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Abstract

In this thesis we develop new methods of estimating the second order structure of a

locally stationary process with associated confidence intervals (CI) to quantify the estima-

tor. In particular we focus on smoothing the estimate of the evolutionary wavelet spectrum

(EWS) of a locally stationary wavelet process. Similarly to the stationary spectrum, the

raw estimate of the EWS is unbiased but not consistent. Therefore, de-noising methods

are required to improve our estimate. We have developed three such methods and used

simulated data to test the methods.

We begin by investigating the statistical properties of the raw estimate, which we use

to establish theoretical models. Our first method uses a simple running mean estimator.

This method produces reasonable results, but due to its strong dependence the translation

invariant de-noising estimator, there are limitations in the type of spectra’s which can be

successfully recovered.

Our next two methods uses the benefits of a posterior distribution from Bayesian

analysis to produce estimators with associated CI. We use the log and Haar-Fisz transfor-

mations to stabilise the variance of our raw estimates. The model for the log transformed

data is more complex model than the Haar-Fisz, and required more numerical approxima-

tions during the estimation process. The Haar-Fisz transformation pulls the distribution

of the data closer to Gaussianity, which greatly simplified the modelling assumptions. The

Haar-Fisz estimator and CI were computationally more efficient and produced superior

results compared to the previous methods. It appeared to be fairly robust to wavelet

selection, but again, was heavily dependent on the hyperparameters.

Using different methods to determine the hyperparameters greatly influenced the re-

sults. With further research we hope to improve the efficiency of determining the hyper-

parameters.
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Chapter 1

Introduction

A time series is a collection of observations made sequentially through time. Time series

analysis is used to understand the underlying features of the data and to make forecasts

(predictions). Data of this form occur in many different fields, such as signal analysis,

medicine and economics. There is no single methodology to analyse time series data that

is suitable across all fields. Usually, the field from which the data were obtained and aim

of the analysis will dictate the appropriate methodology.

If the series satisfies certain properties, such as observed at regular intervals and sta-

tionarity (where the mean and variance are constant, and the covariance only depends on

time difference), there are an abundance of analysis methods and supporting probability

theory. For example, see methods described in Priestley (1994) and Chatfield (2004). For

real-life series it is often difficult to determine whether the process is really stationary with

only observations from a section of the process. Often the behaviour of a real-life process

can change from one stationary regime to another and this may only become apparent

with continued observation. If the assumption of stationarity is disregarded, there is a

plethora of different models which can be considered. One class of non-stationary mod-

els are the locally stationary processes with slowly evolving second-order structures, and,

in particular, studied here, the locally stationary wavelet (LSW) process of Nason et al.

(2000).

An important feature of locally stationary time series is their second-order structure.

The second-order structure can be assessed via the covariance or spectrum of the time

series, and accurate estimation of these quantities is particularly important. If we assume

the series is generated from an LSW process, to obtain an unbiased and consistent estimate

of the local spectrum, we use smoothing techniques upon the raw wavelet periodogram.
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There are many methods of estimating the local spectrum of an LSW process via smoothing

(Nason et al., 2000; Fryzlewicz and Nason, 2006; Van Bellegem and von Sachs, 2008),

however few of these methods possess a way of quantifying the result.

In this thesis we propose three new methods of estimating the time varying spectra

of an LSW process, and develop associated confidence intervals. Chapter 2 reviews some

basic wavelet theory and time series analysis. In particular, we review the application of

wavelets in locally stationary time series analysis and nonparametric regression.

In chapter 3 we investigate some of the statistical properties of the wavelet coefficients

and raw wavelet periodogram, which we use to estimate the time varying spectra from

data. This provides us with the assumptions we need to develop our smoothing techniques

later. We also numerically verify our findings using two different defined local spectra, for

which we simulate a variety of LSW processes in the statistical package R (R Development

Core Team, 2012), with innovations generated from three types of distributions: Gaussian,

chi-square and Student’s t distribution.

From the information in chapter 3, we develop our first method in chapter 4, which

uses the simple smoothing technique of the central moving average. This chapter makes

particular use of the linear form of the estimator and covariance structure in the data to

produce confidence intervals. The estimate obtained from using the translation-invariant

de-noising technique of (Nason et al., 2000) is used in the selection of bin widths. Using the

simulated LSW processes from chapter 3, we test our method and compare our findings

with the true local spectra.

Chapters 5 and 6 are all associated with using the nonparametric regression technique

of wavelet shrinkage, to smooth the raw wavelet periodogram. We begin in chapter 5 by

defining an additive model by using the log transformation. Using a Bayesian shrinkage

rule, we determine the posterior distribution, mean and variance which were all used

to create the estimate and corresponding confidence intervals. We conclude chapter 5 by

determining the asymptotic convergence of our method under assumptions of independence

and iid distributions. In chapter 6 we describe the computational steps needed to perform

Bayesian wavelet shrinkage of the log transformed periodogram and numerically test the

method by applying it to the two simulated LSW processes from chapter 3 in R.

Chapter 7 begins by describing the Haar-Fisz transformation of the raw wavelet pe-

riodogram and empirically investigating the effects on the covariance and distribution.

Then, with our knowledge from chapter 5, we develop a Bayesian wavelet shrinkage method
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using the Haar-Fisz transformed raw wavelet periodogram. We develop the method for

use in R and test the technique on the simulated LSW processes.

Finally in chapter 8, we summarise our findings and conclusions from each chapter.

We also suggest some possible solutions to problems we have encountered and future work

on this area.
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Chapter 2

Literature Review

The literature review will aim to introduce the area of research which has been the focus

of this thesis. The review consists of six sections: Besov spaces, Fourier Analysis, Wavelet

Theory, Nonparametric Regression, Time Series Data and Locally Stationary Time Series

Analysis.

As wavelets are functions which are commonly used to represent functions, we will

begin by introducing a space of functions known as Besov spaces. Although not all Besov

spaces are function spaces. In section 2.2 we describe Fourier analysis which provides the

natural building blocks of wavelets. The flexibility of wavelets has led to applications in

signal processing, image and texture analysis, geophysics and time series analysis to name

but a few. A good mathematical description of wavelet analysis can be obtained through

multi-resolution analysis (MRA). Within section 2.3, we describe two key forms of wavelet

transforms for this thesis, the Discrete Wavelet Transform (DWT) and the Non-decimated

Wavelet Transform (NDWT). We shall conclude this section with a description of three

types of wavelets: The Haar, Shannon and Daubechies wavelets.

Section 2.4 discusses nonparametric regression. Nonparametric regression is a form

of regression analysis in which the form of the model is not predefined, but determined

from information from the data. Hence, larger sample sizes than regression based on

parametric models are required because the data must supply the model structure as

well as the model estimates. Most importantly we shall describe a particular method of

non-parametric regression known as wavelet shrinkage and variations of this method.

Section 2.5 describes the type of data we are applying our methodology too, time

series data. We shall begin with stationary time series and associated models for this

data. Second-order stationary models assume that the mean and variance are constant,
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and the covariance structure only depends on the time difference. However, because real

life scenarios rarely conform to the stationary ideal we shall relax our assumptions by

looking at non-stationary time series. In particular, locally stationary processes with

slowly evolving second order structure, i.e. a time series with a time dependent variance

structure.

The main focus of this thesis is to develop techniques which can be used to analyse

the second order structure of locally stationary wavelet processes. We describe in detail

the form of this model and important components associated with the model, such as the

evolutionary wavelet spectrum which is used to convey information on the second order

structure.

2.1 Besov Spaces

We shall first introduce some notation and briefly review some important mathematical

concepts required for the definition and derivation of the methods used in this thesis.

Let Z, N, R and C denote the sets of integer, natural, real and complex numbers. For

a complex number z ∈ C let |z| denote its modulus and z its complex conjugate. Also

let δa,b be the Kronecker delta function, not to be confused with the Dirac delta function

denoted by δ(x).

Let x = {xi} and y = {yi} be sequences in the lp space for 1 ≤ p <∞ if

1.
∑

i∈Z |xi|p <∞

2. 〈x,y〉 =
∑

i∈Z xiyi

3. ‖x‖p =
(∑

i∈Z |xi|p
)1/p

A function f belongs to a Lebesgue space, denoted by Lp(A) if

1. ‖f‖p =
(∫

A |f(x)|pdx
)1/p

<∞, for 1 ≤ p <∞,

2. ‖f‖∞ = supx∈A |f(x)| <∞, for p =∞.

We shall briefly introduce some relevant aspects of the Besov space as in Abramovich

et al. (1998). This will be useful for the discussion of wavelet shrinkage in section 2.4.2.

For more detail we refer the reader to DeVore and Popov (1988); DeVore et al. (1992);

Meyer (1992); Triebel (2000, 2006) or the seminal paper Besov (1959).
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Let the sth difference of a function f be

Λ
(s)
t f(x) =

s∑

i=0

(
s

i

)
(−1)if(x+ it),

and let the sth modulus of smoothness of f in Lp[0, 1] be

Vs,p(f ;x) = sup
t≤x

(
‖Λstf‖Lp[0,1]

)
.

Then the Besov semi-norm, with index (p, q, r), is defined for s > r, where 1 ≤ p, q ≤ ∞,

by

|f |Brp,q =

[∫ 1

0

{
Vr,p(f ;x)

xr

}q dx

x

]1/q
, if 1 ≤ q <∞,

and

|f |Brp,q = sup
0<x<1

(
x−r Vr,p(f ;x)

)
, if q =∞,

where sup is the supremum. We define the Besov norm as

‖f‖Brp,q = ‖f‖Lp[0,1] + |f |Brp,q .

The Besov space, denoted by Br
p,q, is a class of functions f : [0, 1] → R, which satisfies

f ∈ Lp[0, 1] and |f |Brp,q < ∞. The parameter r measures the number of derivatives and

the existence of the derivatives is required in the Lp-sense. The parameter q provides a

further finer graduation. A Besov ball is a class of functions Br
p,q(A), which are bounded

from above by A.

The Besov spaces are very general cases, and comprises of many other well known

spaces as special cases. For example:

• the Sobolev space W r
2 is Br

2,2, but W r
p 6= Br

p,p;

• the Holder space Cr is the Besov space Br
∞,∞.

2.2 Fourier Analysis

This section is a brief overview of Fourier analysis and includes some basic results. In

many aspects, wavelet and Fourier analysis are very similar. Therefore, it is useful to

introduce some of the relevant concepts from Fourier theory to motivate wavelet analysis,

which provides a useful benchmark comparison.
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Fourier methods are a powerful tool for signal analysis. By transforming a signal from

the time or spatial domain into the spectral or frequency domain, many characteristics of

the signal are revealed. The Fourier transform uses sine and cosine waves to form basis

functions. A good introduction to general Fourier analysis can be found in Stein and

Shakarchi (2003) or Folland (2003).

Next, let us recall the definition of the Fourier series. Fourier series are very important

for developing wavelet theory. For example, calculating filters and transfer functions are

tasks which require Fourier series.

Definition 2.2.1. Let f : [0, 2π) → R be a periodic function, with a period 2π, so that

f(x) = f(x− 2π). Then the Fourier representation of f is

f(x) =
a0
2

+
∞∑

n=1

{an cos(nx) + bn sin(nx)},

where the Fourier coefficients are calculated from

an =
1

π

∫ 2π

0
f(x) cos(nx) dx and bn =

1

π

∫ 2π

0
f(x) sin(nx) dx.

This representation is possible as {1, cos(nx), sin(nx)} constitutes an orthonormal basis

of L2[0, 2π). The magnitude of the Fourier coefficients conveys the frequency content of

the function f . If a function is periodic, with finite discontinuities and extremes, and is

absolutely integrable over the interval, then the Fourier series will converge point-wise to

f , except at the discontinuities.

Definition 2.2.2. Let the inner product, 〈·, ·〉, of two functions f and g be denoted by

〈f(x), g(x)〉 =

∫
f(x)g(x) dx.

Then the Fourier transform of the function f ∈ L1(R) is defined as

f̂(ω) = F [f(x)] =
〈
f(x), eiωx

〉
=

∫

R
f(x)eiωx dx =

∫

R
f(x)e−iωx dx. (2.1)

If the function f̂ ∈ L1(R), then the inverse Fourier transform is defined as

f(x) = F−1[f(x)] =

∫

R
f̂(ω)eiωx dω. (2.2)
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The function f̂(ω) is generally complex valued, and can be expressed as

f̂(ω) = |f̂(ω)| eiφ(ω),

where |f̂(ω)| is known as the magnitude and φ(ω) is called the phase. If f(x) is real then

• f̂(−ω) = f̂(ω)

• |f̂(ω)| is an even function and φ(ω) is an odd function of ω.

2.2.1 Properties

Vidakovic (1999, section 2.3, pages 30-31), provides a list of the important properties

of the Fourier transform. Some of the properties which are directly relevant to wavelet

analysis (Goswami and Chan, 2011) are briefly outlined next.

Linearity

If the function f(x) = αf1(x) + βf2(x), for some constants α, β ∈ C, then the Fourier

transform of f is

f̂(ω) =

∫

R
f(x)e−iωx dx = α

∫

R
f1(x)e−iωx dx+ β

∫

R
f2(x)e−iωx dx = αf̂1(x) + βf̂2(x).

(2.3)

This can be easily shown for the Fourier series.

Time Shifting and Scaling

If the function f(x) is shifted by x0, then there is a phase shift in the Fourier transform of

the function. Let f0(x) = f(x− x0), and f̂0(ω) =
∫
R f(x− x0)e−iωx dx. Then substitute

u = x− x0 and

f̂0(ω) =

∫

R
f(u)e−iω(u+x0) du = e−iωx0 f̂(ω) =

∣∣∣f̂(ω)
∣∣∣ eiφ(ω)−iωx0 .

The shift does not affect the magnitude spectrum as it is incorporated into the phase

term. If a 6= 0 is a constant, then the Fourier transform of fa(x) = f(ax) is f̂a(ω) =
∫
R f(ax)e−iωx dx. Let u = at, then

f̂a(ω) =

∫

R
f(u)e−iωu/a d

(u
a

)
=

1

|a| f̂
(ω
a

)
.
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Frequency Shifting and Scaling

If you shift the Fourier transform frequency the result has a similar effect as a time shift.

Let f̂0(ω) = f̂(ω − ω0), then

f0(x) = f(x) eiω0x.

Similarly, a scale change where f̂a(ω) = f̂(aω) implies

fa(x) =
1

|a| f
(x
a

)
.

Parseval’s Theorem

Parseval’s Theorem states that

∫

R
|f(x)|2 dx =

1

2π

∫

R
|f̂(ω)|2 dω. (2.4)

Suppose we have two functions, f, g ∈ L2[0, 2π), and their Fourier transforms f̂ and ĝ,

then via Parseval’s identity we have

〈f(x), g(x)〉 =
1

2π

〈
f̂(ω), ĝ(ω)

〉
.

A proof of this can be found on Goswami and Chan (2011, page 40). If f(x) = g(x),

then we have Parsavel’s theorem. Equation (2.4) states that the total energy computed

in the time domain is equal to that in the frequency domain. So Parseval’s theorem

allows the energy of the signal to be computed in either domain, depending on the ease of

computation.

2.2.2 Limitations

Sinusoids are only localised in frequency and not time. Therefore cancellations are required

to suitably represent discontinuities in time. At the points of discontinuity the Fourier

series will converge to the left or right of this point. The discontinuities will lead to

Gibbs phenomena, where the nth Fourier series partial sum has large oscillations near the

jump, and may increase the maximum of this sum above the function f . As the frequency

increases this effect does not diminish and can lead to what is known as the ringing effect.

This requires a large number of basis function to produce an adequate representation.

Another problem with this methodology is the span of the bases. As the bases span
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the whole real axis, there is no direct method to extract localised information. If there

are very few non-zero Fourier coefficients the Fourier series yields great insight into the

behaviour of the function f .

2.3 Wavelet Theory

A good description of wavelets can be found in Burrus et al. (1998). Usually, a wave is

thought of as an oscillating function of time or space. A wavelet is a small wave that

still has the same oscillating properties of a wave but its energy is concentrated in time.

This allows for simultaneous time and frequency analysis. Wavelet analysis is a desirable

method because

• Sparsity - wavelets can produce coefficients where many are zero and only a few are

non-zeros.

• Fast and memory efficient - for N observations a Fast Fourier Transform computes

at O(N log(N)) whereas wavelets achieve O(N).

• Localisation - wavelets are able to examine functions locally.

Unlike Fourier series, locality can be achieved in the frequency and time domains simul-

taneously. This is especially useful in the representation of non-stationary functions.

We shall begin our introduction of wavelets with multi-resolution analysis. This pro-

vides the mathematical foundation of the construction of wavelets and wavelet bases, and

naturally leads to the description of the scaling and wavelet function.

2.3.1 Multi-resolution Analysis

Multi-resolution analysis (MRA) is attributed to Mallat (1989) and Meyer (1992). The

idea of MRA is similar to sub-band decomposition and coding, which divides a signal into

a set of frequency bands in a particular way for efficiency. MRA provides the means of

looking at the fine detail of a signal, or one can obtain an overall sense of the behaviour.

From MRA one can then develop the filters associated with wavelets, that leads naturally

to the discrete wavelet transform, so we may construct an orthonormal basis for L2(R).

Definition 2.3.1. A multi-resolution analysis (Daubechies, 1992) on L2(R) is a sequence

of closed subspaces {Vj}j∈Z of L2(R), such that

(a) Vj ⊂ Vj+1, ∀ j ∈ Z, i.e. they lie in a containment hierarchy.
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(b)
⋂
j∈Z Vj = {0}, i.e. the intersection is trivial.

(c)
⋃
j∈Z = L2(R), i.e. the union is dense in L2(R).

(d) f(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj , ∀ j ∈ Z.

(e) f ∈ V0 ⇐⇒ f(x− k) ∈ V0, ∀ k ∈ Z.

(f) There exists a scaling function φ ∈ V0 with
∫∞
−∞ φ(x)dx = 1, such that {φ0,k :=

φ(t− x)}k∈Z is an orthonormal basis in V0.

We will refer to the index j as the scale.

Properties (a) and (b) imply that any function f ∈ L2(R) can be gradually approxi-

mated by its projections on {Vj}j∈Z spaces. The property in (d) means that any Vj is a

scaled version of V0. Together, properties (d) and (e), ensure that

φj,k(x) := 2j/2φ(2jx− k) ∀ k ∈ Z (2.5)

is an orthonormal basis of Vj , ∀ j ∈ Z. The function φj,k are known as translations and

dilations of the function φ.

The last property means any function f ∈ V0 can be written as a linear combination,

f =
∑

k

ck φ0,k,

where ck is the inner product:

ck = 〈f, φ0,k〉L2(R) =

∫ ∞

−∞
f(x)φ(x− k)dx.

Let PVj denote the projection onto Vj , Then

(Pjf)(x) =
∑

k

cj,k φj,k(x),

where cj,k are the scaling coefficients calculated from

〈f, φj,k〉L2(R) =

∫ ∞

−∞
f(x)φj,k(x)dx,

and every function in L2(R) can be approximated by the elements of the subspaces Vj .

From properties (b) and (c), the precision in this approximation increases as j →∞.
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Now consider the scaling function φ. As φ ∈ V0 ⊂ V1 and since {φ1,k}k∈Z is an

orthonormal basis for V1, we can express the scaling function as

φ(x) =
∑

k∈Z
hk φ1,k(x),

where hk = 〈φ, φ1,k〉 for k ∈ Z. Therefore, we find the scaling equation, which is defined

as

φ(x) =
√

2
∑

k∈Z
hk φ(2x− k), (2.6)

and obtain

〈φj−1,k, φj,n〉 =

∫
φj−1,k(x) φj,n(x) dx

=

∫
2(j−1)/2φ(2j−1x− k) 2j/2φ(2jx− n) dx

=
√

2

∫
φ(t) φ(2t+ 2k − n) dt as t = 2j−1x− k and dt = 2j−1 dx

= hn−2k.

The unique coefficients {hk}k∈Z ∈ l2(Z) form a vector known as the low pass filter associ-

ated with φ. Using {φj,n}n∈Z as an orthonormal basis for Vj , and let φj−1,k be an element

of Vj , we have

φj−1,k(x) =
∑

n∈Z
〈φj−1,k, φj,n〉φj,n(x)

=
∑

n∈Z
hn−2k φj,n(x). (2.7)

Equation (2.7) is known as the scaling function refinement relation.

Construction of the Wavelet Function

Constructing the wavelet function is centred on the idea of representing the information

lost when moving from a finer to a coarser space (i.e. Vj to Vj−1). The detail subspace,

denoted by Wj , is the orthogonal component of Vj−1 in Vj , where the direct sum of Vj and

Wj equals Vj−1 because Vj are closed subspaces. Any function in Vj−1 can be uniquely

represented as a sum of a function in Vj and a function in Wj .

The construction of Wj and property (a) in definition 2.3.1 of the MRA implies
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Wj⊥Wj′ , ∀ j 6= j′. This is true for each j, therefore

VJ = VJ0 ⊕




J−1⊕

j=J0

Wj


 , ∀ J > J0 ∈ Z.

In other words, any function in VJ can be ‘recovered’ by the sum of its approximation at

a lower scale J0 and the functions of the detail lost between the scales J0 and J . Hence,

with the properties (b) and (c) of definition 2.3.1,

L2(R) =
⊕

j∈Z
Wj . (2.8)

This implies that an L2-function can be split into mutually exclusive parts, and each part

is in one of the detail subspaces Wj . We achieve this by the Qj orthogonal projection onto

the subspace, Wj . The spaces Wj , possess the scaling property (d), of definition 2.3.1,

f(x) ∈Wj ⇐⇒ f(2jx) ∈Wj ∀ j.

Let ψ ∈W0, and as W0 ⊂ V1, a corresponding expression to the scaling equation is

ψ(x) =
√

2
∑

k∈Z
gk φ(2x− k), (2.9)

where the unique set of coefficients {gk}k∈Z ∈ l2(Z) are known as the high pass filter

associated with ψ (the wavelet function) (see Daubechies (1992) for more details). The

filters hk and gk can be linked through the relationship

gk = (−1)k h1−k, k ∈ Z, (2.10)

(Daubechies, 1992, page 326). The filters {hk} and {gk} are known as the quadrature

mirror filters.

We define a family of functions

ψj,k(x) := 2j/2ψ(2jx− k), for j, k ∈ Z, (2.11)

similarly to φj,k(x), in equation (2.5). The set {ψj,k}k∈Z forms a basis of L2(R), which

implies that {ψj,k}k∈Z forms an orthonormal basis for Wj for a fixed j. Hence, {ψ0,k} ∈W0

is an orthonormal basis for W0.
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By following a similar argument to determine the scaling function refinement relation

in equation (2.7), we can determine a similar relationship for the wavelet function,

ψj,k(x) =
∑

n∈Z
gn−2k φj+1,n(x). (2.12)

From the representations of the scaling and wavelet coefficient in equations (2.7) and

(2.12) and using the relationship between the mirror filters in (2.10), we can express the

filters as

hn−2k = 〈φj,k, φj+1,n〉, and gn−2k = 〈ψj,k, φj+1,n〉. (2.13)

If the scaling function can be expressed in an analytical form, which is not always the

case, the low and high pass filters in equation (2.13) can be obtained by setting j = k = 0.

From equation (2.13), we can see that if the scaling function has a compact support,

then the low pass filter and consequently the high pass filter posses a finite number of

non-zero coefficients. Therefore, the wavelet function can be expressed as a finite lin-

ear combination of compactly supported functions and consequently ψ is also compactly

supported.

Vidakovic (1999, page 54) proves the filters satisfy the orthogonality relations,

∑

n∈Z
hn hn−2k = δ0,k and

∑

n∈Z
gn gn−2k = δ0,k,

and
∑

n∈Z
hn gn−2k = 0,

where δa,b is the Kronecker delta,

δa,b =





1 if a = b,

0 otherwise.

.

An alternate proof can also be found in Daubechies (1992).

2.3.2 Function Representation

We know that as {φj,k(x)}k and {ψj,k(x)}k are orthonormal bases for Vj and Wj , re-

spectively, and using the multi-resolution representation of L2(R) in (2.8), we can deduce
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that

{φj0,k(x)|k ∈ Z}
⋃
{ψj,k(x)|j ≥ j0, k ∈ Z}

is an orthonormal basis for L2(R). Therefore, from the relation in equation (2.8) and prop-

erty 2.3.1(b), by projection onto the resolution subspace Vj0 , we can represent functions

f ∈ L2(R) by

f(x) =
∑

k∈Z
cj0,k φj0,k(x) +

∑

j≥j0

∑

k

dj,k ψj,k(x), ∀ f ∈ L2(R), (2.14)

where cj0,k = 〈f, φj0,k〉 and dj,k = 〈f, ψj,k〉. The first summation represents an overall

behaviour at coarse scale, also known as the primary resolution of the function f . The

second summation is the detail of f from the finest to the coarsest scale.

Any f ∈ L2(R) can be written, in the limit, as a linear combination of wavelet functions

at different scales and locations, with the representation

f(x) =
∑

j∈Z
dj,k ψj,k(x). (2.15)

The components {dj,k}j,k∈Z, are known as the wavelet coefficients and contain the informa-

tion of the function f at scale j, near 2−jk. The wavelet coefficients and the decomposition

wavelet completely characterise f , and accurate computation of these components are of

vital importance.

2.3.3 The Discrete Wavelet Transform

Mallat (1989) proposed a fast cascade algorithm for computing the discrete wavelet trans-

form (DWT). It is based upon the nested structure of MRA, whereby scaling and wavelet

coefficients are computed from the scaling coefficients at the previously finer scale. There-

fore, the calculation of the inner products 〈f, φj,k〉 and 〈f, ψj,k〉 ∀ j, k are not required.

Suppose f ∈ L2(R), then for a fixed j, take its approximation on the space Vj to be

(Pjf)(x) =
∑

k∈Z
cj,kφj,k(x),

where {cj,k = 〈f, φj,k〉}k are the scaling coefficients of scale j. The detail produced by
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moving between two consecutive approximation spaces Vj and Vj+1 is given by

(Qjf)(x) =
∑

k∈Z
dj,kψj,k(x),

where {dj,k = 〈f, ψj,k〉}k are the wavelet coefficients at scale j.

As (Pj+1f)(x) = (Pjf)(x) + (Qjf)(x), then we obtain

∑

k

cj+1,k φj+1,k =
∑

l

cj,l φj,l +
∑

k

dj,l ψj,l.

From the relation in equation (2.13) and the orthogonality of the spaces Vj and Wj , implies

that

cj,k =
∑

n

hn−2k cj+1,n, (2.16)

dj,k =
∑

n

gn−2k cj+1,n. (2.17)

Let cj = {cj,k}k∈Z and dj = {dj,k}k∈Z. Then, if we have the coefficients for a particular

scale (cj and dj), we can obtain the scaling and wavelet coefficients at the next coarser

scale (cj−1 and dj−1) by the application of equations (2.16) and (2.17).

In practice, usually the continuous function f(x) is unknown, but instead we know

a collection of discrete observations of the function values f(xi) for i = 0, . . . , T − 1.

Suppose these observations have been made at equally spaced locations and the number

of observations made are dyadic, (i.e. the sample size is T = 2J for a fixed J ∈ Z). Since

only the observations are known for f(xi) for i = 0, . . . , 2J−1, it is not possible to calculate

the scaling coefficients at the finest scale exactly; therefore, we need to approximate them.

It is assumed the observed data values can be used to approximate the finest scaling

coefficients, giving

cJ,i = f(xi).

Then, by applying the low and high pass filters, g and h, the coarser scale wavelet and

scaling coefficients can be recursively calculated using (2.16) and (2.17). Applying the

filters to each scale will produce a new sequence of coefficients which are half the length of

the previous finer scale. For example, starting with the data cJ one application of the filters

will produce the new sequences cJ−1 and dJ−1 of length 2J−1 = T/2. This is repeated

until the desired level of decomposition has been met, which gives the transformed data

16



c0

c1 d1

. .
.

d1

cJ−1 dJ−2
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Figure 2.1: Flow diagram of the discrete wavelet transform of an observed data set using
successive applications of the low and high pass filters g and h.

vector:

DWT(f) = (cj0 ,dj0 ,dj0+1, . . . ,dJ−1),

where cj0 is a vector of the smooth coefficients at the primary resolution level. When the

primary resolution j0 = 0, a full decomposition is conducted upon the data and the vector

c0 is length 1, see figure 2.1.

The DWT can also be recursively reversed. The coefficients for a particular scale can

be obtained from the previously coarser scale using the relationship

cj,k =
2j−1∑

l=0

cj−1,l hk−2l +
2j−1∑

l=0

dj−1,l gk−2l. (2.18)

The inversion of the DWT results in a doubling in the number of coefficients at each scale.

Boundary Conditions

Problems occur when the support of the wavelet used in the decomposition extends beyond

the length of the data. Some solutions were suggested by Nason and Silverman (1994):

• Symmetry: assume symmetry at the end points and reflect the observations at the

beginning and the end of the observed data vector to extend the original length of
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sampled function vector.

• Periodic: assume that the function is periodic over the range of the data, and

loop back to the beginning of the observed data, i.e. fk+T = fk−T = fk for k =

0, . . . , T − 1.

• Zero padding: assume that the function values outside of the vector range are zero.

Other solutions include the lifting scheme (Sweldens, 1996) or to use specifically designed

wavelets, such as those described in Cohen et al. (1993).

Operator Notation and Decimation

The low and high pass filters are sometime written in an operator form on the sequence

space L2 as follows. We define the convolution functions G, H : L2 → L2, such that

∀ s ∈ L2

(Gs)k =
∑

l

gl−k sl, (2.19)

and

(Hs)k =
∑

l

hl−k sl. (2.20)

Let D0 be an operator that takes every even element of a sequence s, for example

(D0s)k = s2k, (2.21)

and let D1 be the operator which selects every odd element of a sequence. These operations

are known as dyadic decimation.

If the operator D0 is combined with G and H on sequence cj we obtain the decompo-

sitions in equations (2.16) and (2.17).

(D0(Hcj))k =

(
D0

(∑

n

hn−k cj,n

))

k

=
∑

n

hn−2k cj,n = cj−1,k,

and

(D0(Gcj))k =

(
D0

(∑

n

gn−k cj,n

))

k

=
∑

n

gn−2k cj,n = dj−1,k.

Therefore, the DWT filtering steps can also be implemented using the filter convolutions

in (2.19) and (2.20) and then applying the decimation at each step of the transform.
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2.3.4 Non-decimated Wavelet Transform

One problem with the DWT is that it is not translation invariant, i.e. starting the trans-

formation from an alternative location will result in a different decomposition of the data.

An alternative would be to use the translation invariant wavelet transform (Coifman and

Donoho, 1995) also known as the non-decimated wavelet transform (Nason and Silver-

man, 1995, NDWT). This uses the convolution operators (2.19) and (2.20), but does not

decimate at any step of the DWT.

Therefore, the wavelet coefficients at all possible scales and locations are computed.

As a complete representation of the function values can be obtained from the DWT, the

NDWT is an example of an over complete system.

The non-decimated discrete family of wavelets are calculated by

ψ̃j,k(x) = 2j/2ψ(x− k), for j, k ∈ Z. (2.22)

2.3.5 Examples of Wavelets

We shall now give three examples of wavelet bases: the Haar, Shannon and Daubechies

Extremal Phase Wavelets.

The Haar Wavelet Basis

One of the simplest wavelets one can use is the Haar wavelet (Haar, 1911). The Haar

wavelet has little practical value, however it is often used to demonstrate theoretical find-

ings because its simplicity makes it easily calculable.

Definition 2.3.2 (Haar Scaling and Wavelet Function). The Haar scaling function is

defined as

φH(x) =





1 if 0 ≤ x < 1,

0 otherwise.

(2.23)

The Haar wavelet function is defined as

ψH(x) =





1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise.

(2.24)
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(a) Haar Scaling Function
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(b) Haar Wavelet Function
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Figure 2.2: Plots of Haar scaling (a) and wavelet (b) function.

See figures 2.2(a) and 2.2(b) for plots of the scaling and wavelet function, respectively.

Both are clearly compactly supported.

Applying equation (2.11) to the Haar wavelet function results in the continuous Haar

wavelet of the form

ψHj,k(x) =





2−j/2 if 2jk ≤ x < 2j(k + 1/2),

−2−j/2 if 2j(k + 1/2) ≤ x < 2j(k + 1),

0 otherwise,

for j ∈ N and x, k ∈ R.

The Haar wavelet is a sampled version of the continuous-time wavelet, but this is

not the case for all wavelets. If the wavelets are compactly supported, then this will be

reflected in the discrete wavelets. For example the discrete Haar wavelet is

ψHj,k =





2−j/2 for k = 0, . . . , 2j−1 − 1,

−2−j/2 for k = 2j−1, . . . , 2j − 1,

0 otherwise,

(2.25)

for k ∈ Z and j ∈ N.

The Haar wavelet is not an appropriate basis for many applications for several reasons.

• The discontinuities in the Haar’s decomposition are not effective for approximating
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smooth functions.

• Haar wavelets are well localised in the time domain but decay slowly at a rate of

O(T−1) in the frequency domain, therefore more scales of detail are required.

The Shannon Wavelet Basis

Whereas the Haar wavelet and scaling functions are compactly supported in the time

domain, the Shannon wavelet and scaling functions are compactly supported in the fre-

quency domain. The origins of the Shannon wavelet stems from the sinc function in

Claude Shannon’s pioneering paper (Shannon, 1949).

Definition 2.3.3 (Shannon Scaling Function). In the time domain the scaling function

is defined as

φS(x) =
sin(πx)

πx
, x ∈ R. (2.26)

In the frequency domain the Shannon wavelet function is defined as

φ̂S(ω) = I[−π,π](ω), ω ∈ R, (2.27)

as shown by Chui (1997, page 46).

Definition 2.3.4 (Shannon Wavelet function). In the time domain the scaling function

is defined as

ψS(x) =
sin(2πx)− cos(πx)

π(x− 1/2)
, x ∈ R. (2.28)

In the frequency domain the Shannon wavelet function is defined as

ψ̃S(ω) = exp(−i2−1ω)I[−2π,−π)∪(π,2π](ω), ω ∈ R, (2.29)

also shown by Chui (1997, page 64).

In the time domain the scaling function is infinitely differentiable, with an infinite

support. The resulting wavelet function in the time domain is also smooth. Figures 2.3(a)

and 2.3(b) show the Shannon scaling and wavelet function, respectively, demonstrate the

smoothness of these functions in the time domain. However, the Shannon basis possess an

infinite length filter, which induce poor localisation properties. This undesirable property

means that in practice this wavelet is not often used. However, it can be very useful for
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(a) Shannon Scaling Function

−10 −5 0 5 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

φS
(x

)
(b) Shannon Wavelet Function

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

x

ψ
S
(x

)

Figure 2.3: Plots of Shannon scaling (a) and wavelet (b) function in the time domain.

theoretical investigations, because it can demonstrate the versatility and robustness of

wavelet based methods.

Daubechies Extremal Phase Wavelets

To describe Daubechies Extremal Phase wavelets we first define the vanishing moments

of a wavelet.

Definition 2.3.5 (Vanishing Moments). A wavelet has n vanishing moments if

〈xk, ψ(x)〉 =

∫
xk ψ(x) dx = 0, for k ∈ {0, . . . , n− 1}.

The vanishing moment property of a wavelet will affect the smoothness of a wavelet,

such that as the number of vanishing moments increases so does the smoothness of the

wavelet.

Vanishing moments imply that the wavelet expansion coefficients will be small or zero

on smooth parts of a signal and will be large at points of discontinuity. This leads to sparse

function representations. A wavelet with n vanishing moments is sometimes referred to

as a wavelet of order n.

Daubechies Extremal Phase family of wavelets (denoted by Dn) are compactly sup-

ported over the minimum support for n vanishing moments. The scaling functions possess

a support of [0, 2n − 1] and the wavelet functions have a support over [1 − n, n]. This

family also includes the Haar wavelet, when n = 1. For vanishing moments n > 1 there
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(c) D10 Scaling Function
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(d) D2 Wavelet Function
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Figure 2.4: Plots of the scaling function and wavelet function of Daubechies Extremal
Phase wavelet with 2, 5 and 10 vanishing moments.

is no closed form analytical representation in the time domain. More information on the

construction and properties of these wavelets can be found in Daubechies (1992, Chapters

6 and 7), Vidakovic (1999, Chapter 3) and Percival and Walden (2000, Chapter 4).

See figures 2.4(a) to 2.4(f) for plots of the scaling and wavelet function of Daubechies

Extremal Phase wavelets with n = 2, 5 and 10 vanishing moments. These plots demon-

strate the compact support of the wavelets, and demonstrate how as the number of van-

ishing moments increase so does the smoothness of the functions.

2.4 Nonparametric Regression

Suppose we have a set of noisy observations, y1, . . . , yn of an unknown function f , taken

at possibly irregularly spaced locations denoted by x1, . . . , xn. This can be modelled as

yi = f(xi) + ei, for i = 1, . . . , n, (2.30)

where e = {e1, . . . , en} are random variables which denote the noise. These are usually

assumed to be independent and identically distributed (iid) with zero mean and variance
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σ2. The aim is to recover the signal f from the noisy observations yi using the estimator

f̂(x).

The quality of the estimator f̂(x) can be assessed through its mean integrated square

error,

MISE(f̂ , f) = E
[∫ 1

0
{f̂(x) − f(x)}2dx

]
.

However, in practice f̂ is estimated at the points x1, . . . , xn, so we use the average mean

square error to assess the performance

AMSE(f̂ , f) = E

[
1

n

n∑

i=1

{f̂(x) − f(x)}2
]
.

We shall now discuss methods of estimating f when the form of f is not of a simple

parametric form. These methods are known as nonparametric regression.

2.4.1 Linear Smoothing Methods

We shall briefly describe a few linear smoothing techniques. A comprehensive overview of

nonparametric smoothing methods can be found in Simonoff (1996), Green and Silverman

(1993) and Wahba (1990).

A popular technique to estimate f is to use a weighted average of the noisy data in a

window around x,

f̂(x) =

n∑

i=1

yiwi(x),

where wi(x) are the weight functions, which are only non zero for values of i, such that xi

are close to x. The window or bin width defines what we quantify as ‘close’ to x, and it

also tunes the smoothness of the resulting function. The choice of this bin width is very

important, because if it is too narrow then estimate will possess high variability, whereas

if the bin width is too large then the data will be over-smoothed and the estimate will be

biased. The weights can be constructed by using scaled and translated transformations of

a kernel function. A kernel function will either have

• a concentration of mass at 0 and compact support, or

• rapid decay outside the interval [−1, 1].

Some classic examples of kernel estimators are Watson (1964) and Nadaraya (1964).

An alternative method is to use basis expansions (see Ramsay and Silverman (1997)
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for a review). The estimate is obtained from

f̂(x) =

K∑

k=1

ck ϕk(x),

which is tuned by the number K of basis functions {ϕk(·)}k in the expansion and the

chosen basis. Selecting the best basis can be based upon prior knowledge of the properties

of function f . The coefficients in this approach can be estimated using a least squares

approach, such as

min
c





n∑

i=1

(
yi −

K∑

k=1

ck ϕk(xi)

)2


 .

Another technique is to use smoothing splines (Silverman, 1985), which balances good-

ness of fit to the noisy data but also a certain degree of smoothness. A common solution

is to choose f̂ such that

min
f̂∈C2

{
n∑

i=1

(yi − f̂(xi))
2 + λ‖f̂ ′′‖2L2

}
,

where λ controls the balance between the smoothness of f̂ and its similarity to the data.

Smaller values for λ imply less penalty is paid for the roughness, and the curve becomes

more wiggly and we have something closer to linear regression.

These methods work well when the function f is smooth. However, they perform poorly

when there is evidence of discontinuities within f . Therefore, other non-linear methods

have been developed. We shall review one technique relevant to this thesis, here.

2.4.2 Wavelet Shrinkage

In this section we shall discuss function estimation using wavelet shrinkage of a discretely

sampled function. Excellent reviews of these methods can be found in Abramovich et al.

(2000) and Antoniadis (2007). Unlike the methods described in section 2.4.1, there are

fewer limitations to the form of the function f for which can be estimated via wavelet

shrinkage. Further information on this topic is discussed later in this section Wavelet

Shrinkage and Besov Spaces.

In statistics, wavelet shrinkage was first introduced by Donoho and Johnstone in the

early 90’s with a series of reports such as Donoho and Johnstone (1994a,b, 1995) and

Donoho et al. (1996), to name but a few. A good overview of wavelet shrinkage can be

found in Nason (1995) and Vidakovic (1999, Chapter 6) and methodology to perform
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Figure 2.5: A flow diagram of wavelet shrinkage of (2.30).

wavelet shrinkage in R is described in Nason (2008, Chapter 3).

Assume we wish to find f from the noisy data y = {yi} in equation (2.30). Wavelet

shrinkage is very simple and can be performed in three steps, as shown in figure 2.5, with

details next.

In step 1 we apply the DWT to noisy data y. This results in the DWT of equation

(2.30), which can be written as

d = β + ε, (2.31)

where d = Wy, β = Wf(x), ε = We and W is the orthogonal discrete wavelet trans-

form matrix. The vector of values denoted by β are considered to be the ‘true’ wavelet

coefficients and d are the noisy empirical wavelet coefficients.

Step 2 is based on two consequences of the DWT

• If e is iid with mean zero and variance σ2, then the DWT of e, denoted by ε, also has

mean zero and variance σ2. Furthermore, if the distribution of the noise is assumed

Gaussian, then subsequently ε is also Gaussian.

• Many noiseless functions (f) possess a sparse wavelet representation. This implies

that the true wavelet coefficients, β, are mainly zero, with a few large coefficients

that represent the signal f . We can conclude that small values of d represent noise

in the data. Therefore, by using a shrinkage technique, which sets values below a

certain threshold value to zero, and either keeping or shrinking the remaining values,

we can obtain an proxy for the true coefficients.
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Choosing the correct shrinkage technique and threshold value is of great importance,

because if the cut off is too high then we can effectively over smooth the data, whereas if

it is too low the recovered signal is too noisy.

Once we have obtained the new estimates of the wavelet coefficients, we apply the

inverse wavelet transform. The result is the smoothed estimate of the true signal f at

the locations xi. As the wavelet matrix, W , is orthogonal, this implies that Parseval’s

theorem (as described in section 2.2.1) holds and the estimates in the different domains

have the same risk, i.e.

‖f̂ − f‖2L2 = ‖W T (β̂ − β)‖2L2 = ‖β̂ − β‖2L2 .

Variations in step 2 will yield different estimates of the function f , which we will

describe next.

Shrinkage Techniques

There are different methods for shrinking the wavelet coefficients (Donoho and Johnstone,

1994b), such as hard shrinkage, which is defined as

∆h(dj,k, δ) = dj,k I(|dj,k| > δ) (2.32)

and soft shrinkage

∆s(dj,k, δ) = sign(dj,k)(|dj,k| − δ)+ (2.33)

for the set threshold value δ ∈ [0,∞), where

sign(x) =





−1 if x < 0,

1 if x > 0,

0 if x = 0.

With hard shrinkage any coefficients with an absolute value less then the threshold is

set to zero, and any coefficient value greater is kept. Soft shrinkage shrinks the wavelet

coefficients by δ if it is greater than δ, and sets to zero the coefficients which are less than

δ in absolute value. Hard shrinkage tends to have a bigger variance due to the shrinkage

function’s discontinuity, but this means it is better at detecting discontinuities in the

signal. Soft shrinkage tends to have bigger bias because all of the large coefficients are
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reduced in size (Bruce and Gao, 1996), but the results are visually smoother with smaller

variance.

