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Abstract

This thesis presents new methods in time series analysis focusing on three areas: sta-

tionarity testing, network autoregression modelling, and local white noise testing.

We begin by describing a bespoke stationarity test for use when univariate data has

missing observations. This test is based upon a second-generation wavelet method

known as the non-decimated lifting transform, which allows for the analysis of irreg-

ularly spaced data. The variance of a spectral estimate linked to the non-decimated

lifting transform is used in our test statistic, and compared to the same quantity

calculated on simulated stationary samples to assess significance.

The second section provides a model for multivariate time series observed on nodes

of a network. Our model allows such data to be modelled with few parameters,

and is shown to be a useful modelling tool for predicting multivariate time series.

A stationarity condition and consistency results for this model are described, and

results are generated using our software package for fitting this model.

A local white noise test is motivated in the third section, which can be applied at

many different positions in a time series. The smoothed wavelet periodogram forms

the basis of our test, and relevant distributional results for its implementation are

described, including new results of Haar and Shannon wavelet quantities. Different

test statistics are investigated, each based upon testing equality of the periodogram

at different scales.
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1 INTRODUCTION

1 Introduction

Data frequently have features that are challenging to model using standard techniques,

such as missing observations, high-dimensionality, and non-Gaussianity. Attributes such

as these can mean that classical models and analysis methods require adaption before use.

Three bespoke methods for use with data that do not meet classical assumptions are pre-

sented in this thesis: stationarity testing with missing observations, generalised network

autoregressive modelling, and local white noise testing.

Chapter 2 provides a general literature review covering an overview of time series and

wavelet topics, with particular focus on themes relevant to this thesis. Also introduced

is the Bristol Traffic dataset, which is used to demonstrate the new methods in each of

the later chapters. Additional literature reviews are found within Chapters 3-5 to cover

chapter-specific material.

Missing observations are frequent in practical data analysis, and can arise due to random

omission, instrument failure, or human error. Chapter 3 details our new stationarity test

designed for use on such data that is complicated by missing observations. This test is

based upon the wavelet spectrum estimation method of Knight et al. (2012), which uses

second-generation wavelets to handle irregularly-spaced data via the non-decimated lifting

transform of Knight and Nason (2009). Our developed test compares the average variance

of the spectral estimate over scales, to the same test statistic calculated on bootstrapped

time series. When tested on simulated series without missingness our stationarity test

performs well in terms of size and power compared with stationarity tests designed for

complete data. When up to 20% of observations are missing the test also has good sta-

tistical properties, and is a marked improvement on a simple adaption to a test that is

designed to work on fully observed data.

High-dimensional time series can be modelled sparsely using the generalised network au-

toregression model presented in Chapter 4. The multivariate time series is assumed to

be observed at nodes of a network, which provides connection information between the

nodes. Our network autoregression model combines standard autoregressive behaviour at

each node, with network autoregression (dependence on the past values observed at neigh-

bouring nodes). Generalisations including modelling with covariates, changing networks,

1



1 INTRODUCTION

and different neighbourhood sets allow this model to be applied in a range of settings.

In addition, we demonstrate an application of the changing network framework to model

multivariate time series with missing observations. An intuitive stationarity condition is

proven for our generalised network autoregression model, and the fitted parameters of our

model are shown to be consistent.

Chapter 5 presents a local white noise test that is also designed for general application;

using wavelet properties this test is designed for use on Gaussian and non-Gaussian dis-

tributed white noise with finite sixth moment. The locally stationary wavelet framework

of Nason et al. (2000) is used to motivate test statistics based upon equality of values of

the wavelet spectrum at different scales. Distributional results for the wavelet spectrum

are calculated to assess the significance of these test statistics across a range of smoothing

options for the wavelet spectrum. As a local test, this method is designed to be applied

locally at many positions of a time series.

2



2 LITERATURE REVIEW

2 Literature Review

In this chapter, an overview of key ideas in time series analysis is presented, with par-

ticular focus on material that underpins our new techniques developed in later chapters.

Section 2.1 presents general time series concepts and definitions, and Section 2.2 intro-

duces wavelets and locally stationary wavelet processes. Concepts and definitions specific

to material in Chapters 3-5 are included within the relevant chapter.

2.1 Time Series Definitions

In this section, useful definitions from the time series literature are stated and discussed.

Accessible introductions to time series analysis include Chatfield (2004), Shumway and

Stoffer (2000), and Brockwell and Davis (2006), with a more theoretical approach found

in Priestley (1981).

We begin with the definition of white noise, a process that forms the basis of many time

series models.

Definition 2.1 (White noise). A stochastic process {Xt}t∈Z is called a white noise process

with mean zero and variance σ2 <∞ if

1. E(Xt) = 0 and

2. E(XsXt) = δs,tσ
2,

where δs,t is the Kronecker delta function, taking the value 1 when s = t, and 0 otherwise.

One important question when analysing time series is whether properties of the series

change over time. Loosely speaking, if a series has an unchanging generating process it is

known as strictly stationary.

Definition 2.2 (Strict stationarity). A process {Xt}t∈Z is strictly stationary if for any

admissible collection t1, . . . , tn and k ∈ Z,

FXt1 ,...,Xtn (x1, . . . , xn) ≡ FXt1+k,...,Xtn+k
(x1, . . . , xn), (1)

where FM(·) is the distribution function over the variables in the set M.

3



2.1 Time Series Definitions 2 LITERATURE REVIEW

For practical purposes, the less restrictive definition of second-order stationarity is gener-

ally used.

Definition 2.3 (Second-order stationarity). A mean-zero stochastic process {Xt}t∈Z is

stationary if the following three properties hold:

1. E(|Xt|2) <∞ ∀t ∈ Z

2. E(Xt) = 0 ∀t ∈ Z

3. γ(r, s) = γ(r + t, s+ t) ∀r, s, t ∈ Z,

where γ(r, s) = cov(Xr, Xs), the autocovariance function.

We can also consider higher orders of stationarity, by including further moments in the

definition. As the autocovariance is assumed to be time-invariant in the above definition,

it is often referred to with a single input; γ(h) = γ(r, r + h). The autocorrelation is

usually defined via the autocovariance, ρ(h) = γ(h)γ(0)−1. In practice, important tools

for assessing the second-order properties of a time series are the sample forms of the

autocovariance and autocorrelation.

Definition 2.4 (Sample autocovariance). The sample autocovariance of a realisation

{Xt}Tt=1 at lag h is

γ̂(h) = T−1
T∑

t=1

(
Xt − X̄

) (
Xt+h − X̄

)
, (2)

where X̄ = T−1
T∑
t=1

Xt, the sample mean of {Xt}Tt=1.

Definition 2.5 (Sample autocorrelation). The sample autocorrelation realisation {Xt}Tt=1

at lag h is

ρ̂(h) = γ̂(h)γ̂−1(0). (3)

Definitions 2.4 and 2.5 calculate the second order properties over the entire finite length

sample, which means they are global quantities.

2.1.1 Fourier analysis

Fourier methods allow for investigation of the frequency content of a process. In this work,

we use the following definition of the Fourier transform pair.

4
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Definition 2.6 (Fourier transform). The Fourier transform of a function f(x) ∈ L2(R) is

f̂(ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx, (4)

for ω ∈ R, and the inverse Fourier transform of f̂(ω) is

f(x) =
1√
2π

∫ ∞

−∞
f̂(ω)eiωxdω. (5)

In the case of a function evaluated at discrete points, we use the discrete Fourier transform.

Definition 2.7 (Fourier transform). The Fourier transform of a discretely sampled func-

tion f(x) ∈ L2(R), with x ∈ Z is

f̂(ω) =
1√
2π

∞∑

x=−∞
f(x)e−iωx, (6)

for −π < ω ≤ π, and the inverse Fourier transform of f̂(ω) is

f(x) =
1√
2π

∫ π

−π
f̂(ω)eiωxdω, (7)

for x ∈ Z.

The frequency content of a process is described using the spectral density function, a

quantity with links to the Fourier transform.

Definition 2.8 (Spectral density function). The spectral density function of a process

{Xt}t∈Z is

f(ω) = (2π)−1
∞∑

h=−∞
γ(h)e−iωh, (8)

for ω ∈ [−π, π].

Therefore the spectral density function is the (scaled) Fourier transform of the autocovari-

ance function. We also have the inverse result for the autocovariance function,

γ(h) =

∫ π

−π
f(ω)eiωhdω, (9)

for h ∈ Z, the autocovariance function is the (scaled) inverse Fourier transform of the

spectral density function. For a second-order stationary process, the covariance function

5
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is invariant to shifts in time, therefore the spectral density function will also stay fixed

throughout a stationary series. The spectral density function is also known as the spectrum

of a series, and represents the how the power (variance) of a process is distributed across

frequency. The periodogram is used to estimate the spectral density function, presented

here for use with real-valued processes.

Definition 2.9 (Periodogram). The periodogram of a realisation {Xt}Tt=1 of a real-valued

process is

Ip = {A(ωp)}2 + {B(ωp)}2 , for p = 0, 1, . . . ,floor(T/2), (10)

where A(ωp) =
√

2T−1/2
T∑
t=1

Xt cos(ωpt), B(ωp) =
√

2T−1/2
T∑
t=1

Xt sin(ωpt), {ωp} are the

Fourier frequencies with ωp = 2πpT−1, and floor is the operator that returns the highest

integer equal to or lower than the argument.

When the process {Xt}Tt=1 is a realisation of a Gaussian white noise process, Xt ∼ N(0, σ2)

for t = 1, . . . , T with σ2 < ∞, each of the components A(ωp), B(ωp) are normally dis-

tributed and independent due to the orthogonality of the trigonometric functions. There-

fore the sample periodogram in this case has the following distribution.

Proposition 2.1 (Distribution of the periodogram for Gaussian white noise (adapted

from Priestley (1981) Theorem 6.1.1)). For {Xt}Tt=1, with Xt ∼ N(0, σ2) and T even,

Ip ∼





σ2χ2
2 p = 1, 2, . . . , T/2− 1,

2σ2χ2
1 p = 0, T/2,

(11)

where Ip are independently distributed. Therefore the mean and variance of the Gaussian

white noise periodogram are

E (Ip) = 2σ2 p = 0, 1, . . . , T/2,

var (Ip) =





4σ4 p = 1, 2, . . . , T/2− 1,

8σ4 p = 0, T/2.

(12)

The periodogram is formed using orthogonal components, cos(ωpt) and sin(ωpt), and we

next define a process with orthogonality. These processes form the building blocks of more

complex processes defined through this section.

6
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Definition 2.10 (Orthogonal increment process (adapted from Brockwell and Davis

(2006), Definition 4.6.1)). A complex-valued stochastic process Z(ω) for ω ∈ (−π, π)

is called an orthogonal increment process if the following conditions hold:

(i) var {Z(ω)} <∞, ∀ω ∈ (−π, π),

(ii) E {dZ(ω)} = 0, ∀ω ∈ (−π, π),

(iii) cov {dZ(ω), dZ(ω′)} = 0, ∀ω, ω′ ∈ (−π, π) such that ω 6= ω′.

Using orthogonal increments, certain processes can be represented according to the fol-

lowing proposition.

Proposition 2.2 (Orthogonal representation of a process (adapted from Priestley (1981),

Theorem 4.11.2)). For a zero mean process {Xt}Tt=1 with covariance function γ(s, t) =

E(XsXt), let {ϕt(ω)} be a collection of functions defined for t ∈ {1, . . . , T} and ω ∈ R

such that

γ(s, t) =

∫ π

−π
ϕ∗s(ω)ϕt(ω)dµ(ω) ∀s, t ∈ {1, . . . , T} (13)

where ∗ denotes the complex conjugate, and

∫ ∞

−∞
|ϕt(ω)|2dµ(ω) <∞ ∀t ∈ {1, . . . , T}, (14)

where µ(ω) is a measure defined on the real line.

Then, the process {Xt}Tt=1 has the following representation;

Xt =

∫ π

−π
ϕt(ω)dZ(ω), (15)

where {Z(ω)} is an orthogonal increment process and E
{
|dZ(ω)|2

}
= dµ(ω).

Next, we introduce a special case of Proposition 2.2, the Cramer representation of a

stationary process.

Theorem 2.3 (Cramer representation of a stationary series (adapted from Priestley

(1981), page 251)). Let {Xt}t∈Z be a mean zero, real-valued, stationary process. Then,

there exists an orthogonal increment process Z(ω), for ω ∈ (−π, π), such that the following

representation holds for all t ∈ Z,

Xt =

∫ π

−π
eitωdZ(ω). (16)

7



2.1 Time Series Definitions 2 LITERATURE REVIEW

This representation can also be rewritten as

Xt =

∫ π

−π
A(ω)eitωdξ(ω), (17)

where ξ(ω) is an orthonormal increment process, which is an orthogonal increment process

with E
{
|dZ(ω)|2

}
= 1.

The Cramer representation involves an integral over A(ω)eitω, which is a particular case

of an oscillatory function, defined next.

Definition 2.11 (Oscillatory functions (adapted from Priestley (1981), Definition 11.2.1)).

The function ϕt(ω) for t = 1, . . . , T and ω ∈ [−π, π], considered as a function of t by fixing

ω, is called an oscillatory function if it can be written in the form

ϕt(ω) = At(ω)eiθ(ω)t, (18)

for some frequency θ(ω) and

At(ω) =

∫ π

−π
eitηdKω(η), (19)

with |dKω(η)| having absolute maximum at η = 0.

Therefore the oscillatory function has frequency θ(ω), with changing amplitude At(ω).

As an extension of the stationary representation to a more general class, Priestley used

oscillatory functions as building blocks to the oscillatory process model.

Definition 2.12 (Oscillatory processes (adapted from Priestley (1981), Definition 11.2.2)).

A process {Xt}Tt=1 is called an oscillatory process if there exists a family of oscillatory func-

tions, {ϕt(ω)} such that

Xt =

∫ π

−π
ϕt(ω)dZ(ω), (20)

where Z(ω) is an orthogonal process.

As a stationary process can be written in the form of Equation (17), which by inspection

is a special case of Definition 2.12, the class of stationary processes is contained within

the set of oscillatory processes. As oscillatory processes are not necessarily stationary, the

power, or variation, of the process is not necessarily constant over time. These processes

motivate use of a time-varying version of the spectrum in Definition 2.8.

8
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Definition 2.13 (Evolutionary power spectrum (adapted from Priestley (1981), Defini-

tion 11.2.3)). Let {Xt}Tt=1 be an oscillatory process with respect to the family of oscilla-

tory functions, F , where F = {ϕt(ω)} = {At(ω)eiωt}. The evolutionary power spectrum

of {Xt}Tt=1 at time t with respect to F is

dHt(ω) = |At(ω)|2dµ(ω), (21)

where dµ(ω) = E
{
|dZ(ω)|2

}
for dZ(ω) as in Equation (20).

The evolutionary power spectrum describes the distribution of power over frequency, in a

time neighbourhood of t. By applying more restrictions to an oscillatory process, Priestley

defined a semi-stationary process that has slowly-changing characteristics.

Definition 2.14 (Semi-stationary process (adapted from Priestley (1981), Definition

11.2.4)). A process {Xt}Tt=1 is called semi-stationary if it is an oscillatory process with

respect to a family of oscillatory functions F = {ϕt(ω)} =
{
At(ω)eiθ(ω)t

}
for which

BF (ω) =
∫ π
−π|θ||dKω(θ)| is bounded ∀ω ∈ [−π, π], and dKω is as in Equation (19). The

family F has characteristic width BF = [supω {BF (ω)}]−1.

The region of approximate stationarity of a semi-stationary process is related to the supre-

mum of the characteristic widths over all oscillatory function families associated with the

process with bounded BF (ω). The semi-stationary process model can be applied to series

with steady time evolution in a generalisation of the class of stationary processes, how-

ever a drawback of this model is that sudden changes in the generating process cannot be

captured. Both the oscillatory process and semi-stationary process models feature ampli-

tude functions that are defined for each t and ω, which allows for flexibility, but gives an

evolutionary spectrum that cannot be found with high resolution in both the time and

frequency domain simultaneously.

Another extension from stationary to locally stationary processes was described by

Dahlhaus (1997), with a model allowing for both the mean and covariance properties to

evolve steadily over time. An important aspect of their work is redefining the process to

be doubly indexed, so for each observation length T , the process is rescaled to be consid-

ered on tT−1 ∈ (0, 1]. Then as T increases, more data is available for approximating local

structures. This overcomes a difficulty with the non-stationary models above, as more

data corresponds to more elements to estimate in the single-indexed framework.

9
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Definition 2.15 (Locally stationary processes (adapted from Dahlhaus (1997))). A dou-

bly indexed sequence of stochastic processes, {Xt,T }Tt=1, is called locally stationary if there

exists a representation

Xt,T = µ(tT−1) +

∫ π

−π
A0
t,T (ω)eiωtdξ(ω), (22)

for t = 1, . . . , T , where A0
t,T (ω) is the transfer function, and µ is the trend, such that

properties (i)-(iii) hold.

(i) µ(u) is continuous for u ∈ [0, 1].

(ii) ξ(ω) is a stochastic process on [−π, π] with ξ(ω) = ξ(−ω) and

κ {dξ(ω1), . . . , dξ(ωk)} =
∞∑

m=−∞
δ




k∑

j=1

ωj + 2πm


 gk(ω1, . . . , ωk−1)dω1 . . . dωk,

(23)

where κ denotes the kth order cumulant, δ is the Diric delta function, and gk is a

function defined for [−π, π]k−1 such that g1 = 0, g2(ω) = 1 and |gk(ω1, . . . , ωk−1)| ≤

Ck, where Ck is a constant for all k ∈ N.

(iii) There exists a function A : [0, 1] × R → C, continuous in its first argument and 2π

periodic, with A(u, ω) = A(u,−ω), such that

sup
t,ω

∣∣A0
t,T (ω)−A(tT−1, ω)

∣∣ ≤ KT−1, ∀T. (24)

Equation (22) reduces to the Cramer representation of a stationary process as written in

Equation (17) when the transfer function A0
t,T (ω) does not depend on the double index

(t, T ), and the mean is constantly zero, µ(tT−1) ≡ 0.

The time-varying spectral density of the locally stationary process of Dahlhaus (1997) is

f(u, ω) = |A(u, ω)|2. Under smoothness conditions on the function A, this time-varying

spectral density can be shown to be asymptotically equal to the Fourier transform of the

covariance evaluated at uT , a locally stationary process equivalent of Equation (8), see

Dahlhaus (1996) for further details. Although this model has many benefits, particularly

for theoretical development when T is increasing, it does not allow for step changes in

the process generation. As an extension of this process, Adak (1998) defined a piecewise

locally stationary process to be one that admits a locally stationary representation as in

10
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Equation (22) for all u ∈ [0, 1] except for finitely many jump locations.

Another non-stationary process model is the SLEX model of Ombao et al. (2002). This

model uses smooth localised complex exponential (SLEX) functions which are localised

in both time and frequency, as described in Chapter 4 of Wickerhauser (1994). These

functions form a basis of L2(R), allowing exact representation of signals within the space.

The SLEX model contrasts with Dahlhaus’ model above as the Fourier components of the

locally stationary model above are not localised in time. The SLEX basis has blocks Si

with associated basis vector elements
{
ϕSi,ωki (t)

}
for ωki = ki|Si|−1 and ki = −|Si|/2 +

1, . . . , |Si|/2, and the union of vectors over blocks Si forms a basis of L2(R). The SLEX

representation of a double-indexed random process {Xt,T }Tt=1 with zero mean is of the

form

Xt,T =
∑

i

M
−1/2
i

Mi/2∑

ki=−Mi/2+1

ASi,ki,TϕSi,ωki (t)dZ(2iki/T ), (25)

where ASi,ki,T are complex-valued coefficients with |ASi,ki,T |
2 > 0, Mi = 2−iT ,

{
ϕSi,ωki

}
i

form a basis of L2(R), and Z(ω) is an orthonormal increment process for ω ∈ [−1/2, 1/2].

The spectrum of a SLEX model for a frequency ωki∗ corresponding to block Si∗ is

fT (u, ωki∗) =
∑

i|ASi,ki,T |
2ISi {floor(uT )}, for ki∗ = −|Si∗|/2 + 1, . . . , |Si∗|/2, where Si∗ ∈

∪iSi. As in previous stochastic process representations, the SLEX representation features

oscillatory functions, amplitudes, and a random increment process. By using the SLEX

functions, the SLEX model is able to offer a time-frequency decomposition of a process.

This contrasts the previous models within this section as they feature non-localised expo-

nential functions.

2.2 Wavelets and locally stationary wavelet processes

Another useful way to represent time series uses orthogonal wavelet components.

Daubechies (1992) and Meyer (1993) are comprehensive sources for the development of

wavelets, whilst Vidakovic (2009) and Nason (2008) provide accessible introductions to

the subject focusing on the use of wavelets in statistics, and Percival and Walden (2000)

give a time series approach. The material in this section adapted from the above sources,

and further references herein.

Wavelets are constructed based upon two functions, a father wavelet ϕ, and a mother

wavelet, ψ. The father wavelet is a function that integrates to a non-zero value,

11
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∫
ϕ(t)dt 6= 0, and the mother wavelet is an oscillatory function that integrates to 0,

∫
ψ(t)dt = 0. For many commonly used wavelet families the father wavelet integrates to

1, as is the case with the example given below, the Haar wavelet.

Definition 2.16 (Haar wavelet). The (continuous) Haar wavelet family has father wavelet

ϕ(t) =





1 0 ≤ t ≤ 1

0 otherwise,

and mother wavelet

ψ(t) =





1 0 ≤ t ≤ 1/2

−1 1/2 ≤ t < 1

0 otherwise.

The Haar wavelet has a simple analytical form for both the father and mother wavelets,

however this is not the case for all wavelets. Daubechies wavelets are constructed according

to satisfying multi-resolution properties introduced later in Definition 2.17, and apart from

the special case of the Haar wavelet, the mother and father Daubechies wavelets do not

have closed analytic expressions. Instead, filters are used to construct these wavelets,

and as the filters have a finite number of non-zero elements the constructed wavelets are

compactly supported. See Daubechies (1992), Section 6 for values of these filter coefficients

and construction details. Daubechies wavelets are indexed by the number of vanishing

moments of the mother wavelet, where ψ is said to have p vanishing moments if

∫ ∞

−∞
xnψ(x)dx = 0 for n = 0, . . . , p− 1. (26)

The number of vanishing moments corresponds to the order of a polynomial that a linear

combination of wavelet functions could reproduce. Daubechies wavelets are asymmetric,

with exception of the Haar wavelet, and are characterised as either ‘extremal phase’ or

‘least asymmetric’, with the latter indicating wavelets that are designed to be closer to

symmetry.

Another family of wavelets are called the Hermitian wavelets, the Hermitian n wavelet has

mother wavelet that is a scaled nth derivative of the Gaussian distribution. A particular

member of this wavelet family is the Mexican hat wavelet, which is related to the second

12
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Figure 1: Mother wavelet functions of Haar (Daubechies Extremal Phase 1), Daubechies
Extremal Phase 2, Daubechies Least Asymmetric 4, Daubechies Least Asymmetric 8,
Hermitian 2, Hermitian 3.

derivative of the Gaussian distribution,

ψ(x) =
2√

3π1/4

(
1− x2

)
e−x

2/2. (27)

Unlike Daubechies wavelets, Hermitian mother wavelets do not decay to zero on a finite

interval so have infinite support, have a closed form expression, and are symmetric. Fig-

ure 1 shows examples of the Daubechies and Hermitian wavelets and demonstrates that

wavelets are not necessarily smooth functions, nor are they necessarily centred at the

origin. Many other wavelets could also be chosen, each with different benefits that will

suit different applications.

From the building blocks of a mother and father wavelet, double-indexed wavelets are
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constructed as translations and dilations of the original wavelet functions. These trans-

lations and dilations may be chosen so that these wavelet functions form an orthonormal

basis over L2(R), by setting ψj,k(t) = 2−j/2ψ
(
2−jt− k

)
for j, k ∈ N, along with satisfying

other conditions. This forms a set of decimated wavelets, where the scale, j, controls the

dilation of the wavelet, and k indicates the position. As j increases, the wavelet gets wider

but still has norm one. With this orthonormal set, any function can be represented as

the sum over decimated wavelets, as they fit into a multi-resolution analysis, as defined

by Daubechies (1992), and used here with the indexing of Mallat (1989a).

Definition 2.17 (Multi-resolution analysis (adapted from Daubechies (1992) Section

5.1)). A multi-resolution analysis is a sequence of closed subspaces Vj ∈ L2(R) that satisfy

the following conditions:

1. Vj ⊂ Vj+1 ∀j ∈ Z,

2.
⋃
j∈Z

Vj = L2(R), where W denotes the closure of set W ,

3.
⋂
j∈Z

Vj = {0},

4. f(x) ∈ Vj ⇐⇒ f(2−jx) ∈ V0,

5. f(x) ∈ V0 =⇒ f(x− n) ∈ V0 ∀n ∈ Z,

6. ∃ϕ ∈ V0 such that {ϕ0,n;n ∈ Z} is an orthonormal basis in V0, where ϕj,n(x) =

2j/2ϕ(2jx− n), ∀j, n ∈ Z.

As in Jawerth and Sweldens (1994), we denote the orthogonal complement of subset Vj in

Vj+1 as Wj , and the mutually orthogonal subspaces in the set {Wj}j∈Z are called wavelet

spaces.

The construction of wavelets can be defined in terms of filters, such as is used in the

wavelet scaling equation.

Definition 2.18 (Wavelet scaling equation). The scaling equation of a father wavelet

ϕ(x) ∈ V0 is

ϕ(x) =
∑

k∈Z
hk
√

2ϕ(2x− k), (28)

where hk are filter coefficients, and h = {hk, k ∈ Z} is a vector (which may be of infinite

length) called a low-pass quadrature mirror filter.
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The wavelet scaling equation exists because V0 ⊂ V1, so the function ϕ(x) ∈ V0 can be

expressed as the sum of the basis functions of V1. If a sequence of subspaces satisfies

the properties of Definition 2.17, then an orthonormal basis of L2(R) exists, {ψj,k(x) =

2j/2ψ(2jx − k)}j,k∈Z. Additionally, {ψj,k(x)}k∈Z forms an orthonormal basis of Wj =

Vj+1\Vj for j ∈ Z. Similarly to the wavelet scaling equation above, the (mother) wavelet

function ψ(x) = ψ0,0(x) can be constructed from the (father) scaling function as follows;

ψ(x) =
∑

k∈Z
gk
√

2ϕ(2x− k), (29)

for filter coefficients gk, where g = {gk, k ∈ Z} is a high-pass quadrature mirror filter. The

usual relationship between h and g is

gk = (−1)kh1−k, (30)

for k ∈ Z.

Definition 2.19 (Wavelet scaling coefficients). The wavelet scaling coefficients of a func-

tion f(x) ∈ L2(R) are

cj,k =

∫ ∞

−∞
f(x)ϕj,k(x)dx, (31)

for j, k ∈ Z.

Definition 2.20 (Wavelet detail coefficients). The wavelet detail coefficients, or wavelet

coefficients of a function f(x) ∈ L2(R) are

dj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx, (32)

where j, k ∈ Z.

As the set of wavelets, {ψj,k}j,k∈Z, form an orthonormal basis of L2(R), a function in the

space can be written as

f(x) =
∑

j∈Z

∑

k∈Z
dj,kψj,k(x), (33)

where dj,k are the detail coefficients of Equation (32).

Due to the multi-resolution framework, we also have the following representation of a
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function in L2(R);

f(x) =
∑

k∈Z
c`,kϕ`,k(x) +

∑

j≥`

∑

k∈Z
dj,kψj,k(x), (34)

for a fixed ` ∈ Z.

