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Abstract. We develop a version of Hida theory for higher coherent cohomology on Siegel

Shimura varieties.

Contents

1. Introduction 2
1.1. The coherent cohomology of Siegel Shimura varieties 2
1.2. Hida theory 2
1.3. The set MW 2
1.4. Higher Hida complexes 4
1.5. An application to the cohomology of arithmetic groups 5
1.6. Organization of the paper 6
2. Cohomology with support 6
2.1. Compactification 6
2.2. Formalism of cohomology with support 11
2.3. Computations of the cohomology 14
2.4. Ordinary part 17
2.5. Ordinary part of cohomology 18
2.6. Base change and perfect complexes 19
2.7. Duality 22
2.8. Iterating the correspondence 23
2.9. The spectral sequence associated to a filtration 25
2.10. Compact dynamic correspondences and finite rank operators 27
2.11. Control theorems and change of support 29
3. The Siegel Shimura varieties 31
3.1. The group G 31
3.2. Shimura varieties 32
3.3. Hodge-Tate period map 33
3.4. Igusa towers 33
4. Higher Hida theory in fixed weight and the Cousin complex 39
4.1. The Siegel variety of Iwahori level 39
4.2. The Hecke correspondences 41
4.3. The cohomological correspondence 44
4.4. Higher Hida cohomology groups in weight κ 48
4.5. The Cousin complex 49
5. Higher Hida theory in p-adic families 51
5.1. Strict dynamic compactifications of Hecke correspondences 51
5.2. Definition of higher Hida complexes 52
5.3. Control theorem 53
5.4. Ordinary Hecke algebras 55
5.5. Duality 55
5.6. The case of GSp4 56
6. Higher Coleman theory and Higher Hida theory 56
6.1. Overconvergent cohomology with support 56
6.2. Integral overconvergent cohomology and comparison with higher Hida theory 59

1



2

References 62

1. Introduction

1.1. The coherent cohomology of Siegel Shimura varieties. Let us first introduce the Siegel Shimura
varieties and the coherent cohomology of automorphic vector bundles. A standard reference is
[Har90]. Let (G = GSp2g,Hg) be the Siegel Shimura datum. Let {SK}K⊆G(Af ) be the tower
of Shimura varieties, defined over the reflex field Q. It parametrizes polarized abelian schemes
of dimension g with level structure. It carries an action of G(Af ). We let Stor

K,Σ be a toroidal
compactification of SK and we denote by DK,Σ the boundary divisor. We let Pµ be the Siegel
parabolic of G associated to µ. We let Mµ be the unipotent radical of Pµ.

Let us fix a maximal torus and a Borel T ⊆ B ⊆ Pµ ⊆ G. Let Rep(Mµ) be the category of
finite dimensional algebraic representations of Mµ. Irreducible representations are labeled by Mµ-
dominant weights κ ∈ X⋆(T )Mµ,+. The tower of Shimura varieties carries a natural Mµ-torsor,
equivariant for the G(Af )-action, and this torsor provides a functor for each level K and choice of
cone decomposition Σ to the category of locally free sheaves over Stor

K,Σ (see [Har90]):

Rep(Mµ) → V B(Stor
K,Σ)

κ ∈ X⋆(T )Mµ,+ 7→ ωκ

We consider colimKRΓ(Stor
K,Σ, ω

κ) as well as the cuspidal counterpart colimKRΓ(Stor
K,Σ, ω

κ(−DK,Σ)).

These are independent of the choice of Σ. They are complexes of smooth admissible G(Af )-
representations, and if we tensor with C, these cohomologies can be computed by automorphic
forms by [Su18].

1.2. Hida theory. Let p be a prime number. In classical Hida theory one defines p-adic modular
forms as the space of functions over the ordinary Igusa variety. Here are some of the important
properties of this space (see the book [Hid04] and the references given there):

(1) This is a flat and p-adically complete Zp-algebra. It carries an action of Hecke operators
and of the weight torus T (Zp).

(2) There is an injective map from classical modular forms H0(Stor
K,Σ, ω

κ) to p-adic modular
forms which is a restriction map from the Shimura variety to its ordinary locus.

(3) The control theorem shows that in regular and cohomological weight, the ordinary part of
p-adic modular forms identifies with ordinary classical modular forms.

(4) The interpolation theorem shows that the ordinary part of cuspidal p-adic modular forms
can be organized into a finite projective module over the Iwasawa algebra Zp[[T (Zp)]].

The goal of the current paper is to set up a theory (that we call higher Hida theory) that works
for higher cohomological degrees (not only for modular forms). Results in this direction have
already appeared in [Pil20], [BCGP21], [LPSZ19], [BP20] for g = 1 and g = 2. The rational theory
(that we called higher Coleman theory) has been developed in [BP21].

The various Hida theories are parametrized by a certain set of Kostant representatives in the
Weyl group. Each such element of the Weyl group determines certain support conditions on the
ordinary Igusa variety and we construct higher Hida theory as the ordinary part of cohomology
with support condition on the Igusa variety.

Remark 1.2.1. We found the definition of the support conditions rather subtle. In particular, unless
we are in the case of the degree 0 or top degree Hida theories, there doesn’t seem to be a canonical
choice of support condition. We found that there exists lots of suitable support conditions, but
that they all give the same ordinary cohomology. For this reason we don’t define a space of higher
p-adic modular forms, but only its ordinary part.

1.3. The set MW . In order to describe the theory, we need to introduce the set MW . Let W be
the Weyl group of G and WM be the Weyl group of M

Definition 1.3.1. We let MW be the set of minimal length representatives of the quotient WM\W .

We give several interpretations and constructions involving this set.
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1.3.2. Combinatorial description. We have X⋆(T )Mµ,+ = ∪w∈MWwX⋆(T )+. Let κ ∈ X⋆(T )Mµ,+.
We define C(κ) = {w ∈ MW,−w−1w0,M (κ+ ρ) ∈ X⋆(T )+}. We let ν + ρ = −w−1w0,M (κ+ ρ) for
any w ∈ C(κ). This is the dominant representative of the Hodge-Tate cocharacter of automorphic
forms contributing to the coherent cohomology in weight κ. If ν + ρ is regular, then the set C(κ)
contains a unique element.

1.3.3. The ordinary part of classical cohomology. Let us recall how the ordinary part of coherent
cohomology is defined from a representation theoretic perspective. If π is a smooth admissible
representation of G(Qp) defined over Qp, we let JB(π) be its Jacquet module (see [Cas]). This is
a smooth admissible T (Qp)-representation. We now introduce the ordinary part of the Jacquet
module. Given a character χ : T (Qp) → Q̄×

p , composing with the valuation v : Q̄×
p → R, we obtain

a map v(χ) : T (Qp)/T (Zp) → R. We can think of v(χ) as an element of X⋆(T )R.

Definition 1.3.4. We say that a character χ : T (Qp) → Q̄×
p is ordinary in weight κ ∈ X⋆(T )M,+ if

v(χ) = w−1w0,M (κ+ ρ) + ρ = −ν.

We let Jord
B (colimKRΓ(Stor

K,Σ, ω
κ)) be the sum of the generalized eigenspaces for ordinary char-

acters in weight κ in the Jacquet module JB(colimKRΓ(Stor
K,Σ, ω

κ)).

Remark 1.3.5. There is a partial order relation on X⋆(T )R, where λ ≥ λ′ if λ − λ′ is a linear
combination of positive roots with non-negative coefficients. The Katz-Mazur inequality postulates
that v(χ) ≥ −ν (see [BP21], conjecture 5.10.7, thm. 5.10.12 and thm. 6.10.1). Our ordinarity
condition is therefore precisely the matching of the Newton and Hodge polygon.

There is another definition of the ordinary part, using the Hecke algebra action. If Kp ⊆ G(Qp)
is a compact open subgroup admitting an Iwahori decomposition: Kp = UKp

× TKp
× ŪKp

, there

is an algebra morphism Z[T+(Qp)/TKp
] → C0

c (Kp\G(Qp)/Kp,Z), t 7→ [KptKp].

We let RΓ(Stor
KpKp

, ωκ)ord be the direct factor of RΓ(Stor
KpKp

, ωκ) where T+(Qp) acts via invertible

operators and the associated characters of T (Qp) are ordinary in weight κ. There is a natural quasi-
isomorphism

RΓ(Stor
KpKp

, ωκ)ord = Jord
B (colimKRΓ(Stor

K,Σ, ω
κ))TKp

of complexes of smooth T (Qp)-representations.

1.3.6. Archimedean representation theory and limits of discrete series. We recall how the set MW
occurs in the parametrization of limits of discrete series.

Theorem 1.3.7 ([Har90], thm. 3.4). Let κ ∈ X⋆(T )Mµ,+ and w ∈ C(κ). There exists a unique
non degenerate limit of discrete series representation π∞(κ,w) of G(R), with the property that
π∞(κ,w)⊗ Vκ has (p,K∞)-cohomology in degree ℓ(w).

Let π = π∞(κ,w)⊗πf be an automorphic representation. Then πf ↪→ colimKHℓ(w)(Stor
K,Σ, ω

κ)⊗
C. When w = Id, π∞(κ, Id) is a holomorphic limit of discrete series and the representation π is
generated by holomorphic modular forms.

1.3.8. p-adic geometry. We explain how the set MW appears naturally in the p-adic geometry of
the Shimura variety. We consider the perfectoid Shimura variety and its Hodge-Tate period map
([Sch15]):

πHT : SKp → FL = Pµ\G
The set MW is the fixed point set for the action of T (Qp) on FL. Each fiber π−1

HT ({w}) is a
perfectoid Igusa variety ([CS17]) which admits a very nice integral structure. There is a perfec-
toid p-adic formal scheme IGKp which parametrizes ordinary abelian varieties A together with
an isomorphism A[p∞] ≃ µg

p∞ ⊕ (Qp/Zp)
g, a polarization, and a Kp level structure. The fiber

π−1
HT ({w}) identifies with IGKp ×Spa(Zp,Zp) Spa(Qcycl

p ,Zcycl
p ). Let Jord be the group of polarized

self quasi-isogenies of µg
p∞ ⊕ (Qp/Zp)

g over Zp-algebras where p is nilpotent. It acts naturally on
IGKp . Let P ′(Qp) be the subgroup of Jord of self quasi-isogenies which lift to characteristic 0. We
see that P ′(Qp) is a locally profinite group scheme over Spa(Qp,Zp) which is a form of the constant
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group scheme P (Qp). For any compact open subgroup Kp,P ⊆ P ′(Qp), we have a smooth formal
scheme IGKpKp,P

which is the quotient of IGKp by Kp,P , and we get a tower:

{IGKpKp,P
}Kp,P⊆P ′(Qp)

where the transition maps are finite flat. The action of T (Qp) on π
−1
HT (w) results in a map T (Qp) →

P ′(Qp). In summary, we can attach to w the data:{
{IGKpKp,P

}Kp,P⊆P ′(Qp), T (Qp)
w→ P ′(Qp)

}
.

In particular, we get some privileged Hecke correspondences for t ∈ T+(Qp):

IGKpKp,P∩tKp,P t−1

((vv

IGKpKp,P
IGKpKp,P

1.4. Higher Hida complexes. We can attach to each w a cohomology theory RΓw(K
p, cusp/∅) ∈

D(Zp[T (Qp)] ⊗ Tsph) by considering the ordinary part of the cohomology with certain support
condition depending on w of toroidal compactifications of these Igusa varieties. Here, we assume
that Kp =

∏
ℓ̸=pKℓ and Tsph is the abstract Hecke algebra equal to the restricted tensor product

of the spherical Hecke algebras at all primes ℓ for which Kℓ = G(Zℓ) is hyperspecial. The support

conditions are chosen according to the Hecke correspondences parametrized by t ∈ T+(Qp)
w→

P ′(Qp). We now describe the main properties of these cohomology.
Let T ′(Zp) be the pro-p subgroup of T (Zp). We let C0(T ′(Zp),Zp) be the T ′(Zp)-module of

continuous functions on T ′(Zp), with value in Zp. Its Zp-dual is the algebra of measure on T ′(Zp),
equal to the completed group algebra Λ′ = Zp[[T

′(Zp)]].

Definition 1.4.1. We say that a complex in D(Zp[T
′(Zp)]) is admissible if it can be represented by

a bounded complex of T ′(Zp)-modules M• where M i is isomorphic to C0(T ′(Zp),Zp)
ni . We say

that an admissible complex has amplitude [a, b] if it can be represented by a complex M• as before
concentrated in the range [a, b].

Remark 1.4.2. If a complex is admissible, then its dual is a perfect complex over the Iwasawa
algebra Λ′. If it has amplitude [a, b], then its dual has amplitude [−b,−a] over Λ′.

