients
θ and y-axis shows the thresholded coefficients θλ where λ = 0.2 is the threshold.

27

Chapter 2. Literature Review

λ is the universal threshold [34],

λ = σ
√

2 log n, (2.44)

where n is the number of wavelet coefficients and σ is the noise standard deviation.

2.5.2 Block thresholding

There is much literature for block thresholding methods in the wavelet context.

See [10, 11, 12, 13, 15, 39, 40] for some popular block threshold methods for

wavelets.

The discussion below assumes the model fi = g(ti)+εi where i = 1, . . . , n, ti = i/n,

n = 2J for some J ∈ N and εi ∼ N(0, σ2). Let φ and ψ denote the scaling functions

(also sometimes referred as father wavelets) and mother wavelets respectively. The

discrete wavelet transform of function g is given below,

g(t) =
2j0∑
k=1

εj0kφj0k(t) +
∞∑
j=j0

2j∑
k=1

θjkψjk(t), (2.45)

where εjk = 〈g, φjk〉 and θjk = 〈g, ψjk〉. An empirical expansion of g is given by,

g̃(t) =
2j0∑
k=1

ε̃j0kφj0k(t) +
J−1∑
j=j0

2j∑
k=1

θ̃jkψjk(t), (2.46)

where J indicates the scale, ε̃jk = 〈f, φjk〉 =
∑

i fiφjk(ti) and θ̃jk = 〈f, ψjk〉 =∑
i fiψjk(ti). Since the DWT is an orthogonal transform it follows that θ̃jk =

θjk + εjk where εjk ∼ N(0, σ2). Now the term-by-term threshold estimator of g̃ is

given by,

ĝ(t) =
2j0∑
k=1

ε̃j0kφj0k(t) +
∞∑
j=j0

2j∑
k=1

θ̃jkI(|θ̃jk| > λ)ψjk(t), (2.47)

where I denotes the indicator function and λ is an appropriate threshold such as

the universal threshold method proposed in [34], λ = σ
√

2 log n.

28

2.5. Denoising with regular wavelets

Work in [39] introduces a block thresholding wavelet estimator which thresholds

coefficients in groups instead of term by term. This approach utilizes the fact

that for a smooth g, θj,k1 and θj,k2 are close to each other in value if k1 is close to

k2 and thus allowing decisions to be made on these coefficients by grouping these

coefficients together for certain neighbouring values of k. This results in reduction

of stochastic error in the estimator of θjk [40].

At each resolution level j, the empirical coefficients θ̃jk are grouped into non-

overlapping blocks of length L = [(log n)2]. Let Bjb denote the bth block in

resolution level j.

Bjb = {(j, k) : (b− 1)L ≤ k ≤ bL}. (2.48)

Let B̃2
jb =

∑
k∈Bjb

θ̃2
jk denote the sum of squares of the empirical coefficients

in block Bjb. The block Bjb is considered important if B̃2
jb > T and all the

coefficients within the block are retained, otherwise discarded. The work in [39]

proposes the threshold value T = σ2Lλ where λ ≥ 48. The block thresholded

wavelet estimator of g is given by,

ĝ(t) =
2j0∑
k=1

ε̃j0kφj0k(t) +
∞∑
j=j0

∑
b

∑
k∈Bjb

θ̃jkψjk(t)

 I(B̃2
jb > T). (2.49)

A variant of this block thresholding procedure, BlockShrink, can be found in [11,

12]. The procedure is the same and the block length used is L = [log n] and

λ = 4.5052 which attains the optimal rate of convergence. BlockShrink uses

T = 5Lσ2.

2.5.3 NeighBlock and NeighCoeff

Work in [10] introduces two methods developed based on the block thresholding

approach that was previously found to work well by incorporating information

from neighbouring coefficients into decision making.

29

Chapter 2. Literature Review

NeighBlock

At each resolution level j, group the empirical wavelet coefficients into disjoint

blocks bji of length L0 = [(log n)/2]. Each block is extended in both directions by

further L1 = max(1, L0/2) coefficients to form an overlapping larger block Bj
i of

length L = L0 + 2L1. The coefficients in block bji are simultaneously thresholded

depending on the coefficients in the larger block Bj
i .

θ̂j,k = βji θ̃j,k ∀(i, j) ∈ bji , (2.50)

where the shrinkage factor βji is chosen in reference to the coefficients in the larger

block Bj
i .

βji = (1− λ∗Lσ2/S2
j,i)+, (2.51)

where

S2
j,i =

∑
(j,k)∈Bj

i

θ̃2
j,k, (2.52)

where θ̃j,k is the kthempirical wavelet coefficient at scale j. The larger block Bj
i

moves L0 positions each time and half of the coefficients at the centre of the block

is estimated.

NeighCoeff

The NeighCoeff procedure follows the same steps as the NeighBlock approach,

but with L0 = L1 = 1, L = 3, and λ = 2
3

log n. This again is a term by term

thresholding but the threshold estimator is dependent on the coefficient itself and

on its immediate neighbours. In NeighCoeff, a coefficient is estimated by zero

when the sum of squares of the empirical coefficient and its immediate neighbours

is less than 2σ2 log n.

30

2.5. Denoising with regular wavelets

2.5.4 Stein’s Unbiased Risk Estimator (SURE) threshold

Let µ = (µi : i = 1, . . . , d) be a d-dimensional vector, and xi ∼ N(µi, 1) be a

multivariate normal with that mean vector. Let µ̂ = µ̂(x) be a particular fixed

estimator of µ. Work in [81] introduced a method to estimate the loss ||µ̂− µ||2

in an unbiased fashion.

Write µ̂ = x + g(x), where g = (gi)
d
i=1 is a function form Rd into Rd. Stein [81]

showed that when g(x) is weakly differentiable then,

Eµ||µ̂− µ||2 = d+ Eµ{||g(x)||2 + 2∇ · g(x)}, (2.53)

where,

∇ · g(x) =
∑
i

∂

∂xi
gi. (2.54)

The quantity SURE(λ; x) = 1
d
[d−2·#{i : |xi| ≤ λ}+

∑d
i=1(xi∧λ)2] is an unbiased

estimate of the risk Eµ||µ̂λ(x)− µ||2 = Eµ SURE(λ; x) where a ∧ b = min(a, b).

Work in [43] proposes a SureShrink estimator which selects the combination

of threshold parameter, λS = arg min0≤t≤
√

2 log d SURE(t; x) and λ =
√

2 log d

(see [43] for more details).

2.5.5 Cross validation based thresholding

The cross validation method is often used in statistical methods to optimize

parameters by minimising error in approximation. In the wavelet context, the

cross validation method is often used to find the optimal threshold parame-

ter [43, 44, 63]. Many thresholding methods, such as the ones presented above,

require a reliable estimation of noise variance σ2. However cross validatory meth-

ods do not require it to be estimated. The cross validation method generally tries

to estimate the MSE function. There are many cross validation methods however

we present a method that is based on a popular leave-one-out cross validation.

31

Chapter 2. Literature Review

Ordinary Cross Validation (OCV)

The following discussion is taken from [44]. The idea of OCV arises from the

leave-one-out cross validation method. Suppose we have the model in (2.42), we

simply leave a data point fi out and interpolate (by linear combination of its

neighbours) this point from the remaining data and call this f̃i. Now DWT is

applied to the modified vector fi,

fi = (f1, . . . , f̃i, . . . , fn)T , (2.55)

where n = 2J for some J ∈ N. The wavelet coefficients are then subjected to some

threshold value λ and then inverted, we call this vector fλi = (fλ1, . . . , f̃λi, . . . , fλn).

The OCV score for point i for a particular λ is calculated

Oi(λ) = (f̃λi − fi)2. (2.56)

This procedure is repeated for all the points and an overall cross validation score

for a particular threshold λ is obtained,

O(λ) =
1

n

n∑
i=1

(f̃λi − fi)2. (2.57)

Generalised Cross Validation (GCV)

The above method is computationally intensive. Work in [44] shows that by taking

f̃λi = f̃i will lead to the formula of GCV (see [44] for derivation). The GCV is

given by,

G(λ) =
1
L
||f − fλ||2[

L0

L

]2 , (2.58)

where L is the number of wavelet coefficients and L0 is the number of these

coefficients replaced by zero. Another way to calculate GCV is directly from

32

2.5. Denoising with regular wavelets

wavelet domain [43] as follows,

G(λ) =
1
L
||d− dλ||2[

L0

L

]2 , (2.59)

where d is the vector of wavelet coefficients and dλ is the thresholded coefficients.

2.5.6 Empirical Bayes thresholding

There are lot of references available related to Bayesian thresholding methods

in wavelets (see [1, 23, 50, 51, 52]). The discussion below assumes the model

Zi = g(ti) + εi, where the noise εi is independent N(0, σ2). Suppose we have a

parameter θ and an observation fi ∼ N(θ, 1), where θ is the wavelet coefficient

of g such that the empirical wavelet coefficient is rescaled to have unit variance.

Work in [51, 52] suggested a prior distribution for θi each given by a mixture,

fprior(θ) = (1− π)δ0(θ) + πγ(θ), (2.60)

where γ is a symmetric density (work in [51, 52] suggested a heavy tailed density),

π is the (prior) probability of a wavelet coefficient being non zero. Initially all θi

have independent prior distributions (2.60) all with same value of π. Let h = γ ?φ

where ? denotes convolution and φ is the standard normal density. The marginal

density of Zi is,

(1− π)φ(z) + πh(z). (2.61)

Work in [51, 52] explored Marginal Maximum Likelihood (MML) to select π,

which is chosen to maximise the marginal log-likelihood,

`(π) =
∑
i

log{(1− π)φ(zi) + πh(zi)}. (2.62)

For each observation Zi = zi the posterior density, fpost(θi|Zi=zi), can be calculated.

The estimator, θ̂, for the true wavelet coefficients θ can be derived through pos-

33

Chapter 2. Literature Review

terior mean, posterior median or hard and soft thresholding methods (see [51, 52]

for more detail).

In standard wavelet methods, a different prior πj for each scale j is used . Typ-

ically πj decrease as the resolution level increases. That is, at fine scale πj is

small and the observed coefficient must pass a high threshold in order to yield

0. At coarser scale, a smaller threshold is appropriate. See [46] for adaptation of

empirical Bayes thresholding for the LOCAAT method.

2.6 Other smoothing methods

In this section we briefly describe some popular nonparametric smoothing methods

other than wavelet methods.

2.6.1 Locally weighted polynomial regression

The work in [19] introduced a robust nonparametric method called LOcally WEighted

Scatterplot Smoother (LOWESS) based on local polynomial fits. This method is

robust in the sense that this method is resistant to outliers . This method pro-

duces a smooth curve through a scatter diagram, like linear regression in which

the polynomial is a straight line, with certain properties. The curve is smooth and

it minimises the variance of the residuals locally. The work in [20] extended the

work in [19] to higher dimensions and from now we refer this method as LOESS.

The univariate case

Suppose fi, are observations (dependent variable) and xi are independent variables

where i = 1, . . . , n. The model for the regression is,

fi = g(xi) + εi, (2.63)

34

2.6. Other smoothing methods

where g(x) is a smooth function of x and εi are iid Gaussian with mean zero and

variance σ2. Let W (u) for u > 0 be a weight function such that,

• W (u) ≥ 0

• W (u) = 0 for u > 1, and

• W (u) is non-increasing in 0 ≤ u ≤ 1.

Let x be the point at which the estimate, ĝ(x), of g(x) is made. Let h be a number

between 0 and 1 and let q be hn truncated to an integer. Let d(x) be the distance

of x to the qth nearest xi. Let wi(x) be the weights defined by,

wi(x) = W

(
|xi − x|
d(x)

)
, i = 1, . . . , n. (2.64)

To get ĝ(x), a linear or a quadratic function (of the independent variable x) is

fitted to the dependent variable fi by weighted least squares with weights wi(x).

The multivariate case

The model for the multivariate case is similar to the univariate case case except

the independent variable is now a vector with p elements for a p-dimensional case,

i.e. xi = (xi1, . . . , xip). Let ρ be a distance function in this space and let d(x) be

the distance of x to the qth nearest xi. The weight wi(x) is defined as,

wi(x) = W

(
ρ(xi − x)

d(x)

)
, i = 1, . . . , n. (2.65)

Again a linear or quadratic function of the independent variables is fit to fi by

weighted least squares with weights wi(x).

Choices

To carry out LOESS procedure one must decide between locally linear and locally

quadratic fitting and must choose W , ρ, m. Work in [20] suggested that a good

35

Chapter 2. Literature Review

W could be a tricube weight function,

W (u) = (1− u3)3 for 0 ≤ u ≤ 1. (2.66)

For ρ, the independent variables x are first scaled by dividing by its InterQuartile

Range (IQR) and then use Euclidean distance for the scaled variables. Choosing

m and deciding linear or quadratic function fitting are complex. As m increases,

the neighbourhood size increases, the bias of ĝ(x) increases, and the variance

decreases. Therefore right choice of these parameters have to be made for a

balanced bias/variance trade off.

This method is supposed to be computationally intensive since calculations have

to be done for every x. However work in [21, 22] showed methods for doing the

computations efficiently.

To summarise, the LOESS estimate is linear in fi, i.e.,

ĝ(x) =
n∑
i=1

li(x)fi, (2.67)

where li(x) is an element of the weight matrix L which is formed by wi(x). In

R we can do LOESS or LOWESS by simply issuing commands loess or lowess

with required parameters.

2.6.2 Smoothing splines

Polynomial smoothing splines were first introduced in [77, 79] and they have

provided an attractive way of smoothing noisy data. A spline function is a curve

constructed from polynomial segments that are subject to continuity at their joints

(knots). A spline function, S(x), is constructed to approximate g(x) in the model

given in (2.42). The spline function S(x) must minimise the following criterion,

L = n−1
∑
{fi − S(xi)}2 + λ

∫ 1

0

{S ′′(x)}2dx. (2.68)

36

2.6. Other smoothing methods

The parameter λ is known as the smoothing parameter.

2.6.3 Kernel smoothing

The kernel smoothing method approximates the function g(x) in the model (2.42)

by weighted average of the given data in a small window which is centred around

x. The classical kernel estimator, also known as Nadaraya-Watson estimator, is

in the form given by (see [62, 89]),

ĝ(x) =

∑n
i=1 fiK

(
x−xi

h

)∑n
i=1K

(
x−xi

h

) , (2.69)

with kernel K and bandwidth h. Another popular method of kernel estimator is

proposed in [75] and is given by,

ĝ(x) =
1

nh

n∑
i=1

fiK

(
x− xi
h

)
. (2.70)

The bandwidth parameter h controls the smoothness or roughness of the esti-

mator. It is well known that the choice of bandwidth is generally much more

important than the choice of kernel (see [88]). Refer to the literature for more

details on kernel smoothing.

2.6.4 Kriging

In the real world, it is practically impossible to get values at every physical points.

Thus interpolation is desirable. The word “kriging” is synonymous with opti-

mal prediction. The aim of kriging is to estimate the value of a random vari-

able Z at one or more unsampled points or locations, from from given a support

data, {z(x1), . . . , z(xn)}, at locations {x1, . . . ,xn}. In kriging, the spatial data is

modelled stochastically and then estimated using Best Linear Unbiased Estima-

tor (BLUE) [16]. There are several types of kriging methods depending on the

37

Chapter 2. Literature Review

variety of problems. We outline some popular kriging methods below.

Ordinary kriging

Suppose we have data {z(x1), . . . , z(xn)}, at locations {x1, . . . ,xn} and we want to

predict Z(x0) at location x0. First, the ordinary kriging assumes Z(x) = µ+ ε(x)

where µ is the mean of Z(x) and is an unknown constant. The quantity at location

x0 is estimated as,

Ẑ(x0) =
n∑
i=1

λiZ(xi) + ε(x0), (2.71)

where λi is the weight for Z(xi) and
∑n

i=1 λi = 1 and E[ε(x0)] = 0. For each

prediction at an unsampled location, appropriate weights λi have to be estimated.

I.e.,

{λ̂i}ni=1 = arg minE[ε(x0)2],
n∑
i=1

λ̂i = 1. (2.72)

Simple kriging

Simple kriging and ordinary kriging are similar methods except the mean of Z(x),

µ, is a known constant.

Universal kriging

Universal kriging is a generalisation of ordinary kriging. In universal kriging

Z(x) = µ(x) and µ(x) is a linear combination of known functions {φ1(x), . . . , φp(x)}.

Therefore the model for this type of kriging is,

Z(x) =

p∑
j=1

φj(x)βj + ε(x), (2.73)

and the coefficients βj have to be estimated from the data. Once this is performed,

the estimation for unsampled location is similar to that in ordinary kriging.

These are few of the kriging methods available. Refer to the available literature

for further detail on kriging (e.g. [41, 70, 71]). The work in [54] showed a method

38

2.7. Wavelet-based noise variance estimation methods

for space-time function estimation using kriging update model.

2.7 Wavelet-based noise variance estimation meth-

ods

Most of the thresholding methods described earlier require estimation of the noise

variance σ. In this section, we review some available methods to estimate noise

variance from the wavelet coefficients.

2.7.1 Classical Median Absolute Deviation (MAD) esti-

mate

Work in [34] proposes a robust estimator for σ by taking the Median Absolute

Deviation (MAD) of the wavelet coefficients at the finest scale. This works well

assuming the fine scale coefficients contain very little signal information which is a

good assumption if the wavelet (lifting) transform of the true signal under consid-

eration is sparse. Assume the following standard model used wavelet regression,

fi = g(ti) + εi, (2.74)

where ti = i/n; i = 1, . . . , n, n = 2J for some J ∈ N and εi are Gaussian iid

with mean zero and variance σ2. Let f denote the vector of observations fi and g

denote the vector of true signal values g(ti). The discrete wavelet transform of f

results in the following wavelet domain decomposition.

w = θ + ε, (2.75)

where w ≡ Wnf , θ ≡ Wng and ε ∼ N(0, σ2I) because Wn is an orthogonal

matrix. The vector w is of length 2J and it contains scaling function coeffi-

39

Chapter 2. Literature Review

cients and wavelet coefficients. The vector w = [(w∗J0
)T ,wT

J0
, . . . ,wT

J−1]T , where

w∗J0
≡ [w∗J0,0

, . . . , w∗
J0,2J0−1

]T is the vector of scaling function coefficients and

wj ≡ [wj,0, . . . , wj,2j−1]T is the vector of wavelet coefficients at the jth scale,

j = J0, . . . , J−1. The MAD estimator of wavelet coefficients variance is given by,

σ̂MAD = MAD{wJ−1,k}

= median{|wJ−1,k −median{wJ−1,k}|}/0.6745,
(2.76)

where the constant term 1
0.6745

ensures consistency, i.e. E[MAD(w)] = σ.

2.7.2 Classical variogram method

The discussion below is taken from [25]. Let s ∈ Rd be a generic data location

in d-dimensional Euclidean space and suppose that the datum Z(s) at spatial

location s is a random quantity. Now let s vary over index set D ⊂ Rd so as to

generate the multivariate random field (or random process).

{Z(s) : s ∈ D}. (2.77)

There are potentially an infinite number of measurements that could be taken

at location s. A realisation of the random field {Z(s) : s ∈ D} is denoted by

{z(s) : s ∈ D}.

Suppose µ(s) ≡ E(Z(s)) exists for all s ∈ D. The existence of var(Z(s)) for all

s ∈ D allows the definition of second-order stationary and intrinsically stationary

processes.

40

2.7. Wavelet-based noise variance estimation methods

Second order stationarity

A process is second order stationary if its mean is constant and the autocovariance

depends only on the lag.

E(Z(s)) = µ, ∀s ∈ D, (2.78)

cov(Z(s1), Z(s2)) = C(s1 − s2) ∀s1, s2 ∈ D

= C(h), say.
(2.79)

Calculation of the variogram

Suppose the spatial data Z(s1), . . . , Z(sn) is observed at spatial locations D =

{sk : i = 1, . . . , n}. Then intrinsic stationarity is defined through first differences:

E (Z(s + h)− Z(s)) = 0,

var (Z(s + h)− Z(s)) = 2γ(h).
(2.80)

The quantity 2γ(h) is known as the variogram and γ(h) is called the semi-

variogram [25]. The classical estimator of the variogram was proposed in [59]

and is given by,

2γ̂(h) =
1

|M(h)|
∑
M(h)

(z(si)− z(sj))
2 , (2.81)

where the sum is over M(h) ≡ {(si, sj) : si − sj = h; i, j = 1, . . . , n} and |M(h)|

is the number of distinct pairs in M(h). The lag vector h that separates the two

spatial locations si and sj in both distance and direction is given by,

h = he, (2.82)

where h is the lag magnitude and e is the unit vector in the direction required.

41

Chapter 2. Literature Review

Robust estimation of the variogram

In some situations the data contain outliers and, in others, the data can be highly

skewed. For a Gaussian process Z(.), (Z(si) − Z(sj))
2 is a chi-squared random

variable on 1 degree of freedom. The work in [24] finds the power transformation

that makes the squared difference most Gaussian-like is the fourth root. The

work in [24, 41] proposed the following robust estimator for the variogram based

on mean and median operations to the transformed differences {|Z(si)−Z(sj)|1/2 :

(si, sj) ∈M(h)},

2γ̂mean(h) =

 1

M(h)

∑
M(h)

|Z(si)− Z(sj)|1/2

4/
B(h), (2.83)

2γ̂med(h) =
[
median{|Z(si)− Z(sj)|1/2 : (si, sj) ∈M(h)}

]4/
B(h), (2.84)

where B(h) = 0.457 + 0.494/|M(h)| and asymptotically B(h) = 0.457.

2.7.3 A new variogram technique

The work in [42] proposes a variogram method for estimating σ arising from the

model (2.74). They showed how to estimate σ in the time domain from the one

dimensional case of f = g + ε, where f is the vector of observations fi, g is the

vector of true signal g(ti), ε is the vector of εi, ti = i/n; i = 1, . . . , n, n = 2J for

some J ∈ N and εi are Gaussian iid with mean zero and variance σ2.

In the literature, the time lag is often denoted by the letter k. Since we use k to

denote an arbitrary node, we use h to denote time lag.

Assuming g(.) has a stationary covariance structure with autocovariance at lag h

given by C(h);h ∈ R as follows,

cov(fi, fi+h) =

 C(0) + σ2, if h = 0

C(h), if h 6= 0.
(2.85)

42

2.8. Optimisation

It follows that the variogram of f is given by,

2γ(h) ≡ var(ft+h − ft)

=

 0, if h = 0

2(σ2 + C(0)− C(h)), if h 6= 0.

(2.86)

The semivariogram γ(h) → σ2 as h → 0. They estimate σ2 based on a linear

extrapolation to the zero ordinate of the semivariogram at two small lags 0 <

h1 < h2, provided such an extrapolation is nondegenerate. Consequently, their

estimator of σ2 is σ̂2, where,

σ̂ ≡

(
h2γ̂(h1)−h1γ̂(h2)

h2−h1

)1/2

, if h2γ̂(h1) ≥ h1γ̂(h2) ≥ h1γ̂(h1)(
γ̂(h1)+γ̂(h2)

2

)1/2

, if γ̂(h2) < γ̂(h1)

0, otherwise,

(2.87)

and 2γ̂(h) ≡ (MAD{fi+h − fi})2 is a robust estimator of the variogram at lag h.

One may choose h1 = 1 and h2 = 2 for one-dimensional signals. The same idea

could be extended to higher dimensions. For example, one may choose h1 = 1

and h2 =
√

2 for two-dimensional images [42].

2.8 Optimisation

In some of our work we need to optimise (minimising or maximising) a function, f

(e.g. MSE function, efficiency function), with respect to one or more parameters.

In R we can use built in functions optimize (for one parameter optimisation, in

other words 1-D optimisation) or optim (more than one parameter optimisation,

in other words higher dimensional optimisation). For more detail about using

these functions issue help(optimize) or help(optim) in the R command win-

dow. Optimisation is a large field and it always challenging. There are many

references available to read on optimisation techniques (see [7, 67, 74]). The func-

43

Chapter 2. Literature Review

tion optimize use a combination of golden section search and successive parabolic

interpolation methods in the optimisation. The function optim use a simplex

method proposed in [66].

2.9 Sparsity

The sparsity in the wavelet literature refers to “very few coefficients contribute to

signal” [34]. The time-frequency localisation of a signal can be quantified by the

percentage of nonzero signal coefficients that occupy the time-frequency plane. If

the signal has only a few nonzero wavelet coefficients then the signal must exist

on a small percentage of wavelet coefficients. Such a signal is highly localised or

has a high time-frequency localisation. In other words, the signal has a sparse

wavelet transform. Conversely, if the signal exists on high percentage of wavelet

coefficients, then the signal is not at all sparse.

The work in [73] defines the sparsity as follows,

Definition 2.4. Let a signal have a discrete wavelet transform that is nonzero on

P percent of the discrete wavelet transform coefficients, then the sparsity,

sparsity =
100− P

100
. (2.88)

Sparsity defined above is normalised so that 0 ≤ sparsity ≤ 1. A sparse signal

will have a high sparsity. Gaussian random noise will have sparsity = 0.

44

Chapter 3

Methodology

3.1 Introduction

The main focus of this chapter is to develop a framework to be used in the later

chapters on denoising. The methods presented in this chapter are analysed and

compared computationally as it is difficult to develop a mathematical theory be-

cause of the complex nature of the lifting transform presented in [46]. It is intuitive

that there are spatial and temporal patterns present in the observations of net-

work data over time and we would like to exploit them in our function estimation

problem. We denote the noisy observation by ft,k, where t = 1, . . . , T are time

points and k = 1, . . . , n are nodes. Initially, spatial patterns have been considered

(denoising each time step separately) and later this spatial model is extended to

exploit temporal patterns along with spatial patterns.

As an example, if we consider a Wireless Sensor Networks (WSN), the spatio-

temporal irregularity of the nodes arises from spatially irregular deployments of

sensor nodes. The fundamental reasons behind spatially irregular configuration is

that the event of interest is not always spatially uniform and it is not feasible to

deploy the sensor nodes uniformly because of the nature of sensor node deploy-

ment strategies, which vary according to the application [3, 4].

45

Chapter 3. Methodology

For irregularly spatially distributed nodes, the nodes that are close to each other

are often more closely related when compared to the ones that are far apart. To

take this into account, inverse distance weights are used in the lifting algorithm

following [46].

Only a static network setting has been considered throughout this thesis, but the

methods presented here could be altered for a dynamic network which is usually

the case for wireless communication networks. The results presented in this thesis

are based on the following two paradigms,

• Spatial paradigm: Considers spatial patterns (depending on neighbours)

only and repeats, in isolation for each time instance separately.

• Spatio-temporal paradigm: Considers both spatial and temporal patterns

simultaneously.

3.2 The spatial model

The Lifting One Coefficient At A Time (LOCAAT) algorithm developed in [46]

uses two pieces of information. Firstly, it requires a network structure as a list

containing edges and distances. Secondly, the data/observations to be transformed

(the values at each node). We will start by giving a brief description of a network.