In practice, we have a discretely-sampled realisation of a process rather than a function ob-

served on a continuum. For a process X = {Xt}Tt=1 with T = 2J observations, the discrete

wavelet transform produces the scaling and wavelet coefficients, similar to those in Defini-

tions 2.19-2.20. This discrete transform can also be written step-wise using the quadrature

mirror filters h and g, also known as Mallat’s pyramid algorithm Mallat (1989b). The

scaling coefficients at scale `− 1 can be constructed from those at scale ` = 2, . . . , J using

the relationship

c`−1,k =
∑

n

hn−2kc`,n, (35)

for k ∈ Z, where the original data is cJ = X, so the original data are considered as being

subspace VJ . The equivalent wavelet coefficient equation is

d`−1,k =
∑

n

gn−2kc`,n. (36)

This pyramid algorithm can also be used in reverse to reconstruct scaling coefficients at

scale ` from those at `− 1 as

c`,k =
∑

n

hn−2kc`−1,n +
∑

n

gn−2kd`−1,n, (37)

for ` = 2, . . . , J .

The discrete decimated wavelet transform produces half as many coefficients at each pro-

gressive scale due to the decimation, and in total, the discrete decimated wavelet transform

of a process of length T produces T coefficients.

As the wavelet framework allows for both deconstruction and reconstruction of a signal, it

can be applied to many numerical problems and application areas, and a small selection

of examples are detailed here. A natural use of wavelets is for investigating vibration

data, such as the use of harmonic wavelets demonstrated by Newland (2000) on examples

such as experimental pressure wave fluctuations and ground vibrations caused by passing

trains. An example of wavelet use in a less obvious area, numerical analysis, is provided by
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Alpert (2002), who used wavelet basis representations to improve the computation time of

integral equations, also discussed in Chui (1997), Section 7.3. Wavelet use in turbulence

problems is detailed in Jaffard et al. (2001), Chapter 9, with wavelets providing space-scale

representations ideal for structure detection.

Wavelets are also used in medical applications, such as constructing diagnostic techniques

based upon heart sounds as shown by Akay (1996). Field (2000) demonstrated the link

between wavelet transforms and visual systems of mammals, with a focus on structure

extraction rather than data compression. In economic data settings wavelets have many

advantages, some of those noted by Ramsey (2000) included locating discontinuities or iso-

lated events, modelling the different market behaviour at different scales, and forecasting

in a non-stationary setting. In the statistical setting, wavelet use includes non-parametric

function estimation by providing a sparse representation of a noisy signal, see eg John-

stone (2000). Thresholding wavelet coefficients and analysis of unequally-spaced data by

interpolating to a regularly-spaced grid was discussed by Kovac and Silverman (2000).

Recently, wavelets have been used in non-parametric regression applications such as esti-

mating random fields where spatial dependence is present by Krebs (2018).

2.2.1 Non-decimated wavelets

Rather than using the translation and dilation operations to form an orthonormal set of

wavelet functions, they can also be used to construct a non-decimated set as described

by Nason and Silverman (1995). A set of non-decimated wavelets is constructed from the

mother wavelet as ψj,k(t) = 2−j/2ψ
{

2−j(t− k)
}

for j, k ∈ N. Whilst these non-decimated

wavelets still individually have mean-square norm of 1, they no longer form an orthogo-

nal set, but form an over-complete basis set. A benefit of using non-decimated wavelets

is that the transform is translation invariant. This means that the transform generates

the same coefficients (although labels are switched) when a different time origin is cho-

sen and data undergo circulant shifting. Translation invariance is not a feature of the

decimated wavelet transform due to the dyadic sampling positions. The non-decimated

wavelet transform of a process of length T = 2J results T coefficients at every scale, and

a total of JT = T log2(T ) coefficients when evaluated at J scales.

Non-decimated wavelets were used by Nason et al. (2000) in construction of locally sta-

tionary wavelet processes, and the following definitions in this section are adapted from
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that work. A locally stationary wavelet process is formed of innovations or increment se-

quence ξjk, non-decimated wavelets ψj,k, and constants wj,k;T . Here we denote the scales,

j, with positive integers. Together, the three elements above define a locally stationary

wavelet process of length T , where T is of power of two length.

Definition 2.21 (Locally Stationary Wavelet process). Locally stationary wavelet pro-

cesses, {Xt,T }t=1,...,T , are a sequence of doubly indexed stochastic processes such that

Xt,T =
J∑

j=1

∑

k

wj,k;Tψj,k(t)ξjk, (38)

where ξjk is a random orthogonal increment sequence, ψj,k is a discrete non-decimated

family of wavelets, and T = 2J . The orthogonal increment process is a white noise process

with zero mean and covariance array cov(ξjk, ξ`m) = δj`δkm. The constants wj,k;T have the

following smoothness constraint; there exists a sequence of constants Cj and a Lipschitz

continuous function Wj(z) such that for each T ,

sup
k
|wj,k;T −Wj(k/T )| ≤ Cj/T (39)

where
∑∞

j=1Cj <∞, and the function Wj(z) for each j and z ∈ (0, 1) satisfies
∑∞

j=1 |Wj(z)|2 < ∞ uniformly in z ∈ (0, 1). In addition, the Lipschitz constants, Lj are

uniformly bounded in j, and
∑∞

j=1 2−jLj <∞.

Similar to the time series spectral density function in the Fourier domain, the evolutionary

wavelet spectrum describes the power of a process, with a key difference being that the

evolutionary wavelet spectrum is localised in time and scale, rather than frequency.

Definition 2.22 (Evolutionary Wavelet Spectrum). The evolutionary wavelet spectrum

of a sequence {Xt,T }t=1,...,T for the infinite sequence T ≥ 1 is

Sj(z) := |Wj(z)|2, for j = 1, . . . , J(T ) = log2(T ), z ∈ (0, 1), (40)

with respect to the generation wavelet ψj,k.

Rather than considering the power of the process over frequency like in Fourier analysis,

the wavelet spectrum represents the power over scales. The raw wavelet periodogram is

the first step to estimating the evolutionary wavelet spectrum.
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Definition 2.23 (Wavelet periodogram). The (raw) wavelet periodogram of {Xt,T }t=1,...,T

is formed by squaring the detail coefficients of its wavelet transform,

Ij,k = |dj,k|2 =

∣∣∣∣∣
T∑

t=1

Xtψj,k−t

∣∣∣∣∣

2

, (41)

for j ∈ 1, . . . , J and k ∈ 1, . . . , T , where ψj,k−t = ψj,k(t).

The raw wavelet periodogram is corrected using the inverse of the autocorrelation wavelet

matrix.

Definition 2.24 (Autocorrelation wavelet). An autocorrelation wavelet, Ψj , is defined

for j, τ ∈ Z as

Ψj(τ) =
∑

k

ψj,kψj,k−τ . (42)

Definition 2.25 (Autocorrelation wavelet matrix). The autocorrelation wavelet matrix,

AJ , is a J × J matrix with entries

Ai,j =
∑

τ

Ψi(τ)Ψj(τ) =
∑

τ

(∑

k

ψi,kψi,k−τ

)(∑

l

ψj,lψj,l−τ

)
. (43)

The previous quantities are combined to form the corrected wavelet periodogram as follows.

Definition 2.26 (Corrected wavelet periodogram). The corrected wavelet periodogram

of a process {Xt,T }t=1,...,T where T = 2J is a matrix L of dimension J × T such that

L = A−1J I , (44)

where I is the J × T raw wavelet periodogram matrix.

As shown by Nason et al. (2000), this corrected wavelet periodogram is an asymptotically

unbiased but not consistent estimator of the evolutionary wavelet spectrum and requires

smoothing for consistency.

Compared to oscillatory processes, the locally stationary wavelet model benefits from a

time-scale representation, but also has the drawback of not allowing for sudden changes

in the generating process due to the smoothness constraints. Van Bellegem and von Sachs

(2008) presented an extension of the locally stationary wavelet model that replaces the

Lipschitz continuity assumption for Wj(z) with the following condition bounding the total
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variation of W 2
j (z),

sup

{
I∑

i=1

∣∣W 2
j (ai)−W 2

j (ai−1)
∣∣, 0 < a0 < . . . < aI < 1

}
≤Mj , (45)

where the supremum is over all possible partitions a0, . . . , aI of (0, 1) with I ∈ N, and
∑

jMj <∞. This allows for discontinuous behaviour in the process, for example concate-

nation of two processes to create a process featuring a break-point rather than smooth

transition. Their work describes estimating the wavelet spectrum using an adaptive aver-

aging of the corrected wavelet periodogram of Definition 2.26, by averaging using as large

a segment as possible for which the spectrum estimate appears homogeneous.

The univariate locally stationary wavelet model and extensions have been used in many

applications, including forecasting time series by Fryzlewicz et al. (2003), where forecasts

are created for series which may have variance and autocorrelation changes over time. An

alternative forecasting approach was proposed by Xie et al. (2009) and demonstrated on

financial time series, this forecasting technique was designed to avoid outliers by imposing

restrictions on the predictors. Consistent classification of time series using the empirical

wavelet spectrum was demonstrated by Fryzlewicz and Ombao (2009), including results

on earthquake and explosion recordings. A binary segmentation approach was used on the

wavelet periodogram by Cho and Fryzlewicz (2012) to split a non-stationary time series

into stationary blocks, and the uncertainty associated with wavelet periodogram-based

changepoint identification was quantified by Nam et al. (2015) using a hidden Markov

modelling approach.

Tests of stationarity using the locally stationary wavelet framework include Nason (2013)

and Cho (2016a). Costationarity, where a linear combination of two non-stationary time

series is stationary, was also tested using this framework by Cardinali and Nason (2010). A

test of local white noise and aliasing (sampling at a rate lower than the highest frequency

content of the series) was proposed by Eckley and Nason (2018) and demonstrated on a

wind speed application. Due to the time and scale localisation of the wavelet framework,

it is natural to apply it to assess questions of stationarity and evolving structure.

Locally stationary wavelet random fields were introduced by Eckley et al. (2010), which

are a two-dimensional extension to the locally stationary wavelet process, shown to be use-

ful for texture analysis of images. A multivariate generalisation of the locally stationary
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wavelet model was proposed by Park et al. (2014) and used to investigate linear dependen-

cies between univariate components of multivariate series. This multivariate model was

applied to a time-varying class identification problem by Park et al. (2018).

2.2.2 Wavelet packets

Another type of wavelet analysis uses wavelet packets, a subset of which are the wavelets

discussed above.

Definition 2.27 (Wavelet packets (adapted from Vidakovic (2009), Section 5.3.1)). A

wavelet packet library is a set of functions

Wj,n,k(x) = 2j/2Wn(2jx− k) for (j, n, k) ∈ Z× N× Z, (46)

where the functions Wn are related by the following sequence

W2n(x) =
∑

k

hk
√

2Wn(2x− k),

W2n+1(x) =
∑

k

gk
√

2Wn(2x− k), for n ∈ N,
(47)

and W0(x) integrates to 1. W0(x) is the scaling function, and W1(x) is the wavelet

function corresponding to quadrature mirror filters h and g. The indices j, k are scaling

and translation parameters as in the wavelet framework, and n represents an oscillation

parameter.

Rather than being linked by just the h filter as in the father wavelet case of Definition 2.18,

wavelet packets use both h and g in construction. The standard wavelet basis is contained

within the wavelet packet library, as it is constructed using the h and g filters in a par-

ticular order. The wavelet packets can be selected from the library to form a basis by

choosing particular indices, as described by the following Theorem.

Theorem 2.4 (Wavelet packet basis (adapted from Vidakovic (2009))). Define a collection

of indices P ⊆ Z × N such that the intervals Rj,n =
{[

2jn, 2j(n+ 1)
]
, (j, n) ∈ P

}
are

disjoint and form a countable covering of {0} ∪ R+. Then a complete, orthonormal basis

of L2(R) is

{Wj,n,k(x), (j, n, k) ∈ P× Z} . (48)
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This orthonormal basis can be used to give another representation of any f(x) ∈ L2(R),

where P is as in Theorem 2.4,

f(x) =
∑

(j,n)∈P

∑

k∈Z
< f,Wj,n,k > Wj,n,k, (49)

where < f,Wj,n,k > are called the wavelet packet coefficients.

Elements of a wavelet packet library can be selected depending on the situation, and a

‘best’ basis chosen as discussed by Percival and Walden (2000), Section 6.3. Examples of

a ‘best’ basis include those that minimise the number of wavelet packet coefficients with

absolute value over a threshold, or minimising norms of the coefficients.

In an analogous framework to locally stationary wavelet processes, Cardinali and Nason

(2017) define the locally stationary wavelet packet process. These processes have an associ-

ated wavelet packet basis which will be indexed by b, such that
{
Wjp,np,k(x), p ∈ b, k ∈ Z

}

forms the orthonormal basis. The locally stationary wavelet packet process of Cardinali

and Nason (2017) allows representation of a doubly indexed process {Xt,T }t=1,...,T with

T = 2J as

Xt,T =
∑

p∈b

∑

k

ωjp,np,k;TWjp,np,k(t)ξjp,np,k, (50)

where
{
ωjp,np,k;T

}p∈b
k∈1,...,T are amplitude constants, and

{
ξjp,np,k

}p∈b
k∈1,...,T are orthonormal

random variables. For p ∈ b and z ∈ (0, 1), there exist functions Vjp,np,k(z) such that for

each p ∈ b a constant Cp exists, such that for each T ,

sup
k

∣∣ωjp,np,k;T − Vjp,np(k/T )
∣∣ ≤ Cp/T, (51)

where
∑

p∈bCp <∞. In addition, in a similar constraint to Equation (45), for each p ∈ b

the total variation norm of V 2
jp,np

(z) is bounded above by Mp, where
∑

p∈bMp <∞. The

locally stationary wavelet process is a particular form of the wavelet packet process, so

the packet process allows for representation of a greater range of signals.

Similarly to the locally stationary wavelet process framework, the packet process also

has a spectrum, in this case the evolutionary wavelet packet spectrum of a sequence

{Xt,T }t=1,...,T is

Sp(z) =
∣∣Vjp,np(z)

∣∣2, for p ∈ b, z ∈ (0, 1), (52)
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with respect to the wavelet packet basis b.

With this model Cardinali and Nason (2017) suggest cost functions such as penalised least

squares as a means to choose a ‘best’ basis for an individual process. Such a basis may be

selected to provide the most sparse representation of a series.

Wavelet packets and their two-dimensional extension have been used in a variety of ap-

plications, such as digital watermarking of images by Paquet et al. (2003), who make

alterations of certain wavelet packet coefficients to embed a secret identifying key. Base-

line drift of electrocardiograph signals were estimated and removed using a wavelet packet

decomposition in Tinati and Mozaffary (2006), allowing for precise measurement of fea-

tures of interest. Image textures were classified by Huang and Aviyente (2008), utilising

the range of different features a packet analysis identifies, and combining them based on

dependencies between coefficients at different levels.

2.2.3 Second-generation wavelets

Second-generation wavelets allow for dual multi-resolution analysis of data. This is more

flexible than a standard multi-resolution analysis, as in the dual case there are two mu-

tually orthogonal bases, that are not orthogonal themselves. Second-generation wavelets

allow for analysis of more general data, such as data that is not be sampled on a regular

grid. The dual analysis involves a pair of scaling functions, (ϕ, ϕ̃), and a pair of wavelet

functions, (ψ, ψ̃). These functions satisfy the following conditions of Jawerth and Sweldens

(1994):

(i)
∫
ϕ̃(x)ψ(x− n)dx = 0,

(ii)
∫
ϕ(x− n)ψ̃(x)dx = 0,

(iii)
∫
ϕ̃(x)ϕ(x− n)dx = δ0,n,

(iv)
∫
ψ̃(x)ψ(x− n)dx = δ0,n.

The subspaces that these functions correspond to are denoted Vj and Wj for the scaling

and wavelet functions and Ṽj and W̃j for their duals. These subspaces satisfy the following

biorthogonality criteria for j, j′ ∈ Z:

(i) Ṽj ⊥Wj ,
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(ii) Vj ⊥ W̃j ,

(iii) W̃j ⊥Wj′ for j 6= j′.

As in the first-generation wavelet case of Definition 2.18, there is a scaling equation for

second-generation wavelets.

Definition 2.28 (Dual wavelet scaling equation). The scaling equation of a dual wavelet

function ϕ̃(x) is

ϕ̃(x) =
∑

k∈Z
h̃k
√

2ϕ̃(2x− k), (53)

where h̃ = {h̃k, k ∈ Z} is a vector of filter coefficients.

The dual wavelet function can also be represented as ψ̃(x) =
∑
k∈Z

g̃k
√

2ϕ̃(2x− k), for filter

g̃. Therefore the construction equations for the wavelet and dual wavelets are similar.

The filters also satisfy similar equations to Equation (30) as

gk = (−1)kh̃1−k

g̃k = (−1)kh1−k.

(54)

With a biorthogonal basis, two sets of scaling and wavelet coefficients are formed using

the inner product, and a function f(x) ∈ L2(R) can be represented in two ways;

f(x) =
∑

j

∑

k

< f, ψ̃j,k > ψj,k

f(x) =
∑

j

∑

k

< f,ψj,k > ψ̃j,k.

(55)

These representations highlight that the labelling of the wavelet and scaling functions and

dual wavelet and scaling functions can be interchanged.

Similarly to first-generation wavelets, the second-generation wavelets can be used to form

a spectral estimate, such as in the method of Knight et al. (2012) which is described in

Section 3.2. As second-generation wavelets are no longer simply scaled and translated

versions of the same function there are more options for constructing a spectral estimate.

Second-generation wavelets are generally considered for analysis of series rather than con-

struction, due to their connection to the (potentially) irregular sampling locations.

Example applications of second-generation wavelets include data compression of terrain
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data via triangulated irregular networks by Pradhan et al. (2007), a three-dimensional

dataset. Vasilyev and Bowman (2000) demonstrate the use of second-generation wavelets

in an efficient algorithm for calculating spatial derivatives to solve partial differential

equations. Second-generation wavelets were used by Bose et al. (2004) for image sequence

superresolution, constructing a higher resolution image from a set of noisy lower resolution

frames.

2.3 Bristol Traffic Data

To demonstrate the work in this thesis, a traffic example is used throughout. The Open

Bristol Historic Journey Times data contains the speeds of cars on stretches of roads in

Bristol, accessed from the Open Data Bristol website1. At each of the locations, the speeds

were recorded at irregular time intervals of between 5 and 30 minutes, so to turn this into

a regularly spaced hourly time series, the mean of observations from each calendar hour

was calculated. The cleaning of this data was completed for the Jean Golding Institute

Bristol Traffic Data Competition, but the analysis is new for this thesis.

For this work, the hourly time series of average car speeds at 29 locations is selected, from

12am on 19/04/2016 to 8am on 11/05/2016, giving T = 512. Due to issues with recording,

some observations are missing from this dataset, as shown in Figure 2. The 29 locations

are described in Table 1.

1https://opendata.bristol.gov.uk/explore/dataset/historic-journey-times/information/
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Figure 2: The Bristol Traffic dataset: average hourly car speeds from 12am 19/04/2016
to 8am 11/05/2016 at the 29 locations listed in Table 1. White space indicates missing
observations.
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Location number Description

1 A38 Monks Pk IB to Stokes Croft IB
2 A432/Coombe OB to A432/Straits OB
3 A432/Straits IB to A432/Coombe IB
4 Bath Rd P&R IB to Bath Rd/ Three Lamps IB
5 Bath Rd P&R IB to Hartcliffe Way IB
6 Bath Rd/ Three Lamps IB to Victoria St NB
7 Bed Pde OB to Parson St/Bed Dwn
8 Bedminster Parade IB to Redcliffe Way West OB
9 Blackboy Hill IB to St Michaels IB
10 Church Rd IB to Old Mkt East IB
11 Gloucester Rd @ Monks Park Ave IB to M32 J2 IB
12 Hartcliffe Way IB to Parson St/Bed Dwn
13 Hartcliffe Way OB to Bath Rd P&R OB
14 Hotwell Rd OB to Portway OB
15 M32 J2 OB to Gloucester Rd @ Monks Park Ave OB
16 M32 Newfoundland Circus IB to Old Market St West WB
17 Old Market St West EB to M32 Newfoundland Circus OB
18 Old Mkt East OB to Church Rd OB
19 Parson St/Parson SB to Hartclffe Wy OB
20 Parson St/W’Stoke to Portway OB
21 Parson St/West to Bed Pde IB
22 Portway IB to Hotwell Rd IB
23 Portway IB to Parson St/West
24 Redcliffe Way West IB to Coronation Rd OB
25 St Michaels OB to Blackboy Hill OB
26 Stokes Croft OB to A38 Monks Pk OB
27 Three Lamps OB to Bath Rd P&R OB
28 Victoria St SB to Bath Rd/ Three Lamps OB
29 Victoria St SB to Old Market St East OB

Table 1: Bristol Traffic locations and their corresponding descriptions from the Open Data
Bristol database.
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3 Stationarity testing with

missing observations

In this section, the developed method is joint work with Marina Knight, Guy Nason, and

Matthew Nunes. My contribution to this material includes development of the test from

a prototype, and evaluating its performance using simulations. The Bristol Traffic data

application is new and completely my own work.

3.1 Introduction and additional literature review

In the framework of time series analysis, a common question of interest is whether the

underlying structure of a series changes over time. Indeed, it is a question to answer

before continuing assessment or forecasting of a series, as a process with a changing gen-

erating mechanism requires different methods compared to a stationary process. Testing

for second-order stationarity, as defined in Section 2.1, enables us to check for underlying

structural changes over time.

In this chapter, the time series is assumed to suffer from missing observations. In practice,

this is a common situation, however few time series tools are designed for use with this

type of data. The developed test is designed for application on time series with missing

observations under the assumption of a stationary mean. A review of available tests of

second-order stationarity is presented in Section 3.1.1, and missing data tools are discussed

in Section 3.1.2. Section 3.2 contains the method and underlying techniques involved in

our stationarity test for missing data, including use of second-generation wavelets and

estimating the evolutionary wavelet spectrum using a lifting algorithm. Our new test is

compared using simulations in Section 3.3 and exhibited with two real data examples in

Section 3.4.

3.1.1 Tests of second-order stationarity

Priestley and Subba Rao (1969) provided an early test of second-order stationarity. For

their test an analysis of variance procedure is performed on the log-spectrum evaluated at

different time positions, finding differences (if present) in the spectrum at set frequencies

over time. Fourier approaches were also taken by Hurd and Gerr (1991) and Dwivedi
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and Subba Rao (2011), who compared functions of Fourier ordinates, which should be

approximately uncorrelated under the null hypothesis. An advantage of the Dwivedi and

Subba Rao (2011) test over the early Priestley and Subba Rao (1969) test is that is has

a theoretical basis for non-Gaussian distributed series, as shown by simulations in Nason

(2013) the performance of the Priestley and Subba Rao (1969) test is poor for series with

heavy tailed innovations.

A time domain approach was provided by Jin et al. (2015), where Walsh functions were

used to estimate the covariance on systematic subsamples compared to global estimates of

the covariance, giving a powerful test. Their test benefits from being fully non-parametric,

however it requires the choice of tuning parameters including the number of covariances

to test and the number of subsamples to use.

The locally stationary framework of Dahlhaus (1997) was used by von Sachs and Neumann

(2000) to construct a time-varying spectrum, which was then assessed for constancy using

Haar wavelets. Paparoditis (2009) also used the concept of local stationarity, and provided

a test comparing the deviation of local spectral densities (calculated within a tapered win-

dow). The use of local spectra allow these tests to locate areas of non-stationarity, but

can require a higher computational cost. The L2 distance was used by Dette et al. (2011)

to compare the estimated density of a locally stationary process, with that of a stationary

process, in a method similar to that of Živanovic and Gardner (1991).

Other works using wavelets include Nason (2013) who used the locally stationary wavelet

process of Nason et al. (2000), defined in Section 2.2, and tested the constancy of the

wavelet periodogram (Definition 2.23) using Haar wavelets. Their test statistic at peri-

odogram scale j ∈ {1, . . . , J}, Haar scale i ∈ {1, . . . , J}, and location p ∈ {1, . . . , 2i − 1},

is of the form

T
(j)
i,p = v

(j)
i,p

{
σ̂
(j)
i,p

}−1
, (56)

where v
(j)
i,p is the Haar coefficient and σ̂

(j)
i,p is an estimator of the coefficient variance given

by

v
(j)
i,p = 2−i/2




2i−1−1∑

r=0

Ij,2ip−r −
2i−1∑

q=2i−1

Ij,2ip−q




σ̂
(j)
i,p = T−1

(
2
∑

t

I2j,t

)1/2

.

(57)
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This test statistic is then compared to critical values of the normal distribution, and mul-

tiple tests are carried out across j, i, p to test for stationarity at different periodogram

scales, test scales, and test positions, respectively. The p-values of these tests are then

adjusted to account for the multiple testing. In their paper this test was shown to perform

well for series with Gaussian and heavy-tailed innovations in simulations, but showed high

size properties for a stationary AR model with negative parameter.

Cho (2016a) used unsystematic sampling to compare the constancy of the wavelet pe-

riodogram over disjoint intervals. For disjoint intervals [sp, ep], [sq, eq], with respective

lengths np and nq, their statistic at scale j ∈ {1, . . . , J} is given by

T (j)
p,q =

√
(npnq)(np + nq)−1


n−1p

ep∑

k=sp

Ij,k − n−1q
eq∑

k=sq

Ij,k


 . (58)

The overall test statistic is calculated as the maximum of T
(j)
p,q over pairs of disjoint intervals

and scales, divided by estimates of the standard deviation. This test statistic is also

compared to the normal distribution to assess significance. In simulations in Cho (2016a)

their test was shown to perform well with a range of innovation distributions, but featured

lower power than the test of Jin et al. (2015), especially for smaller sample sizes such as

T = 256.

The method of Nason (2013) was extended by Cardinali and Nason (2018) to include

wavelet packets for additional power. The test statistic is calculated on the wavelet packet

periodogram,

I`,k =

(
T∑

t=1

Xtψ`,k−t

)2

, (59)

where ψ`,k = W`,k in Definition 2.27, and ` is a vector of length 2 representing the indices

in a wavelet packet basis.

These tests described in this section are designed for many different settings, and have

advantages in different scenarios, however none are designed for use with data featuring

missing observations.

3.1.2 Statistical tools for missing data

Some methods are available for use on time series data with missing observations, such as

autocovariance estimation, Chatfield (2004), page 270. Unit-root tests, such as those by
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Toda and McKenzie (1999) and Busetti and Taylor (2005) can be used to indicate devi-

ations from stationarity of the mean in the case of missing observations. However, often

the suggestion for analysing data with missing values is to impute, rather than carry out

methods with the incomplete data directly. If the data comes from an ARMA model then

Ferreiro (1987) offers imputation methods such as using the recorded values to estimate

the parameters of an ARMA model and then imputing missing values based on these fitted

parameters and observed values. Another method they describe is a pseudo estimation-

maximisation method, which iterates between imputing missing values based upon a fitted

model as above, and estimating the model parameters via maximum likelihood based upon

the observed and imputed values. This iterative process continues until convergence. For

non-stationary processes imputation techniques are offered by Hong and Chen (2003) and

Zgheib et al. (2006). Hong and Chen (2003) demonstrated non-parametric imputation of a

general non-stationary process using radial basis neural networks, whilst the Zgheib et al.

(2006) method for non-stationary AR processes uses pseudo linear recursive least squares

in an on-line setting.

Imputation is often considered the first step in the analysis of data with missing obser-

vations, as after this standard time series methods can be applied. The structure of the

data is important in choosing an imputation method, and as shown from the references

above, this includes knowledge of whether data is stationary. Therefore choosing the most

suitable technique for further analysis may require the ability to test for stationarity before

imputation has been applied.