It was suggested by Gao and Bruce (1997) that a more appropriate method would be

Firm shrinkage (also known as semi-soft shrinkage). In this case the shrinkage function is

∆f (dj,k, δ1, δ2) =





0 if |dj,k| ≤ δ1,

sign(dj,k)
δ2(|dj,k|−δ1)

δ2−δ1 if δ1 < |dj,k| ≤ δ2,

dj,k if |dj,k| > δ2,

which is essentially, a combination of the hard and soft threshold.

Thresholds

There are many different methods to select δ, such as the universal threshold from Donoho

and Johnstone (1994b)

δ = σ̂
√

2 log(n), (2.34)

which is only related to the data through the variance estimate σ̂2. This was motivated

by

lim
T→∞

P({max
i
|ei| > σ

√
2 log(T )}) = 0,

which assumes that the distribution of ei is iid N (0, σ2) for all i. Values of dj,k greater

than σ
√

2 log(n) are most likely to correspond to coefficients which contain signal, i.e.

βj,k 6= 0. Using the universal threshold in either the hard or soft shrinkage technique

will remove coefficients due to noise with high probability. However, often the estimate is

over-smoothed.

Another popular threshold is Stein’s Unbiased Risk Estimator, also known as the SURE

threshold, introduced by Donoho and Johnstone (1995), which is based on an unbiased

estimate of the average mean-squared error of a multivariate Gaussian mean in Stein

(1981).

Suppose we have a n dimensional vector d ∼ Nn(µ,Σ), for which we wish to estimate

the mean µ. An estimate µ̂ = d + g(d) is constructed, where g : Rn → Rn is a weakly

differentiable function, then an unbiased estimate of the average mean-squared error can

be produced from

S(g,d) = Tr(Σ) + ‖g(d)‖2L2 + 2Tr(ΣDg(d)),
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where Dg(d) is a n×n matrix with elements ∂gj,k(d)/∂dj,k, Tr(X) is the trace of matrix

X. This result implies

Eµ[‖µ̂− µ‖L2 ] = E[S(g,d)] .

Soft shrinkage for a particular δ is essentially the same as the previously described

method in Stein (1981), for g(dj,k) = sign(dj,k)(|dj,k| − δ)+. Therefore,

S(δ,d) = nσ2 +
∑

j,k

min(d2j,k, δ
2)− 2σ2

∑

j,k

I[−δ,δ](dj,k),

which suggests the appropriate threshold choice of

δ = argmin
0≥δ≥σ

√
2 log(n)

S(δ,d). (2.35)

Equation (2.35) is the sure threshold. Although it usually exhibits smaller values than the

universal threshold, there are problems when the wavelet coefficients are sparse.

However, a hybrid scheme, known as SureShrink, was suggested by Donoho and John-

stone (1995). The universal threshold is used when the coefficients are sparse for a particu-

lar scale, and a scale dependent SURE threshold otherwise. Donoho and Johnstone (1995)

demonstrated that SureShrink is asymptotically minimax over a range of Besov spaces,

such that an estimate is minimax over a particular function space F , if supg∈FAMSE(f̂ , f)

coincides with the minimax risk, inf f̂ supg∈FAMSE(f̂ , f).

Bayesian Wavelet Shrinkage

Bayesian statistical methods start with existing prior knowledge of model parameters (β),

which are updated using the data (x) to give posterior knowledge. The resulting posterior

knowledge can be used to produce interpretations about these parameters. The model

commonly used for Bayesian inference is

p(β|x) =
p(x|β)p(β)∫

X p(x|β)p(β)dx
,

where p(x|β) is known as the likelihood, p(β) is known as the prior density function and

p(β|x) is the posterior density function. Bayesian inference provides a natural interpreta-

tion of parameter intervals which are known as credible intervals.

In general, Bayes rules are ‘shrinkers’, which has led to the Bayesian paradigm becom-

ing increasingly popular in wavelet analysis. The Bayes rule can be constructed to slightly
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shrink large coefficients and heavily shrink small coefficients. Most practicable Bayes rule

can be easily computed by simulation or expressed in closed form. Good reviews on some

Bayesian approaches in the wavelet domain can be found in (Ruggeri and Vidakovic, 2005;

Abramovich et al., 2000; Vidakovic, 1998b).

We place a prior distribution upon each wavelet coefficient, therefore treating the true

wavelet coefficients as ‘model parameters’ and the data are the noisy wavelet coefficients

in the above scenario. Often, it is assumed that an accurate estimate of the error is

available, and the distribution of error is known, with pdf ζ(·). This allows for a closed-

form expression of the posterior means and variance.

Due to the sparsity property of the wavelet transform, we know that there will be few

‘true’ wavelet coefficients which are non-zero. Therefore, noisy coefficients which are close

to zero, are probably due to noise in the data. The likelihood is the distribution of the

error from equation (2.30), in many cases, these are assumed iid Gaussian. The Berger-

Müller prior is a popular choice (Abramovich et al., 1998; Clyde et al., 1998; Vidakovic,

1998a; Johnstone and Silverman, 2005), as it represents the sparsity present in the wavelet

coefficients. The Berger-Müller prior is defined as

p(βj,k) = αj δ(0) + (1− αj)τ−1j ξ
(
τ−1j βj,k

)
, (2.36)

where 1 − αj is the probability that βj,k is non zero, τ2j is the prior variance and ξ is a

symmetric distribution which will represent the distribution of the non-zero coefficients

such as the Gaussian or Laplace distribution.

Often, the posterior distribution is difficult to calculate, so the posterior mean or

median is used instead. Barber et al. (2001) suggested using cumulants of the posterior

distribution and Johnson transformations (Johnson, 1949) to obtain credible intervals for

wavelet regression estimates.

Hyperparameter Determination

Determining the hyperparameters is one of the most important and difficult aspects of

any Bayesian analysis. In the case of Bayesian wavelet shrinkage, the correct hyperpa-

rameters will affect the capability of the method to recover the true signal and can either

be determined in a full or empirical Bayesian approach. A fully Bayesian approach uses

prior knowledge to determine all of the hyperparameters in the model, such as the meth-

ods described in Clyde et al. (1998) and Vidakovic (1998a). An empirical approach uses
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the data to determine either some or all of these hyperparameters (Chipman et al., 1997;

Abramovich et al., 1998; Clyde and George, 1998; Johnstone and Silverman, 1998).

The method of Abramovich et al. (1998) recommended that the precision and weights

of the Berger-Müller prior should be ascertained using the marginal maximum likelihood

estimates (MMLE). The hyperparameters, αj and τj from equation (2.36) are defined as

τ2j = 2−ajC1 and αj = 1−min(1, 2−bjC2) for j = 0, . . . , J − 1, (2.37)

where J = log2(T ) of sample size T , C1 and C1 are constants to be estimated using MMLE,

and a > 0 and 0 < b ≤ 1 are hyper-hyperparameters to be chosen by the user.

Then, for a particular level j, suppose there are nj wavelet coefficients which are

greater than the threshold value δ. Let these wavelet coefficients be denoted by uj,i,

for i = 1, . . . nj . By conditioning on nj , the uj,i’s are independent realisations from the

tail of ξ(·) beyond ±δ with a variance of σ2 + τ2j , where σ2 is the variance of the error

distribution. By substituting in τ2j = 2−ajC1 the log likelihood for ξ(·) can be calculated

using uj,i. Numerical maximisation can then be used to produce an estimate for C1, which

is used to produce the estimate for τ2j .

The value of C2 can be determined using information obtained from estimation of the

precision. Let the probability that a wavelet coefficient (β) is greater than the threshold

(δ), conditional on the βj,k 6= 0 be defined as

qj = 2F


− δ√

σ2 + τ2j


 ,

where F (·) is the cumulative distribution function of the prior ξ(·). The estimated number

of non zero wavelet coefficients at a particular scale j is nj/qj and the expected value of

nj/qj is 2(1−b)jC2. Given b, C2 can be estimated by method of moments, therefore

C2 =





21−b−1
2(1−b)J−1

∑J−1
j=0

nj
qj

for 0 ≤ b < 1,

1
J

∑J−1
j=0

nj
qj

for b = 1.

Using this method it is important to select the correct values of the hyper-hyperparameters

a and b, and threshold δ. Abramovich et al. (1998) suggested using the universal threshold

value for δ, and the default values a = 0.5 and b = 1.

Rather than imposing any structure on the hyperparameters one could use empirical
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Bayes and allow the form of the data to determine these values. One option would be to

use direct maximum likelihood estimation of the log likelihood (L) based upon the marginal

distribution of the data. If we use the Berger-Müller prior, the marginal log likelihood is

defined as

L(αj , τj) =
∑

k

log
{
αj τ

−1
j ζ(τ−1j dj,k) + (1− αj)γ(dj,k|τj)

}
, (2.38)

where ζ(·) is the error pdf, and γ(dj,k|τj) is the convolution of ζ(·) and ξ(·) from (2.36),

defined as

γ(dj,k|τj) =

∫ ∞

−∞
τ−1j ξ(τ−1j x) ζ(dj,k − x) dx.

Usually, numerical methods are required to produce the estimates of α̂j and τ̂j .

Alternatively, George and Foster (1997) suggested a conditional maximum likelihood

approach. Instead of maximising over both components, take the larger of the two com-

ponents, i.e.

L(αj , τj) =
∑

k

log
{

max
(
αj τ

−1
j ζ(τ−1j dj,k), (1− αj)γ(dj,k|τj)

)}
. (2.39)

This was further developed by Clyde and George (1998) in a wavelet context, who also

suggesting using the expectation-maximisation (EM) algorithm (Dempster et al., 1977) as

another possible method to determine the hyperparameters.

Wavelet selection

We shall define any wavelet used to perform wavelet shrinkage as the smoothing wavelet.

Selecting an appropriate smoothing wavelet relies heavily on the characteristics of the

function being estimated. For example, if a ‘true’ function is piecewise constant the same

properties of the Haar wavelet will improve the estimation. However, the form of the

function to be estimated is not usually known, so often prior knowledge from a field

expert will be helpful, or as a default one of the smoother wavelets.

Primary Resolution

The primary resolution is the coarsest scale which we apply shrinkage to the wavelet

coefficients. It is similar to the bin width parameter in linear smoothing methods and was

first investigated by Hall and Turlach (1997). A variety of methods to select the primary

resolution have been investigated, which rely on either the sample size, generalised cross

validation or Bayesian inference (Nason, 2001; Lu et al., 2003; Park et al., 2008). Some

32



of these methods depend heavily upon the regression model, and most assume that the

distribution of the errors is Gaussian. However, Bayesian wavelet shrinkage is considered

an alternative method to selecting a primary resolution as the Bayes rule will automatically

address this problem(Chipman et al., 1997).

Cycle Spinning

Using wavelet shrinkage to smooth data can sometimes lead to visual artefacts which, are

caused by features either in the signal or basis or both. The resulting smoothed data

can exhibit Gibbs phenomena, and/or alternating under and over estimation of a specific

target. The size of the effect is directly related to the location, for example due to the

nature of the Haar wavelet, an effect in or very close to a dyadic location will not cause

any problems. However, at other locations this can cause quite a significant influence on

the result.

One method to mitigate these issues is to use cycle spinning (Coifman and Donoho,

1995). It works by:

• Shifting the data a random number of positions.

• Curve estimation on the shifted data.

• Un-shifting the estimate to their original positions.

This process is repeated a certain amount of times, with different random shifts, and the

average is taken as the final estimate. If the data were cycle spun for all possible positions,

the result would yield the NDWT described in 2.3.4.

Wavelet Shrinkage and Besov Spaces

To enable non-trivial theory to be produced on the convergence rates of an estimator,

we shall restrict f , such that it belongs to a ball, Br
p,q(A), in the Besov space, Br

p,q for

p ≥ 1, q ≤ ∞ and non integer r.

The Besov norm of the function f is then related to a sequence space norm on the

wavelet coefficients (dj,k) of the function. The sequence space norm is given by

‖d‖Brp,q =





|c0,0|+
(∑∞

j=0 2jr
′q
[∑2j−1

k=0 |dj,k|p
]p/q)1/q

if 1 ≤ q ≤ ∞,

|c0,0|+ supj≥0

(
2jr
′q
[∑2j−1

k=0 |dj,k|p
]1/p)

otherwise,

(2.40)
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where r′ = r + 1/2 − 1/p for j ≥ 0 and k = 0, . . . 2j − 1 (Donoho et al., 1995).

If the wavelet function ψ is of regularity s, where max
(
0, 1/p − 1/2

)
< s < r, then we

have

C1‖f‖Brp,q ≤ ‖d‖Brp,q ≤ C2‖f‖Brp,q ,

where C1 and C2 are constants independent of f (Meyer, 1992; Donoho and Johnstone,

1995). Therefore, the Besov norm is equivalent to the corresponding sequence of norm in

(2.40) depending on q. If p = q = 1, the sequence space norm in the first case in (2.40)

becomes a weighted sum of the absolute wavelet coefficients dj,k, and the Besov space

norm is L1-norm on the derivatives of f up to order r.

2.5 Time Series Data

Time series are a general class of processes consisting of a collection of observations made

sequentially through time. Time series data occur in many different fields such as signal

analysis, medical analysis, geology and economics to name a few. There are two types of

time series, discrete and continuous. A discrete time series, represented by {Xt}Tt=1 is a

series which has been measured at discrete, successive time points and are often taken at

uniformly spaced intervals. An example of a discrete time series might be a daily record

of temperatures. A continuous time series is represented by X(t), where observations are

made continuously through time, i.e. for any t ∈ R. An electroencephalograph (EEG)

record measuring the electrical activity between two points in an individual’s brain is an

example of a continuous time series. Our research mainly addresses discrete time series.

We shall assume, from this point onward that any trend and seasonality have been removed

from the data.

Often an observation at one time point will influence subsequent observations, which

makes the order of the data important. Therefore, the data is non-exchangeable and

standard iid statistical analysis cannot always be utilised. However, simple summary

statistics can be estimated from a time series such as the mean, E[Xt], and variance,

Var[Xt] but these may change with time. One method of examining the dependence

structure between observations is to calculate the covariance, known as the autocovariance

function (acv.f). The acv.f is defined as

γt(τ) = Cov[Xt, Xt+τ ], (2.41)
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where τ is the time difference between observations and is known as lag. The size of the

autocovariance coefficients will depend on the unit which Xt has been measured in. Some-

times it can be helpful to standardise the acv.f to produce the autocorrelation function

(acf) denoted by ρt(τ). Assuming Var[Xt] <∞, the acf is derived from the acv.f as

ρt(τ) =
Cov[Xt, Xt+τ ]

Var[Xt]
. (2.42)

Another important method of measuring the dependence structure between observa-

tions is through the partial autocorrelation function (p.acf). Given a time series Xt of

lag τ is the autocorrelation between Xt and Xt+τ when the linear dependence of Xt+1

through to Xt+τ−1 has been removed. From equation (2.42) the partial autocorrelation

function is defined as

Pt(τ, τ) =
ρt(τ)−∑τ−1

i=1 Pt(τ − 1, i) ρt(τ − i)
1−∑τ−1

i=1 Pt(τ − 1, i) ρt(i)
, (2.43)

where

Pt(τ, i) = Pt(τ − 1, i)− Pt(τ, τ)Pt(τ − 1, τ − i). (2.44)

For example, for τ = 2 equation (2.43) can be written as

Pt(2, 2) =
ρt(2)− ρt(1)2

1− ρt(1)2
.

The two main goals of time series analysis are to:

• determine the nature of the phenomenon represented by the sequence of observations,

and possibly provide a model for those observations,

• forecast (predict) future possible values.

Methods of time series analysis can be performed in either the frequency or time domain

and there is no single methodology to analyse a time series data that is suitable across

all fields. Usually the field from which the data was obtained and aim of the analysis will

dictate the appropriate methodology.

2.5.1 Stationary Time Series

A useful class of stochastic processes are the stationary processes, where the statistical

properties of the underlying random process do not change over time. Processes with this
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property sometimes arise from a physical system which has achieved a steady state. Sta-

tionarity is a strong assumption postulated by classical time series analysis, it guarantees

that increasing the sample size will lead to more information of the same nature. This is

crucial for consistent asymptotic theory. The concepts of stationarity are well described

in Priestley (1994, pages 105 – 106) and Chatfield (2004, pages 34 – 36).

The most widely used type of stationarity assumption is second-order stationarity. A

process, Xt is second order stationary if it satisfies all of the following:

• E[Xt] = µ <∞ for all t.

• γ(τ) does not depend on t, for all t.

• Var[Xt] = γ(0) <∞ for all t.

Stationary Processes in the Time Domain

One of the most efficient techniques for fitting a model to a stationary time series is the

Box-Jenkins methodology. For more detail on the Box-Jenkins method see Kirchgas̈sner

et al. (2013); Chatfield (2004); Box et al. (2008), the latter is for the more advanced reader.

Essentially the Box-Jenkins approach involves three steps, identification, estimation and

diagnostic checking. This procedure uses the data’s past behaviour to select the most

appropriated forecasting model. If we have a discrete stationary time series, the Box-

Jenkins methodology assumes that the time series data can be best represented by one of

the following models:

• Autoregressive (AR) models: forecasts of a variable based on linear function of its

past values,

• Moving Average (MA) models: forecasts based on linear combination of past errors,

• Autoregressive-Moving Average (ARMA) models: combination of the previous two

categories.

ARMA(p, q) models consists of p AR components, and/or q MA components, defined as

Xt =

p∑

i=1

αiXt−i

︸ ︷︷ ︸
AR

+

q∑

j=0

βj Zt−j

︸ ︷︷ ︸
MA

, (2.45)

where Zt is an iid, random zero mean process, and αi and βj are the model parameters to

be estimated.
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Given a stationary time series, the sample p.acf and acf can be used to estimate values

for p and q. The p.acf of an AR(p) process becomes zero at lag greater than p, and the acf

if an MA(q) process is zero for lag q + 1 and greater. The 95% confidence interval of the

sample p.acf and acf can be used to determine which values are non-significant departures

from zero.

The AR parameters αi can be estimated using least squares. However estimating

the MA parameters βi is more problematic as the errors are non-linear functions of the

parameters, therefore numerical methods are required to minimise the residual sums of

squares. Once an estimated ARMA(p, q) model has been found, the residuals of the model

can be obtained by subtracting the fitted estimates from the observed values. There

are a variety of residual analysis methods discussed in Box et al. (2008, chapter 8). In

forecasting, if short term correlation is present in the time series, using the Box-Jenkins

approach can produce some of the most accurate short term forecasts (Chatfield, 2004).

Although it is advisable to accompany these forecasts with a confidence interval, these

can often be too narrow.

Stationary Processes in the Frequency Domain

If a time series is stationary, the mirror of the acv.f, within the frequency domain, is the

power spectral density function or spectrum. The spectrum describes how the variance or

energy of a time series is distributed according to frequency. If the spectrum exists, it can

be derived from the acv.f by

f(ω) =
1

π

∞∑

τ=−∞
γ(τ) e−iωτ , −π ≤ ω ≤ π, (2.46)

where ω is the frequency. Formula (2.46) is the discrete Fourier transform of the acv.f.

The spectrum can then be used to find the acv.f by using the inverse Fourier transform,

γ(τ) =
1

2

∫ π

−π
f(ω) eiωτ dω, τ ∈ Z. (2.47)

Every stationary stochastic process {Xt} can be represented by the Cramér represen-

tation, which has the form

Xt =

∫ π

−π
A(ω) eitω dz(ω), for t ∈ Z and ω ∈ [−π, π], (2.48)
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where A(ω) is the amplitude of the process Xt, e
itω is the oscillation and dz(ω) is an

orthonormal increments process. This means that dz(ω) = z(ω)− z(ω−) and z(ω−) ∈ C

is a stochastic process with

E[z(ω)2] = F (ω), (2.49)

where f(ω) is the spectral distribution function, where F (ω) =
∫
f(x)dx. The spectral

distribution function is a positive, real function of the frequency variable, ω, associated

with the stationary stochastic process. Also

E[{z(ω1)− z(ω2)}{z(ω3)− z(ω4)}] = 0,

for ω1 ≥ ω2 > ω3 ≥ ω4, is a property of the orthogonal increments process.

2.5.2 Non-Stationary Time Series

Many models from classical time series analysis rely heavily on the assumption of station-

arity. For real-life time series it is often difficult to determine whether the process is really

stationary using the available observations. Often the statistical behaviour of a real-life

process can shift from one stationary regime to another or evolve slowly over time, which

may only become apparent with continued observation. Time series of this form are often

referred to as piecewise or locally stationary, respectively. Seismic data is a good example,

the occurrence of an earthquake can cause a sudden change in the statistical properties of

the process for a short period of time.

As the key assumption of stationarity is violated, none of the previous models de-

scribed can be applied to data of this form. Analysing the data for small time intervals or

other transformations might be utilised so that the assumption of stationarity still holds.

However, analysing the data on smaller time intervals compromises accuracy and raises

questions, such as

• How many time intervals are required?

• Where should the time intervals be placed?

Another possibility is to difference the data. This will reduce the sample size, and some-

times it is difficult to determine the number of times the data should be differenced to

reach a stationary regime.

If it is inappropriate to assume stationarity, there is a large class of models available.
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For example, one could model the ARMA process from equation (2.45) with time varying

coefficients. These time dependent coefficients can be estimated using different techniques,

such as those described by Grenier (1983) and Subba Rao (1970).

We shall describe non-stationary processes in the context of the evolutionary spectra

as in Priestley (1965). Consider the stochastic process {Xt} for −∞ < t <∞ and assume

E[Xt] = µ(t), ∀ t. We restrict our attention to the class of processes for which there exists

a family F of functions, ϑ(ω), defined on the real line and indexed by t, and a measure

λ(ω) also on the real line, such that for each t, τ the covariance function from (2.41),

γt(τ) = Cov[Xt, Xt+τ ], can be represented in the form

γt(τ) =

∫ ∞

−∞
ϑt(ω)ϑt−τ (ω) dλ(ω) −∞ < t, τ <∞. (2.50)

For Var[Xt] to be finite for each t, ϑt(ω) must be quadratically integrable with respect to

the measure λ, for each t. If the autocovariance function can be represented as equation

(2.50), then the process {Xt} can be written as

Xt = µ(t) +

∫ ∞

−∞
ϑt(ω) dξ(ω),

where µ(t) is the trend and ξ(ω) is the orthogonal process, such that E
[
|dξ(ω)|2

]
= dλ(ω),

see Bartlett (1955, page 143) or Grenander and Rosenblatt (1957, page 27). The measure

λ(ω) is similar to the stationary integrated spectrum F (ω) in (2.49). The analogy to the

absolutely continuous spectrum is obtained if we assume λ(ω) is absolutely continuous

with respect to Lebesgue measure.

Suppose, for each ω, ϑt(ω) (as a function of t), possesses a generalised Fourier transform

whose modulus has an absolute maximum at frequency θ(ω). Then we can consider ϑ(ω)

as an amplitude modulated sine wave with frequency θ(ω) and

ϑ(ω) = A(t, ω)eiθ(ω)t,

where the t dependent amplitude function, A(t, ω), is such that its Fourier transform has

an absolute maximum at the origin (zero frequency). Furthermore if {ϑ(ω)} is such that

θ(ω) is a single-valued function of ω (i.e. only one family member with a Fourier transform
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with a maxima at the same point), then θ(ω) = ω with

γt(τ) =

∫ ∞

−∞
A(t, ω)A(t− τ, ω) eiωτ dλ(ω) −∞ < t, τ <∞

and

Xt = µ(t) +

∫ ∞

−∞
A(t, ω) eiωt dξ(ω). (2.51)

Further details on non-stationary processes with time dependent spectral representa-

tion can be found in Priestley (1994, chapter 11).

Asymptotic Theory

One of the main problems with non-stationary time series analysis is how to tackle the

problem of asymptotic theory. For stationary processes, as the sample size increases

more information of the same nature is obtained. However, increasing the number of

future observations of a non-stationary process will not necessarily increase the amount

of statistical information on the process. Therefore, an alternative approach needs to be

considered for asymptotic theory.

Instead, fix the time interval and let the number of times we sample the process within

that interval tend to infinity. This leads to rescaled time, first introduced by Dahlhaus

(1997), which provides a framework for asymptotic theory in non-stationary time series

analysis.

Remark 2.5.1 (Rescaled Time). Given a time series of length T the rescaled time at

location k is defined as

z =
k

T
∈ (0, 1) .

For example

z0 =
0

T
, z1 =

1

T
, z2 =

2

T
, . . . , zT−1 =

T − 1

T
.

2.5.3 Locally Stationary Fourier Processes

The locally stationary Fourier process is a natural extension of the time varying spectral

representation given in equation (2.51). We shall apply the concept of rescaled time and

consider for ω ∈ [−π, π].
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Definition 2.5.1 (Locally Stationary Fourier Process (Dahlhaus, 1997)). The stochastic

process {Xt}T−1t=0 with transfer function A∗t (ω) and trend µ is locally stationary if there

exists a representation

Xt,T = µ

(
t

T

)
+

∫ π

−π
A∗t,T (ω) eiωt dξ(ω). (2.52)

where

(i) ξ(ω) is a stochastic process on [−π, π] with ξ(ω) = ξ(−ω) and the cumulants of the

kth order

cum{dξ(ω1), . . . ,dξ(ωk)} = η




k∑

j=1

ωj


 gk(ω1, . . . , ωk−1) dω1, . . . ,dωk,

where

• g1 = 0,

• g1(ω) = 1,

• |gk(ω1, . . . , ωk−1)| ≤ Ck, where Ck is a constant ∀ k,

• η(ω) =
∑k

j=1 δ(ω + 2πj).

g1 = 0, g1(ω) = 1 and |gk(ω1, . . . , ωk−1)| ≤ Ck ∀ k,

(ii) There exists a constantK and 2π-periodic functionA : [0, 1]×R→ C withA(z,−ω) =

A(z, ω) and

sup
t,ω

∣∣A∗t,T (ω)−A
(
t/T , ω

)∣∣ ≤ KT−1 ∀ T

where we assume A(z, ω) and µ(z) are continuous in z.

The locally stationary behaviour of the process is ensured by the smoothness of A in

z, in other words the amplitude function should not be too irregular.

2.6 Locally Stationary Wavelet Processes

Locally stationary wavelet (LSW) processes were introduced by Nason et al. (2000), and

extended to encompass a larger range of processes in Van Bellegem and von Sachs (2008).

We use the extension here. Assume that the wavelets used in this thesis are compactly

supported, and that the length of the support for any wavelet ψj,0 is equal to Lj :=
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|suppψj,0|. Therefore, if we have J scales, where J − 1 is the finest scale, then

|suppψj,k| = Lj = (2J−j − 1)(LJ−1 − 1) + 1 ∀ j ≥ 0,

where LJ−1 is the support at the finest scale.

Definition 2.6.1 (The Locally Stationary Wavelet Process). A LSW process is a sequence

of doubly indexed stochastic processes, {Xt,T }t=0,...,T−1, where T = 2J for some J ∈ N.

This process has the representation

Xt,T =
∞∑

j=0

∞∑

k=−∞
wj,k:T ψ̃j,k−t ξj,k, (2.53)

where ψ̃j,k−T is a discrete non-decimated family of wavelets as in (2.22), for scales j =

0, . . . ,∞, k = −∞, . . . ,∞ based on a mother wavelet, ψ(t), of compact support and ξj,k

is a random zero mean orthonormal increments sequence. The component wj,k:T ξj,k can

be thought of as a random amplitude of the oscillation ψ̃j,k−t.

The quantities in equation (2.53) possesses the properties:

(a) E[ξj,k] = 0 ∀ j, k ⇒ E[Xt] = 0.

(b) E[ξj,k, ξj′,k′ ] = δj,j′ δk,k′ .

(c) There exists for each j ≥ 1 a function Wj(z) for z = k/T ∈ (0, 1), that possesses the

following properties

i.
∞∑

j=1

|Wj(z)|2 < C̄ uniformly in z ∈ (0, 1) .

ii. There exists a sequence of constants Cj such that for each T

sup
k
|wj,k;T −Wj(z)| ≤

Cj
T
.

iii. The total variation (TV) of W 2
j (z) is bounded by Lj , that is

TV (W 2
j ) := sup

{
I∑

i=1

|W 2
j (ai)−W 2

j (ai−1)| : 0 < a0 < . . . < aI < 1, I ∈ N

}

≤ Lj .
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iv. The constants Cj and Lj are such that

∞∑

j=1

Lj(LjLj + Cj) ≤ ρ <∞.

2.6.1 The Evolutionary Wavelet Spectrum

The time evolution of properties of Xt depend on how fast wj,k;T changes as a function

of k. Since ψ̃j,k−t is only ‘significantly’ non-zero near k − t = 0, the behaviour of Xt is

directly related to the behaviour of wj,k;T . Property (c) ii. from definition 2.6.1, implies

that the evolution of wj,k;T is tied to the evolution of Wj(z), where z = k/T . In other

words, as T → ∞, wj,k;T ≈ Wj(z). Hence, the evolution of wj,k;T as a function of k

depends on the smoothness of Wj(z), which is controlled by the Lipschitz continuity of

Wj(z) as a function of z. The smoother Wj(z) is, the slower the evolution of Xt.

The Evolutionary Wavelet Spectrum (EWS) measures the ‘contribution to the vari-

ance’ of the LSW process Xt,T at scale level j and location z. We shall define the EWS

next.

Definition 2.6.2 (Evolutionary Wavelet Spectrum). The EWS is a function of the loca-

tion z and scale j ∈ Z+ and is defined by

Sj(z) = |Wj(z)|2 , (2.54)

for all j ∈ N and z ∈ (0, 1).

Localised Autocovariance Function

The localised autocovariance (LACV) function for LSW process will provide information

about the covariance around a particular location z = k/T ∈ (0, 1). In stationary time

series analysis the spectrum is the Fourier transform of the acv.f, and in LSW analysis we

observe a similar relationship between the EWS and LACV. To describe this relationship,

we require the autocorrelation wavelet (ACW).

The ACW is the autocorrelation function of a non-decimated wavelet. We shall first

define the continuous ACW function which is calculated from the wavelet function, and

secondly the discrete ACW obtained through the discrete wavelets.
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(c) j = J − 5
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Figure 2.6: Plots of discrete Haar autocorrelation wavelet for at the finest scale (J − 1)
in (a), third finest scale (J − 3) in (b) and fifth finest scale (J − 5) in (c), over lag
τ = −32, . . . , 32.

Definition 2.6.3 (Continuous Autocorrelation Wavelet Function). The Continuous ACW

is defined by

Ψ(u) =

∫ ∞

−∞
ψ(x) ψ(x− u)dx,

where u ∈ R and support of Ψ(u) is R.

Definition 2.6.4 (Discrete Autocorrelation Wavelet). The ACW at scale j ∈ Z+ at lag

τ ∈ Z is defined by

Ψj(τ) =

∞∑

k=−∞
ψ̃j,k ψ̃j,k−τ .

The discrete ACW determines the autocorrelation of a wavelet at a particular scale

and different locations. We can also obtain the discrete ACW, Ψj(τ), using the continuous

ACW function, Ψ(u), for j ≥ 0 by

Ψj(τ) = Ψ
(
2−j |τ |

)
, (2.55)

for all Daubechies compactly supported wavelets. The discrete ACW provides a family of

symmetric, compactly supported, positive semi-definite functions on τ ∈ Z.

Examples of the discrete Haar autocorrelation wavelet for scales j = 1, 3, 5 can be seen

in figures 2.6. These represent the first (J−1), third (J−3) and fifth (J−5) finest scales.

As support of the wavelet increases, the overlap between wavelets at different locations

increases. Therefore there is a reduction in the rate of decay in the correlation as the lag

|τ | increases.

A component which is closely related to the ACW is the Cross-Autocorrelation Wavelet
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(C-ACW), also known as the cross-scale autocorrelation wavelet (Fryzlewicz and Nason,

2006). It is used to examine the correlation structure of the wavelets between two scales

as the difference (lag) between locations varies

Definition 2.6.5 (Cross-Autocorrelation Wavelet). The C-ACW wavelet is defined by

Ψl,m (τ) =

∞∑

k=−∞
ψ̃l,k ψ̃m,k−τ ,

between scales l, m ∈ Z+ for a location difference of τ ∈ Z.

Note. If l = m in definition 2.6.5 for the C-ACW, we have the standard discrete autocor-

relation wavelet.

As we have now defined the required components, we shall now describe how the LACV

is obtained via the EWS when combined with the ACW next.

Definition 2.6.6 (The Localised Autocovariance Function). The LACV function is de-

fined as

C(z, τ) =

∞∑

j=0

Sj(z)Ψj(τ), for τ ∈ Z, z ∈ (0, 1) , (2.56)

where {Sj(z)}∞j=0 is the EWS from definition 2.6.2.

In practice, the LACV function cannot actually be obtained using equation (2.56)

because an infinite sequence of the estimated EWS ({Ŝj(z)}∞j=0) is not available (Eckley,

2001, chapter 6). Therefore, the LACV function can be re-written as the curtailed local

autocovariance,

CJ(z, τ) =

J−1∑

j=0

Sj(z)Ψj(τ), (2.57)

for τ ∈ Z, z ∈ [0, 1) and J ∈ N.

In Nason et al. (2000, Appendix, page 18) it was proved that the error in the estimate

of the LACV compared to the true autocovariance was O
(
T−1

)
. The representation in

definition 2.6.6 links together the EWS and the time varying autocovariance of Xt;T . This

is analogous to the Fourier transform of the autocovariance function of a stationary time

series, which is known as the stationary spectrum.

Uniqueness of the Autocovariance Representation

In stationary time series analysis the spectrum is the discrete Fourier transform of the

autocovariance function (acv.f). Therefore, the acv.f can be obtained by applying the
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inverse Fourier transform to the spectrum. Similarly, the EWS can also be obtained from

the LACV using the invertible autocorrelation wavelet inner product matrix in definition

2.6.7.

Definition 2.6.7 (The Inner Product Matrix (Nason et al., 2000)). The operator A =

(Aj,l)j,l≥0 is defined by

Aj,l = 〈Ψj ,Ψl〉 =
∑

τ

Ψj(τ) Ψl(τ). (2.58)

and the J-dimensional matrix is AJ = (Aj,l)j, l=0,...,J−1.

An important theorem (Nason et al., 2000, Theorem 2.15) that allows for the repre-

sentation of the EWS in terms of the LACV is described below. The proof of this theorem

can be found on pages 18–20 of Nason et al. (2000).

Theorem 2.6.1 (Autocorrelation Wavelet). The family {Ψj(τ)}∞j=0 are linearly indepen-

dent. Hence,

(a) Given a LSW process the corresponding EWS is uniquely defined

(b) All of the eigenvalues of A are positive, which means that A is invertible and for each

J the norm
∥∥A−1J

∥∥ is bounded above by some CJ .

Part (b) of theorem 2.6.1 allows a representation of the EWS in terms of the LACV,

as described next.

Proposition 2.6.2. For j ∈ Z+ and τ ∈ Z

Sj(z) =

∞∑

l=0

A−1j,l

∞∑

τ=−∞
C(z, τ)Ψl(τ). (2.59)

The EWS from definition 2.6.2 is not unique, unlike the LACV. If we replace C(z, τ)

in equation (2.59) by the curtailed LACV, then as T →∞ this value will converge to the

EWS (see Nason et al. (2000, page 11) for details).

2.6.2 Estimation of the Evolutionary Wavelet Spectrum

To estimate the evolutionary wavelet spectrum we require an estimate of Wj(z), where z =

k/T . We know that for large T , wj,k ≈Wj(z), and from definition 2.6.2, Sj(z) = |Wj(z)|2.

The definition of the LSW process in equation (2.53), implies the wavelet transformation

of wj,k is approximately Xt,T (with error). Therefore, a logical starting point in the

estimation of the EWS is the non-decimated wavelet transformation of the process Xt,T .
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Definition 2.6.8 (Empirical Wavelet Coefficients of the LSW Process). Given a data set

X0, . . . , XT−1, the empirical wavelet coefficients are the non-decimated wavelet transfor-

mation of the LSW process, defined as

dj,k;T =
〈
Xt,T , ψ̃j,k−t

〉
,

=

T−1∑

t=0

Xt,T ψ̃j,k−t,

=
∞∑

t=−∞
Xt,T ψ̃j,k−t, (2.60)

where Xt,T = 0 for t 6= 0, . . . , T − 1, j = 0, . . . , J − 1, k = 0, . . . , T − 1 and J = log2(T ).

This will produce a matrix of observations with T ×J dimensions. Further exploration

of the properties of the LSW process wavelet coefficients can be found in section 3.1.

Using the empirical wavelet coefficients of the LSW process, we can obtain an estimate

of the EWS as defined in definition 2.6.9 next.

Definition 2.6.9 (Raw Wavelet Periodogram). The raw wavelet periodogram is defined

as

Ij,k;T = |dj,k;T |2 . (2.61)

where j = 0, . . . , J − 1, k = 0, . . . , T − 1 and J = log2(T ).

The raw wavelet periodogram, Ij,k, is the “power” of the series at location k and scale

j.

Asymptotics of the Wavelet Periodogram

The wavelet periodogram Ij,k is not an asymptotically unbiased estimator of the evolu-

tionary wavelet spectrum, Nason et al. (2000, proof of proposition 3.3, page 24) show

that

E [Ij,k] =
∑

l

Aj,l Sl(z) +O
(
T−1

)
, ∀ z ∈ [0, 1). (2.62)

It is simpler to think of Ij,k in terms of a vector of raw wavelet periodograms, Ik =

[I0,k, I1,k, . . . , IJ−1,k]
T and similarly Sk = [S0,k, S1,k, . . . , SJ−1,k]

T , for fixed J , T = 2J and

z = k/T .

This proposition implies that

E[Ik] = AJ Sk +O(T−1),
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where AJ is the restriction of A to the first J rows and columns. Therefore, an unbiased

estimator of Sk is

Lk = A−1J Ik, (2.63)

and E [Lk] = Sk +O(T−1).

In Nason et al. (2000, page 25) the variance of the wavelet periodogram was calculated

as

var [Ij,k;T ] = 2

{∑

l

Aj,l Sl(z)

}2

+O
(

2j

T

)
. (2.64)

This means that as the sample size increases (T → ∞) the variance does not vanish. In

other words, increasing the sample size does not decrease the variance of the raw wavelet

periodogram, Ij,k;T .

In stationary time series analysis a similar problem occurs as the periodogram is not

a consistent estimator of the stationary spectrum. There are various parametric and non-

parametric techniques which can be used to produce a consistent estimate of the stationary

spectrum. For example, autoregressive spectral estimation (Parzen, 1983) is an example

of a parametric approach.

Various techniques have already been developed to smooth the wavelet periodogram,

such as those by Nason et al. (2000); Fryzlewicz and Nason (2006); Van Bellegem and von

Sachs (2008). Although the approach of Van Bellegem and von Sachs (2008) works well

in theory, it is difficult to apply this method in practice. This is due to the complicated

process required to estimate the parameters. Therefore, we will not discuss this method

in further detail. However, we do note their suggestion of using quantiles and the benefits

of using this to quantify the estimate.

2.6.3 Translation-Invariant De-Noising EWS Estimator

In Nason et al. (2000) each level, j, of the raw wavelet periodogram is smoothed as

a function of z using translation-invariant (TI) de-noising (Coifman and Donoho, 1995).

Non-linear wavelet shrinkage is performed on the approximately χ2
1 distributed raw wavelet

periodogram then bias corrected by the inner product matrix (A−1). An appropriate

threshold for the shrinkage was determined in Nason et al. (2000, Theorem 3.4). The

technique raises a number of questions, such as what is an appropriate wavelet? Nason

et al. (2000) believe that smoother wavelets, such as Daubechies extremal phase with 10

vanishing moments, help to avoid ‘leakage’ of power into the surrounding scales because
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of their short support in the Fourier domain. They also produce less spiky and variable

estimates in their example.

The function ewspec from the package wavethresh (Nason, 2012) in R was developed

to perform this technique for estimating the EWS. This method is very flexible and the

user is given many options to define how the smoothing of the raw wavelet periodogram

should proceed. For example, should a soft or hard thresholding technique be applied and

should the variance of raw wavelet periodogram be calculated by scale or globally.

This method is computationally efficient. However, there are limitations in what type

of EWS this method is able to successfully recover. In our definition of the LSW process

in 2.6.1, we also include LSW processes with piecewise constant EWS. TI de-noising was

developed to recover the EWS from a LSW process with a slowly evolving, time varying,

local variance. Alternatively the next method was developed purely for piecewise constant

EWS.

2.6.4 Haar-Fisz EWS Estimation

The methodology developed in Fryzlewicz and Nason (2006) produced an estimator which

was mean-square consistent, rapidly computable, easy to implement and performs well in

practice. However, the technique is restricted to locally stationary processes with a time

varying, piecewise constant, local variance.

We shall begin our description of this method by considering a special case of the

LSW process from definition 2.6.1. For each j ≥ 0, Wj(z) is a real valued, piecewise

constant function, with a finite, but unknown, number of change points. Let Mj denote

the maximum change in Wj(z) at scale j. Suppose the function Wj(z), satisfies:

• ∑∞j=1W
2
j (z) <∞ uniformly in z,

• ∑∞j=1Mj <∞.

Assume the constants Mj satisfy Mj = O(a−j), for some a > 2. This is a technical

assumption, to ensure the rate of approximation of the EWS. Also, if

ρj(τ) := suppk|Corr(dj,k, dj,k+τ )|,

where {dj,k} are the wavelet coefficients from equation (2.60), then assume
∑

τ ρj(τ)2 ≤

C2−j .
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An estimate of the evolutionary wavelet spectrum can be produced by performing

the variance stabilising Haar-Fisz transformation on the raw wavelet periodogram, and

smoothing the transformed data. Consider the following model:

Ij,k = σ2j,kZ
2
j,k, for j = 1, . . . , log2(T ), and k = 0, . . . , T − 1, (2.65)

where

• Ij,k is the raw wavelet periodogram from definition 2.6.9.

• σ2j,k is deterministic and close to a piecewise constant function greater than σ2(z)

where z = k/T , such that

T−1
T−1∑

k=0

∣∣σ2j,k − σ2(z)
∣∣2 := aT = oT (log−1(T )).

Furthermore, σ2(z) is a piecewise constant function greater than zero, with a finite,

but unknown number of change points, denoted by B.

• {Zj,k} is multivariate normal with zero mean and variance one. Asymptotically its

sequence is absolutely summable, i.e.

ρ(τ) := sup
i,T
|Corr(Zj,i, Zj,i+τ )|,

satisfies ρ1∞ <∞, where ρp∞ :=
∑

τ ρ
p(τ).

The Haar-Fisz transformation of the raw wavelet periodogram for scale j follows the

following algorithm.

1. Let c̃J,m := Ij,k for m = 0, . . . , T − 1, where T = 2J .

2. For l = (J − 1), . . . , 0, recursively define

d̃l,m =
c̃l+1,2m − c̃l+1,2m+1√

2
,

c̃l,m =
c̃l+1,2m + c̃l+1,2m+1√

2
,

where m = 1, . . . , 2l−1, and d̃l,mand c̃l,m are the Haar wavelet and scaling coefficients

of the raw wavelet periodogram at scale j respectively.
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3. Divide the wavelet coefficients by the scaling coefficients to produce the Haar-Fisz

coefficients

h̃l,m =
d̃l,m
c̃l,m

. (2.66)

4. For l = J − 1, . . . , 0, recursively modify the vectors c̃l−1:

c̃l+1,2m = c̃l,m + h̃l,m

c̃l+1,2m−1 = c̃l,m − h̃l,m

where m = 1, . . . , 2l.

5. Let Hj,k = c̃J,m, m = 1, . . . , 2J .

Let F denote the non-linear invertible Haar-Fisz operator, hence Hj,k = FIj,k.