3.2.1 Network information for spatial network

A network is defined by a set of nodes and a set of edges that link nodes. Let

(k, j) denote the edge between node k and j and let δkj be the distance between

node k and node j. The algorithm developed in [46] uses a tree based network

structure. Each time a node is removed due to the lifting step, the network tree

is then updated into a complete connected tree using the Minimum Spanning

Tree (MST) technique.

Figure 3.1 shows a simple seven node network, and its connectivity, to illustrate

46

3.2. The spatial model

the spatial case. For each node k there are nk neighbours. Each node is connected

to other nodes via an edge. The set of edges eliminated from a node k is denoted

by Jk which is the set of destination nodes. The collection of sets Jk for all the

nodes is also known as adjacency list.

In this thesis we assume the nodes have coordinates (x, y) as it is easier to visualise

the results. However the LOCAAT method does not require coordinates. It sim-

ply requires a distance measure between the edges. We consider the edge distance

δkj as Euclidean distance, i.e. δkj =
√

(xk − xj)2 + (yk − yj)2, where (xk, yk) are

the coordinates of node k. Neighbourhood information for communicating nodes

N1

N2

N3

N4

N5

N6N7

(a) Simple Network

Adjacency List (Edges)
1: 2 7
2: 1 3
3: 2 4 5
4: 3 5
5: 3 4 6
6: 5 7
7: 1 6

(b) Edges

Figure 3.1: Simple network and its edge entries

can be obtained from their routing table (e.g routing table of Ad-hoc On-demand

Distance Vector (AODV)) in the case of a wireless network or the linkage infor-

mation if it is a wired network.

We assume the following model for the observations, fk = gk + εk where k =

1, . . . , n indicates the node index and εk is iid Gaussian with mean zero and

variance σ2
k. Time snapshots are treated separately, and therefore temporal corre-

lations are not considered in this model. If we have to denoise a spatio-temporal

data using this paradigm then we consider the time snapshot of the network data

at each time instance separately, and perform denoising sequentially.

47

Chapter 3. Methodology

3.2.2 Network scenarios used for simulation studies

We use two types of network scenarios, which closely model certain communication

networks, in our simulation studies.

Minimum Spanning Tree (MST) type network

The nodes are placed uniformly at random in a unit square. The neighbours of

nodes are determined by the MST. Figure 3.2(a) shows an example of this type

of network. We refer to these networks as type-1 or T-1 for short. This type

of network can be found in wireless or wired networks. These type of networks

normally work on some kind of distance vector algorithm (see [6, 53] for some tree

based routing).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Type-1 Network - MST

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Type-2 Network - Circular disk ap-
proach, radius = 0.09

Figure 3.2: Two types of networks used in our simulation studies. n = 500

Circular disc approach

For any node k we place an imaginary circle with radius r whose center is node k,

and nodes that lie within the circle are considered to be the neighbours of node

k. Figure 3.2(b) shows an example of this type of network. We refer to these

networks as type-2 or T-2 for short. These type of networks can occur in wireless

mesh networking (see [6, 53] information on mesh networking).

48

3.2. The spatial model

3.2.3 Test functions

We use several test functions in our simulation studies. We use the superscript to

differentiate between the test functions as the subscript is already in use for time

and node identification. Figure 3.3 shows the plots of some test functions with

discontinuity.

g1 ≡ g(x, y) = (2x+ y)I((3x− y) < 1) + (10− x)I((3x− y) ≥ 1)

g2 ≡ g(x, y) = −0.5− y + 3(x− 0.5)2 + (1 + 0.2 sin(2πx))I(y > −(0.5− x)2 + 0.5)

g3 ≡ g(x, y) = (2x+ y)I(3x− y < 1) + (5x− y) ∗ I(3x− y ≥ 1)

g4 ≡ g(x, y) = −2(x− 0.5)2 − 2(y − 0.5)2 + I((x− 0.5)2 + (y − 0.5)2 ≤ (0.25)2)

(3.1)

We also use some spatially smooth test functions (without discontinuity) defined

below for some time domain estimation of the variogram methods proposed in

section 4.3. Figure 3.4 shows the contour plot of these smooth functions.

g5 ≡ g(x, y) = 6− 12x+ 12x2 + 3y − 5y2

g6 ≡ g(x, y) = −0.5− y + 3(x− 0.5)2 + (1 + 0.2 sin(2πx))

g7 ≡ g(x, y) = x2 + y2

g8 ≡ g(x, y) = 4x+ y

(3.2)

In addition to the test functions defined above, we also use some of the 2D

analogues of Donoho and Johnstone test functions Doppler (figure 3.5(a)), Heav-

isine (figure 3.5(b)), Bumps (figure 3.5(d)) and Blocks (figure 3.5(c)) [34, 47].

We also use a test function called maartenfunc used in [46] (figure 3.4(c)). See

appendix D for the R codes of 2-D analogues of Donoho and Johnstone test func-

tions and maartenfunc which can be found in [47]. Each subfigure in figure 3.5

is plotted using the following R command,

image(interp(x,y,g)).

49

Chapter 3. Methodology

(a) g1 (b) g2

(c) g3(maartenfunc) (d) g4

Figure 3.3: Some test functions with spatial discontinuity.

3.3 The spatio-temporal model

The spatio-temporal analysis models the temporal correlations and therefore we

would expect a performance improvement by using this method for denoising and

forecasting. The model is:

ft,k = gt,k + εt,k, t = 1, . . . , T, k = 1, . . . , n, (3.3)

where ft,k is the observation at node k at time t, gt,k is the ‘unknown’ true function

at node k at time t, εt,k is iid Gaussian error with mean zero and variance σ2.

There are T time observations available. Our aim is to estimate gt,k. We produce

50

3.3. The spatio-temporal model

x

y

 1.5

 2

 2.5

 3

 3
.5

 3
.5

 4

 4 4.5

 4
.5

 5

 5

 5.5 5
.5

 6
 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) g5

x

y

 −0.4

 −0.2

 0

 0.2

 0.4 0.4
 0.6

 0
.6

 0.8

 0
.8

 1

 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) g6

x

y

 0.2

 0.4

 0.6

 0.8

 1

 1.2 1.4
 1.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) g7(maartenfunc)

x

y

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) g8

Figure 3.4: Smooth test functions without spatial discontinuity.

gt,k as a time varying function of one of our test functions, g1 through g4, defined

in the previous section.

We are interested in denoising ft,k through thresholding its lifting coefficients

therefore we should not consider a separable case such as the following,

gt,k = g(xk, yk) + CH(t), (3.4)

where g(xk, yk) is one of the test functions from previous section, C is a constant

and H(t) is the time varying function which could be one of one-dimensional

Donoho and Johnstone test functions Doppler (figure 3.6(a)), Heavisine (fig-

ure 3.6(b)), Bumps (figure 3.6(d)) or Blocks(3.6(c)). This separable case can

51

Chapter 3. Methodology

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

(a) 2D Doppler

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

(b) 2D Heavisine

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

(c) 2D Blocks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

(d) 2D Bumps

Figure 3.5: Some test functions from [47], n = 1000

be denoised without having to transform or threshold. See appendix A for deriva-

tion.

3.3.1 Spatio-temporal networks: notations and basics

This section describes building a spatio-temporal network which enables us to con-

sider temporal correlations along with spatial correlations. We will only consider

a wired/fixed network scenario whose neighbourhood structure does not change

over time. In a wireless setting, the topology changes over time, and new nodes

come into existence and some nodes disappear because of failures and/or they are

out of reach. This dynamic nature is typical in a wireless network. In order to

take this dynamic behaviour into account one may have to modify the following

52

3.3. The spatio-temporal model

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

(a) Doppler

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

(b) Heavisine

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

(c) Blocks

0.0 0.2 0.4 0.6 0.8 1.0

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

(d) Bumps

Figure 3.6: Donoho Johnstone test functions

network descriptions (this is a future direction).

In spatio-temporal case, node k after time t will have a new node index in our

way of indexing and is denoted by, ((t− 1)n+ k). Therefore the initial nodes will

have a new index set, Nt = {((t − 1)n + k)|∀k ∈ N1}. This way, over all time

points, the total number of nodes will be Tn and the new node indices will be

1, 2, . . . , Tn. We consider distance along spatial dimension as Euclidean distance

and the distance in the time dimension as the minimum distance in the spatial

dimension multiplied by some temporal scale factor lt. This scale factor is chosen

to maintain any irregularity in the time domain. Let δmin denote the minimum

spatial edge distance for all the nodes, i.e. δmin = min{(δkj)j∈Jk,k∈N1}. We will

53

Chapter 3. Methodology

consider two cases for building a spatio-temporal network.

Case-1: New neighbours (copies from immediate past and future)

Now copy the network as many times as the number of time entries and allocate

the indices (node ids) according to Nt. In our spatio-temporal methods, there are

additional neighbours, generally two, for each node. These additional neighbours

are the nodes themselves at a previous time step and the next time step. Only the

nodes at the starting and ending layer of the network will have only one additional

neighbour. See figure 3.7. The seven node example shown in figure 3.8(a) has

been extended into a spatio-temporal network following the steps described above

(figure 3.8). Future developments could extend this method to include copies of

itself at more distant time steps.

The edge distances between the nodes (t − 1)n + k and tn + k (edge distance

N1 N 2 N 3 N
n

N
n1 N

n2 N
n3 N 2n

N
kn1 N

kn2 N
kn3 N

k1 n

N 2n1 N 2n2 N 2n3 N3n

STEP 1

STEP2

STEP k

STEP 0

Figure 3.7: Extending the spatial network to the spatio-temporal network

54

3.3. The spatio-temporal model

t = 1

t = T

t = 2

t = 3

N 1

N 2

N 7

N 7T

N 8

N 9

N 16

N [7 T−15]

N 3

N 14

N 21

N 15

N [7 T−11]

N [7 T−12]

N 5

N 19

N 12

N 10

N 4

N 11

N 6

N [7 T−13]

N 17

N [7 T−16]

N 20

N 13

N 18

N [7 T−14]

(a) Network connection along time: case-1

t = 1

t = T

t = 2

t = 3

N 1

N 2

N 7

N 7T

N 8

N 9

N 16

N [7 T−15]

N 3

N 14

N 21

N 15

N [7 T−11]

N [7 T−12]

N 5

N 19

N 12

N 10

N 4

N 11

N 6

N [7 T−13]

N 17

N [7 T−16]

N 20

N 13

N 18

N [7 T−14]

(b) Network connection along time: case-2

Adjacency List
1: 2 7 8
2: 1 3 9
3: 2 4 5 10
4: 3 5 11
5: 3 4 6 12
6: 5 7 13
7: 1 6 14
8: 1 9 14 15
9: 2 8 10 16

10: 3 9 11 12 17
11: 4 10 12 18
12: 5 10 11 13 19
13: 6 12 14 20
14: 7 8 13 21

(c) Edges for the spatio-temporal network (trun-
cated list): case-1

Adjacency List
1: 2 7 8 9 14
2: 1 3 8 9 10
3: 2 4 5 9 10 11 12
4: 3 5 10 11 12
5: 3 4 6 10 11 12 13
6: 5 7 12 13 14
7: 1 6 8 13 14
8: 1 2 7 9 14 15 16 21
9: 1 2 3 8 10 15 16 17

10: 2 3 4 5 9 11 12 16 17 18 19
11: 3 4 5 10 12 17 18 19
12: 3 4 5 6 10 11 13 17 18 19 20
13: 5 6 7 12 14 19 20 21
14: 1 6 7 8 13 15 20 21

(d) Edges for the spatio-temporal network (trun-
cated list): case-2

Figure 3.8: Spatial network extended to spatio-temporal network

between the nodes at current state and future state) is fixed to be,

δ(t−1)n+k,tn+k = ltδ
min. (3.5)

The edge entries in figure 3.8, show only the edges for two time steps but the full

edge list is much longer for the amalgamated network. Let J(t−1)n+k denote the

55

Chapter 3. Methodology

set of neighbours for a node (t− 1)n+ k in the new amalgamated network and is

given by,

J(t−1)n+k =

{{(j)j∈Jk
} ∪ {n+ k}} if t = 1

{{((t− 1)n+ j)j∈Jk
} ∪ {((t− 2)n+ k)}

∪ {(tn+ k)}} if 1 < t < T

{{((t− 1)n+ j)j∈Jk
} ∪ {(t− 2)n+ k}} if t = T .

(3.6)

Case-2: New neighbours (copies and their neighbours)

We copy the network T times with the updated node indices given by Nt =

{((t − 1)n + k)|∀k ∈ N1}. Each node (t − 1)n + k will not only have itself in

the past and the future as its new neighbours (case-1), but also have the spatial

neighbours’ past and future states as the neighbours,

56

3.3. The spatio-temporal model

J(t−1)n+k =

{{(j)j∈Jk
} ∪ {n+ k} ∪ {(n+ j)j∈Jk

}} if t = 1

{{((t− 1)n+ j)j∈Jk
} ∪ {((t− 2)n+ k), (tn+ k)}

∪ {((t− 2)n+ j)j∈Jk
} ∪ {(tn+ j)j∈Jk

}} if 1 < t < T

{{((t− 1)n+ j)j∈Jk
} ∪ {(t− 2)n+ k)}

∪ {((t− 2)n+ j)j∈Jk
}} if t = T

(3.7)

Figure 3.8(b) shows this type of spatio-temporal network. In this figure we only

show the neighbours of node 1 for first two time steps as it may affect the readabil-

ity if we connect more nodes for more time instances. Distance between the nodes

(t − 1)n + k and tn + k (distance between the node at current state and future

state), δ(t−1)n+k,tn+k is calculated as in (3.5). Since the time layers are parallel to

each other, if we connect a node k in two separate time instances, this edge will

be normal to the time layers. Therefore the distance between the node at current

state, (t− 1)n+ k, and the neighbours’ future state, (tn+ j)j∈Jk
is calculated by

Pythagoras’ theorem,

δ(t−1)n+k,(tn+j)j∈Jk
=
√

(ltδmin)2 + δ2
kj. (3.8)

3.3.2 Non-overlapping moving window

Initial experiments with the spatio-temporal method by considering all the time

points together, shows bad results compared to spatial-only method although we

expected the spatio-temporal method to give better results. Therefore we adopt

a moving window based spatio-temporal method. Experiments have shown that

window size of Mt = 3 gives good results.

In more detail, we create a combined network as before but this time with the

depth of Mt time slices. Therefore the new node indices will be 1, 2, . . . ,Mtn.

Edges and distances are determined as explained in the previous section (either

57

Chapter 3. Methodology

case-1 or case-2). Figure 3.9(a) shows an example network with Mt = 3.

We rearrange the double indexed observations ft,k into a single indexed long vector,

fobs, with elements f(t−1)n+k. We then slice the vector fobs into non-overlapping

blocks of Mtn. Let Bj denote the jth block,

Bj = {(j − 1)Mtn+ 1, . . . , jMtn} j = 1, . . . , bT/Mtc (3.9)

Now we perform LOCAAT transform on (f obs
i)i∈Bj

.

3.3.3 Overlapping moving window

Another way to find a moving window is to move a window of Mt time slices 1-step

at a time as opposed to Mt-steps in the previous moving window approach. Here

the network remains the same as the non-overlapping case but the way we calculate

LOCAAT coefficients differs. The set of indices of the block of observations, on

which the LOCAAT transform is performed, is given by,

Bj = {(j − 1)n+ 1, . . . , (j +Mt − 1)n, }, j = 1, . . . , T −Mt + 1. (3.10)

We perform the LOCAAT transform on the overlapping blocks (f obs
i)i∈Bj

. When

we process, invert the coefficients and rearrange, we may have up to Mt estimates

for gt,k. Therefore we can take the average to have the improved estimate ĝt,k.

58

3.3. The spatio-temporal model

t = 1

t = 2

t = 3

N 1

N 2

N 7

N 8

N 9

N 16

N 3

N 14

N 21

N 15

N 5

N 19

N 12

N 10

N 4

N 11

N 6

N 17

N 20

N 13

N 18

(a) Spatio-temporal network: Case-1

t = 1

t = 2

t = 3

N 1

N 2

N 7

N 8

N 9

N 16

N 3

N 14

N 21

N 15

N 5

N 19

N 12

N 10

N 4

N 11

N 6

N 17

N 20

N 13

N 18

(b) Spatio-temporal network: Case-2

Adjacency List
1: 2 7 8
2: 1 3 9
3: 2 4 5 10
4: 3 5 11
5: 3 4 6 12
6: 5 7 13
7: 1 6 14
8: 1 9 14 15
9: 2 8 10 16

10: 3 9 11 12 17
11: 4 10 12 18
12: 5 10 11 13 19
13: 6 12 14 20
14: 7 8 13 21
15: 8 16 21
16: 9 15 17
17: 10 16 18 19
18: 11 17 19
19: 12 17 18 20
20: 13 19 21
21: 14 15 20

(c) Edges-Case1

Adjacency List
1: 2 7 8 9 14
2: 1 3 8 9 10
3: 2 4 5 9 10 11 12
4: 3 5 10 11 12
5: 3 4 6 10 11 12 13
6: 5 7 12 13 14
7: 1 6 8 13 14
8: 1 2 7 9 14 15 16 21
9: 1 2 3 8 10 15 16 17

10: 2 3 4 5 9 11 12 16 17 18 19
11: 3 4 5 10 12 17 18 19
12: 3 4 5 6 10 11 13 17 18 19 20
13: 5 6 7 12 14 19 20 21
14: 1 6 7 8 13 15 20 21
15: 8 9 14 16 21
16: 8 9 10 15 17
17: 9 10 11 12 16 18 19
18: 10 11 12 17 19
19: 10 11 12 13 17 18 20
20: 12 13 14 19 21
21: 8 13 14 15 20

(d) Edges-Case2

Figure 3.9: Window based approach, Mt = 3

59

Chapter 4

Noise Variance Estimation for

Networks

4.1 Introduction

One main focus of this thesis is nonparametric function estimation for networks

via wavelet thresholding methods. In order to estimate a function from noisy

observations {fk}nk=1 or {ft,k}T,nt=1,k=1, we need to reliably estimate the noise vari-

ance σ2. In nearly all wavelet shrinkage problems estimation of σ is crucial for

success [65]. If σ is over-estimated then wavelet shrinkage will not only remove

noise, but also remove some important features of the signal. We consider the

following scenarios under which we have to estimate σ,

• spatial observations {fk}nk=1 and no time series data available.

• the case with {ft,k}T,nt=1,k=1 but T is not large, for example T = 3, T = 5, etc.

• finally we investigate {ft,k}T,nt=1,k=1 with large T

We investigate several methods to estimate σ according to the scenarios above.

Before we begin our investigation, we need to familiarize ourselves with the LO-

CAAT transform method introduced in [46].

61

Chapter 4. Noise Variance Estimation for Networks

Recall from section 2.4 that the LOCAAT algorithm produces detail coefficients

in reverse order. After the complete LOCAAT transform the detail coefficient

index set is D1 = {i2, i3, . . . , in}, and the scaling coefficient index set is S1 = {i1}.

Let ddetail
r = (d`)`∈Dr be the vector of detail coefficients and L be the number of

detail coefficients. At intermediate stage r the number of coefficients will be n−r.

After the complete transform, i.e r = 1, the number of coefficients is L = n− 1.

After obtaining lifting (wavelet) coefficients, these coefficients can be thresholded

so that pure noise is killed with high probability. Various thresholding methods

are described in chapter 5. If the noise is normally distributed with variance equal

to one, we could use the threshold p
√

2 log n where p is a proportion which is p = 1

for a universal threshold, and p < 1 for some fixed percentage of the universal

threshold, which has been found to work well in practice [48] for standard wavelet

models.

Since the LOCAAT transform is non-orthogonal, the noise variance of the detail

coefficients is no longer σ2 as it is modified by the transform. Refer to section 2.4.3

for details of the change in variance due to lifting steps. For a node k, the variance

change due to the LOCAAT transform can be calculated and we denote it by σ2
k.

The original data in the network domain has the following representation,

fk = gk + εk, (4.1)

where fk is the observation at node k, gk the function to be estimated and εk is

iid Gaussian noise with mean zero and variance σ2.

After applying the lifting transform, the network domain representation of the

signal, as in (4.1), is transformed into the ‘wavelet’ domain and can be written as

follows,

dk = θk + ε̃k, (4.2)

62

4.1. Introduction

where dk is the lifted version of fk, θk is the lifted version of the true function gk

and ε̃k is the lifted version of the noise term εk. The noise term is now distributed

as,

ε̃k ∼ N(0, σ2
kσ

2), (4.3)

but not independently. Here σk is the node dependent variance change factor

due to the LOCAAT transform which can be approximated through the method

explained in section 2.4.3. Dividing (4.2) by the known variance factor σk we can

ensure that the noise term will be approximately normally distributed with mean

zero and variance σ2 but still correlated, i.e.

dk
σk

=
θk
σk

+
ε̂k
σk
,

d∗k = θ∗k + ε∗k,

ε∗k
approx∼ N(0, σ2),

(4.4)

where d∗k = dk/σk, θ
∗
k = θk/σk and ε∗k = εk/σk. Our main focus for the remainder

of this chapter is to estimate the quantity σ.

We repeat the experiments carried out in this chapter with a fixed (SNR!). We

define SNR as,

SNR =
sd(g)

σ
, (4.5)

where,

sd(g)2 = var(g) =
1

n− 1

n∑
k=1

{g(xk, yk)− ḡ}2, (4.6)

where ḡ = 1
n

∑n
k=1 gk. Although the signal g itself is not stochastic, var(g) should

be thought of as the signal variance.

63

Chapter 4. Noise Variance Estimation for Networks

4.2 MAD for LOCAAT

Work by Donoho and Johnstone [34] showed that a robust estimator for the un-

known σ could be achieved by taking Median Absolute Deviation (MAD) for the

fine scale wavelet coefficients. See section 2.7.1 to find out how this MAD operator

works in wavelet domain. In this section we will be looking at ways of applying

MAD techniques for the LOCAAT technique.

4.2.1 Global MAD

In our problem, we take the LOCAAT transform of network data and the wavelet

domain decomposition is given in (4.2). Then we divide (4.2) by the known

variance factor σk to get the set of coefficients {d∗k}nk=1. The LOCAAT algorithm

finds one lifting coefficient per scale and each coefficient has a unique scale. As

there is no uniform ‘finest scale’ containing half of the wavelet coefficients as in

regular wavelets, taking MAD of the finest scale coefficients to estimate σ does

not make sense. Therefore, we take MAD of lifting coefficients of the first half of

removed points in order. We denote the vector of fine-scale coefficients as dfine

given by,

dfine =
(
d∗ir
)L
r=bL

2
c+1

, ir ∈ D1 (4.7)

Now the estimate for σ is given by,

σ̂MAD = MAD{dfine}

=
median{|dfine −median{dfine}|}

0.6745

(4.8)

We can apply this MAD approach to the both spatial and spatio-temporal LO-

CAAT coefficients. By spatial LOCAAT coefficients we mean the LOCAAT trans-

formation of spatial data purely based on the spatial network connections. We

transform spatio-temporal data using the spatio-temporal method described in

section 3.3.1 and the resultant coefficients are called spatio-temporal LOCAAT

64

4.2. MAD for LOCAAT

coefficients.

Table 4.1 shows some results of estimating σ using the classical MAD approach for

some different test functions with SNR = 2. In order to compare various methods,

we present the results as a percentage deviation from the true σ. Each entry in

the table is calculated as follows,

σ̂ − σ
σ
× 100, (4.9)

where σ̂ is the estimator of the true σ, which is an average over 100 independent

experiments. It is clear from the table that the estimation of σ gets better as the

number of nodes increases. It is also clear that estimation on a type-2 network

does not work as well compared to type-1 network.

Table 4.2 shows the results for estimating σ on the spatio-temporal LOCAAT

n = 50 n = 150 n = 500

Signals σ̂MAD σ̂MAD σ̂MAD

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 10.5 16.1 2.02 8.0 11.3 2.06 2.47 7.0
g2 0.23 10.5 44.1 0.20 2.9 13.0 0.22 3.1 8.2
g3 0.71 4.0 11.9 0.58 3.1 3.6 0.62 2.0 1.9
g4 0.27 4.7 14.1 0.25 9.3 15.3 0.28 3.1 6.0

Table 4.1: Estimation of σ(% difference) using MAD for different test functions
based on spatial LOCAAT coefficients, SNR=2. Each entry in the table shows an
average of 100 repetitions.

coefficients. In this simulation we used the time depth of M = 3 to construct the

network. Comparing tables 4.1 and 4.2 it is clear that both T-1 and T-2 spatio-

temporal networks are giving better results compared to the estimation on the

spatial LOCAAT coefficients (refer table 4.1) and the estimation gets better as

the number of nodes increases as expected. The estimation based on T-2 network

gives marginally better estimation compared to T-1.

65

Chapter 4. Noise Variance Estimation for Networks

n = 50 n = 150 n = 500

Signals σ̂MAD σ̂MAD σ̂MAD

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 7.4 7.4 2.02 3.8 1.3 2.06 1.5 0.8
g2 0.23 7.3 10.1 0.20 3.1 0.0 0.22 0.1 2.1
g3 0.71 6.5 1.1 0.58 -0.7 -1.1 0.62 0.6 0.8
g4 0.27 4.5 4.0 0.25 0.3 0.2 0.28 1.1 0.6

Table 4.2: Estimation of σ(% difference) using MAD for different test functions
based on spatio-temporal (network constructed with time depth M = 3) LOCAAT
coefficients, SNR=2. Each entry in the table shows an average of 100 repetitions.

4.2.2 Local MAD for LOCAAT

In the last section we saw how the global MAD estimator is used with LOCAAT

coefficients for the noise variance estimation. MAD estimator works better when

there are larger numbers of nodes. We have seen that the global MAD estimator is

not so good at lower numbers of nodes. In this section we extend the idea of MAD

to node level. We can estimate the node dependent noise variance σk provided the

network has sufficient number of neighbours for each node such as T-2 network.

Our main aim in this chapter is to find a MAD estimator to reliably estimate σ for

networks with a small number of nodes. We demonstrate this situation with the

T-2 network where the neighbours are found using a circular range from a node.

Later, we modify this MAD estimator slightly to use it with the T-1 network.

Let f be the vector of observations {fk}nk=1 and let d be the LOCAAT transform

of f . Note that the vector d has scaling function coefficients c = (d`)`∈S1 and

detail coefficients given by ddetail = (d)`∈D1 .

For any node k, there are a number of neighbours nk, whose indices are denoted

by a set Jk. The node dependent σk is estimated by taking MAD of the detail

coefficients of the node itself and the detail coefficients of its neighbours. Let

Ak be the set that stores the indices of the lifting coefficients of node k and its

neighbours, in the order they were calculated, and Lk be the cardinality of Ak.