3.2 Description of our method

Our stationarity test involves modelling the process as a locally stationary wavelet process,

with observations missing at random. Formally, there exists an underlying locally station-

ary wavelet process, {Xt}Tt=1, which is observed at random time points {tk}nk=1. These n

observation locations are assumed to be sampled uniformly at random from the total set

of observation locations, {1, . . . , T}. This stationarity test is designed to test whether the

observed process, {Xtk}nk=1, is second-order stationary, against the alternative hypothesis

that it is a locally stationary wavelet process with changing spectrum, without imputing

the missing values. For our test we use the method of spectrum estimation described by

Knight et al. (2012) as it allows for missing observations. An overview of the techniques
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involved is included below, and for full details see the references herein.

3.2.1 Estimating the wavelet spectrum

In this section we set out the method of calculating the wavelet spectrum which mostly

follows that of Knight et al. (2012). As the data feature missingness, the standard wavelet

transform is unsuitable, and instead the second-generation wavelet transform as introduced

by Sweldens (1998) is used.

Second-generation wavelets

We use second-generation wavelets (see Section 2.2.3) constructed using lifting schemes,

which are suited for irregularly sampled data, including data with missing observations.

Whilst first-generation wavelets are scalings and translations of a mother wavelet, second-

generation wavelets are more complicated as they are adapted to the irregularity of the

data.

Second-generation wavelets are not just motivated by irregularly sampled data, Sweldens

(1998) also cites the applications of their use on solutions of PDEs, manifolds, and use on

spaces with weighted or non-translation invariant measures. There are many properties

that second-generation wavelets share with first-generation wavelets, included in those

set out in Sweldens (1998) are locality in space and frequency, the Riesz basis they form

over L2(R), and their use for multiresolution analysis. The second-generation wavelet

transform can be calculated in linear time with recursive application of filters on the

wavelet coefficients. A major difference of second-generation wavelets compared to first-

generation is that the filter coefficients of the second-generation transform are different

for every coefficient, allowing the flexibility for its use on non-standard domains.

The non-decimated lifting transform

A second-generation wavelet transform called the non-decimated lifting transform (NLT)

was defined in Knight and Nason (2009). This method lifts one coefficient at a time,

similar to Jansen et al. (2006) and Jansen et al. (2009). At every step of the lifting

algorithm, three actions are performed: split, predict, and update. The split step refers

to selecting an observation to lift. This observation is then predicted by its neighbouring

values, and the error in this prediction recorded as the lifted coefficient. This coefficient
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has an associated length which arises from the time interval this prediction is performed

over. Then the observations at the neighbouring points to the lifted location are updated,

so that the mean of the observations stays constant as points are removed.

For data with n observations, the split, predict, update steps are completed (n−L) times,

where L is the chosen primary resolution level. Following previous work, we adopt the

convention that the procedure is first carried out at stage n, then stage n − 1 and so

on. Let {X̃n+1,tk} = {Xtk} denote the scaling coefficients before the lifting transform

is performed, and X̃r,tk denote the scaling coefficient at tk at stage r, after (n − r + 1)

applications of the split, predict and update steps. Let the time positions of scaling

coefficients at stage r be denoted Sr, and the positions of the detail coefficients given by

Dr. To perform the algorithm at stage r− 1, a time position, tk ∈ Sr is chosen in the split

step, and the neighbouring values of the scaling coefficients are required for prediction.

We denote these neighbouring positions as Nr(tk), where the subscript of stage highlights

that as the algorithm is applied, the number of scaling coefficients reduces so the position

of neighbouring scaling coefficients is stage-dependent. Usually, there will be two positions

within this set, but when a coefficient at the boundary of the scaling coefficients is chosen

there will only be one neighbouring position. The prediction is carried out using regression

over values at Nr(tk), and the detail coefficient is the difference between the value and

prediction;

dtk = X̃r,tk −
∑

t∈Nr(tk)

a
(r−1)
t X̃r,tk , (60)

where a
(r−1)
t are the regression weights at stage r− 1, associated with the neighbourhood

of tk. A lifting length, ltk , is associated with this operation, recording the interval length

that the detail coefficient was calculated over.

The scaling coefficients at indices Nr(tk) are then updated in order to keep the mean of

the scaling coefficients constant as the scaling coefficient at tk is removed. This involves

weights b
(r−1)
t ;

X̃r−1,t = X̃r,t + b
(r−1)
t dtk for t ∈ Nr(tk),

X̃r−1,t = X̃r,t otherwise.

(61)

The scaling coefficient at tk is removed, leaving (r− 1) scaling coefficients and (n− r+ 1)

detail coefficients at stage r−1 after n−r+1 applications of the split, predict and update
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steps.

This lifting algorithm can be described using a linear (matrix) transformation or a dual

basis scheme. The dual basis at stage r is denoted ϕ∗r = {ψ∗k, ϕ∗r,m}
m∈Sr
k∈Dr . The basis

is constructed recursively, with the stage r − 1 basis functions given by the following

expressions;

ψ∗tk = ϕ∗r,tk −
∑

t∈Nr(tk)

artϕ
∗
r,t,

ϕ∗r−1,t = ϕ∗r,t + brtψ
∗
tk

for t ∈ Nr(tk),

ϕ∗r−1,t = ϕ∗r,t for t ∈ Sr−1\Nr(tk).

(62)

Using these wavelet and scaling functions we have detail coefficients of the form dtk =
∑n

s=1Xtsψ
∗
tk

(ts), where ψ∗tk(ts) is the second-generation wavelet function associated with

position tk, and evaluated at ts. As these are second-generation wavelet functions, con-

structed using a lifting scheme, the wavelet functions are not dilations and translations

of each other. The notion of scale is no longer discrete, but instead the interval lengths

are used as an analogue of scale. The lengths are a continuous quantity, but are usually

mapped to a discrete artificial scale representation. The artificial scales are used to eval-

uate second-generation wavelet quantities in a similar manner to first-generation wavelet

quantities.

Through repeated application of the split step, an ordering of the removal of observa-

tions is formed which is described as a trajectory, denoted T α. For each trajectory, the

second-generation transform can be written as a matrix operation on the observations; the

(n−L) details for trajectory α, Dα = (dαt1 , . . . , d
α
tn)′, can be written as Dα = RαX, where

Rα is the (n− L)× n lifting matrix associated with trajectory α, with rows given by the

second-generation wavelet functions, and X denotes the column vector of observations.

In the NLT this algorithm is calculated over p different trajectories, {T α}pα=1. The NLT

therefore results in a collection of scaling coefficients, wavelet coefficients and associated

lifted lengths for each time point. The length associated with detail coefficient dαtk , lifted

from point tk on trajectory α, is denoted lαtk . Knight and Nason (2009) converted these

lengths into artificial dyadic scales by assigning half of the coefficients to the finest level,

those with the lowest lifted lengths, the second scale contains the next quarter of coeffi-

cients ordered by lifted length, and so on.
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The evolutionary wavelet spectrum calculated by Knight et al. (2012) used the NLT over

many trajectories to form an estimated spectrum. To convert between the continuum of

lengths and discrete artificial scales a linear smoother was applied to the squared coeffi-

cients with respect to the log2 values of the lengths.

3.2.2 LiftToS

Our lifting test of stationarity (LiftToS) aims to assess the estimated wavelet spectrum for

constancy over time. For a mean-zero locally stationary wavelet process {Xt}Tt=1, observed

at points {tk}nk=1, the LiftToS test statistic is constructed as follows, using the notation

from the previous section:

1. Apply the non-decimated lifting transform of Knight and Nason (2009) with P tra-

jectories, {T α}Pα=1. Normalise the details, Dα, to remove the additional variance

induced by the transform by dividing by
√

diag(RαRα′). This gives normalised

details Dα = (d̃αt1 , . . . , d̃
α
tn) = Dα/

√
diag(RαRα′).

2. For each time position tk, combine the details from all P trajectories. This is done by

first taking the mean of the squared details at each tk that have the same associated

length from the wavelet transform; for each tk and unique length lβtk ,

d
tk,l

β
tk

=

{
P∑

α=1

I(lαtk = lβtk)

}−1 P∑

α=1

(
d̃αtk

)2
I
(
lαtk = lβtk

)
. (63)

3. Convert these into q equally-spaced artificial scales, using the lengths associated

with the lifting transform. Let `βtk = log2

(
lβtk

)
, for all unique lengths. The lengths

are converted to artificial scales, where scale j ∈ {1, . . . , q} is located at length

`j = a+ (j − 1)(b− a)(q − 1)−1, where a = min
tk,β

(
`βtk

)
and b = max

tk,β

(
`βtk

)
.

The spectral estimate is determined using linear interpolation of the d values with

respect to the q scales. Let l and ` be used interchangeably in the indices, so

d
tk,`

β
tk

= d
tk,l

β
tk

. Then for each tk, the value at scale j is Ĩtk,j = dtk,`j if `j ∈ {`βtk},

the d
tk,l

β
tk

value with closest length to `j when j = {1, q}, or linear interpolation for

a central scale, as described below. To avoid notational clutter, let `−, `+ ∈ {`βtk} be

such that `− < `j < `+, `− = argminβ(`j − `βtk), and `+ = argminβ(`βtk − `j). The
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linear interpolation used to estimate the spectrum at time tk and artificial scale j is

Ĩtk,j = dtk,`− + (`j − `−)
dtk,`+ − dtk,`−
`+ − `−

, (64)

where we note that `− and `+ are different for each tk and j. This gives a spectral

estimate
{
Ĩtk,j

}j=1,...,q

tk=t1,...,tn
.

4. Smooth the spectral estimate over time using a running mean smoother with band-

width M , Ītk,j = |Mtk |−1
∑

m∈Mtk

Ĩm,j , where Mtk = {ts : |ts − tk| ≤M}.

5. Divide each scale of the spectral estimate by its sample mean,

Ĭtk,j = nĪtk,j

(
n∑

s=1

Īts,j

)−1
. (65)

This allows for comparison of the variance across the scales, as for a stationary

distributed process the variances at each scale should be approximately equal due

to the chi-squared nature of the spectrum.

6. At each artificial scale calculate the sample variance, the average of these values

forms the test statistic; Q = q−1
∑q

j=1 var
(
Ĭ·,j

)
, where Ĭ·,j denotes the jth column

of the matrix Ĭ.

Under the null hypothesis, the spectrum is constant so we expect low values for the variance

of the estimated spectrum at each scale. Hence, significant departures of this test statistic

from zero will cause us to reject the null hypothesis.

The spectral estimate generated using steps 1-3 above is similar to that of Knight et al.

(2012), with normalisation added here in step 1 as the variance of the spectral estimate is

key to our test, and linear interpolation chosen as the linear smoother to map from lengths

to artificial scales.

Alternative test statistics, such as the maximum variance over the scales could also be used

here, as well as alternative methods of smoothing and constructing the wavelet spectrum

estimate. The choices of parameter values for P , q and M can be chosen based upon the

data. As discussed by Knight et al. (2012), the number of unique trajectories is n!, so in

general a smaller value of P will be chosen for computational reasons. P should be chosen

to be as large as computationally feasible, as more trajectories corresponds to more detail
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coefficients to estimate the spectrum with. The number of artificial scales, q, could be

chosen to match the first generation wavelet case, q = log2(T ), or a higher value used if

greater scale resolution is desired. The smoothing parameter, M , could be chosen using a

data-driven approach, or set based upon the sample length.

3.2.3 Constructing bootstrap test statistics using circulant embedding

A bootstrap approach is chosen to evaluate how extreme an observed test statistic is.

The circulant embedding method of Percival and Constantine (2006) is used to gener-

ate stationary samples with similar spectral content to the original series. Their method

can be described using matrices, and is based upon the estimated covariance of the in-

put time series. For a stationary series of length T , let {γp}Tp=0 be the values of the

autocovariance function. Define the first row of the 2T × 2T circulant matrix C to be

(γ0, γ1, . . . , γT−1, γT , γT−1, . . . , γ1, γ1), then the matrix is filled with rows such that each

has the same values as the previous row with entries shifted to the right by one place. The

matrix C can be written as C = FΛFH , where Λ is a diagonal matrix, F is a 2T × 2T

matrix with entries Fj,k =
(√

2T
)−1

exp (−i2πjk/2T ), and FH = F
T

, the Hermitian

transpose of F formed by taking the transpose and element-wise complex conjugation. A

bootstrap series is then generated as W = FΛ1/2Z, where Z is a vector of uncorrelated

complex-valued Gaussian random variables. Percival and Constantine (2006) showed that

the first T elements of vector W form a Gaussian process with the same mean and (sta-

tionary) covariance structure as the input time series.

This method was originally used for complete data, so for data with missing observations

it requires adaption. The missing values are first set to zero (the mean of the series) be-

fore the circulant embedding step. Setting the values to the mean assumes no additional

structure for the original process, which is preferable to using a technique designed for a

particular generating model, for example the method of Ferreiro (1987), as the generating

model is unknown. The surrogate series generated by the circulant embedding algorithm

then have the values removed at locations where there were missing values in the original,

resulting in series of the form
{
X̃tk

}n
k=1

, and the test statistic is calculated on each of

these surrogate series. For a nominal size λ%, the null hypothesis of stationarity is rejected

if the original test statistic is greater than (100− λ)% of the bootstrap test statistics. As

with the choice of P , we note that the number of bootstrap simulations may be dictated
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by computational power. For each bootstrap series, P trajectories are used to estimate

the spectrum, so the computation time is multiplicative in the number of trajectories and

bootstrap series.

3.2.4 Summary of LiftToS

The following algorithm presents a summary the steps included in LiftToS, as described

in the previous sections.

1. Use the NLT of Knight and Nason (2009) over P trajectories to generate lifting

details and lengths

2. Combine the details to form a spectral estimate with q artificial scales, and smooth

spectrum over time

3. Calculate variance of the smoothed spectrum at each scale, and average these to

form the test statistic

4. Generate B bootstrap time series using circulant embedding of Percival and Con-

stantine (2006) and perform steps 1-3 on each of these series to give B bootstrap

test statistics

5. Calculate the significance of the original test statistic by comparing it to the B

bootstrap statistics.

3.2.5 Comparisons to stationarity tests for complete data

Whilst our test is designed for use on data with missing observations, it has similarities

with methods created for use on complete data, described in Section 3.1.1. The alternative

hypothesis of our test is a locally stationary wavelet process with time varying spectrum,

the same alternative as the tests of Nason (2013), Cho (2016a), and Cardinali and Nason

(2018). However, rather than comparing sections of the wavelet periodogram using sub-

samples or Haar wavelets, in our test the variance is calculated over the entire time length

of the periodogram. Indeed, our statistic Q is similar to the sample version of the wavelet

packet measure of Cardinali and Nason (2018), Equation (22).

Bootstrap samples were also used by Cardinali and Nason (2018) to assess the significance

of the test statistic, however their samples were created using phase randomisation rather
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than circulant embedding, for details see Percival and Constantine (2006). Cho (2016a)

also used a bootstrapping method for their test, generating samples of AR processes with

increasing time lags for increasing T in order to estimate the standard deviation of the

coefficients.

3.3 Simulations

This section presents simulation results that compare LiftToS with other stationarity tests.

As discussed in Section 3.1.1, there is no existing test of stationarity that can handle data

with missing observations, hence the tests we compare to are adapted forms of existing

tests. For ease of comparison, we use the following models from Nason (2013), also used

by Cho (2016a) and Cardinali and Nason (2018). Models S1-7 are stationary processes,

used to check size calibration, and P1-4 are non-stationary processes which are used for

power comparison; both sets of processes are directly quoted from Nason (2013).

S1 Independent, identically distributed (iid) standard normal.

S2 AR(1) model with AR parameter of 0.9 with standard normal innovations.

S3 As S2 but with AR parameter of -0.9.

S4 MA(1) model with parameter of 0.8 with standard normal innovations.

S5 As S4 but with parameter of -0.8.

S6 ARMA(1,2) with AR parameter of -0.4, MA parameters of (-0.8,0.4), with standard

normal innovations.

S7 AR(2) with AR parameters of α1 = 1.385929 and α2 = −0.9604, with standard

normal innovations. The roots associated with the auxiliary equation, see Chatfield

(2004), are β1 = β2 = 0.98eiπ/4. The process is stationary, but close to the ‘unit

root’: a ‘rough’ stochastic process with spectral peak near π/4.

P1 Time-varying AR model Xt = αtXt−1 + εt with iid standard normal innovations and

the AR parameter evolving linearly from 0.9 to -0.9 over the length of the series.

P2 A locally stationary wavelet process based on Haar wavelets with spectrum Sj(z) = 0

for j > 1 and S1(z) = 1
4 − (z − 1

2)2 for z ∈ (0, 1). This process is a time varying

moving average process.
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P3 A locally stationary wavelet process based on Haar wavelets with spectrum Sj(z) = 0

for j > 2 and S1(z) as for P2 and S2(z) = S1(z + 1
2) using periodic boundaries (for

the construction of the spectrum only).

P4 A locally stationary wavelet process based on Haar wavelets with spectrum Sj(z) = 0

for j = 2, j > 4 and S1(z) = exp{−64(z− 1
2)2}, S3(z) = S1(z− 1

4), S4(z) = S1(z+ 1
4)

again assuming periodic boundaries.

The simulated series were generated using auto.arima from the forecast package, Hyn-

dman and Khandakar (2008), and LSWsim from the wavethresh package, Nason (2016b).

An example manual entry for the software used to generate our test statistics is included in

Appendix A. The code utilises the fwtnpperm function from the nlt package to carry out

the NLT, Knight and Nunes (2012), and surrogate from the fractal package to generate

bootstrap series, Constantine and Percival (2014). It is anticipated that our function will

be added to the existing R package nlt in due course.

Throughout the simulations P = 100 trajectories were used for the non-decimated lift-

ing transform, and 200 bootstrap simulations were used for the p-values of the LiftToS.

The other parameters for the test were number of artificial scales q = log2(T ), smoothing

bandwidth M = floor(
√
n), and primary resolution level L = 2. This is the resolution level

recommended for applications by Nunes and Nason (2005), and was also used by Knight

and Nason (2009).

For each model, 100 complete realisations were sampled and observations were selected at

random for removal. For comparison we include results from Cho (2016a), where results of

the best performing method in their tests on complete data is reproduced for each sample

size. These best performing methods have high power and size close to the nominal 5%,

and were the Jin et al. (2015) model, labelled JWW, for T = 256, and for T = 512 the Cho

(2016a) test had the best size properties, with JWW performing best in terms of power.

For the smaller sample size, Table 2 shows that LiftToS performs well for up to 10% data

loss for most models. By 20% missing data the size is large for several of the stationary

models. However, in the case of no missing observations, LiftToS outperforms the JWW

test in terms of overall size proximity to 5% and has better power for model P2, but not

P3. Therefore, LiftToS performs well even against tests that are designed for use with

equally-spaced observations.
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Table 3 shows similar LiftToS performance for the higher sample size of T = 512. The

size for S7 is consistently high, this may be due to the model being close to unit-root.

LiftToS is the only test to achieve 100% power for P1, P2, and P4, this occurs even when

10% of the data are missing. Again, LiftToS has lower power for the model P3, this may

be because the variance in the spectrum is split over two neighbouring scales, which may

become combined in the estimated spectrum resulting in flatter values at the artificial

scales than the original. LiftToS performs better than the JWW test on complete data in

terms of size properties but is worse for power, and vice-versa with the Cho test. Hence,

this test works comparatively to the best performing tests available on complete data.

The test properties are also compared to using a test with a ‘work around’ to cope with

the missing data. The original test is implemented using the unsystation package, Cho

(2016b). Table 4 shows the performance of the Cho test with naive adaptions to allow

for its use in a missing data setting, with LiftToS results for the same sample size (reit-

erated from Table 2). One adaption is to set all missing values to the mean of the series,

and another is to ignore the unequally-spaced nature of the observations and to treat the

data as complete data of length n. The size properties of the adapted tests are poor,

particularly for model S3 (an AR model with negative parameter). Removing the missing

values results in a lower-powered test than LiftToS for P1, P2, and P4 and a similarly

low-powered test for P3. Setting the values to the mean first gives a surprisingly high-

powered test for P2 and P3, indeed this has higher power than the original Cho (2016a)

test for complete data. Although the power for this adaption is high, it also has sizes

of up to 54%, compared to LiftToS sizes up to 20% for the same sample size. Therefore

these naive adaptions have poor size properties, and turn a powerful, well-calibrated test

for complete data into unstable tests for data with missing observations.

3.4 Examples

3.4.1 Air Quality

The data used in this section are taken from the UK Department for Environment, Food

and Rural Affairs UK-AIR Data Archive2. The time series is average PM-10 concentra-

tions, measured daily. PM-10 stands for particulate matter that is smaller than 10 microns

2https://uk-air.defra.gov.uk/
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JWW LiftTOS
Model 0% missing 0% 5% 10% 20%

S1 9 2 4 5 3
S2 4 6 1 5 4
S3 3 7 7 8 17
S4 6 7 1 3 10
S5 4 3 4 6 7
S6 0 6 8 14 8
S7 10 7 9 20 18

P1 100 100 100 99 97
P2 53 94 85 82 72
P3 33 16 15 7 4
P4 100 100 99 100 100

Table 2: Empirical size and power (%) calculated using 100 simulations and 200 bootstrap
simulations, T = 256 and 5% nominal size. JWW column is from Cho (2016a), Tables 1
and 4.

JWW Cho LiftTOS
Model 0% missing 0% 0% 5% 10% 20%

S1 7 5 2 3 2 2
S2 5 3 7 5 5 4
S3 4 4 6 7 6 17
S4 4 2 5 5 1 8
S5 9 4 5 6 3 6
S6 4 5 5 7 7 17
S7 11 5 8 16 21 22

P1 100 100 100 100 100 100
P2 96 53 100 100 100 98
P3 81 17 23 29 14 14
P4 100 100 100 100 100 100

Table 3: Empirical size and power (%) calculated using 100 simulations and 200 bootstrap
simulations, T = 512 and 5% nominal size. JWW and Cho columns are from Cho (2016a),
Tables 1 and 4.

in diameter. The series we use is from the Bristol Centre for air monitoring, and features

missing observations. In this example and the next some observations are missing in a

block, rather than missing at uniformly sampled positions so to carry out the test on

these examples it is assumed that the missing positions are independent of the missing

data values. As the spectral analysis method holds for irregularly spaced time series it is

expected that the test will perform similarly on data with missing observations in blocks,

however future work includes checking the performance of the bootstrapping method on

such series as the padded series would feature blocks of zero values.

To account for non-stationarities in the mean, the first-order differenced data is used.
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Mean, then Cho Removed, then Cho LiftToS
Model 5% missing 10% 20% 5% 10% 20% 5% 10% 20%

S1 2 7 4 3 3 4 4 5 3
S2 45 51 54 5 4 6 1 5 4
S3 39 54 46 75 84 72 7 8 17
S4 3 7 8 5 2 3 1 3 10
S5 2 3 10 7 11 6 4 6 7
S6 11 14 14 27 38 21 8 14 8
S7 4 9 13 2 6 10 9 20 18

P1 51 52 49 56 42 41 100 99 97
P2 85 81 88 9 5 9 85 82 72
P3 81 80 82 10 7 11 15 7 4
P4 93 95 94 98 96 93 99 100 100

Table 4: Empirical size and power (%) calculated using 100 simulations, T = 256 and
5% nominal size, where the missing values in the series are replaced with their mean, or
removed before using the test by Cho (2016a). LiftToS results are replicated from Table 2.

This differenced data is plotted in Figure 3, where changes in second-order properties

such as the variance can be seen. The data is of length T = 256, with approximately 8%

missingness. We test the differenced PM-10 series for stationarity using our new method

from Section 3.2. The parameters are set to those used in Section 3.3. All 200 bootstrap

test statistics were less extreme than the PM-10 test statistic, so the null hypothesis of

stationarity was rejected. Figure 4 shows the estimated evolutionary wavelet spectrum for

this example. The increased variance at around observation 200, that is noticeable in the

time domain plot in Figure 3, can also be seen with lighter-coloured blocks in the wavelet

domain. The further detail given by the plot in Figure 4 shows that the departure from

stationarity is present at all artificial scales.

3.4.2 Bristol Traffic

The Bristol Traffic dataset, introduced in Section 2.3, is used here in univariate form.

The first of the locations has been selected, which describes traffic speed on the A38

between Monks Park and Stokes Croft, heading towards the centre of the city. The

selected time series consists of hourly average car speeds from 12am on 19/04/2016, to

8am on 11/05/2016. This data is of length 512, with 47 missing observations as shown in

Figure 5. As there is clear daily seasonality in the data, with period 24, this is removed

before testing for stationarity. To do this, the function decompose is used on the data with

the mean values imputed into the gaps, R Core Team (2018). This function splits the time

series into the three components trend, seasonal, and residuals. Although we test the first
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Figure 3: Differenced PM-10 series. Red triangles indicate the positions of missing obser-
vations.
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Figure 4: Estimated evolutionary wavelet spectrum of the differenced PM-10 time se-
ries. The spectrum is normalised by dividing through by the mean at each scale, as in
Equation (65). Vertical white spaces indicate missing values.

44



3.4 Examples 3 STATIONARITY TESTING WITH MISSINGNESS

0 100 200 300 400 500

5
1
0

1
5

2
0

2
5

3
0

Time

S
p
e

e
d

, 
lo

c
a

ti
o
n
 1

Figure 5: Average hourly speeds of cars inbound on the A38 (Monks Park to Stokes Croft)
from 12am on 19/04/2016 to 8am on 11/05/2016. Red triangles indicate the location of
missing observations.

location in this section, the decomposition is performed for each of the 29 locations. At

the time positions of the mean value imputations, the ‘false’ residuals are removed so that

the residual series has missing values at the same time positions as the original. These

residuals with missing observations are denoted {Bi,t}t=1,...,512
i=1,...,29 . The residuals at location

1, B1 = (B1,1, . . . , B1,512)
′, are tested for stationarity using LiftToS. The residuals at

location 1 are plotted in Figure 6, with the time positions of missing observations shown.

In this example 9.2% of the data are missing.

As in the previous example, the parameters are set to those in Section 3.3. Before testing

B1 is centred by subtracting the sample mean, as the test assumes the series has mean

zero. The resulting p-value of LiftToS is 0.08, close to the nominal threshold. As the test

statistic was not more extreme than 95% of the surrogate series’ test statistics there is not

enough evidence to reject the null hypothesis of stationarity. Therefore methods designed

for stationary data can be used with this series, as shown in Section 4.6.2. Figure 7 shows

the estimated spectrum for this example, which features some variation at all scales, but

has a smaller range of values compared to the PM-10 example of Figure 4.

45



3.4 Examples 3 STATIONARITY TESTING WITH MISSINGNESS

0 100 200 300 400 500

−
3

−
1

0
1

2
3

4

Time

R
e
s
id

u
a

ls
, 
lo

c
a
ti
o

n
 1

Figure 6: Residuals after seasonal decomposition of hourly speeds of cars inbound on the
A38 (Monks Park to Stokes Croft) from 12am on 19/04/2016 to 8am on 11/05/2016. Red
triangles indicate the location of missing observations.
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Figure 7: Estimated evolutionary wavelet spectrum of the time series in Figure 6. Vertical
white spaces indicate missing values.
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3.5 Conclusion

This chapter presented a new second-order stationarity test, designed for use with missing

observations. Despite the test being designed for the missing data case, simulations in

Section 3.3 have shown that LiftToS has comparable performance to state of the art tests

in the complete data case. The examples show the usefulness of this test in real data

scenarios where observations are missing from records.

An area of further work would be to adapt this test for use on irregularly-sampled series.