If we now consider a special case of equation (2.65),

Ij,k = σ2(z)Z2
j,k, for j = log2(T )− 1, . . . , 0, z =

k

T
and k = 0, . . . , T − 1, (2.67)

where σ2j,k = σ2(z), a piecewise constant function greater than zero with a finite but un-

known number of change points, and Zj,k
i.i.d.∼ N (0, 1), then proposition 6.1 in (Fryzlewicz

and Nason, 2006) holds.

Proposition 2.6.3 (Prop. 6.1 in Fryzlewicz and Nason (2006)). If Ij,k follows the model

in (2.67), then

(a) Beta distribution: h̃l,m ∼ 2β(2J−l−2, 2J−l−2)− 1, with mean 0 and variance (2J−l−1 +

1)−1, therefore

h̃l,m
√

2J−l−1 + 1 −→ N (0, 1), as J −→∞, l ≤ J(1− δ), δ ∈ (0, 1).

(b) Log-like property of F : we have

1

T

T−1∑

k=0

E
[
(FIj,k − E[Ij ])− (Fσ2(z)− E[σ2])− (FZ2

j,k − E[Z2
j ])
]2

= O
(

log2(T )

T

)

(c) Variance stabilisation: for all k we have

Var
[
FZ2

j,k

]
=

J−1∑

l=0

(2l + 1)−1 + 21−J −→
J−1∑

l=0

(2l + 1)−1.
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(d) Asymptotic Gaussianity: for any k

(
J−1∑

l=J−J∗
(2l + 1)−1 + 21−J

)−1/2
F (M∗)Z2

j,k
d→ N (0, 1).

(e) Lack of spurious correlation: for any k1, k2,

(
J−1∑

l=J−J∗
(2l + 1)−1 + 21−J

)−1
Cov

[
F (M∗)Z2

j,k1 ,F (M∗)Z2
j,k2

]
→ 0.

The Haar-Fisz operator approximately transforms the model in (2.65), from a multi-

plicative to an additive model, so that the model in property (b) of proposition 2.6.3 can

be interpreted as

FI2j,k − E[I2j ] ≈ (Fσ2(z)− E[σ2]) + (FZ2
j,k − E[Z2

j ]),

where we can think of Fσ2(z) as the signal and FZ2
j,k as noise.

As the scales become coarser, property 2.6.3(d) implies the distribution of the noise

is asymptotically standard Gaussian. However, although FZ2
j,k is a symmetric random

variable which is close to Gaussian, it is not true that FZ2
j,k → Gaussian as J →∞. The

distribution of FZ2
j,k is actually decided by h̃l,m with the largest variance. This is usually

the finest scale, which is far from Gaussian and possesses a bimodal distribution.

The variance stabilisation of property 2.6.3(c) means that the variance of FZ2
j,k is

roughly constant over time. The property in 2.6.3(e), means that the Haar-Fisz trans-

formation does not introduce any spurious correlation (note Z2
j,k was previously assumed

to be uncorrelated). However, if the correlation structure of Z2
j,k changes over time, the

variance of FZ2
j,k will not be stabilised exactly, but empirical investigations suggest it will

be greatly improved.

One can apply any smoothing technique to the Haar-Fisz transformed data which is

suitable for homoscedastic Gaussian data. In Fryzlewicz and Nason (2006), they apply a

classical wavelet thresholding estimator based on the Haar wavelets and the soft shrinkage

rule with a type of universal threshold (Donoho and Johnstone, 1994b). The thresholding

can be applied before the inverse wavelet transform (step 4), in which the Haar-Fisz
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coefficients are updated using

µl,m =





c̃l,m sign(h̃l,m)(|h̃l,m| − tl)+ (l,m) ∈ Ij,k,

0 (l,m) /∈ Ij,k,
(2.68)

where

tl = κ2−(J−l−1)/2
√

2 log(T ). (2.69)

The constant κ is selected by the user.

The inverse Haar wavelet transform is applied to the coefficients µl,m to obtain the

smoothed estimate, giving

R̂j

(
k

T

)
= φ0µ0 +

J∑

l=1

2J−l∑

m=1

ψl

(
m− k
T

)
µl,m, (2.70)

and to obtain the evolutionary wavelet spectrum we correct by the inverse inner product

matrix

Ŝj

(
k

T

)
=
∑

l

A−1j,l R̂j

(
k

T

)
. (2.71)

This method works well in practice and is computationally efficient. However, similarly

to TI de-noising there are limitations in the structure of the EWS which it can successfully

recover. Choosing the right method to estimate the EWS depends on prior knowledge of

the EWS, which may not be immediately obvious.
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Chapter 3

Foundation Work

To investigate methods of estimating the evolutionary wavelet spectrum (EWS) with as-

sociated confidence intervals, we need to understand the statistical properties of the data

of interest. As discussed in section 2.6.2, an estimate of the EWS is obtained by smooth-

ing the raw wavelet periodogram (see definition 2.6.9), then correcting bias with the in-

ner product matrix (definition 2.6.7). However, as the raw wavelet periodogram is the

squared modulus of the empirical wavelet coefficients (definition 2.6.8), we theorised that

by researching the properties of these wavelet coefficients, the findings could determine

equivalent properties of the raw wavelet periodogram.

In the first section of this chapter we shall investigate the asymptotic distribution,

mean and covariance structure of the empirical wavelet coefficients. In the following sec-

tion we use these findings to develop estimates for the asymptotic distribution, mean

and covariance of the raw wavelet periodogram. Section 3.3 will consider the potential

asymptotic independence between wavelet coefficients, and discusses how this will aid our

research.

Finally, in section 3.4 we numerically verify our analytic findings by simulating LSW

processes with three types of innovations (Gaussian, Student’s t and χ2). We also assess

the performance of the translation-invariant method of Nason et al. (2000) for recovering

the true EWS using one realisation of each EWS with Gaussian innovations.

3.1 Wavelet Coefficients of the LSW Process

The empirical wavelet coefficients are obtained from the non-decimated wavelet transform

of a time series. The same observation will be used to calculate coefficients at different

scales and locations, which results in a covariance structure between the scales and lo-
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cations. Hence, the empirical wavelet coefficients can be modelled with a multivariate

distribution.

Theorem 3.1.1 (Asymptotic Statistical Properties of the Wavelet Coefficients). The dis-

tribution of the empirical wavelet coefficients of the LSW process is asymptotically multi-

variate Gaussian with probability density function

fd(d1,1, . . . , dJ,T ) =
1

(2π)JT/2 |Σ|1/2
exp

{
−1

2
d′Σ−1d

}
, (3.1)

where d = d0,0, . . . , dJ−1,T−1 and j = 0, . . . , J − 1, and k = 0, . . . , T − 1. The mean is

E[dj,k] = 0 ∀ j, k, and the covariance matrix is Σ. Each element of the covariance matrix

can be calculated from

Cov[dj,k, dj′,k′ ] =
∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)Sl

(m
T

)
+ O(T−1), (3.2)

for j, j′ = 0, . . . , J − 1, and k, k′ = 0, . . . , T − 1.

Brillinger (1994) proves the wavelet coefficients of an additive model (such as equa-

tion (2.30)), where the error distribution is stationary but not necessarily Gaussian, are

asymptotically Gaussian as the support of the wavelet increases. In Neumann and von

Sachs (1995) this proof is extended to include a non-stationary, non-Gaussian error term.

To prove the non-decimated wavelet coefficients of a LSW process is asymptotically Gaus-

sian we use similar methods to Brillinger (1994) and Neumann and von Sachs (1995), but

making the required adjustments for the LSW process.

Proof (Theorem 3.1.1). Recall the LSW process from (2.53). For a fixed sample size

T = 2J , the LSW process {Xt}T−1t=0 is defined as

Xt =
∞∑

l=0

∞∑

m=−∞
wl,m ψ̃l,m−t ξl,m,

with E[ξl,m] = 0 and Cov[ξl,m, ξl′,m′ ] = δl,l′ δm,m′ , therefore E[Xt] = 0.

To prove the asymptotic distribution of the wavelet coefficients, consider Xt for t =

0, . . . , T − 1, and assume:

(1) Xt has been observed at equally spaced intervals;

(2) Var[Xt] ∈ (0,∞);

(3) φ and ψ (wavelet and scaling function) are of bounded total variation on [0, 1].
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(4) E[|Xt|p] ≤ Cp(p!)κ ∀ p ≥ 2 holds for appropriate constant C <∞ and κ ≥ 0;

(5) Xt is α-mixing with α(s) ≤ Ce−b|s|.

Many text book distributions satisfy assumption (4) with a suitable choice of κ. For

the exponential, gamma, inverse-Gaussian and F-distribution κ = 1 (Johnson et al., 1994,

1995). By Theorem 3, part 2 of Statulevicius and Jakimavicius (1988),

sup
0≤t1≤∞





∑

t1,...,tp=1

|cum(Xt1 , . . . , Xtp)|



 ≤ C̃

p(p!)3+κ

holds for all p = 2, 3, . . . and appropriate C̃ (see Neumann (1996, Remark 3.1)). Let

d̃j,k =
∑

t

uj,k(t)Xt,

where uj,k(t) =
∫ ti
ti−1

ψ̃j,k(x) dx. From assumption (3) we have
∫
ψ̃j,k(x)dx = O(2j/2),

which implies uj,k(t) = O(T−12j/2). Then, we can obtain

cump(dj,k) = cump

(∑

t

uj,k(t)Xt

)

=
∑

t1

∑

t2,...,tp

uj,k(t1) . . . uj,k(tp)cum(Xt1 , . . . , Xtp)

= O
(
T−1(T−12j/2)p−2C̃p(p!)3+κ

)
,

holds uniformly in p ≥ 2 as T →∞ and j → 0 (Neumann and von Sachs, 1995, equation

preceding 20).

Let σ2j,k = Var(d̃j,k). Now consider two cases:

• σ2j,k ≥ CT−1, for some constant C > 0. Then we have

∣∣∣cump

(
σ−1j,kdj,k

)∣∣∣ = O
(

(T−12j/2)(p−2)/2C̃p(p!)3+κ
)
,

uniformly in p ≥ 2. Then by Lemma 1 from Rudzkis et al. (1978) we have

P
(
±σ−1j,k (d̃j,k − E[dj,k]) ≥ x

)
= (1− Φ(x))(1 + o(1)) (3.3)

holds uniformly for j = 0, . . . J − 1 and k = 0, . . . , 2j − 1, and −∞ < x ≤ ∆T , ∆T =

Tµ for µ > 0.
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• σ2j,k < T−1/2, consider

˜̃
dj,k = d̃j,k + ςj,k

where ςj,k ∼ N (0, T−1−σ2j,k) is independent of d̃j,k. The random variable
˜̃
dj,k possess

a variance of T−1 and its higher order cumulants coincide with the cumulants of d̃j,k.

Therefore (3.3) for the case of
˜̃
dj,k can be established. Hence, asymptotic normality

has been derived.

From equations (2.53) and (2.60), we have the form of the LSW process and the

corresponding empirical wavelet coefficients. Therefore the wavelet coefficients obtained

from the LSW process can be written as

dj,k =
∞∑

t=−∞
ψ̃j,k−t

∞∑

l=0

∞∑

m=−∞
wl,m ψ̃l,m−t ξl,m

=
∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m)wl,m ξl,m, (3.4)

where Ψj,l(k−m) is the cross autocorrelation wavelet from definition 2.6.5 between scales

j and l. Therefore

E[dj,k] =

∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m)wl,m E[ξl,m]

As ξ is the orthonormal increments sequence from definition 2.6.1, then property (a)

defines E[ξl,m] = 0. Therefore, we can conclude that E[dj,k] = 0.

The covariance between scales and locations can be expressed as

Cov[dj,k, dj′,k′ ] =
∞∑

l, p=0

∞∑

m,q=−∞
Ψj,l(k −m) Ψj′,p(k

′ − q)wl,mwp,q E[ξl,m ξp,q].

Using definition 2.6.1, property (b) states E[ξl,m ξp,q] = δl,p δm,q and from (c)ii. wl,m =

Wl(
m/T ) +O(T−1). Therefore

Cov[dj,k, dj′,k′ ]

=

∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)
[
Wl

(m
T

)
+O(T−1)

]2

=
∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)
[
Wl

(m
T

)]2
+ O(T−1).
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From section 2.6.1 |Wl(
m/T )|2 = Sl(

m/T ), so as the covariance of the wavelet coefficients is

Cov[dj,k, dj′,k′ ] =
J−1∑

l=0

2l−1∑

m=0

Ψj,l(k −m) Ψj′,l(k
′ −m)Sl

(m
T

)
+ O(T−1).

�

The dimension of the covariance matrix Σ is JT ×JT , because potentially, there could

be covariance between every single observation of the raw wavelet periodogram. However,

in practice often there is little or no covariance between observations which are far apart,

as shown in 3.4.

3.2 Raw Wavelet Periodogram

The raw wavelet periodogram is obtained by squaring the empirical wavelet coefficients.

By assuming the innovations which generate the LSW process are Gaussian, Theorem

3.1.1 holds for all scales. Using this assumption and results from section 3.1 we have

developed the following theorem.

Theorem 3.2.1 (Statistical Properties of the Raw Wavelet Periodogram). Assume Xt is

the LSW process in equation (2.53) with innovations ξ ∼ N (0, 1). Then, the probability

density function of the raw wavelet periodogram is of the form

fI(I1,1, . . . , IJ,T ) =

∏J−1
j=0

∏T−1
k=0 I

−1/2
j,k

(2π)JT/2 |Σ|1/2
exp

{
−1

2
I1/2

′
Σ−1I1/2

}
, (3.5)

where I1/2 = (I
1/2
0,0 , . . . , I

1/2
J−1,T−1), and Σ is the wavelet coefficient covariance matrix de-

fined in theorem 3.1.1. The expectation of the raw wavelet periodogram multivariate dis-

tribution is

E[Ij,k] =
∞∑

l=0

∞∑

m=−∞
Ψ2
j,l(k −m)Sl

(m
T

)
+ O(T−1), (3.6)

with a covariance given by

Cov[Ij,k Ij′,k′ ] = 2

( ∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)Sl

(m
T

))2

+ O(T−1) (3.7)

for j, j′ = 0, . . . , J − 1 and k, k′ = 0, . . . , T − 1.
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To prove theorem 3.2.1 we will use standard probability theory from Ross (2010, Chap-

ter 6)1.

Lemma 3.2.2. If a set of random variables X = X1, . . . , Xn each have a zero mean, with

a symmetric density about its mean, the joint distribution of X2 = X2
1 , . . . , X

2
n can be

written as

fX2(x21, . . . , x
2
n) =

fX(|x1|, . . . , |xn|)
|x1||x2| . . . |xn|

.

Proof (Theorem 3.2.1). As we have assumed that the distribution of the wavelet co-

efficients, dj,k, are asymptotically multivariate Gaussian with zero mean, we can apply

Lemma 3.2.2. Therefore, we find

fI(I1,1, . . . , IJ,T ) =
fd(I

1/2
1,1 , . . . , I

1/2
J,T )

∏J−1
j=0

∏T−1
k=0 I

1/2
j,k

=

∏J−1
j=0

∏T−1
k=0 I

−1/2
j,k

(2π)JT/2 |Σ|1/2
exp

{
−1

2
I1/2

′
Σ−1I1/2

}
,

for scales j = 0, . . . , J−1 and locations k = 0, . . . , T −1, where Σ is the covariance matrix

of the wavelet coefficients defined in theorem 3.1.1.

To determine the mean and covariance of the raw wavelet periodogram distribution,

assume the the second and fourth moments of the multivariate Gaussian distribution exist

and are finite. Let X ∼ NJ (0,Σ), where Σ is the covariance matrix of X, then from

Isserlis’s Theorem (Isserlis, 1918)

• E [Xi] = 0

• Var [Xi] = E
[
X2
i

]
= σi,i

• E
[
X4
i

]
= 3σ4i,i

• E
[
X2
iX

2
i′
]

= σi,iσi′,i′ + 2σ2i,i′ ,

where σi,i′ is the (i, i′)th element of the covariance matrix Σ. Therefore if Yi = X2
i , we can

1Thanks to Rebecca Killick for bringing this result to my attention
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calculate

E [Yi] = E
[
X2
i

]
= σ2i,i

Var [Yi] = E
[
X4
i

]
−
(
E
[
X2
i

])
= 3σ2i,i − σ2i,i = 2σ2i,i

Cov [Yi, Yi′ ] = E
[
X2
iX

2
i′
]
− E

[
X2
i

]
E
[
X2
i′
]

= σi,iσi′,i′ + 2σ2i,i′ − σi,iσi′,i′ = 2σ2i,i′ .

With Theorem 3.1.1, this implies that mean of Y is µy = diag(Σ), and if we define V as

the covariance matrix of Y, then vi,i′ = 2σ2i,i′ .

Let Xi = dj,k, where i = (j, k) and i′ = (j′, k′) and let σi,i = Var[dj,k] and σi,i′ =

Cov[dj,k, dj′,k′ ]. This implies that

E[Ij,k] =
∞∑

l=0

∞∑

m=−∞
Ψ2
j,l(k −m)Sl

(m
T

)
+ O(T−1),

and

Cov[Ij,k Ij′,k′ ] = 2

( ∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)Sl

(m
T

)
+ O(T−1)

)2

= 2

( ∞∑

l=0

∞∑

m=−∞
Ψj,l(k −m) Ψj′,l(k

′ −m)Sl

(m
T

))2

+ O(T−1).

�

Note. In Nason et al. (2000, page 24) the expectation of the raw wavelet periodogram was

calculated as

E [Ij,k] =
J−1∑

l=0

∞∑

n=−∞
Ψ2
j,l(n)

[
Sl

(
k

T

)
+O

(
nT−1

)]
+ O(T−1)

=
J−1∑

l=0

Aj,l Sl

(
k

T

)
+O(T−1).

as Aj,l =
∑

n Ψ2
j,l(n) (Fryzlewicz and Nason, 2006). Similarly, for the variance

Var [Ij,k] = 2

(
J−1∑

l=0

∞∑

n=−∞
Ψ2
j,l(n)

[
Sl

(
k

T

)
+O

(
nT−1

)]
+ O(T−1)

)2

= 2

(
J−1∑

l=0

Aj,l Sl

(
k

T

))2

+O
(

2j

T

)
.

These are equivilent to our representations of the mean and variance in (3.6) and (3.7)

with the substitution of the inner product matrix A.
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3.3 Asymptotic Independence

Let βjl,m be the DWT of the raw wavelet periodogram, calculated by

βjl,m =
T−1∑

k=0

ψl,m−k Ij,k. (3.8)

By utilising rescaled time, this wavelet coefficient can be represented as βl(z) = βl,[zT ],

where z = mT−1. Take the wavelet coefficient at two different rescaled time points:

z1 =
m1

T1
and z2 =

m2

T1
,

⇒ m1 = z1T1 and m2 = z2T1,

for z1 and z2 ∈ [0, 1], where T1 is the sample length and J1 = log2(T1). Suppose another

sample is taken of length T2 = 2rT1 with r ≥ 1 and J2 = log(T2) = J1 +r, then the sample

size of T2 is at least twice as big as T1. The two locations now become

m∗1 = z1T2 and m∗2 = z2T2

⇒ m∗1 = z12
rT1 and m∗2 = z22

rT1,

Note that the distance between locations m∗1 and m∗2 is 2r times the distance between m1

and m2.

For a fixed scale, eventually for compact wavelets, there will be a sample size, T2 large

enough such that m∗1 and m∗2 never lie under the same wavelet. For example let l ≤ J1,

then two wavelet coefficients at l, βl(z1) and βl(z2), are asymptotically independent as

T2 → ∞. Similarly, two wavelet coefficients at different scales, βl(z1) and βl′(z2), where

l 6= l′ ≤ J1, are also asymptotically independent as T2 →∞.

This is a simple demonstration of how using the DWT has resulting wavelet coefficients

which are not as strongly affected by the covariance structure of the original data.

3.4 Numerical Investigations

To validate the analytical findings in the previous sections we defined two different evolu-

tionary wavelet spectra’s (EWS) and simulated LSW processes of length T = 210 = 1024

with these pre-defined EWS and innovations from three different distributions. To do

this in R we used functions from the wavethresh package (Nason, 2012). The innovation
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distributions were:

(i) Gaussian distribution with mean zero and variance one, N (0, 1);

(ii) Student’s t distribution with five degrees of freedom;

(iii) chi-square distribution with one degree of freedom.

The innovations from Student’s t and chi-squared distribution were standardised to con-

form with the LSW process stipulations (i.e mean = 0 and variance = 1), for the rest of this

section we will simply refer to these standardised distributions as t5 and χ2
1, respectively.

One thousand LSW processes with zero trend were simulated for each of the Gaus-

sian, t5 and χ2
1 distributions. For each process, the empirical wavelet coefficients and

corresponding raw wavelet periodogram were calculated. We compared the analytic and

numerical mean of the empirical wavelet coefficients and raw wavelet periodogram at three

different scales (j = 9, 6, 0) and locations (k = 150, 490, 770). The scales were selected

because they represented the finest, a mid and the coarsest scale, and each location pos-

sessed a very different value of the EWS (low, medium and high). As the χ2
1 distribution

was skewed, we suspected the biggest difference between the numerical and analytic means

would be for the χ2
1 innovations.

Due to theorem 3.1.1, we expect to see the biggest difference between the numerical

and analytical covariance estimates of the raw wavelet periodogram at the finest scales

because the small support of the wavelet would mean these observations are influenced the

most by the innovations. Although the innovations were standardised, the fourth moments

of these distributions would vary. For example, if we have observations from a Student’s

tν distribution the squared observations will posses a F distribution with 1 and ν degrees

of freedom. If ν = 5 (as in our simulations) and the observations are standardised (i.e.

Var[X] = 1), then the variance of the squared values is 8. Whereas the squared values

of observations simulated from N (0, 1) will have a χ2
1 distribution, with a variance of 2.

Therefore, we suspected the variance of the t5 periodogram will be approximately four

times bigger than the Gaussian.

In section 2.6.3, we described the translation-invariant (TI) de-noising method used

by Nason et al. (2000). This is one of the most commonly used methods for estimating

the EWS, and we shall use the TI de-noising method (obtained using the ewspec function

in R) to produce an estimate of our defined spectra. This will give us some insight into

the performance of current methods when dealing with LSW processes with non-Gaussian
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innovations. It also provides a bench mark to compare our new techniques.

For these simulations, we have assumed that the synthesis and hence the analytical

wavelet is known (i.e. the Haar wavelet). Therefore, all of the empirical wavelet coeffi-

cients have been obtained using the Haar wavelet. Due to the small support of the Haar

wavelet the subsequent empirical wavelet coefficients should be the slowest to tend to our

asymptotic findings. The only unknown wavelet will be the smoothing wavelet (SW).

However, as we know the true value of the EWS we shall select the smoothing wavelet

based on the result with the smallest mean squared error.

3.4.1 Piecewise Spectrum

Let {Xt}T−1t=0 be a simulated LSW process from the piecewise constant EWS, which is

defined as

Sj(z) =





1/2 if j = J − 1 and for z ∈
[
0, 1/3

)
,

1 if j = J − 1 and for z ∈
[
1/3,

8/15
)
,

1/4 if j = J − 1 and for z ∈
[
8/15, 1

)
,

0 otherwise.

(3.9)

All of the power of this spectrum is present at the finest scale. The change points in the

spectrum were located after a third, then a further fifth of the time series. These locations

were selected because the nature of the Haar wavelet would make dyadic break points very

easy to detect. A plot of this piecewise EWS can be observed in figure 3.1(a).

A simulated LSW process with Gaussian innovations, defined as Xt for t = 0, . . . , 210−

1 = 1023, generated from the piecewise spectrum can be observed in figure 3.1(b). As the

power is at the finest scale of the EWS, the simulated time series oscillates very quickly.

From the plot of Xt, there appears to be a change in the magnitude of the oscillation at

approximately t = 300 and 550. The difference is more noticeable when you compare the

observations before and after t ≈ 550. The true changes in spectral power were actually

at t = 340 and 544.

The time series plot indicates that the process is at least non-stationary because of the

change in variance. Various transformations, such as differencing and logarithms, were

applied to the data to try to stabilise the variance without success.

The plots in figure 3.2 are histograms of the empirical wavelet coefficients obtained

from LSW processes with non-Gaussian innovations. As the scale decreases and the sup-

port of the wavelet increases, there is evidence to suggest the distribution is tending to
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Figure 3.2: Density histograms of the empirical wavelet coefficients at scales j = 9, 6, 0,
obtained from the piecewise LSW process (Xt) with t5 (in a, b and c) and χ2

1 (in d, e and
f) innovations and Gaussian pdf (blue solid line).

Gaussianity. Due to the similarities between the t5 and Gaussian distributions, the his-

tograms of the t5 empirical wavelet coefficients in figures 3.2 (a) to (c) are quite similar to

the Gaussian pdf, even at the finer scales. In contrast, the positive skew of the chi-square

distribution means the empirical wavelet coefficients in figures 3.2 (d) and (e) are also pos-

itively skewed. However, at the coarsest scale there is no empirical evidence the wavelet

coefficients in 3.2(f) are skewed, but there is a higher concentration of values around zero.

Table 3.1 contains the empirical mean and standard error of the piecewise constant

empirical wavelet coefficients, at the three selected scales and locations. The scales were

selected to represent a fine, mid and coarse scale of the NDWT, and the locations were

selected because they were positioned at the three different levels of power. All of the

mean estimates were small and close to zero, and the means for the observations at the

coarsest scale were the closest to zero for all of the different types of innovations. This is

caused by the expectation of the innovations (ξ) being set to zero and the generation of an

LSW process with no trend. The standard errors for all the different types of innovations

at each scale and location were very similar, as a result of all the innovations possessing
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E (SE) k
j 150 490 770

9 0.00986 (0.027) -0.0292 (0.039) -0.0157 (0.019)
0.0051 (0.028) 0.0051 (0.037) -0.018 (0.020)
*0.0081 (0.029) *0.056 (0.039) *0.0058 (0.019)

6 0.00046 (0.0096) -0.0026 (0.014) -0.0012 (0.0069)
-0.0054 (0.0092) -0.0098 (0.013) 0.012 (0.0070)

*0.0011 (0.010) *0.0020 (0.014) *-0.0017 (0.0071)

0 0.0012 (0.0012) -0.00047 (0.0016) 0.0018 (0.0012)
-0.00010 (0.0012) -0.00052 (0.0015) 0.00087 (0.0012)

*0.00058* (0.0013) *0.00039 (0.0016) *0.00013 (0.0012)

Table 3.1: A table of the mean and standard error of the empirical wavelet coefficients
for locations k = 150, 490, 770 and scales j = 9, 6, 0. The table consists of the numerically
estimated mean from {Xt} with: Gaussian, Student’s t5 (in italics) and χ2

1 (denoted by *)
innovations and their corresponding standard errors in brackets to 2 significant figures.

the same variance. Also, the standard errors all indicated the empirical mean was not

significantly different from zero.

Next, we examined the distribution of the raw wavelet periodogram obtained from a

simulated Xt. From theorem 3.2.1 we determined that asymptotically the distribution of

the raw wavelet periodogram would be similar to a multivariate chi-squared distribution,

therefore for a particular scale and location, Ij,k ≈ (AS)j,kχ
2
1. The plots in figure 3.3 are

histograms of the mean corrected raw wavelet periodogram defined as

Ij,k =
Ij,k

(AS)j,k
.

By dividing by the expected value of the raw wavelet periodogram we could compare the

distribution of the raw wavelet periodogram with the χ2
1 distribution. The histograms

indicated that for coarser scales the distribution is tending to a chi-square distribution

with one degree of freedom, regardless of the distribution of the innovations.

Using equations (3.6) and (3.7), we determined the analytic mean and covariance

of the raw wavelet periodogram for the piecewise constant EWS, and a sample size of

T = 210 = 1024, is

E[Ij,k] =
1

2

340∑

m=0

Ψ2
j,1(k −m) +

544∑

m=341

Ψ2
j,1(k −m) +

1

4

1023∑

m=545

Ψ2
j,1(k −m), (3.10)
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Figure 3.3: Density histograms of the mean corrected raw wavelet periodogram at scales
j = 9, 5, 0, between 0 and 10, of the piecewise constant LSW process {Xt}, with t5 (a, b
and c) and χ2

1 (d, e and f) innovations and chi-square pdf (orange dashed line).

E[Ij,k] k
j 150 490 770

9 (0.75) (1.5) (0.375)
0.729 1.50 0.357
0.758 1.35 0.394

*0.856 *1.50 *0.362

6 (0.0938) (0.188) (0.0469)
0.0921 0.183 0.0480
0.0853 0.182 0.0486
*0.105) *0.187) *0.0508

0 (0.00146) (0.00293) (0.00073)
0.00145 0.00244 0.00153
0.00134 0.00234 0.00147
*0.00157 *0.00246 *0.00147

Table 3.2: A table of the mean value of the raw wavelet periodogram for locations k =
150, 490, 770 and scales j = 9, 6, 0. The table consists of analytical mean (in brackets),
and the numerically estimated mean from {Xt} with: Gaussian, Student’s t5 (in italics)
and chi-square (denoted by *) innovations (3 s.f.).
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I9,150 I9,490 I6,490 I6,770 I0,150 I0,770

I9,150 (1.13) (0) (0) (0) (6.1× 10−5) (0)
1.10 0.140 0.00485 −9.9× 10−4 9.9× 10−4 −2.8× 10−6

3.53 0.220 -0.00517 -0.00256 0.00138 4 .0 × 10−5

*4.60 *0.456 *-0.00617 *-0.00131 *0.00742 *6.3× 10−5

I9,490 (4.5) (0.0156) (0) (0) (0)
4.29 0.206 -0.00122 2.7× 10−4 −2.0× 10−4

5.10 0.338 0.00761 7 .9 × 10−5 −6 .7 × 10−5

*23.1 *2.30 *-0.0178 *8.2× 10−4 *−4.4× 10−4

I6,490 (0.0703) (0) (0) (0)
0.0628 −1.5× 10−4 −6.9× 10−6 1.4× 10−6

0.0976 −5 .0 × 10−4 2 .4 × 10−5 −6 .4 × 10−5

*0.319 *-0.00136) *−1.6× 10−5 *3.6× 10−5

I6,770 (0.00439) (0) (1.9× 10−6)
0.00458 −1.3× 10−6 3.4× 10−5

0.00839 −1 .0 × 10−5 8 .6 × 10−5

*0.0155 *6.15× 10−7 *1.8× 10−4

I0,150 (4.30× 10−6) (7.4× 10−42)
4.0× 10−6 −2.6× 10−7

4 .7 × 10−6 −2 .5 × 10−7

*1.9× 10−5 *2.8× 10−8

I0,770 (1.1× 10−6)
4.4× 10−6

7 .6 × 10−6

*1.5× 10−5

Table 3.3: A covariance matrix of the raw wavelet periodogram. The table consists of
asymptotic covariance (in brackets), and the numerically estimated covariance from {Xt}
with: Gaussian, Student’s t5 (in italics) and chi-square (denoted by *) innovations (3 s.f.).

and

Cov[Ij,k Ij′,k′ ] = 2

(
1

2

340∑

m=0

Ψj,1(k −m) Ψj′,1(k
′ −m) +

544∑

m=341

Ψj,1(k −m) Ψj′,1(k
′ −m)

+
1

4

1023∑

m=545

Ψj,1(k −m) Ψj′,1(k
′ −m)

)2

. (3.11)

Table 3.2 shows the analytical and numerical mean of the raw wavelet periodogram. Notice

that the mean is
√

1000 times the standard error of dj,k in table 3.1, which provides

empirical evidence E[Ij,k] = Var[dj,k]. We observed that the expectations of Ij,k are quite

close to the analytic values.

The estimates of the covariance at the coarsest scales in table 3.3 are the closest to the
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Figure 3.4: Plots of the TI de-noised estimate of the EWS from the same simulated LSW
process, using the optimal SW: D9 in (a) & (b), and D10 in (c), for LSW process {Xt}
simulated from the piecewise constant spectrum with Gaussian, t5 and χ2

1 innovations

true values. In this table we have omitted some of the combinations of the selected scales

and locations for simplicity, but also because of the decay in the covariance structure, many

of the values were close approximately zero. Therefore, the combinations of the covariances

calculated were chosen to given a representative sample. The biggest difference can be

observed at the finest scale. The variance of I9,150 with Student’s t5 and χ2
1 innovations,

are approximately three and four times bigger than the analytic variance. As the distance

between locations increase, the analytic covariance is negligible if they were far enough

apart. Even though the analytic covariance for the raw wavelet periodogram at the same

location but different scales is small, it is larger than different locations at the same scale.

There is also a decrease in the variance for coarser scales. However, all the numerical

estimates are larger than the analytic covariance.

Figure 3.4 shows plots of the EWS using TI de-noising obtained from the LSW process

Xt with Gaussian (a), t5 (b) and χ2
1 (c) innovations. Each plot is the estimate produced

using the optimal smoothing wavelet. In each plot there appears to be very little leakage

from the finest scale into the neighbouring coarser scale. Although, there are a few loca-

tions where there are Gibbs phenomena at approximately the same location and different

scales.

For the finest scale, where all the power of the piecewise constant EWS for this example

is contained, we have plotted the true EWS, S9(z), the TI de-noised estimate, Ŝ9(z), and

the corrected raw wavelet periodogram, L9(z), with Gaussian (figure 3.5(a)), t5 (figure

3.5(b)) and χ2
1 (figure 3.5(c)) innovations. The plot of L9(z) depicts how noisy the data

is and how well the method works at recovering the signal. The negative values of L9(z)

are a side effect of the leakage between scales. The Gibbs phenomena are present at large
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Figure 3.5: Plots of the true piecewise constant EWS (S9(z): dashed red line), TI de-
noised estimate (Ŝ9(z): solid blue line) using the optimal smoothing wavelet (SW) and
bias corrected raw wavelet periodogram (L9(z): grey dotted line), obtained from the LSW
process {Xt} simulated from the piecewise constant spectrum with Gaussian, t5 and χ2

1

innovations.
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errors and negative values of L1(z). For example, Gibbs phenomena can be observed at

z ≈ 1/3 in figure 3.5(a), z ≈ 0.48 in figure 3.5(b) and z ≈ 0.2, 0.3, 0.4 and 0.5 in figure

3.5(c).

One problem with the TI de-noising method is its inability to detect the piecewise

constant nature of the signal. This is a consequence of the cycle spinning employed to

alleviate the Gibbs phenomena, which would be present at the change points where there

would be a discontinuity in the wavelet transformation.

3.4.2 Slowly Evolving Spectrum

Let {Yt}T−1t=0 be the simulated time series from the slowly evolving EWS, which is defined

as

Sj(z) =





sin(2πz) + 0.1 if j = J − 4 and for z ∈ [0, 1),

0 otherwise.

(3.12)

This spectrum has been defined with power only at the fourth finest scale. Figure 3.6(a) is

a plot of the slowly evolving spectrum generated, once again with the Haar wavelet. The

change in power is a lot slower than the piecewise constant EWS, and because the power

is set at a coarser scale the subsequent LSW process in figure 3.6(b) does not oscillate

as quickly as the Xt. Also, magnitude of the oscillation changes slowly, displaying an

increase, decrease, increase then decrease in the process’s variance. The plot of Yt clearly

demonstrates the non-stationary nature of the process.

Similarly to the piecewise example, the slowly evolving coefficients tend to Gaussianity

as the scale decreases and the support of the wavelet increases, see the plots in figure 3.7.

They behave in a similar manner, where t5 coefficients are more concentrated around zero

and the χ2
1 coefficients are positively skewed at finer scales.

The mean and standard error of the slowly evolving coefficients for all three types

of innovations are displayed in table 3.4. Again, the expectations are all close to zero

with a standard error that provided evidence to suggest the means were not significantly

different to zero. However, we observed the largest empirical mean was for d6,770 with χ2
1

innovations possessed weak evidence the mean was not zero. The increase in mean was

possibly caused by the location of this coefficient near one of the highest two peaks in

the EWS and the skewed error distributions. However, as the 95% CI was (0.01, 0.31),

we felt the weak evidence could be ignored. Similarly to the piecewise constant wavelet

coefficients, we also noticed that the standard errors for the different innovations were
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(a) d9,k, with t5
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Figure 3.7: Density histograms of the empirical wavelet coefficients at scales j = 9, 6, 0,
obtained from the slowly evolving LSW process (Yt) with Student’s t5 (in plots a, b and c)
and χ2

1 (in plots d, e and f) innovations and Gaussian probability density plot (red dashed
line).
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E (SE) k
j 150 490 770

9 0.0076 (0.011) -0.0048 (0.0047) 0.0018 (0.015)
-0.0083 (0.012) -0.00057 (0.0048) 0.018 (0.014)
-0.0051* (0.11) -0.0026* (0.0051) 0.022* (0.014)

6 0.015 (0.065) 0.026 (0.025) -0.040 (0.078)
-0.099 (0.065) 0.042 (0.025) -0.015 (0.078)
-0.040* (0.064) -0.013* (0.026) 0.16* (0.076)

0 0.0041 (0.011) 0.0071 (0.0045) -0.032 (0.014)
-0.013 (0.011) -0.0067 (0.0046) -0.013 (0.014)

0.0059* (0.011) 0.0033* (0.0045) -0.016* (0.014)

Table 3.4: A table of the mean and standard error of the empirical wavelet coefficients
for locations k = 150, 490, 770 and scales j = 9, 6, 0. The table consists of the numerically
estimated mean from {Yt} with: Gaussian, Student’s t5 (in italics) and χ2

1 (denoted by *)
innovations and their corresponding standard error in brackets to 2 significant figures.

very similar for each scale and location.

The histogram of the mean corrected raw wavelet periodogram (Ij,k) for LSW Yt with

χ2
1 and t5 innovations are plotted in figure 3.8. Similarly to the plots of Ij,k calculated

from Xt, the distribution is tending to a χ2
1 distribution as the the support of the wavelet

increases.

For a sample size of T = 210 = 1024, the analytic mean and covariance of the raw

wavelet periodogram for the slowly evolving EWS is

E[Ij,k] =

1023∑

m=0

Ψ2
j,4(k −m)

[
sin

(
2πm

1024

)
+ 0.1

]
, (3.13)

and

Cov[Ij,k Ij′,k′ ] = 2

(
1023∑

m=0

Ψj,4(k −m) Ψj′,4(k
′ −m)

[
sin

(
2πm

1024

)
+ 0.1

])2

. (3.14)

Table 3.5 shows the true and empirical mean for Gaussian, t5 and χ2
1 innovations. As

previously observed the expected value of the raw wavelet periodogram is very close to

the analytical mean and the standard error of dj,k is approximately
√

1000 times smaller

than Var[Ij,k]. This evidence gives additional support to our findings in 3.2.

We observe similar results in the covariance matrix for the slowly evolving EWS (table

3.6) as for the piecewise constant EWS, where the covariance values tend to be higher for

the non-Gaussian simulations. All of the Gaussian estimates are very close to the analytic
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Figure 3.8: Density histograms of the mean corrected raw wavelet periodogram at scales
j = 9, 6, 0, between 0 and 10, of the slowly evolving LSW process {Yt}, with Student’s t5
(in a, b, and c) and χ2

1 (in d, e and f) innovations, with χ2
1 pdf (orange dashed line).

Ij,k k
j 150 490 770

9 (0.138) (0.0222) (0.206)
0.132 0.0222 0.213
0.143 0.0223 0.193

*0.130 *0.0261 *0.202

6 (3.99) (0.642) (5.98)
4.21 0.636 6.05
4.24 0.627 6.10

*4.08 *0.687 *5.84

0 (0.0924) (0.0149) (0.139)
0.121 0.0203 0.189
0.124 0.0212 0.198

*0.123 *0.0198 *0.182

Table 3.5: A table of the mean value of the raw wavelet periodogram for locations k =
150, 490, 770 and scales j = 9, 6, 0. The table consists of analytical mean (in brackets),
and the numerically estimated mean from {Yt} with: Gaussian, Student’s t5 (in italics)
and chi-square (denoted by *) innovations (3 s.f.).
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I9,150 I9,490 I6,490 I6,770 I0,150 I0,770

I9,150 (0.0378) (0) (0) (0) (2.1× 10−6) (1.3× 10−43)
0.0359 0.00006 -0.00302 -0.00302 0.00140 -0.00080
0.196 -0.00054 -0.00188 -0.0594 0.00432 -0.00252

*0.0835 *-0.00040 *-0.0169 *-0.0130 *0.00689 *0.00221

I9,490 (0.00098) (0.00180) (0) (0) (0)
0.00088 0.00654 0.00040 -0.00016 0.00004
0.00247 0.0189 -0.00913 0.00025 0.00038
*0.00942 *0.0697 *-0.00637 *0.00001 *-0.00073

I6,490 (0.825) (0) (0) (2.1× 10−39)
0.796 0.0744 -0.0112 -0.00432
0.977 -0.434 0.00141 -0.0192
*1.58 *-0.0294 *-0.00671 * -0.00569

I6,770 (71.5) (0) (0.01770)
71.2 0.06021 0.470
79.5 0.0339 0.840
*112 *-0.0353 *1.31

I0,150 (0.171) (9× 10−37)
0.0277 -0.00122
0.0532 0.00450

*0.0372 *0.00047

I0,770 (0.0384)
0.0764
0.0838

*0.0762

Table 3.6: A covariance matrix of the raw wavelet periodogram. The table consists of
asymptotic covariance (in brackets), and the numerically estimated covariance from {Yt}
with: Gaussian, Student’s t5 (in italics) and chi-square (denoted by *) innovations (3 s.f.).
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Figure 3.9: Plots of the TI de-noised estimate of the EWS using the optimal smoothing
wavelet: Haar in (a) & (b) and D4 in (c), for LSW process {Yt} simulated from the
piecewise constant spectrum using Gaussian, t5 and χ2

1 innovations.

covariance except for Var[I0,770], which is approximately double the analytic variance.

This is probably caused by the leakage between scales, as this location where the power

is at its greatest on scale J − 4.

Figure 3.9 shows the plots of the TI de-noising estimates of the EWS from the LSW

process Yt with Gaussian, t5 and χ2
1 innovations. Each plot is the estimate produced

using the optimal smoothing wavelet. These plots demonstrate how well the TI de-noising

method works at recovering the spectra which are smooth. For Yt with Gaussian or t5, we

have the same optimal smoothing wavelet. There appears to be less leakage from l = 4

into adjacent scales for the t5 EWS estimate in 3.9(b), and the greatest leakage in the χ2
1

estimate 3.9(c).

As all of the power of the EWS was present at scale j = 4, we plotted the bias corrected

raw wavelet periodogram, TI de-noising estimator and true EWS in figure 3.10 for j = 4

and each type of innovation. The demonstrate how noisy the raw wavelet periodogram

is and how well the TI de-noising estimator performs at recovering the true EWS. The

estimates for each type of innovation perform reasonably well at recovering the true slowly

evolving EWS. Only the estimator for the t5 innovations suffers from the presence of Gibbs

phenomena.
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(a) Gaussian Innovations, SW = Haar
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(b) Student’s t5 Innovations, SW = Haar
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(c) Chi-squared Innovations, SW = D4
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Figure 3.10: Plots of the true slowly evolving EWS (S6(z): dashed red line), TI de-
noised estimate (Ŝ6(z): solid blue line) using the optimal smoothing wavelet (SW) and
bias corrected raw wavelet periodogram (L6(z): grey dotted line), obtained from the
LSW process {Yt} simulated from the slowly evolving spectrum with Gaussian, t5 and χ2

1

innovations.
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3.4.3 Conclusion

We used empirical estimates to demonstrate theorems 3.1.1 and 3.2.1. The empirical

wavelet coefficients and raw wavelet periodogram were obtained from the LSW processes

using the Haar wavelet. The Haar wavelet has the smallest support of the wavelets, which

led us to believe these results would produce the slowest asymptotic convergence to the

distributions in theorems 3.1.1 and 3.2.1.