66

4.2. MAD for LOCAAT

Since the vector d has both scaling function coefficients and the detail coefficients,

the node index k or some, or all, elements of the set Jk are not necessarily contained

in the detail coefficient index set D1. Therefore we have to make sure the set Ak

contains only the indices of the detail coefficients and not the index/indices of the

scaling coefficients. So,

Ak = {Jk ∪ k} ∩ D1 = {ik1, . . . , ikLk
}. (4.10)

Now we define a new index set, Afine
k , that stores the indices of the fine scale

coefficients for this node,

Afine
k = {ik1, . . . , ikbLk

2
c
}, ik1 ∈ Ak. (4.11)

We define the node dependent fine-scale coefficients as

dfine
k = {d∗i : i ∈ Afine

k }. (4.12)

We estimate the node dependent estimate of σk as

σ̂m1
k = MAD{dfine

k }. (4.13)

In the case of the constant σ model, we can estimate the node dependent σk

(which should be roughly equal to σ). Then we take the arithmetic mean of σ̂m1
k

over all the nodes to find σ̂m1.

σ̂m1 =
1

n

n∑
k=1

σ̂m1
k . (4.14)

We propose this method because the global MAD approach fails to give a good

estimate for σ with small numbers of nodes. By following the local MAD approach

described above we artificially increase the information about the signal, although

67

Chapter 4. Noise Variance Estimation for Networks

the coefficients are correlated, and thus hope that it would give a better estimate

for σ. We call the method described above as M-1. Now we present another way,

M-2, of artificially increasing the knowledge about the signal.

We obtain the finest scale coefficient per node and then estimate σ by taking

MAD of all these coefficients. Let A denote the set that stores the indices of one

fine scale coefficient per node,

A = {ik1 : k = 1, . . . , n}, ik1 ∈ Afine
k . (4.15)

The estimator using this approach, σ̂m2, is given by,

σ̂m2 = MAD{(d∗i)i∈A}. (4.16)

Table 4.3 shows estimates of σ for the type-1 network, while table 4.4 shows the

results for type-2 network. It is expected that the M-1 method will fail for T-1

network since there are not enough neighbours per node to perform the MAD

operation. By comparing tables 4.1 and 4.3, the estimator following method M-2

gives a better estimation for T-1 network as the number of nodes increases. For a

T-2 network, by comparing tables 4.1 and 4.4, the local MAD approach M-1 gives

better results with few number of nodes and M-2 gives marginally better results

as the number of nodes increases, compared to the global MAD estimator.

Table 4.5 shows the results of estimating σ using the spatio-temporal method

with the time depth M = 3 for T-1 network. It is clear from the table that M-2

performs well and the estimation gets better with increasing number of nodes.

Table 4.6 shows the results for T-2 network with similar settings. It is clear from

this table that M-2 outperforms all the methods above for a T-2 network case.

68

4.3. Variogram method for LOCAAT

n = 50 n = 150 n = 500

Signals T-1 T-1 T-1

True σ
σ̂m1 σ̂m2 True σ

σ̂m1 σ̂m2 True σ
σ̂m1 σ̂m2

g1 2.08 -84.5 9.8 2.02 -81.8 8.0 2.06 -81.2 1.6
g2 0.23 -87.7 11.2 0.20 -83.7 1.8 0.22 -82.3 1.6
g3 0.71 -87.2 3.9 0.58 -84.6 1.9 0.62 -83.2 2.3
g4 0.27 -85.9 7.7 0.25 -82.3 8.1 0.28 -81.8 3.2

Table 4.3: Estimation of σ(% difference) using M-1 and M-2 for a T-1 network
in a spatial setting (lifting coefficients produced using spatial network), SNR=2.
Each entry in the table shows an average of 100 repetitions.

n = 50 n = 150 n = 500

Signals T-2 T-2 T-2

True σ
σ̂m1 σ̂m2 True σ

σ̂m1 σ̂m2 True σ
σ̂m1 σ̂m2

g1 2.08 5.27 12.1 2.02 -5.4 19.9 2.06 -9.2 8.8
g2 0.23 8.8 16.7 0.20 -8.8 3.5 0.22 -9.9 6.4
g3 0.71 -12.8 -4.4 0.58 -13.5 0.7 0.62 -15.2 0.4
g4 0.27 -5.4 -4.0 0.25 -0.9 15.7 0.28 -8.7 3.6

Table 4.4: Estimation of σ(% difference) using M-1 and M-2 for a T-2 network
in a spatial setting (lifting coefficients produced using spatial network), SNR=2.
Each entry in the table shows an average of 100 repetitions.

n = 50 n = 150 n = 500

Signals T-1 T-1 T-1

True σ
σ̂m1 σ̂m2 True σ

σ̂m1 σ̂m2 True σ
σ̂m1 σ̂m2

g1 2.08 -27.0 5.8 2.02 -31.5 0.6 2.06 -30.3 0.1
g2 0.23 -27.7 3.2 0.20 -30.4 0.2 0.22 -30.1 -0.6
g3 0.71 -30.1 3.2 0.58 -32.4 -2.4 0.62 -31.7 0.1
g4 0.27 -27.9 1.2 0.25 -28.8 -2.3 0.28 -30.6 -0.3

Table 4.5: Estimation of σ(% difference) using M-1 and M-2 for a T-1 network
in a spatio-temporal setting (lifting coefficients produced using spatio-temporal
network with time depth M=3), SNR=2. Each entry in the table shows an average
of 100 repetitions.

4.3 Variogram method for LOCAAT

The variogram method was first introduced by [59]. Further work by [24, 41]

introduced the robust estimator of the variogram based on the mean and the

69

Chapter 4. Noise Variance Estimation for Networks

n = 50 n = 150 n = 500

Signals T-2 T-2 T-2

True σ
σ̂m1 σ̂m2

True σ
σ̂m1 σ̂m2

True σ
σ̂m1 σ̂m2

g1 2.08 -13.4 5.3 2.02 -12.8 1.0 2.06 -14.7 1.6
g2 0.23 -12.9 0.1 0.20 -14.2 -3.6 0.22 -15.1 0.4
g3 0.71 -19.5 -7.4 0.58 -16.8 -1.9 0.62 -16.2 0.2
g4 0.27 -20.0 1.4 0.25 -12.0 -4.6 0.28 -14.4 0.2

Table 4.6: Estimation of σ(% difference) using M-1 and M-2 for a T-2 network
in a spatio-temporal setting (lifting coefficients produced using spatio-temporal
network with time depth M=3), SNR=2. Each entry in the table shows an average
of 100 repetitions.

median operators. Recent literature in [42] demonstrated a robust estimator based

on the MAD operator. In this section we will look at several estimators for σ using

the variogram estimator proposed in [42]. For a given series {ft}, the robust

estimator of the variogram proposed in [42] is given by,

2γ̂(h) = MAD({ft+h − ft})2, (4.17)

where 2γ̂(h) is the estimator of the variogram 2γ(h) and h is the lag.

Since we sometimes deal with networks that evolve over time, we can estimate

the node dependent variograms in similar fashion. For a node k we denote the

variogram as 2γk(h) and its estimator 2γ̂k(h) is given by,

2γ̂k(h) = MAD({f(t+h),k − ft,k})2, (4.18)

where ft,k is the observation at node k at time t and h is the lag. The choices

for h are (lag) 1 and (lag) 2. When we have the situation of dealing with just

network data (no time series available), lag 1 means first order neighbour and lag

2 means the second order neighbours (these are the neighbours of the first order

neighbours).

Since we are proposing several methods, we distinguish the different variogram

70

4.3. Variogram method for LOCAAT

estimators by defining the following naming scheme,

• 2γ̂method(h) is the estimator of the variogram 2γ(h) for a given “method”,

• 2γ̂method
k (h) is the node dependent estimator of the node dependent vari-

ogram 2γk(h) for a given “method”.

We distinguish the different estimators for σ using similar naming scheme, i.e.

• σ̂method is the estimator of σ for a given “method”,

• σ̂method
k is the node dependent estimator of the node dependent σk for a given

“method”.

Once we have the estimators for the variograms at lag 1 and lag 2, we find an

estimator for σ (similar to the one in [42]) as,

σ̂method =

√
γ̂method(1) + γ̂method(2)

2
. (4.19)

The equivalent node dependent estimator for σk is given by,

σ̂method
k =

√
γ̂method
k (1) + γ̂method

k (2)

2
. (4.20)

Since we deal with constant σ model, we take the average of the node dependent

estimators σmethod
k to find an estimator for σ, i.e.

σ̂method =
1

n

n∑
k=1

σ̂method
k (4.21)

In this section we will be looking at several variogram techniques based on the

robust MAD operator both in time and wavelet domains.

Now we define the sets Jk, J
s
k and Js∗k which we need later. Let Jk be the set

that contains the indices of the neighbours of node k. Each neighbour of node k,

j ∈ Jk, will have another set of neighbours whose indices are denoted by the set

71

Chapter 4. Noise Variance Estimation for Networks

Jk,j. This set will contain the index k since the node k will be a neighbour for

a node j ∈ Jk and may contain some elements of Jk if the node k and the node

j ∈ Jk have common neighbours, i.e, some of the first order neighbours may be

mistakenly thought of second order neighbours. Let Jsk be the set that stores node

indices of the second order neighbours of node k,

Jsk =

{⋃
j∈Jk

Jk,j

}
∩ {k ∪ Jk}

′
(4.22)

where the set operation {.}′ denotes the complement of that set.

Let Js∗k be the set that stores the indices of the closest second order neighbours

to node k. The closest second order neightbours are the neighbours of the first

order neighbours which are close to the node k itself. Clearly,

Js∗k ⊆ Jsk ,

|Js∗k | ≤ |Jk|.
(4.23)

4.3.1 Estimation in time domain: Method-1 (TM1)

We treat each node independently and monitor the time series for each node k.

Let fk = (ft,k)
T
t=1 be the vector that stores the time series for a node k. The

estimator for the node dependent variogram γ̂tm1
k is found directly from (4.18).

We then find the node dependent estimator σ̂tm1
k from (4.20). Finally we get the

estimator σ̂tm1 from (4.21).

Table 4.7 shows the estimated σ for some test functions with large available time

observations (T=100). We can see from the table that this method estimates σ

well.

The above method works well provided there are enough observations (time series

T > 50) are available per node. However we can still have a reliable estimate for

σ provided at least three observations are available per node. We define the

72

4.3. Variogram method for LOCAAT

n=50 n = 150 n = 500

Signals
True σ σ̂tm1 True σ σ̂tm1 True σ σ̂tm1

g1 2.08 1.3 2.02 -0.4 2.06 0.0
g2 0.23 -0.2 0.20 0.0 0.22 0.6
g3 0.71 1.3 0.58 -0.1 0.62 0.5
g4 0.27 3.0 0.25 -0.7 0.28 0.9

Table 4.7: Estimation of σ(% difference) using variogram in time domain: TM1,
T=100, SNR=2

estimator of the variogram as,

2γ̂tm1*(h) = MAD({f(t+h,k)−ft,k
}∀k∈N1)

2, (4.24)

where N1 = {1, . . . , n}. We then find the estimator σ̂tm1* from (4.19).

Table 4.8 shows the results of estimating σ with only three time samples per

node. Both ways of estimating σ give good results. Node level estimation may

become preferable if σ is node dependent. Method TM1 works well for both

n = 50 n = 150 n = 500

Signals
True σ σ̂tm1* True σ σ̂tm1* True σ σ̂tm1*

g1 2.08 3.4 2.02 -1.4 2.06 0.0
g2 0.23 -2.1 0.20 -0.6 0.22 0.8
g3 0.71 1.7 0.58 -1.0 0.62 0.1
g4 0.27 -0.1 0.25 -0.4 0.28 1.1

Table 4.8: Estimation of σ(% difference) using variogram in time domain: TM1,
T=3, SNR=2

spatially smooth functions (no discontinuity) and functions with spatial discon-

tinuity, since this method takes the differences across time observations and no

spatial differencing is considered. If the time series is also discontinuous (or has

lack of correlation) then this method will fail.

73

Chapter 4. Noise Variance Estimation for Networks

4.3.2 Estimation in Time domain: Method-2 (TM2)

The following methods (TM2, TM3, TM4 and TM5) for variogram technique in

time domain present a way to estimate σ with just one time snapshot of network

data (i.e. T=1). This will be useful in situations where there are no time series

data available or the number of available time series is not enough to perform

calculations in the last subsection.

Lag 1 is assumed to contain the immediate neighbours. Therefore, the variograms

at lag 1 and lag 2 are given by,

2γ̂tm2
k (1) = (MAD{(fj)j∈Jk

− fk})2 ,

2γ̂tm2
k (2) =

(
MAD{(fj)j∈Js

k
− fk}

)2
,

(4.25)

where fk is the spatial observation at node k, Jk is the set that contains the indices

of neighbours of node k and Jsk is the set that contains the indices of the second

order neighbours (defined in (4.22)).

We find the estimator σ̂tm2
k from (4.20). We then find the estimator σ̂tm2 from (4.21).

This method works well provided there are sufficient number of neighbours for

each node k, since it involves applying MAD for the differenced data (fj)j∈Jk
− fk

at each node k. Initial results implied that there might be bias involved in the

estimation of the variogram using this method. We propose the following bias

correction in a similar way that was presented in [24, 41],

2γ̂tm2
k (1) = (MAD{(fj)j∈Jk

− fk})2/B∗,

2γ̂tm2
k (2) = (MAD{(fj)j∈Js

k
− fk})2/B∗.

(4.26)

We find the bias correction B∗ that minimises the error function given in (4.43).

Section 4.4 shows how to estimate B. Table 4.9 shows simulation results of esti-

mating σ with B∗ estimated for n = 500. Table 4.9 shows the results of the method

TM2 on a spatial network (no temporal data) and table 4.10 shows the results of

74

4.3. Variogram method for LOCAAT

the method TM2 on a spatio-temporal network (with time depth M = 3). The

results show that this method fails to give a good estimate for σ. The reason

for failure is that T-1 network will not have enough neighbours to perform MAD

operation and T-2 network may have enough neighbours but since the neighbours

are far apart from the node k, the correlation is less. Therefore when we take

differencing of the neighbours data, it results in large error and thus results in

over estimation for σ. Therefore we recommend considering closest neighbours

which we will consider in our next methods.

n = 50 n = 150 n = 500

Signals σ̂tm2 σ̂tm2 σ̂tm2

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 33.4 38.7 2.02 12.6 38.8 2.06 12.5 25.6
g2 0.23 70.4 82.9 0.20 28.4 65.1 0.22 17.2 35.9
g5 0.61 72.8 88.4 0.53 25.8 60.8 0.58 7.9 25.4
g6 0.22 56.3 56.0 0.19 19.0 42.4 0.20 5.5 17.7
g7 0.22 31.4 49.8 0.20 7.2 33.1 0.21 3.2 12.1
g8 0.70 21.9 34.1 0.56 7.7 31.6 0.59 1.8 8.3

Table 4.9: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatial network)): TM2, B∗ = 0.48 for T-2 network and B∗ = 0.33 for
T-1 network, SNR=2

n = 50 n = 150 n = 500

Signals σ̂tm2 σ̂tm2 σ̂tm2

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 29.3 32.3 2.02 13.8 29.6 2.06 11.8 21.5
g2 0.23 46.1 97.0 0.20 18.5 53.4 0.22 11.9 29.2
g5 0.61 46.3 92.5 0.53 19.5 52.6 0.58 7.7 20.7
g6 0.22 34.9 61.0 0.19 13.6 36.2 0.20 6.9 14.3
g7 0.22 22.2 48.8 0.20 8.5 27.3 0.21 5.5 10.0
g8 0.70 11.7 29.7 0.56 7.5 25.0 0.59 4.6 6.7

Table 4.10: Estimation of σ(% difference) using variogram in time domain (es-
timation on spatio-temporal network): TM2, B∗ = 0.48 for T-2 network and
B∗ = 0.33 for T-1 network, SNR=2

75

Chapter 4. Noise Variance Estimation for Networks

4.3.3 Estimation in Time domain: Method-3 (TM3)

The estimation of variogram relies on differencing the data to the lagged ver-

sions of data. In the spatial data setting, the lagged version of data means the

neighbouring data. We know that a smooth spatial function at a point can be

approximated by taking the average of its neighbours’ values. Therefore we define

the estimators for the variograms at lag 1 and lag 2 as,

2γ̂tm3(1) = MAD({fk −
1

|Jk|
∑
j∈Jk

fj}∀k∈N1)
2/B∗,

2γ̂tm3(2) = MAD({fk −
1

|Js∗k |
∑
j∈Js∗

k

fj}∀k∈N1)
2/B∗,

(4.27)

where Jk, J
s∗
k as defined earlier, N1 = {1, . . . , n} and B∗ is the bias correcting

constant for this method. Since initial experiments did not yield a good estimator,

we have used B∗ to correct the bias (see section 4.4 for more detail on how to find

this constant). We then find the estimator σ̂tm3 from (4.19).

Table 4.11 shows the results for estimating σ based on the spatial network and ta-

ble 4.12 shows the results of estimation on a spatio-temporal network. The results

improve for the estimation on T-1 and T-2 networks with increasing number of

nodes. It results in bad estimation with few number of nodes, because of the lack

of similarity between points and neighbours. The bias correction, B∗, required for

this method is different for T-1 and T-2 networks. We have estimated B∗ = 0.53

based on a T-2 network with 500 nodes (repeated 100 times) and B∗ = 0.78 esti-

mated for a T-1 network with 500 nodes. Because of the lack of similarity in the

function in the far away nodes, considering only closest first order neighbours as

well as closest second order neighbours may improve the results in T-2 network

case and this could be a future task for this method.

76

4.3. Variogram method for LOCAAT

n = 50 n = 150 n = 500

Signals σ̂tm3 σ̂tm3 σ̂tm3

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 16.7 34.8 2.02 9.8 26.7 2.06 4.1 13.2
g2 0.23 28.3 123.9 0.20 9.2 40.1 0.22 5.4 15.6
g5 0.61 27.7 88.9 0.53 8.0 29.7 0.58 1.0 5.5
g6 0.22 19.0 67.6 0.19 4.9 21.2 0.20 0.8 3.2
g7 0.22 14.9 44.6 0.20 2.65 9.3 0.21 1.7 2.7
g8 0.70 3.9 21.1 0.56 1.4 7.1 0.59 -0.4 0.6

Table 4.11: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatial network): TM3, B∗ = 0.53 for T-2 network and B∗ = 0.78 for
T-1 network, SNR=2

n = 50 n = 150 n = 500

Signals σ̂tm3 σ̂tm3 σ̂tm3

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 -0.2 19.2 2.02 -3.4 12.5 2.06 -5.8 7.6
g2 0.23 -2.3 43.2 0.20 -4.6 11.2 0.22 -5.8 7.2
g5 0.61 -3.2 41.8 0.53 -5.2 6.2 0.58 -8.8 0.1
g6 0.22 -3.1 16.6 0.19 -5.8 4.5 0.20 -8.2 -0.3
g7 0.22 -9.0 8.2 0.20 -6.5 1.2 0.21 -6.9 0.4
g8 0.70 -8.3 5.4 0.56 -8.8 1.5 0.59 -8.1 -1.6

Table 4.12: Estimation of σ(% difference) using variogram in time domain (es-
timation on spatio-temporal network): TM3, B∗ = 0.53 for T-2 network and
B∗ = 0.78 for T-1 network, SNR=2

4.3.4 Estimation in time domain: Method-4 (TM4)

Method TM2 only works well if there are enough number of close neighbours for

each node. In practical situations, we may consider the method described below.

Instead of taking the node dependent estimate of σk, we are going to estimate σ

by taking the first order difference for all the nodes. Therefore the estimators for

the variograms at lag 1 and lag 2 are given as,

2γ̂tm4(1) = MAD({(fj)j∈Jk
− fk}∀k∈N1)

2/B∗,

2γ̂tm4(2) = MAD({(fj)j∈Js∗
k
− fk}∀k∈N1)

2/B∗,
(4.28)

77

Chapter 4. Noise Variance Estimation for Networks

where B∗ is the bias correcting constant however for this method we estimate

B∗ = 1. We then find the estimator σ̂tm4 from (4.19).

Table 4.13 shows results based on spatial network using the variogram method

TM4 discussed above. These are better than those in table 4.11. The estimation

results improve with the increasing number of nodes. Table 4.14 shows the re-

sults of estimation on a spatio-temporal network. These are better than those in

table 4.12 for large n. The bias correction for this method is approximately 1.

n = 50 n = 150 n = 500

Signals σ̂tm4 σ̂tm4 σ̂tm4

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 15.6 30.5 2.02 8.9 18.3 2.06 3.9 10.6
g2 0.23 37.3 121.5 0.20 13.7 44.7 0.22 6.3 16.5
g5 0.61 38.4 91.3 0.53 13.8 46.7 0.58 2.9 13.7
g6 0.22 25.4 68.6 0.19 9.6 30.6 0.20 2.2 9.5
g7 0.22 20.5 53.9 0.20 4.9 21.4 0.21 2.2 7.4
g8 0.70 7.1 31.4 0.56 4.1 18.3 0.59 0.8 4.7

Table 4.13: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatial network): TM4, B∗ = 1, SNR=2

n = 50 n = 150 n = 500

Signals σ̂tm4 σ̂tm4 σ̂tm4

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 10.3 17.5 2.02 4.2 10.6 2.06 1.4 7.1
g2 0.23 13.0 51.0 0.20 4.4 16.8 0.22 2.5 8.2
g5 0.61 13.2 53.5 0.53 5.2 21.5 0.58 0.3 5.7
g6 0.22 11.3 29.8 0.19 2.3 11.5 0.20 -0.5 3.4
g7 0.22 4.8 22.3 0.20 2.2 8.7 0.21 1.7 3.6
g8 0.70 0.6 12.6 0.56 0.8 8.5 0.59 -0.4 1.3

Table 4.14: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatio-temporal network): TM4, B∗ = 1, SNR=2

78

4.3. Variogram method for LOCAAT

4.3.5 Estimation in time domain: Method-5 (TM5)

We know that the lag 1 difference can also be defined as the difference between

the observation at node k and the observation at the closest neighbour (based on

the Euclidean distance) whose node index is jc ∈ Jk. We can also define the lag

2 difference as the difference between the observation at node k and the closest

second order neighbour whose node index is jsc ∈ Jsk .

We define the estimators for the variograms at lag 1 and lag 2 as,

2γ̂tm5(1) = MAD({fk − fjc}∀k∈N1)2/B∗,

2γ̂tm5(2) = MAD({fk − fjs
c
}∀k∈N1)2/B∗,

(4.29)

where all terms are as defined earlier. We then find the estimator σ̂tm5 from (4.19).

Note that, in spatio-temporal network based estimation, the closest first order

neighbour and closest second order neighbour will be copies of the node itself in

the past and future unless the temporal scale factor is greater than 1. In our

simulations we use the temporal scale factor of 1.

Table 4.15 shows the results of estimating σ using TM5 on a spatial network.

Estimation results improve with increasing number of nodes. Table 4.16 shows

the result of estimation on a spatio-temporal network. Estimation on a spatio-

temporal network using TM5 shows extremely good results even with few number

of nodes.

4.3.6 Estimation in wavelet domain: Method-1 (WM1)

The approach in this section is similar to the time domain one presented in sec-

tion 4.3.1. We assume that we have sufficient time observations available. We

perform the LOCAAT transform independently over the available time observa-

tions and and arrange the LOCAAT coefficients as a series for each node. Let

dk = (dk,t)
T
t=1 be the vector that stores the LOCAAT coefficients for a node k.

79

Chapter 4. Noise Variance Estimation for Networks

n = 50 n = 150 n = 500

Signals σ̂tm5 σ̂tm5 σ̂tm5

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 16.9 24.6 2.02 10.3 11.5 2.06 3.0 3.9
g2 0.23 22.0 89.2 0.20 9.5 29.4 0.22 5.2 11.3
g5 0.61 26.9 71.4 0.53 10.3 33.0 0.58 2.5 8.1
g6 0.22 13.7 49.6 0.19 7.5 23.0 0.20 1.5 6.5
g7 0.22 11.2 30.9 0.20 4.0 13.4 0.21 2.4 5.0
g8 0.70 3.4 19.3 0.56 2.1 10.0 0.59 -0.3 2.0

Table 4.15: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatial network): TM5, B∗ = 1, SNR=2

n = 50 n = 150 n = 500

Signals σ̂tm5 σ̂tm5 σ̂tm5

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 3.4 2.7 2.02 -0.7 0.3 2.06 -0.3 -0.4
g2 0.23 -0.7 2.0 0.20 1.1 1.3 0.22 -0.4 -0.1
g5 0.61 -0.6 8.3 0.53 1.8 2.7 0.58 -0.9 -0.8
g6 0.22 3.5 6.6 0.19 -1.0 0.7 0.20 -1.5 -1.2
g7 0.22 -2.4 2.1 0.20 -0.4 0.0 0.21 0.1 0.1
g8 0.70 -3.0 -0.9 0.56 -0.36 0.5 0.59 -2.1 -1.6

Table 4.16: Estimation of σ(% difference) using variogram in time domain (esti-
mation on spatio-temporal network): TM5, B∗ = 1, SNR=2

We estimate the variogram at lag h for a node k as,

2γ̂wm1
k (h) = (MAD{d(t+h),k − dt,k})2. (4.30)

We then find the node dependent estimator σ̂wm1
k using (4.20) and then by us-

ing (4.21) we find the estimator σ̂wm1. Table 4.17 shows the results of estimating

σ with varying number of nodes.

The above method works well provided there are enough observations are avail-

able per node however, we can still find a reliable estimator for the variogram

provided at least there are three observations are available per node (similar to

80

4.3. Variogram method for LOCAAT

n = 50 n = 150 n = 500

Signals
True σ σ̂wm1 True σ σ̂wm1 True σ σ̂wm1

g1 2.08 1.9 2.02 0.1 2.06 0.1
g2 0.23 2.7 0.20 0.4 0.22 0.8
g3 0.71 0.3 0.58 -0.6 0.62 0.9
g4 0.27 0.6 0.25 0.4 0.28 0.6

Table 4.17: Estimation of σ(% difference) using variogram in wavelet do-
main:WM1, T=100, SNR=2.