The method of estimating the wavelet spectrum is applicable for irregularly-sampled series,

but a method of simulating stationary bootstrap series for irregularly-sampled data would

have to be developed. The current test is computationally intensive, as many trajectories

and bootstrap series are used. Another potential area of further research is investigating

which trajectories are ‘best’ in estimating the wavelet spectrum, this may enable fewer

trajectories to be used, therefore increasing the speed of the test.
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4 Generalised Network

Autoregressive Processes

In this chapter, Sections 4.2-4.4 and the example in Section 4.6.1 are joint work with

Marina Knight, Guy Nason, and Matthew Nunes. Personal contribution to these sections

includes all proofs in Section 4.3 and the order criteria in Section 4.4.1. The simulations

in Section 4.5 and the Bristol Traffic data application are new and completely my own

work.

4.1 Introduction and additional literature review

Networks are used in many fields to study connections between objects of interest, and

in recent years their use has increased rapidly, in part due to an increase in large-scale

data collection. In this chapter network time series are considered, which consist of time

series recorded at nodes of a network, or graph. Rather than treating the network and

associated time series separately, in this chapter the multivariate time series and network

are analysed jointly and simultaneously.

In this section, models for multivariate and network time series are described. Section 4.2

sets out our Generalised Network Autoregression model and the relevant network notation.

In Section 4.3 results on the stationarity of the model and consistency of fitted parameters

are presented. Implementation considerations such as order selection criteria are discussed

in Section 4.4, and demonstrated in Section 4.5. A GDP example including construction

of a useful network for prediction, and the Bristol Traffic example are shown in Section

4.6.

4.1.1 Multivariate time series modelling with autoregression

When split into its individual parts, a network time series consists of at least one network

and a multivariate time series. This multivariate time series has observations of dimension

N ×T , where N is the maximum number of nodes in the network(s) and T is the number

of time observations. Throughout this section, the time series at node i and time t will be

denoted Xi,t.

A model often used for multivariate time series, particularly in economics, is the vector
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autoregressive (VAR) model.

Definition 4.1 (Vector AutoRegressive Model (adapted from Lütkepohl (2005), Definition

2.1.1)). A VAR model of order p is given by the following equation;

Xt = µ+ φ1Xt−1 + . . .+ φpXt−p + ut, t = 0,±1,±2, . . . , (66)

where Xt = (X1,t, . . . , XN,t)
′ is the vector of observations, {φj}pj=1 are N × N matrices

of coefficients, µ = (µ1, . . . , µN )′ is a vector containing the means of each node, and

ut = (u1,t, . . . , uN,t) is an innovation vector. The innovations are assumed to have zero

mean and covariance matrix E(utu
′
t) = Σu.

In matrix form observations of the VAR model with zero mean can be written as

X = BZ + U , (67)

where X = [Xp+1, . . . ,XT ], B = [φ1, . . . , φp], Z = [Zp, . . . ,ZT−1], with

Z′t = [Xt, . . . ,Xt−p+1], and U = [up+1, . . . ,uT ]. The general mean-zero VAR model has up

to pN2 parameters within the φ matrices, so fitting a complete model of order p requires

T ≥ pN time observations. For an innovation vector without constraints there are a

further N2 entries of Σu to be estimated. Therefore, a downside of the VAR model is that

when N is large compared to T , only low orders of the full VAR model can be fitted.

A VAR model has the following stationarity condition, which is based upon the entries of

the φ matrices.

Theorem 4.1 (Stationarity condition for VAR (adapted from Lütkepohl (2005), Section

2.1)). A VAR process Xt as defined in Definition 4.1 is stationary if

det (IN − φ1z − . . .− φpzp) 6= 0, ∀z ∈ C, with |z| ≤ 1, (68)

where IN is the identity matrix of dimension N ×N .

This stationarity condition can be assessed in practice by finding eigenvalues, so it is not

a condition that can immediately be checked using the parameters of the VAR model

without computation.

The VAR model can also be used with linear constraints, which enable control over the
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parameters and restricts the number of free parameters in the model. The constraints

imposed to form a VAR model can be written using the matrix form of Equation (67) as

vec (B) = Rγ+ r, where R is the known constraint matrix of dimension pN2×M , γ is an

unrestricted parameter vector of length M , r is a pN2-length vector of known constants,

and vec(·) is the operator that stacks the columns of a matrix into a vector.

In the linear constraint case, a consistent estimator of the innovation covariance matrix

can be found as follows.

Proposition 4.2 (Consistent estimator of Σu (adapted from Lütkepohl (2005), Proposi-

tion 5.4)). For a stationary VAR process X , as in Equation (67), with linear constraints

vec (B) = Rγ+r and an innovation process that is independent white noise with bounded

fourth moments and non-singular covariance matrix Σu, a consistent estimator of Σu is

given by Σ̃u,

Σ̃u = T−1
(

X − B̂Z
)(

X − B̂Z
)′
, (69)

where B̂ = R {R′ (ZZ ′ ⊗ IN ) R}−1 R′ (Z ⊗ IN ) vec(X) + r.

The B̂ values used in this estimator are generated by fitting the VAR parameters as if the

underlying innovation covariance matrix is the identity. The consistent estimator of Σu

can be used to generate consistent estimates of the constrained parameters, as shown in

the following proposition.

Proposition 4.3 (Consistency of linearly constrained VAR parameters (adapted from

Lütkepohl (2005), Proposition 5.2)). Under the conditions of Proposition 4.2, a consistent

estimator of the free parameters of the constrained VAR model, γ, is given by

γ̂ =
{

R′
(

ZZ ′ ⊗ Σ̃u

)
R
}−1

R′
(

Z ⊗ Σ̃u

)
vec (X ) . (70)

In addition,
√
T (γ̂ − γ)→d N

[
0,
{
R′
(
Γ⊗ Σ−1u

)
R
}−1]

, (71)

where Γ = E (ZtZ
′
t ), which under stationarity is the limit in probability of ZZ ′T−1.

4.1.2 Network models

A simple random graph model is the Erdös-Réyni model, which assigns equal probability

to each pair of nodes being linked.
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Definition 4.2 (Erdös-Réyni random graph (adapted from Grimmett (2010), page 205)).

For a network with nodes K = {1, . . . , N}, define a set of independent Bernoulli random

variables, {Yi,j : 1 ≤ i < j ≤ N, i, j ∈ K}, with parameter p. An Erdös-Réyni random

graph GN,p has an edge between nodes i and j exactly when Yi,j = 1.

A more general model of random networks is the stochastic block model, which allows for

different probabilities of connection within the network.

Definition 4.3 (Stochastic block model (adapted from Kolacyzk (2017))). For a network

with nodes K = {1, . . . , N}, let Zi = (Zi,1, . . . , Zi,Q) for i ∈ K and Q ∈ N define a vector

encoding the block assignment of node i, where

Zi ∼ Multinomial(1,α), (72)

independently and identically distributed for all i ∈ K, and where the Q-length parameter

vector α sums to one. Therefore the vector Zi is a vector of zeros, with exactly one entry

being 1, indicating the block-assignment of node i. Then for each 1 ≤ i < j ≤ N with

Zi,q = 1 and Zj,q′ = 1, define an independent Bernoulli random variable,

Yi,j ∼ Bernoulli(pq,q′), (73)

where pq,q′ ∈ [0, 1] is the probability of connection between a node in block q and a node

in block q′. A stochastic block model has an edge between nodes i and j exactly when

Yi,j = 1, and Yi,i is defined as 0 for all i ∈ K.

The Erdös-Réyni random graph is a special case of the stochastic block model with Q = 1.

The stochastic block model can be used to encode community information within social

networks.

As our work concerns networks that are generally considered to be known, we do not

provide further details of stochastic network models here, for a comprehensive review see

Salter-Townshend et al. (2012).

4.1.3 Network regression models

A work combining linear equations and network concepts in the social science context is

that of Doreian (1981). The model they described has been referred to by many different
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names, including the mixed endogenous-exogenous model, the regressive-autoregressive

model, and a spatial autoregressive model (Leenders (2002)). This model can be written

for a vector of observations X as

X = ρW X + Zβ + ε, (74)

where ρ is an autocovariance parameter, W is a weight matrix, Z is a matrix of observa-

tions on exogenous variables, β is a vector of parameters, and ε is an innovation vector.

The innovations are from a multivariate normal distribution, with ε ∼ N(0, σ2I ).

This model can describe spatial autocorrelations using the weight matrix, W . An im-

portant feature of network time series models is the inclusion of network interactions

within the model via the W matrix. Leenders (2002) discusses a range of different choices

of weighting matrix, including row-normalised adjacency matrices and adjacency matrices

subject to thresholding. Whilst this model is flexible in terms of the dependencies between

observations over time, it is restricted by the use of a normally distributed innovations.

Analogously to the univariate time series context, a spatial moving average model has also

been proposed for data observed with a network, such as by Ord (1975) and Mur (1999).

This model can be written as

X = Zβ + ε,

ε = ρW ε+ ν,

(75)

where ν ∼ N(0, σ2I ), and other quantities are as Equation (74). In this case the network

autocorrelation is present within the innovation vector, ε, rather than the observations

X. These two models are not specifically time series models, as there is no restriction or

specific ordering on the elements of X.

A time series model of a similar form to the linear models above is the m-STAR model of

Hays et al. (2010). This model contains C sets of spatial weights, and can be written for

observation t at node i for a network with N nodes as

Xi,t = Z′iβ + αXi,t−1 +
N∑

j=1

C∑

c=1

ρcw
(t)
i,j,cXj,t + εi,t, (76)
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where Zi is a vector of node-specific covariates, with associated parameter vector β, α is

a first-order autoregression parameter and there are C different (potentially time-varying)

network weightings indexed by c with individual weights w
(t)
i,j,c and influence parameters, ρc.

The innovations, {εi,t}t=1,...,T
i=1,...,N , are considered to be independent and identically distributed

normal random variables for the purpose of calculating the likelihood. The m-STAR model

offers both lag-1 regression effects and contemporaneous weighted neighbourhood effects,

but is limited as it does not allow for higher lag time effects.

Network time series were used to assess interventions in an experimental design context

by Spencer et al. (2015). Denoting a measurement taken on variable j ∈ {1, . . . , p} at time

t ∈ {1, . . . , T} under experimental condition c ∈ {1, . . . , C} as Xj,c,t, the non-intervention

model considered is

Xj,c,t =





α
(j)
1 +

∑
i∈P (j)

Xi,c,t−1β
(j)
i + εj,c,t, t > 1,

α
(j)
2 + εj,c,1, t = 1,

(77)

where P (j) are the parent nodes of node j, the α parameters are intercepts, the β param-

eters represent the influence of the parent nodes, and the innovations εj,c,t ∼ N(0, σ2j ).

This model assumes an underlying Dynamic Bayesian network model, where edges be-

tween nodes indicate influence over time. The network encodes a first-order Markov

relation between nodes, where there is no within time-slice interdependence unlike the

m-STAR model. For the non-intervention model Spencer et al. (2015) assume network

and parameter stationarity. This model is used for inference of the underlying network,

and therefore the relationships between variables.

The interventions are then modelled using a Causal Dynamic Bayesian Network, which al-

ters the form of the likelihood compared to the non-intervention case. The intervention is

assumed to be known to target a particular node, and have no effect elsewhere within the

network. In addition, it is assumed that the effect of an intervention continues throughout

the experiment. Interventions can remove edges from or to a node, or change parameters

at certain nodes. For example, a perfect-out intervention removes the connection(s) from

the intervention parent node(s) to the target node. This is modelled using zeroes in the

53



4.1 Introduction and additional literature review 4 GNAR PROCESSES

design matrix, giving the following change to Equation (77);

Xj,c,t =





α
(j)
1 +

∑
i∈P (j)

I {i /∈ Qc(j)}Xi,c,t−1β
(j)
i + εj,c,t, t > 1,

α
(j)
2 + εj,c,1, t = 1,

(78)

where Qc(j) is the set of parent nodes of node j subject to the intervention in experimen-

tal condition c. The model is fitted and inference made about the graph by performing

variable selection at each node using Bayesian methods involving priors on the network

connections and the marginal likelihood at each node. Whilst this model is useful to ex-

amine changes with known effects, the set Qc(j) is assumed known which is restrictive.

Another restriction of this model is the single time-lag used for parent node effects, and

the assumption that the innovations are uncorrelated.

Another network time series model is the Dynamic Chain Graph Model (DCGM) of Ana-

cleto and Queen (2017). This is a Bayesian dynamic model, designed for high-dimensional

network time series. Their model uses a dynamic chain graph to define conditional inde-

pendence structures between the nodes. These dependencies are split into intra time-slices

and inter time-slices, the first representing associations at a fixed time, and the second

representing associations across time. By ordering n partitions of N variables such that

the intra time-slice parents of partition i are contained within partitions 1, . . . , i− 1, and

regressive associations of partition i are contained within partitions 1, . . . , i, the model can

be defined using the conditional independence structure implied by these partitions. Let

σ1, . . . , σN denote the ordering of the variables such that the above partition properties

hold, and σ(i) = σk with k = 1 +
∑i−1

j=1 rj denote the location of the first variable in

partition i, where ri is the number of variables in partition i.

The Anacleto and Queen (2017) DCGM is defined for an observation of the ri variables in

partition i, Xt(i) =
{
Xσ(i), . . . , Xσ(i+1)−1

}′
has observation, system, and initial equations

as follows for non-negative integer t:

Xt(i) = Ft(i)θt(i) + ut(i), ut(i) ∼ {0,Σt(i)} , i = 1, . . . , n,

θt = Gtθt−1 + wt, wt ∼ (0,Wt),

θ0|D0 ∼ (m0,C0).

(79)
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In the DCGM, Ft(i) is a matrix containing a known function of the values at t of the

parents of the variables in partition i, and values at t−1 of variables in partitions 1, . . . , i.

θ is the state vector, with block-diagonal evolution matrix Gt, and evolution covariance

matrix Wt. The observations in partition i have covariance matrix Σt(i). Given initial

information, D0, the initial state vector has mean vector m0 and block-diagonal covariance

matrix C0.

The DCGM can be used in many cases to embed other models in the Bayesian framework,

for example certain VAR models can be written as DCGMs. If the connections between

variables can be written as a chain graph then the DCGM allows for the partitions of

the graph to be treated separately, allowing for high-dimensional problems to be split

down into computationally feasible parts. Limitations of this model include that the time

dependence modelled is only at lag-1, and the problem has to be separable into the chained

conditionally independent partitions for the DCGM to be suitable.

Knight et al. (2016) described network time series models including Network AR (NAR),

and Network ARIMA (NARIMA) which can include multiple time lags in the network

regression. The NAR model for time t and node i is written as

Xi,t =

p∑

j=1



αjXi,t−j +

sj∑

r=1

∑

q∈N (r)(i)

βj,r,qXq,t−j



+ ui,t, (80)

where N (r)(i) is the set of stage-r neighbours of node i (see Definition 4.5), p is the maxi-

mal time lag, s = (s1, . . . , sp) indicates the number of neighbour stages to include at each

time lag, and ui,t are mutually uncorrelated innovation variables.

The NAR model contains autoregressive parameters, {αj}, and network regressive param-

eters, {βj,r,q}. This model is more flexible than many of the previous models described

in this section as it can model effects more than one time point in the past. However,

a drawback of this model is that it does not include node-specific covariates, and only

allows for one network per time point, unlike the m-STAR model. In Section 4.2 our

generalised network autoregression model is presented, an extension of the NAR model of

Knight et al. (2016) to additionally allow for different autoregressive parameters at each

node, and allow the inclusion of covariates. Key differences between other related models

and our GNAR model are described in Section 4.2.3.
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4.2 Description of the GNAR Model

The Generalised Network Autoregressive (GNAR) model describes a multivariate time

series process, observed at nodes of a network. The process at each node follows an

autoregressive model, with additional dependence defined by the network, more specifically

the neighbourhood structure of each node.

4.2.1 Network neighbourhood structure

The network(s) used in the GNAR model can be weighted, and directed, or follow a simple

binary structure. A graph is denoted G = (K, E), where K is a set of N nodes, and E is a

set of edges. These edges may have weight and direction attributes.

Within this network terminology, a directed edge from node i ∈ K to j ∈ K is denoted

i  j, with an un-directed edge being described by either two directed edges, i  j and

j  i, or using a double arrow, i! j.

Definition 4.4 (Neighbour set). The neighbour set of a subset A ⊂ K is

N (A) = {j ∈ K : i j; i ∈ A} .

Members of a neighbour set of a node are also known as the node’s first-stage neighbours.

Definition 4.5 (Stage-r neighbour set). The rth stage neighbour set of a node i ∈ K, for

r = 2, 3, . . . is

N (r)(i) = N
{
N (r−1)(i)

}
/
[{
∪r−1s=1N

(s)(i)
}
∪ {i}

]
,

where N (1)(i) = N ({i}).

When the network changes over time, a subscript t is added to the neighbour set notation.

Nodes of a neighbour set may have different levels of influence due to distance or strength

of connection to the original node. This is captured using connection weights, which take

into account the weightings or distances if present in the network. For ease of notation,

each edge in an un-weighted network has weight (or distance) 1. Distances between stage-r

neighbours are constructed by summing the distances along r-length paths between the

two nodes, and taking the minimum of these distances. Formally, let σ = (σ1, . . . , σr+1)
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be an ordering of nodes denoting a path between stage-r neighbours i and j, with σ1 = i,

σr+1 = j, and σk  σk+1, ∀k ∈ 1, . . . , r. The (stage-r) distance between i and j is

di,j = min
σ

r∑
k=1

dσk,σk+1
. In our notation the stage is not denoted on the distances di,j ,

as for each directed pair i, j at any time point, there is at most one r ∈ N for which

j ∈ N (r)(i).

Weightings and distances are treated as duals of each other, where a distance from node

i to node j is denoted di,j ∈ R+ and the weight of the edge from i to node j is denoted

µi,j ∈ R+, we set di,j = µ−1i,j .

Definition 4.6 (Connection weights). The connection weight of a node i ∈ K and its

stage-r neighbour j ∈ N (r)(i) is

ωi,j = d−1i,j





∑

k∈N (r)(i)

d−1i,k





−1

.

Therefore the connection weights will sum to one whenever the neighbour set is non-

empty. The connection weights are similar to the inverse distance prediction weights used

by Jansen et al. (2009). These connection weights will be time-varying whenever the

network is. In an un-weighted network, all neighbours in a set will have equal influence

on the node. Note that the connection weights are not necessarily symmetric, even in an

un-directed network.

The GNAR model also allows for covariates on edges or nodes, which splits them into

different types. Here the covariate may take C ∈ N values and the definition of the

neighbour sets and connection weights are unaltered by these covariates. An example of

where covariates could be used is where edges in the network define different relationships,

such as family or friendship links in a social network. The covariates could also be used to

encode the block-assignment of the stochastic block model (Definition 4.3), so each block

can have a different covariate and network parameters.

4.2.2 Generalised Network Autoregressive Model

For a network of N nodes, G, and associated vector of time series Xt = (X1,t, . . . , XN,t)
′,

the Generalised Network Autoregressive model describes dependence at a node on its

values at previous time points, and also across neighbouring nodes at previous time points.
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Definition 4.7 (Generalised Network Autoregressive Model). The GNAR(p, [s]) model

with p ∈ N and s ∈ Np0 is defined for each node i ∈ {1, . . . , N} and t ∈ {1, . . . , T} as

Xi,t =

p∑

j=1




αi,jXi,t−j +

C∑

c=1

sj∑

r=1

βj,r,c
∑

q∈N (r)
t (i)

ω
(t)
i,q,cXq,t−j





+ ui,t, (81)

where ui,t is an identically distributed white noise process such that ut is independent with

covariance matrix Σu. A sum from one to zero is assumed to be zero in this definition;
∑0

r=1(·) := 0, and N0 := N ∪ {0}.

The GNAR model has two sets of parameters, the autoregression parameters, α, and the

network regression parameters, β. The order of the model, (p, [s]) defines the number of

each type of parameter, p is the maximum time lag of autoregression in the model, and

s is a p-length vector defining the number of neighbour sets included at each time lag.

The GNAR model describes potentially high-dimensional data situation with just this

small collection of parameters and the network. There are Np of the α parameters and

C
∑p

j=1 sj of the β parameters in the GNAR(p, [s]) model, giving M = Np + C
∑p

j=1 sj

parameters in total. To reduce the number of model parameters further, the α parameters

can be shared throughout the network so that for all j ∈ {1, . . . , p}, αi,j ≡ αj ∀i ∈ K. This

reduced-parameter model is called the global-α GNAR model, and has M = p+C
∑p

j=1 sj

parameters. The network regression parameters, β are always ‘shared’ by all nodes of the

network; GNAR is always a global-β model.

As well as the sparse representation, a key benefit of our model is the flexibility of the

network structure that can be included. Although the network may change over time via

the connection weights {ω}, the model parameters stay fixed. This allows the model to

be used in both changing network, and missing data situations.

4.2.3 Comparisons to other models

When the network in the GNAR model is fixed in time, the GNAR model can be written

as a restricted VAR model, where the restrictions are defined by the network. The column

form of the static-network GNAR(p, [s]) model, where Xt = (X1,t, . . . , XN,t)
′, is written

in the VAR framework as

Xt = φ1Xt−1 + . . .+ φpXt−p + ut, (82)
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where φk are N × N matrices containing the autoregressive and network autoregressive

information such that φk = diag {αi,k} +
C∑
c=1

sk∑
r=1

βk,r,cW
(r,c), matrices W (r,c) have entries

[W (r,c)]`,m = ω`,m,cI
{
m ∈ N (r)(`)

}
and ut is the vector of errors at time t.

In matrix form the GNAR model is

X = BZ + U , (83)

where X = [Xp+1, . . . ,XT ], B = [φ1, . . . , φp], Z = [Zp, . . . ,ZT−1], with

Z′t = [Xt, . . . ,Xt−p+1], and U = [up+1, . . . ,uT ]. The constraints imposed to form a GNAR

model are vec (B) = Rγ, where R is the constraint matrix embedding the network struc-

ture of dimension pN2 ×M , γ is an unrestricted parameter vector of length M , where

M is the number of free parameters, and vec is the operator that stacks the columns of

a matrix into a vector. Although the GNAR model with static network can be written

in restricted VAR form, the network concept allows for greater interpretability than a

standard reduced VAR, and additionally the GNAR model gives a simple form for the

stationarity condition in Theorem 4.4.

The VAR model in its standard form for an N -dimensional time series has O(N2) parame-

ters. In comparison, the GNAR model has far fewer parameters, usually M = O(N) for a

model with known network, or M = O(1) for the global-α model. As the VAR model has

more free parameters, the model can very closely fit data, however this does not always

create a model that works well in prediction, as shown in Section 4.6.1.

In work addressing the issue of many parameters for the VAR model, Davis et al. (2016)

propose a two-stage method to fit sparse VAR models. Their method uses partial spectral

coherence to assess which pairs of univariate series within the multivariate series feature

partial correlation, then a t-statistic to assess the significance of each fitted parameter,

and the BIC at each step to select a sparse VAR representation. This method, and other

similar approaches, can be used to construct an influence network based upon the param-

eters connecting univariate series in the sparse representation. Although related to the

network underpinning our GNAR model, the network based upon VAR modelling would

blur the differences between stage neighbours in our model, for example a node would

be connected to all its stage-1 to stage-s1 neighbours using the sparse VAR approach to

network reconstruction.
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A model that is similar to the GNAR model is the network autoregression model proposed

by Zhu et al. (2017) in the context of social networks. There are some key differences be-

tween the two models, to show these we write the Zhu et al. (2017) model in the GNAR

notation as

Xi,t = β0 + Z ′iγ +

p∑

j=1



αjXi,t−j + βj

∑

q∈N (1)(i)

ωiXq,t−j



+ ui,t, (84)

where β0 is a global intercept term, Zi is a vector containing node-specific covariates with

corresponding parameters γ, ωi is the reciprocal of the number of edges leaving node i.

The innovations, ui,t are independent and identically distributed white noise. Comparing

(84) to Definition 4.7, the Zhu et al. (2017) model has more node-specific covariates, which

could be added to the GNAR model. However, if these covariates are removed from (84),

the model is reduced to a special case of the GNAR model, with constant network, only

stage-1 neighbour sets, and binary valued edges. Therefore the GNAR model can describe

dependence on higher-order neighbour sets, and is more flexible by allowing for a range of

input networks.

4.3 Theoretical results

In this section, a stationarity condition for our GNAR model is presented, along with

consistency results for fitted parameters.

4.3.1 Stationarity condition for GNAR processes with fixed network

Theorem 4.4. Given a fixed network, G, a sufficient condition for the GNAR model in

Definition 4.7 to be stationary is

p∑

j=1

(
|αi,j |+

C∑

c=1

sj∑

r=1

|βj,r,c|

)
< 1 ∀i ∈ 1, ..., N. (85)

Proof. First Gerschgorin’s theorem and a corollary are presented without proof, both

quoted from Varga (1962).

Theorem Varga (1962) Theorem 1.5 Let A = (ai,j) be an arbitrary N × N complex

matrix, and let Λi ≡
N∑

j=1,j 6=i
|ai,j |, 1 ≤ i ≤ N . Then, all of the eigenvalues λ of A lie in the
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union of the disks |z − ai,i| ≤ Λi, 1 ≤ i ≤ N .

Since the disk |z−ai,i| ≤ Λi is a subset of the disk |z| ≤ |ai,i|+ Λi, we have the immediate

result of

Corollary Varga (1962) Theorem 1.5, Corollary 1 If A = (ai,j) is an arbitrary N × N

complex matrix with eigenvalues λi, 1 ≤ i ≤ N , and ν ≡ max
1≤i≤N

N∑
j=1
|ai,j |, then max

1≤i≤N
|λi| ≤

ν.

As described in Equation 82, the static-network GNAR process can be written as a VAR

process, by defining Xt = (X1,t, ..., XN,t)
′, and writing Xt = φ1Xt−1 + ... + φpXt−p + ut,

where φk are N × N matrices such that φk = diag{αi,k} +
C∑
c=1

∑sk
r=1 βk,r,cW

(r,c), where

matrices W (r,c) have entries [W (r,c)]`,m = ω`,m,cI{m ∈ N (r)(`)} and ut is the vector of

errors at time t. The notation [·]`,m is used to denote the `,m entry of a matrix.

From (eg) Brockwell and Davis (2006), the VAR model has exactly one stationary solution

if det(IN−φ1z−...−φpzp) 6= 0 for all z ∈ C such that |z| ≤ 1. Using Lemma 2.1 from Tsay

(2014), det(IN − φ1z − ... − φpzp) = det(INp − Φz), where Φ is the Np ×Np companion

matrix defined as

Φ =




φ1 φ2 . . . φp−1 φp

IN 0N . . . 0N 0N

0N IN . . . 0N 0N
...

...
. . .

...
...

0N 0N . . . IN 0N




where IN and 0N are the N ×N identity and zero matrices, respectively.3 Thus the roots

of det(INp − Φz) must be outside of the unit-circle for stationarity of the GNAR process,

or equivalently, the eigenvalues of Φ must lie inside the unit-circle.

Next the eigenvalues of Φ are investigated using Corollary 1.

For rows N + 1, ..., Np, max
N+1≤`≤Np

Np∑
m=1
|Φ`,m| = 1.