The results imply the distribution of the empirical wavelet coefficients, and hence the

raw wavelet periodogram, at the finest scale are influenced the most by the distribution

of the innovations. The histograms suggested the empirical coefficients and periodogram

were tending to the asymptotic distributions by mid scales, especially if the distributions

of the innovations were reasonably close to a Gaussian. However, even highly skewed

distributions, such as the χ2
1, demonstrated evidence of tending to Gaussianity even at the

fourth finest scale.

The means calculated for the empirical wavelet coefficients and raw wavelet peri-

odogram were all reasonably close to the analytic means, although the periodogram vari-

ance varied the most. We suspected the variation was caused by the differences between

the fourth moments of the Gaussian, t5 and χ2
1 distributions. Differences were mainly

evident at the finest scale, and we theorised the variance of the t5 periodogram would be

approximately four times bigger than the Gaussian periodogram. In table 3.3 Var[I9,150]

of the t5 periodogram is approximately 3.5 times bigger than the Gaussian periodogram,

whereas in table 3.6 Var[I9,150] is approximately five times bigger than the t5 periodogram

TI de-noising estimation works under the assumption of a χ2
1 distribution, so given the

differences between the distribution og the innovations and the subsequent effect this had

upon the distribution of the periodogram, the smoothed estimates were quite reasonable.

It appeared to cope well with the different innovation distributions, especially considering

the assumed error variances at the finer scales were very different to the actual empirical

error variance.

As TI de-noising estimation is a wavelet shrinkage method, our estimates in figures 3.5

and 3.10 indicates the benefits of the decimated wavelet transformation (Gaussianity and

reducing the covariance) in recovering the true function from noisy data. The addition of

a confidence interval may prove beneficial in determining the accuracy of the estimate.
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Chapter 4

Naive Spectral Confidence Interval

using the Central Moving Average

An unbiased estimate, L, of the evolutionary wavelet spectrum (EWS) can be obtained by

multiplying the raw wavelet periodogram by the inner product matrix, as shown in section

2.6.2 in equation (2.63). However, although this estimate is unbiased, it is not consistent.

Applying a smoothing technique to the raw wavelet periodogram, before correcting by

inner product matrix, can reduce the variance of the estimator.

One simple method of smoothing is to use a weighted linear combination of the wavelet

periodogram ordinates such as a running mean. The statistical properties of the running

mean are easy to calculate analytically and computationally. Due to its simplicity it

provides a good foundation for investigating the statistical behaviour of the EWS estimate.

A useful statistical measure for uncertainty is the confidence interval (CI). It can be

used to establish the efficacy of a new technique via simulation to see if the true value is

contained within the CI. In practice it provides a measure of accuracy for the results. This

chapter investigates methods for producing confidence intervals, when the central moving

average of the raw wavelet periodogram, is used as the estimate of the EWS

4.1 Estimation of the Evolutionary Wavelet Spectrum

The central moving average estimate of the EWS will depend on two wavelets. The first is

the synthesis wavelet, this is the wavelet which we assume has generated the LSW process

and in practice, this is usually unknown. To obtain the raw wavelet periodogram we use an

analysis wavelet. This should be the same as the synthesis wavelet, but as the synthesis
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wavelet is unknown it is usually up to the user to determine the best analysis wavelet

to use. However, we shall assume that the synthesis wavelet is known and therefore the

analysis and synthesis wavelet are equivalent.

4.1.1 Smoothed Wavelet Periodogram

We now define our central moving average (CMA) estimate.

Definition 4.1.1. Let Ĩj,k be the CMA of the raw wavelet periodogram, {Ij,k}, of a LSW

process of length T , defined by

Ĩj,k =
1

2nj + 1

nj∑

r=−nj

Ij,k+r, for j ∈ N and k, nj ∈ [0, T − 1]. (4.1)

We call the quantity nj the bin width, and it is the number of observations at scale j,

before and after location k, we average the raw wavelet periodogram. Note the bin width

can be different for each scale.

Using the exact expectation from equation (3.6), we find the expectation of the CMA

by

E[Ĩj,k] =
1

2nj + 1

nj∑

r=−nj

E[Ij,k+r]

=
1

2nj + 1

nj∑

r=−nj

( ∞∑

l=1

∞∑

m=−∞
Ψ2
j,l(k + r −m)Sl,m + O(T−1)

)
. (4.2)

Equation (4.2) could be simplified by using the inner product matrix, to obtain

E[Ĩj,k] =
1

2nj + 1

nj∑

r=−nj

J−1∑

l=0

Aj,l Sj,k+r + O(T−1). (4.3)

We shall use equation (4.3), as it simplifies future analytic and computational calculations.

We shall assume:

• the raw wavelet periodogram is independent between scales;

• the statistical properties of the raw wavelet periodogram in theorem 3.2.1 can be

applied to all scales.

These assumptions will also help to simplify future calculations and provide the basis for

the confidence interval estimation.
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Therefore, with our assumptions the covariance of the CMA estimate is

Cov[Ĩj,k, Ĩj,k′ ] = Cov


 1

2nj + 1

nj∑

r=−nj

Ij,k+r,
1

2nj + 1

nj∑

u=−nj

Ij,k′+u


 ,

=
1

(2nj + 1)2

nj∑

r=−nj

nj∑

u=−nj

Cov[Ij,k+r, Ij,k′+u],

=
2

(2nj + 1)2

nj∑

r=−nj

nj∑

u=−nj

( ∞∑

l=0

∞∑

m=−∞
Ψj,l(k + r −m) Ψj,l(k

′ + u−m)Sl,m

)2

+O(T−1).

In practice we have no means of estimating the EWS for m /∈ [0, T − 1) and l > J − 1.

Therefore, we shall assume these values are negliable, and approximate the covariance of

the CMA estimate by

Cov[Ĩj,k, Ĩj,k′ ] ≈
2

(2nj + 1)2

nj∑

r=−nj

nj∑

u=−nj



J−1∑

l=0

2J−1∑

m=0

Ψj,l(k + r −m) Ψj,l(k
′ + u−m)Sl,m




2

.

(4.4)

As Cov[Ĩj,k, Ĩj,k′ ] 6= 0, the variance of the CMA is the sum of the variance and co-

variance of the raw wavelet periodogram used to calculate the estimate. Therefore, the

variance of the CMA is

Var[Ĩj,k] =
1

(2nj + 1)2

nj∑

r=−nj

[
Var[Ij,k+r] + 2

nj∑

u=r+1

Cov[Ij,k+r, Ij,k+u]

]
,

=
2

(2nj + 1)2

nj∑

r=−nj



(
J−1∑

l=0

Aj,lSl,k

)2

+O
(

2j

T

)

+ 2

nj∑

v=u+1





( ∞∑

l=1

∞∑

m=−∞
Ψj,l(k + r −m) Ψj,l(k + u−m)Sl,m

)2

+O(T−1)






 .

Then using the same approximations for the variance and covariance described previously,

we have

Var[Ĩj,k] ≈
2

(2nj + 1)2

nj∑

r=−nj



(
J−1∑

l=0

Aj,l Sl,k

)2

+2

nj∑

u=r+1

(
J−1∑

l=0

2J∑

m=1

Ψj,l(k + r −m) Ψj,l(k + u−m)Sl,m

)2

 .

(4.5)

Assuming theorem 3.2.1, and independence between scales an approximate distribution

of the raw wavelet periodogram is Ij,k ∼ (AS)j,k χ
2
1. As our estimator is a linear combi-
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nation of assumed iid observations, we can apply Cochran’s Theorem. From Cochran’s

Theorem we know that the sum of i = 1, . . . N independent chi-squared observations

each with νi degrees of freedom also has a chi-squared distributions with
∑

i νi degrees of

freedom. Therefore, we can approximate the distribution of the CMA estimate as

Ĩj,k ∼
1

2nj + 1

nj∑

r=−nj

(AS)j,k+r χ
2
1 =


 1

2nj + 1

nj∑

r=−nj

(AS)j,k+r


χ2

2nj+1,

where χ2
2nj+1 is the chi-squared distribution with 2nj + 1 degrees of freedom, with a mean

of (2nj + 1)−1
∑nj

r=−nj (AS)j,k+r. As nj →∞ this distribution is asymptotically Gaussian

and this will happen quickly. Therefore, we shall assume for large nj the distribution of

the Ĩj,k is approximately Gaussian with mean and variance as defined in equations (4.3)

and (4.5).

4.1.2 Smoothed EWS Estimate

We can now use the information we obtained about the smoothed wavelet periodogram to

produce an estimate of the EWS. This procedure is very simple as we now substitute Ĩj,k

in equations (2.63) for Ij,k.

Definition 4.1.2 (CMA estimate of the EWS). Let S̃j,k be the CMA estimate of the

EWS, defined by

S̃j,k =
J−1∑

l=0

A−1j,l Ĩl,k =
1

2nj + 1

J−1∑

l=0

A−1j,l

nj∑

r=−nj

Il,k+r, for j ∈ N, k ∈ Z, (4.6)

where A is the inner product matrix from definition 2.6.7.

To find the expectation of the CMA smoothed EWS, we correct the CMA of the

raw wavelet periodogram from equation (4.3) by the inverse inner product matrix, A.
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Therefore, the expectation of S̃j,k is

E[S̃j,k] =
1

2nj + 1

J−1∑

l=0

A−1j,l

nj∑

r=−nj

E[Il,k+r]

=
1

2nj + 1

nj∑

r=−nj

J−1∑

m=0

J−1∑

l=0

A−1j,l Al,m Sm,k+r,

=
1

2nj + 1

nj∑

r=−nj

J−1∑

m=0

δj,m Sm,k+r,

=
1

2nj + 1

nj∑

r=−nj

Sj,k+r, (4.7)

which is a biased estimate.

Similarly, the variance of the CMA smoothed EWS is simply the variance of the CMA

corrected by the squared inverse inner product matrix, which results in

Var[S̃j,k]

=

(
J−1∑

l=0

A−1j,l

)2

Var
[
Ĩl,k

]

=
2

(2nj + 1)2

(
J−1∑

l=0

A−1j,l

)2 nj∑

r=−nj

[
Var[Il,k+r] + 2

nj∑

u=r+1

Cov[Il,k+r, Il,k+u]

]

=
2

(2nj + 1)2

(
J−1∑

l=0

A−1j,l

)2 nj∑

r=−nj



(

J−1∑

m=0

Aj,m Sm,k+r

)2

+ 2

nj∑

u=r+1

(
J−1∑

m=0

2J∑

n=1

Ψj,m(k + r − n) Ψj,m(k + u− n)Sm,n

)2



=
2

(2nj + 1)2

s∑

r=−s

[
S2
j,k+r

+ 2
s∑

u=r+1

(
J−1∑

l=0

J−1∑

m=0

2J∑

n=1

A−1j,l Ψj,m(k + r − n) Ψj,m(k + u− n)Sm,n

)2

 .

(4.8)

The calculations of the expectation and variance demonstrates how smoothing can often

reduce the variance but can also introduce bias into our estimate.

As the distribution of the CMA wavelet periodogram is approximately Gaussian and

because our estimate is a linear calculation, we can infer that the distribution of the

bias corrected CMA wavelet periodogram is also approximately Gaussian with mean and

variance from equations (4.7) and (4.8).
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4.1.3 Confidence Interval

Assuming theorem 3.2.1 is true for all scales and independence between scales, a (1 −

α)100% confidence interval for the EWS (Sj,k) can be calculated using the same method

applied to the confidence interval estimation of the empirical mean for a sample of Gaussian

observations. This results in a lower and upper bound of the form

Lower = S̃j,k − 1.96

√
Var[S̃j,k], (4.9)

Upper = S̃j,k + 1.96

√
Var[S̃j,k]. (4.10)

As nj → ∞, the critical value will tend towards the critical value of the Gaussian distri-

bution. If α is 0.05 this value will be approximately 1.96.

4.2 Computational Details

We created a function in the statistical package R (R Development Core Team, 2012) to

compute the central moving average estimator of the EWS with confidence intervals. To

produce these estimates our program used functions from the wavethresh (Nason, 2012)

and igraph (Csardi, 2010) packages. The user must supply five components, which are:

• The LSW process for which an EWS estimate is to be produced.

• Analysis wavelet (AW), which is defined as a number between 1 and 10 and will be

a wavelet from the Daubechies Extremal Phase family.

• Smoothing wavelet (SW), with the same parameters of the analysis wavelet and is

used to define the ewspec estimate we use to select our bin width.

• p-value, α ∈ [0, 1], the default value is 0.05 to calculate the 95% confidence interval.

• Whether the bin width, nj , should be selected separately for each scale.

Although the CMA estimator does not require a SW for its calculations, selection of the

bin width (nj) was based on the CMA estimator with the smallest average mean squared

error (AMSE) compared with the translation-invariant de-noised estimator of Nason et al.

(2000), which does require a SW. In absence of the true EWS, this is the next best

approximation, can be easily obtained using the ewspec function and was also the method

used by Nason (2013). If there is no prior knowledge available to determine AW and SW,

we advise using Daubechies Extremal Phase wavelet with 10 vanishing moments (D10).
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Currently, this is the smoothest wavelet available in this function, and should produce

a TI de-noising estimate which is less susceptible to Gibbs phenomena and large errors

in the data. Also, if there is no prior knowledge, we suggest the user selects the option

to calculate the bin width for each scale separately because varying the bin width will

increase the probability that features of the EWS at a particular scale are more likely to

be identified.

The first step is to obtain the raw wavelet periodogram from the LSW process with the

user defined AW, which is obtained using the ewspec function from wavethresh package.

Then for each scale a CMA estimate is produced using the function running.mean from

the igraph package for values of nj = 1, . . . , T − 1. To ensure the sample size of our

CMA estimate remained the same as the raw wavelet periodogram the first and last nj

observations were reflected about their ends (similar to many functions in wavethresh).

An alternate method would be to link the values at the start and end of the process, but

this is inappropriate as there is no evidence to suggest that the statistical properties of the

initial observations will be the equivalent to the end. As our LSW assumptions restricts

the second order structure to evolve slowly, it is not unreasonable to assume that the values

preceding and following a particular location will possess similar statistical properties.

Code was written in R to calculate the variance of the raw wavelet periodogram based

on equation (3.7). We used the CMA estimator of the EWS as proxy for the truth. Firstly,

the cross-auto correlation wavelet (definition 2.6.5) is calculated using the given AW, which

is then used to calculate the covariance of the raw wavelet periodogram between different

locations at the same scale. For each scale it returns a T × T matrix, with the requested

covariance values. This does not mean there is no covariance, only that the calculation has

not been made. To increase the speed of the computation the maximum lag evaluated can

be decreased. As the covariance decreases to zero as the lag increases it is not unreasonable

to set these to zero.

The variance of the CMA estimator of the wavelet periodogram (Ĩ) is simply the

summation of the variance and covariance of the raw wavelet periodogram divided by

(2nj + 1)2. Finally, to obtain the variance of our CMA estimator of the EWS (S̃), we

correct Var[Ĩ] by the inverse inner product matrix squared. Using the previously define p-

value we calculate the confidence interval for the CMA estimate. The function returns the

values of the bin width nj for j = (J−1), . . . 0, CMA estimator, variance and (1−α)100%

CI for the S̃ and Ĩ.
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nj j
9 8 7 6 5 4 3 2 1 0

Xt 75 74 77 77 71 68 55 64 42 41

Yt 56 66 74 78 84 74 77 60 71 63

Table 4.1: Bin width (nj) used to perform the central moving average on the raw wavelet
periodogram for Xt and Yt at all scales.

4.2.1 Simulations

To test the performance of the CMA, an estimate of the EWS using the test data sets

described in section 3.4 with Gaussian innovations was compared to the original spec-

trum from equations (3.9) and (3.12). The TI de-noising estimate was produced using

Daubechies Extremal Phase wavelet with ten vanishing moments, and different bin widths

were selected for each scale.

The bin width, nj , for both LSW processes is listed in table 4.1. The bin width tended

to be biggest at scales closest to the scale which contained all the power, i.e. scale j = 9

for Xt and j = 6 for Yt. The size of the chosen bin width (generally) decays as the scales

become coarser and finer than the power scale.

The plots in figure 4.1(a) and 4.1(b) are the estimated spectra for all scales of the

piecewise and slowly evolving spectra, respectively. Some of the leakage between scales

has resulted in some negative values in the CMA estimate of the EWS. In figure 4.1(a),

the negative values are mainly contained at scales j = 8, 7. As all of the power of the

piecewise spectrum is at the finest scale the power can only leak into coarser scales. In

figure 4.1(b) of the CMA estimate of the slowly evolving EWS there is evidence that power

has leaked into scales j = 8, 7, 5 and 4, indicating that power located at a mid scale will

leak into finer and coarser scales. At scale j = 5, there appears to be a large amount of

negative power. To evaluate the extent of leakage between scales we examine in detail

scales j = 9, 8 and 7 of the CMA estimate of the piecewise EWS and j = 7, 6 and 5 of the

slowly evolving EWS.

The plots in figure 4.2 (a) and (b) are the true, estimated and 95% CI of the piecewise

EWS at scales j = 7, 8, which are the second and third finest scale. Even though there

appears to be some degree of power present at these scales, as the 95% CI contains zero

there is no significant difference between these values and zero.

Figure 4.2(c) shows the plots of the true, estimated and 95% CI of the piecewise EWS

at scale j = 9, which is the scale that contains all the power. The CMA estimator struggles
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(a) CMA of the Piecewise EWS
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(b) CMA of the Slowly Evolving EWS
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Figure 4.1: Plots of the central moving average estimate of the piecewise (a) and slowly
evolving (b) spectra.

to identify the change points at the correct locations and CMA estimate implies the first

change point in the EWS at scale j = 9 is z ≈ 0.25 rather than z = 1/3. The 95% CI does

not always capture the true signal. Approximately 17.09% of the true signal fell outside

the CI. However, the CMA estimator is not susceptible to Gibbs phenomena as the TI

de-noised estimate is.

As D10 is one of the smoother wavelets, selecting of SW = D10 will mean the TI de-

noising estimator will struggle with piecewise constant signals, and due to the method of

selecting the bin widths this also affects how well the CMA estimate performs. However,

we believe the shift in the location of the change point observed in figure 4.2(c) is caused by

a very large raw wavelet periodogram value after the change point at z ≈ 0.35 (see figure

3.5(a) in section 3.4.1). As this value enters into the CMA window it greatly increases the

estimator, and as it exits there is a sharp reduction. The poor CI indicated that either

our assumptions of the covariance or the Gaussian distribution of the CMA were not

appropriate. However, as our estimate relies so heavily upon the estimate of TI de-noising

this could also contribute to the poor performance of the CI.

All three of the CMA estimates in figure 4.3 of the slowly evolving EWS for scales

j = 7, 6 and 5 are very similar to the true value. This demonstrates how well the TI

de-noising works at estimating smooth functions, even though smoothing is based on the

Haar wavelet (see figure 3.10 in section 3.4.2).

However, the 95% CI for scales j = 7, 6 and 5 all include zero ∀ z. The CI imply there
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(a) CMA and 95% CI at j = 7, with bin width n7 = 77
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(b) CMA and 95% CI at j = 8, with bin width n8 = 74
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(c) CMA and 95% CI at j = 9, with bin width n9 = 75
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Figure 4.2: Plots of the CMA estimate (blue solid line), with a 95% CI (grey area) and
true EWS (red dashed line) of the piecewise EWS at scales j = 9, 8, 7. CMA estimate
obtained using the Haar analysis wavelet, and SW = D10.
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(a) CMA and 95% CI at j = 5, with bin width n5 = 77
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(b) CMA and 95% CI at j = 6, with bin width n6 = 74
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(c) CMA and 95% CI at j = 7, with bin width n7 = 75
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Figure 4.3: Plots of the CMA estimate (blue solid line), with a 95% CI (grey area) and true
EWS (red dashed line) of the slowly evolving EWS at scales j = 7, 6, 5. CMA estimate
obtained using the Haar analysis wavelet, and SW = D10.
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is no significant evidence to suggest there is any power at these scales. This is further

evidence to suggest the variance of the CMA estimate of the EWS may not be accurate,

possibly a result of assuming independence by scale.

4.2.2 Conclusion

The CMA estimator work reasonably well at recovering the true EWS where the underlying

function is smooth, but struggles to accurately identify the change points of the piecewise

constant EWS because of the over influence of large observations. This suggested that

a more appropriate weighting of the observations within the bin width, which puts more

importance on observations closer to the location, may help to solve this problem.

As the bin width is the parameter which determines how smooth the CMA estimate,

using the TI de-noising estimate influences the performance of the CMA estimate. How-

ever, the results of the Xt and Yt EWS estimates indicate that this may not be the best

method for selecting bin widths as it appears to restrict the range of functions which it

can adequately model.

Further consideration should be given to the estimation of the variance. In section

3.4 the evidence suggested that there was a covariance between observations at different

scales at the same location or close by. Therefore, by considering the covariance of the

raw wavelet periodogram at different scales and at the same location or close by, we may

be able to improve the accuracy. This may improve the CI.

To improve our method we could include a larger variety of wavelets. This would

increase the range of functions which could be recovered. The current method was based

upon wavelets which we were confident conformed to our assumptions.
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Chapter 5

Bayesian Modelling of the Log

Transformed EWS

This chapter describes the theoretical calculations required to produce estimates and corre-

sponding confidence intervals for the evolutionary wavelet spectrum (EWS) using Bayesian

wavelet shrinkage of the log transformed raw wavelet periodogram. We shall assume that

we wish to model the EWS of an LSW process over a fixed time period.

We use work from chapter 3 to define our regression model, and our method was

developed following the smoothing technique of Pensky et al. (2007) for a stationary

spectrum. The main difference between the two methods for estimating the spectrum

stems from the progression from a stationary to a locally stationary spectrum. Also, we

are using the calculation of the posterior distribution to obtain a confidence interval for

our estimate.

We shall begin by developing the regression model for our problem in section 5.1. In

particular, an expression for the distribution of the error term (section 5.1.1) and discrete

wavelet transformation (DWT) of the regression model (section 5.1.2).

We then develop a Bayesian shrinkage rule in section 5.2 to ‘shrink’ the wavelt co-

efficient. Section 5.1.1) and knowledge of the DWT provides the foundations for the

mixture-likelihood in section 5.2.1. We investigate using the Berger-Müller mixture prior

which combines the Dirac delta function and a symmetric unimodal distribution to con-

vey known information about the sparsity of wavelet coefficients in section 5.2.2. These

naturally lead to the formation of a posterior distribution (section 5.2.3), allowing calcu-

lation of the posterior mean (section 5.2.4) and variance (section 5.2.5). In section 5.2.6

we discuss determining the hyperparameters. Firstly the likelihood weights, followed by
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the prior precision and weights.

Sections 5.3.1 and 5.3.2 consider two possible distributions as part of the mixture prior:

the Gaussian and Laplace distributions. For each of these distributions we produce the

analytic calculations using both priors for the posterior distribution, mean and variance.

We also calculate the marginal maximum likelihood to use in hyperparameter estimation.

5.1 Regression Model for the Log-EWS

Suppose we have a LSW process observed at 2J = T uniformly spaced points over a fixed

time period. Using a pre-determined analysis wavelet, which we shall assume is the same

as the synthesis wavelet used to generate the LSW process, we obtain its raw wavelet

periodogram, Ij,k, for j = 0, . . . , J−1 and k = 0, . . . T −1. Nason et al. (2000) determined

that the expectation of the raw wavelet periodogram is Rj(z) =
∑

lAj,lSl(z), where A is

the inner product matrix from definition 2.6.7 and S is the EWS in definition 2.6.2. If

we assume the distribution of the innovations (ξj,k) in (2.53) are independent, identically

distributed (iid) Gaussian, and the periodogram is independent between scales (j) and

locations (k), theorem 3.2.1 suggests we could model the relationship between the EWS

and periodogram as

Ij,k ≈ Rj
(
k

T

)
Z2
j,k, (5.1)

where Zj,k are iid N (0, 1), such that Z2
j,k

iid∼ χ2
1. Direct estimation using (5.1) would be

difficult because of the highly skewed error and multiplicative relationship between the

expectation and error. However, by using a log transformation equation on (5.1) this

multiplicative relationship becomes additive and we can stabilise the error and pull the

distribution closer to Gaussianity. This results in a new regression model of the form

log(Ij,k) = log

{
Rj

(
k

T

)}
+ εj,k, (5.2)

where we assume εj,k is iid with a log(χ2
1) distribution.

The distribution of εj,k does not possess a zero mean. However, by subtracting the

expectation of εj,k from both sides of equation (5.2), we obtain the following model:

Hj,k = gj

(
k

T

)
+ ej,k, (5.3)

for j = 0, . . . , J − 1 and k = 0, . . . T − 1, where
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• Hj,k = log(Ij,k)− E[εj,k],

• gj
(
k/T
)

= log
{
Rj
(
k/T
)}

,

• ej,k = εj,k − E[εj,k].

We shall call Hj,k the log-wavelet periodogram. For simplicity, we assume the raw wavelet

periodogram (Ij,k) is independent by scale and hence the log-wavelet periodogram is also

independent by scale. Therefore each scale j can be smoothed separately. Hence, we shall

drop the scale subscript j, and assume that each scale of the raw wavelet periodogram

will be addressed in the same manner.

Equations (5.1) and (5.3) are very similar to equations (2.1) and (2.2) in Pensky et al.

(2007) for the stationary periodogram and spectrum. The key difference is between the

error distribution for the stationary and LSW cases. The distribution of the stationary

peridogram error is approximately χ2
2 in Pensky et al. (2007, equation (2.1)), whereas the

error term in our case is approximately χ2
1 in (5.1).

Next we shall develope the distribution of the log error term from equation (5.3).

5.1.1 Distribution of the Log-Error

Assume that we have independence between scales, then for a particular scale Zk
iid∼

N (0, 1), which implies Z2
k ∼ χ2

1. We can deduce that the distribution of log(Z2
k) is log(χ2

1).

Lemma 5.1.1 (Distribution of the Error Term). Assuming we have independence by

scale and location, the random variables ek for k = 0, . . . , T −1 are approximately iid with

probability density function

fE(x) =

√
γ∗

π
exp

{x
2
− γ∗ex

}
, −∞ ≥ x ≥ ∞, (5.4)

where γ∗ = e−γ

4 ≈ 0.1403649 and γ ≈ 0.577126 is the Euler-Mascheroni constant. This

distribution has a mean of 0 and variance is π2
/2. The cumulants for this distribution are

κ1 = 0 and κr = ψ(r−1)(1/2) for r > 1, where ψ(m)(·) is the polygamma function of order

m.

The probability an observation is less than or equal to x is

P(X ≤ x) =
1√
π
γ

(
1

2
, γ∗ex

)
, (5.5)
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where γ(s, x) is the lower incomplete gamma function. The probability an observation is

greater than or equal to x is

P(X ≥ x) =
1√
π

Γ

(
1

2
, γ∗ex

)
, (5.6)

where Γ(s, x) is the upper incomplete gamma function.

Proof (Distribution of the Error Term). Show that εk − log {2} − γ ∼ log
{
χ2
1

}
. Firstly,

we need to find the density function of the log
(
χ2
1

)
distribution. Let Z

iid∼ χ2
1, then

fZ (z) =
2−1/2

Γ(1/2)
z−1/2e−z/2, z > 0,

where Γ(·) is the Gamma function. The moments of the chi-square distribution with one

degree of freedom can be calculated from

E[Zm] = 2m
Γ
(
m+ 1/2

)

Γ(1/2)
, for m ∈ N.

Let Y = log (Z), which implies that

Z = eY and

∣∣∣∣
dz

dy

∣∣∣∣ = ey.

The density function of Y can be found using the formula

fY (y) = fZ(z(y))

∣∣∣∣
dz

dy

∣∣∣∣ =
2−1/2

Γ(1/2)
exp

{
y

2
− ey

2

}
,

for y ∈ R. Using the moments of the chi-square distribution with one degree of freedom,

we can write the characteristic function of Y as

ϕY (t) = E
[
eitY

]
= E

[
eit log(Z)

]
= E

[
Z it
]

=
2itΓ

(
it+ 1/2

)

Γ(1/2)
.

As the nth cumulant is calculated by the nth difference of log{E
[
eitY

]
}, and the polygamma

function of order n− 1 is defined by

ψ(n−1)(z) =
dn

dzn
log Γ(z),
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we can conclude the cumulants of Y are

κY,1 = log(2) + ψ(0)
(
1/2
)
,

κY,r = ψ(r−1)(1/2).

This results in

E[Y ] = κY,1 = − log(2)− γ,

Var[Y ] = κY,2 = ψ(1)
(
1/2
)

=
π2

2
,

where γ ≈ 0.577126 is the Euler-Mascheroni constant.

To find the distribution of the error term ek, we need to centralise the previous distri-

bution. This will not effect any of the cumulants except the mean. Let X = Y +log(2)+γ,

which implies that

y = x− log(2)− γ and

∣∣∣∣
dy

dx

∣∣∣∣ = 1.

Therefore the probability density function of X is

fX(x) = fY (y(x))

∣∣∣∣
dy

dx

∣∣∣∣ =
2−1/2

Γ(1/2)
exp

{
1

2
(x− log(2)− γ)− 1

2
ex−log(2)−γ

}

=

√
γ∗

π
exp

{x
2
− γ∗ex

}
, for x ∈ R,

where
√
π = Γ

(
1/2
)

and γ∗ = e−γ/4. Shifting the random variable Y by its mean log(2)+γ

will only affect the first cumulant of Y , such that κX,1 = 0. All other cumulants for X

will equal those of κY,r for r > 1.

The probability an observation from this distribution is less than or equal to x is

P(X ≤ x) =

∫ x

−∞

√
γ∗

π
exp

{u
2
− γ∗eu

}
du.

Let z = γ∗eu, then du = z−1, therefore

P(X ≤ x) =

∫ γ∗ex

−∞

1√
π
z−1/2e−zdz =

1√
π
γ

(
1

2
, γ∗ex

)
,

where γ(s, x) is the lower incomplete gamma function for s, x ≥ 0.
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Figure 5.1: Density plots of the error pdf (a.k.a. the centralised log(χ2
1)) defined in

equation (5.4) (orange dashed line) and the N (0, π
2
/2) pdf (solid blue line).

Similarly, the probability an observation is greater than or to x is

P(X ≥ x) =

∫ −∞

x

√
γ∗

π
exp

{u
2
− γ∗eu

}
du.

using the same substitution as before we find

P(X ≥ x) =

∫ ∞

γ∗ex

1√
π
z−1/2e−zdz =

1√
π

Γ

(
1

2
, γ∗ex

)
,

where Γ(s, x) is the upper incomplete gamma function for s, x ≥ 0. �

A plot of the error probability density function (pdf) defined in equation (5.4) and

the Gaussian pdf with zero mean and variance π2
/2 can be seen in figure 5.1. The plot

demonstrates the difference between the Gaussian and error pdf’s with the same variance.

5.1.2 DWT of the Regression Model

By performing the discrete wavelet transform (DWT) on (5.3), we obtain the wavelet

coefficients to which we apply the Bayes rule. Let the T × T matrix W be the orthogonal

matrix associated with a discrete wavelet transforms DWT with J scales, where J =

log2(T ). Then, in the wavelet domain equation (5.3) becomes

h = β + δ, (5.7)
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where

h = WH; H = [H0, . . . ,HT−1]
T ;

β = Wg; g =
[
g(0), . . . , g

(
(T−1)/T

)]T
;

δ = Wε; ε = [ε0, . . . , εT−1]
T .

The vectors h, β and δ are of length T , consisting of sub vectors of each individual wavelet

transform. For example,

δ = [δ0, δJ−1, . . . , δ1] ,

where δl =
[
δl,0, δl,1, . . . , δl,2l−1

]
is the lth sub-vector which corresponds to the lth scale

discrete wavelet transform. Here l = J−1 is the finest scale and l = 0 is the coarsest scale.

Each location within a scale sub-vector shall be denoted by m, where m = 0, . . . , 2l − 1.

Since the exact form of W is known this means that an approximation of the distri-

bution of δ can be derived. For fine scales the density function of δl,m will be strongly

affected by the density in Lemma 5.1.1, fE(·). However, as the support of the wavelet in-

creases and for coarser scales, the distribution of δl tends to Gaussianity as the support of

the wavelet increases. Moulin (1994, section III, part B) proved that for variables which

are iid, but not necessarily Gaussian, the DWT of these variables tend to Gaussianity

asymptotically.

5.2 Bayesian Shrinkage Rule

We shall now develop a Bayesian shrinkage rule for the DWT of the log wavelet peri-

odogram. We shall begin with the likelihood.

5.2.1 Likelihood

The likelihood distribution used in the upcoming Bayesian analysis is determined by the

distribution of the error. As δl,m =
∑

t ψl,m−tεt and the wavelets have unit norm, we

shall assume the variance of δl,m is σ2 = π2
/2. Then following Pensky et al. (2007), we

approximate the density of δ by a mixture model

p (δl,m |βl,m ) = ζl (δl,m) = (1− λl)ϕσ(δl,m) + λl fE (δl,m) , for λl ∈ [0, 1], (5.8)
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where ϕσ(·) is the Gaussian pdf with variance σ2 and mean zero. The variables λl are

known as the likelihood weights. The weights determine the mixture between the cen-

tralised log chi-square and Gaussian distribution for scale l of the likelihood. We shall

now empirically calculate the likelihood weights for Daubechies Extremal Phase wavelets.

Likelihood Weights

As the support of the wavelet increases, the distribution of the wavelet coefficients are

asymptotically Gaussian (see theorem 3.1.1). Therefore, we know that for large l, λl ≈ 0.

Usually the distribution is approximately Gaussian by the middle scale.

Pensky et al. (2007) determined the likelihood weights (λl) by matching the skewness of

the likelihood mixture function and the empirical distribution of the wavelet transformed

errors. As the support of the wavelet increases the weight, λl, decreased.

To calculate the likelihood weights we simulated ek ∼ log(χ2
1) for k = 0, . . . , 216 − 1 =

65535 and subtracted log {2}+ γ from each realisation. We then performed a DWT with

different wavelets and compared the empirical skewness of the wavelet coefficients (δl)

with the skewness of the error and Gaussian distributions. The skewness for the error

distribution can be calculated from the cumulants using

κe,3

(κe,2)3/2
=

ψ(2)
(
1/2
)

[
ψ(1)(1/2)

]3/2 = −1.535142,

where κe,2 and κe,3 are the second and third cumulants of the error distribution. The

empirical likelihood weight was estimated by choosing λl in equation (5.8) so the skewness

of p(δl,m|β l,m) matched the empirically derived skewness of our simulations. This was

repeated a thousand times for each scale and the final estimate of λl was the mean of these

replications.

For each scale and replication we also performed a Kolmogorov-Smirnov (KS) one-sided

test for Gaussianity on the empirical wavelet coefficients. We compared the distribution

of the wavelet coefficients with a N (0, π
2
/2) distribution. The final p-value was the mean

for the one thousand replications for each wavelet and the first ten finest scales, l.

Figure 5.2 shows the density plots of the six finest scale Haar wavelet coefficients δl for

l = 16 . . . 10, of the DWT from T = 216 samples of the error pdf, ek. The KS test statistic

p-value was < 0.0001 for the first two finest scales, but > 0.05 for each subsequently

coarser scale. The largest likelihood weight λl < 0.008, even at the finest scale.

The Haar wavelet has the smallest support of the all wavelets, so we expected the
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Figure 5.2: Density plots of δl for the six finest scales (l = 15, . . . , 11), from a discrete Haar
wavelet transform with plots of the Gaussian pdf (solid blue line), error pdf (orange dashed
line) and likelihood (green dashed and dotted line) function calculated using empirical
likelihood weights.
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Scale D2 D3

(l) λl p-value λl p-value

J − 1 0.4594 < 0.001 0.3895 < 0.001
J − 2 0.2850 < 0.001 0.2541 < 0.001
J − 3 0.1922 0.001 0.1763 0.004
J − 4 0.1329 0.112 0.1232 0.160
J − 5 0.0934 0.364 0.0866 0.385
J − 6 0.0652 0.479 0.0629 0.487
J − 7 0.0478 0.492 0.0448 0.491
J − 8 0.0317 0.522 0.0261 0.500
J − 9 0.0253 0.523 0.0205 0.511
J − 10 0.0047 0.506 0.0134 0.492
> J − 10 0 0

Table 5.1: A table of the empirical weights and p-value from the Kolmogorov-Smirnov
test for Gaussianity for a Daubechies Extremal Phase wavelet with two (D2) and three
(D3) vanishing moments, where J − 1 is the finest scale.

p-value from the KS test to be the smallest and the weights (λl) to be the largest for all

scales compared with smoother wavelets. However, as only the first two scales possessed

significant p-values and the corresponding weights were so small, the error distribution

would have little effect on the likelihood mixture distribution. Therefore, we concluded it

would be best to set λl = 0 for all scales. The plots in figure 5.2 verify our estimates of

λl and demonstrates how little difference there is visually between the Gaussian pdf and

density histogram of δl.

Table 5.1 shows the empirical likelihood weights, λl, and the p-value from the KS test

for Daubechies Extremal Phase wavelet with two (D2) and three (D3) vanishing moments

and the first ten finest scales. The KS p-value indicates that for scales grater than J − 3,

there is no evidence to suggest the distribution of δ is significantly different from N (0, π
2
/2).

If λl < 0.08 and the p-value > 0.05, we felt it was not unreasonable to set λl = 0 because

the error distribution was contributing little to the mixture likelihood and there was no

evidence to suggest the distribution was not N (0, π
2
/2).

The density plots in figures 5.3 are the five finest scale wavelet coefficient (δl for l =

16, . . . , 11) of the DWT using D2 (in (a) to (e)) and D3 (in (f) to (j)) wavelets of the error

distributed ek for k = 0, . . . , 216−1. The likelihood mixture function was calculated using

the empirical likelihood weights λl in table 5.1.

We also performed a KS Gaussianity test and calculated weights for Dn where n > 3.

Even though for the first two scales generally resulted in a KS p-value less than 0.001, the

empirical likelihood weights were 0.1 or less. Therefore, we decided to set λl = 0, ∀ l for

the Daubechies Extremal Phase wavelet with four or more vanishing moments.
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5.2.2 Prior

As suggested by Pensky et al. (2007) the Berger-Müller prior from equation (2.36) was

used on the discrete wavelet coefficients βl,m. The DWT of a function in the Besov ball

Br
p,q(R), for p ≥ 1 and q ≤ ∞ will yield a set of discrete wavelet coefficients which are

sparse in the wavelet domain, as discussed in 2.4.2. Therefore, we choose the prior to be

p(βl,m) = αl δ(βl,m) + (1− αl) νl ξ(νl βl,m), (5.9)

where

• δ(·) is the Dirac delta function,

• ξ(·) is a symmetric, uni-modal pdf,

• αl ∈ [0, 1] is known as the prior weight, which is the probability that βl,m is zero at

level l.

We assume that the {βl,m} are independent.

Let θl be the odds ratio at scale l, defined as

θl =
αl

1− αl
, (5.10)

where αl is the prior weight from equation (5.9).

5.2.3 Posterior Distribution

We perform Bayesian shrinkage upon the β’s. By rearranging the regression model in

equation (5.7), it can be shown that

δl,m = hl,m − βl,m. (5.11)

By substituting (5.11) into the likelihood equation (5.8) we can determine the posterior

distribution of βl,m. The form of the prior will mean our posterior distribution will consist

of two parts, the dirac delta function and the tail density. The following calculations will

only concern the tail density as this is the part of the distribution which will result in the

shrinkage rule. How much of the posterior distribution is contained within the tail density

will depend on α.
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For notational simplicity, we shall drop the l,m subscripts on the β’s and h’s. Then

the posterior tail distribution of β is

p(β|h) =
ζl(h− β) (1− αl) νl ξ(νlβ)∫

ζl(h− x) {αl δ(x) + (1− αl) νl ξ(νlx)} dx

=
ζl(h− β) νl ξ(νlβ)

θl
∫
ζl(h− x) δ(x) dx +

∫
νl ζl(h− x) ξ(νlx) dx

=
ζl(h− β) νl ξ(νlβ)

θl ζl(h) + νl
∫
ζl(h− x) ξ(νlx) dx

, (5.12)

for h, β ∈ (−∞,∞). By combining the posterior tail density with the dirac delta function,

we yield a posterior distribution which integrates to one.

5.2.4 Posterior Mean

Using (5.12) we can derive the posterior mean of β given h, denoted by β̂, by

β̂ = E[β|h] =

∫
y p(y|h)dy

=

∫
y ζl(h− y) νl ξ(νly)

θl ζl(h) + νl
∫
ζl(h− x) ξ(νlx) dx

dy

=

∫
(1− λl) y νl ξ(νly)ϕσ(h− y) + λl y νl ξ(νly) fE(h− y)

θl ζl(h) + νl
∫
ζl(h− x) ξ(νlx) dx

dy, (5.13)

where σ2 = π2
/2 (variance of the error distribution). Using the formula for the likelihood

in (5.8) and by letting

Qi(h) = νl

∫ ∞

−∞
yi ξ(νly)ϕσ(h− y) dy, i ∈ Z+; (5.14)

Q∗i (h) = νl

∫ ∞

−∞
yi ξ(νly) fE(h− y) dy, i ∈ Z+; (5.15)

the estimated posterior mean in equation (5.13) becomes

β̂ =
(1− λl)Q1(h) + λlQ

∗
1(h)

θl ζl(h) + (1− λl)Q0(h) + λlQ
∗
0(h)

. (5.16)
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This may appear complicated but depending on the form of the probability density func-

tion ξ(·), an analytical solution can be obtained for many cases.

5.2.5 Posterior Variance

To obtain the confidence intervals we also calculate the posterior variance of β. Although

this can not be directly used to produce confidence intervals for the EWS, it could be used

for importance sampling. Further details of the computational method for calculating the

confidence interval can be found in section 6.1.

The posterior conditional variance of β|h can be calculated using first and second

moments with the formula

Var[β|h] = E[β2|h]− (E[β|h])2

=

∫ ∞

−∞
y2 p(y|h) dy −

[∫ ∞

−∞
y p(y|h) dy

]2
. (5.17)

Section 5.2.4 already obtained the first moment (E[β|h] = β̂). The second moment can be

obtained using equations (5.14) and (5.15) as

E[β2|h] =
(1− λl)Q2(h) + λlQ2(h)

θl ζl(h) + (1− λl)Q0(h) + λlQ0(h)
. (5.18)

5.2.6 Hyperparameters

The hyperparameters in our model are the prior weights (αl ∈ [0, 1]) and prior precision

(0 < νl < ∞ for l = 0, . . . , J − 1). In Pensky et al. (2007) the prior precision and weight

values were fixed before analysis, and changed only with the sample size. The odds ratios

from equation (5.10) were predefined as

θl = 0.1 +
0.8l

J − 1
, (5.19)

where J = log2(T ) is the total number of scales, and l = 0, . . . , J − 1 is a particular scale,

where J − 1 is the finest scale and 0 being the coarsest. They also suggested that

νl = (1− λl) (l + 2), (5.20)

where ν−2l is the prior variance. The form of this value ensured that the variance decreased

as the scale increased and the wavelet coefficients became coarser. However, it was noted
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that the variance of the coefficients changed greatly depending on the data. Therefore an

alternative method was considered.