TM1). We now define the following estimator for the variogram at lag h,

2γ̂wm1*(h) = (MAD{(d(t+h),k − dt,k)∀k∈N1})2. (4.31)

The estimator σ̂wm1* is derived by using (4.19). Table 4.18 shows the results using

this method. We find both methods estimate σ extremely well and do not require

bias correction.

n = 50 n = 150 n = 500

Signals
True σ σ̂wm1* True σ σ̂wm1* True σ σ̂wm1*

g1 2.08 5.0 2.02 0.6 2.06 -0.3
g2 0.23 2.2 0.20 0.2 0.22 -0.2
g3 0.71 -3.8 0.58 -1.6 0.62 0.5
g4 0.27 -6.0 0.25 -0.4 0.28 -0.7

Table 4.18: σ Estimation using variogram in wavelet domain: WM1, T=3, SNR=2

4.3.7 Estimation in wavelet domain: Method-2 (WM2)

The following methods (WM2, WM3 and WM4) will attempt to estimate σ when

time series is not available. We take the node dependent fine scale coefficients

dfine
k (given in (4.12)) to define the estimator for the variogram at lag 1 as,

2γ̂wm2
k (1) =

(
MAD{dfine

k }
)2
/B∗. (4.32)

81

Chapter 4. Noise Variance Estimation for Networks

The following discussion defines a new set of fine scale coefficients, dfine2
k based on

the second order neighbours which is used in the estimator for the variogram at

lag 2.

Let Bk ⊆ Jsk be the set that stores the indices of the detail coefficients of the

second order neighbours of node k in the order of they were calculated and L
′

k be

its cardinality.

Bk = Jsk ∩ D1 = {ik1, . . . , ikL′k} (4.33)

Now we define another set Bfine
k = {ik1, . . . , ik

b
L
′
k
2
c
} that stores the fine scale coef-

ficients of second order neighbours. We define the fine scale coefficients of the

second order neighbours as follows,

dfine2
k = {d∗i : i ∈ Bfine

k }. (4.34)

Now the estimator for the variogram at lag 2 is defined as,

2γ̂wm2
k (2) =

(
MAD{dfine2

k }
)2
/B∗. (4.35)

The node dependent estimator σ̂wm2 is obtained by using (4.20) and (4.21).

This method only works with type-2 networks since there are not enough neigh-

bours for a MAD operation at node level for type-1 network. Table 4.19 shows

the estimation results using WM2 on spatial LOCAAT coefficients. Table 4.20

shows the results of estimating σ with the spatio-temporal LOCAAT coefficients

and we can clearly see that this method works better for the T-2 network case.

4.3.8 Variogram method in wavelet domain: Method 3

(WM3)

We have seen that node level approach is not usually very successful as there

are not usually enough neighbours and this results in poor estimation. Hence we

82

4.3. Variogram method for LOCAAT

n = 50 n = 150 n = 500

Signals σ̂wm2 σ̂wm2 σ̂wm2

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 -32.4 36.0 2.02 19.1 19.2 2.06 -19.8 14.4
g2 0.23 -12.9 46.2 0.20 8.5 24.3 0.22 -28.1 14.1
g3 0.71 -25.0 20.9 0.58 24.3 11.4 0.62 -28.8 6.0
g4 0.27 -20.5 45.6 0.25 3.8 27.8 0.28 -24.5 13.8

Table 4.19: Estimation of σ(% difference) using variogram in wavelet domain
(spatial LOCAAT coefficients): WM2, B∗ = 0.44, SNR=2

n = 50 n = 150 n = 500

Signals σ̂wm2 σ̂wm2 σ̂wm2

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 -17.5 14.7 2.02 -21.8 7.8 2.06 -24.1 6.3
g2 0.23 -4.9 20.1 0.20 -21.2 8.6 0.22 -24.5 6.1
g3 0.71 -14.7 9.0 0.58 -24.9 4.3 0.62 -26.5 3.2
g4 0.27 -14.6 13.0 0.25 -19.7 8.6 0.28 -23.1 6.1

Table 4.20: Estimation of σ(% difference) using variogram in wavelet domain
(spatio-temporal LOCAAT coefficients): WM2, B∗ = 0.44, SNR=2

adopt the following approach in wavelet domain. We define the set of fine scale

coefficients resulting from LOCAAT transform as,

Dfine1 = {ir}nr=d0.5(n−1)e ir ∈ D1 (4.36)

hence,

|Dfine1 | ≤ 0.5|D1| (4.37)

For each node k we define a new index set, A∗k, that stores the selected indices

from {Jk ∪ k} that match the fine scale coefficients. We make sure we do not get

the coarse scale coefficients into account by the following operation.

A∗k = {Jk ∪ k} ∩ Dfine
1 = {i1, . . . , i

L
A∗

k
k

}, (4.38)

83

Chapter 4. Noise Variance Estimation for Networks

where L
A∗k
k is the cardinality of the set A∗k. We define another new index set, B∗k,

that stores only the selected indices from {Js∗k ∪ k} that are fine scale coefficients

for the second order neighbours.

B∗k = {Js∗k ∪ k} ∩ Dfine
1 = {i1, . . . , i

L
B∗

k
k

}. (4.39)

The estimators for the variograms at lag 1 and lag 2 for this method is defined as,

2γ̂wm3(1) = MAD{{{dj}j∈A∗k}∀k∈N1}2/B∗,

2γ̂wm3(2) = MAD{{{dj}j∈B∗k}∀k∈N1}2/B∗,
(4.40)

where all the terms are as defined earlier and B∗ is the bias correction. Having

defined the estimators for the variogram, the estimator σ̂wm3 is obtained by us-

ing (4.19).

Table 4.21 and table 4.22 shows the results from this method. It is clear from these

tables that the method gives better estimates compared to some of the methods

described above.

n = 50 n = 150 n = 500

Signals σ̂wm3 σ̂wm3 σ̂wm3

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 4.5 15.9 2.02 9.4 11.5 2.06 2.6 6.9
g2 0.23 5.5 38.6 0.20 1.1 11.8 0.22 3.7 7.3
g3 0.71 3.2 13.4 0.58 1.5 2.7 0.62 0.7 1.0
g4 0.27 -2.4 15.2 0.25 8.6 17.6 0.28 0.5 5.0

Table 4.21: Estimation of σ(% difference) using variogram in wavelet domain
(spatial LOCAAT coefficients): WM3, B∗ = 0.51, SNR=2

84

4.3. Variogram method for LOCAAT

n = 50 n = 150 n = 500

Signals σ̂wm3 σ̂wm3 σ̂wm3

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 6.7 6.1 2.02 3.4 0.8 2.06 0.9 -0.5
g2 0.23 7.2 8.8 0.20 5.0 -0.5 0.22 0.9 0.8
g3 0.71 6.5 -0.7 0.58 -1.7 -2.9 0.62 0.2 -0.2
g4 0.27 3.2 1.4 0.25 2.0 -0.6 0.28 0.7 -0.8

Table 4.22: Estimation of σ(% difference) using variogram in wavelet domain
(spatio-temporal LOCAAT coefficients): WM3, B∗ = 0.51, SNR=2

4.3.9 Variogram method in wavelet domain: Method 4

(WM4)

In this section we find the following is a robust estimator. We find only one first

order fine scale coefficient. The estimators for the variograms at lag 1 and lag 2

are given as,

2γ̂wm4(1) = MAD{(d∗i)i∈A∗}2/B∗,

2γ̂wm4(2) = MAD{(d∗i)i∈B∗}2/B∗,
(4.41)

where the sets A∗ and B∗ are defined as,

A∗ = {ik1 ∈ A∗k}, k = 1, . . . , n,

B∗ = {ik1 ∈ B∗k}, k = 1, . . . , n.
(4.42)

Having found the estimators for the variogram, we find the estimator σ̂wm4 from (4.19).

Table 4.23 and table 4.24 shows the results from this method. It is clear from

these tables that this method gives a much improved estimator compared to other

methods described above.

85

Chapter 4. Noise Variance Estimation for Networks

n = 50 n = 150 n = 500

Signals σ̂wm4 σ̂wm4 σ̂wm4

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 7.9 0.9 2.02 8.8 8.9 2.06 0.0 0.4
g2 0.23 5.1 19.3 0.20 1.0 2.3 0.22 2.2 4.9
g3 0.71 6.7 -4.5 0.58 0.1 0.0 0.62 0.1 -3.1
g4 0.27 -3.4 0.1 0.25 7.5 3.7 0.28 -0.1 0.6

Table 4.23: Estimation of σ(% difference) using variogram in wavelet domain
(spatial LOCAAT coefficients): WM4, B∗ = 0.52, SNR=2

n = 50 n = 150 n = 500

Signals σ̂wm4 σ̂wm4 σ̂wm4

True σ
T-1 T-2

True σ
T-1 T-2

True σ
T-1 T-2

g1 2.08 8.9 1.1 2.02 2.8 0.0 2.06 -0.4 -2.2
g2 0.23 1.0 -2.9 0.20 1.7 -5.9 0.22 -0.4 -1.8
g3 0.71 6.5 -4.5 0.58 -2.2 -6.0 0.62 -0.7 -1.7
g4 0.27 1.9 -0.8 0.25 1.1 -5.3 0.28 -1.6 -1.5

Table 4.24: Estimation of σ(% difference) using variogram in wavelet domain
(spatio-temporal LOCAAT coefficients): WM4, B∗ = 0.52, SNR=2

4.4 Estimation of B

The robust estimation of the variogram found in [24, 41] proposed some bias

correction. We explain more about the bias correction here.

For a given fixed network, we generate artificial noise of known variance level σ.

For time domain methods we use this noise as the observations and for the wavelet

domain estimation, we perform the LOCAAT transform on the noise. We define

the mean squared error function for estimating σ as,

e(B) =
1

N

N∑
i=1

(σ̂i(B)− σi)2, (4.43)

where σi is known noise standard deviation, σ̂i(B) is the estimator using the

proposed method for a given B and N is the number of independent experiments.

86

4.4. Estimation of B

We repeat the above calculation until we find B = B∗ that minimises the error

function above.

B∗ = arg min
0<B≤1

e(B). (4.44)

Figure 4.1 shows MSE vs B for various methods in time domain. Figure 4.2 shows

MSE vs B for various methods in wavelet domain.

0.4 0.6 0.8 1.0 1.2

0.
00

0.
05

0.
10

0.
15

B

M
S

E

Figure 4.1: MSE error function for σ estimation against the bias correction B
using time domain variogram methods. Blue line for TM2, green for TM3, red
solid line for TM4 and black for TM5, n = 500, each point is an average over 100
independent experiments.

Table 4.25 shows B∗ for time domain variogram methods and table 4.26 shows

the values for B∗ for wavelet domain variogram methods. Each value in the tables

are averages over 100 independent experiments. Only for methods TM2 and TM3,

the B∗ vary with the type of network used.

87

Chapter 4. Noise Variance Estimation for Networks

0.4 0.6 0.8 1.0 1.2

0.
00

0.
05

0.
10

0.
15

B

M
S

E

Figure 4.2: MSE error function for σ estimation against the bias correction B
using wavelet domain variogram methods. Blue line for WM2, red solid line for
WM3 and black for WM4, n = 500, each point is an average over 100 independent
experiments.

Methods B∗

TM2 0.48
TM3 0.53
TM4 1.0
TM5 1.0

Table 4.25: Estimated B∗ for time domain variogram methods.

Methods B∗

WM2 0.44
WM3 0.51
WM4 0.52

Table 4.26: Estimated B∗ for wavelet domain variogram methods.

88

4.5. Conclusions

4.5 Conclusions

The reliable estimation of the noise variance σ2 is crucial in wavelet shrinkage prob-

lems. In this chapter we have considered estimation of σ based on network data.

We have considered some estimation methods based on the MAD technique, and

then we moved on to some variogram-like techniques. In the variogram method,

we looked at several ways to estimate σ both in time domain and wavelet domain.

We initially considered the classical MAD approach and found that it overesti-

mates when the number of nodes are few, but it reliably estimates with a large

number of nodes. We adapted this classical MAD method to local MAD esti-

mation. We proposed two methods under this local MAD technique, M-1 and

M-2. We found M-2 works well for both T-1(MST type) and T-2(circular disc

approach) network cases. M-1 fails for T-1 networks since there are typically not

enough neighbours to perform MAD operation.

We then proposed an estimator based on the variogram method proposed in [42].

We called this method TM1 and it generally gives reliable estimation of σ. For

this method to work, we need at least three time observations per node. We pro-

posed another method, TM2, in order to estimate σ based on spatial observations

but this method failed to yield a reliable estimation because there are not enough

neighbours available for T-1 networks and the neighbours may be far apart for

T-2 network (therefore less correlation, more error and results in overestimation).

Therefore we proposed the method TM3 which gives better estimation for both

T-1 and T-2 network when the number of nodes are large. We proposed another

method,TM4, based on the closest second order neighbours. Under this method,

T-1 network yields better results with large number of nodes. Since we did not

consider the closest first order neighbours, T-2 networks result in poor estimation

compared to T-1 networks. Considering closest first order neighbours will be a

future task. We proposed our final time domain variogram method, TM5, based

on the closest first order neighbour and closest second order neighbours. This

89

Chapter 4. Noise Variance Estimation for Networks

method yields reliable estimation with large numbers of nodes.

Having defined variogram methods in time domain, we then turned to variogram

methods in wavelet domain as the wavelet coefficients are good at separating the

noise from the signal. We proposed wavelet domain variogram method WM1,

similar to TM1, that reliably estimate σ. Again we need at least three time

observations per node for this method to work. We proposed another method

WM2 that is aimed to estimate σ purely based on the LOCAAT transform of

a network at a given time. T-1 networks typically will fail with this method as

there are not enough neighbours to perform node level MAD operation based on

the node level fine scale coefficients. Estimation on a T-2 network’s LOCAAT

coefficients using method WM2 improves with increasing number of nodes, but it

is not robust enough. We then proposed method WM3 that takes all the node

level fine scale coefficients based on immediate neighbours and the second order

neighbours to estimate the variogram. From the variogram we find the estimator

σ̂. This method yields reliable estimation for both T-1 and T-2 type networks.

We propose our final method WM4 based on finding one finest scale coefficient

among immediate neighbours, and finding one finest scale coefficient among the

second order neighbours. From these coefficients, the variogram is estimated and

thus the estimator σ̂ is obtained. This method yields a good estimation for σ even

with a smaller number of nodes.

Some of the variogram methods presented in this chapter needed some bias cor-

rection. We followed a similar bias correction approach to that found in [24, 41].

For a given network, we estimate B∗ that minimises the error function in (4.43).

We have seen that for methods TM2 and TM3, B∗ vary with the type of network

used. In the real world problem, we would not know what generates the network

or the data. Therefore, once we know the network (this information as a list of

edges and distance), our method of estimating B∗ ensures that we get the right

B∗ for a proposed method and thus result in reliable estimate for σ.

90

4.5. Conclusions

We give a quick summary of the variogram methods discussed in this chapter in

table 4.27. The variogram method WM4 is recommended when time series data

Methods Bias correction Many neighbours works for small n Time series

TM1 No No Yes Yes
TM2 Yes Yes No No
TM3 Yes No No No
TM4 No No No No
TM5 No No No No
WM1 No No Yes Yes
WM2 Yes Yes No No
WM3 Yes No Yes/No No
WM4 Yes No Yes No

Table 4.27: Summary of variogram methods (requirement check list).

is not available. When time series is available methods TM1 or WM1 can give a

very good estimation for noise variance.

91

Chapter 5

Thresholding Methods

5.1 Introduction

In the wavelet domain, a signal is typically represented by few coefficients, i.e

the energy of the signal is concentrated in few coefficients whereas noise tends

to spread across all coefficients. This is also called the sparsity property of the

wavelet representation. The sparsity property enables thresholding in wavelet

domain to reduce the noise present in the noisy signal. In the last chapter, we

saw some promising methods to estimate the noise level σ. In this chapter, we

will investigate some suitable thresholding methods for LOCAAT. In most of this

chapter we will assume that σ is known. We apply some standard thresholding

methods first and then we propose a number of new thresholding strategies for

LOCAAT. We evaluate these thresholding methods with the aid of simulation

studies.

In the second part of this chapter, we will look at some threshold selection methods

that directly minimise the mean squared error. These methods are useful as

they circumvent the issue of having to separately estimate the noise variance σ2.

After that, we will look at improving estimation efficiency by smoothing wavelet

coefficients. In the final part, we will look at the sparsity of LOCAAT with

93

Chapter 5. Thresholding Methods

two types of networks, type-1 (a network formed using a Minimum Spanning

Tree (MST) technique) and type-2 (a node’s neighbours are those nodes that lie

within the circle with radius r and the centre being the node), which we defined

earlier in section 3.2.2.

5.2 Experimental set up and Bias, Variance and

MSE calculations

In our simulation study we choose sample sizes of n = 50, 150, 500. We test our

methods with two test functions with discontinuities. Function g1 consists of two

planes with discontinuity between them and function g2 is a quadratic surface

with a discontinuity (see section 3.2.3 for definition of these functions).

We estimate bias for our estimation procedures by repeating this experiment N =

100 times independently. Estimation bias for node k is calculated as,

Bias(ĝk) = E(ĝk)− gk

≈ 1

N

N∑
i=1

ĝik − gk

= ḡk − gk,

(5.1)

where ĝik is the estimated signal at node k in the ith experiment. The variance of

node k is calculated as,

var(ĝk) = E[(ĝk − E[ĝk])
2]

= E[ĝ2
k]− E[ĝk]

2

≈ 1

N

N∑
i=1

ĝ2
ik − ḡ2

k.

(5.2)

94

5.3. Hard and soft thresholding

Empirically the MSE is calculated as follows,

MSE(ĝk) =
1

N

N∑
i=1

(ĝik − gk)2. (5.3)

Each point in subsequent bias, variance and MSE plots in the following sections

is calculated by taking the average of all nodes i.e,

Bias2(ĝ) =
1

n

n∑
k=1

Bias2(ĝk),

var(ĝ) =
1

n

n∑
k=1

var(ĝk),

MSE(ĝ) = Bias2(ĝ) + var(ĝ).

(5.4)

These quantities give an overall evaluation across the network. Some of the results

in the following sections are assessed by means of efficiency. Efficiency is defined

as follows [28, 30],

eff(ĝ) = log10

(
var(g)

var(ĝ − g)

)
/ log10

(
var(g)

var(f − g)

)
, (5.5)

where g is the original function, f is the observation and ĝ is the estimator of g.

A good estimator will have a large efficiency eff > 1. If eff ≤ 1, this means the

estimator is not better than the noisy observation itself.

5.3 Hard and soft thresholding

We apply hard and soft shrinkage rules, proposed in [32, 34], to the empirical

wavelet coefficients d∗ (see (4.4)). For these methods, a good choice of thresh-

old parameter λ is essential. Work in [34] proposed the universal threshold

λ = σ
√

2 log n. It is well known that the estimates resulting from the uni-

versal threshold are biased [48]. Therefore we choose a threshold parameter

λ = pσ
√

2 log n that is a portion of the universal threshold, where p ∈ [0, 1]

95

Chapter 5. Thresholding Methods

and p = 1 yields universal threshold. examples p < 1 has been found to work well

in practice [48].

We calculate bias, variance and MSE according to (5.4) with p varying from 0%

to 100%. Figure 5.6(a) shows the results of hard thresholding for the g1 function

with 500 nodes in T-1 network. It is clear that the universal threshold is not the

optimal threshold for hard thresholding of LOCAAT coefficients. For LOCAAT

hard-thresholding we have found that good thresholds seems to lie around 80%

of the universal threshold. The variance is monotonically decreasing as expected,

however the bias seems to be appearing after 60% and the bias starts to dominate

after around 80%. Figure 5.6(c) shows the results of soft thresholding for g1 func-

tion with 500 nodes in type-1 network. Although the variance seems to decrease

monotonically as p increases, the bias starts to dominate at lower level than that

of the hard thresholding. The p value for the optimal soft thresholding seems to

be around 35%. Figure 5.3 shows efficiency plot with varying p and this agrees

with the conclusions given above.

Figure 5.1 shows a plot of the coefficients in black and the thresholded coefficients

in red. It can be seen from the figure that the hard thresholded coefficients have

few non-zero coefficients compared to the soft thresholded coefficients since the

soft thresholding uses less severe threshold (about 35% of universal threshold as

opposed to the hard threshold’s 80% of universal threshold).

5.4 Block Thresholding - Across scale coefficient

The block thresholding methods proposed [11, 12, 13, 39, 40] grouping wavelet

coefficients within a scale across translates. Since LOCAAT finds one coeffi-

cient at a time, the coefficients can be treated as across-scale coefficients. We

group these LOCAAT coefficients, in the order they were calculated, into non-

overlapping blocks of M(= 3 in our simulations) coefficients. If L denote the

number of LOCAAT coefficients then we have the number of non-overlapping

96

5.4. Block Thresholding - Across scale coefficient

0 100 200 300 400 500

−
10

−
5

0
5

10
15

Detail coefficients order of removal

M
ag

ni
tu

de

(a) Hard threshold, coefficients in
the order of removal

0 100 200 300 400 500

−
10

−
5

0
5

10
15

Coefficients in ascending order

M
ag

ni
tu

de

(b) Hard threshold, coefficients in
ascending order

0 100 200 300 400 500

−
10

−
5

0
5

10
15

Detail coefficients order of removal

M
ag

ni
tu

de

(c) Soft threshold, coefficients in
the order of removal

0 100 200 300 400 500

−
10

−
5

0
5

10
15

Coefficients in ascending order

M
ag

ni
tu

de

(d) Soft threshold, coefficients in
ascending order

Figure 5.1: Hard and soft thresholded LOCAAT coefficients for g1 function on T-1
network. The number of detail coefficients L = 498, number of nodes n = 500,
SNR =2.

blocks nb = bL/Mc. We then threshold each of these blocks if sum of squares of

the coefficients within these blocks are larger than a threshold λ (see section 2.5.2

for a block thresholding on regular wavelet methods). Let Bj denote the indices

of the jth block.

Bj = {ir : L− (j + 1)M ≤ r ≤ (L− jM)} ir ∈ D1 (5.6)

where D1 is the set containing the indices of the coefficients arising from complete

LOCAAT transform. Let B2
j =

∑
i∈Bj

d∗i
2 denote the sum of squares of the

detail coefficients in block j. We keep the block j if B2
j > T where T is some

97

Chapter 5. Thresholding Methods

threshold choice. We choose T = 2pσ2 logL where 0 < p ≤ 1. We estimate

θ∗ by thresholding d∗ where θ∗ = (θk

σk
)nk=1, θk is the LOCAAT transform of the

true function gk and σk is the known variance change factor due to the LOCAAT

transform.

θ̂∗ =

 d∗i I(B2
j > T), ∀i ∈ Bj, j = 1, . . . , nb

d∗i , otherwise.
(5.7)

We then perform inverse transform with the new coefficients θ̂ to estimate the

true function g(t). Note that we use θ̂ = θ∗. σ to estimate the true function

g(t), where σ is the vector of known variance change factor due to the LOCAAT

transform and g(t) = (gk(t))
n
k=1.

ĝ(t) =
∑
l∈Dr

θ̂lψl +
∑
k∈Sr

crkφrk, r = 1, . . . , n. (5.8)

Figure 5.6(e) shows the results for block thresholding of LOCAAT coefficients of

g1 function with a type-1 network. Minimum Mean Squared Error (MMSE), in

other words maximum efficiency, is achieved when p = 1.05. Bias appears after

60% but the decreasing variance dominate the Mean Squared Error (MSE) until

p = 1.05. These results can be fine tuned by varying the block size M .

5.5 Block thresholding - Box Block Choice (BBC)

In the previous approach we just divided the LOCAAT coefficients into blocks

based on the order in which the coefficients are produced and thresholded. The

coefficients that are grouped together not necessarily actual spatial neighbours of

each other. Figure 5.2 shows the LOCAAT coefficients in spatial domain. In our

new approach, we divide coefficients into blocks based on their spatial position.

We divide the unit square into a grid with grid spacing of δx (= 0.2) and δy (= 0.2).

We group the coefficients in each grid square to form a block. The total number of

grid boxes along x-axis is nX = 1/δx. Similarly, for the y-axis it is nY = 1/δy. Let

98

5.5. Block thresholding - Box Block Choice (BBC)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

Figure 5.2: Spatial plot LOCAAT coefficients of 2−D Doppler function on a T-1
network. The number of detail coefficients L = 498, number of nodes n = 500,
SNR =2. The detail coefficients are shown in red. The scaling coefficients in blue
and are numbered.

Ba,b denote the set which contains the indices of the nodes related to the set D1

which are in grid square (a, b), where 1 ≤ a ≤ nX and 1 ≤ b ≤ nY . We keep the

coefficients in the block contained in grid square (a, b) if B2
a,b =

∑
k∈Ba,b

d∗k
2 > T

with T = 2pσ2 logL where 0 < p ≤ 1. We estimate θ∗ by thresholding the detail

coefficients d∗.

θ̂
∗

= (d∗kI(B2
a,b > T))k∈Ba,b,a=1,...,nX ,b=1,...,nY

(5.9)

We then perform the inverse transform, similar to (5.8), using modified coefficients

d∗ to get an estimate for the true function g(t).

Figure 5.7(c) shows the results for BBC thresholding approach of LOCAAT co-

efficients of g1 function with type-1 network settings. MMSE is achieved when

99

Chapter 5. Thresholding Methods

p = 1.28. The results could be fine tuned by automatically selecting the box size.

In the spatio-temporal case we extend this box in the spatial domain to include

the past and future state nodes of those who are within the grid square (a, b).

5.6 Block Thresholding - Neighcoeff

Neighcoeff method is introduced in [10], which is a term by term thresholding

method that depends on the coefficient itself and the coefficients of immediate

neighbours. The neighbouring coefficients also contribute to thresholding and the

threshold is less severe than the one in the MAD technique (see section 2.5.3).

We adapt this technique to LOCAAT by just taking the coefficients of a node and

its neighbours to construct a block of coefficients, let number of blocks be k. The

number of closest neighbours we choose will depend on the design. In the T-1

network, most of the nodes will have few neighbours. For a T-2 network there

may be many neighbours for each node, however the correlation in the far away

nodes will be less. Therefore we choose 2 closest neighbours for each node k (in

both network types) and denote them by Jnear
k . Let Bk = {Jnear

k ∪ k} denote the

block for node k. We decide to keep a coefficient if B2
k =

∑
i∈Bk

d∗i
2 > T with

T = 2pσ2 logL where 0 < p ≤ 1. By repeating this for all the coefficients we

estimate θ∗,

θ̂∗ = d∗kI(B2
k > T). (5.10)

We perform inverse transform similar to (5.8) to estimate the true function g(t).

Figure 5.7(a) shows the results for neighcoeff thresholding of LOCAAT coefficients

of g1 function with type-1 network settings. MMSE is achieved when p = 0.76.

When time series data is available, this block thresholding in spatial method can

take future and past state coefficients, in addition to the detail coefficients of

spatial neighbours as explained above, into the decision making. This approach

improves the results significantly. The thresholding efficiency using the neighcoeff

100

5.7. Mean correction method

approach, for a g1 function on a type-1 network scenario with snr=2, is 1.58 (

from table 5.1). When we apply the second neighcoeff approach of considering

past and future state coefficients, the efficiency is 2.01 for the same simulation

conditions used for the first approach. This efficiency is close to the results of

spatio-temporal denoising presented in table 5.2.