3Note that Φ is defined differently in the two books, this is the Tsay (2014) version.
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For rows 1, ..., N ,

max
1≤`≤N

Np∑

m=1

|Φ`,m| = max
1≤`≤N

N∑

s=1

p∑

k=1

|[φk]`,s|

= max
1≤`≤N

N∑

s=1

p∑

k=1

|

[
diag{αi,k}+

C∑

c=1

sk∑

r=1

βk,r,cW
(r,c)

]

`,s

|

≤ max
1≤`≤N

N∑

s=1

p∑

k=1

[
diag{|αi,k|}+

C∑

c=1

sk∑

r=1

|βk,r,c|W (r,c)

]

`,s

= max
1≤`≤N

N∑

s=1

p∑

k=1

(
|α`,k|I{` = s}

+

C∑

c=1

sk∑

r=1

|βk,r,c|ω`,s,cI{s ∈ N (r)(`)}

)

= max
1≤`≤N

p∑

k=1

(
|α`,k|

N∑

s=1

I{` = s}

+
C∑

c=1

sk∑

r=1

|βk,r,c|
N∑

s=1

ω`,s,cI{s ∈ N (r)(`)}

)

≤ max
1≤`≤N

p∑

k=1

(
|α`,k|+

C∑

c=1

sk∑

r=1

|βk,r,c|

)
,

as at each node ` ∈ K and each covariate c ∈ {1, . . . , C},
∑

s∈N (r)(`)

ω`,s,c ≤ 1. Under condi-

tion (85), max
1≤`≤N

Np∑
m=1
|Φ`,m| < 1. Therefore, max

1≤`≤Np

Np∑
m=1
|Φ`,m| ≤ 1, and using Corollary 1,

we have that the spectral radius of Φ is at most 1.

Whether an eigenvalue with modulus 1 is possible is now investigated.

Assume that there exists and eigenvalue, λ of Φ such that |λ| = 1. By definition, there

exists and eigenvector v ∈ CNp such that Φv = λv. By writing v = (v′1, . . . ,v
′
p)
′, where

each vk is a column vector of length N , the eigenequation can be rewritten as the following

simultaneous equations:

(i)
p∑

k=1

φkvk = λv1

(ii) vk = λvk+1 ∀k ∈ {1, . . . , p− 1}.

Therefore vk = λp−kvp ∀k ∈ {1, . . . , p} and replacing this on both sides of (i) gives
∑p

k=1 φkλ
p−kvp = λpvp. This results in the equation

∑p
k=1 φkλ

−kvp = vp, which can be

written in matrix form as Ψvp = vp, where Ψ is the N ×N matrix Ψ =
∑p

k=1 φkλ
−k.
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Hence if Φ has an eigenvalue of modulus 1, then Ψ must have 1 as an eigenvalue.

Corollary 1 is used again for the eigenvalues of Ψ , under the assumption |λ| = 1.

max
1≤`≤N

N∑

m=1

|Ψ`,m| = max
1≤`≤N

N∑

m=1

|

[
p∑

k=1

φkλ
k−2

]

`,m

|

= max
1≤`≤N

N∑

m=1

|
p∑

k=1

λk−2

[
diag{αi,k}+

C∑

c=1

sk∑

r=1

βk,r,cW
(r,c)

]

`,m

|

≤ max
1≤`≤N

N∑

m=1

p∑

k=1

|λk−2|

(
|α`,k|I{` = m}

+
C∑

c=1

sk∑

r=1

|βk,r,c|ω`,m,cI{m ∈ N (r)(`)}

)

= max
1≤`≤N

p∑

k=1

(
|α`,k|+

C∑

c=1

sk∑

r=1

|βk,r,c|
N∑

m=1

ω`,m,sI{m ∈ N (r)(`)}

)

≤ max
1≤`≤N

C∑

c=1

p∑

k=1

(
|α`,k|+

C∑

c=1

sk∑

r=1

|βk,r,c|

)

Under condition (85) this is smaller than 1, so by Corollary 1 no eigenvalues of Ψ have

modulus 1 or greater. This contradicts the assumption that an eigenvalue of Φ, λ, exists

such that |λ| = 1. Hence the eigenvalues of Φ are inside the unit circle under condition

(85), so the GNAR model is stationary.

4.3.2 Parameter consistency

Least squares estimation is employed for the GNAR model parameters and their consis-

tency is established using results from Lütkepohl (2005), Section 5.2. The GNAR model

can be written in the least squares framework under the assumption of independent and

identically distributed innovations at each node, or the generalised least squares frame-

work if the multivariate innovations are correlated across nodes. By using these frameworks

many theoretical results can be applied to the GNAR model, and in addition, implemen-

tation of the model fitting can be done using adaptions to standard software packages.

Methods such as maximum likelihood estimation, or Bayesian frameworks could be ap-

plied if distributional assumptions are made.

As shown in Equation 82, the column form of the static-network GNAR(p, [s]) model can

63



4.3 Theoretical results 4 GNAR PROCESSES

be written in a VAR framework as

Xt = φ1Xt−1 + . . .+ φpXt−p + ut,

where the matrices φi contain the network information. As described in Equation 83,

in matrix form the GNAR model is X = BZ + U , where X = [Xp+1, . . . ,XT ], B =

[φ1, . . . , φp], Z = [Zp, . . . ,ZT−1], with Z′t = [Xt, . . . ,Xt−p+1], and U = [up+1, . . . ,uT ].

The constraints imposed to form a GNAR model can be written linearly as vec (B) = Rγ,

where R is the constraint matrix embedding the network structure of dimension pN2×M ,

γ is an unrestricted parameter vector of length M , where M is defined as in Section 4.4.1,

and vec is the operator that stacks the columns of a matrix into a vector.

Using the estimated generalised least squares estimator, the results of Lütkepohl (2005),

Propositions 4.2 and 4.3 in this document, are applied to obtain consistency for the GNAR

parameters for fixed network size. Let ⊗ denote the Kronecker product and plim denote

limit in probability.

Proposition 4.5 (adapted from Lütkepohl (2005) Proposition 5.2). Suppose {Xt} is an

N -dimensional, stationary GNAR(p) process with a static network, whose innovations

{ut} are independent white noise with finite fourth moment, and covariance matrix Σu.

Then, given an estimator of the innovation covariance matrix Σ̃u, such that plim Σ̃u = Σu,

the estimated generalised least squares estimator of the unrestricted parameters,

γ̃ =
{

R′
(

ZZ ′ ⊗ Σ̃−1u
)

R
}−1

R
(

Z ⊗ Σ̃−1u
)

vec(X ),

is consistent; plim γ̃ = γ and
√
T (γ̃ − γ) →d N

[
0,
{

R′
(
Γ ⊗ Σ̃−1u

)
R
}−1]

where Γ =

plimT−1ZZ ′.

Again, using Lütkepohl (2005), the following result holds for a consistent estimator of the

innovation covariance matrix in the GNAR setting.

Proposition 4.6 (adapted from Lütkepohl (2005) Proposition 5.4). A consistent estima-

tor of Σu is given by

Σ̃u = T−1
(

X − B̂Z
)(

X − B̂Z
)′
,

where B̂Z are the fitted values from estimating the parameters using the least squares

estimator γ̂ = {R′ (ZZ ′ ⊗ IN ) R}−1 R′ (Z ⊗ IN ) vec (X ).
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Estimating the parameters with γ̂ involves using the linear constraints, but assumes in-

dependent and identically distributed innovations across nodes.

These results are for GNAR processes with fixed network size, but for cases where N is in-

creasing with T additional assumptions would be required for estimation of the covariance

matrix. One example is an assumption of sparsity which was used by Fan et al. (2013) to

construct a covariance estimation method for large data based upon thresholding.

4.4 Implementation

Our R package, GNAR, to fit, predict, and simulate GNAR processes is available on CRAN

(Leeming et al. (2018)). The manual for this package is included in Appendix B. Currently,

this package works using the assumption that the innovations are independent across both

time and nodes, so Σu is a multiple of the identity matrix.

4.4.1 Order selection

The GNAR model has two types of order to select; both the maximal autoregression

lag, and the maximal neighbour set for each lag. These orders can be selected using an

order criterion, such as the BIC proposed by Schwarz (1978). The BIC is consistent for the

VAR model (Lütkepohl, 2005, Corollary 4.2.2), and assuming a constant network and that

the innovations are independent and identically distributed with bounded fourth moments,

this consistency also holds for the GNAR model. All orders can be selected simultaneously

by selecting the model with smallest BIC from a range of candidate models.

For the GNAR(p, [s]) model in Definition 4.7 withN nodes and length T , the corresponding

BIC criterion is

BIC(p, [s]) = ln |Σ̂p,s|+M ln(T )T−1, (86)

where Σ̂p,s = T−1Û ′Û , with Û the residual matrix from the GNAR(p, [s]) fit, and M the

total number of parameters. For the general GNAR case M = Np + C
∑p

j=1 sj , and for

the global-α model this is reduced to M = p+ C
∑p

j=1 sj .

Similarly, the AIC criterion is

AIC(p, [s]) = ln |Σ̂p,s|+ 2MT−1, (87)
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with the details as in Equation (86). However, the AIC is not a consistent estimator of

the order of a VAR model (Lütkepohl, 2005, Corollary 4.2.1), therefore the BIC will be

used for GNAR model selection in the remaining sections.

4.4.2 Handling missing observations

As the GNAR model allows for time-changing networks, this feature can be exploited

to allow modelling of data with missing observations. When a node does not have an

observation recorded at a particular time point, the connection weights at its neighbours

are recalculated, so that the missing observation is not included in the analysis.

Formally, let Zi,t denote an indicator corresponding to variable Xi,t, such that Zi,t = 1

if Xi,t is observed, and Zi,t = 0 if Xi,t is missing from the observations. The stage-r

neighbour set of Definition 4.5 is altered to deal with missing observations defining it for

every time, t, and time lag, j as follows;

N (r)
t,j (i) = {q : q ∈ N (r)(i), Zq,t−j = 1}. (88)

This stage-r neighbour set only contains nodes for which an observation is recorded at the

relevant time position. The connection weights are calculated as in Definition 4.6, except

that the sum is over nodes in the set N (r)
t,j (i). The connection weight of node i and its

stage-r neighbour q ∈ N (r)(i) at time t and lag j can also be written as

ω
(t)
i,q,j = Zq,t−jd

−1
i,q





∑

k∈N (r)(i)

Zk,t−jd
−1
i,k



 . (89)

Therefore the connection weight for a missing observation is zero, and the connection

weights still sum to one at every node, time, and lag, for which an observation is observed

within the stage-r neighbour set. The only change to the GNAR model in Definition 4.7

is the additional subscript of lag, j, on the connection weights and neighbour set.

By adjusting the connection weights in this way all of the relationships between observed

variables are preserved. For example, consider the network of three nodes, A,B,C, with

A  B  C. Here C ∈ N (2)(A), and in the event of missing observations at node B,

the stage-2 relationship between nodes A and C is preserved. This modelling assumes

that the underlying network is fixed, and observations are unobserved using the missing
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at random framework.

There is no imputation of the missing values, and gaps will be found in the fitted and

residual series corresponding to gaps in the original series, at the node with missing obser-

vations. However these gaps will only be present within the time series of the node with

missingness, and other nodes will have complete series.

4.5 Simulations

Simulations in this section demonstrate the GNAR model and results from Sections 4.2-

4.4. In addition, the GNAR model is compared to univariate AR and multivariate VAR

models fitted to generated GNAR series.

4.5.1 Comparison to theoretical results and model selection

Two GNAR models are used in this section to demonstrate the theoretical results from

earlier in the chapter. Both models use an un-weighted, un-directed network with five

nodes, as plotted in Figure 8. Model 1 is a global-α GNAR(1, [1]) model with parameters

α = 0.2 and β = 0.5. Model 2 is an individual-α GNAR(1, [1]) model with parameters

αA = 0.4, αB = αD = αE = 0.2, αC = −0.4 and β = 0.5. The models have independent

and identically distributed standard normal innovations at each node, so the covariance

matrix is Σu = I .

For both models, the stationarity condition of Theorem 4.4 holds. A realisation of Model

2 using the network in Figure 8 is plotted in Figure 9. The observations at each node

fluctuate around the mean at 0, but the mean stays constant over time. The second-order

properties are also stationary, with the difference in α parameters shown in the observa-

tions as nodes B, D, and E show similar lag-1 autocorrelation structure, whereas node A

has stronger positive autocorrelation, and node C has negative autocorrelation at lag-1.

Using Model 1, a simulation is run to check the parameter consistency result. For this

simulation, 1000 realisations of length T = 128 were generated. Then the GNAR model of

order (1, [1]) was fitted three times to each of the 1000 realisations, the first fit involving

just the first T = 32 observations, the second using the first T = 64, and the third using all

T = 128. The parameter estimates for these fits are denoted α̂T , β̂T . Figure 10 shows the

error in estimating the two parameters for T = 32 and T = 128. As expected from Propo-
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E

Figure 8: Five node network used in simulations.

sition 4.5, the estimates using a longer time series are more dense around the point (0, 0).

To check the proposition further, the bias, variance, and T multiplied by the variance are

included in Table 5. As shown by Figure 10, the variance is lower for the estimates using

the longer time observation of the series. Indeed, this reduction in variance is proportional

to T−1, shown by the values of T ∗ var in Table 5 being approximately the same for the

estimates of the same parameter. This matches the result in Proposition 4.5.

When fitting the GNAR models above, the order was selected to be the same as the gen-

erating process. Next, the BIC criterion of Section 4.4.1 is demonstrated using Model 2.

Table 6 shows how many realisations of Model 2 had each order as the model minimising

the BIC. For T = 32, minimising the BIC selects the global-α GNAR(2, [1, 0]) most, and

the (true) individual-α GNAR(1, [1]) was the next most selected. The correct order was

selected for more than a third of simulations for T = 32. For T = 64 the correct order was

selected most, with global-α GNAR(2, [1, 0]) the second most selected. For the longest

tested time length T = 128, the simulations show the BIC selecting the true model order

in 97.1% of realisations. For T = 128 a model that contains fewer parameters than the
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Figure 9: A realisation of Model 2 using the network in Figure 8, with T = 128.

69



4.5 Simulations 4 GNAR PROCESSES

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

α̂ − α

β^
−

β

T=32

T=128

Figure 10: Difference between estimated and true parameters for 1000 realisations of
Model 1.
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Estimator Bias* Variance* T × var †

α̂32 -5.39 5.26 1.68
α̂64 -3.31 2.54 1.63
α̂128 -2.10 1.28 1.64

β̂32 -13.18 8.24 2.64

β̂64 -7.29 4.30 2.75

β̂128 -3.32 2.30 2.94

Table 5: Properties of GNAR[1, (1)] global-α estimators of Model 1, using 1000 reali-
sations. * results have been multiplied by 1000 for readability, and † results have been
multiplied by 10.

true model is only chosen in 0.3% of realisations, whereas for T = 64 this happened in

14.2% of the realisations, and for T = 32 over half of the simulations had GNAR orders

chosen via BIC with fewer parameters than Model 2.

Table 7 presents results involving incomplete observations to assess the properties of the

GNAR model using the adaption for missing data described in Section 4.4.2. The simula-

tions were performed over 1000 simulations with observations missing at random (MAR),

or missing in a randomly placed segment, each at different positions per node and miss-

ingness at the same time positions at all nodes. For each T , 10% of the observations are

removed. Table 7 demonstrates that the consistency of parameter estimation still holds in

the case of missing observations as as the variance decreases with sample size. The missing

data simulations show bias particularly in the neighbourhood regression parameters where

the missingness is at a random position per node. More time observations are affected by

the missingness in this case, which results in more re-weightings than the case with all

nodes featuring the missingness at the same time positions. At most this bias is 11.4% in

these simulations, with the missing data results underestimating the neighbourhood re-

gression effect, and slightly over estimating the own-node regression effect. This potential

for bias in the GNAR parameter estimation should be noted when interpreting and using

parameters from fitted GNAR models featuring missing observations.

4.5.2 Comparison to other models

In this section, the prediction accuracy of the GNAR model is compared to predictions

made using AR and VAR models. The simulations are from Model 1 and 2 as in the

previous section. The class of AR models is nested within the class of GNAR models,

which in turn is nested within the VAR model class when GNAR has a static network.
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GNAR Model order
Global-α Individual-α

T (1
,[

0]
)

(1
,[

1]
)

(1
,[

2]
)

(2
,[

0,
0
])

(2
,[

1,
0]

)

(2
,[

1,
1
])

(1
,[

0
])

(1
,[

1
])

(1
,[

2]
)

(2
,[

0,
0]

)

(2
,[

1,
0
])

(2
,[

1,
1
])

32 0 60 11 5 398 45 1 362 47 0 61 10
64 0 19 1 0 113 9 0 784 45 0 24 5
128 0 0 0 0 3 0 0 971 20 0 5 1

Table 6: Number of times each model minimised the BIC criterion, over 1000 simulations
of Model 2. The bold numbers highlight the true order of Model 2.

Missing data pattern Estimator Bias* Variance*

MAR per node

α̂32 3.44 6.98
α̂64 8.65 3.35
α̂128 9.50 1.66

β̂32 -56.47 10.98

β̂64 -52.37 5.56

β̂128 -46.16 2.53

MAR all nodes

α̂32 -4.94 5.90
α̂64 -4.42 3.16
α̂128 -1.76 1.53

β̂32 -17.17 10.20

β̂64 -8.91 5.16

β̂128 -4.89 2.49

Segment per node

α̂32 2.85 6.42
α̂64 9.36 3.14
α̂128 9.78 1.43

β̂32 -56.87 9.81

β̂64 -51.20 4.94

β̂128 -49.32 2.51

Segment all nodes

α̂32 -8.71 6.22
α̂64 -5.09 2.95
α̂128 -1.87 1.38

β̂32 -18.13 9.23

β̂64 -8.38 4.57

β̂128 -4.94 2.37

Table 7: Properties of GNAR[1,(1)] global-α estimators of Model 1 featuring missing-
ness, using 1000 realisations of series of length T = 32, 64, and 128. * results have been
multiplied by 1000 for readability. 10% of observations at each node are removed.
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The AR model is unable to capture the network autoregression of the GNAR model,

whereas the VAR model can exactly model the simulated data. Model 1 has 2 parameters

in the GNAR global-α representation, 6 parameters as an individual-α GNAR, and 15

parameters when represented as a VAR model (the sum of the number of nodes and the

number of stage-1 neighbours at each node). Model 2 has 6 parameters as an individual-α

GNAR model, cannot be represented as a global-α model, and requires 15 parameters as

a VAR model.

As the generating model is of order p = 1, the one-step ahead predictions of each model

are compared. These tests were done using 1000 simulations of each model, with the

models each fitted to T − 1 observations so the prediction at T could be evaluated. The

AR comparisons are calculated by fitting an AR model with maximum order 1 to the

univariate series at each node. This is computed using auto.arima from the forecast

package Hyndman and Khandakar (2008), with S3 method predict used for prediction of

the fitted model at each node. The AR comparison may have between 0 and 5 parameters.

The VAR comparison is calculated using the VAR, restrict, and predict functions from

the vars package Pfaff (2008). This combination of functions fits a VAR model of maxi-

mum order 1, then removes any parameters with t-statistic with absolute value less than

2. The predict function does not work when all parameters at a node are insignificant,

so when this occurs the prediction results are not calculated. Therefore the VAR models

used for prediction in this simulation study will have between 5 and 25 parameters. The

fitted GNAR models are of order (1, [1]), and have coefficients with p-value smaller than

0.05 set to zero before prediction is performed. The global-α GNAR model can be fitted

with 0 to 2 parameters, and the individual-α model has from 0 to 6 parameters.

The mean prediction error is calculated as the mean over S = 1000 simulations of the sum

of squared differences of the prediction from the observations at T ; letting X̂s
i,t denote

the prediction of Xi,t in simulation s , this is given by S−1
S∑
s=1

N∑
i=1

(
Xi,T − X̂s

i,T

)2
. Table 8

shows the results of fitting and predicting from these models. As the VAR model could not

be predicted in all cases, 660, 579, 19, and 17 simulations from each input, respectively,

are not included in the VAR results.

Reassuringly, fitting the generating model results in lowest mean prediction error for each

input. The AR model has highest mean prediction error in each case, showing the impor-

tance of capturing the network autoregression in modelling. Model 1 has best prediction
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Input Fitted model Mean # parameters Mean prediction error

Model 1, T = 32

AR 2.60 6.53
VAR 7.09 6.17

GNAR g-α 1.72 5.23
GNAR 2.05 5.44

Model 2, T = 32

AR 3.16 6.66
VAR 7.77 6.40

GNAR g-α 1.37 5.65
GNAR 2.97 5.43

Model 1, T = 128

AR 4.71 6.39
VAR 11.66 5.58

GNAR g-α 2.00 5.26
GNAR 4.42 5.38

Model 2, T = 128

AR 4.76 5.98
VAR 12.38 5.12

GNAR g-α 1.84 5.42
GNAR 5.16 4.89

Table 8: Mean number of parameters and prediction error over 1000 simulations of each
model. The results from fitting the generating model are in bold.

results using its generating model, with the individual-α model increasing the mean pre-

diction error by around 4% for T = 32, and 2% for T = 128. Although the individual-α

GNAR model uses more parameters, the prediction performance is similar to that of the

generating model. For T = 32 using the VAR model increases the mean prediction error

by 18%, and for T = 128 is increases by 6%, so despite Model 1 being in the class of VAR

models, fitting a VAR model performs poorly when the length of time observation is short.

Model 2 cannot be written as a global-α GNAR model, but this model has lower prediction

error than the VAR model for T = 32. However for the longer series, VAR outperforms

the global-α GNAR model. In both models the mean number of parameters used increases

to be closer to the true number of parameters as T increases. Indeed, for Model 1 with

T = 128 all of the 1000 simulations had exactly two parameters in the GNAR global-α

model fit, the number in the generating model.

4.6 Examples

4.6.1 GDP and network construction

This section demonstrates using the GNAR model in a missing data setting as described

in Section 4.4.2, in this case where the network is also unknown. The data are annual
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GDP growth rates for 35 countries, obtained from the OECD website4. The annual values

are available for the years 1961-2013, but not all countries are included in the data for

every time point. We denote these observations {Gi,t}j=1,...,53
i=1,...,35 . To remove trend, the

univariate series of each country is first-differenced, giving values {Di,t}j=1,...,52
i=1,...,35 where

Di,t = Gi,t+1 − Gi,t. We associate an indicator series, {Zi,t}, with the series {Di,t}, such

that Zi,t = I(Di,t is observed).

The data are shown graphically in Figure 11, where the missing values at the beginning of

some series are evident. T = 52 time points are used, and there are N = 35 countries which

form the nodes of the accompanying network. The missing data are modelled by changing

the network weights over time, as described in Section 4.4.2. This data has structured

missingness similar to the missing data segment simulations in Section 4.5, however it is

noted that a greater proportion (21%) of the data is missing in this example.

Constructing a network to aid prediction

As the GDP data do not come with an associated network of countries, an exploratory

method for constructing a network that works well in terms of prediction is examined for

this example. It is noted that this is not the true underlying network, merely a useful

network that aids prediction. This is found by constructing Erdös-Réyni random graphs

(Definition 4.2), fitting and predicting from a GNAR model, and selecting a network that

minimises the prediction error.

The Erdös-Réyni random graphs that were constructed have 35 nodes, and each pair of

nodes has a network connection with fixed probability 0.15. The networks that are pro-

duced are un-weighted and un-directed. For this example 10,000 of these random networks

were generated.

Not only is the network unknown, but also the order of the GNAR model. Initial analysis

of the autocorrelation structure of the individual series suggested a second-order autore-

gressive component would be sufficient. Because of this we fit and predict from a range of

GNAR model orders, with up to two autoregressive lags and parameters involving stage-1

and stage-2 neighbour sets, for both the GNAR and global-α GNAR models. Boxplots

of the prediction error (the sum of squared differences between the predictions and true

values) at t = 51 are shown in Figure 12. The prediction error for the global-α GNAR

4OECD (2018), Quarterly GDP (indicator). doi:10.1781/b86d1fc8-en (Accessed on 29 January 2018)
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Figure 11: First-differenced annual GDP growth rates of OECD countries. White space
at the beginning of the series indicates missing values.
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Figure 12: Boxplots of the prediction error at t = 51 using 10,000 random networks a
range of GNAR models.

models was much lower in general, so this version of the model was used for further anal-

ysis. Of the global-α models, the lower order models are nested within the GNAR(2,[2,2])

model, so the network that minimised the prediction error for this model was chosen.

This network, chosen from 10,000 randomly generated graphs, is plotted in Figure 13.

The chosen network has 97 edges in total, and all countries are connected to at least two

others. This network could be further tested, including dropping subgraphs or edges, to

find a better performing network or find the more ‘important’ connections for predictive

performance. With this chosen network the BIC from Section 4.4.1 is used to select the

model with lowest value. In this example GNAR(2,[2,0]) with global-αs was the model

that minimised the BIC, a model with two autoregressive parameters, and stage-1 and -2

neighbour regression parameters at the first time lag.

77



4.6 Examples 4 GNAR PROCESSES

AUS

AUT BEL

CAN

CHL

CZE
DNK

EST

FIN

FRA

DEU

GRC

HUN

ISL

IRL

ISR

ITA

JPN

KOR

LVA

LUX

MEX

NLD

NZL

NOR

POL
PRT

SVK

SVN

ESP

SWE

CHE

TUR

GBR

USA

Figure 13: GDP network minimising the prediction error for the global-α GNAR(2,[2,2])
model.

Results

The model and network found above were chosen using prediction of the time series at

t = 51, this ‘best predictive model’ is now tested on the final time point, t = 52. The

GNAR model is compared to AR and VAR models’ prediction performance at t = 52.

We use the AR model individually at each node of the series. Therefore with this model

no network dependence can be captured. As with the GNAR model, up to two autore-

gressive lags were used at each node. The order of up to two was selected at each node

using the BIC. As each country was treated separately, the missing values at the begin-

ning of each series could not be modelled, so each series for the AR model started at

the first non-missing value. These comparisons were calculated using forecast.ar() and

auto.arima() functions from the forecast package Hyndman and Khandakar (2008).

The VAR model with current software cannot handle the missing values at the beginning

of the series, so these values were set to zero. For a zero-mean VAR(p) model there are

pN2 parameters, and in this example T < 2N therefore there is only enough data to fit a

first-order VAR model. This comparison is calculated using the VAR and restrict func-
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Model Number of Parameters Prediction error

GNAR(2,[2,0]) 4 5.74
Individual AR(2) 38 8.07

VAR(1) 199 26.20

Table 9: Prediction error of differenced GDP change at t = 52.

tions of the vars package Pfaff (2008). The restriction is a thresholding on the coefficients,

setting those with a t-statistic of absolute value below two to zero.

Table 9 shows the improvement in prediction error that the GNAR model gives compared

to the AR and VAR models. It is also notable that this is achieved with far fewer pa-

rameters than the other models. Even when thresholding the VAR coefficients to reduce

the number included in the prediction the model has poor predictive performance. This

example shows that the GNAR model with a network chosen based upon within-sample

predictive performance works well compared to other models, despite not having knowl-

edge of an underlying network.

4.6.2 Bristol Traffic

To apply the GNAR model to the Bristol Traffic data, {Bi,t}t=1,...,512
i=1,...,29 of Section 3.4.2, a

network is needed. To construct this network, the geographical start and end points of

each section of road are identified, then any nodes that share a location are connected

with an un-directed edge. For this example, edges do not have any covariates or weights

associated with them, so all edges act equally in the network. The created network is

plotted in Figure 14, where each node is plotted using its geographical coordinates. The

numbered locations refer to the journey sections described in Table 1.

The standardised residual values after removing trend and daily seasonality at the 29 lo-

cations are plotted in Figure 15. As in the GDP example, there are many missing values

in this series, with the missingness pattern in this data being similar to simulations in

Section 4.5. Node 25 appears particularly sparse, with frequent gaps throughout the time

series.

Initial exploratory analysis of the second-order properties of the individual series suggested

that a high order of autoregression may be required for the GNAR model fit. For example,

Figure 16 shows significant values in the partial autocorrelation at lags 10 and 11 for Node

3. There is clear structure both within and between the series at each node.
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Figure 14: Bristol Traffic network, with relative geographic distances preserved.
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Figure 15: Residual values of Bristol Traffic time series after trend and daily seasonality
is removed. The residuals at each location are standardised to have variance 1. White
space indicates missing values.
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Figure 16: Autocorrelation, partial autocorrelation and cross-correlation plots for series
at nodes 1-3. Missing values were replaced with zeros to calculate the correlations.
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Firstly, a GNAR(11, [111]) model is fitted to the standardised residuals, where 1k denotes

a k-length vector of 1s. As the series at node 25 has many missing segments, there is not

enough data to produce fitted and residual values at this node for models when p > 4.