Theorem 1.4.3. The cohomologies RΓw(K
p, cusp/∅) enjoy the following properties:

(1) (admissibility) RΓw(K
p, cusp/∅) is admissible

(2) (Integral cohomological vanishing) If g = 1 or g = 2, RΓw(K
p, cusp) has amplitude

[0, ℓ(w)], and RΓw(K
p) has amplitude [ℓ(w), g(g+1)

2 ].
(3) (Rational cohomological vanishing) RΓw(K

p, cusp)⊗ZpQp has amplitude [0, ℓ(w)], RΓw(K
p)⊗Zp

Qp has amplitude [ℓ(w), g(g+1)
2 ]

(4) (Classicality in regular weight) Let ν ∈ X⋆(T )+. Let κ = −w0,Mw(ν+ρ)−ρ ∈ X⋆(T )M,+.
Let Kp = UKp × TKp × ŪKp be a compact open subgroup of G(Qp) admitting an Iwahori
decomposition. Let n ∈ Z≥0 be such that {t ∈ T (Zp), t = 1 mod pn} ⊆ TKp . Then there
is a T (Qp)-equivariant quasi-isomorphism

RHomTKp
(ν,RΓw(K

p))⊗Zp
Qp(ζpn)(−ν) = RΓ(Stor

KpKp
, ωκ)ord ⊗Qp

Qp(ζpn)

and similarly for cuspidal cohomology.
(5) (Cousin spectral sequence) Let κ ∈ X⋆(T )M,+. Let ν = −w−1w0,M (κ + ρ) − ρ for any

w ∈ C(κ). Let Kp = UKp ×TKp × ŪKp be a compact open subgroup of G(Qp) admitting an
Iwahori decomposition. Let n ∈ Z≥0 be such that {t ∈ T (Zp), t = 1 mod pn} ⊆ TKp .

There is a T (Qp)-equivariant spectral sequence:

⊕w∈C(κ),ℓ(w)=pRHomTKp
(ν,RΓw(K

p))⊗Zp
Qp(ζpn)(−ν) ⇒ Hp+q(Stor

KpKp
, ωκ)ord ⊗Qp

Qp(ζpn).

Remark 1.4.4. We conjecture that the integral vanishing theorem 2) above holds for any g and any
w. It holds if w = Id or w = wM

0 is the longest element of MW .
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Remark 1.4.5. The point 4) is a special case of 5). Indeed, when the weight is regular the spectral
sequence trivially degenerates as #C(κ) = 1.

Remark 1.4.6. In point 4) and 5) we need to extend scalars to Qp(ζpn) because the definition of
the level structure on the Shimura variety and the Igusa variety differ slightly.

There is another way to organize the information contained in the cohomology RΓw(K
p, cusp/∅)

by using the Iwasawa algebra Λ = Zp[[T (Zp)]]. We can construct perfect complexes of Λ-modules:

M•
w = RHomT (Zp)(1,RΓw(K

p)⊗Zp Λ)

M•
w,cusp = RHomT (Zp)(1,RΓw(K

p, cusp)⊗Zp
Λ).

The ordinary Hecke algebra Tw and Tw,cusp are the finite Λ-algebras equal to the image of Tsph

in End(M•
w) and End(M•

w,cusp).
The following interpolation property follows easily from theorem 1.4.3:

Proposition 1.4.7. For any ν = νalgχ : T (Zp) → Zp(ζpn)×, with νalg ∈ X⋆(T )+ and χ a finite
order character, and for κ = −w0,Mw(ν + ρ)− ρ, we have:

M•
w ⊗Λ,−ν Qp(ζpn) = RΓ(Stor

KpKp
, ωκ)ord ⊗Qp

Qp(ζ
n
p )[χ]

where Kp = UKp
× TKp

× ŪKp
is a compact open subgroup of G(Qp) admitting an Iwahori decom-

position, TKp
⊆ Kerχ and [χ] means the χ-isotypic part for the action of diamond operators in

T (Zp)/TKp
. A similar statement holds for cuspidal cohomology.

We can now state the duality theorem, using the modules M•
w. There is an involution of MW ,

w 7→ w0,Mww0.

Theorem 1.4.8 (Serre duality). There is a perfect pairingM•
w⊗ΛM

•
w0,Mww0,cusp → Λ[−d], for which

the adjoint of t ∈ T (Qp) is w0t
−1 and the adjoint of [KℓgKℓ] is [Kℓg

−1Kℓ] for some prime ℓ ̸= p
such that Kℓ = G(Zℓ). This pairing is compatible with the classical Serre duality when specializing
to locally algebraic dominant weights.

In [BP21], we developed higher Coleman theory which is the theory of overconvergent modular
forms in higher cohomological degree. We prove the natural compatibility between higher Coleman
and higher Hida theory, which we state informally as follows:

Theorem 1.4.9. The slope 0 part of higher Coleman theory canonically identifies with the rational
part of higher Hida theory.

We can also use the present paper to produce lattices in overconvergent cohomology and deduce
lower bounds on slopes of overconvergent cohomology.

Theorem 1.4.10. The lower bounds on slopes conjectures 5.9.2 and 6.8.1 in [BP21] hold true.

As a consequence, one can replace the strongly small slope condition in [BP21] (in the Siegel
case) by the small slope condition.

1.5. An application to the cohomology of arithmetic groups. Let N be an integer divisible by
p. Let us consider the arithmetic group Γ = {γ ∈ Sp2g(Z), γ = 1 mod N}. Let H⋆(Γ,Z) be
the cohomology of Γ acting on Z. This is a finite Z-module, acted on by the Hecke algebra TN

generated by the double classes ΓtΓ for t ∈ Sp2g(Q) in the usual way:

ΓtΓ : H⋆(Γ,Z) res→ H⋆(t−1Γt ∩ Γ,Z) t→ H⋆(tΓt−1 ∩ Γ,Z) cores→ H⋆(Γ,Z).

For 0 ≤ i ≤ g, let ti = diag(p, · · · , p, 1, · · · , 1, p−1, · · · , p−1) be the diagonal matrix with 2i many
1’s. The double classes {ΓtiΓ}0≤i≤g generate a commutative subalgebra of TN .

We now consider H⋆(Γ,Z)⊗Z Zp = H⋆(Γ,Zp) and its rational part H⋆(Γ,Z)⊗Z Qp = H⋆(Γ,Qp).
Let us define H⋆(Γ,Zp)

ord ⊆ H⋆(Γ,Zp) to be the direct factors where the operators ΓtiΓ act
invertibly and H⋆(Γ,Qp)

ord = H⋆(Γ,Zp)
ord ⊗Zp

Qp.

Theorem 1.5.1. We have Hi(Γ,Qp)
ord = 0 for 0 ≤ i < g(g+1)

2 .
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Remark 1.5.2. This theorem is to be compared with the general belief that the tempered part

of H⋆(Γ,Q) should be concentrated in degrees ≥ g(g+1)
2 (see [Ven17], section 4.2 for example).

Temperedness is a condition on the archimedean size of Hecke eigenvalues, while ordinarity is a
condition on the p-adic size.

We also remark that in theorem 5.12.11 of [BP21] we proved a variant of theorem 1.5.1 with
coefficients in an algebraic representation of slightly regular weight. However the proof in the case
of trivial coefficients depends on the methods of this paper.

1.6. Organization of the paper. In the section 2 we develop abstractly the formalism of cohomology
with partial support and of correspondences acting on these cohomology. We show that there is at
most one reasonable way to attach to a scheme and a correspondence over this scheme an ordinary
cohomology theory (the ordinary part of a cohomology with partial support). In the section 3, we
review the theory of Siegel modular varieties and their integral models. At a deep level, there are
plenty of (very singular) integral models for the Shimura variety. However, there is a very good
integral theory for the ordinary Igusa varieties. We show that the various finite level ordinary
Igusa varieties can be organized into a tower of smooth formal schemes very similarly to the tower
of Shimura varieties over Q. In section 4, we focus on the Shimura variety of deep Iwahori level
and we work in fixed weight. We manage to produce integral models for the classical cohomology
of the Shimura variety which carry and action of the Hecke operators at p. We construct a Cousin
spectral sequence which computes the ordinary part of the cohomology of these integral models
in terms of local cohomologies which turn out to be the various higher Hida theories in a given
weight. In section 5, we prove that the higher Hida theories interpolate over the weight space, just
like in classical Hida theory. In section 6, we compare higher Hida theory and higher Coleman
theory by studying overconvergent versions of higher Hida theory.

Acknowledgements: We thank A. Caraiani and J. Newton for their careful reading and detailed
comments on a draft of this paper. We thank Hung Chiang, Najmuddin Fakhruddin and Toby Gee
for their comments. This work was supported by the ERC-2018-COG-818856-HiCoShiVa. Part of
this work was completed while the first author was a Royal Society University Research Fellow.

2. Cohomology with support

2.1. Compactification. Let S be a noetherian affine scheme. We work in the category of S-schemes.

2.1.1. Compactification of a scheme. Let X be a separated, finite type S-scheme.

Definition 2.1.2. A compactification of X (over S) is a proper S-scheme X̄ together with an open
immersion jX : X ↪→ X̄.

Compactifications of X form in a natural way a category, with maps ξ : (jX : X ↪→ X̄) → (j′X :
X ↪→ X̄ ′) being given by maps of S-scheme ξ : X̄ → X̄ ′, extending the identity of X. Moreover,
the category is cofiltered.

Remark 2.1.3. By a theorem of Nagata, compactifications exist. See [Sta22], thm TAG 0F41.

Lemma 2.1.4. Let ξ : (jX : X ↪→ X̄) → (j′X : X ↪→ X̄ ′) be a map of compactifications. Then
ξ⋆X = X.

Proof. The map ξ : ξ⋆X → X is a separated map. It has a section s : X → ξ⋆X. The section is a
closed immersion. Since s(X) is open dense in ξ⋆X we deduce that ξ⋆X = s(X). □

We recall that a closed subscheme D of X̄ is called an effective Cartier divisor if D = V (I )
where I is an invertible ideal in OX̄ .

Lemma 2.1.5. Compactifications jX : X ↪→ X̄ with the property that X̄ \ X admits the structure
of an effective Cartier divisor in X̄ are cofinal among compactifications.

Proof. Let D be the closed complement of X̄ endowed with the reduced scheme structure. We
have D = V (I ). We let X̄ ′ be the blow-up of X at the ideal I . Then by [Sta22], Lemma Tag
02OS, X ↪→ X̄ ′ is a compactification mapping to X ↪→ X̄. □
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Lemma 2.1.6. Let F be a locally free sheaf of finite rank over X. The set of compactifications
(jX : X ↪→ X̄) with the property that F extends to a locally free sheaf over X̄ is cofinal among
compactifications.

Proof. Let X̄ be a compactification. We can take an arbitrary extension of G to X̄ by [Sta22],
TAG 01 PE, then perform a suitable blow-up X̄ ′ and take the strict transform to find an extension
Ḡ ′ of G to X̄ ′ which is locally free ([RG71], thm. 5.2.2). □

2.1.7. Compactification of a correspondence. We adopt the following definition of correspondence:

Definition 2.1.8. A correspondence is a quadruple (C,X, p1, p2), where X and C are separated, finite
type schemes over S, coming with two projections p1, p2 : C ⇒ X and such that p1×p2 : C → X×X
is a proper map.

Definition 2.1.9. A compactification (denoted (C̄, X̄, p̄1, p̄2)) of a correspondence (C,X, p1, p2) is a
diagram:

C̄

p̄2

~~

p̄1

  

C
p1

��

jC

OO

p2

��

X̄ X
jXoo X

jX // X̄

where jC and jX are open immersions, X̄ and C̄ are proper, and C = C̄ ×X̄×X̄ X ×X.

Remark 2.1.10. In particular (C̄, X̄, p̄1, p̄2) is a correspondence.

Lemma 2.1.11. Compactifications of a correspondence exist.

Proof. Let (C,X, p1, p2) be a correspondence. Let X̄ and C̄ ′ be compactifications of X and C. Let
C̄ be the schematic closure of C in C̄ ′ × X̄ × X̄. We have a map C → C̄ ×X̄×X̄ X ×X which is a
dense open immersion of proper schemes over X ×X. Therefore this is also a proper map, hence
an isomorphism. □

A map between compactifications

(C̄, X̄, p̄1, p̄2) → (C̄ ′, X̄ ′, p̄′1, p̄
′
2)

is the data of maps C̄ → C̄ ′ and X̄ → X̄ ′ inducing the identity on C and X and making all the
obvious diagrams commute.

Lemma 2.1.12. Let (C̄, X̄, p̄1, p̄2) be a compactification of (C,X, p1, p2). Let (X ↪→ X̄ ′) → (X ↪→
X̄) be a map of compactifications of X. There exists a map (C̄ ′, X̄ ′, p̄′1, p̄

′
2) → (C̄, X̄, p̄1, p̄2) of

compactifications of (C,X, p1, p2), compatible with the given map (X ↪→ X̄ ′) → (X ↪→ X̄).