Results

Figure 5.3 shows the results of efficiencies for various thresholding methods dis-

cussed so far. Soft and empirical Bayes (ebayesthresh) thresholding methods

give the best efficiency of approximately 1.77 (from table 5.1). Block thresholding

and hard thresholding methods also give an acceptable performance. Figure 5.4

shows the efficiency results for the spatio-temporal method with both overlapping

and non-overlapping cases. Figure 5.8 and figure 5.9 shows the bias variance and

mse analysis for various threshold methods in the spatio-temporal setting. We

see that block threshold generally performs better than the others and the overall

efficiency for all the methods increases in the spatio-temporal setting and espe-

cially the overlapping moving window type performs well. Table 5.2 shows the

maximum efficiencies achieved for various methods and their corresponding p = p∗

that maximises the efficiency for that particular method. All the results presented

are average of 100 independent experiments. Further results spatial network case

with fewer number of nodes (n=50 and n=150) are shown in appendix B.

5.7 Mean correction method

We found that the previous thresholding methods introduce bias into our estima-

tion. Some methods have severe bias issues compared to the other methods. We

can correct the mean after thresholding to compensate for the bias and this mean

correction can be performed with all the above methods to improve the bias at

101

Chapter 5. Thresholding Methods

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

percentage of universal threshold

E
ffi

ci
en

cy

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●

●

Figure 5.3: Efficiency results for g1 function on a type-1 network with 500 nodes
with SNR = 2, Hard threshold(=•), soft threshold(=N), block threshold(=�),
BBC(=�) and neighcoeff(=◦) against p=varying percentage of universal thresh-
old. Each point is an average of 100 experiments.

the expense of increased variance. We calculate a mean value for each node k

based on the observations of its neighbours j ∈ Jk and the node k itself denoted

by µobsk .

µobs
k =

∑
j∈Jk

yj + yk

nk + 1
, (5.11)

where nk = |Jk| and yk is the noisy observation at node k. We then find the

estimated mean, µestk , for each node in a similar fashion after denoising.

µest
k =

∑
j∈Jk

ĝj + ĝk

nk + 1
, (5.12)

102

5.7. Mean correction method

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Percentage of universal threshold

E
ffi

ci
en

cy

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ● ●
●

●
●

(a) Non-overlapping moving window

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.
0

1.
5

2.
0

Percentage of universal threshold

E
ffi

ci
en

cy

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●
●

●

●
●

●

(b) Overlapping moving window

Figure 5.4: Efficiency results for g1 function on a type-1 network with 500 nodes
with SNR = 2 in spatio-temporal setting, Hard threshold(=•), soft threshold(=N),
block threshold(=�), BBC(=�) and neighcoeff(=◦) against p=varying percent-
age of universal threshold. Each point is an average of 100 experiments.

Method Maximum Efficiency p∗

Hard threshold(HT) 1.718 0.837
Soft threshold(ST) 1.776 0.321

Block threshold(BT) 1.754 1.058
Neighcoeff(NC) 1.589 0.763

BBC 1.491 1.279
Mean Corrected HT 1.426 2.373
Mean Corrected ST 1.427 0.858
Mean Corrected BT 1.421 2.500
Mean Corrected NC 1.379 2.500

Mean Corrected BBC 1.354 2.500
Ebayesthresh 1.777 NA

Table 5.1: Maximum efficiencies and the corresponding p∗ = arg maxp eff for
various thresholding methods for g1 function on a type-1 network with SNR = 2
and n = 500. Each entry is an average of 100 repetition.

where ĝk is the estimate of the true function gk at node k. We then find the

difference in the mean levels and add to the denoised value at node k.

µdiff
k = µobs

k − µest
k (5.13)

ĝ
′

k = ĝk + µdiff
k . (5.14)

103

Chapter 5. Thresholding Methods

Maximum efficiency p∗

Methods
Non-overlapping Overlapping Non-overlapping Overlapping

Hard threshold 2.112 2.266 0.911 0.763
Soft threshold 1.945 2.035 0.321 0.321

Block threshold 2.168 2.334 1.058 0.911
Neighcoeff 1.893 2.105 0.911 0.837

BBC 1.739 1.912 1.132 1.058
Ebayesthresh 2.090 2.203 NA NA

Table 5.2: Maximum efficiencies and the corresponding p∗ = arg maxp eff for
various thresholding methods for g1 function on a type-1 network with SNR = 2
and n = 500 in spatio-temporal setting. Each entry is an average of 100 repetition.

This effectively ensures that the mean of the estimation stays close to the mean

of the noisy data. This is a data based method similar in spirit to the update

step in lifting which maintains the mean of the data through the transform. Since

some nodes can be far away from the node (less correlation), we prefer to use

only the nearest neighbours to find the mean instead of taking all neighbours

into consideration. Assume we have n∗k nearest neighbours whose indices are J∗k .

J∗k ⊆ Jk.

We can apply this to any of our proposed methods. Figure 5.5 shows the efficiency

plot for all the methods discussed earlier with the mean correction. The maximum

efficiency approaches around 1.4 for g1 function with the simulation settings above.

It is clear by comparing the figure 5.3 and figure 5.5 that the mean correction

method is much more consistent and less sensitive to the choice of p. In the

real world problems, since the true function is usually unknown, it is difficult

to determine the choice of p for various other methods earlier (unless we use

an approximation of the true function by taking average of nearest neighbours’

observations). Therefore we recommend the mean correction method in such

scenario.

104

5.7. Mean correction method

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

percentage of universal threshold

E
ffi

ci
en

cy

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 5.5: Efficiency results for g1 function on a type-1 network with 500 nodes
with SNR = 2 mean corrected, hard threshold(=•), soft threshold(=N), block
threshold(=�), BBC(=�) and neighcoeff(=◦) against p=varying proportion of
universal threshold. Each point is an average of 100 experiments.

105

Chapter 5. Thresholding Methods

20 40 60 80 100 120 140

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

(a) Hard Thresholding

50 100 150 200 250

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Hard thresholding with mean
correction

20 40 60 80 100 120 140

0
1

2
3

4
5

6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) Soft Thresholding

50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(d) Soft Thresholding with mean
correction

20 40 60 80 100 120 140

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ●
● ● ●

(e) Block Thresholding

50 100 150 200 250

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

(f) Block Thresholding with mean
correction

Figure 5.6: Various thresholding results for Type-1 network with 500 nodes with
SNR = 2, Average squared bias(=�), variance(=4) and mean squared error(=◦)
against pσ̂

√
2 log n, p=varying proportion of universal threshold. Each point is

an average of 100 experiments.

106

5.7. Mean correction method

20 40 60 80 100 120 140

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●
● ● ● ● ● ●

● ●
●

●
●

●

(a) Neigh Coeff method

50 100 150 200 250

0
1

2
3

4
Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Neigh Coeff with mean correction

20 40 60 80 100 120 140

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

(c) BBC

50 100 150 200 250

0
1

2
3

4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

(d) BBC with mean correction

Figure 5.7: Various thresholding results for Type-1 network with 500 nodes,
Average squared bias(=�), variance(=4) and mean squared error(=◦) against
pσ̂
√

2 log n, p=varying proportion of universal threshold. Each point is an aver-
age of 100 experiments.

107

Chapter 5. Thresholding Methods

20 40 60 80 100 120 140

1
2

3
4

5

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

(a) Hard Thresholding

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

(b) Hard thresholding with mean
correction

20 40 60 80 100 120 140

0
1

2
3

4
5

6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) Soft Thresholding

20 40 60 80 100 120 140

0
1

2
3

4
5

6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) Soft Thresholding with mean
correction

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

● ● ●
●

(e) Block Thresholding

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

● ● ●
●

(f) Block Thresholding with mean
correction

Figure 5.8: Various thresholding results for Type-1 network with 500 nodes with
SNR = 2 in the spatio-temporal setting, figures on the left hand side are non-
overlapping moving window case and the figures on the right are the overlapping
moving window case. Average squared bias(=�), variance(=4) and mean squared
error(=◦) against pσ̂

√
2 log n, p=varying proportion of universal threshold. Each

point is an average of 100 experiments.

108

5.7. Mean correction method

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ● ● ●
●

●

(a) Neigh Coeff method

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold
S

qu
ar

ed
 b

ia
s,

 v
ar

ia
nc

e
an

d
m

ea
n

sq
ua

re
d

er
ro

r

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●
●

●
●

●

(b) Neigh Coeff with mean correction

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

(c) BBC

20 40 60 80 100 120 140

1
2

3
4

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

(d) BBC with mean correction

Figure 5.9: Various thresholding results for Type-1 network with 500 nodes with
SNR = 2 in the spatio-temporal setting, figures on the left hand side are non-
overlapping moving window case and the figures on the right are the overlapping
moving window case. Average squared bias(=�), variance(=4) and mean squared
error(=◦) against pσ̂

√
2 log n, p=varying proportion of universal threshold. Each

point is an average of 100 experiments.

109

Chapter 5. Thresholding Methods

5.8 Improving estimation by identifying sensi-

tive coefficients of estimation

Thresholding a small coefficient may have big impact especially if it is in a region

of few nodes [43]. We investigate a way to find these sensitive coefficients (akin to

points of high leverage in ordinary regression). We threshold the coefficients first

and then identify the coefficients that were set to zero by the thresholding oper-

ation, we denote this set by Jzero. Now, we start with the full set of coefficients

and setting one coefficient to zero at a time and perform the inverse transform.

We calculate the squared error Err(j) =
∑n

k=1(fk − f̃ jk)2 where n is the number

of nodes, fk is the noisy observation at node k and f̃ jk is the inverse transform of

LOCAAT coefficients with coefficient j set to zero and j ∈ Jzero. We repeat this

step for all j ∈ Jzero and calculate the error function Err(j). Now we can identify

the nodes whose coefficients, when set to zero, result in large error. Then, when

performing estimation, we avoid some of these coefficients from being thresholded.

This method improves the performance.

We determine the number of coefficients to avoid from being thresholded in the

following way. We arrange the error Err(j) in descending order. We perform |Jzero|

number of inverse transforms, each time by avoiding 1, . . . , j coefficients being re-

placed by zero by the threshold operation and calculate the efficiency (as in (5.5))

of resulting estimation. We repeat this step until avoiding all the coefficients ,

i.e. 1, . . . , |Jzero|, being replaced by zero (this will result in efficiency = 1 since no

thresholding is applied to the detail coefficients). Now we avoid the number of

coefficients (that are avoided being replaced by zero) that maximise the efficiency.

Figure 5.10 shows the results of improving the efficiency by avoiding thresholding

the sensitive coefficients for MST type network. It is clear from the figures that we

can improve the results significantly by avoiding about 10 to 15 coefficients, whose

error is large, in a 500 node simulation study on a T-1 network. Figure 5.11 shows

110

5.8. Improving estimation by identifying sensitive coefficients of
estimation

0 5 10 15 20 25 30

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

1.
80

Number of coefficients being preserved

E
ffi

ci
en

cy

(a) Function g1

0 5 10 15 20 25 30

1.
40

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

Number of coefficients being preserved

E
ffi

ci
en

cy

(b) Function g2

0 5 10 15 20 25 30

1.
6

1.
7

1.
8

1.
9

Number of coefficients being preserved

E
ffi

ci
en

cy

(c) maartenfunc

0 5 10 15 20 25 30

1.
35

1.
40

1.
45

1.
50

Number of coefficients being preserved

E
ffi

ci
en

cy

(d) 2D Doppler function

Figure 5.10: Efficiency Vs Number of coefficients avoided being thresholded whose
error is large. Plot in red shows hard thresholding results and the black one for
soft thresholding. Network T-1 used with various test functions with SNR=2,
n = 500.

the coefficients in the order of removal in black, ordinary thresholded coefficients

(either hard or soft threshold) with the percentage of universal threshold (hard =

80%, soft = 35%) shown in red and the preserved coefficients are shown in blue.

It can be noted that the preserved coeffients come from the latest removed points

which led to the conclusion in section 5.15.

This method is extremely inefficient in terms of the amount of computing in-

volved since we have to perform many (|Jzero|) inverse transforms by avoiding some

coefficients being replaced by zero. In a real world scenario, usually the true func-

111

Chapter 5. Thresholding Methods

0 100 200 300 400 500

−
2

−
1

0
1

2
3

Coefficients in order of removal

M
ag

ni
tu

de

●
●

●

●

●

●

(a) Hard threshold

0 100 200 300 400 500

−
2

−
1

0
1

2
3

Coefficients in order of removal

M
ag

ni
tu

de

●

●

●

●

●

●

●

●

(b) Soft threshold

Figure 5.11: Detail coefficients (in the order of removal) for g2 function on a T-1
network. The number of detail coefficients L = 498, number of nodes n = 500,
SNR =2. Detail coefficients in black, ordinary thresholded coefficients in red
(with p∗ = 0.8 for hard threshold and p∗ = 0.35 for soft threshold), where p∗

is the proportion of universal threshold that minimise the MSE for the chosen
threshold method, and preserved coefficients in blue with red circle on top.

112

5.9. Ordinary Cross Validation (OCV)

tion that we want to estimate is usually unknown (thus difficult to calculate the

efficiency). Therefore, when we use this method in real world application we may

calculate the efficiency using the approximation based on the nearest neighbours

and this method still gives similar results.

5.9 Ordinary Cross Validation (OCV)

In ordinary cross validation the optimal threshold is chosen to minimise the mean

squared error function R(λ)

R(λ) =
1

n
||f̂λ − g||2, (5.15)

where ||.|| means L2 norm, f̂λ is the estimator of the true function g and n is

the number of nodes. We assume the true signal is regular so that gk can be

well-approximated by linear combination of its neighbours. To validate the per-

formance of a thresholding parameter at a given data point fk, we leave this point

out and interpolate this intermediate point and call this f̃k.

f̃k =
1

|Jnear
k |

∑
k∈Jnear

k

fk (5.16)

where Jnear
k are the indices of the nearest neighbours of node k. We assume this

f̃k is relatively noise free.

f̃k = (f1, . . . , f̃k, . . . , fn)T . (5.17)

We perform the LOCAAT transform on this modified data f̃ i and perform a chosen

threshold operation (we choose soft thresholding for its continuous nature) with

a choice of threshold parameter λ. We perform inverse transform and denote the

resulting estimator as f̃λi. We repeat these steps for all the nodes and calculate

113

Chapter 5. Thresholding Methods

the ordinary cross validation function

O(λ) =
1

n

n∑
k=1

(fk − f̃λk)2 (5.18)

For a small value of λ, the error term is dominated by the noise, while for a large

λ error is large because the signal is deformed.

This method is extremely inefficient because it involves n forward LOCAAT trans-

forms and n inverse transforms for a choice of the threshold parameter λ. There-

fore we apply the following modification to the OCV so that the computing is

limited to 1 forward transform for all the choices of λ and 1 inverse transform per

choice of λ.

5.9.1 Modified Ordinary Cross Validation (MOCV)

Since the true function g ≡ (gk)
n
k=1 can be well-approximated by the linear com-

bination of its nearest neighbours’ observations, we obtain an approximation for

the true function g as follows,

f̃k =
1

|Jnear
k |+ 1

 ∑
i∈Jnear

k

fi + fk

 , k ∈ N1, (5.19)

where Jnear
k is the set that stores the indices of the closest neighbours of node k.

We repeat this step for all the nodes and obtain f̃ which we can assume to be

a relatively noise free version of g. Now we perform LOCAAT transform on the

noisy signal f .

f̃ = (f̃1, . . . , f̃k, . . . , f̃n)T . (5.20)

We threshold the LOCAAT coefficients with threshold λ and calculate the differ-

ence f̃k − fλk. We now compute the cross validation function Om(λ) as follows,

Om(λ) =
1

n

n∑
k=1

(f̃k − fλk)2 (5.21)

114

5.10. Stein’s Unbiased Risk Estimator (SURE)

This way we quickly mimic the MSE function given in (5.15) like in other cross

validation methods. See figures 5.12, 5.13, 5.14 to see how well our MOCV mimics

the MSE function.

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

λ

R
is

k

(a) g1

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k
(b) g2

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(c) maartenfunc

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(d) 2D Doppler

Figure 5.12: MSE(—-), SURE(- - - -), GCV(....), MOCV(-.-.-).

5.10 Stein’s Unbiased Risk Estimator (SURE)

The Sureshrink method was introduced in [33] and it uses threshold selection by

SURE which was introduced in [81] by Stein. We will also use this for threshold

selection and compare with other threshold selection methods such as MOCV and

Generalised Cross Validation (GCV). We calculate the SURE value as follows (see

115

Chapter 5. Thresholding Methods

0 1 2 3 4 5

2
4

6
8

λ

R
is

k

(a) g1

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(b) g2

0 1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

λ

R
is

k

(c) maartenfunc

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(d) 2D Doppler

Figure 5.13: Spatio-temporal non-overlapping window case. MSE(—-), SURE(- -
- -), GCV(....), MOCV(-.-.-).

section 2.5.4 for details),

S(λ) =
1

L
[L− 2N0 +

L∑
i=1

min(d∗k, λ)2], (5.22)

where L is the number of detail coefficients, N0 is the number of coefficients that

are replaced by zero by the threshold parameter λ.

See figures 5.12, 5.13, 5.14 to see how well the SURE mimics the MSE function.

116

5.11. Generalised Cross Validation (GCV)

0 1 2 3 4 5

2
4

6
8

λ

R
is

k

(a) g1

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(b) g2

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

λ

R
is

k

(c) maartenfunc

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

λ

R
is

k

(d) 2D Doppler

Figure 5.14: Spatio-temporal overlapping window case. MSE(—-), SURE(- - - -),
GCV(....), MOCV(-.-.-).

5.11 Generalised Cross Validation (GCV)

A general description of GCV is given in section 2.5.5. The GCV score G(λ) is

calculated as [44],

G(λ) =
1
n

∑n
k=1(fk − fλk)2

(N0/n)2
, (5.23)

where fk is the observation at node k, fλk is the estimator of the true function value

gk at node k using the threshold λ, n is the number of nodes and N0 is the number

of coefficients that are set to zero by the threshold operation. This method will

perform slowly as it involves having to invert the transform. However the GCV

117

Chapter 5. Thresholding Methods

score can also be approximated from wavelet domain coefficients as follows [43],

G(λ) =
1
L

∑n
k=1(d∗k − d∗λk)2

(N0/L)2
, (5.24)

where d∗k is the detail coefficient at node k, L is the number of detail coefficients,

d∗λk = d∗I(d∗ > λ) and N0 is the number of coefficients replaced by zero. See

figures 5.12, 5.13, 5.14 to see how well GCV mimics the MSE function.

5.12 Optimising the risk estimators

Having seen some risk estimators that mimic the MSE function in (5.15), now we

will use this information to find λ = λ∗ that minimises the MSE function

λ∗ = arg min
λ
R(λ). (5.25)

We find the following by optimising the MOCV score, the SURE score and the

GCV scores respectively λ∗Om = arg minλO
m(λ), λ∗S = arg minλ S(λ) and λ∗G =

arg minλG(λ). In theory these λ∗Om ≈ λ∗S ≈ λ∗G ≈ λ∗. It can be seen from

figures 5.12, 5.13, 5.14 that this is true for some cases.

We perform optimisation in 1-D using the combination of golden section search

and successive parabolic interpolation methods. There is a built in function in

‘R’ called optimize which performs this. See section 2.8 for detail. Table 5.3

λ∗ Efficiency

Signals SURE GCV MOCV SURE GCV MOCV

g1 0.397 2.576 2.839 1.195 1.644 1.700
g2 3.524 0.411 0.358 0.049 1.350 1.450

maartenfunc 1.805 1.002 1.785 1.266 1.676 1.785
2D Doppler 2.343 0.401 0.496 0.370 1.350 1.252

Table 5.3: Optimising the risk and corresponding efficiencies for type 1 network
(spatial network) with SNR = 2 and n = 500.

118

5.12. Optimising the risk estimators

λ∗ Efficiency

Signals SURE GCV MOCV SURE GCV MOCV

g1 0.316 4.106 3.015 1.126 1.195 1.316
g2 1.947 1.149 0.270 0.218 0.537 1.012

maartenfunc 1.713 2.618 0.825 0.798 0.667 1.081
2D Doppler 1.938 1.027 0.349 0.210 0.685 1.031

Table 5.4: Optimising the risk and corresponding efficiencies for type 1 network
in spatio-temporal setting with non-overlapping window. SNR = 2 and n = 500.

λ∗ Efficiency

Signals SURE GCV MOCV SURE GCV MOCV

g1 0.384 3.808 2.949 1.186 1.966 2.039
g2 1.573 0.654 0.252 0.384 1.027 1.461

maartenfunc 2.087 2.085 0.804 1.211 1.281 1.664
2D Doppler 1.992 0.687 0.370 0.380 1.266 1.552

Table 5.5: Optimising the risk and corresponding efficiencies for type 1 network
in spatio-temporal setting with overlapping window. SNR = 2 and n = 500.

shows the optimised efficiency for various risk estimators and their corresponding

λ∗ that minimise the respective risk estimator for various test functions. It is

clear that MOCV performs better however GCV performs to an acceptable level.

Notice that λ∗ for MOCV and GCV are closer to 40% of universal threshold

which is what we found for soft thresholding (note that all the risk estimators use

soft thresholding because of its continous nature) as the best threshold choice.

Table 5.4 and table 5.5 shows the similar results in spatio-temporal networks.

General outcome is that MOCV performs better however considering computing

efficiency GCV is prefered. Table B.1 in appendix B shows the results for the T-2

network with different test functions.

119

Chapter 5. Thresholding Methods

5.13 Improving spatio-temporal denoising by smooth-

ing coefficients

When time series data is available, we can do coefficient smoothing in both the

time and wavelet domain to improve the denoising results. First, we present the

spatial network method with smoothing coefficients in wavelet domain and then

we present the spatio-temporal network with non-overlapping window method

with smoothing coefficients in wavelet domain and finally, we present the spatio-

temporal network overlapping window method with smoothing coefficients in

wavelet domain.

We consider the following model,

ft,k = gt,k + εt,k, (5.26)

where ft,k is the observation at node k at time t, gt,k is the underlying true signal,

varying spatially and temporally, we are trying to estimate and εt,k is iid Gaussian

error with mean zero and variance σ2. For our simulations, we generate gt,k as

follows,

gt,k = g(xk, yk, t), (5.27)

where g(xk, yk, t) is the time varying version of one of the test functions defined

earlier in section 3.2.3.

5.13.1 Via sequential and separate transforms using spa-

tial network

We perform the LOCAAT transform on the the spatial data sequentially and

separately through time.

dt,k = θt,k + έt,k (5.28)

120

5.13. Improving spatio-temporal denoising by smoothing coefficients

where dt,k, θt,k, έt,k are the LOCAAT transforms of ft,k, gt,k and εt,k respectively.

Note that έt,k no longer has variance as σ2 since the LOCAAT transform is non-

orthogonal. However, the variance change due to the lifting transform can be

calculated as given in section 2.4.3 [46]. Let us denote this by σ2
k.

έt,k ∼ N(0, σ2
kσ

2) (5.29)

Since there is temporal correlation, we move a running mean window of size 3

(we can use higher window size) to replace the middle layer with the averaged

coefficients. We move this window along until the last layer of coefficients. Let

d̃t,k denote the new, smoothed coefficients for node k at time t,

d̃t,k =

d(t−1),k+dt,k+d(t+1),k

3
, if 1 < t < T

dt,k, otherwise,
(5.30)

and assume

d̃t,k = θ̃t,k + ε̃t,k, (5.31)

where θ̃t,k =
θt−1,k+θt,k+θt+1,k

3
≈ θt,k and ε̃t,k =

έt−1,k+έt,k+έt+1,k

3
. Note that we assume

θ̃t,k ≈ θt,k because the signal is sparse and it is distinguished from the noise by the

LOCAAT transform and also the signal has temporal correlation, i.e. θt−1,k ≈ θt,k.

Now, because of this wavelet domain coefficient smoothing, the noise variance is

reduced such that σ̃ < σ,

ε̃t,k ∼ N(0, σ2
kσ̃

2). (5.32)

This σ̃ can be estimated by the variogram method or MAD technique (see sec-

tion 4.3) and we denote it by ˆ̃σ. Then we form:

d̃t,k

σk ˆ̃σ
=
θ̃t,k + ε̃t,k

σk ˆ̃σ
(5.33)

d∗t,k = θ∗t,k + ε∗t,k (5.34)

121

Chapter 5. Thresholding Methods

where d∗t,k =
d̃t,k

σk
ˆ̃σ
, θ∗t,k =

θ̃t,k

σk
ˆ̃σ

and ε∗t,k =
ε̃t,k

σk
ˆ̃σ
. Now the error term ε∗t,k

approx∼ N(0, 1)

and we can perform thresholding of these d∗t,k to get the estimates θ̂∗t,k. Now we

have to carry out the following operation before performing the inverse transform:

θ̂t,k = σkθ̂
∗
t,k. We can now perform inverse transform on the estimated coefficients

θ̂t,k to estimate the underlying true signal ĝt,k.

Table 5.6 shows the performance improvement of spatial network based spatio-

Signals No smoothing With smoothing

g1 1.726 2.464
g2 1.387 2.083

maartenfunc 1.721 2.256
2D Doppler 1.212 2.037

Table 5.6: Efficiencies compared for spatial network based denoising. The first col-
umn shows estimation efficiency in an ordinary estimation (no coefficient smooth-
ing involved) and the second column showing estimation efficiency by smooth-
ing coefficients in the wavelet domain. Type-1 network, SNR=2 , n = 500,
Ebayesthresh is used to perform thresholding.

temporal denoising by smoothing the wavelet coefficients. The first column in

the table shows the ordinary estimation efficiency (the results for function g1 is

similar to table 5.1 under ebayesthresh category). The second column in the table

shows the improved results by smoothing the coefficients in wavelet domain. The

performance of this method can be improved by smoothing the wavelet coefficients

by averaging more than 3 coefficients. This is a future task.