Node 25 is left in the model for fitting as it contributes to neighbouring series, but is

removed from the residual matrix to calculate the BIC for all time lags to enable com-

parison between model orders. The BIC for the global-α model is -18.33 and the BIC for

the individual-α GNAR model is -17.28, showing a narrow improvement for the global-α

model for p = 11 model, which has far fewer parameters.

The BIC can also be used to compare orders of the β parameters. By investigating which

parameters are deemed significant, the BIC can be lowered slightly to -18.38 by choosing

s1 = 2, s2 = s3 = 1, and s4 = . . . = s11 = 0. Table 10 shows a summary of this fitted

model. All parameters apart from α2 are significant at the 5% level, including β1,2 which

is a second-stage neighbour parameter. All α parameters except the first are negative,

which matches the general shape of the partial autocorrelation plots in Figure 16.

The second-order properties of the GNAR residuals are investigated to identify whether

using the GNAR model helped to describe the structure present in the series. The auto-

correlation plots in Figure 17 show far fewer autocorrelations outside of the significance

bands compared with the input time series in Figure 16. Although structure remains in

the multivariate time series, using the GNAR model with 15 parameters has removed a

lot of the correlations present in the original. The GNAR model seems to be beneficial

for this complex data set. For further analysis, different networks could also be tested,

perhaps incorporating the true distances between nodes.

In Section 5.6.2, these residuals are tested for local white noise, to assess how well the

GNAR model fits the data.

4.7 Conclusion

This chapter presented a generalised model for network time series and new theoretical

results, illustrated by simulations. In the simple case of the GNAR model having fixed

network, it can be written as a VAR model, but has many advantages over VAR such as a

clearly interpretable stationarity condition, fewer parameters, and robustness to missing

observations. The examples demonstrate these features and show the applicability of the
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Figure 17: Autocorrelation, partial autocorrelation and cross-correlation plots for residuals
of the GNAR model fit at nodes 1-3. Missing values were replaced with zeros to calculate
the correlations.
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Parameter Estimate Significance code

α1 0.155 ***
β1,1 0.159 ***
β1,2 -0.037 *
α2 -0.004
β2,1 0.060 ***
α3 -0.088 ***
β3,1 0.037 *
α4 -0.092 ***
α5 -0.111 ***
α6 -0.114 ***
α7 -0.072 ***
α8 -0.066 ***
α9 -0.060 ***
α10 -0.091 ***
α11 -0.115 ***

Table 10: Parameter estimates of the GNAR model with p = 11, s1 = 2, s2 = s3 = 1,
and s4 = . . . = s11 = 0. Significance codes indicate the size of the p-value associated with
each parameter, with * indicating a value under 0.05, ** indicating a value under 0.01,
and *** indicating a value under 0.001.

GNAR model.

Further work in GNAR modelling would include additional theoretical development of

including time-varying networks and establishing parameter consistency results in this

case. Whilst the model allows a general covariance matrix to be used for the innovations,

the current version of the GNAR package relies on the GNAR model having independent and

identically distributed innovations at each node. This is more restrictive than the GNAR

model described in Definition 4.7, so altering the software to allow for this would enable

wider practical application. Another area of interest for further study is the second-order

quantities of a GNAR process. In Section 4.6, the sample autocorrelation and partial

autocorrelation at each node were calculated so that an appropriate order of the GNAR

autoregression could be chosen, whereas bespoke functions could be constructed such as

network autocovariance, or network cross-covariance for use in analysis and model selection

of a network time series.
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5 Local White Noise Testing

5.1 Introduction and additional literature review

Testing observations for white noise is commonly carried out during data analyses to

identify whether further modelling of a series is needed. This usually takes the form of

tests that are applied globally to the series, which may be a series of residuals from a

fitted time series or regression model. However, global tests may not detect departures

from white noise that occur on a section of the time series, or changes in the autocorrelation

structure that average out over time.

In this chapter, a test for local white noise is presented, with our definition of local

white noise described in Definition 5.2. A brief review of currently available global white

noise tests follows next in this section. Section 5.2 gives definitions and key properties

of the wavelet spectrum, motivating its use in our test. Relevant wavelet properties are

derived in Section 5.3 and our local white noise test statistics are described in Section 5.4.

Properties of our local white noise test are shown in simulations in Section 5.5, and its

use is demonstrated in examples in Section 5.6.

5.1.1 White noise tests

There are many classical white noise tests, which can be split into two main categories;

those that work in the time domain, and those that work in the frequency domain.

Tests in the time domain often assess whether the sample autocorrelations, {ρ̂(h)}∞h=1, of

a signal are close to zero. The test developed by Box and Pierce (1970), and the modified

version by Ljung and Box (1978) are some of the most frequently used white noise tests.

These focus on testing goodness of fit of an ARMA model, and are based upon sums of

the squared sample autocorrelations of the residuals. The Ljung-Box test has test statistic

QM = N(N + 2)

M∑

h=1

ρ̂2(h)(N − h)−1, (90)

where M is the maximum time lag included in the test. The test statistic QM has the χ2
M

distribution asymptotically under the null hypothesis. A key drawback of the Ljung-Box

test is that the sum of squared autocorrelations is calculated up to a maximal lag, M ,
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which must be chosen by the user. This choice is a trade off between an M small enough

for the test to have power at small departures and low lags, and M high enough to detect

departures from white noise at high lags.

A generalised test was proposed by Baragona et al. (2018) which uses a quadratic form of

sample autocorrelations,

TM (B) = N
M∑

h=1

M∑

k=1

ρ̂(h)ρ̂(k)Bh,k, (91)

where B is a symmetric, positive definite matrix of dimension M × M . Tests such as

the Ljung-Box test fall into this quadratic form framework. By deriving the asymptotic

distribution of TM (B), the matrix B providing the maximum power for a local alternative

can be chosen. This test can be utilised effectively when knowledge about alternative

hypotheses is available, such as testing for underfitting of an ARMA model.

Frequency domain tests investigate whether the periodogram (Definition 2.9) is flat. An

important white noise test is that due to Bartlett (1955), where the periodogram is tested

for flatness using the Kolmogorov-Smirnov test, comparing the cumulative sum of nor-

malised periodogram ordinates to the cumulative density function of a Uniform random

variable. The values

Tq =

q∑

p=1

Ip




m∑

p=1

Ip



−1

, (92)

with m = floor(T/2) can be compared to the line Uq = qm−1 using a Kolmogorov-Smirnov

statistic. This test has high power against many alternative models.

Shao (2011) used a sum of sample autocovariances, {γ̂(h)}∞h=1, a quantity related to the

spectrum, and a blockwise wild bootstrap to test for white noise. The sample summation

process is

Sn(λ) =
n−1∑

h=1

√
nγ̂(h)

{
(hπ)−1 sin(hλ)I(h 6= 0) + (2π)−1λI(h = 0)

}
. (93)

The test statistic is a Cramer-von-Mises statistic that compares the sample summation

process to the Gaussian process that Sn(λ) weakly converges to under the null hypothesis.

This test is designed to hold when conditional heteroscedacity or other dependence is

present.
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Nason and Savchev (2014) used the Haar wavelet transform on the normalised periodogram

to assess its flatness. The test used quantities

Vj,k = 2−j/2−1
(
πσ̂2T

)−1



2j−1−1∑

r=0

I2jk−r −
2j−1∑

q=2j−1

I2jk−q


 , (94)

where k = 0, . . . , 2j − 1 for each j = 0, . . . , log2(T ). Under the null hypothesis, Vj,k,

the wavelet coefficients of the periodogram will be zero, and the null distribution when

using the Haar wavelet transform was derived by modelling the periodogram ordinates

as independent exponential random variables. This test benefits from not requiring any

tuning parameters.

A test suitable for use against locally stationary alternatives was proposed by Goerg

(2012). They defined a spurious white noise process to be one whose autocorrelations are

time-varying but average to zero. Tests working on the data as a whole will generally

fail to reject the null hypothesis when spurious white noise is present. The proposed

modification for standard tests involves splitting a time series into K blocks of length

floor(T/K), calculating a local test statistic such as the Ljung-Box statistic per block

{Qk(M)}Kk=1, and then summing to give a global test statistic. This global test statistic,

Q(M,K) =
K∑

k=1

Qk(M), (95)

has a χ2
MK distribution for the Ljung-Box test with M lags, asymptotically for increasing

block length. Whilst K can increase with T , it is required that limT→∞KT
−1 = 0 to

achieve increasing block length. The original test, such as the Ljung-Box test, fits into

this framework by considering the data as a single block. The null hypothesis for this test

is global white noise.

Recently, Eckley and Nason (2018) provided a test to investigate the presence of aliasing or

local white noise in a signal. Using the locally stationary wavelet framework their dual test

assesses whether the values of the (corrected) estimated wavelet spectrum at a particular

time point are all greater than zero. This is achieved using a Student’s t-statistic on the
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values
{
Ŝj,t0+r

}r=−b,...,b
j=1,...,J∗

,

Tj,t0 = (2b)−1/2 σ̂−1j,t0

b∑

r=−b
Ŝj,t0+r, (96)

where Ŝj,` =
J∗∑
i=1

A−1j,i Ii,` is the estimated wavelet spectrum, b is a chosen window width,

σ̂2j,t0 is the sample variance of
{
Ŝj,t0+r

}
r=−b,...,b

and t0 is the time position the test is

centred on. For b chosen such that b → ∞ as t → ∞, the test statistic is shown to

converge in distribution to a normal random variable. This test does not distinguish

between the presence of aliasing or local white noise as both feature non-zero values at all

scales of the spectrum.

5.2 Background

Throughout this section, the focus will be on Haar and Shannon wavelets. Haar wavelets

were described in Section 2.2, and Shannon wavelets are introduced next.

5.2.1 Shannon wavelets

Rather than being compactly supported in the time domain, Shannon wavelets are com-

pactly supported in the Fourier domain. We use the definition of the Shannon wavelet

given in Chui (1997), Equation 4.2.4, with mother wavelet given by

ψ(x) =
sin(2πx)− cos(πx)

π(x− 0.5)
, (97)

and Fourier transformed mother wavelet (Equation (4.2.6) of Chui (1997))

ψ̂(ω) = −e−iω/2I [ω ∈ {[−2π,−π) ∪ (π, 2π]}] . (98)

We assign the value at the singularity; ψ(0.5) := −1, the value of the limit at this point.

Figure 18 plots the first four Shannon wavelets, from these it is clear to see that despite

not being compactly supported, the wavelets rapidly taper to low values at the edges.
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Figure 18: Shannon mother wavelet for j = 1, ..., 4.
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5.2.2 The β-spectrum

In the following section we motivate the statistic chosen for our local white noise test. For

this, we focus on the expected wavelet spectrum, β.

Definition 5.1 (β-spectrum (adapted from Fryzlewicz and Nason (2006), Equation 3)).

For scale j = 1, . . . , J and rescaled time z ∈ (0, 1), the β-spectrum is

βj(z) =

∞∑

i=1

Ai,jSi(z), (99)

where Si(z) is the evolutionary wavelet spectrum at scale i and position z, and Ai,j is the

inner product of autocorrelation wavelets as Definition 2.25. The discrete wavelets, ψi,k,

are constructed using filters as described in Equation (29).

A benefit of using the estimated β-spectrum directly rather than using it to estimate the

evolutionary wavelet spectrum, S, is that it can be estimated without requiring inverse

matrix calculations, so its theoretical analysis and practical calculation are simpler. As

in Nason et al. (2000), we use the wavelet periodogram, Ij,k (Definition 2.23), to estimate

the β-spectrum.

Expectation of Ij,k

The key motivation behind using the β-spectrum for investigating local white noise is that

the under the null hypothesis of white noise, the β-spectrum is constant over scales. The

expectation of the raw wavelet periodogram for a process {Xt}Tt=1 for k ∈ {1, . . . , T} and

j ∈ {1, . . . , J} is

E(Ij,k) = E





(
T∑

t=1

ψj,tXk−t

)2




=

T∑

t=1

T∑

s=1

ψj,tψj,sE (Xk−tXk−s)

=H0 σ2
T∑

t=1

ψ2
j,t





= σ2 for compactly supported wavelets

=A σ2 otherwise,

(100)
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where =A denotes the limit as T → ∞, using E (Xk−tXk−s) = σ2δt,s under white noise,

and standard properties of wavelets.

The property in Equation (100) holds for all wavelet bases, and distributions of white

noise satisfying Definition 2.1.

The wavelet periodogram may be smoothed using a kernel with bandwidth s, to give the

smoothed spectrum

Ĩ`,m =
m+s∑

k=m−s
K
{
s−1(m− k)

}
I`,k, (101)

where K is a (normalised) kernel function. For example, a running mean or rectangular

kernel of bandwidth s would take values K(y) ≡ (2s+ 1)−1 for y ∈ [0, 1]. Under the null

hypothesis the smoothed values have covariance

cov(Ĩ`,m, Ĩj,n) =
m+s∑

u=m−s

n+s∑

v=n−s
K
{
s−1(m− u)

}
K
{
s−1(n− v)

}
cov(I`,u, Ij,v), (102)

and expectation σ2 for compactly supported wavelets, or asymptotic expectation σ2 other-

wise. In the case of a rectangular kernel with bandwidth s, the smoothed spectrum values

are

Ĩ`,m = (2s+ 1)−1
m+s∑

k=m−s
I`,k, (103)

and the covariance simplifies to

cov(Ĩ`,m, Ĩj,n) = (2s+ 1)−2
m+s∑

u=m−s

n+s∑

v=n−s
cov (I`,u, Ij,v) . (104)

Distribution of Ĩ`,m

Given sufficient rectangular kernel smoothing of the estimated β-spectrum, we have the

following distributional result, which requires that the white noise process has finite sixth

moment.

Proposition 5.1. For a white noise process, {Xt}Tt=1 with finite sixth moment, the rect-

angular kernel smoothed spectrum Ĩ`,m = (2s+1)−1
m+s∑

k=m−s
I`,k converges in distribution as

s → ∞ to the normal distribution, for ` ∈ {1, . . . , J∗} with J∗ chosen to avoid boundary

effects, and m ∈ {1, . . . , T}.

Proof. In Eckley and Nason (2018) Supplementary material 2.4, the statistic
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var(Q`,N )−1/2Q`,N , where Q`,N =
N∑
k=1

{I`,k − E (I`,k)}, is shown to converge in distribution

(as N → ∞) to the standard normal distribution, with rate proportional to N1/2. This

result holds for any N -length interval in {1, . . . , T}, therefore by relabelling and setting

N = 2s + 1, it follows that the smoothed spectrum values, N−1
m+s∑

k=m−s
I`,k also converge

in distribution to the normal distribution.

Under the null hypothesis of white noise, as s → ∞, the rectangular kernel smoothed

estimate of the β-spectrum converges in distribution to a normal distribution with equal

mean at each scale, and covariance which is derived for Haar and Shannon wavelets in

Section 5.3.2. Whilst this chapter is focused on local white noise testing, the convergence

rate of this result indicates the need to keep the smoothing parameter, s, high. If the test

is being performed on non-overlapping intervals this will limit the number of local tests

that can be performed as the theory requires s→∞.

It is likely that the normal distribution result of Proposition 5.1 also holds when using

other types of kernel, under the same conditions. This is left for further work, but to allow

for this, general kernels are used in the following results.

5.3 Theoretical covariance results

In this section the formula for the covariance of Ij,k is derived, as well as quantities needed

for its evaluation for Haar and Shannon wavelets.

5.3.1 Covariance of Ij,k

To use tests based upon the β-spectrum estimator, the covariance of the estimator is

required. Nason (2013) provided the following formula for the asymptotic covariance of

the wavelet periodogram in the case of Gaussian locally stationary wavelet processes:

cov(I`,m, Ij,n) '





2 {E (I`,m)}2 for ` = j,m = n

2

{∑
k

Sk
(
m+n
2T

)∑
τ

Ψk(τ)Ψ`,j(n−m− τ)

}2

otherwise.

(105)

From Nason et al. (2000) we have that

c(z, τ) =
∑

j

Sj(z)Ψj(τ), (106)
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so we can rewrite equation (105) as

cov(I`,m, Ij,n) '





2 {E (I`,m)}2 for ` = j,m = n

2

{∑
τ

Ψ`,j(n−m− τ)c
(
m+n
2T , τ

)}2

otherwise.

(107)

In addition, under the null hypothesis of white noise where c(τ) = σ2δ(τ) we have:

cov(I`,m, Ij,n) ' 2

{∑

τ

Ψ`,j(n−m− τ)σ2δ(τ)

}2

= 2σ4Ψ2
`,j(n−m).

(108)

Equation (108) will be used as a comparison to the results calculated below, noting that

Gaussianity is an assumption we want to relax for our test of white noise.

Proposition 5.2. For a white noise process, {Xt}Tt=1, with variance σ2, the covariance of

I`,m is

cov(I`,m, Ij,n) = 2σ4Ψ2
`,j(n−m) +

{
E(X4

t )− 3σ4
}∑

t

ψ2
`,m−tψ

2
j,n−t,

where ` ∈ {1, . . . , J}, m ∈ {1, . . . , T}, ψ is the analysis wavelet used, and Ψ is the

corresponding cross-correlation wavelet.

Proof.

cov(I`,m, Ij,n) = E(I`,mIj,n)− E(I`,m)E(Ij,n)

=
∑

t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−qE (XtXsXpXq)

−

{∑

t,s

ψ`,m−tψ`,m−sE(XtXs)

}{∑

p,q

ψj,n−pψj,n−qE(XpXq)

}

=
∑

t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−qE (XtXsXpXq)

−

{
σ2
∑

t

ψ2
`,m−t

}{
σ2
∑

p

ψ2
j,n−p

}

=
∑

t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−qE (XtXsXpXq)− σ4

(109)

Where we use that cov(XtXs) = 0 for t 6= s as the process is white noise, E(X2
t ) = σ2, for

all t, and discrete wavelets have L2 norm of 1.

Considering the fourth order expectation, under the assumption that we have a mean-zero
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white noise process, the odd moments will be zero. Hence we only need to deal with cases

where all indices match, or we have two pairs of indices.

E (XtXsXpXq) = δt,sδp,qδt,pE(X4
t )

+ (1− δt,sδp,qδt,p) (δt,sδp,q + δt,pδs,q + δt,qδs,p)
{
E
(
X2
t

)}2 (110)

The first term in the expression occurs when all of the indices are the same, and the second

occurs when the indices match in pairs but are not all the same. Replacing this into the

previous expression gives:

cov(I`,m, Ij,n) =
∑

t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−q
{
δt,sδp,qδt,pE(X4

t )

+ (1− δt,sδp,qδt,p) (δt,sδp,q + δt,pδs,q + δt,qδs,p)σ
4
}
− σ4

= E(X4
t )
∑

t

ψ2
`,m−tψ

2
j,n−t

+ σ4
∑

t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−q (δt,sδp,q + δt,pδs,q + δt,qδs,p)

− σ4
∑

t,s,p,q

δt,sδp,qδt,pψ`,m−tψ`,m−sψj,n−pψj,n−q (δt,sδp,q + δt,pδs,q + δt,qδs,p)

− σ4

= E(X4
t )
∑

t

ψ2
`,m−tψ

2
j,n−t + σ4

{
1 + 2Ψ2

`,j(n−m)
}

− 3σ4
∑

t

ψ2
`,m−tψ

2
j,n−t − σ4

= 2σ4Ψ2
`,j(n−m) +

{
E(X4

t )− 3σ4
}∑

t

ψ2
`,m−tψ

2
j,n−t.

(111)

In the Gaussian case, E(X4
t ) = 3σ4, and the covariance is reduced to 2σ4Ψ2

`,j(n − m)

which matches Equation (108). For the Gaussian case, the theorem of Isserlis (1918) can

be applied to Equation (109) for a shorter derivation of the result, as in Appendix A of

Nason (2013).

Equation (111) shows that, unlike the expectation, the covariance of the estimated β-

spectrum depends both on the choice of wavelet, and the distribution of the white noise

process. The dependence on the wavelet occurs via the cross-correlation wavelet, Ψ, and

95



5.3 Theoretical covariance results 5 LOCAL WHITE NOISE TESTING

the dependence on the white noise is via the excess kurtosis multiplied by σ4; E(X4
t )−3σ4.

5.3.2 Covariance of Ij,k under smoothing

As is the case with other spectra, the wavelet periodogram requires smoothing for consis-

tent estimation of the β-spectrum. Therefore we also require the values of the covariance

of the kernel smoothed estimate.

We consider a general kernel smoothed β-spectrum as this will allow for a range of

smoothing to be carried out. Letting the kernel smoothed spectrum be denoted by

Ĩ`,m =
m+s∑

u=m−s
K(m−us )I`,u for a normalised kernel function K, with bandwidth s, we can

calculate the covariance as

cov(Ĩ`,m, Ĩj,n) = cov

{
m+s∑

u=m−s
K

(
m− u
s

)
I`,u,

n+s∑

v=n−s
K

(
n− v
s

)
Ij,v

}

=
m+s∑

u=m−s

n+s∑

v=n−s
K

(
m− u
s

)
K

(
n− v
s

)
cov(I`,u, Ij,v).

(112)

5.3.3 Haar wavelet quantities

For the covariance, the cross-correlation wavelet and sum of squared wavelets is required.
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Cross-correlation wavelet

Proposition 5.3 (Killick et al. (2019)). For ` < j, the cross-correlation Haar wavelet is

Ψj,`(τ) = 2−(j−`)/2





0 for τ < −2`,

−(2−`τ + 1) for − 2` ≤ τ < −2`−1,

2−`τ for − 2`−1 ≤ τ < 0,

0 for 0 ≤ τ < 2j−1 − 2`,

2−`(2τ − 2j + 2`+1) for 2j−1 − 2` ≤ τ < 2j−1 − 2`−1,

2−`(2j − 2τ) for 2j−1 − 2`−1 ≤ τ < 2j−1,

0 for 2j−1 ≤ τ < 2j − 2`,

2−`(2j − τ − 2`) for 2j − 2` ≤ τ < 2j − 2`−1,

2−`(τ − 2j) for 2j − 2`−1 ≤ τ < 2j ,

0 for 2j ≤ τ.

(113)

and Ψj,`(τ) = Ψ`,j(−τ) for ` > j, and Ψj,j(τ) = Ψj(τ), the regular autocorrelation wavelet.

Sum of squared wavelets

Proposition 5.4. Letting a = max(m,n), and b = min(2` +m, 2j + n), the value of the

sum of non-decimated Haar squared wavelets is given by:

∑

t

ψ2
`,m−tψ

2
j,n−t =





2−(`+j)(b− a) for a < b

0 otherwise

(114)

Proof.

∑

t

ψ2
`,m−tψ

2
j,n−t =

∫

t

ψ2
`,m−tψ

2
j,n−tdt

= 2−(j+`)
∫

t

I
[
t ∈
{
n, 2j + n

}]
I
[
t ∈
{
m, 2` +m

}]
dt

(115)

Hence only when the two intervals overlap is there any contribution, and the result follows.
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5.3.4 Shannon wavelet quantities

Cross-correlation wavelet

Proposition 5.5. The cross-correlation Shannon wavelet is

Ψj,`(k) =





0 for j 6= `

1 for j = ` and k = 0

ujk cos(3u−1jk ) sin(u−1jk ) for j = ` and k 6= 0

where ujk = 2j+1(kπ)−1.

Proof. Because the Fourier transform of Shannon wavelets do not overlap when j 6= `, the

Shannon cross-correlation wavelet is zero for j 6= `. Therefore we only have to consider

the cross-correlation where scales are equal, which is the autocorrelation wavelet. That

is Ψ̂j,j(ω) = Ψ̂j(ω). Using the inverse Fourier transform and following a similar method

to the proof of Theorem 2 in Supplementary material of Eckley and Nason (2018) we can

calculate the Shannon correlation wavelet at k = 0.
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Ψj(0) =
∑

t

ψj,tψj,t

= (2π)−1
∑

t

π∫

−π

π∫

−π

ψ̂j(ω)eitωψ̂j(ν)eitνdωdν

= (2π)−1
∑

t

π∫

−π

π∫

−π

ψ̂j(ω)eitωψ̂j(−µ)e−itµdωdµ

= (2π)−1
π∫

−π

π∫

−π

ψ̂j(ω)ψ̂j(µ)
∑

t

eit(ω−µ)dωdµ

= (2π)−1
π∫

−π

π∫

−π

ψ̂j(ω)ψ̂j(µ)
∑

n

δ(ω − µ+ 2πn)dωdµ

= (2π)−1
π∫

−π

π∫

−π

ψ̂j(ω)ψ̂j(µ)δ(ω − µ)dωdµ

= (2π)−1
π∫

−π

ψ̂j(ω)ψ̂j(ω)dω

= (2π)−1
π∫

−π

2jχCj (ω)dω

= (2π)−12j{−π2−j + π2−(j−1) + π2−(j−1) − π2−j}

= (2π)−12j{π2−(j−1)}

= 1

(116)

Where line 2 to 3 is a change of variables; µ = −ν, line 3 to 4 holds as for wavelets we

have the property ψ̂j(ω) = ψ̂j(−ω), line 4 to 5 holds by the Poisson sampling theorem.

Line 5 to 6 is due to the limits of the integral, 6 to 7 the application of the Kronecker

delta function.

Using the proof of Theorem 2 in the Supplementary material of Eckley and Nason (2018)

we can determine the value of the Shannon autocorrelation wavelet for k 6= 0. We note

that the quantity P (j, k, `,m, r) =

(∑
t
ψj,k−2rtψ`,m−t

)2

is the squared autocorrelation

wavelet when ` = j, m = 0 and r = 0; P (j, k, j, 0, 0) =

(∑
t
ψj,k−tψj,−t

)2

= Ψ2
j (k).

Using equation (5) from Eckley and Nason (2018) Supplementary material with the above

values for the variables we have

Ψ2
j (k) = 22(j+1) (kπ)−2 cos2

{
2−(j+1)3πk

}
sin2

{
2−(j+1)πk

}
. (117)
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The first six Shannon autocorrelation wavelets are plotted in Figure 19, and with Haar

autocorrelation wavelets overlaid in Figure 20. The autocorrelation wavelets for Haar and

Shannon wavelets are similar in shape, but the Shannon autocorrelation wavelets take

longer to flatten out as the magnitude of k increases.

The autocorrelation result of Proposition 5.2 using the Shannon autocorrelation wavelet

of Proposition 5.5 is confirmed using a small simulation study. Standard normal samples

of length 256 were generated, and over 10,000 simulations of a white noise series, the

covariance of the estimated Shannon β-spectra was calculated. Using the results calculated

in previous sections the covariance in this case should follow cov(I`,m, Ij,n) = 2σ4I(` =

j)Ψ2
j (n −m). The simulations used the central 16 observations, with cov(I`,129, Ij,129+k)

for k = 0, . . . , 15. The first three scales plotted in Figure 21 show agreement between the

theoretical results and simulations.

Sum of squared wavelets

We use similar steps to those in the previous section to show that the sum of squared

values in the kurtosis term is zero for unequal scales. Replacing the wavelets with the

inverse Fourier transform of their Fourier duals gives

∑

t

ψ2
`,m−tψ

2
j,n−t = (2π)2

∑

t

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
ψ̂`(ω)ψ̂`(ν)ψ̂j(µ)ψ̂j(ξ)

eiω(m−t)eiν(m−t)eiµ(n−t)eiξ(n−t)dωdνdµdξ,

(118)

which evaluates to zero in the case that ` 6= j because the supports of the Fourier transform

of Shannon wavelets do not overlap, as shown in Nason et al. (2000).