Proof. We take C̄ ′ = C̄ ×X̄×X̄ X̄ ′ × X̄ ′. □

Lemma 2.1.13. The category of compactifications of (C,X, p1, p2) is cofiltered: if (C̄, X̄, p̄1, p̄2) and
(C̄ ′, X̄ ′, p̄′1, p̄

′
2) are two compactifications, there exists a compactification (C̄ ′′, X̄ ′′, p̄′′1 , p̄

′′
2) with maps

(C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2) → (C̄, X̄, p̄1, p̄2) and (C̄ ′′, X̄ ′′, p̄′′1 , p̄

′′
2) → (C̄ ′, X̄ ′, p̄′1, p̄

′
2).

Proof. We can take X̄ ′′ = X̄ × X̄ ′ and C̄ ′′ = C̄ × C̄ ′. □

2.1.14. Closed subschemes. Let X̄ be a scheme. Let D be a closed subscheme of X̄. We recall that
D is called locally principal if D = V (I ) and there exists an invertible sheaf L over X̄ and a map
L → OX̄ whose image is I . We will often denote L by OX̄(−D), even if the choice of L is not
unique. In the case that I itself is an invertible sheaf, D is called Cartier. In this case I is also
denoted by OX̄(−D) in the literature.

Definition 2.1.15. Let D = V (I ) and D′ = V (I ′) be closed subschemes of X̄.

(1) We write D ⊆ D′ when D is a subset of D′. In other words, I ′ ⊆
√

I .
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(2) Let s ∈ Q>0. We write D ≤ sD′ if we can write s = p
q with p, q ∈ Z≥0 and (I ′)p ⊆ (I )q.

Remark 2.1.16. We warn the reader that D ≤ D′ implies that D ⊆ D′ as subsets of X̄ but not
that we have a map D → D′ as subschemes of X̄.

Lemma 2.1.17. (1) If D and D′ are Cartier divisors, then D ≤ D′ implies that there exists
n0 ∈ Z≥0 such that we have a canonical injective map: OX̄(−n0D′) → OX̄(−n0D).

(2) If X̄ is normal and D and D′ are Cartier divisors, then D ≤ D′ implies that we have a
canonical injective map: OX̄(−D′) → OX̄(−D).

(3) If X̄ is quasi-compact, D = V (I ) and D′ = V (I ′) are locally principal closed subschemes
and D ≤ sD′ for 0 < s < 1, then for any s < s′ < 1, for any choice of maps OX̄(−D) → I

and OX̄(−D′) → I ′, there exists p′ and q′ such that s′ = p′

q′ and such that we have a

canonical diagram:

OX̄(−p′D′) //

��

OX̄(−q′D)

��

(I ′)p
′

// (I )q
′

Proof. We consider a local situation first. Let X̄ = Spec A and D = V (f), D′ = V (f ′). In the
first case, by definition, (f ′)n0A ↪→ (f)n0A. In the second case, we use the normality assumption

to deduce that ( f
f ′ )

n0 ∈ A implies f
f ′ ∈ A. Therefore (f ′)A ↪→ (f)A. In the last case we suppose

s = p
q and (f ′)p = afq where a is unique up to an element of fq-torsion. For any k we deduce that

(f ′)kp = akfqf (k−1)q where akfq depends only of f ′ and f . We therefore get a canonical diagram
(which only depends on choices of generators of (f)A and (f ′)A):

A
akfq

//

(f ′)kp

��

A

f(k−1)q

��

(f ′)kpA // (f)(k−1)qA

We put s′ = p′

q′ . We have kp = p′k p
p′ and (k − 1)q = q′k p

p′
p′q
pq′

k−1
k . We find that p

p′
p′q
pq′

k−1
k ≥ 1 for

k large enough. We therefore get a canonical map for a large enough k:

A //

(f ′)kp′

��

A

fkq′

��

(f ′)kp
′
A // (f)kq

′
A

We now change p′ to kp′ and q to kq′. Doing this on a finite affine open covering of X̄ (and possibly
increasing p′ and q′ by a multiple), gives a canonical map: OX̄(−p′D′) → OX̄(−q′D). □

2.1.18. Expanded and contracted subschemes. Let (C̄, X̄, p̄1, p̄2) be a correspondence.

Definition 2.1.19. (1) We say that a closed subscheme D ⊆ X̄ is expanded by the correspon-
dence if p̄⋆2D ⊆ p̄⋆1D.

(2) We say that a closed subscheme D is strictly expanded if p̄⋆2D ≤ sp̄⋆1D for some 0 < s < 1.

(3) We say that a closed subscheme D is compactly expanded if p̄⋆2D ⊆
◦

p̄⋆1D
1.

(4) We say that a closed subscheme D ⊆ X̄ is contracted by the correspondence if p̄⋆1D ⊆ p̄⋆2D.
(5) We say that a closed subscheme D is strictly contracted if p̄⋆1D ≤ sp̄⋆2D for some 0 < s < 1.

(6) We say that a closed subscheme D is compactly contracted if p̄⋆1D ⊆
◦

p̄⋆2D.

Remark 2.1.20. The notion of expanded/contracted is set theoretical. The notion of compactly
expanded/contracted is topological. The notion of strictly expanded/contracted is schematic.

1For a subset T of a topological space V we let
◦
T be the interior of T in V
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Example 2.1.21. Let S = Spec Fp. We consider the Frobenius correspondence. Namely, C̄ = X̄,
and we let p2 = F : X̄ → X̄ be the Frobenius map and p1 : X̄ → X̄ be the identity. Then for any
closed subscheme D, we have p̄⋆2D = pp̄⋆1D, so D is strictly contracted.

Remark 2.1.22. If D is compactly expanded, we see that the closure of C̄ \ p̄⋆1D in C̄ is contained in
C̄ \ p̄⋆2D. We chose the adjective compactly to indicate that there is a connection with the theory
of compact operators. See section 2.10.

2.1.23. Dynamic correspondences. We introduce certain key definitions.

Definition 2.1.24. (1) A dynamic correspondence is a data (C̄, X̄, p̄1, p̄2, D+, D−), where (C̄, X̄, p̄1, p̄2)
is a correspondence, p̄1 and p̄2 are proper maps, D− and D+ are closed subschemes of X̄,
such that D+ is expanded by C̄ and D− is contracted by C̄.

(2) A strict dynamic correspondence (C̄, X̄, p̄1, p̄2, D+, D−) is a dynamic correspondence where
D+ is strictly expanded and D− is strictly contracted.

(3) A compact dynamic correspondence (C̄, X̄, p̄1, p̄2, D+, D−) is a dynamic correspondence
with the property that D+ is compactly expanded, and D− is compactly contracted.

2.1.25. Dynamic compactifications of a correspondence. Let (C,X, p1, p2) be a correspondence.

Definition 2.1.26. A dynamic compactification of (C,X, p1, p2) is a dynamic correspondence (C̄, X̄, p̄1, p̄2, D+, D−),
where (C̄, X̄, p̄1, p̄2) is a compactification of the correspondence (C,X, p1, p2) and X̄\X = D−∪D+.
A strict dynamic compactification is a dynamic compactification which is a strict dynamic corre-
spondence. A compact dynamic compactification is a dynamic compactification which is a compact
dynamic correspondence.

Remark 2.1.27. (1) We are asking that the support of D− ∪D+ is X̄ \X.
(2) We are not imposing that D− and D+ are disjoint.
(3) A given compactification (C̄, X̄, p̄1, p̄2) can often be enriched in different ways into a dy-

namic compactification.
(4) We don’t know if a correspondence always admits a dynamic compactification.

A (non-strict) map between dynamic compactifications

(C̄, X̄, p̄1, p̄2, D+, D−) → (C̄ ′, X̄ ′, p̄′1, p̄
′
2, D

′
+, D

′
−)

is a map of compactifications with the property that for the map ξ : C̄ → C̄ ′, we have D+ ⊇ ξ⋆D′
+

and D− ⊇ ξ⋆D′
−. We say that the map is strict if D+ = ξ⋆D′

+ and D′
− = ξ⋆D′

−.

Lemma 2.1.28. Let (C̄, X̄, p̄1, p̄2, D+, D−) be a dynamic (resp. strict dynamic, resp. compact dy-
namic) compactification of (C,X, p1, p2). Let (C̄ ′, X̄ ′, p̄′1, p̄

′
2) be a compactification of (C,X, p1, p2)

and let ξ : (C̄ ′, X̄ ′, p̄′1, p̄
′
2) → (C̄, X̄, p̄1, p̄2) be a map of compactifications. Then (C̄ ′, X̄ ′, p̄′1, p̄

′
2, ξ

⋆D+, ξ
⋆D−)

is a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.

Proof. By lemma 2.1.4, ξ⋆(D+ ∪D−) = X̄ ′ \X. The rest follows easily. □

Lemma 2.1.29. Let C = (C̄, X̄, p̄1, p̄2, D+, D−) be a dynamic (resp. strict dynamic, resp. compact
dynamic) compactification. There exists a dynamic (resp. strict dynamic, resp. compact dynamic)
compactification C′ = (C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−) and a strict map C′ → C with the property that D′

+

and D′
− are Cartier divisors on X̄ ′ and p̄⋆iD

′
+, p̄

⋆
iD

′
− for i = 1, 2 are Cartier Divisors in C′.

Proof. We let D+ = V (I ) and D− = V (J ). We let X̄ ′ be the blow-up of X̄ at D+ ∪ D′ =
V (I J ). Let D′

+ and D′
− be the pull backs of D+ and D−. They are Cartier divisors by

[Sta22], TAG 02ON. We let C̄ ′′ be C̄ ×X̄×X̄ X̄ ′ × X̄ ′. We now let C̄ ′ be the blow-up of C̄ ′′ at
p̄⋆1D

′
+ ∪ p̄⋆2D′

+ ∪ p̄⋆1D′
− ∪ p̄⋆2D′

−. □

Lemma 2.1.30. Let (C̄, X̄, p̄1, p̄2) be a compactification and let

(C̄, X̄, p̄1, p̄2, D+ = V (I ), D− = V (J )) and (C̄, X̄, p̄1, p̄2, D
′
+ = V (I ′), D′

− = V (J ′))

be two enrichments as a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.
Then (C̄, X̄, p̄1, p̄2, D

′
+∪D+ = V (I I ′), D′

−∪D− = V (J J ′)) is a dynamic (resp. strict dynamic,
resp. compact dynamic) compactification.
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Proof. Obvious. □

Lemma 2.1.31. The category of dynamic (resp. strict dynamic, resp. compact dynamic) compactifi-
cations of (C,X, p1, p2, ) where maps are non strict maps is cofiltered: if (C̄, X̄, p̄1, p̄2, D+, D−) and
(C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−) are two dynamic (resp. strict dynamic, resp. compact dynamic) compact-

ifications, there exists a dynamic (resp. strict dynamic, resp. compact dynamic) compactification
(C̄ ′′, X̄ ′′, p̄′′1 , p̄

′′
2 , D

′′
+, D

′′
−) with maps

(C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2 , D

′′
+, D

′′
−) → (C̄, X̄, p̄1, p̄2, D+, D−)

(C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2 , D

′′
+, D

′′
−) → (C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−).

Proof. It follows from lemma 2.1.13 that we can find a compactification: (C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2) with maps

of compactification ξ : (C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2) → (C̄, X̄, p̄1, p̄2) and ξ

′ : (C̄ ′′, X̄ ′′, p̄′′1 , p̄
′′
2) → (C̄ ′, X̄ ′, p̄′1, p̄

′
2).

Now we take D′′
+ = ξ⋆D+ ∪ (ξ′)⋆D′

+ and D′′
− = ξ⋆D− ∪ (ξ′)⋆D′

−. This works by lemma 2.1.30. □

2.1.32. Permanence property. We consider a commutative diagram of correspondences (C,X, p1, p2)
and (C ′, X ′, p′1, p

′
2):

C ′

p′
1

  ��

p′
2

~~

X ′

��

C
p1

!!

p2

}}

X ′

��

X X

Lemma 2.1.33. We assume that in the above diagram the maps C ′ → C and X ′ → X are proper
and that (C,X, p1, p2) admits a dynamic (resp. strict dynamic, resp. compact dynamic) compacti-
fication (C̄, X̄, p̄1, p̄2, D+, D−). Then (C ′, X ′, p′1, p

′
2) admits a dynamic (resp. strict dynamic, resp.

compact dynamic) compactification.

Proof. We let X̄ ′′ and C̄ ′′ be compactifications of X ′ and C ′. We let X̄ ′ be the closure of X ′ in
X̄ ′′× X̄ and C̄ ′ be the closure of C ′ in C̄ ′′× C̄. We claim that X̄ ′×X̄ X = X ′. Indeed, the natural
map X ′ → X̄ ′ ×X̄ X is both an open immersion and a proper map (since X ′ → X is assumed to
be proper). Similarly, we see that C̄ ′ ×C̄ C = C ′. We thus deduce that C ′ = C̄ ′ ×X̄′×X̄′ X ′ ×X ′.