5.13.2 Via sequential transform using spatio-temporal net-

work

A larger network can be formed by using the idea that node k becomes the neigh-

bour of itself in the past and the future time instances. This idea is discussed in

section 3.3.1. We form the observations over time into blocks with Mn number

of data, where n is the number of nodes, which is the same size as the network

122

5.13. Improving spatio-temporal denoising by smoothing coefficients

formed by coalescing M time slots. We form the block of observations as

f jk′ = ft,k, t = (j − 1)Mt + 1, . . . , jMt, k = 1, . . . , n, (5.35)

where j indicate the block index. Thus |f jk′ | = Mn and k′ = 1, . . . ,Mn. There-

fore our model for this spatio-temporal method is, f jk′ = gjk′ + εjk′ , and after the

LOCAAT transform, the wavelet domain representation is djk′ = θjk′ + έjk′ where,

έjk′ ∼ N(0, σ2
kσ

2). We perform smoothing on these blocks of coefficients similar

to the spatial method smoothing, but this time smoothing by taking average of

adjacent block of coefficents., i.e.,

d̃jk′ =

dj−1

k′ +dj

k′+d
j+1

k′
3

, if 1 < j < X

djk′ , otherwise,
(5.36)

where X = bT/Mc if non-overlapping case is considered and X = T −M + 1 if

overlapping case is considered. After smoothing, the wavelet domain representa-

tion of coefficients can be written as

d̃jk′ = θ̃jk′ + ε̃jk′ , (5.37)

where θ̃jk′ =
θj−1

k′ +θj

k′+θ
j+1

k′
3

≈ θjk′ and ε̃jk′ =
έj−1

k′ +έj
k′+έ

j+1

k′
3

. Note that we assume θ̃jk′ ≈

θjk′ because the signal is sparse in wavelet domain and therefore it is distinguished

from the noise present in the signal. Also the signal has temporal correlation and

therefore θj−1
k′ ≈ θjk′ . The noise term, ε̃jk′ ∼ N(0, σ2

kσ̃
2), gets smoothed by the

operation above therefore it is now σ̃ < σ and this and can be estimated through

variogram or MAD technique (see section 4.3 and section 4.2). We denote it by

ˆ̃σ.

d̃jk′

σk′ ˆ̃σ
=
θ̃jk′ + ε̃jk′

σk′ ˆ̃σ
, (5.38)

123

Chapter 5. Thresholding Methods

which we write as,

dj∗k′ = θj∗k′ + εj∗k′ , (5.39)

where dj∗k′ =
d̃j

k′

σk′
ˆ̃σ
, θj∗k′ =

θ̃j

k′

σk′
ˆ̃σ

and εj∗k′ =
ε̃j
k′

σk′
ˆ̃σ
. Now the error term, εj∗k′

approx∼ N(0, 1).

We can perform the thresholding operation on dj∗k′ to estimate θ̂j∗k′ . Correcting for

the variance gives θ̂jk′ = σk′ θ̂
j∗
k′ . Now we estimate the ĝjk′ by performing inverse

transform on θ̂jk′ .

In the non-overlapping case,

ĝt,k = ĝjk′ , (5.40)

with t = (j − 1)Mt + 1 + bk′/nc and k = k′ − [t− (Mt(j − 1) + 1)]n.

Overlapping case,

ĝt,k := ĝt,k + ĝjk′ , (5.41)

t = j + bk′/nc and k = k′ − (t− j)n.

ĝt,k =

ĝt,k

t
, if t < Mt

ĝt,k

Mt
, if Mt ≤ t ≤ T −Mt + 1

ĝt,k

T−t+1
, otherwise.

(5.42)

Table 5.7 and table 5.8 shows the performance improvement by smoothing co-

Signals No smoothing With smoothing

g1 2.146 2.629
g2 1.637 2.067

maartenfunc 1.809 2.490
2D Doppler 1.488 2.151

Table 5.7: Efficiencies compared for spatio-temporal network (extended from type-
1 network) with non-overlapping window case. The first column shows estimation
efficiency in an ordinary estimation (no coefficient smoothing involved) and the
second column shows estimation efficiency by smoothing coefficients in the wavelet
domain. SNR=2 , n = 500, Ebayesthresh is used to perform thresholding.

efficients for the spatio-temporal network with non-overlapping and overlapping

124

5.13. Improving spatio-temporal denoising by smoothing coefficients

Signals No smoothing With smoothing

g1 2.051 2.601
g2 1.693 2.296

maartenfunc 2.004 2.502
2D Doppler 1.579 2.329

Table 5.8: Efficiencies compared for spatio-temporal network (extended from type-
1 network) with overlapping window case. The first column shows estimation
efficiency in an ordinary estimation (no coefficient smoothing involved) and the
second column shows estimation efficiency by smoothing coefficients in the wavelet
domain. SNR=2 , n = 500, Ebayesthresh is used to perform thresholding.

methods respectively. The second column in the table shows the estimation effi-

ciency using ordinary spatio-temporal based estimation (the results for function

g1 are similar to table 5.2 under the ebayesthresh category), and the third col-

umn shows the improved results by smoothing the coefficients in wavelet domain.

The performance of this method can be improved by smoothing the wavelet co-

efficients by averaging more than 3 coefficients. Selecting the correct number for

good performance is a future task.

By comparing tables 5.6, 5.7 and 5.8, we can conclude that spatio-temporal net-

work overlapping window based approach performs better than other methods

however the others also perform to an acceptable level. Other methods may

be preferred if computational efficiency is required. Figure 5.15 shows a plot of

time variation of node 10 (random choice for illustration) with different methods

to illustrate how each method performs when coefficient smoothing is applied in

wavelet domain. Figure 5.16 shows a plot of estimated function at t = 6 (a random

choice) using different methods to show how each methods estimate the function

g.

125

Chapter 5. Thresholding Methods

0 20 40 60 80 100

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

time

M
ag

ni
tu

de

(a) Spatial

0 20 40 60 80 100

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

time

M
ag

ni
tu

de

(b) Spatio-temporal non-
overlapping window

0 20 40 60 80 100

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

time

M
ag

ni
tu

de

(c) Spatio-temporal overlapping
window

Figure 5.15: Denoising along time for node 10 (a random choice) with coefficient
smoothing in wavelet domain. SNR=2, n = 500, ebayesthresh used to perform
thresholding. Original series is shown in red, noisy series in black and the esti-
mated series in blue.

126

5.13. Improving spatio-temporal denoising by smoothing coefficients

x y

z

(a) Noisyg2

x y

z

(b) Denoised g2 - Spatial case with
coefficient smoothing

x y

z

(c) Noisyg2

x y

z

(d) Denoised g2 - Spatio-temporal
non overlapping, with coefficient
smoothing

x y

z

(e) Noisyg2

x y

z

(f) Denoised g2 - Spatio-temporal
overlapping, with coefficient
smoothing

Figure 5.16: Denoising spatial function via different methods using coefficients
smoothing in wavelet domain. SNR=2, n = 500, ebayesthresh used to perform
thresholding.

127

Chapter 5. Thresholding Methods

5.14 Sparsity

One main advantage of wavelet methods is the sparsity of signal in wavelet domain,

i.e. the signal is represented by few coefficients. In this section we explore the

sparsity of the LOCAAT transform with two types of networks, type-1 and type-2

networks for two test functions g1 and g2. We define the Mean Integrated Squared

Error (MISE) between the original signal g and the estimate ĝ as follows,

MISE(g, ĝ) = E
1

n

n∑
k=1

(gk − ĝk)2, (5.43)

where n is the number of nodes.

We find the complete LOCAAT coefficients of the noisy data and arrange them in

ascending order of magnitude in absolute values. We find the MISE by setting the

smallest coefficient to zero. Then we proceed with setting two smallest coefficients

to zero and finding the MISE, and so until all the coefficients are set to zero except

the scaling function coefficients [69]. We find the MISE(i) as follows,

MISE(i) = E
1

n

n∑
k=1

(gk − ĝik)2, (5.44)

where ĝik is the estimate for true function value gk at node k by setting i smallest

coefficients to zero. We also calculate the efficiency,

eff(i) = E log10

(
var(g)

var(ĝi − g)

)
/ log10

(
var(g)

var(f − g)

)
, (5.45)

where g is the original function (spatial function), ĝi is the inverted transform by

setting i smallest coefficients to zero and f if the noisy observation. Figure 5.17

shows the results of sparsity for our two test networks with two test functions,g1

and g2. We can see from the figure that type-2 network has slightly weaker sparsity

as the energy is spread across more neighbours causing the same threshold as type-

1 network to perform less efficiently. This is visible in the efficiency plot (right

128

5.14. Sparsity

hand side plots in figure 5.17). Note that this way maximum efficiency achieved is

1.68 for g1 function under type-1 network. This is also the maximum achievable

by hard thresholding.

Work in [31, 73] shows another way of measuring the sparsity,

0 100 200 300 400 500

2
3

4
5

6
7

Number of zero coefficients

M
IS

E

(a) g1

0 100 200 300 400 500

0.
6

0.
8

1.
0

1.
2

1.
4

Number of zero coefficients
E

ffi
ci

en
cy

(b) g1

0 100 200 300 400 500

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Number of zero coefficients

M
IS

E

(c) g2

0 100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Number of zero coefficients

E
ffi

ci
en

cy

(d) g2

Figure 5.17: Sparsity and Efficiency plots against the number of zero coefficients
for two test functions, g1 and g2, SNR=2, n=500. Type-1 network results in blue
line and type-2 network results in red. The results are average of 50 independent
experiments.

S(%) = 100− N −#0

N
× 100, (5.46)

where N is the number of coefficients and #0 is the number of coefficients that

were replaced by zero by the threshold. In a K-scale decomposition, total sparsity

129

Chapter 5. Thresholding Methods

is defined as,

S(%) =
1

K

K∑
i=1

Si

=
1

K

K∑
i=1

{
100−

[(
Ni −#0i

Ni

)
× 100

]}
,

(5.47)

where Ni is the number of coefficients in the ith scale and #0i is the number of

coefficients replaced by zero by the threshold operation in the ith scale. Since

the LOCAAT algorithm finds one coefficient per scale, we calculate the sparsity

as follows. First we calculate 1 LOCAAT coefficient, threshold (ebayesthresh)

that coefficient, then calculate the sparsity and efficiency. Then we calculate

2 LOCAAT coefficients, threshold these coefficients, then calculate sparsity and

efficiency and so on until i = n− 2, where n is the number of nodes. In ith stage,

we calculate the sparsity as,

S(i) = 100−
[(

i−#0i
i

)
× 100

]
, (5.48)

where i is the number of detail coefficients, #0i is the number of coefficients

replaced by the threshold operation. We also calculate the efficiency as,

eff(i) = E log10

(
var(g)

var(ĝi − g)

)
/ log10

(
var(g)

var(f − g)

)
, (5.49)

where i is the number of detail coefficients, g is the true function (spatial), ĝi is the

estimator of g from i number of LOCAAT coefficients and f is the observation.

Figure 5.18 shows the plot of sparsity on the left and efficiency on the right.

The efficiency plot has an interesting outcome. It reveals that the maximum

efficiency is attained when we transform 80-90% of data as detail coefficents and

leave the remaining as scaling coefficients. This implies that we can perform the

threshold operation on the 80-90% of the detail coefficients on a fully transformed

130

5.15. Stopping time for LOCAAT transform

coefficients (in the order they were calculated and the order is important). This

is visible from further experiments shown in figure 5.19. We fix the threshold

(e.g. ebayes threshold) and perform LOCAAT transform such that we obtain 80-

100% of data as the detail coefficients, threshold the detail coefficents and invert

the transform. We repeat this for several independent experiments and find the

MISE.

Figure 5.18 also tells us that the signal transformed using type-1 network has

better sparsity than performing LOCAAT transform using type-2 network for the

same signal. This is because the detail coefficient calculations depend on spatial

closeness of neighbours. Type-1 network is based on MST technique. Therefore,

the neighbours are much closer than in the the type-2 network.

5.15 Stopping time for LOCAAT transform

Section 5.8 and the results from the second part of the last section 5.14 raise the

question about the optimal stopping time for the LOCAAT algorithm. All the

results presented so far in the thesis are produced by finding L = n−2 coefficients.

In this section we investigate when to stop the LOCAAT transform.

From figure 5.18 and figure 5.19 we see that for an ebayesthresh method, the

optimal stopping time lies between 80-90% of transformation. Some of the other

thresholding methods presented at the beginning of this chapter also rely on an-

other parameter, p, the percentage of universal threshold. Let us denote the

optimal stopping time as q. This then leads to a 2-D optimisation problem. The

function in ‘R’ called optim will do this for us. See section 2.8 for detail on

optimisation.

We define the following hard threshold operation for the detail coefficients d∗

(see (4.4))

θ̂
∗
p,q = d∗qI(d∗q > λp), (5.50)

131

Chapter 5. Thresholding Methods

0 100 200 300 400 500

95
96

97
98

99
10

0

Number of zero coefficients

M
IS

E

(a) g1

0 100 200 300 400 500

1.
0

1.
2

1.
4

1.
6

Number of zero coefficients

E
ffi

ci
en

cy

(b) g1

0 100 200 300 400 500

95
96

97
98

99
10

0

Number of zero coefficients

M
IS

E

(c) g2

0 100 200 300 400 500

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

Number of zero coefficients

E
ffi

ci
en

cy

(d) g2

Figure 5.18: Sparsity and Efficiency plots against the number of zero coefficients
for two test functions, g1 and g2, n=500. Type-1 network results in blue line
and type-2 network results in red. The results are average of 50 independent
experiments.

where λp = pσ
√

2 logLq, d∗q is the q% of earliest detail coefficients, θ̂
∗
p,q is an

estimator for the true detail coefficients θ∗. Note that Lq = |d∗q| is the number of

detail coefficients. Similarly we can define an estimator for θ∗ for each thresholding

methods. Once we found the estimator for the true detail coefficients we can

perform the inverse LOCAAT transform to find an estimator for the true function

ĝ(p, q). We then define the following MISE function on which the optimisation is

performed,

MISE(p, q) = E
1

n

n∑
k=1

(ĝk(p, q)− gk)2, (5.51)

132

5.15. Stopping time for LOCAAT transform

80 85 90 95

1.
4

1.
6

1.
8

2.
0

2.
2

Number of zero coefficients

M
IS

E

(a) g1

80 85 90 95

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

% Transformation

E
ffi

ci
en

cy

(b) g1

80 85 90 95

0.
02

0
0.

02
2

0.
02

4
0.

02
6

0.
02

8
0.

03
0

Number of zero coefficients

M
IS

E

(c) g2

80 85 90 95

1.
40

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

% Transformation

E
ffi

ci
en

cy

(d) g2

Figure 5.19: Sparsity and Efficiency plots against the % transform coefficients
for two test functions, g1 and g2, n=500. Type-1 network results in blue line
and type-2 network results in red. The results are average of 50 independent
experiments.

where n is the number of nodes, p is the percentage of universal threshold, q is the

percentage of detail coefficients that are thresholded and ĝk(p, q) is the estimator

of true function gk. We denote p = p∗ and q = q∗ as the minimisers of MSE(p, q)

Table 5.9 shows the results for various thresholding methods. It can be noted that

p∗ does not change (compare with table 5.1) however by finding q∗, the efficiency

is improved (compare with table 5.1). Figure 5.20 shows contour plot of efficiency

as a function of both p and q. From the table 5.9 and the figure 5.20, we can

come to the conclusion that processing only 90% of earliest detail coefficient will

133

Chapter 5. Thresholding Methods

provide the best results regardless of threshold method.

Threshold methods p∗ q∗ maximum efficiency

Hard 0.87 0.85 1.71
Soft 0.43 0.91 1.86

Ebayesthresh NA 0.92 1.82

Table 5.9: Optimised values for p and q for a type 1 network (spatial network)
for various threshold methods. SNR=2, n=500, function g1 used. Each entry is
an average of 100 independent simulations.

p

q

0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Hard threshold, function g1

p

q

0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Soft threshold, function g1

p

q

0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Hard threshold, function g2

p

q

0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Soft threshold, function g2

Figure 5.20: Contour plot of efficiency as a function of p and q. Test functions g1

and g2 are used on T-1 network, SNR=2, n = 500. The results are averaged over
50 independent experiments.

134

5.16. Conclusions

5.16 Conclusions

We have introduced a number of thresholding methods for the LOCAAT method

in this chapter. We have seen that universal-type thresholding introduces bias into

the estimation and the level of bias introduced depends on the type of threshold-

ing applied. We have also looked at compensating for bias by correcting the mean

shift. We have also looked at some risk estimators and minimised these risk esti-

mators to get a good estimate for the true function g. We then looked at further

improving estimation by smoothing coefficients in the wavelet domain when the

time series data is available. Finally we looked at the sparsity property of the

LOCAAT transform using two test networks T-1 and T-2.

The HT, ST, BT, NC, BBC threshold methods combined with a suitable p∗, yield

good estimators for true function with efficiency > 1. All of these methods are

sensitive to the choice of p∗, however the mean correction method appeared less

sensitive to the choice of p∗ and it can be used with any threshold methods. This

mean correction method reduces the estimation bias at the expense of increased

variance (therefore estimation efficiency will be less than that of the other meth-

ods). When time series data are available, spatio-temporal overlapping window

based estimation yields the best efficiency compared to the spatial and spatio-

temporal non-overlapping window based estimations.

We obtained significant performance improvements by identifying the sensitive co-

efficients and preventing them from being thresholded by the threshold operation.

The computing cost for this method is very high as it involves having to perform

inverse transforms to calculate the error by not thresholding a particular coeffi-

cient (there will be several inverse transforms). The risk estimator based on OCV

is also very slow as there will be several inverse transforms involved. Therefore we

introduced a MOCV which reduces the computing cost however it requires some

inverse transforms to calculate the cross validation scores (risk value). The SURE

and GCV do not require inverse transforms to calculate the risk value because

135

Chapter 5. Thresholding Methods

the risk value is directly calculated from the wavelet coefficients. All these risk

estimators give a good value for λ∗, which minimises the MSE function. We cross-

checked this with the optimised soft threshold’s λ which is p∗σ
√

2 logL ≈ λ∗.

When time series data are available, we have already seen that the spatio-temporal

overlapping window based estimation method yields the best efficiency. The spa-

tial, and both the spatio-temporal methods improved the results significantly by

smoothing the coefficients in wavelet domain. The performance of these methods

rely on smoothing the wavelet coefficients (by averaging coefficients from the past

and future). We considered one past present and one future coefficient (therefore

3 in total) to smooth the present coefficient. The results can be improved by

considering more past and future coefficients (e.g. 2 past, 1 present, 2 future so 5

in total, and so on). Further investigation is left to the future work.

Finally, we looked at sparsity of the LOCAAT transform which led to the conclu-

sion that performance can be improved by not processing all the detail coefficients.

For ebayesthresh method, processing about 90% of earliest detail coefficients im-

proved the results significantly compared to processing 100% of detail coefficients.

Similarly we have found that hard thresholding require 85% and soft threshold

require 90%.

136

Chapter 6

Network Forecasting

6.1 Introduction

A time series is a collection of observations made sequentially through time. Time

series data arise in many areas, and it is interesting and challenging to model these

data. In this chapter, we present some time series modelling of network data with

the aid of a simulation study and a real data example. The initial part of the

chapter develops the methodology to understand the modelling in the latter part.

Our main goal in this chapter is to forecast network data both in the time domain

and the wavelet domain, and to compare their prediction accuracy. There is

some literature on wavelet domain forecasting of time series data [5, 35, 72, 90],

however there seems to be no literature for network forecasting of time series.

Network behaviour is complex to model and therefore it is challenging to forecast.

Since there are potentially many nodes and each possesses a time series, it is

cumbersome to model each process in the conventional way. Therefore we are

more or less forced to use a some sort of automated modelling [14]. For our work,

by way of exemplar we choose to use a simple ARIMA(pk,1,0) or AR(pk) model or

a Simple Exponential Smoothing (SES) for a particular node k in our simulation

study. However other complex models can also be explored with our proposed

137

Chapter 6. Network Forecasting

network forecasting methods. Here we concentrate on the network aspects rather

than the time series details.

It will be useful if we could predict the network behaviour in advance. We have

demonstrated the importance of network forecasting in this chapter using a real

data study (mumps data). There are many other applications where predicting a

network behaviour is useful. As another example, predicting the future network

state of a communication network would enable the optimisation of the network

performance.

We now review some basic theory of stationary processes.

6.2 Basic theory of stationary processes

In this section we introduce some basic time series models for stationary pro-

cesses. We also introduce some forecasting techniques for stationary processes. A

stationary process is loosely defined as follows. A time series is said to be station-

ary if there is no systematic change in mean (no trend), if there is no systematic

change in variance and if strictly periodic variations have been removed [14]. In

other words, the properties of one section of data is much like those of any other

sections. The following descriptions closely follow [14].

6.2.1 Stationary Process

A time series is said to be strictly stationary if the joint distribution ofX(t1), . . . , X(tk)

is the same as the joint distribution of X(t1 + τ), . . . , X(tk + τ) for all t1, . . . , tk, τ .

In other words, shifting the time origin by τ has no effect on the joint distribution.

Therefore for a strictly stationary process, its mean and variance do not change

with t. For k = 1,

µt = µ

σ2
t = σ2,

(6.1)

138

6.2. Basic theory of stationary processes

and for k = 2, the joint distribution of X(t1) and X(t2) depends only on the lag,

τ = t2 − t1. Hence the autocovariance function, C(τ), can be written as follows,

C(τ) = E{[X(t)− µ][X(t+ τ)− µ]},

= cov[X(t), X(t+ τ)].
(6.2)

In practice, it is often useful to describe stationarity in a less restrictive way

than that described above. A process is called second order stationary (or weakly

stationary) if its mean is constant and its autocovariance function depends only

on the lag τ , i.e.

E[X(t)] = µ,

cov[X(t), X(t+ τ)] = γ(τ).
(6.3)

6.2.2 Purely random process

A discrete-time process is called a purely random process if it consists of a se-

quence of random variables, Zt, which are mutually independent and identically

distributed. We usually assume that the random variables are normally dis-

tributed with mean zero and variance σ2. From the definition, the autocovariance

function of purely random process is,

C(τ) = cov(Zt, Zt+τ) =

 σ2, if τ = 0,

0, if τ 6= 0.
(6.4)

6.2.3 Moving average process

Suppose that Zt is a purely random process with mean zero and variance σ2. Then

a process Xt is said to be a moving average process of order q, MA(q), if,

Xt = β0Zt + β1Zt−1 + . . .+ βqZt−q

=

q∑
i=0

βiZt−i,
(6.5)

139

Chapter 6. Network Forecasting

where {βi} are constants [14]. Using a backward shift operator, the MA(q) process

can be written as,

Xt = (β0 + β1B + . . .+ βqB
q)Zt. (6.6)

Note that no restrictions are required on {βi} for a MA process to be stationary,

however restrictions are placed on {βi} so that the process is invertible. For a

MA(q) process to be invertible, the roots of the equation

θ(B) = β0 + β1B + . . .+ βqB
q = 0 (6.7)

must lie outside the unit circle (B is considered as a complex variable rather than

an operator).

6.2.4 Autoregressive (AR) process

The autoregressive model of order p, AR(p), is defined by,

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + Zt

=

p∑
i=1

αiXt−i + Zt,
(6.8)

where Zt are purely random process with mean zero and constant variance σ2 and

α1, ..., αp are the parameters of the model. As a simple model, the AR(1) process

can be written as follows,

Xt = αXt−1 + Zt. (6.9)

By successive substitutions, we may write the AR(1) process as the following

infinite order Moving Average (MA) process,

Xt = Zt + αZt−1 + α2Zt−2 + . . . , (6.10)

140

6.2. Basic theory of stationary processes

provided |α| < 1 for the stationarity. Because of this duality between AR and MA

processes, it may be convenient to use the backward shift operator, B. Thus (6.9)

can be written as follows using the backward shift operator,

(1− αB)Xt = Zt. (6.11)

For stationarity |α| < 1. For the general AR(p) processes, conditions can be

placed on {α1, . . . , αp} to make the process stationary. An AR(p) process can be

expressed as follows using the backward shift operator,

(1− α1B − . . .− αpBp)Xt = Zt. (6.12)

For stationarity of AR(p) process, the roots of the equation

φ(B) = 1− α1B − . . .− αpBp = 0 (6.13)

must lie outside the unit circle (where B is considered as a complex variable rather

than as an operator, so that the roots, which may be complex, are greater than

one in modulus [14]). Following the above rule, for an AR(2) process, the following

three conditions must hold,

α1 + α2 < 1;α1 − α2 > −1;α2 > −1. (6.14)

The above three conditions define a stationarity triangle. The AR(2) process will

be stationary provided that α1 and α2 lie within this triangle.

141

Chapter 6. Network Forecasting

6.2.5 Mixed models: Autoregressive Moving Average (ARMA)

Another useful model in time series modelling is to combine an AR(p) process

and MA(q) process. It is denoted as ARMA(p,q) and is given as follows,

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + . . .+ βqZt−q. (6.15)

Using the backward shift operator B, ARMA(p,q) can be written as,

φ(B)Xt = θ(B)Zt, (6.16)

where φ(B) = 1 − α1B − . . . − αpB
p is a polynomial of order p and θ(B) =

1 + β1B + . . . + βqB
q is a polynomial of order q. For an ARMA process to

stationary, the roots of φ(B) = 0 must lie outside the unit circle. No conditions

required on {βi} for the ARMA(p,q) process to be stationary, however the roots

of θ(B) = 0 must lie outside the unit circle for the process to be invertible [14].

6.2.6 Integrated models: Autoregressive Integrated Mov-

ing Average (ARIMA)

Many real time series are non-stationary. One approach for fitting a stationary

model is to remove the non-stationarity first. If the time series is non-stationary in

the mean it is common practice to difference the time series [14]. The difference

operator ∇ is defined as follows, suppose {xt} is a time series then first order

differencing of lag 1 is given by,

wt = xt+1 − xt = ∇xt+1. (6.17)

142

6.3. Forecasting techniques

Occasionally, second order differencing is required. Second order differencing of

lag 1 is achieved by ∇2 operator,

∇2xt+2 = ∇(∇xt+2)

= xt+2 − 2xt+1 + xt.
(6.18)

Generally the dth order differencing of process Xt can be written as,

Wt = ∇dXt. (6.19)

Certain kinds of non-stationary time series can be modelled as ARIMA(p, d, q).

This basically means ARMA modelling of Wt.

Wt = α1Wt−1 + . . .+ αpWt−p + Zt + β1Zt−1 + . . .+ βqZt−q. (6.20)

6.3 Forecasting techniques

In this section we introduce two simple forecasting techniques. Suppose we have

a time series f1,k, . . . , fT,k for a node k. Typically, the forecast for fT+h,k made at

time T for h steps ahead, is denoted by f̂T,k(h). Let eT+h,k denote the estimation

error resulting from the forecast for fT+h,k,

eT+h,k = fT+h,k − f̂T,k(h). (6.21)

The Mean squared prediction error (MSPE) of a forecast f̂T,k(h) is given by,

MSPE(f̂T,k(h), fT+h,k) = E((f̂T,k(h)− fT+h,k)
2). (6.22)

143

Chapter 6. Network Forecasting

6.3.1 Box-Jenkins forecasting

The first step in the Box-Jenkins procedure (this method was introduced in earlier

edition of [8]) is to identify the model by some diagnostic procedures and then

determine the parameters p, d, q of the ARIMA model (see [14]). When a satisfac-

tory model is found, forecasts may readily be computed using the model equation

by setting future values of Z to zero (this can be proved by minimising mean

squared forecasting error). As an example, we consider a simple 1-step ahead

forecast for an AR(pk) model,

f̂T,k(1) =

pk∑
i=1

αifT+1−i,k, (6.23)

assuming the future values of error term, which normally present in the AR(p)

model, are zero.