Although an analytic form has yet to be found for this quantity, we can calculate an

approximation to the summation computationally in the time domain. This is shown in

Figure 22. The values in Figure 22 decay quickly as the locations m and n get further

apart. The values of the peaks at m = n are 1/3, 1/8, 1/16, 1/32 for the scales j = 1, ..., 4.
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Figure 19: Shannon autocorrelation wavelets for j = 1, . . . , 6.
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Figure 20: Shannon (black) and Haar (red dashed) autocorrelation wavelets for j =
1, . . . , 6.
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Figure 21: Theoretical covariance (black) and simulated covariance (red dashed) of the
Shannon wavelet spectrum over 10,000 simulations of standard Normal white noise with
T = 256.
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2
j,n−t for Shannon wavelets with ` = j ranging from 1 to 4.
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Covariance of the kernel smoothed Shannon spectrum

As the Shannon cross-correlation wavelet is only non-zero when the scales are the same,

the kernel smoothed spectrum has a more sparse covariance structure than when the Haar

wavelet is used.

The following result holds when the white noise has zero excess kurtosis, such as the

Gaussian distribution;

cov(Ĩ`,m, Ĩj,n) =
m+s∑

u=m−s

n+s∑

v=n−s
K

(
m− u
s

)
K

(
n− v
s

)
cov(I`,u, Ij,v)

=





m+s∑
u=m−s

n+s∑
v=n−s

K
(
m−u
s

)
K
(
n−v
s

)
2σ4Ψ2

j (u− v) for ` = j

0 otherwise.

(119)

Results in Section 5.3.3 and 5.3.4 are specific to Haar and Shannon wavelets, however other

wavelets could be used to test for local white noise. A benefit of the Shannon wavelet is

that off-diagonal entries of the covariance matrix under the null hypothesis are zero, a

feature that will not hold for wavelets in general. To use different wavelets, such as non-

Haar Daubechies wavelets, their cross-correlation wavelet and sum of squared wavelets are

needed, which could be found computationally. Other wavelets may provide test power

in alternative directions due to the differences in estimated wavelet spectra when using

different wavelets, and could be tested using simulations.

5.4 Local white noise test method

This section describes methods of constructing test statistics for our local white noise test,

as well as our definition of local white noise.

5.4.1 Definition of local white noise

There are several ways local white noise could be defined. One option is to define it as

instantaneous white noise at an observation, and another is to define it locally on a window

or segment.

Instantaneous white noise could be characterised using a particular time position of the β

spectrum. At a particular z = t/T ∈ [0, 1], if βj(z) ≡ c for some c ∈ R+ and j = 1, 2, . . .,
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then there is instantaneous white noise at z. However, in practice, the spectrum values

are estimated using more than the observation that the spectrum is centred on via the

wavelet transform, so the instantaneous definition of white noise may not be particularly

intuitive.

Local white noise could also be defined as equal β-spectrum values over a window, or small

interval. This still has the issue discussed above, as the values within the interval rely on

those outside it. However a test based on this definition is likely to be more stable and

have more power as it will be based on more observations. To ensure locality, the coarsest

wavelet scales should be discounted from a test.

Here we chose to test the hypothesis that white noise is present locally on an interval,

against the alternative hypothesis of a locally stationary wavelet process with greater

structure in the interval. Our aim is not to test for Gaussianity; we wish to test for white

noise more generally. Our definition of local white noise is formalised in Definition 5.2.

Definition 5.2 (Local white noise). A sectionXt1 , . . . , Xt2 of a stochastic process, {Xt}Tt=1,

with 1 ≤ t1 < t2 ≤ T is said to be local white noise on the interval [t1, t2] if the following

properties hold for all s, t = t1, . . . , t2:

(i) E(Xs) = 0

(ii) E(XsXt) = δs,tσ
2,

where σ2 < ∞ and δs,t = I(s = t) is the Kronecker delta function. If t1 = 1, and t2 = T ,

then the process is global white noise.

All of the previous results in this section hold for local white noise, but require t2−t1 →∞

in place of T →∞.

5.4.2 Estimating the β-spectrum

As stated in Section 5.2.2, the wavelet periodogram is used to estimate the β-spectrum. For

Haar wavelets, the wavelet periodogram can be estimated from a series using ewspec3 from

the locits package (Nason (2016a)). For Shannon wavelets, the function ewspecShannon

from the AutoSpec package can be used (Nason et al. (2012)). Both of these functions

require the input series to be of power of two length. Although these functions provide

smoothing, we use unsmoothed periodograms, I`,m, and then apply the kernel smoothing of
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Equation (101), with bandwidth s. The dependence of the smoothed β-spectrum estimate,

Ĩ`,m on the smoothing method and bandwidth will not explicit in our notation.

5.4.3 Test statistics

As we test for local white noise, the estimated β-spectrum is tested for equality of values

over scale at the central point of the interval, which equates to considering Ĩ1:J∗,tk where tk

is equidistant from t1 and t2. The number of scales used, J∗, is such that J∗ < J = log(T ),

with the effect of this choice discussed in Section 5.5. For notational purposes, we will drop

the explicit time labelling in what follows, and define the J∗-length vector B = Ĩ1:J∗,tk .

As shown in Proposition 5.1 and Equation (100), under the null hypothesis the rectangular-

kernel smoothed β-spectrum estimate at tk has an asymptotic normal distribution; B ∼A

N
(
σ21,ΣB

)
, where [ΣB]i,j = cov(Ĩi,tk , Ĩj,tk), given by Equation (102).

Contrast test statistic

For a fixed tk ∈ {1, . . . , T}, the β-spectrum has equal values at each scale under the null

hypothesis. Using the equality over scale as motivation, we define a set of test statistics

based on contrasts. Let R define a c×J∗ contrast matrix where the row sums are all zero.

Noting that B is a consistent estimator of σ21, the Wald statistic is given by

Ur = (RB)′ {R( ΣB

)
R′
}−1

(RB), (120)

which tends in distribution to χ2
c . To test for white noise of a particular known model,

the exact form of ΣB can be used, but for general testing the covariance matrix will be

replaced by Σ̂B containing estimators of the process variance and excess kurtosis.

Different types of contrast are described in the following three sections, setting out poten-

tial forms of the contrast matrix, R.

Single contrast: alternate

This test consists of a single contrast, where the R matrix has values that alternate between

1 and -1 for even numbers of scales. When the number of scales is odd, R is first filled with

the alternating 1 and -1 values, then the central value is replaced with 0 or −2 to ensure

the sum is always zero. For example, when J∗ = 3 the contrast matrix is R = (1 −2 1),
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and when J∗ = 5 the contrast matrix is R = (1 −1 0 −1 1). This contrast will work

best against an alternative hypothesis where consecutive scales of the wavelet periodogram

have different values. Certain processes with power in narrow bands would be examples

of this, the difference between scales with power and their low-valued neighbours would

be captured using an alternate contrast.

Single contrast: opposite

This contrast compares the coarse scales with fine scales: the first half of this R vector is

set to 1, and the second half is -1. If J∗ is odd, the central value is zero. This contrast

will capture spectrum differences for processes with monotonically increasing or decreasing

power over scales, such as MA(1) processes.

Complete contrast

The complete contrast contains J∗−1 individual orthogonal contrasts, forming a J∗−1×J∗

contrast matrix. For example, the matrix we use for J∗ = 3 is

R =


1 −1 0

1 1 −2


 , (121)

and for J∗ = 5 we have a 4× 5 matrix;

R =




1 −1 0 0 0

0 0 0 1 −1

1 1 0 −1 −1

1 1 −4 1 1



. (122)

The complete contrast should identify departures from local white noise that consist of

different values at consecutive scales (rows 1 and 2 of R in Equation (122)), monotonically

changing power over scales (row 3), or different power at the central scale (row 4). The

complete contrast contains more comparisons than the single contrasts, so should identify

a greater range of processes in the alternative hypothesis set.
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Quadratic form test statistic

Rather than using contrasts, the mean of B can be estimated and subtracted from the

spectrum, giving centred spectrum values. This centring can be written as a matrix

operation, by considering a J∗ × J∗ centring matrix, H which has values 1/J∗ on the off-

diagonal, and (J∗−1)/J∗ on the diagonal. The centred values are calculated as B̃ = HB,

with null distribution B̃ ∼A N(0, HΣBH
′), where 0 is a J∗-length vector of zeroes.

The test statistic at tk is defined as the simple quadratic form of the centred values;

Uq = B̃′B̃. Using Mathai and Provost (1992), Equation 4.1.2, we have the representation

Uq =
∑r

p=1 λpZ
2
p , where {λp}p=1,...,r are the eigenvalues of HΣBH

′, and {Zp}p=1,...,r are

independent standard normal variables. Hence the test statistic is a sum of scaled χ2

variables.

As shown in Section 5.3, matrix ΣB is known up to the process variance and excess

kurtosis, so we estimate the covariance matrix using the estimates of these, as in Section

5.4.3. Duchesne and de Micheaux (2010) compared methods of calculating the distribution

of a sum of independent χ2 variables and recommended that exact methods such as the

Imhof (1961) algorithm should be used as approximations tend to be poor. To implement

this the imhof function of the CompQuadForm package of Duchesne and de Micheaux (2010)

is used.

5.5 Simulations

In this section we demonstrate properties of the LWN test in a series of settings. To

implement the test the LWN package is used, written predominantly by the author, with

additions by Guy Nason. The manual for a working version of this package is included in

Appendix C, and a fully tested version of this package will be released via CRAN in due

course. Throughout these simulations, the rectangular kernel is used for smoothing.

5.5.1 Multiple test correction

When the LWN test is calculated on many segments of a series, multiple test correction is

applied to the p-values to guard against spurious rejections of the null hypothesis caused

by repeated testing. For this the Holm (1979) method is used, which follows the following

algorithm. If a series is tested locally at K positions, this results in ordered p-values
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p(1) < p(2) < . . . < p(K) associated with the times t(1), t(2), . . . , t(K). For level α, if

p(1) < α(K)−1, reject the null hypothesis at t(1), otherwise none of the local hypotheses

can be rejected. If the test with lowest p-value rejects the null, the testing of p-values

continues sequentially until p(k) > α(M + 1− k)−1 for some k. Then the null hypothesis

at positions t(1), . . . , t(k−1) are rejected, and the remaining tests are not rejected at level

α.

5.5.2 Variance and kurtosis estimation

Crucial to being able to test for non-Gaussian white noise is estimation of the variance

and excess kurtosis of the original series. Here a wavelet method is used to estimate the

variance at time position m, taking the mean of the estimated β-spectrum over J∗ scales

and (2s+ 1) time points; σ̂2m = {J∗(2s+ 1)}−1
J∗∑
j=1

m+s∑
k=m−s

Ij,k.

The excess kurtosis is present in the covariance formula multiplied by σ4;
{
E(X4

t )− 3σ4
}

,

and to avoid estimating the variance twice, we estimate the fourth moment in the excess

kurtosis using the estimator µ̂4,m = (2s+1)−1
m+s∑

k=m−s
X4
k . Then when estimating the covari-

ance matrix at position m we replace
{
E(X4

t )− 3σ4
}

with the estimate
{
µ̂4,m − 3(σ̂2m)2

}
.

In the following simulation, we test the performance of different estimators of σ2 for

a series of length T = 64. The series each have variance 1, the Gaussian distribution

is standard N (0, 1), the Laplace distribution has location parameter µ = 0 and scale

parameter b = 1/
√

2, and the Uniform distribution is U(−
√

3,
√

3). Excess kurtosis for

the Gaussian distribution is zero, for Laplace is 3, and for Uniform is −1.2. Table 11

includes the standard time-domain estimator of variance, var, which includes all of the

64 observations. The LWN estimators of the variance, which calculate variance using the

wavelet spectrum, are tested over different maximum scales, J∗, and smoothing intervals,

s. For low J∗ and s, the estimate is in effect being carried out using a smaller sample

than the comparison estimator var. Whilst most of the estimators appear unbiased, using

the Shannon wavelet spectrum with J∗ = 5 is not an unbiased estimator. This is evident

throughout the choices of s, and the different innovation distributions. The biased nature

of this estimator may be due to the Shannon wavelet not decaying quickly enough within

the interval.

Excluding the J∗ = 5 case, the Haar and Shannon estimators have similar bias and MSE.

The single value case, s = 0, where the estimate of variance is the mean of the spectrum at

110



5.5 Simulations 5 LOCAL WHITE NOISE TESTING

Gaussian Laplace Uniform
Estimator of variance Bias MSE Bias MSE Bias MSE

var 0.59 3.27 -0.78 7.78 -0.10 1.30

Haar, J = 3 ss = 0 0.23 70.43 -6.44 107.43 0.25 43.86
Haar, J = 4 ss = 0 -0.76 55.57 -5.89 78.55 -1.10 33.41
Haar, J = 5 ss = 0 -0.52 41.22 -4.60 58.94 -1.59 26.94

Haar, J = 3 ss = 15 0.11 7.54 -1.49 16.44 -0.25 3.51
Haar, J = 4 ss = 15 0.10 8.50 -1.95 15.81 -1.01 4.07
Haar, J = 5 ss = 15 0.19 9.21 -0.92 17.03 -0.80 5.83

Haar, J = 3 ss = 31 0.24 4.01 -1.32 8.28 -0.58 1.96
Haar, J = 4 ss = 31 0.15 4.95 -1.56 9.16 -1.11 2.48
Haar, J = 5 ss = 31 -0.41 6.20 -1.44 11.30 -1.61 3.86

Shannon, J = 3 ss = 0 -1.64 67.77 -3.90 88.47 -1.66 53.13
Shannon, J = 4 ss = 0 -0.74 52.74 -2.65 67.99 -2.40 37.94
Shannon, J = 5 ss = 0 -10.85 36.30 -12.08 46.76 -11.98 25.95

Shannon, J = 3 ss = 15 0.07 9.20 -2.61 15.75 -0.69 5.38
Shannon, J = 4 ss = 15 0.91 10.76 -2.47 15.61 -1.03 6.15
Shannon, J = 5 ss = 15 -9.52 8.80 -11.93 13.29 -10.88 5.73

Shannon, J = 3 ss = 31 0.35 5.11 -1.53 8.73 0.01 3.08
Shannon, J = 4 ss = 31 0.50 6.52 -1.68 9.81 -0.80 3.67
Shannon, J = 5 ss = 31 -9.85 6.08 -11.30 9.31 -10.69 4.22

Table 11: Bias and MSE (×100) of different estimators of σ2, calculated using 1000 sim-
ulations of length T = 64 of each distribution.

the central time point, is unbiased but has high MSE. To stabilise the estimator smoothing

over time is recommended. The MSE is lowest with highest s, where the average is taken

over more time values. When s 6= 0, the choice of J∗ makes little difference in most

cases. The best LWN estimators of innovation variance that include the entire comparison

interval perform similarly to the standard time domain estimator of variance.

To compare these estimators in more detail, four empirical densities are plotted in Figure

23. All are approximately centred on the true value 1, with the var estimator having

smallest spread around the mean. This plot shows the Haar LWN estimator with J∗ = 3

and s = 31 has smaller spread than the Shannon estimator with the same parameters, and

both are better than the Haar estimator when dropping the smoothing interval to s = 15.

The kurtosis is estimated using the sample fourth moment, µ̂4,m = (2s + 1)−1
m+s∑

k=m−s
X4
k .

The bias and MSE of this estimator for the same samples as in Table 11 are found in

Table 12. The true E
(
X4
t

)
for the modes are 3 for Gaussian, 6 for Laplace, and 1.8 for

Uniform. As Table 12 shows, the performance of the fourth moment estimator varies across

distributions. For the Laplace distribution, the estimator is incredibly variable, which is

of concern for the result of our test. The range of this estimator over 1000 simulations
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Figure 23: Empirical density of innovation variance estimates using the standard estima-
tor, and three LWN estimators. This plot is produced using the function density with
default smoothing arguments.

of Laplace white noise with s = 31 was 0.36-83.08. As expected, the estimator for each

distribution performs better as s increases, and this leads to the recommendation to not

use s < 15 in the local white noise tests as the kurtosis estimation has high MSE. Indeed,

if the segment is stationary, s should be chosen so that smoothing occurs over the entire

segment, s = 2−1(t2 − t1)− 1.

5.5.3 Size and power properties as a global test

The LWN test is first tested for different observation lengths, using the test statistics

described in Section 5.4.3. Throughout this section, the complete, alternate, and opposite

contrasts will be denoted ‘Ccom’, ‘Calt’, ‘Copp’, respectively, and the quadratic form statistic

will be labelled ‘Q’. If the test run assumes Gausianity of the white noise it does not include

the excess kurtosis term, and this is denoted ‘asG’.

112



5.5 Simulations 5 LOCAL WHITE NOISE TESTING

Gaussian Laplace Uniform
s Bias* MSE Bias* MSE Bias* MSE

0 -20.85 62.02 -28.97 776.62 -1.84 5.64
15 9.40 3.41 -22.09 85.86 -1.00 0.18
31 5.00 1.67 -16.97 36.91 -0.54 0.09

Table 12: Performance of the fourth moment estimator µ̂4,32 over 1000 simulations of
white noise of length T = 64. All distributions have parameters set to achieve variance 1.
* the bias values have been multiplied by 100 for readability.

Tables 13-17 contain the results of simulations of MA(1) processes with standard normal

innovations. For the first three tables, J∗ is chosen to be log2(t2 − t1)− 2, so the coarsest

two scales are not included in the test. As the wavelet spectrum of MA(1) processes has

monotonically changing values of the spectrum over scales it is expected that the tests

involving opposite rather than alternate contrasts will perform better. Whilst there are

differences at alternate scales, the differences best manifest when comparing the coarse

scales to the fine scales.

In Table 13, where T = 32, the test using Shannon wavelets and alternate contrasts

performs worst for both positive and negative MA parameters, as expected. In general,

the other LWN tests perform well in comparison to the Bartlett and Ljung-Box tests for

negative MA parameters, but have lower power for MA parameters 0.7 and 0.9. The size

of all of the LWN test variants is in the range 0.03-0.05, showing better calibration than

the Bartlett test and Ljung-Box test with 20 lags.

As the observation length increases, the power improves for all of the tests. For T = 64 in

Table 14 all but the Calt contrast LWN tests have power 1 for MA parameter -0.9, higher

than the comparison tests. However the best performing LWN test for MA parameter 0.9

achieves 0.80 power, whereas the the Bartlett test has power of 0.99. The Haar quadratic

form test has much higher power than the Shannon version for positive MA parameters.

The LWN tests with highest overall power are Shannon Ccom and Haar Q.

Even for observation length T = 128 in Table 15, the Shannon Calt test performs poorly

when considering MA processes as the alternative hypothesis. The test that does not

include the excess kurtosis estimation, Ccom asG, has higher power for MA parameter -0.3

than Ccom, but lower power for positive parameters. For this observation length, the Ccom

test performs best in terms of power out of the LWN tests.

To investigate the role of J∗ in the LWN test properties, Tables 16 and 17 reduce the
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MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom asG 0.74 0.65 0.46 0.26 0.04 0.10 0.19 0.24 0.29
Shannon Ccom 0.64 0.56 0.36 0.18 0.04 0.16 0.28 0.36 0.43
Shannon Calt 0.02 0.01 0.01 0.02 0.04 0.10 0.13 0.14 0.15
Shannon Copp 0.76 0.66 0.44 0.20 0.04 0.14 0.24 0.32 0.34
Shannon Q 0.56 0.46 0.25 0.10 0.03 0.13 0.21 0.27 0.28

Haar Q 0.77 0.70 0.50 0.28 0.05 0.16 0.29 0.44 0.51
Bartlett 0.70 0.64 0.44 0.23 0.02 0.10 0.27 0.50 0.59
L-B 5 0.60 0.53 0.38 0.22 0.07 0.15 0.31 0.46 0.57
L-B 20 0.52 0.47 0.35 0.20 0.10 0.17 0.32 0.46 0.51

Table 13: Simulated power and size using 1000 simulations of series with T = 32, s = 15,
J∗ = 3.

MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom asG 1 0.99 0.91 0.51 0.07 0.20 0.43 0.58 0.66
Shannon Ccom 1 0.97 0.83 0.38 0.06 0.28 0.57 0.74 0.80
Shannon Calt 0.44 0.34 0.16 0.08 0.04 0.12 0.17 0.21 0.23
Shannon Copp 1 0.98 0.79 0.32 0.05 0.18 0.28 0.34 0.41
Shannon Q 0.99 0.92 0.61 0.16 0.04 0.16 0.26 0.35 0.36

Haar Q 0.99 0.98 0.90 0.46 0.06 0.25 0.44 0.59 0.66
Bartlett 0.99 0.98 0.87 0.49 0.04 0.34 0.8 0.94 0.99
L-B 5 0.97 0.94 0.75 0.36 0.05 0.31 0.69 0.91 0.97
L-B 20 0.80 0.74 0.52 0.29 0.08 0.24 0.51 0.70 0.76

Table 14: Simulated power and size using 1000 simulations of series with T = 64, s = 31,
J∗ = 4.

number of scales used to 4 and 3, respectively, while keeping T = 128. Using fewer scales

in general gives similar, or greater powers across the tests. The Haar Q test features

improved power for positive parameters when using fewer scales, with Haar Q, J∗ = 3

having highest power out of all the tests at T = 128 in Tables 15-17. At T = 128 the Ccom

test dominates the Calt and Copp tests for all J∗. For the quadratic form test statistics,

the Shannon test is dominated by the test using Haar wavelets.

As the Shannon Ccom and Haar Q tests have performed best in the MA simulations, these

tests are used for further comparison, however it is noted that for other alternative models

different tests may perform best. The results of Tables 15-17 lead us to suggest using

a value of J∗ = floor {log2(t2 − t1)} − 2 for the Shannon Ccom version of the test, and

J∗ = floor {log2(t2 − t1)} − 4 for the Haar Q version, noting that for particularly short

local segments it may not be practical to use such small values of J∗.

Table 18 compares the two LWN tests to results in Nason and Savchev (2014), for their
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MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom asG 1 1 1 0.87 0.08 0.42 0.81 0.95 0.96
Shannon Ccom 1 1 1 0.79 0.06 0.53 0.88 0.98 0.99
Shannon Calt 0.56 0.39 0.17 0.03 0.05 0.17 0.29 0.33 0.33
Shannon Copp 1 1 0.98 0.62 0.07 0.11 0.18 0.24 0.27
Shannon Q 1 1 0.94 0.37 0.04 0.15 0.29 0.34 0.38

Haar Q 1 1 0.99 0.67 0.06 0.29 0.50 0.67 0.75
Bartlett 1 1 1 0.83 0.04 0.77 0.99 1 1
L-B 5 1 1 0.99 0.71 0.05 0.67 0.98 1 1
L-B 20 0.99 0.99 0.87 0.46 0.07 0.44 0.85 0.98 1

Table 15: Simulated power and size using 1000 simulations of series with T = 128, s = 63,
J∗ = 5.

MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom asG 1 1 0.99 0.80 0.06 0.48 0.86 0.97 0.98
Shannon Ccom 1 1 0.99 0.72 0.04 0.57 0.90 0.98 0.99
Shannon Calt 0.81 0.69 0.44 0.14 0.05 0.17 0.25 0.26 0.28
Shannon Copp 1 1 0.98 0.55 0.05 0.29 0.49 0.57 0.62
Shannon Q 1 1 0.96 0.42 0.05 0.26 0.5 0.64 0.71

Haar Q 1 1 1 0.80 0.06 0.48 0.84 0.97 0.99

Table 16: Simulated power and size using 1000 simulations of series with T = 128, s = 63,
J∗ = 4.

MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom asG 1 1 0.97 0.67 0.04 0.52 0.88 0.98 0.99
Shannon Ccom 1 1 0.97 0.63 0.05 0.57 0.90 0.98 0.99
Shannon Calt 0.1 0.08 0.08 0.05 0.04 0.11 0.19 0.21 0.22
Shannon Copp 1 1 0.98 0.66 0.05 0.46 0.74 0.86 0.90
Shannon Q 1 1 0.95 0.54 0.04 0.40 0.79 0.93 0.97

Haar Q 1 1 1 0.81 0.06 0.71 0.97 1 1

Table 17: Simulated power and size using 1000 simulations of series with T = 128, s = 63,
J∗ = 3.
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Model
MA(2) ARMA(1,2)

Wavelet Test T = 64 T = 16 T = 32 T = 64

Shannon Ccom, J∗ = 4 0.26 - - 1
Shannon Ccom, J∗ = 3 0.22 0.60 0.97 1
Shannon Ccom, J∗ = 2 - 0.55 0.96 -

Haar Q, J∗ = 4 0.40 - - 1
Haar Q, J∗ = 3 0.58 0.85 0.99 1
Haar Q, J∗ = 2 - 0.85 0.99 -

HWWN 0.27 0.43 0.93 1
L-B 1 0.17 0.93 1 1
L-B 20 0.35 - 0.79 1
Bartlett 0.38 0.81 1 1

Table 18: Simulated power of local white noise tests against HWWN, Ljung-Box and
Bartlett results taken from Table III in Nason and Savchev (2014).

Haar wavelet white noise test (HWWN), as well as the Ljung-Box and Bartlett tests. The

MA(2) model has parameters β1 = 0 and β2 = 0.5, and the ARMA(1,2) model has pa-

rameters α1 = −0.4, β1 = −0.8 and β2 = 0.4. As shown in previous results, the number

of scales used in our LWN test for these models is important, with the Shannon Ccom test

having lower power with smaller J∗ in Table 18, and the opposite for the Haar Q test. The

LWN models perform well compared to the other methods, with a particular improvement

when using Haar Q with J∗ = 3 for the MA(2) model.

Table 19 contains equivalent results to Table 13, but with Uniform innovations with vari-

ance one rather than standard normal innovations. Both of the LWN tests are well cal-

ibrated for this type of white noise, and the resulting power values are similar to the

standard normal results for all of the tests except the Ljung-Box 20 test, which has lower

power for negative MA parameters than for normal innovations. Table 20 contains results

using Laplace innovations with variance one. The power drops a little for the LWN tests

for this distribution, with the Haar Q test having higher power than the Shannon Ccom

test. In this case, the Haar Q test also outperforms both of the Ljung-Box tests. For

negative MA parameters, the Haar Q test is most powerful, and for positive parameters

the Bartlett test has greatest power, so without further knowledge about the alternative

hypothesis it would be difficult to choose between these tests.
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MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom 0.64 0.61 0.43 0.24 0.07 0.19 0.31 0.42 0.47
Haar Q 0.75 0.69 0.51 0.28 0.05 0.16 0.28 0.43 0.47

Bartlett 0.70 0.63 0.42 0.23 0.03 0.12 0.27 0.46 0.55
L-B 5 0.47 0.43 0.29 0.14 0.04 0.12 0.22 0.37 0.43
L-B 20 0.18 0.16 0.09 0.04 0.01 0.12 0.27 0.46 0.55

Table 19: Simulated power and size using 1000 simulations of series with T = 32, s = 15,
J∗ = 3 and Uniform innovations.

MA parameter
Wavelet Test -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9

Shannon Ccom 0.51 0.46 0.25 0.08 0.01 0.10 0.21 0.32 0.34
Haar Q 0.74 0.69 0.52 0.24 0.04 0.14 0.27 0.42 0.46

Bartlett 0.70 0.61 0.44 0.19 0.02 0.10 0.25 0.44 0.57
L-B 5 0.43 0.41 0.28 0.12 0.02 0.08 0.19 0.33 0.40
L-B 20 0.14 0.13 0.06 0.02 0.00 0.03 0.06 0.12 0.12

Table 20: Simulated power and size using 1000 simulations of series with T = 32, s = 15,
J∗ = 3 and Laplace innovations.