We have a diagram:

C̄ ′

p̄′
1

  

t
��

p̄′
2

~~

X̄ ′

r

��

C̄
p̄1

  

p̄2

~~

X̄ ′

r

��

X̄ X̄

We now let D′
+ = r⋆D+ and D′

− = r⋆D−. It is easy to check that this compactification has the

desired properties. For example, let us assume that (C̄, X̄, p̄1, p̄2, D+, D−) is strict dynamic. The
identity p̄⋆2D+ ≤ sp̄⋆1D+ implies t⋆p̄⋆2D+ ≤ st⋆p̄⋆1D+ and thus (p̄′2)

⋆D′
+ ≤ s(p̄′1)

⋆D′
+. One proceeds

similarly with D′
−. We thus see that (C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−) is a strict dynamic compactification

of (C ′, X ′, p′1, p
′
2).

□

Let (C,X, p1, p2) be a correspondence and (C̄, X̄, p̄1, p̄2) be a compactification.

Lemma 2.1.34. Assume that (C̄red, X̄red, p̄red1 , p̄red2 ) which is a compactification of (Cred, Xred, pred1 , pred2 )
admits a dynamic (resp. strict dynamic, resp. compact dynamic) compactification (C̄red, X̄red, p̄1, p̄2, D

red
+ , Dred

− ).

Then (C̄, X̄, p̄1, p̄2, D
red
+ , Dred

− ) is a dynamic (resp. strict dynamic, resp. compact dynamic) com-
pactification.
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Proof. The cases of a dynamic or compact dynamic are obvious as these notions are set theoretical
or topological. We do the case of a strict dynamic compactifications. We assume that there exists
0 < s < 1 such that (p̄red2 )⋆Dred

+ ≤ s(p̄red1 )⋆Dred
+ . We prove that a similar inequality holds over C̄.

We can check it locally. Let U1, U2 be open affines of X̄ and let V ⊆ C̄ be an open affine of C̄
such that p̄i(V ) ⊆ Ui. Let s1, · · · , sd be generators the ideal of Dred

+ over Ured
1 and let ŝ1, · · · , ŝd

be lifts of them to OX̄(U1). The ideal of Dred
+ over U1 is generated by {ŝ1, · · · , ŝd,

√
0U1

} where√
0U1

is the nilradical of OU1
.

Similarly, we find generators {t̂1, · · · , t̂d′ ,
√
0U2

} of Dred
+ over U2. By assumption, for s = p

q we

have
(p̄⋆1(ŝ1, · · · , ŝd,

√
0U1

))p ⊆ (p̄⋆2(t̂1, · · · , t̂d′))q +
√
0V .

Let r be such that (
√
0V )

r = (0). We see that for all l ≥ 0,

(p̄⋆2(t̂1, · · · , t̂d′))q +
√
0V )

l ⊆ (p̄⋆2(t̂1, · · · , t̂d′))ql−r.

We deduce that
(p̄⋆1(ŝ1, · · · , ŝd,

√
0U1))

pl ⊆ (p̄⋆2(t̂1, · · · , t̂d′ ,
√
0U2))

ql−r.

For l large enough, pl < ql−r. The case of Dred
− is similar. We conclude as C̄ is quasi-compact. □

2.2. Formalism of cohomology with support. We use the material from [CSb]. We assume that
all schemes are of finite type over Z. For any such scheme X, we have a triangulated category
of solid OX -modules, denoted D(OX,■), and there is a six functor formalism. There is a fully
faithful functor D(OX) → D(OX,■) where D(OX) is the usual derived category of quasi-coherent
OX -modules. The objects of D(OX) are by definition the discrete objects of D(OX,■).

2.2.1. Base change maps. Let X be an S-scheme. Consider a cartesian diagram where jX and jC
are open immersions:

C
jC //

p

��

C̄

p̄

��

X
jX // X̄

Lemma 2.2.2. Let F be an object of D(OX,■).

(1) We have a natural map p̄⋆(jX)⋆F → (jC)⋆p
⋆F ,

(2) We have a natural isomorphism p̄⋆(jX)!F → (jC)!p
⋆F ,

(3) We have a natural map (jC)!p
!F → p̄!(jX)!F .

(4) We have a natural isomorphism: (jC)⋆p
!F → p̄!(jX)⋆F .

Proof. For the first point we just follow the adjunctions. We have:

Hom(p̄⋆(jX)⋆F , (jC)⋆p
⋆F ) = Hom((jC)

⋆p̄⋆(jX)⋆F , p⋆F )

= Hom(p⋆j⋆X(jX)⋆F , p⋆F )

= Hom(p⋆F , p⋆F )

The map is given by the identity of p⋆F . The second point is the proper base change theorem
(note that C̄ and X are tor-independent !), see [CSb], Lecture XI. The other points are similar. □

2.2.3. Cohomology with partial support. Let X̄ be an S scheme. Let D+, D− be two closed sub-
schemes of X̄. We let D = D+ ∪D− and we let X = X̄ \D.

Consider X
j−
↪→ X̄ \D+

j+
↪→ X̄ as well as X

i+
↪→ X̄ \D−

i−
↪→ X̄. Let F be an object of D(OX,■).

Definition 2.2.4. We define RΓD+,D−(X̄,F ) := RΓ(X̄, (j+)⋆(j−)!F ) and RΓD−,D+(X̄,F ) :=

RΓ(X̄, (i−)!(i+)⋆F ).

Remark 2.2.5. If we have an intermediate open subscheme X
j
↪→ X ′ ↪→ X̄ and F is an object of

D(OX′,■), then we abuse notation and write RΓD−,D+
(X̄,F ) (respectively RΓD+,D−(X̄,F )) for

RΓD−,D+
(X̄, j⋆F ) (respectively RΓD+,D−(X̄, j

⋆F )).
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Lemma 2.2.6. Let X̄ be an S-scheme. Let D+, D− and D′
+, D

′
− be closed subschemes of X̄. We

assume that D′
− ⊆ D− and D+ ⊆ D′

+. We also let F ∈ D(OX̄\{D′
−∪D+},■). We have natural

maps

RΓD+,D−(X̄,F ) → RΓD′
+,D′

−
(X̄,F )

RΓD−,D+
(X̄,F ) → RΓD′

−,D′
+
(X̄,F )

Proof. We only treat the first case. We can also assume that either D′
+ = D+ or D′

− = D−. Let
us first assume that D′

− = D− and D′
+ ⊇ D+. Consider the following diagram:

X̄ \ {D+ ∪D−}
j−

// X̄ \D+

j+
// X̄

X̄ \ {D′
+ ∪D−}

j′−
//

i′

OO

X̄ \D′
+

i

OO
j′+

<<

Let F be a sheaf on X̄ \ {D+ ∪D−}. We need to produce a canonical map

j+,⋆j−,!F → j′+,⋆j
′
−,!(i

′)⋆F .

Using that j′+ = j+ ◦ i, it suffices to produce a canonical map

j−,!F → i⋆j
′
−,!(i

′)⋆F .

By adjunction, this amounts to a map:

F → j⋆−i⋆j
′
−,!(i

′)⋆F .

We can use the flat base change map j⋆−i⋆ = i′⋆(j
′
−)

⋆ and the adjunction (j′−)
⋆j′−,! = Id to deduce

that this boils down to the natural map given by adjunction:

F → i′⋆(i
′)⋆F .

We now treat the case that D′
+ = D+ and D′

− ⊆ D−. Consider the following diagram:

X̄ \ {D+ ∪D′
−}

j′−
// X̄ \D+

j+=j′+
// X̄

X̄ \ {D+ ∪D−}

j−
77

i

OO

Let F be a sheaf on X̄ \ {D+ ∪D′
−}. We need to produce a canonical map

j+,⋆j−,!i
⋆F → j′+,⋆j

′
−,!F .

This map is easily seen to be induced by the adjunction map i!i
⋆ → Id. □

Lemma 2.2.7. Let p̄ : C̄ → X̄ be a morphism. Let D+, D− ⊆ X̄ be two closed subschemes. Let
X = X̄ \ {D+ ∪ D−}. Let p̄⋆D+, p̄

⋆D− be the corresponding two closed subschemes of C̄. Let
C = C̄ \ p̄⋆{D+ ∪ D−} and let p : C → X be the induced projection. Let F be an object of
D(OX,■). Then we have canonical pull back maps:

RΓD+,D−(X̄,F ) → RΓp̄⋆D+,p̄⋆D−(C̄, p
⋆F )

RΓD−,D+
(X̄,F ) → RΓp̄⋆D−,p̄⋆D+

(C̄, p⋆F )

If p̄ is proper, we also have canonical trace maps:

RΓp̄⋆D+,p̄⋆D−(C̄, p
!F ) → RΓD+,D−(X̄,F )

RΓp̄⋆D−,p̄⋆D+(C̄, p
!F ) → RΓD−,D+(X̄,F )
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Proof. We give the proof only for the first and third maps. We consider the diagram:

C
j′−
//

p

��

C̄ \ p̄⋆D+

j′+
//

��

C̄

p̄

��

X
j−
// X̄ \D+

j+
// X̄

By lemma 2.2.2 we have the following maps:

p̄⋆j+,⋆j−,!F → j′+,⋆j
′
−,!p

⋆F

j′+,⋆j
′
−,!p

!F → p̄!j+,⋆j−,!F

and the maps of the lemma are easily deduced. □

Lemma 2.2.8. In the situation of the last lemma, assume that p is an isomorphism and that p̄ is
proper. Then all the maps are quasi-isomorphism.

Proof. We only prove that RΓD+,D−(X̄,F ) → RΓp̄⋆D+,p̄⋆D−(C̄, p
⋆F ) is an isomorphism. The

remaining points are left to the reader. We consider the diagram:

X
j′−
//

p

��

C̄ \ p̄⋆D+

j′+
//

p′

��

C̄

p̄

��

X
j−
// X̄ \D+

j+
// X̄

Since p′ is proper, p′⋆ = p′!. We deduce that

p̄⋆j
′
+,⋆j

′
−,!F = j+,⋆p

′
⋆j

′
−,!F = j+,⋆j−,!F .

□

2.2.9. Cohomology and dynamic correspondences. Let C = (C̄, X̄, p̄1, p̄2, D+, D−) be a dynamic
correspondence. Let F ∈ D(OX,■). Let T : p⋆2F → p!1F be a map in D(OC,■).

Proposition 2.2.10. The map T induces endomorphisms TC of RΓD−,D+
(X̄,F ) and RΓD+,D−(X̄,F )

as follows:

RΓp̄⋆2D+,p̄⋆2D−(C̄, p⋆2F ) // RΓp̄⋆1D+,p̄⋆2D−(C̄, p⋆2F ) // RΓp̄⋆1D+,p̄⋆2D−(C̄, p!1F ) // RΓp̄⋆1D+,p̄⋆1D−(C̄, p!1F )

��

RΓD+,D−(X̄,F )

OO

RΓD+,D−(X̄,F )

RΓp̄⋆2D−,p̄⋆2D+
(C, p⋆2F ) // RΓp̄⋆1D−,p̄⋆2D+

(C, p⋆2F ) // RΓp̄⋆1D−,p̄⋆2D+
(C, p!1F ) // RΓp̄⋆1D−,p̄⋆1D+

(C, p!1F )

��

RΓD−,D+(X,F )

OO

RΓD−,D+(X,F )

Proof. We only do the first case. The maps

RΓD+,D−(X̄,F ) → RΓp̄⋆
2D+,p̄⋆

2D−(C̄, p
⋆
2F )

RΓp̄⋆
1D+,p̄⋆

1D−(C̄, p
!
1F ) → RΓD+,D−(X̄,F )

are given by lemma 2.2.7. The maps

RΓp̄⋆
2D−,p̄⋆

2D+
(C̄, p⋆2F ) → RΓp̄⋆

1D−,p̄⋆
2D+

(C̄, p⋆2F )

RΓp̄⋆
1D−,p̄⋆

2D+
(C̄, p!1F ) → RΓp̄⋆

1D−,p̄⋆
1D+

(C̄, p!1F )

are given by lemma 2.2.6. The middle map RΓp̄⋆
1D−,p̄⋆

2D+(C, p
⋆
2F ) → RΓp̄⋆

1D−,p̄⋆
2D+(C, p

!
1F ) is

produced by T as we now explain. We consider the chain of open immersions:

C
jC,−→ C̄ \ p̄⋆1D+

jC,+→ C̄
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We deduce from T a map:

(jC,+)⋆(jC,−)!p
⋆
2F → (jC,+)⋆(jC,−)!p

!
1F

which induces the middle map RΓp̄⋆
1D−,p̄⋆

2D+(C, p
⋆
2F ) → RΓp̄⋆

1D−,p̄⋆
2D+(C, p

!
1F ).

□

Let (C,X, p1, p2) be a correspondence. Let C = (C̄, X̄, p̄1, p̄2, D+, D−) be a dynamic compact-
ification. The proposition below states that the endomorphism TC only depends on the C up to
strict morphism.

Proposition 2.2.11. Let C = (C̄, X̄, p̄1, p̄2, D+, D−) → C′ = (C̄ ′, X̄ ′, p̄′1, p̄
′
2, D

′
+, D

′
−) be a strict map.