An alternative method is to use empirical Bayes methods which rely on determining

the hyperparameters from the data. We shall use the method of Johnstone and Silverman

(2005), described in section 2.4.2. The hyperparameters are calculated through numerical

maximisation of the marginal likelihood (ML). Using equation (2.38), we substitute in our

values for the error pdf (the likelihood function in (5.8)) and prior (the mixture prior from

equation (5.9)), for our method, to produce our ML defined as

∑

k

log

{
αl

[
(1− λl)

σ
ϕ

(
hl,m
σ

)
+ λlfE(hl,m)

]
+ (1− αl) γ(hl,m|νl)

}
, (5.21)

where fE(·) is the error pdf, ϕ(·) is the standard Gaussian pdf,

γ(y|νl) =

∫ ∞

−∞
νl ξ(νl x)

[
(1− λl)

σ
ϕ

(√
T [y − x]

σ

)
+ λlfE

(√
T [y − x]

)]
dx, (5.22)

and ξ(·) is the symmetric pdf chosen for the mixture prior. The only component of the ML

not readily available is γ(y|νl), which will have to be calculated once a suitable unimodal

symmetric pdf has been selected.

5.2.7 Bayesian Log-EWS Estimator

Recall for a particular scale j in equation (5.3) we defined g(z) = log(R(z)), where R(z)

is the EWS multiplied by the inner product matrix A at location z ∈ [0, 1). By applying

a DWT to our regression model in (5.3), the reconstruction of g is given by

g(z) = β0 φ(z) +

∞∑

l=0

∞∑

m=0

βl,m ψl,m(z), z ∈ [0, 1), (5.23)

where z = k/T and

ψl,m(z) = 2l/2 ψ(2lk −m);

β0 =

∫ 1

0
φ(z) g(z) dz;

βl,m =

∫ 1

0
ψl,m(z) g(z) dz;

and φ(·) denotes the associated scaling function and ψ(·) is the associated wavelet function

periodised on [0, 1].
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Given the posterior mean estimate of the wavelet coefficients βl,m from section 5.2.4,

let β̂l,m = βl,m in equation (5.23) which gives

ĝ(z) = β̂0 φ(z) +

J−1∑

l=0

2l−1∑

m=0

β̂l,m ψl,m(z), (5.24)

where β̂0 is the posterior mean estimate of g(z). We estimate β̂0 by h0 as this is a weighted

mean of all the observations H.

However, we wish to produce an estimate of the EWS, Sj(z). Therefore, as Rj(z) =

∑
lAj,lSl(z), our log Bayesian wavelet shrinkage estimator of the EWS at scale j is

Ŝj(z) =
∑

l

A−1j,l exp{ĝ(z)} , (5.25)

for z ∈ [0, 1) and j = 0, . . . , J − 1.

Once we obtained the estimator in (5.25), we noticed that due to the bias correction and

log transformation required to obtain Ŝj(z), it was difficult to determine the variance of

the EWS estimator analytically. Therefore, we concluded the simplest method to produce

the credible intervals would be to numerically simulate observations from the posterior

distribution via importance sampling. Further details on this methodology are given in

chapter 6.

5.3 Choice of Tail Density Prior

We shall now discuss two possible choices of tail density priors: the Gaussian (in section

5.3.1) and Laplace (in section 5.3.2) distributions.

5.3.1 Gaussian Mixture Prior

The Gaussian distribution is one of the most well studied distributions in statistics, there-

fore we wondered if using the Gaussian distribution as part of the prior for the β’s, the

posterior quantities could be obtained analytically. The analytical solution could provide

the means to understand how the Bayesian shrinkage was working. Pensky et al. (2007)

do not use the Gaussian distribution for the prior because the Gaussian distribution does

not possess heavy tails, although they mention that it is a possible candidate. Therefore,

there is an extremely low prior probability that the β’s will take very large or small values

(Johnstone and Silverman, 2005).
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The Gaussian part of the mixture prior has a distribution N (0, ν−2l ). Let ξ equal to

this Gaussian pdf in equations (5.14) and (5.15) to yield the following lemmas. The proofs

of all the lemmas associated with the Gaussian mixture prior are available in appendix

A.1.1.

Lemma 5.3.1. The component Qi(h) with a Gaussian mixture prior is

Qi(h) =
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)} ∫ ∞

−∞
yi ϕσg(y − µg)dy,

where

• σ2 = π2
/2,

• κl = 1 + (νlσ)2,

• µg = hκ−1l ,

• σ2g = σ2κ−1l

• ϕσg(·) is the Gaussian pdf with variance σ2g .

Using the definition of fE from (5.4), we can determine Q∗i (h) in the following.

Lemma 5.3.2. The quantity Q∗i (h) for the Gaussian mixture prior is

Q∗i (h) =
νl
π

(
1

2

)1/2 ∫ ∞

−∞
yi exp

{
−ν

2
l y

2

2

} √
γ∗ exp

{
1

2
(h− y)− γ∗e(h−y)

}
dy.

To solve the integral in lemma 5.3.2 for i = 0, 1, we require its Fourier transform,

Q̂∗i (h), given in lemma 5.3.3.

Lemma 5.3.3. The Fourier transformation of Q∗i (h) is

Q̂∗i (ω) = (γ∗)i2πω
e−2(πω/νl)

2

√
π

Γ

(
1

2
− i2πω

)∫ ∞

−∞
yi νl ϕ

(
νl

[
y +

i2πω

ν2l

])
dy,

for ω ∈ [−π, π], where Γ(·) is the gamma function.

Gaussian Posterior Distribution, Mean and Variance

To calculate the posterior distribution, mean and variance obtained when using the Gaus-

sian mixture prior we require the calculation of Qi(h) and Q̂∗i (h) for i = 0, 1, 2. These we

have calculated in the following two lemmas.
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Lemma 5.3.4. The component Qi(h) for the Gaussian mixture prior

(a) for i = 0 is

Q0(h) =
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)}

(b) for i = 1 is

Q1(h) = µg
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)}
,

(c) for i = 2 is

Q2(h) =
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)}(
µ2g + σ2g

)
.

For each case κl, µg and σ2g are as defined in lemma 5.3.1.

Lemma 5.3.5. The component Q̂∗i (ω) for the Gaussian mixture prior

(a) for i = 0 is

Q̂∗0(ω) = (γ∗)i2πω
e−2(πω/νl)

2

√
π

Γ

(
1

2
− i2πω

)

(b) for i = 1 is

Q̂∗1(ω) = − i2ω
√
π

ν2l
(γ∗)i2πω e−2(πω/νl)

2
Γ

(
1

2
− i2πω

)
.

(c) for i = 2 is

Q̂∗2(ω) = (γ∗)i2πω
e−2(πω/νl)

2

√
π

Γ

(
1

2
− i2πω

)(
4π2ω2

ν4l
+

1

ν2l

)
.

For each case ω ∈ [−π, π] and Γ(·) is the gamma function.

Although an explicit representation for the Q̂∗i (ω) can be found, determining the correct

values for ω proved to be more challenging. So to make progress, we determine Q∗i (h) for

i = 0, 1, 2 through numerical integration.

Gaussian Hyperparameters

To determine the hyperparameters, the prior weight (αl) and prior precision (νl), we

numerically maximised the marginal likelihood from section 5.2.6 for the Gaussian mixture

prior. This required the calculation of γ(y|νl) in (5.22). The first half of this integral could

109



be calculated by

∫
νl
σ
ϕ(νl x)ϕ

(
x− y
σ

)
dx

=
νlσg
σ

(
1

2π

)1/2 ∫ ∞

−∞

1

σg
√

2π
exp

{
− 1

2σ2g

(
x2 − 2x

y

κl
+
y2

κl

)}
dx.

=
νlσg
σ

(
T

2π

)1/2
exp

{
y2

π2

(
1

κl
− 1

)}∫ ∞

−∞

1

σg
ϕ

(
1

σg

(
x− y

κl

))
dx

=
νlσg
σ

(
T

2π

)1/2
exp

{
y2

π2

(
1

κl
− 1

)}
Φ

(
1

σg

(
x− y

κl

))
.

where σ2 = π2
/2, κl = 1 + (νlσ)2 and σ2g = σ2κ−1l . However, the second half required

numerical integration to evaluate the integral fE

(√
T [y − x]

)
.

5.3.2 Laplace Mixture Prior

The literature suggests that using heavy-tailed mixture priors might achieve superior re-

sults, (Johnstone and Silverman, 2005). The pdf of the Laplace, Lap(a, b), distribution is

defined as

fL(x|a, b) =
b

2
exp{−b|x− a|} x ∈ (−∞,∞), (5.26)

where a is the location and b is the scale parameter. This distribution has a mean of a

and a variance of 2b−2.

If we let ξ(·) in the Berger-Müller prior defined in (5.9) equal the Laplace pdf from

(5.26) with a = 0 and b = 1, then we can determine the values of Qi(h) from (5.14) and

Q∗i (h) from (5.15) in the following lemmas. Proofs for all the lemmas associated with the

Laplace mixture prior are available in appendix A.1.2.

Lemma 5.3.6. The quantity Qi(h) for the Laplace mixture prior is

Qi(h) =
νl
2
e−h

2/2σ2

[
eµ

2
1/2σ

2

∫ 0

−∞
yi ϕσ(y − µ1) dy + eµ

2
2/2σ

2

∫ 0

−∞
(−y)i ϕσ(y + µ2) dy

]
,

where

• ϕσ(·) is the Gaussian pdf with variance σ2,

• σ2 = π2
/2,

• µ1 = h+ νlσ
2,

• µ2 = h− νlσ2.
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Lemma 5.3.7. The quantity Q∗i (h) for the Laplace mixture prior is

Q∗i (h) =
νl

2
√
π

[
κl

∫ ∞

γ∗eh
(h− [log(x)− log(γ∗)])i x−1/2−νle−xdx

+κ−1l

∫ γ∗eh

0
(h− [log(x)− log(γ∗)])i x−1/2+νle−xdx

]
.

where κl = (γ∗)νleνlh.

Laplace Posterior Distribution, Mean and Variance

To calculate the posterior distribution, mean and variance of the Laplace mixture prior

we require Qi(h) and Q∗i (h) for i = 0, 1, 2. These quantities are given in lemmas 5.3.8 and

5.3.9, next.

Lemma 5.3.8. The component Qi(h) of the Laplace mixture prior

(a) for i = 0 is

Q0(h) =
νl
2
e−h

2/2σ2

[
eµ

2
1/2σ

2
Φ

(−µ1
σ

)
+ eµ

2
2/2σ

2
Φ
(µ2
σ

)]
.

(b) for i = 1 is

Q1(h) =
νl
2
e−h

2/2σ2
[
eµ

2
1/2σ

2
µ1 Φ

(
−µ1
σ

)
+ eµ

2
2/2σ

2
µ2 Φ

(µ2
σ

)]
.

(c) for i = 2 is

Q2(h) =

νl
2
e−h

2/2σ2

[
eµ

2
1/2σ

2
[σ2 + µ21]Φ

(
−µ1
σ

)
+ eµ

2
2/2σ

2
[σ2 + µ22]Φ

(µ2
σ

)
+

3σ√
2π

(µ2 − µ1)
]
.

For all cases ϕσ(·), σ2, µ1 and µ2 are as defined in lemma 5.3.6, and Φ(·) is the standard

Gaussian cumulative distribution function.

Lemma 5.3.9. The evaluation of Q∗i (h)

(a) for i = 0 is

Q∗0(h) =
νl

2
√
π

[
κl Γ

(
1

2
− νlγ∗eh

)
+ κ−1l γ

(
1

2
+ νl, γ

∗eh
)]

.
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(b) for i = 1 is

Q∗1(h) = Q∗0(h) [h+ log(γ∗)]− νl
2
√
π

[
κl

∫ ∞

γ∗eh
log(x)x−1/2−νl e−xdy

+ κ−1l

∫ γ∗eh

0
log(x)x−1/2+νl e−xdx

]
.

(c) for i = 2 is

Q∗2(h) =

(
h+

log(γ∗)
)2
Q∗0(h)− 2

(
h+

log(γ∗)
)
Q∗1(h)

+
νl

2
√
π

[
κl

∫ 0

γ∗eh
log(x)2x−1/2−νle−x dx

+ κ−1l

∫ ∞

γ∗eh
log(x)2x−1/2+νle−x dy

]
.

For all cases γ(s, x) and Γ(s, x) are the lower and upper incomplete gamma functions

respectively.

The analytical answer of Q∗1(h) and Q∗2(h) consisted of Meijer’s G function which is a

path integral in the complex plane, and proved more difficult to evaluate than the original

integral. Therefore, we used numerical integration to calculate these components.

Laplace Hyperparameters

To determine the hyperparameters αl and νl (prior weight and precision) by maximising

the ML for the Laplace mixture prior, let νlξ(νl x) = fL(x|νl) in equation (5.22). Then we

can evaluate this integral as shown in lemma 5.3.10.

Lemma 5.3.10. The function γ(y|νl) from equation (5.22) for the Laplace mixture prior

is

γ(y|νl) = (1− λl)
νl
2
e−y

2/2σ2

[
eµ

2
3/2σ

2
Φ

(−µ3
σ

)
+ eµ

2
3/2σ

2
Φ
(µ4
σ

)]

+ λl
νl

2
√
π

[
κl Γ

(
1

2
− νl, γ∗ey

)
+

1

κl
γ

(
1

2
+ νl, γ

∗ey
)]

,

where σ2 = π2
/2, µ3 = y + νlσ

2, µ4 = y − νlσ2 and κ∗l = eνly(γ∗)νl.

Using the results in lemma 5.3.10 we can obtain the ML and hence determine the

Laplace hyperparameters via maximisation.
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5.4 Asymptotics for the Bayesian Log-EWS Estimator

This section demonstrates the asymptotic convergence of our Bayesian wavelet shrinkage

estimate of the log transformed raw wavelet periodogram. Our proof builds on the methods

of Pensky et al. (2007), although our error distribution is different and our setting is non-

stationary.

Section 5.4.1 refines our model in terms of k = bzT c, so we can demonstrate how

increasing the frequency of observations can improve our EWS estimate. Section 5.4.2

details the assumptions made and finally in section 5.4.3 we describe our asymptotic

results. Many of the proofs will consider the convergence of the scaled wavelet coefficients

for fine, middle and coarse scales.

5.4.1 Asymptotic Model

Equation (5.23) in section 5.2.7, defines the expected log periodogram g(z). If we let

z = k/T , then

g(k) =
1√
T
b0 φ

(
k

T

)
+

1√
T

∞∑

l=−∞

∞∑

m=0

bl,m ψl,m

(
k

T

)
, k = 0, . . . , T − 1, (5.27)

where

• ψl,m
(
k/T
)

= 2l/2 ψ(2lk −m);

• b0 = T−1/2
∫ T
0 φ
(
k/T
)
g(k) dk;

• bl,m = T−1/2
∫ T
0 ψl,m

(
k/T
)
g(k) dk;

and as before, φ(·) and ψ(·) are the scaling and wavelet function periodised on the interval

[0, 1]. The coefficients βl,m from (5.7) and bl,m are related by βl,m ≈
√
Tbl,m. Let h∗l,m =

hl,m/
√
T and υl =

√
Tνl (where νl is the prior precision from (5.9)), then we find

Qi(h∗l,m) = υl
√
T

∫ ∞

−∞
yi ξ(υ∗l y)ϕσ(h∗l,m − y) dy, i ∈ Z+, (5.28)

Q∗i (h∗l,m) = υl
√
T

∫ ∞

−∞
yi ξ(υ∗l y) fE(h∗l,m − y) dy, i ∈ Z+, (5.29)

and

b̂l,m =
(1− λl)Q1(h

∗
l,m) + λlQ∗1(h∗l,m)

θl ζl(h
∗
l,m) + (1− λl)Q0(h∗l,m) + λlQ∗0(h∗l,m)

. (5.30)
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We will prove the asymptotic convergence of b̂l,m, and due to the relationship between bl,m

and βl,m, we can infer the asymptotic convergence of β̂l,m.

5.4.2 Assumptions

As is conventional, we consider functions belonging to a restricted set of ‘smoothness

spaces’ for a non-trivial theory. By assuming the function g, from equation (5.23), belongs

to a ball, Br
p,q(A), in the Besov space, Br

p,q for p ≥ 1, q ≤ ∞ and non integer r, the Besov

ball can be characterised in terms of wavelet coefficients

g ∈ Br
p,q(A) ⇐⇒ b20 +





∞∑

l=1

2
l
(
r+ 1

2
− 1
p

)
q




2l−1∑

m=0

|bl,m|p


q/p




1/q

≤ A, (5.31)

as shown in Vidakovic (1999, section 6.4.1 on page 187).

When g ∈ Br
p,q(A) with r > 1/p Pensky et al. (2007, equation (3.2)) shows that the

wavelet coefficients, bl,m, can be expressed as

2l−1∑

m=0

b2l,m =





B12
−2rl if p ≥ 2,

B12
−2l(r+ 1

2
− 1
p
)

if 1 ≤ p < 2,

(5.32)

for some B1 > 0. When p ≥ 2 the functions are spatially homogeneous, and when

1 ≤ p < 2 the functions are spatially inhomogeneous.

Let the risk of the estimator ĝ of g, with T observations, over the set F , be defined as

R(T, ĝ,F) = sup
g ∈ F

E
[
‖g − ĝ‖2L2[0,1]

]
. (5.33)

We shall assume the scaling and wavelet functions we use are s-regular with s ≥ r. Also,

assume that the ξ(·) component in the Berger-Müller prior is three times differentiable (in

at least a piecewise sense), has a finite fourth moment and satisfies the conditions

∣∣∣∣
ξi(x)

ξ(x)

∣∣∣∣ ≤ Cξ,1(1 + |x|κ)i, i = 1, 2, 3, κ ≥ 0, (5.34)

Cξ,2 exp

{
− x2

2σ2

}
≤ ξ(x) ≤ ξ0, (5.35)

for positive constants Cξ,1 and Cξ,2. Let the integrals Qi(h∗) for i = 1, 2 from equation
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(5.28) be such that, if υl/
√
T → 0 and υl|h∗| → ∞, then assume

∣∣∣∣
Q1(h

∗)

Q0(h∗)
− h∗

∣∣∣∣ = O
(
υ2l |h∗|
T

)
, (5.36)

and the distribution of Q0(h
∗) is

Q0(h
∗) ∼ υlξ(υlh

∗), (5.37)

where ξ(·) is the pdf of the tail density prior. Also, if υl/
√
T →∞, then assume

∣∣∣∣
Q1(h

∗)

Q0(h∗)

∣∣∣∣ = O
(
T |h∗|
υ2l

)
. (5.38)

Let p∗ = min(p, 2) then if J = log2(T ) and

J0 = J(2r + 1)−1, (5.39)

J1 = 2rJ

[
(2r + 1)

(
2r + 1− 2

p∗

)]−1
, (5.40)

J2 = J

(
1

2
+ r

[
(2r + 1)

(
2r + 1− 2

p∗

)]−1)
. (5.41)

These are used to determine coarse scales (0 ≤ l ≤ J0), intermediate scales (J0 < l ≤ J1),

fine scales (J1 < l ≤ J2) and finest scales (l > J2). Note that if p = 2 the intermediate

scales vanish.

We also define

r∗ =
1

2



(

1

p∗
− 1

2

)
+

√(
1

p∗
− 1

2

)2

+ 2

(
1

p∗
− 1

2

)
 . (5.42)

Assume that the prior precision for different scales can be expressed as

υl = 2µl with µ =





µ1 = r + 1
2 + 1

4 − 1
2p∗ , 0 ≤ l ≤ J0,

µ2 = (r + 1
2 − 1

p∗ ) + 1
r ( r2 + 1

2 − 1
p∗ ), J0 < l ≤ J1,

µ3 = r + 1
2 , J1 < l.

(5.43)
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We also assume

θ2l = O
(

2

(
4r+1+3

[
1
2
− 1
p∗

])
(J−l)

T−(4r+1)/(2r+1)

)
, if l ≤ J0, (5.44)

θ−2l = O
(
T
−
(

1
p∗−

1
2
+ε
)
/
(
[r+ 1

2 ]
[
r+ 1

2
− 1
p∗

]))
, if J0 < l ≤ J1, (5.45)

for some ε > 0.

5.4.3 Asymptotic Results

To prove the asymptotic convergence of β̂l,m, we want to show that as we increase T the

risk decreases.

Theorem 5.4.1. Let r > r∗ (5.42), (5.34)-(5.37) and (5.43)-(5.45) be valid. Then

R(T, ĝ,F) = O(log(T )αT−2r/(2r+1)), as T →∞, (5.46)

where α = (2r+ 1)−1 if p ≥ 2 and α = 2r(2r+ 1)−1 if 1 ≤ p < 2. If equation (5.38) holds,

and p ≥ 2 then α = 0.

The proof of theorem 5.4.1 can be found in appendix A.1.3.

Remark 5.4.1. As υl =
√
Tνl, the assumption in (5.43) can be translated to a restrictions

on νl, such that νl = 2µlT−1.

Remark 5.4.2. The condition that ξ(·) has a finite fourth moment is a technical condition

so that we can obtain an asymptotic expansion for Qi(h) for i = 0, 1. However this

condition can be dropped and replaced with lemmas A.1.1 and A.1.2.

Remark 5.4.3. Condition (5.41) is quite realistic, and agrees with the Central Limit

Theorem. If r > r∗, we have an infinite number of scales,

J − J2 = log2(T )

[
4r2 + 2r

(
1

2

p∗

)
+ 1

2

p∗

] [
(2r + 1)

(
2r + 1

2

p∗

)]

until the Central Limit Theorem takes over. In practice, the assumption of Gaussianity

can be verified via scale-by-scale testing.
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Chapter 6

Simulation Results of the Bayesian

Log-EWS Estimator

In this chapter we describe and test the computational performance of our method. We

use the analytical calculations from sections 5.3.1 and 5.3.2 in chapter 5 to calculate the

key components required to perform Bayesian wavelet shrinkage of the log transformed

raw wavelet periodogram.

We begin in section 6.1 by describing the computational process developed in the

statistical package R to produce the EWS estimate and corresponding confidence intervals.

We compare our methods using the Gaussian or Laplace prior. The best prior was selected

to test our method on the simulated data from chapter 3. In section 6.3 we examine the

results and discuss its performance.

6.1 Programming

The code to perform Bayesian wavelet shrinkage of the log transformed raw wavelet peri-

odogram was written in R. It required the use of programs from the libraries wavethresh,

TSA, zipfR and NORMT3. Figure 6.1 is a flow diagram of the operations required to produce

an estimate of the EWS via Bayesian wavelet shrinkage of the log transformed wavelet

periodogram and confidence intervals. We shall explain in detail next, how each operation

described in 6.1 is performed computationally.

Assume that the user will provide the appropriate analysis wavelet (AW) which is used

to obtain the raw wavelet periodogram from the user supplied LSW process of dyadic

length. For a particular scale, log and centralise the raw wavelet periodogram as in (5.3),
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Figure 6.1: A flow diagram of how Bayesian wavelet shrinkage and sampling can estimate
the EWS from the log raw wavelet periodogram with confidence intervals for a particular
smoothing wavelet (SW).
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then perform the DWT with the smoothing wavelet (SW), also defined by the user.

The next stage stage is to determine the hyperparameters. The γ(·) component of the

marginal log-likelihood(MLL) in (5.21) required numerical integration in the case of the

Gaussian mixture prior, but could be evaluated for the Laplace prior as shown in lemma

5.3.10. Then the MLL was maximised using the program optim and the L-BFGS-B method

(Byrd et al., 1995). This method was used as it allows for lower and upper constraints.

There were a few issues to consider when determining the hyperparameters:

1. if we used the Laplace mixture prior, λl > 0⇒ νl must be less than 1/2;

2. for coarse scales (l < 4) there are very few coefficients, resulting in an insufficient

number of wavelet coefficients to estimate hyperparameters;

3. small sample sizes and sparse data (many coefficients are close to zero) resulted in

non-numeric values when maximising over the entire log likelihood.

If λ > 0, we needed to calculate Q∗i (h). For the Laplace mixture prior, lemma 5.3.9

shows the calculation of Q∗i (h) consists of the incomplete gamma function, Γ(s, x). As

s = 1/2 − νl, if νl >
1/2 this results in negative s. Hence, Q∗0(h) is unsolvable, and

consequently Q∗1(h) and Q∗2(h), as they also consist of Q∗0(h). Therefore if λ > 0, the

search area for νl was limited to (0, 1/2] and if λ = 0, νl ∈ (0,∞) for the Laplace mixture

prior.

The four coarsest scales, l = 0, 1, 2, 3, consist of 1, 2, 4 and 8 wavelet coefficients,

respectively. Empirical investigations showed that maximising the MLL for each scale

resulted in biased hyperparameter estimates. Therefore, instead of maximising the log-

likelihood for the four coarsest scales separately, the coefficients were grouped together

and maximisation was performed over all the four scales. To distinguish between scales,

the hyperparameter estimates were scaled appropriately, such that as the scale decreased

αl decreased and νl increased by a factor of two.

For some scales the numerical maximisation of the MLL would not converge because

wavelet coefficient are sparse, i.e. there was insufficient information in the data. To solve

this problem instead of maximising over the entire MLL, we maximised over equation

(2.39).

Once we have appropriate hyperparameters, we use these to obtain the ‘shrunk’ wavelet

coefficients, β̂l,m, (5.16). If we use the Gaussian mixture prior, Qi(h) for i = 0, 1 is

calculated using lemma 5.3.4 parts (a) and (b), and Q∗i (h) for i = 0, 1 is determined via
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numerical integration of lemma 5.3.2. When using the Laplace mixture prior, Qi(h) for

i = 0, 1 is solved via lemma 5.3.8 parts (a) and (b), and Q∗0(h) is calculated using lemma

5.3.9(a), whereas Q∗1(h) requires numerical maximisation to solve lemma 5.3.9(b).

The posterior variance (5.17) of βl,m is calculated using lemmas 5.3.2 and 5.3.4 or 5.3.8

and 5.3.9 (depending on the mixture prior). This could then be could be used to calculate

the variance of our estimate ĝ(z) from equation (5.24). However, to calculate Var[ĝ(z)]

requires the squared wavelets (ψ2
l,m). Barber et al. (2001) demonstrated that ψ2

l,m could

be estimated through the scaling function (φl,m). This can be easily done for the Haar

wavelet as ψ2
l,m = 2l/2 φl,m, however for other wavelets (such as Daubechies Extremal

phase wavelets) this is more challenging and computationally expensive.

Also, although we could produce the variance for the wavelet coefficients and conse-

quently ĝ(z), our goal is to obtain a confidence interval for the EWS Sj(z). This proved to

be challenging as ĝj(z) = log(R̂j(z)) and Ŝj(z) = (A−1R̂)j(z), the log transformation and

inner product matrix correction makes the variance and confidence interval calculations

difficult. Hence, as an alternative, we use importance sampling to produce N possible

estimates of the EWS. As we “knew” the posterior distribution (5.12) of the wavelet

coefficients, we sampled these coefficients to obtain the sampled EWS.

To improve our estimates and to attempt to make them less susceptible to Gibbs

phenomena we used cycle spinning (Coifman and Donoho, 1995). Before performing the

discrete wavelet transform (DWT) using the smoothing wavelet, the raw wavelet peri-

odogram was shifted n places. Then, Bayesian wavelet shrinkage was performed on the

wavelet coefficients obtained from using the SW DWT of the cycle spun data. After ap-

plying the SW inverse DWT, the estimated wavelet periodogram was rcycle spun to return

the estimated data to their original location.

6.2 Comparison of the Gaussian and Laplace Prior

In this section we compare using the Gaussian and Laplace Berger-Müller prior to perform

Bayesian wavelet shrinkage on the log-transformed raw wavelet periodogram. We begin

by comparing the difference between the Gaussian and Laplace distribution. Figure 6.2

shows a plot of the Gaussian (N (0, 1)) and Laplace, Lap(0,
√

2) pdf, both with variance 1.

From the plot we can see the Laplace distribution has slightly heavier tails. This implies

there will be a slightly higher acceptance rate of potential wavelet coefficients (β), which

is important for numerical calculations of Bayesian statistics (i.e. MCMC).
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Figure 6.2: Plot of the standard Gaussian and Laplace pdf both with variance 1.

The plots in figures 6.3 (a), (c) and (e) are the Gaussian and Laplace posterior tail

distribution (5.12) with

• data h = 1/2, from (5.7)

• odds ratio θl = 1/5, from (5.10)

• prior weights λl = 0, 1/2, 1

• Gaussian prior precision νl = 1/4 and Laplace prior precision νl =
√
2/4 (this ensure

both priors have equal variance).

The value for θ corresponds to α = θ(1 + θ)−1 = 1/6, implying most of the weight of

the posterior distribution is present in the posterior tail distribution. As θ increases, we

find α decreases and most of the weight of the distribution will be concentrated at zero

via the dirac delta function. As α → 0 more wavelet coefficients will be ‘shrunk’ to zero

as demonstrated by the shrinkage function in figures 6.3 (b), (d) and (f). The shrinkage

function is the posterior mean from equation (5.16), as we vary the value of h, with fixed

θl = 5, Laplace νl =
√
2/100 and Gaussian νl = 1/100. If νl increases, this also increases the

amount of shrinkage performed on the h, i.e. νl ↑ ⇒ βl,m ↓.

As the likelihood weight (λ) increases, the likelihood function becomes more skewed

with an increase in influence from the error distribution (centralised log(χ2
1)). This affects

the skewness of the posterior distribution and the symmetry of the shrinkage function.

When λ = 0, the posterior distribution and shrinkage function are symmetric. In figure

6.3 (b) values of h between approximately −5 and 5 result in a posterior mean estimate
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Figure 6.3: (a), (c) and (e) are of the Gaussian and Laplace posterior tail distribution for

h = 1/2, θ = 1/5 for both, Gaussian ν = 1/4 and Laplace ν =
√
2/4 for different values of

λ. Plots (b), (d) and (f) are the Gaussian and Laplace shrinkage functions for θ = 5 for

both, and Gaussian ν = 1/100 and Laplace ν =
√
2/100 and different λ.
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β̂ ≈ 0. This implies that values of |h| < 5 are likely due to noise in the data. If |h| ∈ [5, 10),

the estimate of |β̂| are smaller than |h|. In figures 6.3 (d) and (f) of the shrinkage function

for λ > 0, the range of values of h < 0 which results in β̂ = 0 increases. There is also a

decrease in the range of values of h > 0 which yield a β̂ value equal to zero.

Although the posterior distributions appear to be very different between the Laplace

and Gaussian prior, there is very little difference between the shrinkage functions. Each

plot of the shrinkage functions suggest that using the Gaussian prior will result in a slightly

higher proportion of values being reduced to zero.

Calculation of Q∗i (·) for the Gaussian prior required numerical integration. An explicit

representation could be produced in the frequency domain (as shown in lemma 5.3.5),

but how to obtain ω from h was not clear. Although numerical integration was also

required to calculate Q∗1(·) for the Laplace prior (lemma 5.3.9(b)), it was only needed

for one component. We conclude the computational cost of using the Gaussian prior is

greater than the Laplace. Hence from now on, only the Laplace prior is used to evaluate the

performance of Bayesian wavelet shrinkage of the log transformed raw wavelet periodogram

to estimate the EWS.

6.3 Simulation Example

To evaluate the performance of our method, we used one simulated locally stationary

wavelet (LSW) processes with Gaussian innovations, Xt and Yt, described in section 3.4

simulated from the piecewise constant and slowly evolving spectra of (3.9) and (3.12). We

assumed the Haar synthesis wavelet was known, and all of our analysis was performed on

the raw wavelet periodogram obtained using the Haar AW.

Firstly, for both LSW processes, we empirically verified the distribution of our model’s

error term from equation (5.3) was approximately the central log(χ2
1) distribution (error

distribution from lemma 5.1.1). To obtain our error, the true value of log(Rj(z)) was

calculated using equations (3.9) and (3.12), and the inverse Haar inner product matrix

A. This was subtracted from Hj,k (the error centralised log transformed raw wavelet peri-

odogram) to obtain ej,k. The pdf of the error distribution was imposed over a histogram

of ej,k of the finest (j = 9), mid (j = 6) and coarsest (j = 0) scale.

Estimation of the piecewise constant and slowly evolving EWS from the simulated

LSW process Xt and Yt, was produced using the smoothing wavelets Haar and Daubechies

Extremal Phase wavelets with 2−10 vanishing moments. For each estimator, we calculated
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Figure 6.4: Histogram plots of ej,k = Hj,k − log(Rj,k) obtained from the LSW process
Xt with Gaussian innovations, simulated from the piecewise constant spectrum for scales
j = 9, 4, 0, and probability density plot of the error distribution (yellow dashed line).

the average mean squared error (AMSE), defined as

AMSE =
1

JT

J−1∑

j=0

T−1∑

k=0

(
Sj,k − Ŝj,k

)2
,

without cycle spinning.

The SW which produced the estimator with the smallest AMSE was then used to

produce the estimator which was cycle spun twenty and forty times. As visually there was

little difference between the results for the different number of cycle spins, we concluded for

computational efficiency, twenty cycle spins would be sufficient (appendix B contains the

results for forty cycle spins). For each EWS estimate, two hundred Monte-Carlo samples

were generated to use in calculating the 50% and 90% quartiles.

6.3.1 Piecewise Constant EWS

We begin our investigation by empirically assessing the distribution of the error term.

Figure 6.4 shows the histogram plots of the model error of the finest (a), mid (b) and

coarsest (c) scale of the log transformed wavelet periodogram. For j = 9 and 6 the error

pdf fits the data reasonably well. The histogram of the error at the coarsest scale does

not fit the centralised log(χ2
1) as well, but the departure is not large enough to suggest

our error assumption is unreasonable.

The SW which produced an estimate of the piecewise constant EWS with the smallest

AMSE was the Daubechies Extremal Phase wavelet with 3 vanishing moments (D3). We

wish to produce an EWS estimate where the majority of the power is contained within

the finest scale j = 9 and there is evidence of the piecewise constant nature. The plots of
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Figure 6.5: Plots of the estimated piecewise constant EWS using Bayesian wavelet shrink-
age estimate of the log-wavelet periodogram obtained from Xt.

Ŝ(z) in figure 6.5 do not capture the piecewise constant nature of the spectrum and for

the estimate without cycle spinning (a) and with 20 spins (b), there is evidence power has

leaked from the finest (j = 9) scale into the next two finest scales (j = 8, 7). Comparing

these plots with figure 3.4(a), which is the TI de-noised estimator of the same data, there

appears to be no improvement. In the Bayesian log-EWS estimator there is more leakage

from the finest into the adjacent coarser scales than the TI de-noised estimator.

We plotted the EWS estimate, confidence intervals and true EWS for scales j = 9, 8, 7

in figure 6.6. Figures (a), (c) and (e) are the estimates without cycle spinning, whereas

(b), (d) and (f) are the cycle spun estimates of Sj(z). There is a slight improvement in

each scale estimate after cycle spinning the data, and an increase in the coverage of the

CIs.

In figures 6.6 (e) and (f), perform reasonably well at detecting the second change point

at z = 8/15, possibly because it is a larger change in power than the first and the long

period where the power remains constant. Both estimates fail to detect the first change

point at z = 1/3, instead implying a gradual increase in power until a sudden peak around

z ≈ 1/2.

The 90% CI for the plots in figures 6.6 (a), (b), (c) and (d), where there should be no

power, all appear to capture the true spectral value of zero. This information could be

used to suggest any evidence of power at these scales is a result of leakage and potentially

could be ignored.
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Figure 6.6: Plots of the piecewise constant EWS estimator for scales j = 9, 8, 7. Figures
(a), (c) and (e) are estimated without cycle spinning, and figures (b), (d) and (f) are with
20 cycle spins. Analysis wavelet = Haar and smoothing wavelet = D3. The true piecewise
constant EWS is the dashed red line and our log-EWS estimator is the blue solid line.
The dark grey shaded area is the 50% CI and the light grey is the 90% CI.

126



(a) j = 9

e9

−10 −5 0

0.
00

0.
10

0.
20

(b) j = 6

e6

−15 −10 −5 0

0.
00

0.
10

0.
20

(c) j = 0

e0

−10 −5 0

0.
00

0.
10

0.
20

Figure 6.7: Histogram plots of ej,k = Hj,k − log(Rj,k) obtained from the Yt with Gaussian
innovations, simulated from the slowly evolving spectrum for scales j = 9, 4, 0.

As we were aware of the piecewise constant nature of the spectrum we performed the

analysis again using the Haar smoothing wavelet. Without cycle spinning the estimate

was also piecewise constant. However, the location of the change points were completely

inaccurate, and cycle spinning the data produced results very similar to the D3 estimates,

(see appendix B)

6.3.2 Slowly Evolving EWS

Similarly to the piecewise constant spectrum, for scales j = 9, 6, 0 we plot the histograms

of ej,k and the error pdf in figure 6.7. We observed a very similar pattern as before in which

there was a slight departure from the centralised log(χ2
1) distribution in the coarsest scale.

As the difference was only marginal, we concluded that there was not enough evidence to

suggest our model assumptions were invalid.

The plots of the estimated slowly evolving EWS in figure 6.8 are poor, especially if we

compare the Bayesian log-EWS estimator with the TI de-noised estimator in figure 3.9(a).

There is a large amount of leakage from the power scale (j = 6) into all the other scales,

especially into the coarser scale j = 7, 8 and the finer scales j = 5, 4. Comparing the plots

of the cycle spun estimate in (b) with the estimate without cycle spinning in (a), there

appears to be very little difference between them.

By plotting our estimate, CI and true of the slowly evolving spectrum for scales j =

7, 6, 5 in figure 6.9 we can examine in detail how poorly this method is working. On closer

inspection cycle spinning does slightly improve the estimate and there is a reduction in

the size of the CI. The CI for all the scales and estimates appear to capture the true EWS.

For j = 6, the CI often are negative. It would imply there are periods when the power

detected in our estimate is a side effect of leakage between scales. However, as this is not
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Figure 6.8: Plots of the slowly evolving EWS estimator using Bayesian wavelet shrinkage
estimate of the log-wavelet periodogram obtained from Yt.

the case, this provides further evidence of our method’s poor performance.

As the form of the spectrum was known, it was suspected a smoother wavelet might

improve the results. We performed the analysis using the D10 wavelet (see appendix B).

The results appeared to be very similar to those in figures 6.8 and 6.9.

6.3.3 Conclusion

Although our model assumptions appeared to be reasonable, our subsequent estimates of

the EWS are poor. The leakage and noise in the data led to imprecise estimates and large

confidence intervals. Changing the smoothing wavelet had little effect on improving our

estimates. Increasing the sample size might improve the problem, however increasing the

sample size would require T = 211 = 2048 observations. This may be difficult to obtain in

practice.

Some investigations two possible sources of error:

• hyperparameter estimation,

• assumption of independence.

Further research in Clyde and George (1998) suggested that using equation (2.39) to

produce hyperparameter estimates could lead to biased results. We also used the method

of Abramovich et al. (1998) to determine the hyperparameters. As we were able to tune

the hyper-hyperparameters, a and b in (2.37), we produced very accurate results. However,
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Figure 6.9: Plots of the piecewise constant EWS estimator for scales j = 7, 6, 5. Figures
(a), (c) and (e) are estimated without cycle spinning, and figures (b), (d) and (f) are with
20 cycle spins. Analysis wavelet = Haar and smoothing wavelet = D2. The true slowly
evolving EWS is the dashed red line and our Bayesian log-EWS estimator is the blue solid
line. The dark grey shaded area is the 50% CI and the light grey is the 90% CI.

129



this was also a consequence of knowing the true form of the EWS. Another possible method

would be to use the EM algorithm (Clyde and George, 1998), however this would required

further development due to the complicated form of the likelihood.

We assumed the raw wavelet periodogram was independent between scales and loca-

tions. The log transformation helped to stabilise the variance and induce a theoretically

additive model, however, it did not affect the correlation structure of the periodogram.

Previous research did suggest that an assumption of independence between locations which

were ‘far enough’ apart was not unreasonable (section 3.2). However, with the leakage be-

tween scales, by addressing the possible covariance between the raw wavelet periodogram

at the same location and different scales may yield more accurate results.
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Chapter 7

Bayesian Wavelet Shrinkage of the

Haar-Fisz EWS

In this chapter we shall describe how estimates and corresponding confidence intervals can

be calculated for the evolutionary wavelet spectrum (EWS) after smoothing, via wavelet

shrinkage, the Haar-Fisz transformed raw wavelet periodogram. We calculate confidence

interval estimates for the soft shrinkage and Bayesian wavelet shrinkage of the Haar-Fisz

wavelet periodogram.

We shall begin by describing the Haar-Fisz transformation of the raw wavelet peri-

odogram in section 7.1 and investigating the correlation structure before and after the

transformation in section 7.2. We develop a method for performing Bayesian wavelet

shrinkage upon the full Haar-Fisz transformed raw wavelet periodogram, with correspond-

ing credible intervals (CI) in 7.3, using a Uniform (7.4.1) and Laplace (7.4.2) prior. Finally

in section 7.5 we evaluate our Bayesian wavelet shrinkage method using the simulated data

from section 3.4.

7.1 Haar-Fisz Transformation

Applying the Fisz transformation helps to stabilise the variance and introduce Gaussianity

to the data (Fisz, 1955). The Haar-Fisz transformation (described in section 2.6.4) of a

non-Gaussian data set implies that any smoothing technique can be applied to the Haar-

Fisz transformed data with the assumption of a Gaussian error distribution.

We shall begin by considering the full Haar-Fisz transformation of the raw wavelet

periodogram. Firstly, assume the raw wavelet periodogram can be modelled as equation
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Figure 7.1: Flow diagram of the full Haar-Fisz transformation of the raw wavelet peri-
odogram

(5.1),

Ij,k ≈ Rj

(
k

T

)
Z2
j,k,

where Rj
(
k/T
)

= (AS)j
(
k/T
)

and Z2
j,k ∼ χ2

1, for j = 0, . . . , J − 1, k = 0, . . . , 2J − 1 and a

sample size of T = 2J .

Let the full Haar-Fisz transformation be denoted by F , and the full Haar-Fisz trans-

formation of the raw wavelet periodogram be FIj,k = Hj,k. Figure 7.1 shows a flow

diagram of the steps required to perform a full Haar-Fisz transformation. From proposi-

tion 2.6.3(b) in section 2.6.4, the Haar-Fisz transformation possesses the log-like property.
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(a) Histogram of Xt’s H9,k
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(b) Histogram of Xt’s H6,k
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(c) Histogram of Xt’s H0,k
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(d) Histogram of Yt’s H9,k
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(e) Histogram of Yt’s H6,k
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(f) Histogram of Yt’s H0,k
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Figure 7.2: Density plots of the Haar-Fisz wavelet periodogram (Hj,k) of Xt (in a, b and
c) and Yt (in d, e and f) at: the finest scale in (a); a mid scale in (b); the coarsest scale
in (c)). For a sample size of T = 210 = 1024. The solid blue line is the N (E[Hj ],Var[Hj ])
pdf.

This suggests a possible model for the Haar-Fisz transformed wavelet periodogram is

Hj,k = Bj
(
k

T

)
+ ej,k (7.1)

for j = 1, . . . , J and k = 1, . . . , 2J , where Bj
(
k/T
)

= FRj
(
k/T
)

and ej,k = FZ2
j,k. The

distribution of Hj,k is approximately N (Bj
(
k/T
)
, σ2j ) and therefore ej,k ≈ N (0, σ2j ).