6.3.2 Simple exponential smoothing (SES)

Given a non-seasonal time series with no trend, f1, . . . , fT , a one step ahead

forecast can be given by the weighted sum of the past observations.

f̂T (1) = c0fT + c1fT−1, . . . (6.24)

It is sensible to put more weight to the most recent observations. For example

the geometric weight can be applied

ci = α(1− α)i, i = 0, 1, . . . (6.25)

where α is a constant in the range 0 < α < 1. With geometric weights, the

forecast is

f̂T (1) = αfT + α(1− α)fT−1 + α(1− α)2fT−2 + . . . (6.26)

144

6.4. Simulation study

Since the real data are finite in number, the above equation can be written as,

f̂T (1) = αfT + (1− α)[αfT−1 + α(1− α)fT−2 + . . .]

= αfT + (1− α)f̂T−1(1).
(6.27)

This is in a nice recurring form which suggests that the 1-step-ahead forecast at

any given time depends on the current observation and the previous forecast. We

can estimate α based on the available time series. For a given particular value of

α, perform 1-step ahead forecast iteratively,

f̂1(1) = f1

e2 = f2 − f̂1(1)

f̂2(1) = αf2 + (1− α)f̂1(1)

e3 = f3 − f̂2(1)

...

eT = fT − f̂T−1(1).

(6.28)

Now calculate the
∑T

i=2 e
2
i and repeat these steps for various values of α. The

smoothing parameter α is estimated such that the minimum
∑T

i=2 e
2
i is obtained.

6.4 Simulation study

In this section, we wish discover whether it is advantageous to forecast in the

wavelet domain compared to the time domain. we start by simulating some non-

stationary in the mean time series (as this is the case for many real time series),

fitting these series both in the time domain and wavelet domain (fitting the LO-

CAAT coefficient of each node as time series) and finally look at forecasting using

both approaches.

145

Chapter 6. Network Forecasting

6.4.1 Network simulation

Many real world time series data are non-stationary. We have decided to use the

following ARIMA(1,1,0) model as it looks like the data that would have come

from a communicating node (see figures 6.1(a) and 6.1(c)). We generate the time

series data fk(t) for a node k as follows,

f[,k] <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 100).

This generates a series of T = 100 samples for each node. Hence, we obtain an

AR(1) process for each node, when the time series is differenced (figure 6.1(b) and

figure 6.1(d) shows an example of differenced series for node 1 and node 2). This

is confirmed in figure 6.2 which shows the acf and pacf for node 1 and node 2. We

generate a network of 200 nodes (placed uniformly at random on a unit square)

whose interconnections are formed using MST method (as described earlier in

section 3.2.2) and the time series for each node is obtained from the above code.

We connect the nodes to form a network to perform network forecasting.

6.4.2 Time domain modelling

In this section, we model the time series for each node separately regardless of

the interconnections between the nodes using some automatic approach. We have

decided to choose an automatic approach since, for real world data, it would not

be feasible to analyse each time series by hand and model each one of them in a

conventional way. We choose ARIMA(pk,1,0) as the model for each series. Then

we can determine the pk for each node k either through AIC or MLE methods.

Note the MLE method estimation of pk is slow for a large series. The simulated

data ft,k is differenced and the AR(pk) model is fitted to the differenced data. Let

ut,k denote the differenced time series of ft,k,

ut,k = ft+1,k − ft,k = ∇ft+1,k, t = 1, . . . , T − 1. (6.29)

146

6.4. Simulation study

Time

f[,
1]

0 20 40 60 80

−
10

−
5

0
5

10
15

20
25

(a) time series for node 1

Time

f[,
1]

0 20 40 60 80

−
4

−
2

0
2

4

(b) differenced time series for node 1

Time

f[,
2]

0 20 40 60 80

−
25

−
20

−
15

−
10

−
5

0
5

(c) time series for node 2

Time

f[,
2]

0 20 40 60 80

−
3

−
2

−
1

0
1

2
3

(d) differenced time series for node 2

Figure 6.1: Time series data for node 1 and node 2 and the differenced time series
for those nodes.

We fit an AR(pk) process for uk(t).

ut,k =

pk∑
i=1

α̂kiut−i,k + Zt,k. (6.30)

The parameters, αi are estimated by least squares by minimising,

Sk =
T∑

t=p+1

[ut,k − α1ut−1,k − . . .− αput−p,k]2, (6.31)

147

Chapter 6. Network Forecasting

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(a) autocorrelation function (acf) for
node 1

5 10 15

−
0.

5
0.

0
0.

5
1.

0

Lag

P
ar

tia
l A

C
F

(b) partial autocorrelation function
(pacf) for node 1

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(c) autocorrelation function (acf) for
node 2

5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

P
ar

tia
l A

C
F

(d) partial autocorrelation function
(pacf) for node 2

Figure 6.2: acf and pacf for node 1 and node 2.

with respect to {αi}pi=1. Once we have fitted the differenced time series, we reverse

the differencing operation in order to get the actual fit ffit
t,k,

ffit
t+1,k = ft,k + ufit

t,k, t = p+ 1, . . . T − 1, (6.32)

where ufit
t,k is the fitted series for ut,k. In R we get the fit for the data as follows,

fit[,k] <- f[,k] - arima(f[,k],c(p_k,1,0))$residuals.

148

6.4. Simulation study

6.4.3 Wavelet domain modelling

Now we will transform the time domain data into wavelet domain data using the

LOCAAT transform in two different ways. First we use the LOCAAT transform by

treating each time layer separately (spatial network method), and in the second

method, we use the time depth M = 3 to develop a larger network (spatio-

temporal network method, see section 3.3) and transform the data into wavelet

domain. In both cases we will have a time series of coefficients for each node.

Modelling these coefficients is somewhat more intricate than for the time domain

modelling due to the nature of the transform. The series for each node can be

qualitatively different. Some nodes we model the coefficients as ARIMA(pk,0,0)

and some nodes we model as ARIMA(pk,1,0). Figure 6.3 shows the time series of

LOCAAT coefficient for node 1 and their acf, pacf plots for both spatial and spatio-

temporal network methods. We model the series of the LOCAAT coefficients for

a particular node k using both models and calculate the sum of squared errors

arising from both fits and choose the model that best fits the coefficients.

Let dt,k denote the time series of LOCAAT coefficients for a node k. First we fit

an ARIMA(pk,0,0) or simply AR(pk) model to the coefficients dt,k. The order pk is

determined through AIC or MLE methods and we calculate the average squared

errors ek,

ek =
1

T

T∑
t=pk+1

(dt,k − d̂t,k)2, (6.33)

where T is the number time samples and d̂t,k is the fit for the series dt,k. In the

second model, we difference the coefficients dt,k to obtain a new set of coefficients

wt,k,

wt,k = dt+1,k − dt,k = ∇dt+1,k, t = 1 . . . T − 1. (6.34)

149

Chapter 6. Network Forecasting

Time

C
oe

ffi
ci

en
t m

ag
ni

tu
de

0 20 40 60 80

−
15

−
10

−
5

0
5

10

(a) Time series of coefficient(spatial
network)

Time

C
oe

ffi
ci

en
t m

ag
ni

tu
de

0 20 40 60 80

−
4

−
2

0
2

(b) Time series of coefficient(spatio-
temporal network)

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(c) acf (spatial network)

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(d) acf (spatio-temporal network)

5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

P
ar

tia
l A

C
F

(e) pacf (spatial network)

5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

P
ar

tia
l A

C
F

(f) pacf (spatio-temporal network)

Figure 6.3: Time series, acf, pacf plot of LOCAAT coefficient for node 1 in both
spatial network method and spatio-temporal network method.

150

6.4. Simulation study

We model these wt,k as AR(pk) process and obtain the fit ŵt,k. We now reverse

the difference operation to obtain the fit d̂t,k,

d̂t+1,k = ŵt,k + dt,k, t = p+ 1 . . . T − 1. (6.35)

Now we calculate the average squared error edk arising from this fit,

edk =
1

T − p− 1

T∑
t=p+2

(dt,k − d̂t,k)2, (6.36)

and by comparing the average of squared errors, we choose ARIMA(p,0,0) or

ARIMA(p,1,0) based on whichever error term is smaller. We then take the in-

verse transform on these fitted LOCAAT coefficients.

Figure 6.4 shows the time series fitting for node 1 using three different approaches,

i.e. time domain modelling, wavelet domain spatial method (treating each time

separately) coefficient modelling and wavelet domain spatio-temporal method

(building a larger network with time depth M = 3) coefficient modelling. It is

difficult to see the fitted time series as it overlaps the data. Therefore, for clarity,

we differ the fitted time series by a constant. We differ time domain fitting by +1,

wavelet domain spatial method by −1 and the wavelet domain spatio-temporal

method by +2.

We assess the fit by the following average squared error,

ek =
1

T

T∑
t=1

(f̂t,k − ft,k)2, (6.37)

where f̂t,k is the fitted value for ft,k. Figure 6.5 shows the average squared error

of time series fitting for each node by using time domain, wavelet domain (spatial

network) and wavelet domain spatio-temporal methods. The mean squared error,

1
n

∑n
k=1 ek, for time domain modelling is 0.966, wavelet domain (spatial case) is

0.979 and spatio-temporal case is 0.604. This shows that wavelet domain spatio-

151

Chapter 6. Network Forecasting

temporal case fits the data well. Note that these experiments are not repeated

many times as we average across many nodes which gives the repeatability and

precision.

Time

f[,
1]

0 20 40 60 80

−
10

0
10

20

Figure 6.4: Time series fit for node 1 using time domain fitting and wavelet
domain coefficient modelling methods. The data is shown in gray, time domain
fit is shown in black, wavelet domain spatial method is shown in blue and wavelet
domain spatio-temporal method is shown in red. The fitted time series (from all
three methods) is differenced in the vertical axis for visual clarity.

6.4.4 Box-Jenkins forecasting

Forecasting the future values of an observed time series is an interesting problem

in many areas such as economics, engineering and many others. In the last section

we considered time series modelling of observed data ft,k. Suppose we have an

observed time series for a node k f1,k . . . fT,k. We are interested in estimating

future value such as fT+h,k, where the integer h is the lead time or forecasting

152

6.4. Simulation study

0 50 100 150 200

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

node index

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

Figure 6.5: Average squared error plot for each node by using time domain,
wavelet domain spatial method, and wavelet domain spatio-temporal method
time series fitting. The average squared error from time domain fit is shown
in black, wavelet domain spatial method is shown in blue and wavelet domain
spatio-temporal method is shown in red.

horizon. For example, in R we can get the 10-step ahead predictions as follows,

obj <- predict(arima(g[,k],c(1,1,0)), n.ahead=10),

pred[,k] <- obj$pred. Figure 6.6 shows the 10-step ahead forecast for node

1 using time domain, wavelet domain spatial method, wavelet domain spatio-

temporal method forecasts.

We calculate 1-step ahead Mean Squared Prediction Error (MSPE) by repeating

the experiment independently for 50 times. Figure 6.7 shows the squared error for

1-step ahead prediction from time domain, wavelet domain spatial method and

wavelet domain spatio-temporal method forecasting. The 1-step ahead MSPE

using time domain forecast is 2.1, wavelet domain spatial method is 2.08 and

153

Chapter 6. Network Forecasting

75 80 85 90 95 100

−
10

0
10

20

Time

f[,
1]

Figure 6.6: Prediction(10-step ahead) for node 1 using time domain, wavelet
domain spatial method, spatio-temporal method forecast. The data is shown by
the gray solid line, for the prediction interval it is shown in a gray dashed line.
Time domain fit in black solid lines and prediction in black dashed lines. Wavelet
domain spatial method fit in blue solid line and prediction in blue dashed line.
Wavelet domain spatio-temporal method fit in red solid line and prediction in red
dashed line.

wavelet domain spatio-temporal method is 3.9. Although the wavelet domain

spatio-temporal method fits the data well but somehow fails to predict the future

value accurately.

6.4.5 Simple Exponential Smoothing (SES)

We model our time series, ft,k, as follows,

fT,k = αkfT−1,k + (1− αk)f̂T−1,k(1), (6.38)

154

6.4. Simulation study

0 50 100 150 200

0
5

10
15

20
25

30

node index

sq
ua

re
d

er
ro

r

Figure 6.7: Squared error plot for 1-step ahead prediction using Box-Jenkins
approach. Time domain error in black and wavelet domain spatial method error
in blue and wavelet domain spatio-temporal method error red.

where fT,k is the observation for node k at time T , αk is the parameter of the

exponential smoothing which is estimated as given in section 6.3.2, f̂T−1,k(1) is

the 1-step ahead forecast for node k at time T − 1.

Figure 6.8 shows the squared error for 1-step ahead prediction by repeating for 50

independent experiments for ARIMA(1,1,0). The average 1-step ahead MSPE for

time domain forecast is 1.23, wavelet domain spatial method is 1.29 and wavelet

domain spatio-temporal method is 1.65. We have also repeated this simulation

with an ARIMA(0,1,1) model. Figure 6.8(b) shows the squared error for 1-step

ahead prediction for ARIMA(0,1,1) model (again repeated for 50 experiments).

The 1-step ahead MSPE for time domain forecast is 2.61, wavelet domain spatial

method is 1.74 and wavelet domain spatio-temporal method is 2.3. Figure 6.9

shows the parameter αk for both ARIMA(1,1,0) and ARIMA(0,1,1) models. The

155

Chapter 6. Network Forecasting

αk parameter in wavelet domain modelling of an ARIMA(1, 1, 0) simulated data

is generally smaller than that of the αk for time domain modelling of the same

data. On the other hand, αk for both time domain and wavelet domain modelling

of an ARIMA(0,1,1) simulated data is generally large.

6.5 Real data study: Mumps data modelling

We have obtained mumps data in year 2005 from the Health Protection Agency

(HPA). The mumps data is rearranged to get a time series data from week 1 to

week 52 for the 47 counties in the UK. Let {xt,c} be a time series for a county c.

By looking at the time series plots, e.g. 6.10(a) and 6.10(c), it has non-stationary

behaviour. Figure 6.11 shows the acf, pacf plots for Avon, Bedfordshire and

Berkshire counties. In some cases the data has two parts, weeks 1 to 30 has

one phase where the disease was still spreading and week 31 to 52 has another

phase where the spread of disease was controlled or stopped. We model the first

27 weeks as ARIMA(pc,1,0) or ARIMA(pc,0,0)(see plots of acf and pacf shown

in figure 6.11). We decide which model to use by first fitting the data to both

models and calculate the sum of squared errors from the fit and choose the model

that has minimum squared error. We sometimes need to take first difference of

the data to make the series stationary see figures 6.10(b) and 6.10(d). We denote

the differenced series by wt,c,

wt,c = ∇xt+1,c = xt+1,c − xt,c. (6.39)

The order pc of the model is determined through AIC or MLE methods.

Once we have finished modelling the data in the time domain, we would like

to model the data in the wavelet domain. In order to transform the data using

the LOCAAT algorithm, we need to specify a network. We obtained R code from

Matthew Nunes to link the nearest county towns (see figure 6.12). Then we trans-

156

6.5. Real data study: Mumps data modelling

0 50 100 150 200

0
5

10
15

20

node index

sq
ua

re
d

er
ro

r

(a) ARIMA(1,1,0)

0 50 100 150 200

0
5

10
15

20
25

30

node index

sq
ua

re
d

er
ro

r

(b) ARIMA(0,1,1)

Figure 6.8: Squared error plot for 1-step ahead prediction for ARIMA(1,1,0) and
ARIMA(0,1,1) simulation data using SES method. Time domain error in black
and wavelet domain spatial method error in blue and wavelet domain spatio-
temporal method error red.

157

Chapter 6. Network Forecasting

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

(a) αk for ARIMA(1,1,0) model in time do-
main

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

(b) αk for ARIMA(1,1,0) model in wavelet
domain

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

(c) αk for ARIMA(0,1,1) model in time do-
main

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

(d) αk for ARIMA(0,1,1) model in wavelet
domain

Figure 6.9: The parameter αk for exponential smoothing. The figure on the
top shows αk for ARIMA(1,1,0) and the bottom figure for ARIMA(0,1,1). The
network (T-1) is shown in blue and the black circles are the αk for time domain
modelling and the red circles are αk for wavelet domain spatial method coefficient
modelling. The radius of the circles are proportional to αk.

form the data into the wavelet domain using the LOCAAT transform and model

the coefficients in similar way to the time domain modelling by choosing either

ARIMA(pc,1,0) or ARIMA(pc,0,0) that best fits the coefficients.

Once we have modelled the series, we perform 3-steps ahead (an arbitrary choice)

forecast on the series. Figure 6.13 shows the fitting and forecast for Bedfordshire

158

6.5. Real data study: Mumps data modelling

0 10 20 30 40 50

0
10

20
30

40
50

Weeks

N
um

be
r

of
 c

as
es

(a) Mumps cases registered for Avon
County

0 10 20 30 40 50

−
30

−
20

−
10

0
10

20
30

Weeks

D
iff

er
en

ce
d

nu
m

be
r

of
 c

as
es

(b) Differenced data for Avon County

0 10 20 30 40 50

0
10

20
30

40
50

60
70

Weeks

N
um

be
r

of
 c

as
es

(c) Mumps cases registered for Bed-
fordshire County

0 10 20 30 40 50

−
30

−
20

−
10

0
10

20

Weeks

D
iff

er
en

ce
d

nu
m

be
r

of
 c

as
es

(d) Differenced data for Bedfordshire
County

Figure 6.10: Number of Mumps cases recorded in year 2005 for Avon and Bed-
fordshire counties.

county as an example. We have also made a 1-step ahead forecast using SES. Fig-

ure 6.14 shows the average 1-step ahead prediction error from previous method (fit-

ting ARIMA(pc,1,0) or ARIMA(pc,0,0)) and the SES method. The average fitting

error using Box-Jenkins method for time domain modelling is 149.4, for wavelet

domain spatial method is 148.42 and for wavelet domain spatio-temporal method

is 115.4. The average 1-step ahead forecast error using Box-Jenkins method for

time domain modelling is 285.7, for wavelet domain spatial method is 256.9 and

for wavelet domain spatio-temporal model is 470.2. The average fitting error us-

ing SES method for time domain modelling is 65.2, for wavelet domain spatial

159

Chapter 6. Network Forecasting

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(a) acf plot for Avon County

5 10 15

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

(b) pacf plot for Avon County

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(c) acf plot for Bedfordshire County

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

P
ar

tia
l A

C
F

(d) pacf plot for Bedfordshire County

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(e) acf plot for Berkshire County

5 10 15

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

(f) pacf plot for Berkshire County

Figure 6.11: Autocorrelation function, partial autocorrelation function plots for
Avon, Bedfordshire and Berkshire counties.

160

6.5. Real data study: Mumps data modelling

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−150 −100 −50 0 50 100

−
15

0
−

10
0

−
50

0
50

10
0

15
0

20
0

x

y

Bristol

Bedford

Reading

Aylesbury

Cambridge

Chester

Middlesborough

Truro

Carlisle

Derby

Exeter Dorchester

Durham

Lewes

Chelmsford

Gloucester

Manchester

Winchester

Worcester

Hertford

Kingston Upon Hull

Newport

Maidstone

Lancaster

Leicester

Lincoln

London

Liverpool

Norwich

York

Northampton

Morpeth

Nottingham

Oxford

Shrewsbury

Taunton

Sheffield

Stafford

Ipswich

Guildford

Newcastle

Rhayader
Warwick

Birmingham

Chichester

Leeds

Devizes

Figure 6.12: Nearest cities in each county is linked to form a network

method is 63.4 and for wavelet domain spatio-temporal method is 53.3. The av-

erage 1-step ahead forecast error using SES for time domain modelling is 75.1, for

wavelet domain spatial method is 58.5 and for wavelet domain spatio-temporal

method is 61.4.

161

Chapter 6. Network Forecasting

0 5 10 15 20 25 30

0
10

20
30

40
50

60
70

Weeks

N
um

be
r

of
 c

as
es

Figure 6.13: Prediction (3-step ahead) for Bedforshire county using time domain,
wavelet domain spatial method, spatio-temporal method forecast. The data is
shown in gray solid line, for the prediction interval it is shown in gray dashed line.
Time domain fit in black solid lines and prediction in black dashed lines. Wavelet
domain spatial method fit in blue solid line and prediction in blue dashed line.
Wavelet domain spatio-temporal method fit in red solid line and prediction in red
dashed line.

162

6.5. Real data study: Mumps data modelling

0 10 20 30 40

0
20

00
40

00
60

00
80

00

node index

sq
ua

re
d

er
ro

r

(a) 1-step ahead prediction error - Box-
Jenkins method

0 10 20 30 40

0
10

0
20

0
30

0
40

0
50

0
60

0

node index

sq
ua

re
d

er
ro

r

(b) 1-step ahead prediction error - SES
method

Figure 6.14: Squared error plot for 1-step ahead prediction using Box-Jenkins and
SES methods. Time domain error in black and wavelet domain spatial method
error in blue and wavelet domain spatio-temporal method error red.

163

Chapter 6. Network Forecasting

6.6 Conclusions

We have studied time series modelling of networks in both the time and wavelet

domains with the aid of simulation and real data. In the wavelet domain mod-

elling, we considered treating each time layer separately (spatial network method)

to produce LOCAAT coefficients and also connecting a few layers to build up a

spatio-temporal based network. Generally, the fitting error is more or less similar

for wavelet domain spatial method and time domain modelling whereas in the

wavelet domain spatio-temporal method, the fitting error is typically smaller. We

have also looked at forecasting techniques based on Box-Jenkins approach and a

SES methods.

We initially looked at modelling and forecasting a time series which was gener-

ated by the process ARIMA(1,1,0). We have generated this process for a network

of 200 nodes and looked at some automated modelling approaches by selecting

ARIMA(pk,1,0) or ARIMA(pk,0,0) whichever fits the data well. We have adopted

a similar approach for wavelet domain coefficient modelling. Although the wavelet

domain spatio-temporal method fits the data well, it somehow fails to predict the

data accurately. For this simulation, we found time domain, and wavelet domain

spatial method forecasting yield similar performance. The fitting error is also

similar for both of these cases.

Then we looked at SES approach of ARIMA(1,1,0) and ARIMA(0,1,1) simulated

data. Again we found that wavelet domain spatio-temporal method fits the data

well in both scenarios, and yet again fails to give a good forecast for 1-step ahead

prediction. The performance of both time domain and wavelet domain spatial

methods are similar for ARIMA(1,1,0), however for ARIMA(0,1,1), the wavelet

domain spatial method gives a better forecast for 1-step ahead prediction. Al-

though the 1-step ahead prediction of wavelet domain spatio-temporal method is

better than time domain forecast for ARIMA(0,1,1) simulated data, yet it does

not provide the best forecast (wavelet domain spatial method is the best forecast).

164

6.6. Conclusions

We finally looked at a real data study with the mumps data set. We looked at

forecast using Box-Jenkins approach and SES methods. Again, wavelet domain

spatio-temporal method fits the data well In both Box-Jenkins and SES, however

it fails to yield a good forecast. The wavelet domain spatial method provides the

good forecast for 1-step ahead prediction in both forecasting methods, however

the average prediction error is better with SES.

The results presented for wavelet domain spatio-temporal method is based on over-

lapping window based approach, and it somehow seems to overfit the data. Fur-

ther work could investigate suitable modelling for spatio-temporal LOCAAT co-

efficients. Further work could also investigate the non-overlapping window based

approach. We could investigate to find a good forecasting method for the spatio-

temporal approach since it yields the best the fit for all the scenarios we have

studied. We also need to study other time series models with our wavelet domain

time series fitting and forecasting methods (one example is to investigate Spatial

Autoregressive (SAR) models).

165

Chapter 7

Conclusions and Future Work

In this chapter we summarise our key achievements on a chapter by chapter basis.

We then give some future directions in the final section.

7.1 Noise variance estimation for networks

Estimating the noise variance σ2 is crucial for the success of almost all the wavelet

shrinkage methods. We first approached the problem by using the Median Abso-

lute Deviation (MAD) technique (introduced in [34]) for the LOCAAT coefficients.

We found that the MAD technique provides a reliable estimation when the num-

ber of nodes is large. In some applications we may be dealing with a network with

few nodes. Hence, we introduced a local MAD technique which gives a reliable

estimation even with a relatively small number of nodes (see section 4.2).

We then applied the variogram technique introduced in [42]. We propose sev-

eral methods to estimate noise variance directly from network data. For these

methods, we considered estimation for two cases,

• when time series data for each node is available

• only a snapshot of spatial network data (i.e. single time point)

167

Chapter 7. Conclusions and Future Work

We established that the noise variance can be estimated reliably when the time

series data is available (see subsection 4.3.1). However, we have also proposed a

method that can reliably estimate noise variance with a snapshot of network data

with large number of nodes (see subsections 4.3.3, 4.3.4 and 4.3.5).

We moved on to estimating noise variance from lifting coefficients using variogram

methods. We proposed several variogram-based methods in the lifting domain.

Again we consider scenarios when time series is availble and situations where es-

timation is performed purely on the network data at a given snapshot of time.

We established that the variogram method performs well when time series data is

available (see subsection 4.3.6). However, we have proposed a method which esti-

mates the noise variance reliably, purely from the snapshot of network data even

with few nodes (see subsection 4.3.9). Some of these variogram-based techniques

require bias correction and we introduced a method to find this.

Main contributions

• Proposed two local Median Absolute Deviation (MAD) estimators for coef-

ficient variance for LOCAAT (section 4.2).

• Introduced two noise variance estimation, using variogram techniqe, when

time series for each node is available. The methods are called TM1 and

WM1 in chapter4.

• Introduced several noise variance estimation methods for networks, using

variogram techniques, purely based on spatial data (subsections 4.3.1, 4.3.3, 4.3.4

and 4.3.5).

• Introduced several noise variance estimation methods for networks, using

the variogram, purely based on LOCAAT coefficients (spatial only, no time

series involved. see subsections 4.3.7, 4.3.8 and 4.3.9).

168

7.2. Thresholding methods

• Proposed a method to find bias correcting constants for variogram methods

(section 4.4).

7.2 Thresholding methods

We explored thresholding LOCAAT coefficients using some existing thresholding

techniques. We have found that these methods introduce a large bias into the esti-

mation and therefore needed some investigation using a lower threshold level. We

see that various threshold techniques require different threshold levels, pσ
√

2 log n

(where p is the percentage of universal threshold, n is the number of detail coef-

ficients and σ is the noise standard deviation), to obtain a good minimum Mean

Squared Error (MSE) performance. We explored a mean correction method which

compensates for the bias at the expense of increased variance and this method is

less sensitive to the choice of p.

Having explored some thresholding techniques for LOCAAT coefficients, we found

that further improvement to the estimation efficiency is possible by avoiding some

sensitive coefficients from being thresholded. However, this method is computa-

tionally inefficient. We then found that cross validation and Stein’s Unbiased Risk

Estimator (SURE) based threshold selection for LOCAAT coefficients also results

in better estimation.