The canonical quasi-isomorphisms given by lemma 2.2.8:

RΓD+,D−(X̄,F ) = RΓD′
+,D′

−
(X̄ ′,F )

RΓD−,D+
(X̄,F ) = RΓD′

−,D′
+
(X̄ ′,F )

are equivariant for the actions of TC and TC′ .

Proof. We only give the proof in the first case. This follows from the existence of the following
commutative diagrams:

RΓD′
+,D′

−
(X̄ ′,F ) // RΓ(p̄′

2)
⋆D′

+,(p̄′
2)

⋆D′
−
(C̄ ′, (p̄′2)

⋆F ) // RΓ(p̄′
1)

⋆D′
+,(p̄′

2)
⋆D′

−
(C̄ ′, (p̄′2)

⋆F )

RΓD+,D−(X̄,F ) // RΓ(p̄2)⋆D+,(p̄2)⋆D−(C̄, (p̄2)
⋆F ) //

OO

RΓ(p̄1)⋆D′
+,(p̄2)⋆D′

−
(C̄, (p̄2)

⋆F )

// RΓ(p̄′
1)

⋆D′
+,(p̄′

2)
⋆D′

−
(C̄ ′, (p̄′1)

!F ) // RΓ(p̄′
1)

⋆D′
+,(p̄′

1)
⋆D′

−
(C̄ ′, (p̄′1)

!F )

��

// RΓD′
+,D′

−
(X̄ ′,F )

// RΓ(p̄1)⋆D+,(p̄2)⋆D−(C̄, (p̄1)
!F ) // RΓ(p̄1)⋆D+,(p̄1)⋆D−(C̄, (p̄1)

!F ) // RΓD+,D−(X̄,F )

□

2.3. Computations of the cohomology. In this section, we give explicit formulas that allows us to
compute the cohomology with support as limits and colimits of classical cohomologies.

2.3.1. Computing the cohomology with support. We consider an open immersion j : X → X̄. Let
X̄ \X = D. Assume that there exists an invertible sheaf OX̄(−D) and a morphism OX̄(−D) → OX̄

whose image is an ideal I which defines D (in other words, D is a locally principal subscheme). Let

F be in D(OX,■). We choose an object F ∈ D(OX̄,■) such that j⋆F = F . We let F (−nD) =

F ⊗OX̄
OX̄(−D)⊗n. This notation may be slightly non standard when D is not a Cartier divisor.

We have maps F (−(n+ 1)D) → F (−nD) forming an inverse system. We recall that

lim
n

F (−nD) = cone(
∏
n

F (−nD) →
∏
n

F (−nD))[1]

where the map sends (mn)n to (mn −mn+1)n.

Proposition 2.3.2. Assume that F is pseudo-coherent. In D(OX̄,■), we have a canonical isomor-
phism

j!F = lim
n

F (−nD).

Proof. We first construct a canonical map: j!F → limn F (−nD). By adjunction, this amounts to

a map: F → j⋆ limn F (−nD). Since j⋆ commutes with limits, and since limn j
⋆F (−nD) = F ,

the canonical map is induced by the identity of F .
We now reduce to some local computations. We may assume that X̄ = Spec A and that

X = Spec A[1/f ].
We have a map Spec A[1/f ] = A[X]/(Xf − 1) ↪→ Spec A[X] → Spec A. Let M be a pseudo-

coherent object of D((A[1/f ], A[1/f ])■) and let M̄ be a pseudo-coherent object in D((A,A)■) such
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that M̄ ⊗(A,A)■ (A[1/f ], A[1/f ])■ =M . By definition ([CSb], Lecture VIII) j!M =M ⊗(A[X],A)■

A((X−1))/A[X]. Moreover, it is true that

j!M =M ⊗(A,A)■ A[X]/(Xf − 1)⊗(A[X],A)■ A((X
−1))/A[X].

Since M is pseudo-coherent, we find that

M ⊗(A,A)■ A((X
−1))/A[X] =M ⊗(A,A)■ A[[X

−1]]X−1 =
∏
n≥1

MX−n :=M [[X−1]]X−1.

Therefore,

j!M = M ⊗A A((X
−1))/A[X]⊗A[X] A[X]/(Xf − 1)

= cone(M [[X−1]]X−1 1−Xf→ M [[X−1]]X−1
)
[1]

□

Remark 2.3.3. If F is a coherent sheaf over X, then it admits an extension F to a coherent sheaf
over X̄, and F is pseudo-coherent (see [Sta22], TAG 0G41). Thus, the proposition applies in this
setting.

Corollary 2.3.4. Under the assumptions of proposition 2.3.2, we have RΓ(X̄, j!F ) = limn RΓ(X̄,F⊗OX̄

OX̄(−nD)).

Proof. We have:

RΓ(X̄, j!F ) = RΓ(X̄, lim
n

F ⊗OX̄
OX̄(−nD))

= lim
n

RΓ(X̄,F ⊗OX̄
OX̄(−nD))

□

Proposition 2.3.5. Assume that S = Spec A with A an artinian ring. Assume that F is a co-
herent sheaf and assume that X̄ is proper. We let I be the ideal of D. Then Hi(X, j!F ) =
limn H

i(X̄,I nF ).

Remark 2.3.6. This is Hartshorne’s definition of cohomology with support ([Har72]).

Proof. We first claim that the natural map limn F (−nD) → limn I nF is a quasi-isomorphism.

This is a local question so we can assume I is generated by an element f ∈ OX̄ = A and that F
corresponds to a finite type A-module M . The map between inverse systems writes:

// M
f
//

f2

��

M
f
//

f

��

M

1

��
// f2M // fM // M

The cone is given by (limnM [fn])[1] where M [fn] is the submodule of M of elements annihilated
by fn and the transition maps are given by multiplication by f . As colimnM [fn] is a finite type
A-module (being a submodule of M), we deduce that M [fn] =M [fn+1] for all n big enough. This
implies that {M [fn]}n is an essentially zero inverse system and so its limit is zero. We deduce that

RΓ(X̄, j!F ) = RΓ(X̄, limn I nF ). Moreover, the system {Hi(X̄,I nF )}n satisfies the Mittag-

Leffler property (since it is a system of finite A-modules), hence Hi(X̄, j!F ) = limn H
i(X̄,I nF ).

□

2.3.7. Computing direct images. We now proceed to compute direct images. We consider an open
immersion j : X → X̄. Let X̄ \ X = D. We assume that D is a locally principal subscheme,
whose ideal is the image of a map OX̄(−D) → OX̄ for an invertible sheaf OX̄(−D). Let F be in

D(OX,■). We choose an object F ∈ D(OX̄,■) such that j⋆F = F .

Proposition 2.3.8. Assume that F is discrete. In D(OX̄,■), we have a canonical isomorphism

j⋆F = colimnF (nD).
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Proof. We first construct a map colimnF (nD) → j⋆F . By adjunction this boils down to a map

j⋆colimnF (nD) → F . Since j⋆ commutes with colimits, and j⋆F (nD) = F , this map is simply
induced by the identity of F . We reduce to compute that this map is an isomorphism in the local
case. For a (discrete) module M over a ring A and f ∈ A, we have M ⊗A A[1/f ] = colim×fM .
We use that if M is discrete the (usual) tensor product M ⊗A A[1/f ] is solid in D(A[1/f ]■). □

Corollary 2.3.9. We have RΓ(X̄, j⋆F ) = colimnRΓ(X̄,F (nD)).

Proof. As X̄ is quasi-separated, this is a consequence of [Sta22], TAG 01FF. □

2.3.10. Computing the cohomology with partial support. We consider an open immersion X ↪→ X̄
of finite type schemes over Spec Z. We assume that X̄ \X = D is the union D = D+ ∪D− of two

locally principal subschemes. Let F be a coherent sheaf on X̄ with restriction F to X.

Corollary 2.3.11. We have:

RΓD−,D+
(X̄,F ) = colimn+≥0 lim

n−≥0
RΓ(X̄,F (n+D+ − n−D−))

RΓD+,D−(X̄,F ) = lim
n−≥0

colimn+≥0RΓ(X̄,F (n+D+ − n−D−))

Proof. Consider the chain of open immersionsX
j−→ X̄\D+

j+→ X̄. Then j+,⋆j
⋆
+F = colimn+

F (n+D+)

and therefore j+,⋆j−,!F = limn−≥0 colimn+≥0F (n+D+ − n−D−). Consider the chain of open im-

mersions X
i+→ X̄ \ D−

i−→ X̄. Then (i+)⋆F = colimn+
F (n+D+). Since (i−)! commutes with

colimit, we deduce that i−,!i+,⋆F = colimn+≥0 limn−≥0 F (n+D+ − n−D−). We then take coho-
mology and use that cohomology commutes with projective and inductive limits for quasi-compact
and quasi-separated schemes. □

2.3.12. Action of a correspondence. We consider a dynamic compactification C = (C̄, X̄, p̄1, p̄2, D+, D−)
of a correspondence (C,X, p1, p2). We continue to assume that X̄\X = D is the unionD = D+∪D−
of two locally principal subschemes. We also assume that we have a cohomological correspondence
T : p⋆2F → p!1F where F is a coherent sheaf over X. We let F be an extension to a coherent
sheaf on X̄.

Proposition 2.3.13. There exists n ≥ 0 and a map in D(OC̄,■)

T : p̄⋆2F (−nD−) → p̄!1F (nD+)

which induces the map T : p⋆2F → p!1F after restricting to C.

Proof. Let jC : C → C̄ be the open immersion, with complement DC = p̄⋆1D+ + p̄⋆2D−. Since
j⋆C p̄

⋆
2 = p⋆2j

⋆
X and j⋆C p̄

!
1 = p!1j

⋆
X (recall that j⋆X = j!X and j⋆C = j!C), the map T is equivalently a

map:
T : j⋆C p̄

⋆
2F → j⋆C p̄

!
1F

or a map colimn≥0p̄
⋆
2F (nDC) → colimn≥0p̄

!
1F (nDC) (using that p̄⋆2F and p̄!1F are discrete).

We deduce a map p̄⋆2F → colimn≥0p̄
!
1F (nDC). Since p̄⋆2F is pseudo coherent, this map factors

through a map p̄⋆2F → p̄!1F (nDC) for n large enough. Now, since nDC = np̄⋆1D+ + np̄⋆2D−, if we
tensor by OC̄(−np̄⋆2D−) and use the projection formula, we deduce the claim. □

The following corollary expresses a certain continuity property of the map TC constructed in
proposition 2.2.10.

Corollary 2.3.14. Assume that we have maps p⋆2OX̄(D+) → p⋆1OX̄(D+) and p⋆2OX̄(−D−) →
p⋆1OX̄(−D−). For all k+, k− ≥ 0 and n as in proposition 2.3.13, the cohomological correspon-
dence T induces maps:

RΓ(X̄,F (−nD− − k−D− + k+D+)) → RΓ(X̄,F (nD+ − k−D− + k+D+))

which induce, after passing to the limit and colimit as in corollary 2.3.11, the map TC of proposition
2.2.10.

Proof. We have maps p⋆2OX̄(k+D+ − k−D−) → p⋆1OX̄(k+D+ − k−D−). We simply twist the
cohomological correspondence of proposition 2.3.13 to obtain the desired map in cohomology. □
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2.4. Ordinary part. We give an abstract definition of the ordinary part of a complex acted on by
endomorphisms, and apply this to cohomology with partial support.

2.4.1. Ordinary part of a complex. Let M ∈ D(A■). Let T be an operator acting on M so that
we can view M as an object of D((A[T ], A)■).

Definition 2.4.2. The ordinary part Mord ∈ D(A[T, T−1]■) of M is defined by the formula Mord =
M ⊗(A[T ],A) A[T, T

−1]■.

Let us explain that Mord is the correct object in the cases of interest.

Lemma 2.4.3. Assume that A is an artinian local ring and that M is a bounded complex of finite
A-modules equipped with an action of an operator T . There is a unique direct sum decomposition
M =Mord ⊕Mnord where Mnord is an A[[T ]]-module.

Proof. We consider the algebra B generated by T in End(M). This is a finite A-algebra. It splits
into a product of local A-algebras, B =

∏
iBi. We have idempotents ei attached to each Bi and

we let Mi = eiM . We now distinguish two cases:

(1) If T ∈ mBi , then there exist n such that Tn = 0. It follows that Mi is in D((A[[T ]], A)■).
Since A[[T ]]⊗(A[T ],A)■ A[T, T

−1]■ = 0, we deduce that Mord
i = 0.

(2) If T /∈ mBi
, then Mi is an object of the classical derived category D(A[T, T−1]) and we

can view it as a discrete object of D(A[T, T−1]■), so M
ord
i =Mi.

□

We now discuss certain situations where M is a colimit or a limit of objects.

Lemma 2.4.4. Assume that M = colimi∈I limj∈J Mi,j in D(A■) where I is a filtered category and
J is a cofiltered category. We assume that an endomorphism T acts on M and that the action is
induced by actions on each Mi,j.

(1) We have Mord = colimi∈I limj∈J M
ord
i,j .