7.2 The Distribution and Correlation of the Haar-Fisz

Periodogram

We determined in theorem 3.2.1 that the distribution of the raw wavelet periodogram with

Gaussian innovations was approximately multivariate chi-square. To assess whether the

Haar-Fisz wavelet periodogram (H) was closer to Gaussianity we used the simulated data

from section 3.4 to numerically assess this assumption. We used the LSW processes Xt

and Yt with Gaussian innovations and extracted the raw wavelet periodogram using the
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Haar analysis wavelet, then we obtained the Haar-Fisz wavelet periodogram. We produced

density plots of the Haar-Fisz wavelet periodogram and compared their distribution to the

Gaussian pdf with mean E[Hj ] and variance Var[Hj ], see figures 7.2.

Although we observed that the distribution of the Haar-Fisz wavelet periodogram was

not exactly Gaussian, it was closer to Gaussianity than the raw wavelet periodogram.

Hence, we felt this helped validated the assumption that the distribution of the Haar-Fisz

periodogram was approximately Gaussian.

Using the DWT helps to break down the covariance structure within a data set. How-

ever, we were unsure how the Haar-Fisz transformation may effect the correlation structure

(Johnstone and Silverman, 1998). To quantify the possible effect, we calculated the auto-

correlation (acf) and partial autocorrelation (p.acf) function for lags τ = 0, . . . , 500 of the

raw wavelet periodogram and Haar-Fisz wavelet periodogram of Xt and Yt and compared

the results.

We found the p.acf revealed similar information as acf (see appendix B for p.acf em-

pirical evidence). Therefore we only displayed the acf plots in figures 7.3 and 7.4 for scales

j = 9, 6 and 0 of the finest, mid and coarse scales. A 5% significance level was also plotted,

usually values of the acf which are less than this line provide insufficient evidence they are

significantly different from zero and can be ignored.

Figure 7.3 is the empirical acf of the full raw wavelet periodogram (a, c, e) and Haar-

Fisz wavelet periodogram (b, d, and f) of the LSW process Xt. At the finest and mid

scale, the acf of the raw wavelet periodogram is positive for approximately τ = 0, . . . , 180

and mainly negative after. Using the Haar-Fisz transformation appears to remove this

pattern, so that the acf is randomly positive or negative. Also, the acf value is less for

the Haar-Fisz wavelet periodogram compared to the raw wavelet periodogram. At the

coarsest scale, except for τ = 0, there appears to be a reduction in the acf value.

The acf of the raw wavelet periodogram (a, c, e) and Haar-Fisz wavelet periodogram

(b, d, and f) calculated using the Haar analysis wavelet from the LSW process Yt can be

observed in figure 7.4. For all scales, we observe a similar pattern in the acf as the EWS

at the fourth finest scale (j = 6). The Haar-Fisz transformation has removed some of the

pattern in the acf, and there appears to be an overall reduction in the values of the acf.

The evidence suggests that using the Haar-Fisz transformation, will not totally remove

all of the correlation in the raw wavelet periodogram, but there is certainly a reduction.

This will help to ensure the validity of assumptions of independence, which proved prob-
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Figure 7.3: Plots of the empirical acf over lag τ = 0, . . . , 500 of the raw wavelet peri-
odogram (Ij,k) and Haar-Fisz wavelet periodogram (Hj,k) of Xt simulated from the piece-
wise constant EWS at: the finest scale in (a) and (b); a mid scale in (c) and (d); the
coarsest scale in (e) and (f). For a sample size of T = 210 = 1024. The blue dashed line
in each plot is the 5% significance level.
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Figure 7.4: Plots of the empirical acf over lag τ = 0, . . . , 500 of the raw wavelet peri-
odogram (Ij,k) and Haar-Fisz wavelet periodogram (Hj,k) of Yt simulated from the slowly
evolving EWS at: the finest scale in (a) and (b); a mid scale in (c) and (d); the coarsest
scale in (e) and (f). For a sample size of T = 210 = 1024. The blue dashed line in each
plot is the 5% significance level.
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lematic in the previous Bayesian wavelet shrinkage methodology.

7.3 Bayesian Wavelet Shrinkage of the Haar-Fisz

Periodogram

Once a full Haar-Fisz transformation has been performed upon the raw wavelet peri-

odogram we have demonstrated through simulations that the resulting data appear to

possess a Gaussian distribution. In this section we suggest using a Bayesian wavelet

shrinkage approach, but to improve the flexibility of this method, we shall assume that

this shrinkage can be performed on the wavelet coefficients of the Haar-Fisz transformed

data using any smoothing wavelet (SW).

7.3.1 Model

Take the DWT of (7.1), for a particular scale j, we obtain

hl,m = βl,m + εl,m,

where hl,m = (WHj)l,m, βl,m = (WBj)l,m, εl,m = (Wej)l,m for scales l = 0, . . . , J − 1

and locations m = 1, . . . , 2l, and W is the T × T wavelet transformation matrix. Due to

the properties of the wavelet transformation, the error distribution will be approximately

εl,m ∼ N (0, ν2l ) where ν2l = 2J−lσ2j . For future notation we shall assume j is fixed and

drop this notation.

7.3.2 Prior

We propose using the Berger-Müller mixture prior, as used in Bayesian wavelet shrinkage

of the coefficients from the log-transformed raw wavelet periodogram from equation (5.9),

p(βl,m) = αlδ(βl,m) + (1− αl)ξ(βl,m). (7.2)

The appropriate choice of the function ξ(·) will depend upon the chosen smoothing wavelet

(SW).
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7.3.3 Likelihood

Due to the normalisation properties of the Haar-Fisz transformation, the likelihood will

be of the form

p(εl,m|βl,m) = ϕνl(εl,m),

where ϕνl(·) is the probability density function of the Gaussian distribution with variance

ν2l . Let εl,m = hl,m − βl,m, then our likelihood becomes

p(hl,m|βl,m) = ϕνl(βl,m − hl,m)

=
1

νl
√

2π
exp

{
− 1

2ν2l
(hl,m − βl,m)2

}
. (7.3)

7.3.4 Posterior Distribution

Using the Berger-Müller mixture prior, yields a posterior distribution of two parts: the

dirac delta function and tail density. We shall only calculate the posterior tail density,

because this will eventually result in the shrinkage rule. The proportion of the distribution

which is contained within the tail density is controlled by α.

For simplicity, in what follows we shall ignore the l,m subscripts for the β’s and h’s.

Then by combining the tail density prior and the likelihood, the posterior distribution is

calculated from

p(β|h) =
p(β)p(h|β)∫
p(y)p(h|y)dy

=
(1− αl) ξ(β)ϕνl(β − h)∫

[αlδ(y) + (1− αl) ξ(y)]ϕνl(h− y)dy

=
ξ(β)ϕνl(β − h)

θl ϕνl(h) +
∫
ξ(y)ϕνl(y − h)dy

, (7.4)

where θl is the odds ratio, θl = αl(1− αl)−1.
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7.3.5 Posterior Mean

To produce an estimate of the wavelet coefficients β, we shall find the posterior mean.

This is calculated from the integral

β̂ =

∫
x

p(x)p(h|x)∫
p(y)p(h|y)dy

dx

=

∫
x ξ(x)ϕνl(x− h)dx

θl ϕνl(h) +
∫
ξ(y)ϕνl(y − h)dy

. (7.5)

7.3.6 Posterior Variance

The posterior variance is calculated from the integral

Var[β|h] = E[β2|h]− (E[β|h])2

=

∫
x2

p(x)p(h|x)∫
p(y)p(h|y)dy

dx −
(∫

x
p(x)p(h|x)∫
p(y)p(h|y)dy

dx

)2

=

∫
x2 ξ(x)ϕνl(x− h)dx

θl ϕνl(h) +
∫
ξ(y)ϕνl(y − h)dy

− β̂2. (7.6)

7.3.7 Hyperparameter Determination

We will use marginal maximum likelihood estimation (MLE)to determine the hyperpa-

rameters νl and αl. Using the same methodology of Johnstone and Silverman (2005),

whereby we maximise the hyperparameters over the log-likelihood of the error distribu-

tion multiplied by the prior,

L(αl, νl|hl) =

2l−1∑

m=0

log{αlϕνl(hl,m) + (1− αl)γ(hl,m|νl)} , (7.7)

where hl = [hl,0, . . . , hl,2l−1] and

γ(y|νl) =

∫ ∞

−∞
ϕνl(y − x)ξ(x)dx. (7.8)

This will require a computational estimation using an appropriate optimisation program.
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7.3.8 Credible Intervals

To calculate credible intervals we will use importance sampling similarly to the Bayesian

wavelet shrinkage method described in 6.1. For a particular wavelet coefficient, β̂l,m, we

simulate 100 observations from the posterior distribution. We then calculate the mean

of these observations, this is now our simulated value of β̂l,m. This is repeated for all

of the wavelet coefficients, which are then applied to the inverse wavelet transform to

produce a simulated smoothed wavelet periodogram. This process is repeated 100 times

and the variance of these simulations for each location is an estimate for the variance of

our smoothed estimate.

7.4 Choice of Tail Density Prior

We shall now discuss two choices of tail density priors: the uniform (section 7.4.1) and

Laplace (section 7.4.2) distributions. The appropriate choice of mixture prior will depend

on our selected of smoothing wavelet (SW).

7.4.1 Uniform Mixture Prior

Suppose we use the Haar SW, then the DWT of H will return the Haar-Fisz coefficients

(i.e. hl,m = f̃l,m from the flow diagram 7.1). As a result of the Fisz transformation, we find

f̃l,m ∈ [−1, 1], therefore ξ(·) in (7.2) should be selected with a support of [−1, 1] to convey

the appropriate prior information. One such example is the Uniform[−1, 1], which is fairly

uninformative, however, it can easily reflect the constraints of the wavelet coefficients.

For ease of notation we shall drop the l,m subscripts during our calculations. Let

the function ξ(·), in the prior distribution, be the uniform probability density function,

therefore

p(β) = αlδ(0) + (1− αl)
1

2
I[−1,1](β). (7.9)

Then to calculate the posterior distribution, mean and variance, consider the integral

Qiu(h) =

∫ ∞

−∞
yi ϕνl(y − h) ξ(y) dy

=

∫ ∞

−∞
yi ϕνl(y − h)

1

2
I[−1,1](y) dy

=
1

2

∫ 1

−1
yi ϕνl(y − h) dy. (7.10)
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By calculating Qiu(h) for i = 0, 1, 2 with the uniform mixture prior, we can determine the

posterior mean and variance, using the equations

β̂l,m =
Q1
u(hl,m)

θl ϕνl(hl,m) +Q0
u(hl,m)

(7.11)

Var[βl,m|hl,m] =
Q2
u(hl,m)

θl ϕνl(hl,m) +Q0
u(hl,m)

− β̂2l,m. (7.12)

Let i = 0 then we find

Q0
u(h) =

1

2

∫ 1

−1
ϕνl(y − h) dy

=
1

2

[∫ 1

−∞
ϕνl(y − h) dy −

∫ −1

−∞

1

νl
ϕνl(y − h) dy

]

=
1

2

[
Φ

(
1− h
νl

)
− Φ

(−1− h
νl

)]
. (7.13)

If i = 1 and by using the results in Appendix A.1.2, equation (A.11), this is

Q1
u(h) =

1

2

∫ 1

−1
y ϕνl(y − h) dy,

=
1

2

[∫ 1

−∞
y ϕνl(y − h) dy −

∫ −1

−∞
y ϕνl(y − h) dy

]
,

=
1

2

{
h

[
Φ

(
1− h
νl

)
− Φ

(−1− h
νl

)]
− νl

[
ϕ

(
1− h
νl

)
− ϕ

(−1− h
νl

)]}
. (7.14)

When i = 2, using the results in equation (A.16) we find

Q2
u(h) =

1

2

∫ 1

−1
y2 ϕνl(y − h) dy

=
1

2

[∫ 1

−∞
y2 ϕνl(y − h) dy −

∫ −1

−∞
y2 ϕνl(y − h) dy

]
,

=
1

2

{
(ν2l + h2)

[
Φ

(
1− h
νl

)
− Φ

(−1− h
νl

)]
− hνl

[
ϕ

(
1− h
νl

)
− ϕ

(−1− h
νl

)]}
.

(7.15)

To determine the hyperparameters via MLE we must first calculate the convolution of

the error and uniform distribution to produce γ(·),

γ(y|νl) =

∫ ∞

−∞

1

νl
√

2π
exp

{
−(y − x)2

2ν2l

}
1

2
I[−1,1](x)dx

=
1

2

∫ 1

−1

1

νl
√

2π
exp

{
−(x− y)2

2ν2l

}
dx

=
1

2

[
Φ

(
1− y
νl

)
− Φ

(−1− y
νl

)]
. (7.16)
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(a) Posterior Tail Distribution
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Figure 7.5: Plots of the posterior tail distribution and shrinkage function obtained using
the uniform mixture prior. Posterior tail distribution for parameters h = 1/2, ν = 1 and
θ = 1/3. Shrinkage function for parameters ν = 1/5 and θ = 50

Therefore, the log-likelihood function for this step which we need to maximise over is

L(αl, νl|hl) =
2l−1∑

m=0

log

{
αlϕνl(hl,m) +

1− αl
2

[
Φ

(
1− hl,m

νl

)
− Φ

(−1− hl,m
νl

)]}
.

(7.17)

The plot in figure 7.5(a) shows the posterior tail distribution using our uniform mixture

prior for the Haar smoothing wavelet for data h = 1/2, prior precision ν = 1 and odds

ratio θl = 1/3. The value of h causes the symmetry of the posterior tail distribution to be

centred around h, and as the support of our mixture prior is [−1, 1] the posterior pdf is

zero for values which are not within the interval [−1, 1]. The plot in figure 7.5(b) shows

the shrinkage function for h ∈ [−1.5, 1.5] with prior precision ν = 1/5 and θ = 50. The

plot demonstrates how values of |h| > 1 are are tending to sign(h). Due to the Haar-Fisz

transformation and the use of the Haar smoothing wavelet, no value would be outside the

interval [−1, 1]. Only values of |h| which are less than and close to 1 remain relatively

unchanged, whereas |h| < 1/2 appear to be zero.

7.4.2 Laplace Mixture Prior

Due to the short support of the Haar wavelet, we believe that using the Haar SW can

limit the type of EWS which can be successfully recovered, i.e. as defined in (2.65).

Therefore, to increase the flexibility of our method we shall consider performing Bayesian

wavelet shrinkage on the wavelet coefficients obtained from the DWT of the Haar-Fisz
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periodogram when SW 6= Haar.

For non-Haar smoothing wavelets the support of the corresponding wavelet coefficients

obtained from the full Haar-Fisz transformed raw wavelet periodogram is not between

[−1, 1]. Therefore the uniform distribution is not an appropriate candidate for ξ(·) in the

Berger-Müller mixture prior. We suggest using the Laplace distribution, because of its

heavy tails, but also due to the performance of the Laplace distribution when applied to

the Bayesian wavelet shrinkage of the log-transformed raw wavelet periodogram in section

6.2.

As before, we shall drop the l,m subscripts for ease of notation. Let the function ξ(·),

in the prior distribution, be the Laplace probability density function, therefore

p(β) = αlδ(0) + (1− αl)
τl
2

exp{−τl |β|} (7.18)

where τl is the scale parameter and 2τ−2l is the prior variance for scale l = 1, . . . , J .

To determine the posterior tail distribution, mean and variance consider we require

the following lemmas.

Lemma 7.4.1. The integral required to calculate the posterior distribution, mean and

variance using the Laplace mixture prior is

Qil(h) =
τl
2
e−h

2/2ν2l

[
eµ

2
1/2ν

2
l

∫ 0

−∞
yi ϕνl(y − µ1) dy + eµ

2
2/2ν

2
l

∫ 0

−∞
(−y)i ϕνl(y + µ2) dy

]
,

where

• ϕν(·) is the zero mean Gaussian pdf with variance ν2,

• µ1 = h+ ν2l τl,

• µ2 = h− ν2l τl.

The posterior mean for the Laplace mixture prior is

β̂l,m =
Q1
l (hl,m)

θl ϕνl(hl,m) +Q0
l (hl,m)

,

and the posterior variance is

Var[βl,m|hl,m] =
Q2
l (hl,m)

θl ϕνl(hl,m) +Q0
l (hl,m)

− β̂2l,m.
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The solution to these quantities can be obtained through lemma 7.4.2.

Lemma 7.4.2. The solutions for lemma 7.4.1 for i = 0, 1, 2 are

(a) i = 0

Q0
l (h) =

τl
2
e−h

2/2ν2l

[
eµ

2
1/2ν

2
l Φ

(−µ1
νl

)
+ eµ

2
2/2ν

2
l Φ

(
µ2
νl

)]
.

(b) i = 1

Q1
l (h) =

τl
2
e−h

2/2ν2l

{
eµ

2
1/2ν

2
l

[
µ1 Φ

(
−µ1
νl

)
− νl ϕ

(
−µ1
νl

)]

+ eµ
2
2/2ν

2
l

[
µ2 Φ

(
µ2
νl

)
+ νl ϕ

(
µ2
νl

)]}
.

(c) i = 2

Q2
l (h) =

τl
2
e−h

2/2ν2l

{
eµ

2
1/2ν

2
l

[
(ν2l + µ21)Φ

(
−µ1
ν1

)
− µ1νl ϕ

(
−µ1
ν1

)]

+ eµ
2
2/2ν

2
l

[
(ν2l + µ22)Φ

(
µ2
νl

)
+ µ2νl ϕ

(
µ2
νl

)]}
.

To determine the hyperparameters by MLE, we require the log-likelihood function of

our Bayesian model from (7.7) for the Laplace mixture prior. this can be found in lemma

7.4.3.

Lemma 7.4.3. The log-likelihood function for the Laplace mixture prior is

L(αl, νl, τl|hl)

=
2l−1∑

m=0

log

{
αlϕνl(hl,m) +

τl(1− αl)
2

e−y
2/2ν2l

[
eµ

2
3/2ν

2
l Φ

(−µ3
νl

)
+ eµ

2
4/2ν

2
l Φ

(
µ4
νl

)]}
,

where

• ϕν(·) is the zero mean Gaussian pdf with variance ν2,

• Φ(·) is the Gaussian cdf,

• µ3 = y + ν2l τl,

• µ4 = y − ν2l τl.

The proofs for lemmas 7.4.1 to 7.4.3 are available in appendix A.2.
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Figure 7.6: Plots of the posterior tail distribution and shrinkage function obtained using
the Laplace mixture prior. Posterior tail distribution for parameters h = 1/2, ν = 1, θ = 1/3
and τ =

√
3. Shrinkage function for parameters ν = 1, θ = 5 and τ = 1/100

The plot in figure 7.6(a) is the posterior tail distribution for the Laplace prior and figure

7.6(b) is the Laplace shrinkage function. The shrinkage function demonstrates how values

of h are ‘shrunk’ to produce the posterior mean estimate, β̂ with parameters ν = 1, θ = 5

and τ = 1/100. Values of |h| ≥ 4 remain unchanged, whereas absolute values which are

less than four are reduced in magnitude.

7.5 Simulation Examples

The coding required for the Bayesian wavelet shrinkage of the Haar-Fisz wavelet peri-

odogram is very similar to the code described in chapter 6. However, as the likelihood

function consists only of the Gaussian probability density function, half the number of

calculations are required. With the Laplace prior many components required to calculate

the Laplace posterior mean are the same as Q0(h) and Q1(h) in section 5.3.2.

We determined the hyperparameters by maximising the marginal log likelihood using

the optim function and L-BFGS-B method in R. However, we also found that there were

problems with insufficient data and sparsity when we tried to numerically maximise the

log likelihood function for both the uniform and Laplace prior distributions. In particular

we found that with the Laplace prior as we wished to estimate three hyperparameters this

became particularly problematic. Therefore, we had to simplify the maximisation in two

ways. Firstly, we estimate νl directly from the data.

145



Raw Wavelet
Periodogram

Ij,k

H-F Wavelet
Periodogram

Hj,k

SW Coef.
hl,m

Posterior
Distribution
p(βl,m|hl,m)

Posterior
Mean

β̂l,m

Sample

β̂l,m ∀ l,m

H-F Estimator

B̂j

(
k
T

) N Samples

B̂j

(
k
T

)

Ŝj
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Figure 7.7: A flow diagram of using Bayesian wavelet shrinkage to estimate the EWS from
the Haar-Fisz (H-F) wavelet periodogram. Note: If the smoothing wavelet is Haar, the
smoothing wavelet (SW) discrete wavelet transform (DWT) is not required.
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The sampled EWS estimates are also produced using importance sampling as described

in section 6.1. For the uniform prior, the sample wavelet coefficients, x, were sampled from

a Gaussian distribution with mean β̂l,m and variance Var[βl,m|hl,m] truncated on the inter-

val [−1, 1]. When the smoothing was performed using the Laplace prior we also sampled

from the Gaussian distribution with the same mean and variance but without trunca-

tion. The flow diagram in figure 7.7, depicts the process required to produce the Bayesian

wavelet shrinkage estimate of the Haar-Fisz transformed raw wavelet periodogram.

To assess the performance of the Bayesian wavelet shrinkage of the Haar-Fisz wavelet

periodogram we applied the method to two simulated LSW processes. These were the same

LSW processes Xt and Yt with Gaussian innovations described in section 3.4, previously

analysed. As we knew the true EWS we could compare our Bayesian Haar-Fisz EWS

estimator with the truth and obtain the AMSE.

For each LSW process, we compared the results of using the uniform and the Laplace

prior. We produced spectral estimates with the Laplace prior using Daubechies Extremal

Phase smoothing wavelet with two to ten vanishing moments without cycle spinning. Plots

of the estimates without cycle spinning are available in Appendix B. The estimate which

produced the smallest AMSE was then cycle spun twenty times, and we used this Laplace

prior spectral estimate to compare with the uniform prior spectral estimate.

To calculate the CI for the cycle spun data, we sampled an estimate of the cycle spun

N (which is defined by the user). Each of these samples are then returned to the original

location. The CI are calculated from the quantiles of all the samples.

We plotted the EWS for all scales to determine which scales warranted closer exami-

nation. Then we plotted the EWS at these scales with their corresponding 50% and 90%

quantiles.

7.5.1 Piecewise Constant EWS

The plots in figure 7.8 are the estimates of the EWS for the LSW process Xt obtained

using the Haar smoothing wavelet with the uniform prior in figure (a) and Daubechies

Extremal phase wavelet with 3 vanishing moments with the Laplace prior in figure (b).

For both estimates there is a very small amount of leakage of power from j = 9 into

j = 8, 7, 6.

Both estimates detect the second change point in S9(z) reasonably well. However, it

seems the first change point is more difficult to detect and locate accurately. The Haar
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Figure 7.8: Plots of the estimated EWS of Xt, with 20 cycle spins. (a) is the estimated
EWS using the Haar wavelet and uniform prior. (b) is the estimated EWS using D3 and
Laplace prior.

wavelet appears to perform slightly better at locating the changing point and determining

the correct magnitude. The Laplace estimate gives the impression there is a gradual

increase in power over the first third of the spectrum rather than a sudden change.

The plots of the EWS of scales j = 9, 8, 7 with 50% and 90% confidence intervals

appear in figure 7.9. For all three scales in these plots, there is evidence of a Gibbs

phenomenon for all of the D3 estimates close to the first change point, z ≈ 1/3, as shown

in (b), (d) and (f). This results in a very large CI at this point, conveying the estimator’s

uncertainty. This could be used as evidence to suggest that the Haar wavelet is maybe a

more appropriate smoothing wavelet as there might be a discontinuity at that point.

The CI for all of the uniform estimates are smaller than the Laplace estimates. This

could be caused by using the truncated Gaussian distribution to generate observations from

the posterior distribution. The smaller confidence intervals result in a larger proportion of

the true EWS falling outside of the CI of the uniform estimate compared to the Laplace

estimate, especially for the 50% CI.

Neither the Laplace or uniform 90% CI capture the change points at z = 1/3 or z =

8/15. However, this could be a result of cycle spinning which can smooth estimates over

discontinuities.

The 90% CI for the uniform S7(z) does not capture the true EWS for a small period

around z ≈ 1/2, however as we are plotting the 90% CI there is a 10% chance the true

EWS will not be within the CI. As it is for such a small period of time, and the CI almost
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captures the actual value, the slight deviation is negligible.

7.5.2 Slowly Evolving EWS

The plots in figure 7.10 are the Uniform and Laplace estimates of the slowly evolving EWS.

The wavelet with the smallest AMSE for the Laplace prior was a Daubechies extremal

phase wavelet with 8 vanishing moments. Both wavelets did well at recovering the true

signal of the EWS, especially given the piecewise constant nature of the Haar wavelet,

even the estimate without cycle spinning was more accurate than expected (see appendix

B).

There is a small amount of leakage between scales, particularly from j = 6 into j = 5.

However, this is considerably less than the previously developed methods.

On closer inspection of the estimates in figure 7.11, it appears that the uniform prior

and Haar wavelet are better at estimating the S6(z) in figure (c) at the start and end of

the interval compared to the Laplace estimates (see figure (d)).

By examining the 50% and 90% confidence intervals of Sj(z) for j = 7, 6, 5, we gain

a sense of how much power has leaked into scales j = 5 and 7 from 6 and the accuracy

of the estimates. The power leakage from Ŝ6(z) to Ŝ5(z) is very little and there is strong

evidence from the CI for both prior distributions that there is no significant difference

between our estimated values and zero.

The true EWS value for S7(z) for all z should be zero. However, the uniform estimate

suggests that at z ≈ 0.2 there is negative power. As a spectrum cannot contain a negative

amount of power this does not make any practical sense, but should indicate that further

investigations should be made into estimating the spectrum at this scale and adjacent

scales.

7.5.3 Conclusion

Using the Haar-Fisz transformation helps to stabilise the variance, bring the distribution

closer to Gaussianity and reduces the correlation structure between locations. All of

these benefits help to simplify the Bayesian calculations and improve the computational

expense. Whereas our assumption of independence for Bayesian wavelet shrinkage of the

log periodogram appears to be invalid and results in inaccurate estimates, it appears the

Haar-Fisz transformation aids convergence.

With larger confidence intervals there is a higher probability the true EWS is within the
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Figure 7.9: Plots of the estimated EWS with 50% and 90% CI, at scale j = 9, 8, 7 using
Bayesian wavelet shrinkage on Xt’s Haar-Fisz transformed wavelet periodogram with 20
cycle spins. Figures (a), (c) and (e) have been smoothed using the Haar wavelet and
Uniform prior. Figures (b), (d) and (f) have been smoothed using the Laplace prior and
D3 wavelet.
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Figure 7.10: Plots of the estimated EWS of Yt, with 20 cycle spins. (a) is the estimated
EWS using the Haar wavelet and uniform mixture prior. (b) is the estimated EWS using
D8 and Laplace mixture prior.

CI values. However, it also suggests the estimate is inaccurate and possibly an alternate

wavelet would be more appropriate. If the nature of the EWS varied greatly between scales

it maybe more appropriate to considered different smoothing wavelets for each scale.

There is evidence to suggest varying the smoothing wavelets between scales may im-

prove our estimates. Especially if there is the possibility that the nature of the power is

different between scales, i.e. piecewise constant or slowly evolving. This may also help to

further reduce the effect the leakage of power has upon the recovered EWS. However, con-

sidering how well the uniform prior and Haar wavelet performed at recovering the slowly

evolving EWS, this does imply the method is fairly robust to the selection of smoothing

wavelet.

Overall this method works well at estimating the EWS and producing meaningful CI

to assess the validity of our estimate.
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Figure 7.11: Plots of the estimated EWS with 50% and 90% CI, at scale j = 7, 6, 5 using
Bayesian wavelet shrinkage on Yt’s Haar-Fisz transformed wavelet periodogram with 20
cycle spins. Figures (a), (c) and (e) have been smoothed using the Haar wavelet and
uniform mixture prior, whereas (b), (d) and (f) have been smoothed using the Laplace
mixture prior and D8 wavelet.
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Chapter 8

Conclusion

The aim of this thesis was to produce methods for smoothing the evolutionary wavelet

spectrum (EWS) of the locally stationary wavelet (LSW) process with confidence intervals.

In conclusion we shall first highlight the important aspects of each chapter, finishing with

a a paragraph summarising the main findings of this thesis.

Chapter 3: Foundation Work

By investigating some of the statistical properties of the empirical wavelet coefficients and

raw wavelet periodogram, we:

• determined the asymptotic mean, variance and distribution of the coefficients and

periodogram;

• numerically verified our findings for a range of LSW processes with different inno-

vations.

Our findings suggested:

• we could assume asymptotic independence between scales and locations, if the loca-

tions were not ‘close’;

• as the support of the wavelet increased the wavelet coefficients were asymptotically

Gaussian and hence the raw wavelet periodogram was approximately multivariate

chi-square.
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Chapter 4: Naive Spectral Confidence Interval using the Central Moving Av-

erage

In this chapter

• we analytically developed a smoothing technique and 95% confidence interval based

on the central moving average,

• tested our method on the simulated LSW processes from chapter 3.

We found that with this simple method

• the estimate and CI were easy to compute,

• more consideration should be given to the selection of bin width,

• we should consider calculating the variance using different close locations at scales

to improve accuracy.

Chapter 5: Bayesian Modelling of the Log Transformed EWS

In this chapter we

• theoretically established a model based on the findings in chapter 3 of the log wavelet

periodogram,

• developed a Bayesian wavelet shrinkage method for the log transformed raw wavelet

periodogram,

• calculated the required components for the Gaussian and Laplace prior.

• developed results for the asymptotic convergence of Bayesian wavelet shrinkage of

the log transformed raw wavelet periodogram, assuming

(a) our estimate was a function in the Besov ball, Br
p,q(A),

(b) our data set was independent and identically distributed.

Although many of the components could be calculated exactly analytically, some compo-

nents required numerical integration because of the complex error distribution of the log

transformed raw wavelet periodogram
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Chapter 6: Simulation Results of the Bayesian Log-EWS Estimator

The method developed in chapter 5 was programmed and tested using the simulated time

series in chapter 3. We compared the two prior distributions and found:

• the Laplace pdf has fatter tails than the Gaussian pdf;

• the posterior distribution using the different prior distributions with the same vari-

ance were very different, but the shrinkage functions were similar;

• using the Laplace prior required less numerical approximations.

Using the Laplace prior, we tested our method on the LSW process, our results indicated

that

• the error distribution was reasonably close to our theory;

• the CI conveyed how inaccurate the estimates were;

• more consideration should be given to the hyperparameter estimates;

• the assumption of independence may be invalid and possibly a multivariate approach

would be more appropriate.

Chapter 7: Bayesian Wavelet Shrinkage of the Haar-Fisz EWS

In this chapter we:

• numerically investigated the distribution and correlation structure of the Haar-Fisz

wavelet periodogram;

• created CI for the soft shrinkage estimates;

• developed Bayesian wavelet shrinkage of the Haar-Fisz wavelet periodogram.

From our investigations, we found:

• using the Haar-Fisz transformation of the raw wavelet periodogram:

(a) stabilises the variance;

(b) brings the data closer to Gaussianity;

(c) reduces the correlation structure between locations.

• using Bayesian wavelet shrinkage of the Haar-Fisz wavelet periodogram:
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(a) was simple to calculate and numerically efficient;

(b) produced an accurate EWS estimate;

(c) was reasonably robust to the choice of smoothing wavelet;

(d) produced associated CI which were insightful.

Further work into Bayesian modelling of the Haar-Fisz periodogram would be

• to improve the hyperparameter estimation to make it more efficient;

• to test how well this method performed on LSW processes with non-Gaussian inno-

vations.

In this thesis we developed three methods with confidence intervals to estimate the

EWS. With the development of each method we gained a greater understanding of the

statistical properties of the raw wavelet periodogram and which techniques were more

successful than others. Further work might include using the posterior median rather

than the posterior mean for estimation, and improving the analytical calculation of the

estimator’s variance and hyperparameter determination. Also, the methods described in

this thesis are also limited to regularly spaced time series, in practice a time series of this

nature may not be available. Therefore, we could also consider looking into producing

EWS estimates with confidence intervals of irregularly-spaced LSW processes.
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Appendix A

Appendix of Proofs

A.1 Proofs for the Bayesian Log-Periodogram

A.1.1 Gaussian Mixture Prior

Proof (Lemma 5.3.1). Let the Gaussian part of the mixture prior ξ equal to the pdf of

N (0, ν−2l ), then (5.14) becomes

Qi(h) =

∫ ∞

−∞

νly
i

√
2π

exp

{
−ν

2
l y

2

2

}
1

σ
√

2π
exp

{
−(h− y)2

2σ2

}
dy

= νl

(
1

2π

)1/2 ∫ ∞

−∞

yi

σ
√

2π
exp

{
− 1

2σ2
(
y2
[
1 + (νlσ)2

]
− 2hy + h2

)}
dy.

(A.1)

Let κl = 1 + (νlσ)2, where σ2 = π2
/2 (the variance of the error distribution), which means

that equation (A.1) can be written as

Qi(h) = νl

(
1

2π

)1/2 ∫ ∞

−∞

yi

σ
√

2π
exp

{
− κl

2σ2

[
y2 − 2y

h

κl
+
h2

κl

]}
dy. (A.2)

By completing the square it can be shown that the exponential part of equation (A.2) can

be re-written as

− κl
2σ2

[
y2 − 2hy

κl
+
h2

κl

]
= − κl

2σ2

[(
y − h

κl

)2

+
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]

= − κl
2σ2

(
y − h

κl

)2

+
h2

2σ2

(
1

κl
− 1

)
. (A.3)
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Then, if we also then let µg = hκ−1l and σ2g = σ2κ−1l in equation (A.3), then Qi(h) can be

written as

Qi(h) =
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)} ∫ ∞

−∞
yi ϕσg(y − µg)dy,

where ϕσg(·) is the Gaussian distribution with variance σ2g . �

Proof (Lemma 5.3.2). Let ξ the pdf of N (0, ν−2l ), then Q∗i (h) is

Q∗i (h) = νl
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−∞

yi√
2π

exp
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2
l y

2

2
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2
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2
l y

2

2

} √
γ∗ exp
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1

2
(h− y)− γ∗e(h−y)

}
dy,

using the definition of fE from (5.4). �

Proof (Lemma 5.3.3). Apply the Fourier transform to (5.3.2) with respect to h, giving

Q̂∗i (ω) =
νl
π

(
1

2

)1/2 ∫ ∞

−∞
yi exp

{
−ν

2
l y

2

2

}

×
∫ ∞

−∞

√
γ∗ exp

{
1

2
(h− y)− γ∗e(h−y)

}
e−i2πhω dh dy.

We now perform a substitution of variable for h, let

x = γ∗e(h−y) and h = y + [log(x)− log(γ∗)] , ⇒ dh

dx
=

1

x
,

which gives

Q̂∗i (ω) = (γ∗)i2πω
νl

π
√

2

∫ ∞

−∞
yi exp

{
−ν

2
l y

2

2
− i2πωy

} ∫ ∞

0
x−1/2−i2πωe−x dx dy, (A.4)

for −π ≤ ω ≤ π. The integral over x can be re-written as

∫ ∞

0
x−1/2−i2πωe−xdx = Γ

(
1

2
− i2πω

)
,

where Γ(·) is the gamma function. Taking the y exponential part of equation (A.4) it can
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be rewritten as

−ν
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2

2
− i2πωy = −ν

2
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(
πω
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,

using completing the square technique. Substituting this back into equation (A.4) results

in

Q̂∗i (ω) = (γ∗)i2πω
e−2(πω/νl)
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yi νl ϕ
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�

Proof (Lemma 5.3.4). (a) Let i = 0, lemma 5.3.1. As the integral of a probability density

function over the whole support of the variable is 1 we obtain the desired result.

(b) Let i = 1, lemma 5.3.1. As µg is the mean of ϕσg(y− µg), which is obtained from the

integral we wish to evaluate, we obtain the desired result.

(c) Let i = 2 in lemma 5.3.1, then as the second moment of a Gaussian distribution is

∫ ∞

−∞

x2

σ
ϕ

(
x− µ
σ

)
dx = µ2 + σ2.

we find

Q2(h) =
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)} ∫ ∞

−∞
y2 ϕσg(y − µg)dy,

=
νl√
2πκl

exp

{
h2

π2

(
1

κl
− 1

)}(
µ2g + σ2g

)
.

�

Proof (Lemma 5.3.5). (a) We can determine Q̂∗0(ω) using the knowledge that the integral

of any Gaussian pdf over −∞ to ∞ is 1.

(b) The quantity Q̂∗1(ω) is determined using the property that the mean, µ, of a Gaussian

pdf is obtained by evaluating the integral
∫
xϕσ(x− µ)dx for x ∈ (−∞,∞).
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(c) Using the second moment of the Gaussian pdf from the previous proof, Q̂∗2(ω) can be

shown to equal

Q̂∗2(ω) = (γ∗)i2πω
e−2(πω/νl)

2

√
π
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(
1

2
− i2πω
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e−2(πω/νl)

2
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2
− i2πω

)(
4π2ω2

ν4l
+

1

ν2l

)
.

�

A.1.2 Laplace Mixture Prior

Proof (Lemma 5.3.6). Let ξ(·) in the Berger-Müller prior equal the Laplace pdf in (5.26)

with a = 0 and b = 1, then we find equation (5.14) is

Qi(h) = νl

∫ ∞

−∞
yi
e−|νly|

2

1

σ
√

2π
exp

{
−(h− y)2

2σ2

}
dy
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νl
2

∫ 0
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yi

σ
√

2π
exp

{
− 1

2σ2
(
h2 − 2hy + y2 − 2νlσ

2y
)}

dy (A.5)

+
νl
2

∫ ∞

0

yi

σ
√

2π
exp

{
− 1

2σ2
(
h2 − 2hy + y2 + 2νlσ

2y
)}

dy, (A.6)

where σ2 = π2
/2. First, consider the exponential part of equation (A.5), which can be

written as

− 1

2σ2
(
y2 − 2y

[
h+ νl σ

2
]

+ h2
)
.

Let µ1 = h+ νlσ
2, then the previous equation can be written as

− 1

2σ2
(y − µ1)2 +

1

2σ2
(µ21 − h2). (A.7)

Similarly, the exponential part in equation (A.6) can also be expressed as

− 1

2σ2
(y − µ2)2 +

1

2σ2
(µ22 − h2), (A.8)
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where µ2 = h−νlσ2. Therefore using equations (A.7) and (A.7), Qi(h) can be represented

as

Qi(h) =
νl
2

exp

{
− h2

2σ2

}
×

(
exp

{
µ21

2σ2

}∫ 0
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yi

σ
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exp
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µ22
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}∫ ∞

0

yi

σ
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2π
exp
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− 1

2σ2
(y − µ2)2

}
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)

As the integrals have the same form of the Gaussian pdf and by a change of variable,

Qi(h) can be written in terms of ϕσ(·) as

Qi(h) =
νl
2
e−h

2/2σ2

[
eµ

2
1/2σ

2

∫ 0

−∞
yi ϕσ(y − µ1) dy + eµ

2
2/2σ

2

∫ 0

−∞
(−y)i ϕσ(y + µ2) dy

]
.

�

Proof (Lemma 5.3.7). Quantity Q∗i (h), from equation (5.15), with ξ(·) equivalent to the

Laplace pdf is

Q∗i (h) = νl

∫ ∞

−∞
yi

1

2
e−|νly|

(
γ∗

π

)1/2
exp

{
1

2
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}
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yi
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exp
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+

∫ ∞

0
yi
(
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)1/2
exp

{
−γ∗e(h−y)

}
e−νly dy

]
.

By making the substitution of

x = γ∗e(h−y) ⇒ y = h− [log(x)− log(γ∗)] and dy = −dx

x

in the previous equation, and if we let κl = (γ∗)νleνlh, we obtain

Q∗i (h) =
νl

2
√
π

[
κl

∫ ∞

γ∗eh
(h− [log(x)− log(γ∗)])i x−1/2−νle−xdx

+κ−1l

∫ γ∗eh

0
(h− [log(x)− log(γ∗)])i x−1/2+νle−xdx

]
.

�

Proof (Lemma 5.3.8). (a) Let i = 0 in lemma 5.3.6, and using properties of the Gaussian

distribution we can determine Q0(h) for the Laplace mixture prior.

169



(b) To evaluate Q1(h), we require the use of integration by parts. Consider

∫ y

−∞
xϕ(x) dx,

where ϕ(·) is the standard Gaussian distribution. Let u = x and dv = ϕ(·), then

du = 1 and v = Φ(x), where Φ(x) is the Gaussian cumulative distribution function.

Therefore, ∫ y

−∞
xϕ(x) dx =

[
xΦ(x)−

∫
Φ(x) dx

]y

x=−∞

Using the mathematical package Mathematica it can be found that

∫
Φ(x) dx = xΦ(x) + ϕ(x), (A.9)

implying ∫ y

−∞
xϕ(x) dx = −ϕ(y) (A.10)

Therefore, if we have ∫ y

−∞
xϕ

(
x− µ
σ

)
dx,

let u = σ−1(x− µ) ⇒ x = σu+ µ and dx = σ, giving

∫ y
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xϕ

(
x− µ
σ

)
dx =

∫ σ−1(y−µ)

−∞
(σu+ µ)ϕ(u) du,

=µΦ

(
y − µ
σ

)
− σ ϕ

(
y − µ
σ

)
. (A.11)

Similarly, if we let µ = −µ in (A.11) we find

∫ y

−∞
xϕ

(
x+ µ

σ

)
dx = −µΦ

(
y + µ

σ

)
− σ ϕ

(
y + µ

σ

)
. (A.12)

This implies

∫ 0

−∞
y ϕ

(
y − µ1
σ

)
dy = µ1 Φ

(
−µ1
σ

)
+ σ ϕ

(
−µ1
σ

)
, (A.13)

and

∫ 0

−∞
yϕ
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y + µ2
σ

)
dy = −µ2 Φ

(µ2
σ

)
− σ ϕ

(µ2
σ

)
. (A.14)
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Therefore, we find

Q1(h) =
νl
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.

(c) From Mathematica we found

∫ y

−∞
x2 ϕ(x) dx = Φ(y)− yϕ(y), (A.15)

using a substitution of variable we found

∫ 0

−∞
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σ
ϕ
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)
dx

=
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= σ2
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,
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(
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)
. (A.16)

Similarly, let µ = −µ to find

∫ 0

−∞

x2

σ
ϕ
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x+ µ

σ

)
dx = [σ2 + µ2]Φ

(µ
σ

)
+ µσ ϕ

(µ
σ

)
. (A.17)

Using equation (A.16) and (A.17), we calculated Q2(h) as

Q2(h)

=
νl
2
e−h

2/2σ2

[
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2
1/2σ

2
[σ2 + µ21]Φ

(
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2
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σ
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+

3σ√
2π
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]
,

where σ2 = π2
/2, µ1 = h+ νlσ

2 and µ2 = h− νlσ2.

�

Proof (Lemma 5.3.9). (a) To obtain Q∗0(h) we simply replace i by 0 in lemma 5.3.7 and

rearranged the equations to the final format.

(b) To obtain Q∗1(h) replace i by 1 in lemma 5.3.7 and rearranged the equations to the
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final format.

(c) To calculate Q∗2(h) set i = 2 in lemma 5.3.7

Q∗2(h) =
νl
2

(
1

π

)1/2 [
κl
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γ∗eh
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]
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log(x)2x−1/2−νle−x dx

+ κ−1l

∫ ∞

γ∗eh
log(x)2x−1/2+νle−x dy

]
.

�

Proof (Lemma 5.3.10). To calculate (5.22) for the Laplace mixture prior, consider this

integral in two parts. Firstly

∫ ∞

−∞
fL(x|νl)

1

σ
ϕσ(y − x)dx (A.18)

and secondly ∫ ∞

−∞
fL(x|νl) fE(y − x)dx. (A.19)

Both integrals will be separated into the negative and positive values of x.