5.5.4 Size and power properties as a local test

The previous section shows that the local white noise test works well compared to fre-

quently used tests when used as a global test on small sample sizes. In this section, the

advantage of using a local test is shown, on examples that would be described as spuri-

ous white noise using the terminology of Goerg (2012). These examples are time-varying

MA(1) processes, with parameter that averages to zero over the time interval. The inno-

vations are standard normal random variables.

The MA parameters of the three tested processes are plotted in Figure 24, along with the

test sections which are centred at values t = 32, 128, 224. The smoothing parameter is

s = 31 and J∗ = 4 scales are used throughout the following simulations. As shown in

the previous simulations, the LWN test has better power for negative parameters, so it

is expected that the sections with negative TVMA parameter will be rejected more often

than those with positive parameters. The local white noise tests are compared to using

the currently available tests, Bartlett and Ljung-Box applied globally. The LWN test is

described as rejecting the hypothesis of global white noise if any of the section tests are

inconsistent with the local white noise hypothesis. Process A has local white noise in

section 2, and has accordingly low power (size) here. As expected, the power is higher for

section 3, where the MA parameter is negative, compared to section 1. The LWN tests
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Figure 24: MA parameters of the TVMA(1) processes used in simulations.

Power
Process Wavelet Test Global Section 1 Section 2 Section 3

A

Shannon Ccom 0.86 0.48 0.02 0.78
Haar Q 0.97 0.37 0.02 0.95

Bartlett 0.11 - - -
L-B 5 0.13 - - -
L-B 20 0.19 - - -

B

Shannon Ccom 0.34 0.10 0.20 0.11
Haar Q 0.41 0.07 0.30 0.11

Bartlett 0.06 - - -
L-B 5 0.08 - - -
L-B 20 0.10 - - -

C

Shannon Ccom 0.36 0.15 0.02 0.26
Haar Q 0.49 0.15 0.03 0.42

Bartlett 0.08 - - -
L-B 5 0.12 - - -
L-B 20 0.16 - - -

Table 21: Power of tests applied to a TVMA(1) process over 1000 simulations using
standard normal innovations. The LWN global test refers to a rejection at any of the
three sections tested. LWN tests have s = 31 and J∗ = 4.

118



5.6 Examples 5 LOCAL WHITE NOISE TESTING

have much higher power (0.86-0.97) than the global white noise tests which have power

0.11-0.19 for Process A.

The power of the global white noise tests is also low for Process B. Here there is no local

white noise, but as the MA parameters are small the departures from white noise are

difficult to detect. Again, the section with negative MA parameter is detected most by

the LWN tests, and section 3 with changing positive parameter is rejected slightly more

than the stationary section 1. Although the LWN tests do not achieve high power, they

are a marked improvement on the global tests.

For Process C there is no local white noise. Section 1 has far lower power than the equiv-

alent section for Process A as for Process C the average of the MA parameter over this

section is much lower. Similarly for section 3. The central section is spurious local white

noise as the parameter averages to zero, and the local white noise test has very low power

here.

These simulations show the benefit of testing locally for white noise, as many more of the

realisations reject the null hypothesis of white noise when using our local test.

5.6 Examples

In this section, the local white noise test is used on the residuals from the GNAR models

fitted in Section 4.6. In both examples, the rectangular kernel is used to smooth the

β-spectrum estimate.

5.6.1 GDP example

In Section 4.6.1, a GNAR(2,[2,0]) model was fitted to the GDP data up to T = 51, and

shown to outperform AR and VAR models for prediction accuracy. In this section, the

LWN test is used to check the residuals of the GNAR model.

The residuals corresponding to times 4-35 are selected at each node, and nodes with

missing values are not tested. The Haar Q LWN test with J∗ = 3 and s = 15 is applied

to the residuals at the 24 nodes where these values are present. The results are shown in

Table 22. Of all of these tests, only the test of the residuals at the Belgium node rejects

the null hypothesis at the nominal level 5%. The tests were conducted separately, with no

multiple error correction, so one rejection would be expected when testing 24 times with
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Node p-value Test Statistic µ̂4 − 3(σ̂2)2 σ̂2

AUS 0.698 0.051 -0.856 0.973
AUT 0.471 0.044 -0.110 0.614
BEL 0.020 0.383 0.647 0.741
CAN 0.796 0.035 -0.411 1.011
DNK 0.731 0.016 0.088 0.581
FIN 0.200 0.295 -0.847 1.070
FRA 0.915 0.010 -0.318 0.878
DEU 0.501 0.046 -0.327 0.657
GRC 0.835 0.018 3.268 0.786
ISL 0.241 0.314 -0.920 1.179
IRL 0.790 0.022 -0.678 0.798
ITA 0.234 0.094 0.571 0.631
JPN 0.465 0.080 1.063 0.814
KOR 0.735 0.021 0.825 0.663
LUX 0.235 0.102 0.723 0.656
MEX 0.984 0.003 0.290 1.090
NLD 0.954 0.002 -0.241 0.478
NOR 0.954 0.009 -1.682 1.167
PRT 0.660 0.103 -1.085 1.279
ESP 0.382 0.160 -0.526 1.033
SWE 0.231 0.099 -0.107 0.650
CHE 0.212 0.327 1.471 1.138
GBR 0.325 0.241 0.009 1.167
USA 0.479 0.145 -1.157 1.132

Table 22: Results of Haar Q LWN test with J∗ = 3 and s = 15 applied to residuals of the
GNAR model in Section 4.6.1 at t = 4− 35.
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Figure 25: Residuals after GNAR model fit. Red triangles indicate the location of missing
observations.

nominal value 5%, therefore this rejection is not investigated further. Indeed, if Holm’s

multiple test correction is used, none of the residual series are rejected as white noise.

Although the GNAR model was chosen to minimise the prediction error (rather than

checking residuals), these tests show that the residuals of this model are also consistent

with white noise. The estimated excess kurtosis values are not equal across the nodes,

and the variance estimates also show some variability. This emphasises the need for the

GNAR model of Chapter 4 to allow for residuals that are not identically distributed across

nodes.

5.6.2 Bristol Traffic

In this section, the residuals from the GNAR model fit of the Bristol Traffic data from

Section 4.6.2 are tested for local white noise. As in Section 3.4.2, the residuals at the first

node are used here.

Figure 25 shows the GNAR residuals, with many gaps in the data. As the LWN test

requires complete observations of power of two length, the residuals at t = 197 − 260

are selected for testing. By testing this set of residuals, the GNAR fit in this section

can be evaluated. Both the Barlett test, and the Ljung-Box test with maximum lag 5

performed on the interval of length 64 return p-values over 0.9, so indicate residuals that

are consistent with white noise. As the behaviour of the residuals on the segment appears
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Test Position p-value (adjusted) p-value Test Statistic µ̂4 − 3(σ̂2)2 σ̂2

212 1 0.515 1.329 0.566 0.473
244 1 0.681 0.768 0.008 0.272

Table 23: Local white noise test results applied to GNAR residuals at times 197-260. The
LWN test used was Shannon Ccom, with running mean bandwidth s = 15 and J∗ = 3.
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Figure 26: Residuals after GNAR fit with results of two local white noise tests. Arrows
indicate the tested segments using Shannon Ccom, with running mean bandwidth s = 15
and J∗ = 3.

to change at the later values, local white noise tests are performed at two time positions.

For these tests, Shannon wavelets with the complete contrast test statistic were used on

J∗ = 3 scales, and running mean smoothing with s = 15 was used on the β-spectrum

estimate. Table 23 shows that both segments are not rejected by the local white noise

tests. This is shown graphically in Figure 26. This indicates that the GNAR model fitted

in Section 4.6.2 fits the tested segment, but the resulting noise may not be identically

distributed as there are differences in the estimated excess kurtosis of the two segments.

The simulation results of Section 5.5.3 compared the local white noise test to global white

noise tests, by effectively treating the local test as a global test. In this example, the local

white noise test was applied to data that contains local white noise, rather than global

white noise, as it is not identically distributed over the entire interval.
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5.7 Conclusion

In this chapter a test for local white noise was presented. The test is wavelet-based and

new results about wavelet quantities were developed in Section 5.3, including derivation of

the Shannon autocorrelation wavelet. This test has been shown to be effective and robust

to use of different distributions of noise through simulations.

In Section 5.4.3 different test statistics were presented that could be used in our local white

noise test. Of these, the Shannon wavelet with complete contrast statistic, and the Haar

wavelet with quadratic form statistics were the best performing tests in the simulations

of Section 5.5. If additional information about the model of a local series segment under

the alternative hypothesis were known, then a particular test statistic for the situation

could be chosen. The test statistics of Section 5.4.3 are by no means exhaustive, and other

adaptions to our local white noise test could be made. One potential adaption would be

to use wavelet packets (Definition 2.27), which may have additional power compared to

the method described in this chapter.

Our test also requires the selection of parameters J∗ and s, the number of scales to use

in the spectrum, and smoothing bandwidth, respectively. Again, these parameters can be

better chosen with additional information about the data, with s recommended to be as

great as possible while only smoothing over a stationary segment of the series. As a rule

of thumb, from the simulations in this chapter and other results not shown, when using

the contrast test statistic J∗ = J − 2 works well, where J = floor {log2(t2 − t1)}, but for

the quadratic form use of fewer scales is preferable, such as J∗ = J − 4.

Additional theoretical work using the estimated β-spectrum would be beneficial, to show

normality of the general kernel smoothed spectrum with an analogous result to Propo-

sition 5.1. In addition, the sum of squared Shannon wavelets in Equation (118) may be

available as a closed form expression.

Although many white noise tests are currently available, few, if any, are designed to test

series locally. Applying this test following the test of aliasing and local white noise by

Eckley and Nason (2018) would allow for the two alternative hypotheses to be separated.

Our test is designed for local application, but our current software implementation has

limitations for practical use, such as needing power of two inputs and requiring complete

data. Inputs of any length could be tested using the developed local white noise framework
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with adaptions made to the current software, such as padding inputs to achieve a power

of two length. As in Chapter 3, a second-generation wavelet method could be used to

produce a local white noise test robust to missing observations, which may be suitable for

use on the wider class of irregularly-sampled time series.
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6 Discussion

This section summarises the main ideas and achievements of the new methodology de-

scribed within this thesis, and discusses areas of further development of the work.

6.1 Stationarity testing with missing observations

Chapter 3 presented a new test for stationarity, designed for use on data with missing

observations. Our test uses the second-generation wavelet transform to deal with the data

gaps, and is an application of the spectrum estimation technique for irregular data of

Knight et al. (2012).

Key contributions of Chapter 3

� Novel test of stationarity designed for use when data is incomplete.

� Performs well in terms of power and size against leading tests on complete data.

� Performs well against most of the simulated stationary and non-stationary series in

Section 3.3 with up to 20% data loss.

Examples of air quality (PM10) observations and Bristol Traffic car speed data in Sec-

tion 3.4 demonstrated the use of our test on real-world datasets with missingness. Due

to the method of testing, further information was available about the non-stationary be-

haviour of the air quality dataset, such as changes over time featuring in all of the artificial

scales.

Our stationarity test deals with a particular type of irregularly-spaced data, where obser-

vations are missing at random from an evenly spaced series. Extending this test for use

with irregularly-spaced time series is a future step for this work, including the development

of a method for generating bootstrap samples of irregularly-spaced processes. In addition,

further simulations and testing while changing the number of trajectories and bootstrap

samples would enable a reasoned choice of these test parameters.
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6.2 Generalised Network Autoregressive Processes

Chapter 4 describes a generalised model for network time series, GNAR, which allows for

network change over time.

Key contributions of Chapter 4

� Unique model for network time series, allowing for covariate and neighbour set in-

clusion.

� GNAR package provides a suite of tools for fitting, predicting, and simulating GNAR

series.

� GNAR model can be used in settings where VAR fails, such as missing data, or data

with a small number of time observations compared to the number of nodes. Can

also be used for changing networks over time.

� Improved prediction performance compared to AR and VAR models in simulation

and GDP example, with fewer parameters needed for prediction.

Simulations of GNAR models in Section 4.5 demonstrated the theoretical consistency re-

sults of the parameters and BIC criterion. In the GDP example of Section 4.6.1 our model

is used to construct a network that works well for multivariate time series prediction.

Compared to the standard VAR and AR models, the GNAR model prediction using the

constructed network is much closer to the true observations of GDP.

Further work in the area of generalised network autoregressive processes includes devel-

opment of the GNAR package to enable fitting and simulating of the full range of GNAR

processes, including those with non-identically distributed innovations at each node.

6.3 Local White Noise Testing

The definition of local white noise and a corresponding local white noise test were de-

veloped in Chapter 5. This test utilised the wavelet transform and compared values of

the smoothed raw wavelet periodogram at different scales, as these values should all be

the same under the null hypothesis of local white noise. Different tests were presented

to compare these values, including contrasts and quadratic form statistics, and these test

statistics were compared to their asymptotic distribution under the null hypothesis.
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Key contributions of Chapter 5

� New derivation of Shannon autocorrelation wavelet, and sum of squared Haar wavelets.

� Novel test for local white noise.

� LWN package provides a suite of tools to perform the local white noise test.

� Test performs comparatively with global white noise tests.

� Using the definition of local white noise, poor model fit can be detected in sections

of time series residuals where global tests fail.

This test was used in Section 5.6 to demonstrate the lack of structure in the residuals of

the GNAR models fitted in Chapter 4.

Further work in this area includes testing a wider range of test statistics, including wavelet

packet quantities which may increase the power of the test against some alternatives.

Further theoretical developments of the quantities used in the autocovariance equations

would also be beneficial, particularly for Shannon wavelets. In addition, the normality

of the kernel smoothed wavelet periodogram is conjectured but not proven. Whilst a

preliminary software package for using our test is available, the functionality could be

expanded to allow for data of any length (not just a power of two). Another expansion of

this method would include providing a test for use with missing observations, which could

use second-generation wavelets in a similar way to Chapter 3.
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liftToS Function to return the test statistic of the lifting test of stationarity.

Description

This function calculates the test statistic of the lifting test of stationarity. This function performs
the NLT algorithm on the data using fwtnpperm from the nlt package, generates an estimate of the
evolutionary wavelet spectrum from the resulting details, and returns the average variance of this
spectrum after scaling.

Usage

liftToS(x, grid=1:length(x), nsims=100, nscales=9, M=0, ...)

Arguments

x a time series of length n, where n is the number of observations recorded

grid time positions of the recorded n observations, if the time series has no missing
data the grid is 1,...,n

nsims number of trajectories to use in the NLT algorithm

nscales number of artificial scales to use in the evolutionary wavelet spectrum estimate

M smoothing parameter for the spectrum

Value

A list containing

stat the test statistic

ews the evolutionary wavelet spectrum estimate, a matrix of dimension nscales x n

Author(s)

Matt Nunes, Marina Knight, Kathryn Leeming and Guy Nason.

References

Knight, M. I. and Nason, G. P.(2009) ’A ’nondecimated’ lifting transform’, Statistics and Computing,19:1-
16.

Knight, M. I., Nunes, M. A., and Nason, G. P.(2012) ’Spectral estimation for locally stationary time
series with missing observations’, Statistics and Computing, 22:877-895.

Examples

##perform test on MA(1) process with randomly missing observations
x <- arima.sim(model=list(ma=0.7), n=100)
obs <- sort(sample(1:100, 80))
liftToS(x[obs], grid=obs, nsims=100, nscales=5, M=5)

A LIFTTOS EXAMPLE DOCUMENTATION

A LiftToS example documentation
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B GNAR documentation

129



B GNAR DOCUMENTATION

130



B GNAR DOCUMENTATION

131



B GNAR DOCUMENTATION

132



B GNAR DOCUMENTATION

133



B GNAR DOCUMENTATION

134



B GNAR DOCUMENTATION

135



B GNAR DOCUMENTATION

136



B GNAR DOCUMENTATION

137



B GNAR DOCUMENTATION

138



B GNAR DOCUMENTATION

139



B GNAR DOCUMENTATION

140



B GNAR DOCUMENTATION

141



B GNAR DOCUMENTATION

142



B GNAR DOCUMENTATION

143



B GNAR DOCUMENTATION

144



B GNAR DOCUMENTATION

145



B GNAR DOCUMENTATION

146



B GNAR DOCUMENTATION

147



B GNAR DOCUMENTATION

148



B GNAR DOCUMENTATION

149



B GNAR DOCUMENTATION

150



B GNAR DOCUMENTATION

151



B GNAR DOCUMENTATION

152



B GNAR DOCUMENTATION

153



B GNAR DOCUMENTATION

154



B GNAR DOCUMENTATION

155



Package ‘LWN’
March 9, 2019

Type Package

Title Local White Noise Tests

Version 0.1.6

Author Kathryn Leeming and Guy Nason

Maintainer Kathryn Leeming <kathryn.leeming@bristol.ac.uk>

Description Performs local white noise tests using the wavelet spectrum, and contains associ-
ated wavelet functions.

Depends AutoSpec, locits, CompQuadForm, wavethresh, graphics, fractal

License GPL-2

Encoding UTF-8

LazyData true

R topics documented:

covKRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
covKRMmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getBetaMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getBetaMatS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
haarsqsum2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
JNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
lwntest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
makeRJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
psi.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
psi.k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PsiShannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
shannonmo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
shannonpsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
shannonsqsum2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sigToP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
waldByHand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Index 13

1

C LWN DOCUMENTATION

C LWN documentation

156



2 covKRM

covKRM Covariance of the running mean smoothed wavelet spectrum under
white noise

Description

Returns the value of the expected covariance between scales j,l of the running mean smoothed
wavelet spectrum under the null hypothesis of white noise. This covariance is between scales at the
same time point.

Usage

covKRM(j, l, s, sigma2=1, wavelet, kurts4, smoothing="RM", kerin=NULL)

Arguments

j Scale of the spectrum.

l Scale of the spectrum.

s Kernel bandwidth of the running mean smoother, s points either side of the
central observation are included in smoothing.

sigma2 Variance of the white noise process.

wavelet Either "Haar" or "Shannon", wavelet used in construction of the spectrum.

kurts4 Excess kurtosis of the white noise process, for Gaussian white noise this is 0.

smoothing Type of kernel smoothing used on the spectrum.

kerin The kernel used for smoothing

Details

This function may be slow for large s as it calculates and sums 2s+1 values. Called in covKRMmat
to create the covariance matrix.

Value

The value of the theoretical covariance using estimated excess kurtosis.

Examples

#covaraince between different scales with Shannon wavelet should be zero
covKRM(j=2, l=3, s=10, wavelet="Shannon", kurts4=0)
#non-zero at different scales
covKRM(j=2, l=2, s=10, wavelet="Shannon", kurts4=0)
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covKRMmat 3

covKRMmat Covariance matrix of the running mean smoothed wavelet spectrum
under white noise

Description

Constructs a matrix giving the expected covariance of the wavelet spectrum under the null hypoth-
esis of white noise.

Usage

covKRMmat(nscales, ss, ssigma, wavelet, krt, smoothtype="RM")

Arguments

nscales Number of scales to calculate the covariance for.

ss Kernel bandwidth for smoothing, set to 0 for no smoothing. Running mean
smooth is carried out with ss observations either side of the central observation.

ssigma Variance of the white noise process.

wavelet Either "Haar" or "Shannon".

krt Excess kurtosis of the white noise process, for Gaussian noise this is 0.

smoothtype Type of kernel smoothing used for the spectrum.

Details

Calls covKRM for each entry of the matrix. May be slow for large smoothing parameter.

Value

A nscales x nscales matrix of covariances.

Examples

## Generate the covariance matrix for the first three scales of an
## unsmoothed Shannon spectrum of a standard Gaussian noise process
covKRMmat(nscales=3, ss=0, ssigma=1, wavelet="Shannon", krt=0)

getBetaMat Returns Haar beta spectrum as a matrix

Description

Performs the Haar wavelet transform and returns the details as a matrix.

Usage

getBetaMat(x, xjnc)
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4 getBetaMatS

Arguments

x Input time series.

xjnc Maximum scale of the beta spectrum to return.

Value

A matrix of the Haar wavelet beta spectrum with xjnc rows and length(x) columns.

Examples

## The function is currently defined as
getBetaMat(rnorm(32), xjnc=3)

getBetaMatS Returns Shannon beta spectrum as a matrix

Description

Performs the Shannon wavelet transform and returns the details as a matrix.

Usage

getBetaMatS(x, xjnc)

Arguments

x Input time series.

xjnc Maximum scale to return of the Shannon beta spectrum.

Value

A matrix of dimension xjnc x T, where T is the length of x.

Examples

getBetaMatS(rnorm(32), xjnc=3)
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haarsqsum2 5

haarsqsum2 Calculates sum of squared Haar wavelets

Description

Returns the sum over squared Haar wavelets

Usage

haarsqsum2(l,j,m,n)

Arguments

l Haar scale

j Haar scale

m Time location corresponding to scale l

n Time location corresponding to scale j

Details

∑

t

ψ2
l,m−tψ

2
j,n−t

Value

A single value

Examples

##compare a non-overlapping segment
haarsqsum2(1,2,0,10)
##and an overlapping segment
haarsqsum2(1,2,0,1)

JNC Returns the number of non-cone scales for the Haar wavelet.

Description

Integer of non-cone scales reflecting the length of series.

Usage

JNC(TT)

Arguments

TT Length of series.
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6 lwntest

Value

An integer.

Examples

##non-cone scales for T=32
JNC(32)
##non-cone scales increases with T
JNC(256)

lwntest Function to carry out local white noise test(s)

Description

Runs a specified number of local white noise tests on an input set of observations

Usage

lwntest(x, wavelet="Shannon", ss=0, nsc=NULL, asGaussian=FALSE,
testtype="contrast", contrasttype="com",
ntests=1, testsat=NULL, padj="holm",
smoothtype="RM")

Arguments

x Series of observations (needs to be power of two in length).

wavelet Choice of wavelet for analysis, either "Haar" or "Shannon".

ss Kernel bandwidth for running mean smooth, ss points either side of the test
position are used for smoothing.

nsc Number of scales to use in each test, or NULL if number of scales is the number
of Haar non-cone scales.

asGaussian TRUE/FALSE whether to treat input observations as Gaussian data. If TRUE the
excess kurtosis is calculated but not used in covariance, if the default, FALSE,
the excess kurtosis is used in calculations of the covariance.

testtype Either "quad" or "contrast", choice of estimating and subtracting the mean
from the spectrum ("quad"), or testing whether the values are the same using
contrasts ("contrast").

contrasttype The type of contrast to calculate, either "alt", "opp", or "com" for alternate,
opposite, or complete contrasts. See makeRJ for details.

ntests How many tests to perform on the observations, these will be evenly spaced
throughout. If too many tests are specified for the length of observations and
smoothing parameter this will result in an error.

testsat A vector of positions specifying where tests should be performed, generally use
ntests instead.

padj Type of p-value adjustment to perform for multiple hypotheses, input to p.adjust.
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makeRJ 7

smoothtype Type of smoothing to be performed on the spectrum, either "RM", "Epan", or
"Tri", corresponding to running mean, Epanechnikov, and triangular kernel
smoothing, respectively.

Value

An object of class "lwn" with the containing the following:

test A ntests row matrix with the following columns: p-value(adj)adjusted p-
values of tests (only included if ntests is greater than 1) p-valuep-values
of tests test statTest statistics of tests xkurtosisEstimated excess kurtosis
sigmahatEstimated variance

times a list containing the intervals (starts, fins) and midpoints (mid) of the tested
sections

xx the input time series

s the bandwidth used in smoothing

css NULL - added for future features of the test.

Note

S3 methods plot and print are available for "lwn" objects.

Examples

##run one local white noise test on Gaussian noise with defaults
x <- rnorm(128)
lwntest(x)
##run two tests
lwntest(x, ntests=2)
##add running mean smoothing and plot test results
plot(lwntest(x, ntests=2, ss=30))

makeRJ Constructs contrast vector or matrix

Description

Returns a matrix or vector containing contrasts

Usage

makeRJ(J, contype="alt")

Arguments

J Number of scales, or length of observations to test for equal mean.

contype "alt", "opp", or "com"; "alt" is alternate 1s and -1s, "opp" is 1s for the first half
of the vector and -1s in the second half, and "com" is a complete set of contrasts.

Details

For contype="com", J can take a maximum value of 7.
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8 psi.jl

Value

A matrix of dimension 1 x J for "alt" or "com", and a matrix of dimension J-1 x J for "com".

Examples

##compare the three contrast matrices for J=5
makeRJ(5, contype="alt")
makeRJ(5, contype="opp")
makeRJ(5, contype="com")

psi.jl Cross-correlation Haar wavelet

Description

Cross-correlation Haar wavelet

Usage

psi.jl(j,l,tau)

Arguments

j Haar wavelet scale.

l Haar wavelet scale.

tau Value to evaluate the cross-correlation at.

Value

A single number

Examples

##Haar cross-correlation at the same scale has value 1 at 0
psi.jl(1,1,0)
psi.jl(2,2,0)
psi.jl(2,2,2)
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psi.k 9

psi.k Function to return the value of the Haar Autocorrelation wavelet.

Description

Haar autocorrelation wavelet

Usage

psi.k(k,tau)

Arguments

k Haar wavelet scale.
tau Value to evaluate the sutocorrelation wavelet at.

Value

A single number

Examples

##Haar autocorrelation wavelet is 1 at 0 for all scales
psi.k(1,0)
psi.k(10,0)

PsiShannon Function to return the value of the Shannon Autocorrelation wavelet

Description

Shannon Autocorrelation wavelet

Usage

PsiShannon(j,k)

Arguments

j Shannon wavelet scale.
k Value to evaluate the autocorrelation wavelet at.

Value

A single number.

Examples

##
PsiShannon(1,0)
PsiShannon(1,1)
PsiShannon(1,10)
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10 shannonpsi2

shannonmo Function to return the value of the Shannon mother wavelet

Description

Shannon mother wavelet

Usage

shannonmo(x)

Arguments

x Input value

Value

A single number.

Examples

shannonmo(0.5)

shannonpsi2 Returns the value of the Shannon wavelet

Description

Shannon wavelet

Usage

shannonpsi2(x,j,k)

Arguments

x Time location

j Scale

k Position

Value

A single number.

Examples

shannonpsi2(0,1,0)
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shannonsqsum2 11

shannonsqsum2 Calculates the value of the sum of squared Shannon wavelets

Description

A numerical computation to find the value of the sum of squared Shannon wavelets

Usage

shannonsqsum2(j,l,m,n,maxt)

Arguments

j Shannon wavelet scale.

l Shannon wavelet scale.

m Time position.

n Time position.

maxt Sum calculated numerically using values from -maxt to maxt.

Details

∑

t

ψ2
l,m−tψ

2
j,n−t

This is a numerical calculation and may be slow for large maxt.

Value

A single number.

Examples

shannonsqsum2(1,1,0,0)
##zero at different scales
shannonsqsum2(1,2,0,0)

sigToP Calculates p-value of the quadratic form test statistic using Imhof’s
method

Description

Converts the test statistic and covariance matrix into a p-value

Usage

sigToP(HSigma, stat)
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12 waldByHand

Arguments

HSigma The covaraince matrix of the quadratic form.

stat The value of the quadratic form.

Details

This function uses imhof from the CompQuadForm pack-
age.

Value

A single number in [0,1].

Note

If the p-value returned from the imhof function is negative, a warning is shown and the p-value is
set to 0.

waldByHand Performs a contrast Wald test and returns the test statistic and p-value

Description

Contrast test using matrix multiplication

Usage

waldByHand(theta, Rmat, Sigmamat, sigmahat)

Arguments

theta Estimated coefficients (spectrum)

Rmat Contrast matrix or vector.

Sigmamat Covariance matrix of theta for a process with variance 1.

sigmahat Estimated variance.

Value

tstat Value of the contrast test statistic.

pval p-value of the Wald contrast test.
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