(2) Assume that I and J are the natural numbers Z≥0. Assume that there are maps T ′ :
Mi,j →Mi−1,j+1 so that the following diagrams commute:

Mi−1,j+1
// Mi,j+1 Mi,j+1

��

Mi+1,j
T ′

oo

��

Mi,j

T ′

OO

// Mi+1,j

T ′

OO

Mi,j Mi+1,j−1
T ′

oo

and moreover such that T is the composition

Mi,j →Mi+1,j →Mi,j+1 →Mi,j .

Then Mord =Mord
i,j for any i, j.

(3) Assume that each Mi,j is a bounded complex of finite A-modules and that A is artinian.
Then M =Mord ⊕Mnord where Mnord is an A[[T ]]-module.

Proof. We have that M = colimi∈I limj∈J Mi,j in D((A[T ], A)■). Since − ⊗(A[T ],A)■ A[T, T−1]■
commutes with colim and lim, we deduce that Mord = colimi∈I limj∈J M

ord
i,j . Under the fac-

torization assumption, we see that the maps in the formula Mord = colimi∈I limj∈J M
ord
i,j are

quasi-isomorphism. The last point follows from lemma 2.4.3. □

Definition 2.4.5. Let M,N ∈ D(A■). A map T : M → N is said to have finite rank if it has a
factorization M → C → N where C is a complex whose cohomology groups are finite A-modules.

Lemma 2.4.6. Let T :M →M be a finite rank endomorphism. Assume that A is an Artinian local
ring. Then Mord ∈ D(A■) is a complex whose cohomology groups are finite A-modules.

Proof. Let M → C → M be a factorization of T , where C is a complex with finite cohomology.
We can also think of T as an endomorphism of C by composing the arrows of the factorization of
T . It is clear that the induced map Mord → Cord is a quasi-isomorphism. But Hi(Cord) is a direct
factor of Hi(C) by the above discussion. □
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2.5. Ordinary part of cohomology. We let (C,X, p1, p2) be a correspondence. We recall that all
schemes are over S = Spec A. We let F be a coherent sheaf over X. We let T : p⋆2F → p!1F be
a cohomological correspondence. We assume that there exists a strict dynamic compactification
C = (C̄, X̄, p̄1, p̄2, D+, D−).

Theorem 2.5.1. (1) The cohomology groups RΓD+,D−(X̄,F )ord and RΓD−,D+
(X̄,F )ord are

canonically quasi-isomorphic.
(2) If A is artinian, they are represented by bounded complexes of finite A-modules.
(3) If C′ = (C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−) → C is a map of strict dynamic compactifications, there

are canonical quasi-isomorphisms:

RΓD+,D−(X̄,F )ord → RΓD′
+,D′

−
(X̄ ′,F )ord

and
RΓD−,D+(X̄,F )ord → RΓD′

−,D′
+
(X̄ ′,F )ord.

The theorem implies that the ordinary cohomology depends only on the data (C,X, p1, p2) (recall
that the category of strict dynamic compactifications is cofiltered by lemma 2.1.31), the sheaf F
and the cohomological correspondence T . We simply denote it by RΓ(X,F )C−ord.

2.5.2. Proof of the first two points. We first improve on the results of section 2.3.12. By proposition
2.2.11 and lemma 2.1.29, we can assume that D+ and D− are locally principal subschemes.

Lemma 2.5.3. After changing D+ and D− by a common multiple nD+ and nD− with n ∈ Z>0,
there is an integer m such for all k+ ≥ m and k− ≥ m, the map T : p⋆2F → p!1F extends to a
map:

T : p̄⋆2F (k+D+ − k−D−) → p̄!1F (k+D+ − k−D−)

which moreover factors as:

p̄⋆2F ((k+ + 1)D+ − k−D−)

&&

p̄⋆2F (k+D+ − k−D−) //

OO

p̄!1F (k+D+ − k−D−)

p̄!1F (k+D+ − (k− + 1)D−)

OO

Proof. By proposition 2.3.13, there exists n ≥ 0 such that the cohomological correspondence T
factors into a map

T : p⋆2F (−nD−) → p!1F (nD+).

By lemma 2.1.17, there exists 0 < p < q ∈ Z and maps: p⋆2OX̄(qD+) → p⋆1OX̄(pD+), p
⋆
2OX̄(−pD−) →

p⋆1OX̄(qD−) we can twist the cohomological correspondence to obtain maps

T : p⋆2F (k+qD+ − (n+ pk−)D−) → p!1F ((pk+ + n)D+ − qk−D−)

There exists k0 ∈ Z≥0 such that n+ (k + 1)p ≤ kq for all k ≥ k0. For all k+, k− ≥ k0, we thus get
maps:

T : p⋆2F ((k+ + 1)qD+ − k−qD−) → p!1F (k+qD+ − (k− + 1)qD−)

We can now replace D+ and D− by qD+ and qD−. □

Proposition 2.5.4. We have

RΓD+,D−(X̄,F )ord ≃ RΓD−,D+
(X̄,F )ord ≃ RΓ(X̄,F (k+D+ − k−D−))

ord

for any k+ ≥ m and k− ≥ m. In particular, if A is artinian the ordinary cohomology is represented
by a bounded complex of finite A-modules.

Remark 2.5.5. This proposition can be viewed as giving a control theorem, identifying the ordinary
cohomology with the cohomology of a sheaf over X̄ with bounded zeros and poles. See section 2.11
for more statements in this direction.



19

Proof. We have a commutative diagram:

RΓ(X̄,F (k+D+ − k−D−)) // RΓ(X̄,F ((k+ + 1)D+ − k−D−))

T
ss

RΓ(X̄,F (k+D+ − (k− + 1)D−)) //

OO

RΓ(X̄,F ((k+ + 1)D+ − (k− + 1)D−))

OO

where horizontal and vertical maps are induced by allowing more poles along D+ or imposing
less zeros along D−. The diagonal map (called by abuse of notation T ) is the map given by the
factorization of T as given by lemma 2.5.3. The endomorphism T of each of the complexes is
given by going around the diagram once. On the ordinary part, each of the endomorphism T of
the complex is a quasi-isomorphism, implying that all vertical and horizontal maps are also quasi-
isomorphisms. The final statement follows from the property that RΓ(X̄,F (k+D+ − k−D−)) is a

bounded complex of finite A-modules and that RΓ(X̄,F (k+D+ − k−D−))
ord is a direct factor by

lemma 2.4.4. □

2.5.6. Independence on the choice of a dynamic compactification. We assume that we have two
strict dynamic compactifications C = (C̄, X̄, p̄1, p̄2, D+, D−) and C′ = (C̄ ′, X̄ ′, p̄′1, p̄

′
2, D

′
+, D

′
−).

By proposition 2.2.11, we are free to replace C by another strict dynamic correspondence D,
admitting a strict map D → C, and similarly for C′. By lemma 2.1.13, we can therefore assume that
(C̄, X̄, p̄1, p̄2) = (C̄ ′, X̄ ′, p̄′1, p̄

′
2). We can therefore consider three strict dynamic correspondences

(C̄, X̄, p̄1, p̄2) with divisors (D+, D−), (D
′
+, D

′
−), (D

′
+∪D+, D

′
−∪D−). This reduces us to consider

the case that D′
+ ⊇ D+ and D′

− ⊇ D−. We can first treat the case that D′
+ ⊇ D+ and D′

− = D−
and then the case D′

+ = D+ and D′
− ⊆ D−. We therefore concentrate on the case D′

+ ⊇ D+ and
D′

− = D− as the other is similar. We can also assume all divisors are Cartier by lemma 2.1.29 and
proposition 2.2.11. There exists a, b > 0 such that D′

+ ≤ aD++ bD−. Proposition 2.5.4 applies for

some m that works simultaneously for C = (C̄, X̄, p̄1, p̄2, D+, D−) and C′ = (C̄, X̄, p̄1, p̄2, D
′
+, D−)

(we also allow ourselves to replace D−, D+ and D′
+ be a multiple).

We have maps

RΓ(X̄,F (k+D+ − k−D−)) → RΓ(X̄,F (k+D
′
+ − k−D−))

→ RΓ(X̄,F (ak+D+ − (k− − bk+)D−)) → RΓ(X̄,F (ak+D
′
+ − (k− − bk+)D−))

Taking k+ ≥ m and k− ≥ m + bk+ and applying the ordinary projector, all the above map
become quasi-isomorphisms.

2.6. Base change and perfect complexes. In this section, we consider base change formulas for the
ordinary cohomology and use it to investigate its structure.

2.6.1. First base change formula. Let (C,X, p1, p2) be a correspondence admitting a strict dynam-
ical compactification. Let F be a coherent sheaf over X. Let T : p⋆2F → p!1F be a cohomological
correspondence.

We suppose that S = Spec A. Let M be an A-module of finite type. Let p : X → S.
We assume that F is A-flat. We get a map T ⊗ 1 : p⋆2(F ⊗A M) → p!1(F ⊗A M), using that
p⋆2(F )⊗L

AM = p⋆2(F⊗AM) and that we have a map p!1(F )⊗L
AM → p!1(F⊗AM) by the projection

formula. Indeed, by adjunction such a map is equivalent to a map (p1)!(p
!
1(F )⊗L

AM) → (F ⊗AM)
and we can use the projection formula to see that (p1)!(p

!
1(F )⊗L

AM) = ((p1)!p
!
1F )⊗L

AM and we
have a map given by adjunction (p1)!p

!
1F → F .

Proposition 2.6.2. Under the assumptions above, we have the following base change formula:

RΓ(X,F )C−ord ⊗L
A M = RΓ(X,F ⊗A M)C−ord.

Remark 2.6.3. Our assumption that F is A-flat is only used to make sure that F ⊗AM is again a
coherent sheaf (and in particular is bounded below) so that RΓ(X,F ⊗AM)C−ord is a well defined
notion. The assumption that M is a discrete A-module is crucial.
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Proof. We take a strict dynamic compactification (C̄, X̄, p̄1, p̄2, D+, D−). We can even assume that
D+ and D− are locally principal subschemes. We will first prove that

RΓD+,D−(X̄,F )⊗L
A M = RΓD+,D−(X̄,F ⊗A M).

The proposition follows by applying ordinary projectors. We have a sequence of map X
j−
↪→ X̄ \

D+

j+
↪→ X̄. We let p̄ : X̄ → S be the projection. By the projection formula: p̄⋆((j+)⋆(j−)!F ) ⊗L

A

M = p̄⋆((j+)⋆(j−)!(F )⊗OX̄
p̄⋆M). We now need to see that

(j+)⋆(j−)!(F )⊗OX̄
p̄⋆M = (j+)⋆((j−)!(F )⊗OX̄\D+

j⋆+p̄
⋆M).

This is a consequence of lemma 2.6.4 below, noting that the map j+ is affine. We then use one more
time the projection formula to deduce that (j+)⋆((j−)!(F )⊗OX̄\D+

j⋆+p̄
⋆M) = (j+)⋆((j−)!(F ⊗OX

p⋆M). □

Lemma 2.6.4. Let A→ B be a morphism of finite type Z-algebras. Let M ∈ D(A) be a complex of
discrete A-modules and let N ∈ D(B■). Then N ⊗L

A■
M = N ⊗L

B■
(B■ ⊗L

A M).

Proof. We have to see that N ⊗L
A■

M is already B-solid. In principle this is only a complex of B-
modules which is A-solid. We can write M as a colimit of bounded above complexes. This reduces
us to the case that M is bounded above. We can resolve M by a complex of free A-modules. We
thus reduce to the case that N is a solid B-module and M = A⊕I is a free A-module. The claim
now follows from the fact that if N is a solid B-module then N⊕I is a solid B-module (the category
of solid B-modules is stable under colimits inside condensed B-modules). □

2.6.5. Construction of perfect complexes. We now show that under certain assumptions, the ordi-
nary cohomology can actually be represented by a perfect complex.

Lemma 2.6.6. Let A be a local ring. Let M0 d0→ M1 d1→ M2 be a complex of finite free A-modules.
Assume that M0 ⊗A A/mA →M1 ⊗A A/mA →M2 ⊗A A/mA is exact. Then M0 →M1 →M2 is
exact, moreover ker(d0) is a direct factor of M0, Im(d0) is a direct factor of M1 and Im(d1) is a
direct factor of M2.