Firstly, lets consider equation (A.18), which is essentially the same as lemma 5.3.6,

therefore

∫ ∞

−∞
fL(x|νl)

σ
ϕσ(y − x)dx

=
νl
2
e−y

2/2σ2

[
eµ

2
3/2σ

2
Φ

(−µ3
σ

)
+ eµ

2
3/2σ

2
Φ
(µ4
σ

)]
, (A.20)

where σ2 = π2
/2, µ3 = y + νlσ

2 and µ4 = y − νlσ2.

Similarly, by making the same substitution as equation (A.19) is

∫ ∞

−∞
fL(x|νl) fE(y − x)dx

=
νl

2
√
π

(
κl

∫ ∞

γ∗ey
u−1/2−νl/e−udu+

1

κ∗l

∫ γ∗ey

0
u−1/2+νl/e−udu

)

=
νl

2
√
π

[
κl Γ

(
1

2
− νl

, γ∗ey
)

+
1

κl
γ

(
1

2
+
νl
, γ∗ey

)]
(A.21)
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where κ∗l = eνly(γ∗)νl/. �

A.1.3 Asymptotic Convergence

To prove Theorem 5.4.1, we require lemmas A.1.1-A.1.5, which describe certain asymptotic

properties of our estimator. For simplicity in these lemmas, let

ω = r +
1

2
− 1

p∗
, (A.22)

therefore we can write µ2 = ω
(
1 + 1/r

)
−1/2, and if 1 ≤ p < 2, then (5.32) can be expressed

as
2(J−l)−1∑

m=0

b2l,m = B12
−2ωl = O(2−2ωl).

Also, let P denote the probability, I be the indicator function and ϕ(x) be the Gaussian

pdf with mean zero and variance σ2.

Lemma A.1.1.

(i) If |υlh∗| is bounded or υl|υlh∗|λ/
√
T → 0, then as υl/

√
T → 0,

a. Q0(h
∗) = υlξ(υlh

∗)
[
1 +O

(
υ2l |υlh∗|2κ/T

)]
,

b. Q1(h
∗)/Q0(h

∗) = h∗ +O(υl|υlh∗|κ/T ),

for κ ≥ 0.

(ii) If
√
T |h∗| is bounded or T |h∗|υ−1l → 0, then as

√
Tυ−1l → 0,

a. Q0(h
∗) ∼

√
T ϕ(
√
Th∗)

{
1 +O

(
[Th∗/υl]

2
)}

,

b. Q1(h
∗)/Q0(h

∗) ∼ O
(
Th∗/υ2l

)
.

Proof (Lemma A.1.1). (i) a. Take equation (5.28) and substitute in x =
√
T [h∗ − y],

therefore y = h∗ − x/
√
T and dy = −1/

√
Tdx,

Qi(h∗) = υl

∫ ∞

−∞

[
h∗ − x√

T

]i
ξ

(
υl

[
h∗ − x√

T

])
ϕσ(x) dx,

where ϕσ(x) is the Gaussian pdf with mean zero and variance σ2 = π2
/2. Now
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perform a Taylor expansion upon ξ(·) about x in the previous equation,

Qi(h∗) =

υl

∫ ∞

−∞

[
h∗ − x√

T

]i
ϕσ(x)

× ξ(υlh∗)
{

1− x υl√
T

ξ′(υlh
∗)

ξ(υlh∗)
+ x2

υ2l
2T

ξ′′(υlh
∗)

ξ(υlh∗)
− x3 υ3l

6T 3/2

ξ′′′(υlh
∗)

ξ(υlh∗)
+ . . .

}
dx

(A.23)

The moments of a Gaussian distribution, X ∼ N (µ, σ2) are defined as

EN
[
(X − µ)i

]
=

∫ ∞

−∞
xiϕσ(x− µ)dx =





0 if i is odd

σi(i− 1)!! if i is even

, (A.24)

where !! is the double factorial Isserlis (1918). If υl/
√
T → 0, using condition

(5.34) and equation (A.24), we find (A.23) is

Q0(h
∗) = υlξ(υlh

∗) +
υ2l σ

2

2T
ξ′′(υlh

∗) + . . . = υlξ(υlh
∗)

[
1 +O

(
υ2l
T
|υlh∗|2κ

)]
.

(A.25)

b. For i = 1, by splitting (A.23) in two, we find that

Q1(h
∗) = υlh

∗
[
ξ(υlh

∗) +
υ2l σ

2

2T
ξ′′(υlh

∗)

]
+

υl√
T

[
σ2υl√
T
ξ′(υlh

∗) +
σ4υ3l
6T 3/2

ξ′′′(υlh
∗)

]
+ . . .

= υlh
∗ξ(υlh

∗) +
σ2υ2l
T

ξ′(υlh
∗) +

υ3l σ
2h∗

2T
ξ′′(υlh

∗) + . . . (A.26)

Therefore, from the condition from equation (5.34), we find that

Q0(h
∗)

Q1(h∗)
= h∗ +

σ2υl
T

ξ′(υlh
∗)

ξ(υlh∗)

[
1 +O

(
υ2l
T
|υlh∗|2κ

)]

= h∗ + O
(υl
T
|υlh∗|κ

)
. (A.27)

(ii) a. For ease of notation, let ϕ(x) = ϕσ(x) for σ2 = π2
/2. To calculate the distribution

of Qi(h∗) for i = 0 or 1, firstly let x = υly in equation (5.28), which implies
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y = x/υl and dy = υ−1l dx. Then Taylor expand ϕ(·) instead of ξ(·). Therefore,

Qi(h∗) ∼
√
T

∫ ∞

−∞
(x/υl)

i ξ(x)ϕ
(√

T [h− x/υl]
)

dx

=
√
T

∫ ∞

−∞
(x/υl)

i ξ(x)

{
ϕ(
√
Th∗)− x

√
T

υl
ϕ′(
√
Th∗)

+ x2
T

2υ2l
ϕ′′(
√
Th∗)− x3

T 3/2

6υ3l
ϕ′′′(
√
Th∗) + . . .

}
dx

(A.28)

As ϕ(x) is a probability density function we know that the integral over x ∈ R

equals 1, also from equation (A.24), we can determine the moments of a zero mean

Gaussian pdf. The zero mean Gaussian pdf with variance σ2 and the first three

derivatives are below

ϕ(x) =
1

σ
√

2π
exp

{
− x2

2σ2

}
, (A.29)

ϕ′(x) =
−x

σ3
√

2π
exp

{
− x2

2σ2

}
= − x

σ2
ϕ(x), (A.30)

ϕ′′(x) = − x

σ2

[
− x

σ2
ϕ(x)

]
− ϕ(x)

1

σ2
=

[
x2

σ4
− 1

σ2

]
ϕ(x) (A.31)

ϕ′′′(x) =

[
x2

σ4
− 1

σ2

] [
− x

σ2
ϕ(x)

]
+ ϕ(x)

2x

σ4
=

[
3x

σ4
− x3

σ6

]
ϕ(x) (A.32)

for x ∈ R. Let ξ(x) be a unimodal, symmetric, zero mean pdf for x ∈ [−a, a],

then for odd n

∫ a

−a
xnξ(x)dx =

∫ a

0
xnξ(x)dx−

∫ −a

0
xnξ(x)dx

=

∫ a

0
xnξ(x)dx+

∫ a

0
(−x)nξ(−x)dx.

As n is odd this implies that (−x)n = −xn, and due to the properties of the pdf

ξ(x) = ξ(−x), therefore

∫ a

−a
xnξ(x)dx =

∫ a

0
xnξ(x)dx−

∫ a

0
xnξ(x)dx = 0.

Then, if we set i = 0, and by substituting (A.29) and (A.31) into (A.28), we find
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that

Q0(h
∗) ∼

√
Tϕ(
√
Th∗) +

T 3/2

2υ2l
ϕ′′(
√
Th∗)M2 + . . .

=
√
T ϕ(
√
Th∗) +

T 3/2

2υ2l

[
Th2

σ4
− 1

σ2

]
ϕ(
√
Th∗)M2 + . . .

=
√
T ϕ(
√
Th∗)

{
1 +O

([
Th∗

υl

]2)}
, (A.33)

where Mi, for i is an even integer, denote the even moments of ξ(x).

b. For i = 1

Q1(h
∗) ∼

√
T

υl

∫
x2ξ(x)

[
−
√
T

υl
ϕ′(
√
Th∗)− xT

3/2

6υ3l
ϕ′′′(
√
Th∗) + . . .

]
dx

=
T

υ2l
ϕ(
√
Th∗)

∫
x2ξ(x)

[√
Th∗

σ2
− x T

6υ2l

[
3
√
Th∗

σ4
− (
√
Th∗)3

σ6

]
+ . . .

]
dx

=
T 3/2h∗

(υlσ)2
ϕ(
√
Th∗)

∫
x2ξ(x)

{
1 +O

([
Th∗

υl

]2)}
dx (A.34)

Dividing (A.34) by (A.33), we find

Q1(h
∗)

Q0(h∗)
∼ Th∗

υ2l σ
2

∫
x2ξ(x)

{
1 +O

([
Th∗

υl

]2)}
dx

= O
(
Th∗

υ2l

)
. (A.35)

�

Lemma A.1.2. The distribution of Q∗i (h∗) for i = 0, 1 is

(i) Q∗0(h∗) ∼
√
TfE(

√
Th∗)

{
1 +O

(
Tυ−2l

[
1− e

√
Th∗/2

])}
,

(ii) Q∗1(h∗) ∼ Tυ−2l fE(
√
Th∗)(1/2 − γ∗e

√
Th∗),

×
∫∞
−∞ x

2ξ(x)dx
{

1 +O
(
Tυ−2l

[
1− e

√
Th∗
])}

.

Proof (Lemma A.1.2). First we shall prove the distribution of Q∗i (h∗) in part (i), using

the definition of Q∗i (h∗) from equation (5.29) let x = υly and dy = υ−1l dx and use the
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Taylor expansion, similar to the proof of Lemma A.1.3,

Q∗i (h∗) ∼
√
T

∫ ∞

−∞

(
x

υl

)i
ξ(x) fE(

√
T [h− x/υl]) dx

=
√
T

∫ ∞

−∞

(
x

υl

)i
ξ(x)

{
fE(
√
Th∗)− x

√
T

υl
f ′E(
√
Th∗) + x2

T

2υ2l
f ′′E(
√
Th∗)

−x3T
3/2

6υ3l
f ′′′E (
√
Th∗) + . . .

}
dx.

(A.36)

In lemma 5.1.1, equation (5.4), we defined the error distribution which we can use to

calculate the first two differences using the chain rule

fE(x) =

√
γ∗

π
exp

{x
2
− γ∗ex

}
,

f ′E(x) =

√
γ∗

π
exp
{x

2
− γ∗ex

}[1

2
− γ∗ex

]
=

[
1

2
− γ∗ex

]
fE(x) (A.37)

f ′′E(x) =

[
1

2
− γ∗ex

]2
fE(x) + [−γ∗ex] fE(x)

=

[
1

4
− 2γ∗ex + (γ∗ex)2

]
fE(x), (A.38)

f ′′′E (x) =

[
1

4
− 2γ∗ex + (γ∗ex)2

] [
1

2
− γ∗ex

]
fE(x) +

[
2(γ∗ex)2 − 2γ∗ex

]
fE(x)

=

[
1

8
− 13

4
γ∗ex +

9

2
(γ∗ex)2 − (γ∗ex)3

]
fE(x), (A.39)

x ∈ R. Using equation (A.24), (5.4) and (A.37) to (A.38) implies that equation (A.36) for

i = 0 is

Q∗0(h∗) ∼
√
T

∫ ∞

−∞
ξ(x)

{
fE(
√
Th∗)− x

√
T

υl
f ′E(
√
Th∗) + x2

T

2υ2l
f ′′E(
√
Th∗)

− x3
T 3/2

6υ3l
f ′′′E (
√
Th∗) + . . .

}
dx

=
√
TfE(

√
Th∗) +

T 3/2

2υ2l
f ′′E(
√
Th∗) + . . .

=
√
TfE(

√
Th∗)

{
1 +

T

2υ2l

[
1

4
− 2γ∗e

√
Th∗ + (γ∗e

√
Th∗)2

]
+ . . .

}

=
√
TfE(

√
Th∗)

{
1 +O

(
T

8υ2l

[
1− γ∗

2
e
√
Th∗ +

1

4
(γ∗e

√
Th∗)2

])}
(A.40)
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Using a similar technique the distribution for Q∗1(h∗) of part (ii) can be found to be

Q∗1(h∗) ∼
√
T

υl

∫ ∞

−∞
xξ(x)

{
fE(
√
Th∗)− x

√
T

υl
f ′E(
√
Th∗) + x2

T

2υ2l
f ′′E(
√
Th∗)

− x3
T 3/2

6υ3l
f ′′′E (
√
Th∗) + . . .

}
dx

=
T

υ2l

∫ ∞

−∞
x2ξ(x)

{
f ′E(
√
Th∗) + x2

T

6υ2l
f ′′′E (
√
Th∗) + . . .

}
dx

=
T

υ2l
fE(
√
Th∗)

∫ ∞

−∞
x2ξ(x)

{
1

2
− γ∗e

√
Th∗

+x2
T

6υ2l

[
1

8
− 13

4
γ∗e
√
Th∗ +

9

2
(γ∗e

√
Th∗)2 − (γ∗ex)3

]
+ . . .

}
dx

=
T

υ2l
fE(
√
Th∗)

(
1

2
− γ∗e

√
Th∗
)∫ ∞

−∞
x2ξ(x)dx

{
1 +O

(
T

υ2l

[
1− e

√
Th∗
])}

(A.41)

�

Lemma A.1.3. Let the probability density function of h∗l,m given bl,m be of the form
√
Tζl(
√
T [h∗l,m − bl,m]) where ζl(·) is defined in equation (5.8) and J2 be as defined in

(5.41). Then as T →∞ and for any constants a > 0

(i) E
[
(h∗l,m − bl,m)2i

]
= O(T−i), for i = 1, 2,

(ii) P
(√

T |h∗l,m − bl,m| > a
√

log(T )
)

= o(T−a
2/2σ2

), for l > J2,

(iii) P
(
|h∗l,m − bl,m| > a log(T )

)
= (1− λl)O(T−a) + λl o (T−a),

(iv) P
(√

T (h∗l,m − bl,m) > a log(T )
)

= o(T−a).

Proof (Lemma A.1.3). The validation of Lemma A.1.3 follows directly from equation

(5.8) where

√
T [h∗l,m − bl,m] ∼ (1− λl)ϕ(

√
T [h∗l,m − bl,m]|µ = 0, σ2 = π2/2)

+ λl fE(
√
T [h∗l,m − bl,m]).

(i) From Lemma 5.1.1, the cumulants for the error distribution, fE(x), are ψ(r−1)(1/2).

The second moment is equal to the second cumulant, but the fourth moment can

be calculated from the cumulants using the formula κ4 + 3κ22. Therefore, the fourth

moment of the error distribution is

EE
[
X4
]

= ψ(3)
(
1/2
)

+ 3ψ(1)
(
1/2
)

= π4 + 3
π2

2
=
π2

2
(2π2 + 3) (A.42)
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Equation (A.24) defined the moments for a Gaussian distribution, therefore

EN
[
(X − µ)2

]
= σ2 and EN

[
(X − µ)4

]
= 3σ4.

By substituting in the moments for the Gaussian distribution with mean 0 and

variance π2
/2, and the error distribution it can be shown that

E
[
(h∗l,m − bl,m)2

]
=

(1− λl)
T

EN
[
{
√
T (h∗l,m − bl,m)}2

]
+
λl
T

EE
[
{
√
T (h∗l,m − bl,m)}2

]

=
(1− λl)

T

π2

2
+
λl
T

π2

2

=
π2

2T

= O(T−1) (A.43)

and similarly

E
[
(h∗l,m − bl,m)4

]
=

(1− λl)
T 2

EN
[
{
√
T (h∗l,m − bl,m)}4

]
+
λl
T 2

EE
[
{
√
T (h∗l,m − bl,m)}4

]

=
(1− λl)
T 2

3π4

4
+
λl
T 2

π2

2
(2π2 + 3)

=
π2

2T 2

[
3π2

2
+ λl

(
π2

2
+ 3

)]

= O(T−2) (A.44)

(ii) Firstly, let X =
√
T (h∗l,m − bl,m). If we are only looking at values of l > J2, this

implies that λl = 0, therefore we only need to consider the Gaussian part of the

mixture distribution. As the Gaussian distribution is symmetric about zero, we can

evaluate the probability bound by using

P
(
|X| > a

√
log(T )

)
= 2P

(
X < −a

√
log(T )

)

=

∫ −a√log(T )

−∞
ϕ(x|µ = 0, σ2 = π2/2) dx

= 2Φ
(
−a
σ

√
log(T )

)

The cumulative Gaussian distribution function can be written in terms of the error

function using the equation

Φ(z) =
1

2

[
1 + Erf

(
z√
2

)]
, −∞ ≥ z ≥ ∞, (A.45)
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and because the error function is odd, this implies that Erf(−x) = −Erf(x), therefore

we find that

P
(
|X| > a

√
log(T )

)
= 1− Erf

(
a

σ

√
log(T )

2

)
(A.46)

A Taylor expansion of the error function is given by

Erf(z) =
2√
π

(
z − z3

3
+
z5

10
− z7

42
+

z9

216
− . . .

)
, (A.47)

where the integrand of e−z
2

is expanded and each term integrated individually. Or

for values much greater or smaller than z a series approximation of the error function

can be given by

Erf (z) =





1− e−z
2

z
√
π

(
1− 1

2z2
+ 1·3

(2z2)2
− 1·3·5

(2z2)3
+ . . .

)
for z � 1

2ze−z
2

√
π

(
1 + z2

3·1! + z4

5·2! + z6

7·3! + . . .
)

for z � 1

. (A.48)

As a
σ

√
log(T )

2 tends to infinity we apply the expansions defined in equation (A.48),

for values much greater than 1, to the error function of this quantity. This yields

Erf

(
a

σ

√
log(T )

2

)
= 1− T−a2/2σ2 σ

a

√
2

π log(T )

(
1− σ2

a2 log(T )
+

3σ4

a4 log2(T )
− . . .

)
.

(A.49)

We find that equation (A.49) will tend to one at a rate of T−a
2/2σ2

[log(T )]−1 as

T →∞, and because T−a
2/2σ2

[log(T )]−1 ≤ T−a2/2σ2
, this implies that

P
(√

T |h∗l,m − bl,m| > a
√

log(T )
)

= o
(
T−a

2/2σ2
)

for l > J2.

(iii) This probability can be re-written as

P(|h∗l,m − bl,m| > a log(T )) = P(
√
T |h∗l,m − bl,m| > a

√
T log(T )).

As there is no restrictions on l, we cannot assume that λl = 0. This implies we have

to consider both parts of the mixture distribution. As the error distribution is not

symmetric we have to consider

• P(X > a
√
T log(T ))

• P(X < −a
√
T log(T ))
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where X =
√
T (h∗l,m − bl,m). Then we just need to sum these two probabilities

together. Starting with the first probability, we find that

P(X > a
√
T log(T ))

= (1− λl)
∫ ∞

a
√
T log(T )

ϕ(x) dx+ λl

∫ ∞

a
√
T log(T )

fE(x) dx

where ϕ(x) is the Gaussian pdf with variance π2
/2 and fE(x) is the error pdf. The

Gaussian part of this probability can be calculated using the Gaussian cdf, as

(1− λl)
∫ ∞

a
√
T log(T )

ϕ(x) dx = (1− λl)Φ
(
−a
σ

√
T log(T )

)
.

For the second integral we use (5.6) from lemma 5.1.1, giving

∫ ∞

a
√
T log(T )

fE(x) dx =
1√
π

Γ

(
1

2
, γ∗T a

√
T

)
,

where Γ(·, ·) is the upper incomplete gamma function. For the case where we examine

P(X < −a
√
T log(T )), the Gaussian part is also solved in a similar manner, and for

the error distribution we use (5.5) from lemma 5.1.1, giving

∫ −a√T log(T )

−∞
fE(x) dx =

1√
π
γ

(
1

2
, γ∗T−a

√
T

)
,

where γ(·, ·) is the lower incomplete gamma function. Therefore, we find that

P
(
|X| > a

√
T log(T )

)
= 2(1− λl) Φ

(
−a
√
T

σ
log(T )

)

+
λl√
π

[
Γ

(
1

2
, γ∗T a

√
T

)
+ γ

(
1

2
, γ∗T−a

√
T

)]
.

The upper and lower incomplete gamma function can be written in terms of the error

function using the equations

γ

(
1

2
, z

)
=
√
πErf(

√
z) z > 0, (A.50)

Γ

(
1

2
, z

)
=
√
π
[
1− Erf(

√
z)
]

z > 0. (A.51)
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Using equations (A.50), (A.51) and (A.45) we have

P
(
|X| > a

√
T log(T )

)
=1− (1− λl)Erf

(
a

σ
√

2T
log(T )

)

− λl
[

Erf

(√
γ∗

2
T a
√
T

)
− Erf

(√
γ∗

2
T−a

√
T

)]
.

These error functions can be written as series expansions using the representations

in equations (A.47) and (A.48),

Erf

(
a
√
T

σ
√

2
log(T )

)
= 1− exp

{
−a

2T

2σ2
log2(T )

}
σ

a log(T )

√
2

πT

×
(

1− σ2

a2T log2(T )
+ 3

σ4

a4T 2 log4(T )
− . . .

)
(A.52)

Erf

(√
γ∗

2
T a
√
T

)
= 1− T−a

√
T exp

{
−γ
∗

2
T 2a
√
T

}√
2

γ∗π

×
(

1− 1

γ∗
T−2a

√
T +

3

(γ∗)4
T−4a

√
T − . . .

)
(A.53)

Erf

(√
γ∗

2
T−a

√
T

)
=

2√
π

(√
γ∗

2
T−a

√
T − 1

3

(
γ∗

2

)3/2
T−3a

√
T + . . .

)
(A.54)

Equation (A.52) will tend to 1 at a rate of

exp

{
−a

2T

2σ2
log2(T )

}
1√

T log(T )
= T−a

2T log(T )(2σ2)−1 1√
T log(T )

≤ T−a

While equation (A.53) will tend to one at a rate of

T−a
√
T exp

{
−γ
∗

2
T 2a
√
T

}
≤ T−a

√
T

≤ T−a

and (A.54) will tend to zero at a rate of T−a/
√

(T ) ≤ T−a. Therefore, we find that

P
(
|h∗l,m − bl,m| > a log(T )

)
= (1− λl)O(T−a) + λl o(T

−a).
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(iv) Using equations (5.6) and (A.46) from part (ii), the probability that X > a log(T ) is

P(X > a log(T )) =(1− λl)
∫ ∞

a log(T )
(1− λl) ϕ(x|µ = 0, σ2 = π2/2) dx

+ λl

∫ ∞

a log(T )
λl fE(x) dx

=(1− λl)Φ
(
−a
σ

log(T )
)
− λl√

π
γ

(
1

2
,
γ∗

2
T 2a

)

=
(1− λl)

2

[
1− Erf

(
a

σ
√

2
log(T )

)]
− λl Erf

(√
γ∗

2
T a

)

Then writing the error functions in terms of equation (A.48) yields

Erf

(
a

σ
√

2
log(T )

)
= 1− exp

{
− a2

2σ2
log2(T )

}
σ

a log(T )

√
2

π

×
(

1− σ2

a2 log2(T )
+ 3

σ4

a4 log4(T )
− . . .

)
(A.55)

Erf

(√
γ∗

2
T a

)
= 1− exp

{
−γ
∗

2
T 2a

}√
2

γ∗π
T−a

(
1− T−2a

γ∗
+

3T−4a

(γ∗)2
− . . .

)

(A.56)

Both of these functions will tend to 1, and the speed of the decay will both be less

than T−a. So we can determine that

P(X > a log(T )) = o(T−a).

�

Lemma A.1.4. If ξ(x) is a unimodal probability density function, then if
√
T |h∗| → ∞

and υl/
√
T →∞

(i)
∣∣∣Q1(h∗)
Q0(h∗)

∣∣∣ = O(|h∗|),

(ii)
∣∣∣Q
∗
1(h
∗)

Q∗0(h∗)

∣∣∣ = O(|h∗|).

Proof (Lemma A.1.4). Assume that we have h∗ > 0.

(i) To prove that
∣∣∣Q1(h∗)
Q0(h∗)

∣∣∣ is O(|h∗|) we use the fact that Q0(h
∗) is an even function of h∗

and Q1(h
∗) is an odd function. We firstly partition the integral for Q1(h

∗) into three

parts: (−∞,−h∗/2), (−h∗/2, 3h∗/2) and (3h∗/2,∞) and let these three integrals be

defined as Q1,1(h
∗), Q1,2(h

∗) and Q1,3(h
∗), respectively. Firstly, let us address the
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first partition,

|Q1,1(h
∗)| ≤

∫ −h∗/2

−∞

|y|
√
T

σ
√

2π
exp

{
− T

2σ2
[h∗ − y]2

}
υl ξ(υly) dy.

Let y = x− h∗/2 and consider ξ(υl[x− h∗/2]) ≤ ξ(υlx) for x < 0, therefore

|Q1,1(h
∗)| ≤

∫ 0

−∞

∣∣∣∣x−
h∗

2

∣∣∣∣
√
T

σ
√

2π
exp

{
− T

2σ2

(
3h∗

2
− x
)2
}
υl ξ(υlx) dx

Consider that (
3h∗

2
− x
)2

− (h∗ − x)2 =
5h∗2

4
− h∗x,

then

|Q1,1(h
∗)|

≤
∫ 0

−∞

∣∣∣∣x−
h∗

2

∣∣∣∣
√
T

σ
√

2π
exp

{
− T

2σ2

(
5h∗2

4
− h∗x

)
− T

2σ2
(h∗ − x)2

}
υl ξ(υlx) dx

= exp

{
−5h∗2T

8σ2

}∫ 0

−∞

∣∣∣∣x−
h∗

2

∣∣∣∣
√
T

σ
√

2π
exp

{
−Th

∗x

2σ2
− T (h∗ − x)2

2σ2

}
υl ξ(υlx) dx

For x < 0, as
√
Th∗ →∞, using Taylor expansions we find

∣∣∣∣x−
h∗

2

∣∣∣∣ exp

{
h∗T

2σ2
x

}
=

∣∣∣∣x−
h∗

2

∣∣∣∣

[
1 +

h∗T

2σ2
x+

1

2

(
h∗T

2σ2
x

)2

+
1

3!

(
h∗T

2σ2
x

)3

. . .

]−1

= O(|h∗|) +O(|Th∗|−1)

= O(|h∗|),

Then, by putting these components back together we have

|Q1,1(h
∗)| ≤ O

(
|h∗| exp

{
−5h∗2T

8σ2

})

×
∫ 0

−∞

√
T

σ
√

2π
exp

{
− T

2σ2
(h∗ − x)2

}
υl ξ(υlx) dx. (A.57)

This implies that if Q0(h
∗) is as defined in (5.28)

∣∣∣∣
Q1,1(h

∗)

Q0(h∗)

∣∣∣∣ = O(|h∗|). (A.58)

184



The second integral is defined as

Q1,2(h
∗) =

∫ 3h∗/2

−h∗/2
y
√
Tϕσ

(√
T [h∗ − y]

)
υl ξ(υly) dy.

Using integration by parts, where

u = yξ(υly) dv = ϕσ

(√
T [h∗ − y]

)

du = yυlξ
′(υly) + ξ(υly) v = Φ

(√
T

σ
[h∗ − y]

)

we can write Q1,2(h
∗) as

Q1,2(h
∗) =

[
yξ(υly)Φ

(√
T

σ
[h∗ − y]

)]3h∗/2

−h∗/2

−
∫ 3h∗/2

−h∗/2
Φ

(√
T

σ
[h∗ − y]

)
[
yυlξ

′(υly) + ξ(υly)
]

dy.

Then, using integration by parts on Q0(h
∗), however letting

u = ξ(υly) du = υlξ
′(υly)

instead, we find that

Q0(h
∗) =

[
ξ(υly)Φ

(√
T

σ
[h∗ − y]

)]3h∗/2

−h∗/2

−
∫ 3h∗/2

−h∗/2
Φ

(√
T

σ
[h∗ − y]

)
υlξ
′(υly)dy.

Through the cancellation of terms, we find

∣∣∣∣
Q1,2(h

∗)

Q0(h∗)

∣∣∣∣ = O(|h∗|). (A.59)

The third integral, Q1,3(h
∗), is similar to the first, Q1,1(h

∗),

|Q1,3(h
∗)| =

∫ ∞

3h∗/2

|y|
√
T

σ
√

2π
exp

{
− T

2σ2
[h∗ − y]2

}
υl ξ(υly) dy.

Let y = x + 3h∗/2 and considering ξ(υl[x + 3h∗/2]) ≤ ξ(υlx) for x > 0, therefore

Q1,3(h
∗) can be written as

|Q1,3(h
∗)| ≤

∫ ∞

0

∣∣∣∣x+
3h∗

2

∣∣∣∣
√
T

σ
√

2π
exp

{
− T

2σ2

(
−3h∗

2
− x
)2
}
υl ξ(υlx) dx.
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The quadratic equation in the exponential can be written as

(
−3h∗

2
− x
)2

− (h∗ − x)2 = −3h∗2

4
+ 3h∗x.

The Taylor expansion of exp
{
−3h∗T

2σ2 x
}

is

exp

{
−3h∗T

2σ2
x

}
=

[
1 +

3h∗T

2σ2
x+

1

2

(
3h∗T

2σ2
x

)2

+
1

3!

(
3h∗T

2σ2
x

)3

+ . . .

]−1

This implies that

∣∣∣∣
3h∗

2
+ x

∣∣∣∣ exp

{
−3h∗T

2σ2
x

}

=

∣∣∣∣
3h∗

2
+ x

∣∣∣∣

[
1 +

3h∗T

2σ2
x+

1

2

(
3h∗T

2σ2
x

)2

+
1

3!

(
3h∗T

2σ2
x

)3

+ . . .

]−1

= O(|h∗|) +O(|Th∗|−1)

= O(|h∗|).

So we can show that

|Q1,3(h
∗)| ≤ O

(
exp

{
3h∗2

4

}
h∗
)

×
∫ ∞

0

√
T

σ
√

2π
exp

{
− T

2σ2
(h∗ − x)2

}
υl ξ(υlx) dx. (A.60)

Similarly to the previous two integrals, dividing Q1,3(h
∗) by Q0(h

∗) as defined in

(5.28) results in ∣∣∣∣
Q1,3(h

∗)

Q0(h∗)

∣∣∣∣ = O(|h∗|). (A.61)

Therefore, considering all three sections

∣∣∣∣
Q1(h

∗)

Q0(h∗)

∣∣∣∣ = O(|h∗|). (A.62)

(ii) To show that |Q∗1(h∗)/Q∗1(h∗)| = O(|h∗|), also requires splitting Q∗1(h∗) into three

sections: Q∗1,1(h∗) for values over (−∞,−h∗); Q∗1,2(h∗) is the integral over (−h∗, h∗);

Q∗1,3(h∗) the integral over (h∗,∞). The first integral is

Q∗1,1(h∗) =

∫ −h∗

−∞
y
√
T fE

(√
T [h∗ − y]

)
υl ξ(υly)dy.
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In equation (A.37), we calculated f ′E(x), therefore f ′E(x)/fE(x) is 1/2 − γ∗ex. Let

y = −(x+ h∗), as ξ(x) is a zero mean unimodal pdf we know that ξ(x) = ξ(−x)

Q∗1,1(h∗) =

∫ ∞

0
(x+ h∗)

√
T fE

(√
T [x+ 2h∗]

)
υl ξ(υl[x+ h∗])dx,

As ξ is a symmetric unimodal probability density function this implies that ξ(υl[x+

h∗]) ≤ ξ(υlx). We wish to re-write the function fE(
√
T [x+ 2h∗]) as fE(

√
T [x+ h∗]).

Taking the first exponent of equation (5.4) let

y1(x) =
√
T [x+ 2h∗]− γ∗

2
exp
{

2
√
T [x+ 2h∗]

}

y2(x) =
√
T [x+ h∗]− γ∗

2
exp
{

2
√
T [x+ 2h∗]

}
.

Then,

y1(x)− y2(x) =
√
Th∗ − γ∗

2

(
exp
{

2
√
T [x+ 2h∗]

}
− exp

{
2
√
T [x+ h∗]

})
.

The Taylor expansion of exp{
√
T [x+ 2h∗]} is

exp
{√

T [x+ 2h∗]
}

= 1 + 2
√
T (x+ 2h∗) + T (x+ 2h∗)2 +

2

3!
T 3/2(x+ 2h∗)3 + . . .

and the Taylor expansion of exp
(√

T [x+ h∗]
)

is

exp
{√

T [x+ h∗]
}

= 1 + 2
√
T (x+ h∗) + T (x+ h∗)2 +

2

3!
T 3/2(x+ h∗)3 + . . .

Therefore, we find that

y1(x)− y2(x) =
√
Th∗ − γ∗

(√
Th∗ + Thx+ 3Th∗2 +O(T 3/2h∗)

)

≥ −Th∗x− 3Th∗2 −O(T 3/2h∗).

Therefore exp{y1(x)} ≤ exp{y2(x)− Th∗(x+ 3h∗)}, and

∣∣∣∣
Q∗1,1(h∗)
Q∗0(h∗)

∣∣∣∣ =

∫∞
0 (x+ h∗)

√
T fE

(√
T [x+ h∗]

)
e−Th(x+3h∗) υl ξ(υlx)dx

∫∞
0 (x+ h∗)

√
T fE

(√
T [x+ h∗]

)
υl ξ(υlx)dx

= O(|Th|−1) +O(|h∗|)

= O(|h∗|) (A.63)
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For the second integral over x ∈ (−h∗, h∗), Q1,1(h
∗), we follow the same procedure

used to solve Q1,1(h
∗), which also results in

∣∣∣∣
Q∗1,2(h∗)
Q∗0(h∗)

∣∣∣∣ = O(|h∗|). (A.64)

In the third integral, let y = h∗ − x, which implies

Q∗1,3(h∗) =

∫ 0

−∞
(h∗ − x)

√
T fE

(√
Tx
)
υl ξ(υl[h

∗ − x])dx

= h∗
∫ 0

−∞

√
T fE

(√
Tx
)
υl ξ(υl[h

∗ − x])dx (A.65)

+

∫ 0

−∞
x
√
T fE

(√
Tx
)
υl ξ(υl[h

∗ − x])dx. (A.66)

It is easy to see that when divided by Q∗0(h
∗) equation (A.65) will be O(h∗), how-

ever it is not as clear for equation (A.66). We know that fE(x) ≤
√

2γ∗π−1ex, so

substituting this into equation (A.66) results in

−
∫ 0

−∞
x
√
T fE

(√
Tx
)
υl ξ(υl[h

∗−x])dx ≤ −υl
√

2 γ∗ T

π

∫ 0

−∞
x e
√
Tx ξ(υl[h

∗−x])dx.

By just considering the integral and using integration by parts, let

u = −x ξ(υl[h∗ − x]) ⇒ du = x υl ξ
′(υl[h

∗ − x])− ξ(υl[h∗ − x]),

dv = e
√
Tx ⇒ v =

1√
T
e
√
Tx.

Therefore

∫ 0

−∞
x e
√
Tx ξ(υl[h

∗ − x])dx

=

[
− x√

T
ξ(υl[h

∗ − x]) e
√
Tx

]0

−∞︸ ︷︷ ︸
→0

− 1√
T

∫ 0

−∞
x υl ξ

′(υl[h
∗ − x]) e

√
Txdx+

1√
T

∫ 0

−∞
e
√
Tx ξ(υl[h

∗ − x])dx

(A.67)

As both of the integrals in equation (A.67) will be positive this implies that

∫ 0

−∞
x e
√
Tx ξ(υl[h

∗ − x])dx ≤ 1√
T

∫ 0

−∞
e
√
Tx ξ(υl[h

∗ − x])dx,
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dividing this integral byQ∗0(h∗) will result O(T−1/2). Therefore, |Q∗1,3(h∗)/Q∗0(h∗)| =

O(|h∗|) and ∣∣∣∣
Q∗1(h∗)
Q∗0(h∗)

∣∣∣∣ = O(|h∗|).

�

Lemma A.1.5. If the function g ∈ Br
p,q(A), then for any constant a > 0,

(i)
∑

l

∑2J−l

m=1 b2l,m I
(√

T |bl,m| ≤ a
√

log(T )
)

= O
([

log(T )
T

]2r/(2r+1)
)

,

(ii)
∑

l

∑2J−l

m=1 T−1 I
(√

T |bl,m| > a
√

log(T )
)

= O
(
T−2r/(2r+1)[log(T )]−p/2

)
.

Proof (Lemma A.1.5). The proof of this can be found in Donoho et al. (1996) �

Proof (Theorem 5.4.1). As the wavelet basis is orthonormal, the mean integrated squared

error (MISE) can be expressed as

R(T, ĝ,F) = E
[
(b̂0 − b0)2

]
+

J∑

l=1

2J−l∑

m=1

E
[
(b̂l,m − bl,m)2

]
+

∞∑

l=1

∞∑

m=1

b2l,m. (A.68)

Given the data h∗, we obtain b0 = h∗0 and b̂0 is simply b0. The first part in equation (A.68)

can be re-written as

E
[
(b̂0 − b0)2

]
= Var [b̂0] + Var [b0] + 2Cov [b̂0, b0]

= Var[h∗0] + Var[h∗0] + 2Var[h∗0]

=
π2

2T
+
π2

2T
+
π2

T

= O(T−1) (A.69)

From equation (5.32), the last part of the MISE is bounded by 2−2rJA = O(T−2r). There-

fore, the second term provides the main contribution to the MISE.

Separate the scales, l = 0, . . . , J , into: coarse 0 ≤ l ≤ J0; intermediate J0 < l ≤ J1,

fine J1 < l ≤ J2; and the finest scales l > J2. Then separate the second term into four

sums over these partitions, denoting them as the risks: R1, R2, R3 and R4 over the coarse,

intermediate, fine and finest scales respectively.

Coarse Scales: 0 ≤ l ≤ J0

We shall begin by examining the coarsest scales. As the scales are coarse, asymptotically

the wavelet transform of the wavelet coefficients will be asymptotically Gaussian, as shown
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in (Moulin, 1994, section III, part B). If we let

Al;T (h∗) =
θl
√
T

Q0(h∗)
ϕσ(
√
Th∗), (A.70)

where Qi(·) is as defined in (5.28) and ϕσ(·) is the Gaussian pdf with mean zero and

variance σ2 = π2
/2. Assuming the distribution of the wavelet coefficients is approximately

Gaussian, implies we can set λl = 0 in what follows. Therefore

b̂l,m =
Q1(h

∗
l,m)

θl
√
Tϕ(
√
Th∗l,m) +Q0(h∗l,m)

=
Q1(h

∗
l,m)

Q0(h∗l,m)

(
θl
√
T

Q0(h∗l,m)
ϕ(
√
Th∗l,m) + 1

)−1

=
Q1(h

∗
l,m)

Q0(h∗l,m)

(
Al;T (h∗l,m) + 1

)−1
. (A.71)

Consider that

E
[
(b̂l,m − bl,m)2

]
= E



(
b̂l,m − bl,m −

Q1(h
∗
l,m)

Q0(h∗l,m)
+
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

 (A.72)

= E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− bl,m

)2

+ E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− b̂l,m

)2

 (A.73)

− 2E

[(
Q1(h

∗
l,m)

Q0(h∗l,m)
− bl,m

)(
Q1(h

∗
l,m)

Q0(h∗l,m)
− b̂l,m

)]
(A.74)

≤ 2E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− b̂l,m

)2

+

(
Q1(h

∗
l,m)

Q0(h∗l,m)
− bl,m

)2

 . (A.75)

If we then substitute in eqaution (A.71) for b̂l,m, we can write

Q1(h
∗
l,m)

Q0(h∗l,m)
− b̂l,m =

Q1(h
∗
l,m)

Q0(h∗l,m)
−
Q1(h

∗
l,m)

Q0(h∗l,m)

(
Al;T (h∗l,m) + 1

)−1

=
Q1(h

∗
l,m)

Q0(h∗l,m)

(
1− 1

Al;T (h∗l,m) + 1

)

=
Q1(h

∗
l,m)

Q0(h∗l,m)

(
Al;T (h∗l,m)

Al;T (h∗l,m) + 1

)
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Therefore, R1 ≤ 2(R1,1 +R1,2), where

R1,1 =

J0∑

l=0

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− bl,m

)2

 (A.76)

R1,2 =

J0∑

l=0

2l−1∑

m=0

E



(

Q1(h
∗
l,m)Al;T (h∗l,m)

Q0(h∗l,m)[1 +Al;T (h∗l,m)]

)2

 (A.77)

An important feature of Al;T (h∗l,m) is that

Al;T (h∗l,m)

1 +Al;T (h∗l,m)
≈ min(1,Al;T (h∗l,m)), (A.78)

For l ≤ J0, using a combination of Lemma A.1.1, equation (5.36) and the same proceedure

as (A.75), R1,1 can be re-written as

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− bl,m

)2

 ≤ 2



E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− h∗l,m

)2

+ E

[(
h∗l,m − bl,m

)2]




Using lemmas A.1.1 and A.1.3 (i), this is equal to

2



E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
− h∗l,m

)2

+ E

[(
h∗l,m − bl,m

)2]


 = O

(
E

[
υ4l h

∗
l,m

2

T 2

]
+
υ2l
T 2

+
σ2

T

)

= O
(
υ4l b

2
l,m

T 2
+
υ2l
T 2

+
σ2

T

)
, (A.79)

Replace the summation of b2l,m by (5.32), and substite in (A.76) into (A.79), we have

R1,1 = O
(

J0∑

l=0

2−2ωl
υ4l
T 2

+ 2l
υ2l
T 2

+
2l

T

)
. (A.80)

Then by re-writing the summation using the representation of a geometric progression,

this implies that equation (A.80) is

J(2r+1)−1∑

l=0

2−2ωl
24µ1l

T 2
+ 2l

22µ1l

T 2
+

2l

T

=

J(2r+1)−1∑

l=0

(24µ1−2ω)l

T 2
+

(21+2µ1)l

T 2
+

2l

T

=
1− (24µ1−2ω)J(2r+1)−1+1

T 2(1− 24µ1−2ω)
+

1− (21+2µ1)J(2r+1)−1+1

T 2(1− 21+2µ1)

− 1− 2J(2r+1)−1+1

T
. (A.81)
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As J = log2(T ) and from assumption (5.43), υl = 2µl with µ1 = r + 3/4 − (2p∗)−1, then

by substituting in these values and considering the value of 2ω from equation (A.22), this

implies that equation (A.81) can be written as

T−2 − 24µ1−2ωT 2(2r+1)−1(2µ1−ω)−2

(1− 22(µ1−ω))
+
T−2 − 21+2µ1T (2r+1)−1(1+2µ1)−2

(1− 21+2µ1)

− T−1 + 2T (2r+1)−1−1

=
T−2 − T−2r/(2r+1)

1− 21/2+1/p∗
+
T−2 − T−(2r+1/2−1/p∗)/(2r+1)

1− 22r+5/3−1/p∗ − T−1 + T−2r/(2r+1).

Therefore, as 1 ≥ p∗ ≥ 2 and as r is greater than r∗ ≥ 0, as r →∞ then 2r(2r+ 1)−1 → 1

this implies that

R1,1 = O
(
T−2r/(2r+1)

)
. (A.82)

To calculate R1,2, using (A.78) as T →∞ we find

∣∣∣∣∣
Q1(h

∗
l,m)Al;T (h∗l,m)

Q0(h∗l,m)[1 +Al;T (h∗l,m)]

∣∣∣∣∣ =

∣∣∣∣∣
Q1(h

∗
l,m)

Q0(h∗l,m)
Al;T (h∗l,m)

∣∣∣∣∣ .