When time series data are available, the spatio-temporal function estimation ef-

ficiency can be further improved by smoothing the LOCAAT coefficients for a

particular node by considering coefficients from adjacent time slots, e.g. take the

average of current coefficient, previous coefficient for that particular node and the

next coefficient for the same node.

Finally we explored sparsity and recommended an optimal stopping time for LO-

CAAT transform. The optimal stopping time lies around 90% of transformation,

i.e, it is recommended to keep 10% as the scaling coefficients rather than trans-

forming data until 2 scaling coefficients remaining (as is default in the software)

169

Chapter 7. Conclusions and Future Work

and perform thresholding on the detail coefficients.

Main contributions

• Examination of existing thresholding strategies for LOCAAT and the in-

troduction of a mean correction approach to account for bias issue (sec-

tions 5.3, 5.4 and 5.6). We found unacceptable estimation bias and suggested

using a lower threshold level.

• We proposed a block thresholding-like approach for spatial wavelet coeffi-

cients (see section 5.5).

• A proposal for improving estimation efficiency by avoiding sensitive coeffi-

cient thresholding (see section 5.8).

• Cross validation-based and SURE-based threshold selection approaches for

LOCAAT method (sections 5.9, 2.5.4 and 2.5.5).

• Space-time function estimation using a concept called the spatio-temporal

network method, and estimation improvement by smoothing temporal coef-

ficients (section 5.13).

• Exploration of the optimal stopping time for LOCAAT method (section 5.15).

7.3 Network forecasting

We investigated the time series modelling in both the time domain and the lifting

domain. At first, we treated each node time series separately and modelled it using

a simple ARIMA(p, 0,0) or ARIMA(p,1,0). Then again, for the same time series

data, we performed the LOCAAT transform sequentially using spatio-network and

spatio-temporal network methods. We then model these LOCAAT coefficients for

each node separately using ARIMA(p,0,0) or ARIMA(p). We establish that the

spatio-temporal based LOCAAT coefficient modelling fits the data well.

170

7.4. Future work

We performed a simple 1-step ahead forecasting using the Box-Jenkins approach

and Simple Exponential Smoothing (SES) methods for both time domain and

lifting domain modelling. We establish that the lifting domain forecast results in

a good prediction for an ARIMA(0,1,1) simulated data.

We performed modelling and forecasting using our network forecasting technique

for mumps disease data in 2005 (obtained from HPA). We establish that lifting

domain SES based forecast results in better prediction for a 1-step ahead forecast.

Main contributions

• We proposed a better network forecast technique using lifting coefficient

modelling (section 6.4).

7.4 Future work

We have discussed some of the possibilities for future work, for the methods we

proposed, in the conclusions in each chapters. We point out some key future work

in this section.

The LOCAAT algorithm we used throughout our work utilises inverse distance

weights to calculate the detail coefficients. An investigation into using different

weights such as an exponentially decaying weights may be advisable. Investigation

into considering second order neighbours in the calculation of detail coefficients

may be advisable (without over-complicating and making the technique compu-

tationally inefficient).

We have constructed the spatio-temporal network by using time depth M = 3.

Further investigation is required to find out what is a good choice in different

situations. We have also seen that estimation efficiency increases by smoothing

temporal coefficients. Again, further investigation is required to find what is an

optimum smooth (i.e. how many previous coefficients and how many future co-

efficients). Further improvement to Box Block Choice (BBC) method is possible

171

Chapter 7. Conclusions and Future Work

by considering temporal lifting coefficients into the decision.

Investigation of more time series models and forecasting techniques, with our pro-

posed network forecasting method, is required. Further investigation is required

to find out the failure (or find the best forecasting technique) of spatio-temporal

network based prediction.

The methods proposed in the thesis require a static network setting. An adaptaion

of these techniques to a dynamic network (network that changes with time), which

is a common scenario in communication wireless networks, will be interesting.

172

Appendix A

Separable form denoising of

space- time functions

Let fxk,t be the observation of a space-time function, S(xk, t), and assume the

following model,

fxk,t = g(xk) + C(t) + εxk,t, (A-1)

where g(xk) is the true spatial function value at site k, C(t) is the temporal

variation and εxk,t is the Gaussian error with mean zero and variance σ2. There

are n sites in total. We are interested in estimating the space-time function given

by,

S(xk, t) = g(xk) + C(t). (A-2)

We define the spatial average as,

G(t) =
1

n

n∑
k=1

fxk,t

=
1

n

n∑
k=1

g(xk) +
1

n

n∑
k=1

C(t) +
1

n

n∑
k=1

εxk,t

≈ ḡ + C(t),

(A-3)

173

Appendix A. Separable form denoising of space- time functions

where ḡ = 1
n

∑n
k=1 g(xk). Now we define the following difference between the

observation and the spatial average,

Dxk,t = fxk,t −G(t)

= fxk,t − ḡ − C(t)

= g(xk)− ḡ + εxk,t.

(A-4)

Now we define the following average for each site xk,

D(xk) =
1

T

T∑
t=1

Dxk,t ≈ g(xk)− ḡ. (A-5)

Therefore the estimator of the space-time function is given by,

Ŝ(xk, t) = G(t) +D(xk). (A-6)

174

Appendix B

Further Results

In this appendix we include some further detailed results.

B.1 Further results from various thresholding

methods

We present results of bias, variance and MSE plots of hard, soft, NeighCoeff,

block, Box Block Choice (BBC) thresholding and mean correction method with

a T-1 network with different number of nodes (n = 50 and n = 150). Figures B.1

and B.2 shows the results with n = 50 with a test function g1. Figures B.3 and B.4

shows the results with n = 150 with a test function g1.

175

Appendix B. Further Results

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ● ● ● ●
●

● ●
●

● ● ●
● ● ●

●
● ●

●

(a) Hard Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ● ●
● ●

●
●

●
●

● ●
●

● ● ● ● ● ● ●

(b) Hard thresholding with mean cor-
rection

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) Soft Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

(d) Soft Thresholding with mean cor-
rection

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

(e) Block Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ● ● ●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

(f) Block Thresholding with mean cor-
rection

Figure B.1: Various thresholding results for Type-1 network with 50 nodes,
Average squared bias(=�), variance(=4) and mean squared error(=◦) against
pσ̂
√

2 log n, p=varying percentage of universal threshold.

176

B.1. Further results from various thresholding methods

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
● ●

●
●

●
●

●
●

●
●

● ● ●
● ● ● ● ● ●

(a) Neigh Coeff method

20 40 60 80 100
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ●
●

●
●

● ●
● ● ●

●
● ● ● ● ● ● ● ● ●

(b) Neigh Coeff with mean correction

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●
●

●
● ●

●
●

●
●

● ● ●
● ●

●
● ● ●

(c) BBC

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●
●

●
● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

(d) BBC with mean correction

Figure B.2: Various thresholding results for Type-1 network with 50 nodes,
Average squared bias(=�), variance(=4) and mean squared error(=◦) against
pσ̂
√

2 log n, p=varying percentage of universal threshold.

177

Appendix B. Further Results

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

(a) Hard Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ●
●

●

●
●

●

●

●

●

●
●

●
●

● ● ● ● ●

(b) Hard thresholding with mean cor-
rection

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

(c) Soft Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

(d) Soft Thresholding with mean cor-
rection

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●

(e) Block Thresholding

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●
●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ●

(f) Block Thresholding with mean cor-
rection

Figure B.3: Various thresholding results for Type-1 network with 150 nodes,
Average squared bias(=�), variance(=4) and mean squared error(=◦) against
pσ̂
√

2 log n, p=varying percentage of universal threshold.

178

B.1. Further results from various thresholding methods

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●

●

●

●

●
●

●
●

●
● ●

● ●
● ● ● ● ●

(a) Neigh Coeff method

20 40 60 80 100
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

(b) Neigh Coeff with mean correction

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

(c) BBC

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Percentage of universal threshold

S
qu

ar
ed

 b
ia

s,
 v

ar
ia

nc
e

an
d

m
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

(d) BBC with mean correction

Figure B.4: Various thresholding results for Type-1 network with 150 nodes,
Average squared bias(=�), variance(=4) and mean squared error(=◦) against
pσ̂
√

2 log n, p=varying percentage of universal threshold.

179

Appendix B. Further Results

B.2 Optimised risk values

Table B.1 shows the λ∗ that minimse risk estimates SURE, MOCV, and GCV

with T-2 network.

λ∗ Efficiency

Signals SURE GCV MOCV SURE GCV MOCV

g1 0.391 3.304 2.056 1.187 1.295 1.537
g2 3.144 1.623 1.530 0.097 0.545 0.710

maartenfunc 2.090 1.513 0.670 1.016 1.270 1.662
2D Doppler 3.151 1.844 1.314 0.240 0.649 0.847

Table B.1: Optimising the risk and corresponding efficiencies for type-2 (T-2)
network (spatial network) with SNR = 2 and n = 500.

180

Appendix C

Qualnet

Below is a very brief introduction to Qualnet and for more detailed description

refer to programmer’s guide and introduction manuals provided by Scalable Net-

work Technologies.

Qualnet is a commercial version of the free network simulation tool glomosim.

Qualnet has a Graphical User Interface (GUI) and is easy to use. Execution of

scenarios on glomosim is done via command line execution. Qualnet can execute

both through command line and a GUI. The GUI-based tool enables animations

which give a better understanding of the tool and communication protocols. The

GUI-based execution is slow under heavy simulations. Thus, it is recommended,

once the user is familiar with the tool, they are encouraged to use command line

execution.

C.1 Changes made

Windows based Qualnet uses qualnet.exe therefore any changes made to the source

files has to be recompiled in order for the changes to take effect. The main source

files are written in c++. The files modified in order to collect necessary informa-

tion required are, partition.cpp, aodv.cpp, node.cpp. The function nodeprocessev-

ent in node.cpp in order to dump the statistics.

181

Appendix C. Qualnet

C.2 R

R [76] is a language and environment for statistical computing. It is free and can

be installed on any operating system. It can be obtained from http://www.R-

project.org. Throughout my research R is the main program used for analysis and

processing and transform of data. The tree based LOCAAT tranform introduced

in [46] is implemented by Professor Guy Nason on R and the package NetTree

is available on request from Professor Guy Nason. R scripts I have written are

available on request.

182

Appendix D

Some R codes

dopplerfunc <- function (x,y) {

r <- sqrt(x^2 + y^2)

f <- sin(1/(r^2))

f }

blockfunc <- function(x,y){

function(x,y){

f <- rep(0, length(x)) sv <- x < 0.1 f[sv] <- f[sv] + 1 sv <- y <

0.2 f[sv] <- f[sv] + 2 sv <- (x>0.3) & (x < 0.4) & (y<0.8) &

(y>0.7) f[sv] <- f[sv] + 3 sv <- (x>0.7) & (x < 0.8) & (y<0.8) &

(y>0.7) f[sv] <- f[sv] + 4 sv <- (x>0.5) & (x < 0.6) & (y<0.6) &

(y>0.4) f[sv] <- f[sv] + 5 sv <- (x>0.3) & (x < 0.8) & (y<0.3) &

(y>0.2) f[sv] <- f[sv] + 6 sv <- (x>0.2) & (x < 0.3) & (y<0.4) &

(y>0.3) f[sv] <- f[sv] + 7 sv <- (x>0.8) & (x < 0.9) & (y<0.4) &

(y>0.3) f[sv] <- f[sv] + 8 f

}

heavisinefunc <- function(x,y, pp=0.005, sd=0.01, freq=20){

r <- sqrt(x^2 + y^2)

f1<- sin(freq*r)

183

Appendix D. Some R codes

f2 <- pp*dnorm(x,0.55,sd=sd)*dnorm(y,0.5, sd=sd)

f1+f2

}

bumpsfunc <- function (x,y) { xc <- c(0.1, 0.8, 0.9) yc <- c(0.4,

0.7, 0.1) vc <- c(0.01,0.02, 0.015) nc <- length(xc) ans <- rep(0,

length(y)) for(i in 1:nc)

ans <- ans + doubexp(x, mean=xc[i], rate=sqrt(vc[i])) *

doubexp(y, mean=yc[i], rate=sqrt(vc[i]))

ans }

where the function doubexp is defined as,

function (x, mean=0, rate=1) { exp(- abs(x-mean)/rate)/(2*rate)}.

maartenfunc(x, y) = (2x+ y)I((3x− y) < 1) + (5x− y)I((3x− y) ≥ 1).

184

Bibliography

[1] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresholding

via a Bayesian approach,” Journal of the Royal Statistical Society, vol. 60,

no. 4, pp. 725–749, 1998.

[2] P. Abry, P. Goncalvès, and P. Flandrin, “Wavelet-based spectral analysis of

l/f processes,” Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing, vol. 3, pp. 237–240, April 1993.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” IEEE Communication Magazine, vol. 40, no. 8, pp.

102–114, August 2002.

[4] J. N. Al-Karai and A. E. Kamal, “Routing techniques in wireless sensor

networks: A survey,” Wireless Communications, IEEE, vol. 11, pp. 6– 28,

December 2004.

[5] A. Antoniadis, E. Paparoditis, and T. Sapatinas, “A functional wavelet-kernel

approach for time series prediction,” Journal of the Royal Statistical Society

B, vol. 68(part 5), pp. 837–857, 2006.

[6] S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, Mobile ad hoc net-

working. IEEE, 2004.

[7] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numer-

ical Optimization: Theoretical and Practical Aspects. Springer, 2003.

185

BIBLIOGRAPHY

[8] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting and

Control, 3rd ed. Prentice Hall, 1994.

[9] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and

Wavelets Transforms : A Primer. Prentice Hall, Inc, 1998.

[10] T. T. Cai and B. W. Silverman, “Incorporating information on neighboring

coefficients into wavelet estimation,” Sankhya, vol. 63, pp. 127–148, 2001.

[11] T. Cai, “Minimax wavelet estimation via block thresholding,” Technical Re-

port # 96-41, Department of Statistics, Purdue University, 1996.

[12] ——, “Wavelet regression via block thresholding: adaptivity and the choice

of block size and threshold level,” Technical Report # 99-14, Department of

Statistics, Purdue University, 1999.

[13] ——, “On block thresholding in wavelet regression: Adaptivity, block size,

and threshold level,” Statistica Sinica, vol. 12, pp. 1241–1273, 2002.

[14] C. Chatfield, The Analysis of Time Series An Introduction, 6th ed. Chapman

& Hall/CRC, 2004.

[15] E. Chicken and T. T. Cai, “Block thresholding for density estimation: local

and global adaptivity,” Journal of Multivariate Analysis, vol. 95, p. 76106,

2005.

[16] R. Christensen, Linear Models for Multivariate Time Series and Spatial Data.

Springer, 1991.

[17] C. K. Chui, L. Montefusco, and L. Puccio, Wavelets: theory, algorithms, and

applications. Academic Press, Inc., 1994.

[18] A. Ciancio and A. Ortega, “A distributed wavelet compression algorithm

for wireless multihop sensor networks using lifting,” IEEE International

186

BIBLIOGRAPHY

Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings.

(ICASSP ’05), vol. 4, pp. 825 – 828, March 2005.

[19] W. S. Cleveland, “Robust locally weighted regression and smoothing scatter-

plots,” Journal of the American Statistical Association, vol. 74, no. 368, pp.

829–836, December 1979.

[20] W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach

to regression analysis by local fitting,” Journal of the American Statistical

Association, vol. 83, no. 403, pp. 596–610, September 1988.

[21] W. S. Cleveland, S. J. Devlin, and E. Grosse, “Regression by local fitting:

methods, properties and computational algorithms,” Journal of Economet-

rics, vol. 37, pp. 87–114, January 1988.

[22] W. S. Cleveland and E. Grosse, “Computational methods for local regres-

sion,” Statistics and Computing, vol. 1, no. 1, pp. 47–62, September 1991.

[23] M. Clyde and E. I. George, “Flexible empirical Bayes estimation for

wavelets,” Journal of the Royal Statistical Society, vol. 62, no. 4, pp. 681–698,

2000.

[24] N. Cressie and D. M. Hawkins, “Robust estimation of the variogram: I,”

Mathematical geology, vol. 12, no. 2, pp. 115–125, 1980.

[25] N. A. Cressie, Statistics for Spatial Data. John Wiley & Sons, Inc., 1993.

[26] I. Daubechies, Ten lectures on wavelets. Society for Industrial and Applied

Mathematics (SIAM), 1992.

[27] ——, Different perspectives on wavelets. American Mathematical Society,

1994, vol. 47.

187

BIBLIOGRAPHY

[28] V. Delouille, M. Jansen, and R. von Sachs, “Second generation wavelet meth-

ods for denoising of irregularly spaced data in two dimensions,” Signal Pro-

cessing, vol. 86, pp. 1435 – 1450, July 2006.

[29] V. Delouille, J. Simoens, and R. von Sachs, “Smooth design-adapted wavelets

for nonparametric stochastic regression,” Journal of the American Statistical

Association, vol. 99, pp. 643 – 658, 2004.

[30] V. Delouille and R. von Sachs, “Smooth design-adapted wavelets for half-

regular designs in two dimensions,” Discussion Paper 0226, Institut de Statis-

tique, Université Catholique de Louvain, Belgium., October, 2002.

[31] P. D. Dolan, S. S. Agaian, and J. Noonan, “An examination of decomposition

sparsity,” Digital Signal Processing, vol. 14, pp. 125–137, March 2004.

[32] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on In-

formation Theory, vol. 41, no. 3, pp. 613–627, 1995.

[33] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via

wavelet shrinkage,” Journal of the American Statistical Association, vol. 90,

no. 432, pp. 1200 – 1224, 1995.

[34] ——, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol. 81,

no. 3, pp. 425–455, August, 1994.

[35] P. Fryzlewicz, S. V. Bellegem, and R. V. Sachs, “Forecasting non-stationary

time series by wavelet process modelling,” Annals of the Institute of Statistical

Mathematics, vol. 55, no. 4, pp. 737–764, 2003.

[36] D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, and D. Estrin, “Network-

ing issues in wireless sensor networks,” Journal of Parallel and Distributed

Computing, vol. 64, pp. 799–814, July 2004.

188

BIBLIOGRAPHY

[37] D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions: Why do we need a

new data handling architecture for sensor networks,” ACM, Computer Com-

munication Review, vol. 33, pp. 143–148, October 2002.

[38] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann,

“An evaluation of multi-resolution storage for sensor networks,” Proceedings

of the 1st international conference on Embedded networked sensor systems,

pp. 89 – 102, November 2003.

[39] P. Hall, G. Kerkyacharian, and D. Picard, “On the minimax optimality of

block thresholded wavelet estimators,” Statistica Sinica, vol. 9, pp. 33–49,

1999.

[40] ——, “Block threshold rules for curve estimation using kernel and wavelet

methods,” The Annals of Statistics, vol. 26, no. 3, pp. 922–942, June 1998.

[41] D. M. Hawkins and N. Cressie, “Robust kriging - a proposal,” Mathematical

geology, vol. 16, no. 1, pp. 3–18, 1984.

[42] H.-C. Huang and N. Cressie, “Deterministic/stochastic wavelet decomposi-

tion for recovery of signal from noisy data,” Technometrics, vol. 42, no. 3,

pp. 262 – 276, August, 2000.

[43] M. Jansen and A. Bultheel, “Smoothing irregularly sampled signals us-

ing wavelets and cross validation,” Department of Computer Science,

K.U.Leuven, Tech. Rep., 1999.

[44] M. Jansen, M. Malfait, and A. Bultheel, “Generalized cross validation for

wavelet thresholding,” Signal Processing, vol. 56, pp. 33–44, 1995.

[45] M. Jansen, G. P. Nason, and B. W. Silverman, “Scattered data smoothing

by empirical Bayesian shrinkage of second-generation wavelet coefficients,”

Wavelet Applications in Signal and Image Processing IX, Proceedings of

SPIE, vol. 4478, pp. 87 – 97, 2001.

189

BIBLIOGRAPHY

[46] ——, “Multiscale methods for data on graphs and irregular multidimensional

situations,” Journal of the Royal Statistical Society, vol. 71, no. 1, pp. 97–125,

2009.

[47] ——, “Simulations and examples for multivariate nonparametric regression

using lifting,” Technical Report 04:18, Department of Mathematics, Univer-

sity of Bristol, UK., November, 2004.

[48] I. M. Johnstone and B. W. Silverman, “Wavelet threshold estimators for data

with correlated noise,” Journal of the Royal Statistical Society, vol. 59, no. 2,

pp. 319–351, 1997.

[49] I. M. Johnstone, “Wavelets and the theory of nonparametric function estima-

tion,” Philosophical Transactions: Mathematical, Physical and Engineering

Sciences, vol. 357, no. 1760, pp. 2475–2493, September 1999.

[50] I. M. Johnstone and B. Silverman, “Ebayesthresh: R and s-plus programs

for empirical Bayes thresholding,” 2002.

[51] ——, “Needles and straw in haystacks: Empirical Bayes estimates of possibly

sparse sequences,” The Annals of Statistics, vol. 32, no. 4, pp. 1594–1649,

2004.

[52] ——, “Empirical Bayes selection of wavelet thresholds,” The Annals of Statis-

tics, vol. 33, no. 4, pp. 1700–1752, 2005.

[53] H. Karl and A. Willig, Protocols and architectures for wireless sensor net-

works. John Wiley & Sons, Inc., 2005.

[54] W. S. Kerwin and J. L. Prince, “The Kriging update model and recursive

space-time function estimation,” IEEE Transactions on Signal Processing,

vol. 47, no. 11, pp. 2942 – 2952, November 1999.

190

BIBLIOGRAPHY

[55] A. Kovac, “Wavelet thresholding for unequally spaced data,” Ph.D. disserta-

tion, University of Bristol, March 1998.

[56] A. Kovac and B. W. Silverman, “Extending the scope of wavelet regression

methods by coefficient-dependent thresholding,” Journal of the American

Statistical Association, vol. 95, pp. 172–183, 2000.

[57] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet

representation,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 11, pp. 674–693, July 1989.

[58] ——, A Wavelet Tour of Signal Processing. Academic Press, 1998.

[59] G. Matheron, “Principles of geostatistics,” Economic geology, vol. 58, pp.

1246–1266, 1963.

[60] E. J. McCoy and A. T. Walden, “Wavelet analysis and synthesis of stationary

long-memory processes,” Journal of Computational and Graphical Statistics,

vol. 5, no. 1, pp. 26–56, March 1996.

[61] Y. Meyer, Wavelets and operators. Cambdridge University Press, 1992.

[62] E. A. Nadaraya, “On estimating regression,” Theory of Probability and its

Applications, vol. 9, pp. 141–142, January 1964.

[63] G. P. Nason, “Wavelet shrinkage using cross-validation,” Journal of the Royal

Statistical Society, vol. 58, no. 2, pp. 463–479, 1996.

[64] ——, “Choice of wavelet smoothness, primary resolution and threshold in

wavelet shrinkage,” Statistics and Computing, vol. 12, pp. 219–227, 2002.

[65] ——, Wavelet Methods in Statistics with R. Springer, 2008.

[66] J. A. Nelder and R. Mead, “A simplex method for function minimization,”

The Computer Journal, vol. 7, no. 4, pp. 308–313, January 1965.

191

BIBLIOGRAPHY

[67] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

[68] M. A. Nunes, M. I. Knight, and G. P. Nason, “Adaptive lifting for nonpara-

metric regression,” Statistics and Computing, vol. 16, no. 2, pp. 143–159,

June, 2006.

[69] M. A. Nunes, “Some new multiscale methods for curve estimation and bino-

mial data,” Ph.D. dissertation, University of Bristol, May 2006.

[70] M. Oliver, R. Webster, and J. Gerrard, “Geostatistics in physical geography.

i: Theory,” Transactions of the Institute of British Geographers, vol. 14, no. 3,

pp. 259–269, 1989.

[71] ——, “Geostatistics in physical geography. ii: Applications,” Transactions of

the Institute of British Geographers, vol. 14, no. 3, pp. 270–286, 1989.

[72] O.Renaud, J.-L. Starck, and F. Murtagh, “Wavelet-based forecasting of short

and long memory time series,” University of Geneva, Tech. Rep., May 2002.

[73] H. M. Polchlopek and J. P. Noonan, “Wavelets, detection, estimation, and

sparsity,” Digital Signal Processing, vol. 7, pp. 28–36, January 1997.

[74] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes: The Art of Scientific Computing. Cambridge University Press, 2007.

[75] M. B. Priestley and M. T. Chao, “Non-parametric function fitting,” Journal

of the Royal Statistical Society, vol. 34, no. 3, pp. 385–392, 1972.

[76] R Development Core Team, R: A language and environment for statistical

computing, R Foundation for Statistical Computing, Vienna, Austria, 2004,

iSBN 3-900051-00-3. [Online]. Available: http://www.R-project.org

[77] C. H. Reinsch, “Smoothing by spline functions,” Numerische Mathematik,

vol. 10, no. 3, pp. 947–950, October 1967.

192

BIBLIOGRAPHY

[78] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal

Processing Magazine, vol. 8, pp. 14–38, 1991.

[79] I. J. Schoenberg, “Spline functions and the problem of graduation,” Proceed-

ings of the National Academy of Sciences of the United States of America,

vol. 52, no. 4, pp. 947–950, October 1964.

[80] B. W. Silverman, “Wavelets in statistics: Beyond standard assumptions,”

Philosophical Transactions: Mathematical, Physical and Engineering Sci-

ences, vol. 357, no. 1760, pp. 2459–2473, September 1999.

[81] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,”

The Annals of Statistics, vol. 9, no. 6, pp. 1135–1151, November 1981.

[82] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet

constructions,” Wavelet Applications in Signal and Image Processing III, vol.

2569, pp. 68–79, 1995.

[83] ——, “The lifting scheme: A custom-design construction of biorthogonal

wavelets,” Applied and Computational Harmonic Analysis, vol. 3, pp. 186–

200, March 1996.

[84] ——, “The lifting scheme: A construction of second generation wavelets,”

SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp. 511–546, March

1998.

[85] R. Wagner, S. Sarvotham, and R. Baraniuk, “A multiscale data represen-

tation for distributed sensor networks,” IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05),

vol. 4, pp. 549 – 552, March 2005.

[86] R. Wagner, S. Sarvotham, H. Choi, and R. Baraniuk, “Distributed multiscale

data analysis and processing for sensor networks,” Rice University ECE Tech-

nical Report, February 2005.

193

BIBLIOGRAPHY

[87] A. T. Walden, E. J. McCoy, and D. B. Percival, “The effective bandwidth

of a multitaper spectral estimator,” Biometrika, vol. 82, no. 1, pp. 201–214,

March 1995.

[88] M. Wand and M. Jones, Kernel Smoothing. Chapman & Hall/CRC, 1995.

[89] G. Watson, “Smooth regression analysis,” Sankhya, no. 26, pp. 359–372,

January 1969.

[90] B. Whitcher, “Wavelet-based estimation for seasonal long-memory pro-

cesses,” National Center for Atmospheric Research, Tech. Rep., March 2001.

194