Proof. We take elements x1, · · · , xn inM0 with the property that d0(x1), · · · , d0(xn) reduce modulo
mA to a basis of ker(d1 ⊗A/mA). We get a commutative diagram:

M0 d0 // M1 d1 // M2

An

OO <<

where the i-th vector ei of the canonical basis of An is mapped to xi. Since we can find ele-
ments y1, · · · , yn′ of M1 with the property that d0(x1), · · · , d0(xn), y1, · · · , yn′ reduce to a basis of

M1/mA. We consider the map An ⊕An′ →M1, sending the i-the canonical basis vector of An to

d0(xi) and the j-th canonical basis vector of An′
to yj . This map induces an isomorphism modulo

mA. By applying Nakayama’s lemma, we deduce that the map is an isomorphism. It follows that
An injects in M1 and is a direct factor. The map M1/An →M2 induces an injective map modulo
mA. By repeating the same argument as before, we deduce that M1/An injects as a direct factor
in M2. If follows that An = ker(d1). Since An ⊆ Im(d0), we deduce that Im(d0) = ker(d1). The
map M0 → Im(d0) has a splitting given by An ≃ Im(d0) → M0, so ker(d0) is a direct factor of
M0. □

Lemma 2.6.7. Let A be a local ring. Let M• be a pseudo-coherent object of the usual derived
category D(A). We assume that M• ⊗L

A A/mA is a perfect complex of amplitude [a, b]. Then M•

is a perfect complex of amplitude [a, b].

Proof. We can represent M• by a complex in C−(A) of finite free A-modules. We consider the
truncation M•

τ≥a,τ≤b. The lemma 2.6.6 shows that this is a perfect complex, quasi-isomorphic to
M•. □
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Let (C,X, p1, p2) be a correspondence admitting a strict dynamical compactification. Let F be
a coherent sheaf over X. Let T : p⋆2F → p!1F be a cohomological correspondence. We suppose
that S = Spec A is an artinian local ring. We assume that F is A-flat.

Theorem 2.6.8. Under the above assumptions, the ordinary cohomology RΓ(X,F )C−ord is repre-
sented by a perfect complex of (discrete) A-modules.

Proof. By lemma 2.6.7, it suffices to prove that RΓ(X,F )C−ord ⊗L
A A/mA is a bounded complex.

This follows from the base change formula proposition 2.6.2 and theorem 2.5.1. □

2.6.9. Group action and base change. Let (C,X, p1, p2) be a correspondence admitting a strict
dynamic compactification. Let F be a coherent sheaf over X. Let T : p⋆2F → p!1F be a cohomo-
logical correspondence.

Let G be a finite abelian group acting linearly on F . We assume that the cohomological
correspondence T : p⋆2F → p!1F commutes with the G-action (in other words, this is a map
in D(OC [G]■). We suppose that S = Spec A and that F is flat as an A[G]-module. We let
IG ⊆ A[G] be the augmentation ideal (the kernel of the augmentation map A[G] → A). We let
F/IG = F ⊗A[G] A. We deduce a map T : p⋆2F/IG → p!1F/IG.

Under all these assumptions, we prove:

Theorem 2.6.10. The ordinary cohomology is an object of D(A[G]), and we have the special-
ization formula RΓ(X,F )C−ord ⊗L

A[G] A = RΓ(X,F/IG)
C−ord. If A is an artinian ring, then

RΓ(X,F )C−ord is a perfect complex of A[G]-modules.

Proof. By proposition 2.6.2, we have that RΓ(X,F )C−ord ⊗L
A[G] A = RΓ(X,F/IG)

C−ord. The

final claim follows from theorem 2.6.8, as then A[G] is a product of local rings. □

We discuss briefly the projectivity assumption that the sheaf F is A[G]-flat.

Lemma 2.6.11. Let r : Y → X be a finite étale cover with group G, then r⋆OY is a finite locally
projective sheaf of OX [G]-module. If furthermore X → Spec A is flat, then r⋆OY if A[G]-flat.

Proof. We can suppose X = Spec B and Y = Spec C are affine. We have an isomorphism
C ⊗B C = C[G], c ⊗ c′ 7→ (c′g(c))g∈G (this isomorphism is G-equivariant for the action of G on
the first factor). We note that C[G] is a projective B[G]-module since C is a projective B-module.
There is a G-equivariant inclusion C → C ⊗B C, c 7→ c⊗ 1. Conversely, we can choose an element
c0 in C such that Tr(c0) = 1 since C is finite étale over B. The G-equivariant map C ⊗B C → C,
(c⊗ c′) 7→ cTr(c′c0) is a section to C → C ⊗ C. □

2.6.12. Second base change formula. We assume that (C,X, p1, p2) is a correspondence admitting
a strict dynamic compactification. We let S′ = Spec A′ → S = Spec A be a finite morphism.
We let X ′ = X ×S S

′ and similarly for all spaces and morphisms. We deduce that (C ′, X ′, p′1, p
′
2)

admits a strict dynamic compactification (take the base change via S′ → S of a strict dynamic
compactification of (C,X, p1, p2)). Let F be a coherent sheaf over X, and T : p⋆2F → p!1F be
a cohomological correspondence. We assume that X and S′ are tor independent and that F is
A-flat. We have a cohomological correspondence: T ′ : (p′2)

⋆F ′ → (p′1)
!F ′ deduced by base change

(we use here [CSb], prop. 11.4 and the tor-independence of X and S′).

Proposition 2.6.13. Under the above assumptions we have the base change formula:

RΓ(X,F )C−ord ⊗L
A A

′ = RΓ(X ′,F ′)C
′−ord

Proof. We prove that

RΓD+,D−(X̄,F )⊗L
A A

′ = RΓD′
+,D′

−
(X̄ ′,F ′).

The proposition follows by applying ordinary projectors. As in the proof of proposition 2.6.2, we
have that RΓD+,D−(X̄,F )⊗L

AA
′ = RΓD+,D−(X̄,F ⊗L

AA
′). So we need to see that F ⊗L

AA
′ = F ′.

Note that F ′ = F ⊗L
OX

OX′ and OX′ = OX ⊗A A′ (this last tensor product is not derived by

definition of X ′ as the underived fiber product). By tor independence OX′ = OX ⊗L
A A

′ and so we
deduce that F ⊗L

A A
′ = F ′. □
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2.7. Duality. Let p : X → S be a separated morphism of finite type schemes over Z. We let
DS = RHom(−,OS) and DX = RHom(−, p!OS). The following is a restatement of the adjunction
property between p! and p!.

Theorem 2.7.1 ([CSb], Lecture XI). Let F ∈ D(OX,■). We have p⋆DX(F ) = DS(p!F ).

Consider an open immersion X → X̄. We let X̄ \ X = D1 ∪ D2 where D1, D2 are closed
subschemes.

Proposition 2.7.2. Let F be a locally free sheaf over X. Assume that X → S is smooth and that
F extends to a locally free sheaf F over X̄ . Assume also that D1 and D2 are Cartier divisors.
Finally, assume that S = Spec A and that X̄ is proper. Then

RHom(RΓD1,−,D2,+(X̄,F ), A) = RΓD1,+,D2,−(X̄,DX(F )).

Proof. We consider the inclusions: X
j2→ X̄ \D1

j1→ X̄. By theorem 2.7.1, we have to prove that
DX̄((j1)!(j2)⋆F ) = (j1)⋆(j2)!DX(F ). First of all, by theorem 2.7.1, we have DX̄((j1)!(j2)⋆F ) =
(j1)⋆DX̄\D1

((j2)⋆F ). We therefore reduce to the case that D1 = ∅. We let j2 = j : X → X̄ and

we need to prove that DX̄(j⋆F ) = j!DX(F ). We assume that X̄ \ X is V (I ) for an invertible

sheaf I . We have j⋆F = colimI −nF . We deduce that

DX̄(j⋆F ) = RHom(j⋆F , p̄!OS)

= lim
n

I nRHom(F , p̄!OS)

= lim
m

lim
n

I nRHom(F , (p̄!OS)σ≤m
)

In the last equation, (p̄!OS)σ≤m
is the stupid truncation ([Sta22], TAG 0018). Since RHom(F , (p̄!OS)σ≤m

)

is pseudo-coherent, by proposition 2.3.2, we have limn I nRHom(F , (p̄!OS)σ≤m
) = j!RHom(F , (p!OS)σ≤m

).

Since p is smooth, (p!OS)σ≤m
= p!OS for m large enough.

□

We now assume that we have a correspondence (C,X, p1, p2) where C and X are smooth over
S and that F is a locally free sheaf of finite rank. We let T : p⋆2F → p!1F be a cohomological
correspondence.

Proposition 2.7.3. Applying DC to T we obtain a transpose of the cohomological correspondence:

T t : p⋆1DX(F ) → p!2DX(F ).

Proof. We first check that DC(p
⋆
2F ) = p!2DX(F ). We have:

DC(p
⋆
2F ) = RHom(p⋆2F , p!2p

!OS)

= p!2p
!OS ⊗ (p⋆2F )∨

= p!2(p
!OS ⊗ F∨)

= p!2DX(F )

We next check that DC(p
!
1F ) = p⋆1DX(F ). It follows from the assumption that C and X are

smooth over S that p!1OX is an invertible object.

DC(p
!
1F ) = RHom(p!1F , p!1p

!OS)

= RHom(p!1OX ⊗ p⋆1F , p!1OX ⊗ p⋆1p
!OS)

= RHom(p⋆1F , p⋆1p
!OS)

= p⋆1DX(F )

□

We let Ct be the transpose of C.
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Theorem 2.7.4. Let (C,X, p1, p2) be a correspondence with C and X smooth over S = Spec A.
We assume that it admits a strict dynamical compactification and that A is artinian. Let F be a
locally free sheaf of finite rank and T : p⋆2F → p!1F be a cohomological correspondence. Then we
have a perfect pairing:

RΓ(X,F )C−ord × RΓ(X,DX(F ))C
t−ord → A

This precisely means that

RΓ(X,F )C−ord = RHom(RΓ(X,DX(F ))C
t−ord, A)

and

RΓ(X,DX(F ))C
t−ord = RHom(RΓ(X,F )C−ord, A).

Proof. We can first assume that (C,X, p1, p2) admits a dynamical compactification (C̄, X̄, p̄1, p̄2, D+, D−)

with the property that F extends to a locally free sheaf F and such thatD+ andD− are Cartier di-
visors (by lemma 2.1.6, lemma 2.1.12 and lemma 2.1.29). We first apply proposition 2.7.2, to obtain
RHom(RΓD−,D+

(X̄,F ), A) = RΓDt
+,Dt

−
(X̄,DX(F )) where Dt

+ = D− and Dt
− = D+. By proposi-

tion 2.7.3, this isomorphism is equivariant for the action of C and Ct (we call T the corresponding
endomorphism). By lemma 2.4.4, the complexes RΓD−,D+

(X̄,F ) and RΓDt
+,Dt

−
(X̄,DX(F )) have

a decomposition into an ordinary and a non-ordinary part. Moreover, the non-ordinary part is an
A[[T ]]-module. Since A[T, T−1]■ ⊗A[T ] A[[T ]] = 0 it follows easily that passing to the ordinary
part gives

RΓ(X,F )C−ord = RHom(RΓ(X,DX(F ))C
t−ord, A).

□

2.8. Iterating the correspondence. We let (C,X, p1, p2) be a correspondence. In this section we
will consider iteration of the correspondence and prove that the ordinary part of cohomology
can actually be realized in the cohomology of the iterated correspondence. We let C(1) = C,

p
(1)
i = pi and C(0) = X. By induction, we define (C(n), C(n−1), p

(n)
1 , p

(n)
2 ). We let C(n) =

C(n−1) ×
p
(n−1)
1 ,C(n−2),p

(n−1)
2

C(n−1). We let p
(n)
2 be the projection on the first factor and p

(n)
1

be the projection on the second factor.

Lemma 2.8.1. Assume that (C,X, p1, p2) admits a dynamic (resp. strict dynamic, resp. compact
dynamic) compactification. Then

(C(n), C(n−1), p
(n)
1 , p

(n)
2 )

admits a dynamic (resp. strict dynamic, resp. compact dynamic) compactification.

Proof. We let (C̄, X̄, p̄1, p̄2, D+, D−) be a dynamic compactification. We define inductively

C̄(n) = C̄(n−1) ×
p̄
(n−1)
1 ,C̄(n−2),p̄

(n−1)
2

C̄(n−1).

We assume that (C̄(n), C̄(n−1), D
(n−1)
+ , D

(n−1)
− ) is a (strict) dynamic compactification and we prove

that (C̄(n+1), C̄(n), D
(n)
+ , D

(n)
− ) is a dynamic compactification. We define D

(n)
+ = (p̄

(n)
1 )⋆D

(n−1)
+ and

D
(n)
− = (p̄

(n)
2 )⋆D

(n−1)
− . We see that (p̄

(n)
2 )⋆D

(n−1)
+ ⊆ (p̄

(n)
1 )⋆D

(n−1)
+ implies that

(p̄
(n+1)
1 )⋆(p̄

(n)
2 )⋆D

(n−1)
+ ⊆ (p̄

(n+1)
1 )⋆(p̄

(n)
1 )⋆D

(n−1)
+

Since (p̄
(n+1)
1 )⋆(p̄

(n)
2 )⋆D

(n−1)
+ = (p̄

(n+1)
2 )⋆(p̄

(n)
1 )⋆D

(n−1)
+ , we deduce that (p̄

(n+1)
2 )⋆D

(n)
+ ⊆ (p̄

(n+1)
1 )⋆D

(n)
+ .