Using the definition of Al;T (h∗l,m) from (A.70), and using lemmas A.1.1(ii)a. and A.1.4(i)

this becomes

∣∣∣∣∣
Q1(h

∗
l,m)Al;T (h∗l,m)

Q0(h∗l,m)[1 +Al;T (h∗l,m)]

∣∣∣∣∣ = O
(
|h∗l,m|

θl
√
T

Q0(h∗)
ϕσ(
√
Th∗)

)

= O
(
θl
√
T |h∗l,m|
υl

)
(A.83)

Therefore, by substituting in equation (A.83) into R1,2 from equation (A.77), this implies

that

R1,2 = O




J0∑

l=0

θ2l T

υ2l

2l−1∑

m=0

b2l,m +
1

T


 . (A.84)

Next we substitute in the summation of b2l,m from equation (5.32) and υ2l = 22µ1l, the

summation from equation (A.84) can be written as

R1,2 = O
(

J0∑

l=0

2−2µ1lθ2l

{
T2−2ωl + 2l − 1

})
.
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Then we substitute in θ2l from equation (5.44), this yields

R1,2 =O
(

J0∑

l=0

2l(4r+1+3/2−3/p∗) T−(4r+1)/(2r+1)

×
{
T2−2l(r+1/2−1/p∗+2µ1) + 2l(1+2µ1) − 2−2µ1l

})
.

If we substitute in J0 from (5.39), this results in

R1,2 = O


T−(4r+1)/(2r+1)

J(2r+1)−1∑

l=0

T2l(2r+3/2−2/p∗−2µ1) + 2l(4r+7/2−3/p∗−2µ1)

− 22l(2r+5/4−3/2p∗−µ1)
)
.

Finally, substitute in µ1 = r + 3/4− (2p∗)−1 which results in

R1,2 = O


T−(4r+1)/(2r+1)

J(2r+1)−1∑

l=0

T + 2l(2r+2−1/p∗)




= O


T−2r/(2r+1) log2(T )

2r + 1
+ T−(4r+1)/(2r+1)

J(2r+1)−1∑

l=0

2l(2r+2−1/p∗)




Therefore, as the summation is a geometric series and T−2r/(2r+1) tends to zero faster than

log2(T ) tends to infinity, we find that

R1,2 = O
(
T−2r/(2r+1) log2(T )

2r + 1
+ T−(4r+1)/(2r+1) 1− 2J(2r+2−1/p∗)/(2r+1)

1− 22r+2−1/p∗

)

= O
(
T−2r/(2r+1)

)
. (A.85)

Intermediate Scales: J0 < l ≤ J1

For intermediate scales let λl = 0, because we found in section 5.2.1, that the value of

λ swifty converged to zero as the support of the wavelet increased. Also, let 1 ≤ p < 2.

These imply that b̂l,m will be the same as equation (A.71). Partition R2 into

R2,1 =

J1∑

l=J0+1

2l−1∑

m=0

E
[
(b̂l,m − bl,m)2

]
I
(
|bl,m| >

√
T−1 log(T )

)
,

R2,2 =

J1∑

l=J0+1

2l−1∑

m=0

E
[
(b̂l,m − bl,m)2

]
I
(
|bl,m| ≤

√
T−1 log(T )

)
,
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where we consider the values of bl,m greater than and less than
√
T−1 log(T ) separately.

Further partition R2,1 into

R2,11 =

J1∑

l=J0+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l ,m)
− bl,m

)2

 I
(
|bl,m| >

√
T−1 log(T )

)
,

R2,12 =

J1∑

l=J0+1

2l−1∑

m=0

E



(

Q1(h
∗
l,m)Al,T (h∗l,m)

Q0(h∗l,m)[1 +Al,T (h∗l,m)]

)2

 I
(
|bl,m| >

√
T−1 log(T )

)
,

as we separated R1. To determine the order of convergence of R2,11 repeat equation (A.79)

and chose µ = µ2. Then we find that

J1∑

l=J0+1

2l−1∑

m=0

υ2l
T 2

+
b2l,mυ

4
l

T 2
=

J1∑

l=J0+1

2l−1∑

m=0

22µ2l

T 2
+
b2l,m24µ2l

T 2

= O




J1∑

l=J0+1

2(2µ2+1)lT−2 + 24µ2l2−2(r+1/2−1/p∗)lT−2


 .

From the definition of 2ω in equation (A.22), which implies

O




J1∑

l=J0+1

2(2µ2+1)lT−2 + 24µ2l2−2ωlT−2




= O




J1∑

l=J0+1

2(2µ2+1)lT−2 + 2(4µ2−2ω)lT−2




= O
(

2(2µ2+1)(J0+1) − 2(2µ2+1)J1

T 2(1− 22µ2+1)
+

2(4µ2−2ω)(J0+1) − 2(4µ2−2ω)J1

T 2(1− 24µ2−2ω)

)

By substituting in J0 from (5.39) and J1 from (5.40)this implies that

O
(

2(2µ2+1)(J0+1) − 2(2µ2+1)J1

T 2(1− 22µ2+1)
+

2(4µ2−2ω)(J0+1) − 2(4µ2−2ω)J1

T 2(1− 24µ2−2ω)

)

= O
(

2(2µ2+1)(J/(2r+1)+1) − 2(2µ2+1)(2rJ/2ω(2r+1))

T 2(1− 22µ2+1)

+
2(4µ2−2ω)(J/(2r+1)+1) − 2(4µ2−2ω)(2rJ/2ω(2r+1))

T 2(1− 24µ2−2ω)

)
(A.86)

Substituting in µ2 written in terms of ω into equation (A.86) yields

O
(

22ω(1+1/r)(J/(2r+1)+1) − 2(1+1/r)(2rJ/(2r+1))

T 2(1− 22ω(1+1/r))

+
2(2ω[1+2/r]−2)(J/(2r+1)+1) − 22rJ(1+2/r−1/ω)/(2r+1)

T 2(1− 22ω[1+2/r]−1)

)
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As J = log2(T ) this implies that

O
(

22ω(1+1/r)T 2ω(1+1/r)/(2r+1)−2 − T (2r+2)/(2r+1)−2

(1− 22ω(1+1/r))

+
22ω[1+2/r]−2T (2ω[1+2/r]−2)/(2r+1)−2 − T 2r(1+2/r−1/ω)/(2r+1)−2

(1− 22ω[1+2/r]−1)

)

= O
(

22ω(1+1/r)T (−2r+[1+1/r][1−2/p∗])/(2r+1) − T−2r/(2r+1)

(1− 22ω(1+1/r))

+
22ω[1+2/r]−2T (−2r−[2/p∗+1/p∗r−1/2r])/(2r+1) − T−2r(1+1/2ω)/(2r+1)

(1− 22ω[1+2/r]−1)

)
.

Therefore, the most slowly decaying term will be of order T−2r/(2r+1), which implies

J1∑

l=J0+1

2l−1∑

m=0

υ2l
T 2

+
b2l,mυ

4
l

T 2
= O

(
T−2r/(2r+1)

)
. (A.87)

Then, by lemma A.1.5 part (ii),

R2,11 = O




J1∑

l=J0+1

2l−1∑

m=0

[
υ2l
T

+
b2l,mυ

4
l

T 2
+
σ2

T
I
(
|bl,m| >

√
T−1 log(T )

)]



= O
(
T−2r/(2r+1)

)
.

To determine the convergence of R2,12 let

γl =
2σ2

T
log

(√
Tθl
υlξ0

)
, (A.88)

as T → ∞ ⇒ γl → 0. We have partition R2,12 into two parts depending on whether

h∗l,m
2 is less than or greater than γl. If h∗l,m

2 < γl we find that as T →∞ then

Al;T (h∗l,m)

1 +Al;T (h∗l,m)
= 1.

Therefore, using (A.78), we can express R2,121 is

R2,121 = O




J1∑

l=J0+1

2l−1∑

m=0

E
[
h∗l,m

2 I
(
h∗l,m

2 < γl

)]
I
(
|bl,m| >

√
T−1 log(T )

)


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As T →∞, we findE[h∗l,m
2 I(h∗l,m

2 < γl)]→ 0 at a rate of T−1 log(T ). Therefore,

R2,121 = O




J1∑

l=J0+1

2l−1∑

m=0

log(T )

T
I
(
|bl,m| >

√
T−1 log(T )

)

 .

Using Lemma A.1.5 part (ii) this can be expressed as

R2,121 = O
(
T−2r/(2r+1) log(T )1−p/2

)
.

If h∗l,m
2 > γl, then as T →∞.

Al;T (h∗l,m)

1 +Al;T (h∗l,m)
= Al;T (h∗l,m).

Therefore, using A.1.1(i)a. and substituting in (A.70) for Al;T (h∗l,m), implies R2,122 is

R2,122 =

O




J1∑

l=J0+1

2l−1∑

m=0

E

[
h∗l,m

2 θ
2
l T

υ2l

e−Th
∗
l,m

2/σ2

ξ2(υlh
∗
l,m)

I
(
h∗l,m

2 > γl

)]
I
(
|bl,m| >

√
T−1 log(T )

)

 .

By the condition in equation (5.35)

1

ξ2(υlh
∗
l,m)

exp

{
−
Th∗l,m

2

σ2

}
= O

(
exp

{
−
h∗l,m

2(T − υ2l )
σ2

})
.

Also consider

max
x

[
x2 exp

{
−x

2(T − υ2l )
σ2

}
I
(
x2 > γl

)]
= γl exp

{
−γl(T − υ

2
l )

σ2

}
, (A.89)

then by substituting in γl from equation (A.88), using the υl = 2µ2 from (5.43) and (5.45),

we can simplify

• log(υ−1l θl
√
T ) ∼ log(T ) as T →∞

• T−1υ2l log(T ) = o(1) as T →∞ as previous.

•
(
υ−1l θl

√
T
)υ2l /T

= exp
{
T−1C log(T )υ2l

}
∼ 1 by condition (5.45)
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equation (A.89) can be written as

max
x

[
x2 exp

{
−x

2(T − υ2l )
σ2

}
I
(
x2 > γl

)]
=

2σ2

T
log

(
θl
√
T

υlξ0

)(
θl
√
T

υlξ0

)−2(T−υ2l )/T

= O
([

υl
θlT

]2
log(T )

)
. (A.90)

So, using (A.90) and lemma A.1.5 (ii), we find

R2,122 = O




J1∑

l=J0+1

2l−1∑

m=0

θ2l T

υ2l

(
υl
θlT

)2

log(T )I
(
|bl,m| >

√
T−1 log(T )

)



= O




J1∑

l=J0+1

2l−1∑

m=0

log(T )

T
I
(
|bl,m| >

√
T−1 log(T )

)



= O
(
T−2r/(2r+1) log(T )1−p/2

)
. (A.91)

Note that for r > r∗ we have 2r(2r + 1)−1 > 1− p/2 if p ≥ 2, hence

R2,1 = O
(

[T−1 log(T )]1−p/2
)
.

To show the convergence of the second component of R2, by using the triangle inequal-

ity, consider

|b̂l,m − bl,m| ≤
1

1 +Al;T (h∗l,m)

[∣∣∣∣∣
Q1(h

∗
l,m)

Q0(h∗l,m)
− h∗l,m

∣∣∣∣∣+ |h∗l,m − bl,m|+ |bl,m|
]

+ |bl,m|

= O
(
υl
T

+
υ2l |h∗l,m|

T [1 +Al;T (h∗l,m)]
+
|h∗l,m − bl,m|

1 +Al;T (h∗l,m)
+ |bl,m|

)

= O
(
|bl,m|+

υl
T

+
|h∗l,m − bl,m|

1 +Al;T (h∗l,m)

)
.

Partition R2,2 into three parts, then using lemma A.1.5 and the result of equation (A.87)

the first two parts are

R2,21 = O




J1∑

l=J0+1

2l−1∑

m=0

b2l,mI
(√

T |bl,m| ≤
√

log(T )
)

 = O

(
[T−1 log(T )]2r/(2r+1)

)
,

R2,22 = O




J1∑

l=J0+1

2l−1∑

m=0

[υl
T

]2

 = O

(
T−2r/(2r+1)

)
.
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We define the thirs part as

R2,23 = O




J1∑

l=J0+1

2l−1∑

m=0

E

[
(h∗l,m − bl,m)2

(1 +Al;T (h∗l,m))2

]
I
(√

T |bl,m| ≤
√

log(T )
)

 ,

and requires partitioning again into a further two parts

R2,231 = O




J1∑

l=J0+1

2l−1∑

m=0

E

[
(h∗l,m − bl,m)2

(1 +Al;T (h∗l,m))2

]
I
(

1 ≤
√
T |bl,m| ≤

√
log(T )

)



R2,232 = O




J1∑

l=J0+1

2l−1∑

m=0

E

[
(h∗l,m − bl,m)2

(1 +Al;T (h∗l,m))2

]
I
(√

T |bl,m| ≤ 1
)

 .

First consider R2,231, by lemma A.1.5 this can be written as

R2,231 = O




J1∑

l=J0+1

2l−1∑

m=0

1

T
I
(
Tb2l,m > 1

)
I
(
Tb2l,m ≤ log(T )

)



= O
([

log(T )

T

]2r/(2r+1)
)

by lemma A.1.5. For R2,232, we further partition this into two sections, depending on

whether
√
T |h∗l,m − bl,m| is greater than aσ

√
2 log(T ) or not. it is useful to observe that

E
[
(h∗l,m − bl,m)2 I

(√
T |h∗l,m − bl,m| > aσ

√
2 log(T )

)]

=
2σ2

T

∫ ∞

a2 log(T )

√
xe−xdx ∼

√
log(T )

T 1+a2

(Gradshteyn and Ryzhik, 1980, equation 8.357). Therefore, if a2 > (r − ω)/ω(2r + 1) we

can write the first part as

R2,2321 = O




J1∑

l=J0+1

2l−1∑

m=0

√
log(T )

T 1+a2




= O




J1∑

l=J0+1

2l
√

log(T )

T 1+a2




= O
(
−(2T 1/(2r+1) − T r/ω(2r+1))

√
log(T )

T 1+a2

)

= O
(
T−2r/(2r+1)

)
.
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Using the definition of (A.70), the last term is defined as

R2,2322

= O




J1∑

l=J0+1

2l−1∑

m=0

E

[
(h∗l,m − bl,m)2

(1 +Al;T (h∗l,m))2
I
(√

T |h∗l,m − bl,m| ≤ aσ
√

2 log(T )
)]

I
(√

T |bl,m| ≤ 1
))

= O




J1∑

l=J0+1

2l−1∑

m=0

E

[
(h∗l,m − bl,m)2υ2l

θ2l T
exp

{
Th∗l,m

2

σ2

}
I
(
|h∗l,m − bl,m| ≤

aσ√
T

√
2 log(T )

)]

I
(√

T |bl,m| ≤ 1
))

.

As
√
Th∗l,m ≤ aσ

√
2 log(T ) + 1, we find that this expectation is bounded by

σ2

T
exp

{
(aσ
√

2 log(T ) + 1)2

σ2

}∫ a2 log(T )

0
e−x
√
xdx = O

(
T 2a2−1 exp

{
2a

√
2 log(T )

σ

})

Therefore, provided that

1

θl
exp

{
a
√

2 log(T ) +
1

σ

}
= O(1),

which is true when

a2 =

(
1

p
− 1

2
+ ε

)(
ω

[
r +

1

2
− 1

p

])−1

by the condition in equation (5.45).

Fine Scales: J1 < l ≤ J2

For fine scales we also find that λl = 0 because of the swift decrease in the likelihood

weights as the wavelet increases, and since |b̂l,m| ≤ |Q1(h
∗
l,m)/Q0(h

∗
l,m)| we find that

R3 = O




J2∑

l=J1+1

2l−1∑

m=0

E



(
b2l,m +

Q1(h
∗
l,m)

Q0(h∗l,m)

)2



 = R3,1 +R3,2,

where

R3,1 =

J2∑

l=J1+1

2l−1∑

m=0

b2l,m

R3,2 = O




J2∑

l=J1+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2




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By substituting in equation (5.32), by using 2ω from equation (A.22) and as we have a

geometric series, we find that

R3,1 =

J2∑

l=J1+1

2−2ωl

=
2−2ω(2rJ [2ω(2r+1)]−1+1) − 2−2ωJ(1/2+r[2ω(2r+1)]−1)

1− 2−2ω

=
2−2ωT−2r/(2r+1) − T−(ω+r/(2r+1))

1− 2−2ω

= O
(
T−2r/(2r+1)

)
, (A.92)

because of the choice of J2.

We need to consider two cases for R3,2, when the condition in equation (5.38) is valid

and when it is not. Firstly if (5.38) holds, then by Lemma A.1.1 (ii) part b considering

whether or not
√
Th∗l,m is bounded then

∣∣∣∣∣
Q1(h

∗
l,m)

Q0(h∗l,m)

∣∣∣∣∣ = O
(√

T

υ2l

)
+O

(
T |h∗l,m|
υ2l

)
, (A.93)

Then, by substiting (A.93) into R3,2, adding and subtracting bl,m to the second part of

(A.93), we find that

R3,2 = O




J2∑

l=J1+1

2l−1∑

m=0

E



(√

T

υ2l

)2

+ E



(
T (h∗l,m − bl,m)

υ2l

)2

+ E

[(
Tbl,m
υ2l

)2
]


= O




J2∑

l=J1+1

2l−1∑

m=0

T 2E
[
(h∗l,m − bl,m)2

]

υ4l
+

(
bl,mT

υ2l

)2

+
T

υ4l




From lemma A.1.3 (i) we know that E
[
(h∗l,m − bl,m)2

]
= O

(
T−1

)
. Then by substituting

in eqution (5.32) and υl = 2µ3(J−l), we find that

R3,2 = O




J2∑

l=J1+1

2l−1∑

m=0

T

υ4l
+

(
bl,mT

υ2l

)2

+
T

υ4l




= O




J2∑

l=J1+1

21+(1−4µ3)(J−l) + T 22−(2ω+4µ3)(J−l)


 .
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Using the representation of a geometric series this is

R3,2 = O
(

2
2(1−4µ3)(J1+1) − 2(1−4µ3)J2

1− 2(1−4µ3)

+ T 2 2−2(ω+2µ3)(J1+1) − 2−2(ω+2µ3)J2

1− 2−2(ω+2µ3)

)

Substituting in J1 and J2 from equations (5.40) and (5.41), respectively yields

R3,2 = O
(

2
2(1−4µ3)(rJ [(2r+1)ω]−1+1) − 2J(1−4µ3)(1/2+r[(2r+1)2ω]−1)

1− 21−4µ3

+ T 2 2−2(ω+2µ3)(rJ [(2r+1)ω]−1+1) − 2−2(ω+2µ3)(J(1/2+r[(2r+1)2ω]−1))

1− 2−2(ω+2µ3)

)

= O
(

2
21−4µ3T r(1−4µ3)/(2r+1)ω − T (1−4µ3)(1/2+r/(2r+1)2ω)

1− 21−4µ3

+ T 2 2−2(ω+2µ3)T−2r(ω+2µ3)/(2r+1)ω − T−(ω+2µ3)(1+r/(2r+1)ω)

1− 2−2(ω+2µ3)

)
.

Then by substituting in µ3 = r + 1/2, we can write this as

R3,2 = O
(

2
2−(4r+1)T−r(4r+1)/(2r+1)ω − T−(2r+1/2)(1+r/(2r+1)ω)

1− 2−(4r+1)

+
2−2(ω+2r+1)T−2r/(2r+1)+(1−2/p∗)/ω − T 2−(ω+2r+1)(1+r/(2r+1)ω)

1− 2−2(ω+2r+1)

)

All of these values are less than T−2r/(2r+1) because 1 ≤ p∗ ≤ 2 and r > r∗, this gives

R3,2 = O
(
T−2r/(2r+1)

)
.

When equation (5.38) does not hold then separate R3,2 into two sections:

R3,21 = O




J2∑

l=J1+1

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

 I
(√

T |bl,m| → ∞
)

 (A.94)

R3,22 = O




J2∑

l=J1+1

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

 I
(√

Tbl,m ≤M
)

 , (A.95)

where M is some constant, implying that
√
T |bl,m| is bounded by M .

From lemma A.1.1, we know that if
√
T |h∗l,m| is also bounded, then |Q1(h

∗
l,m)/Q0(h

∗
l,m)|

= O(
√
T/υ2l ), and conversely if

√
T |h∗l,m| → ∞ then |Q1(h

∗
l,m)/Q0(h

∗
l,m)| = O

(
h∗l,m

)

(see lemma A.1.4). Recall (5.32) and (5.43) and substitute these in for
∑
b2l,m and υl
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(respectively), we can write R3,21 as

R3,21 = O




J2∑

l=J1+1

2l−1∑

m=0

E
[
(h∗l,m − bl,m)2

]
I
(√

T |bl,m| → ∞
)

+ b2l,m +
T

υ4l




= O




J2∑

l=J1+1

2−2ωl + T2(1−4µ3)l +

2l−1∑

m=0

E
[
(h∗l,m − bl,m)2

]
I
(√

T |bl,m| → ∞
)



= O
(

2−2ω(J1+1) − 2−2ωJ2

1− 2−2ω
+ T

2(1−4µ3)(J1+1) − 2(1−4µ3)J2

1− 2(1−4µ3)

+

J2∑

l=J1+1

2l−1∑

m=0

E
[
(h∗l,m − bl,m)2

]
I
(√

T |bl,m| → ∞
)



As E
[
(h∗l,m − bl,m)2

]
= O(T−1), we can re-write this as

O(T−1) = O
(
T−1

Tb2l,m
Tb2l,m

)
= O(b2l,m)

because
√
T |bl,m| is bounded, this implies that

R3,21 = O
(

2(1−2ω)(J1+1) − 2(1−2ω)J2

1− 21−2ω
+ T

2(1−4µ3)(J1+1) − 2(1−4µ3)J2

1− 21−4µ3

)

= O
(

2−2(r−1/p
∗)T−2(r−1/p

∗)/(2r+1)ω − T−2(r−1/p∗)(1+r/(2r+1)ω)

1− 22/p∗−2r

+
2−4r−1T 1−r(4r+1)/(2r+1)ω − T 1−(2r+1/2)(1+r/(2r+1)ω)

1− 2−2r−1

)

= O
(
T−2r/(2r+1)

)
,

as this is the term which is decaying to zero the slowest. We split R3,22 into the summation

of R3,221 and R3,222, where

R3,221 =

J2∑

l=J1+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
I(
√
T |h∗l,m − bl,m| > a

√
log(T ))

)2

 I(
√
Tbl,m ≤M),

R3,222 =

J2∑

l=J1+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)
I(
√
T |h∗l,m − bl,m| ≤ a

√
log(T ))

)2

 I(
√
Tbl,m ≤M),

where a2 ≥ 4σ2. Using lemma A.1.3 parts (i) and (ii), equations (5.32) and (5.43) (similarly
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to R3,21), we can write R3,221 as

R3,221 = O




J2∑

l=J1+1

2l−1∑

m=0

b2l,m +
T

υ4l

+

√
E
[
(h∗l,m − bl,m)4

]
P
(√

T |h∗l,m − bl,m| > a
√

log(T )
))

= O




J2∑

l=J1+1

2l−1∑

m=0

b2l,m +
T

υ4l
+

√
O(T−2)o(T−a2/2σ2)




= O




J2∑

l=J1+1

2l−1∑

m=0

b2l,m +
T

υ4l
+

1

T




= O
(

2−2ωT−2r/(2r+1) − T−(ω+r/(2r+1))

1− 2−2ω
+−2T r/(2r+1)ω−1 − T−1/2+r/2(2r+1)ω

+
2−4r−1T−r(4r+1)/(2r+1)ω+1 − T (−2r−1/2)(1+r/(2r+1)ω)+1

1− 2−4r−1

)

As J2 < J from (5.41), we find that R3,221 = O
(
T−2r/(2r+1)

)
.

To derive an asymptotic bound for R3,222 consider the identity functions of R3,222 and

that for large T ,
√
T |bl,m| is bounded for some M1 > 0, then

I(
√
T |bl,m| ≤M) I(

√
T |h∗l,m − bl,m| ≤ a

√
log(T ))

≤ I(
√
T |bl,m| ≤M) I(

√
T |h∗l,m| ≤ 2a

√
log(T ))

≤ I(
√
T |bl,m| ≤M)

[
I(
√
T |h∗l,m| ≤ 2a

√
log(T )) I

(√
T log(T )

υl
→ 0

)

+ I

(
υl√

T log(T )
≤M1

)]

≤ I(
√
T |bl,m| ≤M)

[
I

(
T |h∗l,m|
υl

→ 0

)
+ I

(
2(J−l)(2r+1)

T log(T )
≤M1

)]
. (A.96)

Using lemma A.1.1 and as
√
Tυ−1l (

√
T |h∗l,m|)→ 0, this implies that

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

 = O

(
T

υ4l
(
√
T |h∗l,m|)2 + b2l,m

)
= O

(
T

υ4l
+ b2l,m

)
,

because E[Th∗l,m
2] ≤ 2T (E[(h∗l,m − bl,m)2] + b2l,m) = O(1). Therefore, as shown in previous

calculations, this implies that the part of R3,222 which corresponds to the first term in

equation (A.96) is O(T−2r/(2r+1)).

Using lemma A.1.4 we know that E[Q1(h
∗
l,m)/Q0(h

∗
l,m)] = O(E[(h∗l,m − bl,m)2] + b2l,m).
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Then, by reorganising second term in equation (A.96), the portion of R3,222 related to this

is

O




J2∑

l=J1+1

2l−1∑

m=0

(T−1 + b2l,m)I
(

2l = O([T log(T )]1/(2r+1))
)



= O




J2∑

l=J1+1

(
2j

T
+ 2−2ωl

)
I
(

2l = O([T log(T )]1/(2r+1))
)



= O
(
T−2r/(2r+1)[log(T )]1/(2r+1)

)
.

So, using the same process as before to re-write the double summation,

R3,222 = O
(
T−2r/(2r+1)[log(T )]1/(2r+1)

)
,

which implies that when equation (5.38) is invalid R3 = O
(
T−2r/(2r+1)[log(T )]1/(2r+1)

)
.

Finest Scales: J2 < l < J

For the finest scales we find that λl > 0, therefore b̂ 6= equation (A.71). If we let

Bl;T (h∗) =
1

(1− λl)Q0(h∗l,m)

[
θl
√
T ζl(

√
Th∗l,m) + λlQ∗0(h∗l,m)

]

B∗l;T (h∗) =
1

λlQ∗0(h∗l,m)

[
θl
√
T ζl(

√
Th∗l,m) + (1− λl)Q0(h

∗
l,m)
]
.

Therefore

b̂l,m =
(1− λl)Q1(h

∗
l,m) + λlQ∗1(h∗l,m)

θl
√
T ζl(

√
Th∗l,m) + (1− λl)Q0(h∗l,m) + λlQ∗0(h∗l,m)

=
Q1(h

∗
l,m)

Q0(h∗l,m)
[Bl;T (h∗l,m) + 1]−1 +

Q∗1(h∗l,m)

Q∗0(h∗l,m)
[B∗l;T (h∗l,m) + 1]−1. (A.97)

As we know that ζl(·), Q0(·) and Q∗0(·) are all combinations of pdfs, therefore they are all

positive functions. This implies that

Bl;T (h∗)

Bl;T (h∗) + 1
and

B∗l;T (h∗)

B∗l;T (h∗) + 1
are both ≤ 1.
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Then, using (A.97) we can express

Q1(h
∗
l,m)

Q0(h∗l,m)
+
Q∗1(h∗l,m)

Q∗0(h∗l,m)
− b̂l,m =

Q1(h
∗
l,m)

Q0(h∗l,m)

( Bl;T (h∗)

Bl;T (h∗) + 1

)
+
Q∗1(h∗l,m)

Q∗0(h∗l,m)

(
B∗l;T (h∗)

B∗l;T (h∗) + 1

)

≤
Q1(h

∗
l,m)

Q0(h∗l,m)
+
Q∗1(h∗l,m)

Q∗0(h∗l,m)
.

Consider that

E
[
(b̂l,m − bl,m)2

]
≤ E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

+

(
Q∗1(h∗l,m)

Q∗0(h∗l,m)

)2

+ b2l,m


 .

Then we split R4 into six sections and R4 =
∑6

i=1R4,i. We shall start with R4,1, and from

(5.32) this can be expressed as

R4,1 =
J−1∑

l=J2+1

2l−1∑

m=0

b2l,m = O




J2∑

l=J1+1

2−2ωl


 = O

(
2−2ω(J2+1) − 2−2ω(J−1)

1− 2−2ω

)

= O
(

2−2ωT−(ω(2r+1)+r)/(2r+1) − 2−2ωT−2ω

1− 2−2ω

)
= O(T−2r/(2r+1))

From lemma A.1.4 we know that if
√
T |h∗l,m| → ∞, we find that Q1(h

∗
l,m)/Q0(h

∗
l,m) and

Q∗1(h∗l,m)/Q∗0(h∗l,m) will both equal O(|h∗l,m|). Hence

R4,2 =
J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

+

(
Q∗1(h∗l,m)

Q∗0(h∗l,m)

)2

 I(
√
T |bl,m| → ∞)

= O




J−1∑

l=J2+1

2l−1∑

m=0

E[h∗l,m
2]I(
√
T |bl,m| → ∞)




= O




J−1∑

l=J2+1

2l−1∑

m=0

E[(h∗l,m − bl,m)2]I(
√
T |bl,m| → ∞) +

T

υ4l
+ b2l,m


 .
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This is similar to R3,21, so we can re-write this as

R4,2 = O




J−1∑

l=J2+1

2l−1∑

m=0

T

υ4l
+ 2b2l,m




= O




J−1∑

l=J2+1

T2(1−4µ3)l + 21−2ωl




= O
(
T

2−(4r+1)(J2+1) − 2−(4r+1)(J−1)

1− 2−4r−1
+ 2

2−2ω(J2+1) − 2−2ω(J−1)

1− 2−2ω

)

= O
(

2−(4r+1)T
−(4r+1)(1/2+r/2ω(2r+1))+1 − 24r+1T−(4r+1)+1

1− 2−4r−1

+
2−2ωT−(ω+r/(2r+1)) − 22ωT−2ω

1− 2−2ω

)

= O
(
T−2r/(2r+1)

)
.

The next part is defined as

R4,3 =

J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

I
(√

T |h∗l,m − bl,m| > 2 log(T )
)

 .

Using lemma A.1.3 part (iii) we can repeat the same process which was used to solve

R3,221 as

R4,3

= O




J−1∑

l=J2+1

2l−1∑

m=0

√
E
[(
h∗l,m − bl,m

)4 ]
P
(
|h∗l,m − bl,m| > 2 log(T )/

√
T
)

+ b2l,m +
T

υ4l




= O




J−1∑

l=J2+1

2l−1∑

m=0

T−1 + b2l,m +
T

υ4l




= O




J−1∑

l=J2+1

2lT−1 + 2−2ωl + T2(1−4µ3)l




= O
(

2T (r/ω(2r+1)−1)/2 − 2 +
2−2ωT−(ω+r/(2r+1)) − 22ωT−2ω

1− 2−2ω

+T
2−(4r+1)T−(4r+1)(1/2+r/2ω(2r+1)) − 2−(4r+1)T−(4r+1)

1− 2−(4r+1)

)

= O
(
T−2r/(2r+1)

)
.
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The fourth part is

R4,4 =

J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

I
(√

T |h∗l,m − bl,m| ≤ 2 log(T )
)

 I
(√

T |bl,m| ≤M
)
.

An upper bound can be found by considering

I
(√

T |h∗l,m − bl,m| < 2 log(T )
)
≤ I
(√

T |h∗l,m| ≤ 2 log(T ) +
√
T |bl,m|

)
.

Therefore, using lemma A.1.1 part (ii) b, we find that

R4,4 =
J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q1(h

∗
l,m)

Q0(h∗l,m)

)2

I
(√

T |h∗l,m| ≤ 2 log(T ) +M
)



= O




J−1∑

l=J2+1

2l−1∑

m=0

√√√√√E



(
Q1(h∗l,m)

Q0(h∗l,m)

)4

P
(√

T |h∗l,m| ≤ 2 log(T ) +M
)2






= O




J−1∑

l=J2+1

2l−1∑

m=0

T 2

υ4l

log2(T ) + 1

T




= O




J−1∑

l=J2+1

2l−1∑

m=0

T log2(T )

υ4l
+
T log2(T )

υ4l




= O(υ−2l )

= o(T−1).

The fifth and sixth part of R4 focus on Q∗i (·) and these are defined as

R4,5 =

J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q∗1(h∗l,m)

Q∗0(h∗l,m)

)2

I
(√

T (h∗l,m − bl,m) >
r

4
log(T )

)



R4,6 =

J−1∑

l=J2+1

2l−1∑

m=0

E



(
Q∗1(h∗l,m)

Q∗0(h∗l,m)

)2

I
(√

T (h∗l,m − bl,m) ≤ r

4
log(T )

)

 I
(√

T |bl,m| ≤M
)
.
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For R4,5 we follow a similar procedure to R3,221, however a log(T ) is replaced with r
4 log(T )

and we use lemma A.1.3 part (iv). This results in

R4,5 = O




J−1∑

l=J2+1

2l−1∑

m=0

√
E
[(
h∗l,m − bl,m

)4]
P
(
|h∗l,m − bl,m| >

r

4
log(T )

)
+ b2l,m +

T

υ4l




= O




J−1∑

l=J2+1

2l−1∑

m=0

√
O(T−2) o(T−r/4) + b2l,m +

T

υ4l




= O




J−1∑

l=J2+1

2l−1∑

m=0

T−1 + b2l,m +
T

υ4l


 .

This is the same as R4,3, which implies that R4,5 = O
(
T−2r/(2r+1)

)
.

For the sixth part consider that when

√
T (h∗l,m − bl,m) <

log(T )

4r + 1
⇒

√
T

υl
exp{2

√
Th∗l,m} = o(1).

This implies that we can use lemma A.1.2 and

∣∣∣∣∣
Q∗1(h∗l,m)

Q∗0(h∗l,m)

∣∣∣∣∣

=

√
TfE(

√
Th∗l,m)(1− γ∗e2

√
Th∗l,m)

∫∞
−∞ x

2ξ(x)dx
{

1 +O
(
Tυ−2l

[
1− e2

√
Th∗l,m

])}

υ2l fE(
√
Th∗l,m)

{
1 +O

(
Tυ−2l

[
1− e2

√
Th∗l,m

])}

= O
(√

T

υ2l
[1− exp{2

√
Th∗l,m}]

)

= O(υ−1l ).

Therefore, we find that

R4,6 = O




J−1∑

l=J2+1

2l−1∑

m=0

1

υl
I
(√

T |bl,m| ≤M
)



= O




J−1∑

l=J2+1

2l−1∑

m=0

1

υl




= O




J−1∑

l=J2+1

2(1−µ3)l




= O
(

2−rT−r(1/2+r/2ω(2r+1)) − 2rT−r

1− 2−r

)

�
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A.2 Proofs for the Bayesian Modelling of the Haar-Fisz Pe-

riodogram

Proof (Lemma 7.4.1).

Qil(h) =

∫ ∞

−∞

yi

νl
ϕνl(y − h) ξ(y) dy

=

∫ ∞

−∞

yi

νl
ϕνl(y − h)

τl
2

exp{−τl |y|}dy

=
τl
2

∫ 0

−∞

yi

νl
ϕνl(y − h) exp{τl y} dy +

τl
2

∫ ∞

0

yi

νl
ϕνl(y − h) exp{−τl y} dy

=
τl
2

∫ 0

−∞

yi

νl
√

2π
exp

{
−y

2 − 2hy + h2

2ν2l

}
exp{τl y} dy (A.98)

+
τl
2

∫ ∞

0

yi

νl
√

2π
exp

{
−y

2 − 2hy + h2

2ν2l

}
exp{−τl y} dy. (A.99)

If we first consider the exponential parts of (A.98), this can be expressed as

−y
2 − 2yh+ h2

2ν2l
+ τl y = − 1

2ν2l

(
y2 − 2yh+ h2 − 2 y ν2l τl

)

= − 1

2ν2l

(
y2 − 2y

[
h+ ν2l τl

]
+ h2

)
.

Let µ1 = h+ ν2l τl, then

−y
2 − 2yh+ h2

2ν2l
+ τl y = − 1

2ν2l
(y − µ1)2 −

1

2ν2l

(
h2 − µ21

)
.

Similarly, if we let µ2 = h− ν2l τl, equation (A.99) can be expressed as

− 1

2ν2l
(y − µ2)2 −

1

2ν2l

(
h2 − µ22

)
.

Therefore, our previous integrals become

Qil(h) =
τl
2
e−h

2/2ν2l

[
eµ

2
1/2ν

2
l

∫ 0

−∞
yi ϕνl(y − µ1) dy + eµ

2
2/2ν

2
l

∫ 0

−∞
(−y)i ϕνl(y + µ2) dy

]
.

�

Proof (Lemma 7.4.2). (a) As ϕνl(·) is the Gaussian pdf, we can use the Gaussian cdf

Φ(·) to solve Q0
l (h).

(b) The results from equations (A.11) and (A.12) were used to determine Q1
l (h).
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(c) Equations (A.16) and (A.17) were used to determine Q2
l (h).

�

Proof (Lemma 7.4.3). The log-likelihood is obtained by first calculating γ(y|νl) from (7.8)

γ(y|νl) =

∫ ∞

−∞

1

νl
ϕ

(
y − x
νl

)
τl
2

exp{−τl |x|}dx

=
τl
2

∫ 0

−∞

1

νl
√

2π
exp

{
−y

2 − 2xy + x2

2ν2l

}
exp{τl x}dx

+
τl
2

∫ ∞

0

1
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√

2π
exp

{
−y

2 − 2xy + x2

2ν2l

}
exp{−τl x}dx

=
τl
2

∫ 0

−∞

1

νl
√

2π
exp

{
−x

2 − 2x[y + ν2l τl] + y2

2ν2l

}
dx

+
τl
2

∫ ∞

0

1

νl
√

2π
exp

{
−x

2 − 2x[y − ν2l τl] + y2

2ν2l

}
dx

Let µ3 = y + ν2l τl and µ4 = y − ν2l τl, hence

γ(y|νl) =
τl
2
e−y

2/2ν2l

[
eµ

2
3/2ν

2
l

∫ 0

−∞

1

νl
√

2π
exp

{
−(x− µ3)2

2ν2l

}
dx

+ eµ
2
4/2ν

2
l

∫ ∞

0

1

νl
√

2π
exp

{
−(x− µ4)2

2ν2l

}
dx

]

=
τl
2
e−y

2/2ν2l

[
eµ

2
3/2ν

2
l

∫ 0

−∞
ϕνl(x− µ3) dx + eµ

2
4/2ν

2
l

∫ ∞

0
ϕνl(x− µ4) dx

]

=
τl
2
e−y

2/2ν2l

[
eµ

2
3/2ν

2
l Φ

(−µ3
νl

)
+ eµ

2
4/2ν

2
l Φ

(
µ4
νl

)]
. (A.100)

We then substitute the result of (A.100) into γ(y|νl) of (7.7) to obtain the log-likelihood

function. �
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Appendix B

Appendix of Computational

Output

Figures B.1 shows the plots of the Bayesian log-periodogram estimate of the EWS for Xt

and Yt after forty cycle spins. The plots in figure B.2 are the estimates of the Bayesian

log-periodogram estimate of the EWS for Xt using the Haar smoothing wavelet, and figure

B.3 are the estimates of the Bayesian log-periodogram estimate of the EWS for Yt using

Daubechies extremal phase smoothing wavelet with ten vanishing moments.

The plots in figure B.4 and B.5 are the empirical p.acf over lag τ = 0, . . . , 500 for a

fine, mid and coarse scale (j = 9, 6, 0).

Figure B.6 shows the estimate of the EWS of Xt with no cycle spinning using the

uniform (a) and Laplace (b) mixture priors. Figure B.8 shows the EWS at the three finest

scales. Figure B.7 shows the estimate of the EWS of Yt with no cycle spinning using the

uniform (a) and Laplace (b) mixture priors. Figure B.9 shows the EWS j = 5, 6, 7.
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Figure B.1: Plots of the estimated EWS from 40 cycle spins, using Bayesian wavelet
shrinkage estimate of the log transformed raw wavelet periodograms obtained from Xt

and Yt.
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Figure B.2: Plots of the estimated EWS at scale j = 9 from 0, 20, 40 cycle spins, using
Bayesian wavelet shrinkage estimate of the log transformed raw wavelet periodograms
obtained from Xt using the Haar smoothing and analysis wavelet.
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Figure B.3: Plots of the estimated EWS at scale j = 6 from 0, 20, 40 cycle spins, using
Bayesian wavelet shrinkage estimate of the log transformed raw wavelet periodograms
obtained from Yt using the D10 smoothing and analysis wavelet.
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Figure B.4: Plots of the empirical p.acf over lag τ = 0, . . . , 500 of the raw wavelet peri-
odogram (Ij,k) and Haar-Fisz wavelet periodogram (Hj,k) of Xt simulated from the piece-
wise constant EWS at: the finest scale in (a) and (b); a mid scale in (c) and (d); the
coarsest scale in (e) and (f). For a sample size of T = 210 = 1024. The blue dashed line
in each plot is the 5% significance level.
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(a) p.acf of I9,k
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Figure B.5: Plots of the empirical p.acf over lag τ = 0, . . . , 500 of the raw wavelet peri-
odogram (Ij,k) and Haar-Fisz wavelet periodogram (Hj,k) of Yt simulated from the slowly
evolving EWS at: the finest scale in (a) and (b); a mid scale in (c) and (d); the coarsest
scale in (e) and (f). For a sample size of T = 210 = 1024. The blue dashed line in each
plot is the 5% significance level.
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(a) Uniform Mixture Prior EWS Estimate
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(b) Laplace Mixture Prior EWS Estimate
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Figure B.6: Plots of the estimated EWS of Xt, with no cycle spinning. (a) is the estimated
EWS using the Haar wavelet and uniform mixture prior. (b) is the estimated EWS using
D3 and Laplace mixture prior.
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Figure B.7: Plots of the estimated EWS of Yt, with no cycle spinning. (a) is the estimated
EWS using the Haar wavelet and uniform mixture prior. (b) is the estimated EWS using
D8 and Laplace mixture prior.

217



(a) Uniform S7(z)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2

Location (z)

S
7(z

)

(b) Laplace S7(z)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
Location (z)

S
7(z

)

(c) Uniform S8(z)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Location (z)

S
8(z

)

(d) Laplace S8(z)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Location (z)

S
8(z

)

(e) Uniform S9(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

Location (z)

S
9(z

)

(f) Laplace S9(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

Location (z)

S
9(z

)

Figure B.8: Plots of the estimated EWS with 50% and 90% CI, at scale j = 9, 8, 7 using
Bayesian wavelet shrinkage on Xt’s Haar-Fisz transformed wavelet periodogram with no
cycle spinning. Figures (a), (c) and (e) have been smoothed using the Haar wavelet and
uniform mixture prior, whereas (b), (d) and (f) have been smoothed using the Laplace
mixture prior and D3 wavelet.
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Figure B.9: Plots of the estimated EWS with 50% and 90% CI, at scale j = 7, 6, 5 using
Bayesian wavelet shrinkage on Yt’s Haar-Fisz transformed wavelet periodogram with no
cycle spinning. Figures (a), (c) and (e) have been smoothed using the Haar wavelet and
uniform mixture prior, whereas (b), (d) and (f) have been smoothed using the Laplace
mixture prior and D8 wavelet.
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