We proceed similarly to prove that (p̄
(n+1)
1 )⋆D

(n)
− ⊆ (p̄

(n+1)
2 )⋆D

(n)
− . One checks easily that if

(C̄, X̄, p̄1, p̄2, D+, D−) is strict dynamic or compact dynamic, the same procedure yields a strict

dynamic or compact dynamic compactification of (C(n), C(n−1), p
(n)
1 , p

(n)
2 ). □
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Let T : p⋆2OX → p!1OX be a cohomological correspondence. We assume that p1 and p2 are
flat morphisms. For any n, there is a natural way to construct a cohomological correspondence

Tn : (p
(n)
2 )⋆OC(n−1) → (p

(n)
1 )!OC(n−1) . Indeed, consider a diagram:

C(n+1)

p
(n+1)
2

zz

p
(n+1)
1

$$

C(n)

p
(n)
2

zz

p
(n)
1

$$

C(n)

p
(n)
2

zz

p
(n)
1

$$

C(n−1) C(n−1) C(n−1)

We assume that we have constructed Tn : (p
(n)
2 )⋆OC(n−1) → (p

(n)
1 )!OC(n−1) and we proceed to con-

struct Tn+1. We can take Tn+1 = (p
(n+1)
2 )⋆Tn : (p

(n+1)
2 )⋆(p

(n)
2 )⋆OC(n−1) → (p

(n+1)
2 )⋆(p

(n)
1 )!OC(n−1) .

We have (p
(n+1)
2 )⋆(p

(n)
2 )⋆OC(n−1) = (p

(n+1)
2 )⋆OC(n) . Moreover, by flat base change ([CSb], Prop.

11.4) (p
(n+1)
2 )⋆(p

(n)
1 )!OC(n−1) = (p

(n+1)
1 )!OC(n) . Therefore, by theorem 2.5.1, it makes sense to con-

sider RΓ(C(n),OC(n))C
(n+1)−ord. To simplify notation, let us put RΓ(C(n),OC(n))C

(n+1)−ord = RΓn.

Proposition 2.8.2. We have a commutative diagram:

.

.

.

· · ·

""

RΓ2

""

· · ·

· · · RΓ1

<<

(p1)!

""

RΓ1

<<

(p1)!

""

· · ·

RΓ0

p⋆2

<<

RΓ0

p⋆2

<<

RΓ0

where all maps are quasi-isomorphisms, so that for any n ≥ 0,

RΓ(C(n),OC(n))C(n+1)−ord ≃ RΓ(X,OX)C−ord.

Proof. Let us denote by RΓ′
n = RΓ

D
(n)
+ ,D

(n)
−

(C̄(n),OC̄(n)). We will prove that the following diagram

is commutative:

...

· · ·

""

RΓ′
2

""

· · ·

· · · RΓ′
1

<<

(p1)!

""

RΓ′
1

<<

(p1)!

""

· · ·

RΓ′
0

p⋆
2

<<

RΓ′
0

p⋆
2

<<

RΓ0

The map Tn is by definition obtained by going right up via (p̄
(n+1)
2 )⋆ : RΓ′

n → RΓ′
n+1, and after

tracing right down via (p̄
(n+1)
1 )! : RΓ

′
n+1 → RΓ′

n. Thus, if we can prove the commutativity, we
conclude. The commutativity of the diagram boils down to the property that the following squares
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commutes:

RΓ′
n

(p̄
(n+1)
2 )⋆

//

(p̄
(n)
1 )!

��

RΓ′
n+1

(p̄
(n+1)
1 )!

��

RΓ′
n−1

(p̄
(n)
2 )⋆

// RΓ′
n

(2.8.A)

This commutativity will be a consequence of the proper base change identity

(p
(n+1)
2 )⋆(p

(n+1)
1 )! = (p

(n)
1 )!(p

(n)
2 )⋆.

Here are some details. We consider the open immersions C(n)
j
(n)
−→ C̄(n) \D(n)

+

j
(n)
+→ C̄(n). We have

maps:

(p̄
(n+1)
1 )!(p̄

(n+1
2 )⋆(j

(n)
+ )⋆(j

(n)
− )!OC(n)

// (j
(n)
+ )⋆(j

(n)
− )!(p

(n+1)
1 )!(p

(n+1
2 )⋆OC(n)

(p̄
(n)
2 )⋆(p̄

(n)
1 )!(j

(n)
+ )⋆(j

(n)
− )!OC(n)

// (j
(n)
+ )⋆(j

(n)
− )!(p̄

(n
2 )⋆(p̄

(n)
1 )!OC(n)

By construction, the following square commutes (where the second horizontal maps are adjunc-
tion):

(p
(n+1)
1 )!(p

(n+1)
2 )⋆OC(n)

Tn+1
// (p

(n+1)
1 )!(p

(n+1
1 )!OC(n)

// OC(n)

(p̄
(n
2 )⋆(p̄

(n)
1 )!OC(n)

Tn // (p̄
(n
2 )⋆(p̄

(n)
1 )!(p̄

(n)
1 )!OC(n−1)

// OC(n)

We therefore deduce that the following diagram commutes:

RΓ
D

(n)
+ ,D

(n)
−

(C̄(n), (p
(n+1)
1 )!(p

(n+1)
2 )⋆OC(n))

**
RΓ′

n

44

**

RΓ′
n

RΓ
D

(n)
+ ,D

(n)
−

(C̄(n), (p
(n)
2 )⋆(p

(n)
1 )!OC(n))

44

and this is equivalent to the commutative of diagram 2.8.A. □

2.9. The spectral sequence associated to a filtration. In this section, we explain how we can asso-
ciate to a filtration on a space a spectral sequence, called the Cousin spectral sequence. This is a
variation of [Har66], IV, p. 227.

2.9.1. Generalities on localization sequences. We apply here [CSa], lecture V, to our particular
setting. Let X = Spec R be an affine scheme. Let I be an ideal. Let U = X \ V (I). Let
j : U ↪→ X. We let i : Z → X be the closed complement of U . The closed subset Z can be
viewed as a closed subscheme of X with underlying algebra of function R/J for the choice of some

ideal J satisfying
√
J =

√
I. The closed subset Z can also be viewed as a closed subset of the

locale of D(R■), which means that the algebra of functions on Z is the idempotent R■-algebra

R̂I = limnR/I
n (see lemma 2.9.2 below). When we think of Z as a closed subset of the locale,

equipped with the idempotent algebra R̂I , we denote it Ẑ.

Lemma 2.9.2. The solid R-algebra R̂I = limnR/I
n is an idempotent algebra in D(R■).
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Proof. In this proof, all tensor products are derived and are in D(R■). We first assume that

I is generated by one element f . We have an exact sequence: 0 → R[[X]]
X−f→ R[[X]] →

R̂I → 0. Since R[[X]] ⊗R R[[X ′]] = R[[X,X ′]], we deduce that R̂I ⊗R R[[X]] = R̂I [[X]].

We finally deduce that R̂I ⊗R R̂I = R̂I . We now suppose that I = (f1, · · · , fr). It suf-

fices to show that R̂(f1,··· ,fr) = ⊗r
i=1R̂

fi as the later is idempotent. We argue by induction

on r. Assume that R̂(f1,··· ,fr−1) = ⊗r−1
i=1 R̂

fi . This implies that R̂(f1,··· ,fr−1) is a compact ob-
ject in D(R■), represented by a bounded complex, whose terms are of the form RN. We de-

duce that R̂(f1,··· ,fr−1) ⊗R R[[X]] = R̂(f1,··· ,fr−1)[[X]]. This implies that R̂(f1,··· ,fr−1) ⊗R R̂fr =[
R̂(f1,··· ,fr−1)[[X]]

X−fr→ R̂(f1,··· ,fr−1)[[X]]
]
= R̂(f1,··· ,fr). □

We let î : Ẑ → X be the “closed immersion” of the locale. This means that we have a functor
î⋆î

⋆ : D(R■) → D(R■), M 7→M ⊗R R̂
I , whose essential image we denote by D((R̂I , R)■). For a

module M ∈ D(R■), we get two localization sequences:

j!j
⋆M →M → î⋆î

⋆M
+1→

î⋆î
!M →M → j⋆j

⋆M
+1→

The functors j⋆, j
!, j⋆ are part of our six functor formalism for the open immersion of schemes

U ↪→ X and have already been used a lot in this paper.
This globalizes. If i : Z ↪→ X is a closed subscheme of X, defined by a sheaf of ideals I , and if

j : U → X is the open complement, then we have a closed subset of the locale of X ,̂i : Ẑ ↪→ X.
For any object F ∈ D(OX,■), we have two localization sequences:

j!j
⋆F → F → î⋆î

⋆F
+1→

î⋆î
!F → F → j⋆j

⋆F
+1→

Lemma 2.9.3. If F is pseudo-coherent, î⋆î
⋆F = limn(F ⊗OX

OX/I n) and RΓ(X, î⋆î
⋆F ) =

limn RΓ(X,F ⊗OX
OX/I n).

Proof. By definition, î⋆î
⋆F = F⊗limn(OX/I n). We check that the natural map F⊗limn(OX/I n) →

limn(F ⊗OX
OX/I n) is an isomorphism. We can reduce to the affine case. So X = Spec R and

I (X) = I and F corresponds to a pseudo-coherent object M ∈ D(R■). On the other hand, R̂I

is a compact object of D(R■). For M = RJ for a set J , we deduce that RJ ⊗R R̂
I = (R̂I)J . Since

M can be represented by a bounded above complex, all whose terms are finite sums of objects of
the form RJ , the claim follows. □

Remark 2.9.4. This lemma compares to proposition 2.3.2. Indeed, the triangle j!j
⋆F → F →

î⋆î
⋆F

+1→ writes limn I n ⊗ F → F → limn F ⊗ OX/I n +1→.

2.9.5. The spectral sequence. We now let X be a scheme and we let Z−1 = ∅ ⊆ Z0 ⊆ Z1 ⊆ Z2 ⊆
· · · ⊆ X = Zd be a filtration by closed subschemes. We let îl : Ẑl ↪→ X. Let Ul = X \ Zl and

jl : Ul ↪→ X. We let RΓ(Ẑl,F ) be RΓ(X, (̂il)⋆î
⋆
l F ). We have exact triangles: RΓc(Ul,F ) →

RΓ(X,F ) → RΓ(Ẑi,F )
+1→ . We let RΓc(Ẑl \ Ẑl−1,F ) = RΓ(X, (jl−1)!(jl−1)

⋆(̂il)⋆(̂il)
⋆F ).

Lemma 2.9.6. We have that RΓc(Ẑl \ Ẑl−1,F ) = RΓ(X, (̂il)⋆(̂il)
⋆(jl−1)!(jl−1)

⋆F ). We have the
following exact triangles:

RΓc(Ẑl \ Ẑl−1,F ) → RΓ(Ẑl,F ) → RΓ(Ẑl−1,F )
+1→

RΓc(Ul,F ) → RΓc(Ul−1,F ) → RΓc(Ẑl \ Ẑl−1,F )
+1→

Proof. We need to see that (jl−1)!(jl−1)
⋆(̂il)⋆(̂il)

⋆ = (̂il)⋆(̂il)
⋆(jl−1)!(jl−1)

⋆. We consider the fol-
lowing Cartesian diagram:

Ul−1 ∩ Zl

i′l //

j′l−1

��

Ul−1

jl−1

��

Zl
il // X
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Since (̂il)⋆ = (̂il)!, we have by proper base change, (jl−1)
⋆(̂il)⋆ = (j′l−1)

⋆(̂i′l)⋆. The identity

follows. The first triangle comes from the triangle (jl−1)!(jl−1)
⋆(̂il)⋆(̂il)

⋆F → (̂il)⋆(̂il)
⋆F →

(̂il)⋆(̂il)
⋆F → (̂il−1)⋆(̂il−1)

⋆F
+1→. The second triangle comes from the triangle : (jl)!(jl)

⋆F →
(jl−1)!(jl−1)

⋆F → (̂il)⋆(̂il)
⋆(jl−1)!(jl−1)

⋆F
+1→. □

Theorem 2.9.7. Assume that F ∈ D−(OX,■). We have a spectral sequence: Ep,q
1 = Hp+q

c (Ẑp \
Ẑp−1,F ) ⇒ Hp+q(X,F ).

Proof. Each of the cohomologies RΓc(Ui,F ) can be represented by a complex A•
i in D−(A■)

of projective modules. This uses that X is qcqs. We have maps A•
d−1 → A•

d−2 → · · · → A•
−1

representing the maps RΓc(Ud−1,F ) → RΓc(Ud−2,F ) → · · · → RΓ(X,F ). By applying [Sta22],
TAG 014M, we deduce that we can replace A•

i by homotopic, bounded above complexes with the
property that A•

i → A•
i−1 is a termwise split injection. This means that the complex A•

−1 is filtered.
The spectral sequence we look for is just the spectral sequence of a filtered complex ([Sta22], TAG
014M). □

2.9.8. Action of a correspondence on the spectral sequence. Let (C,X, p1, p2) be a correspondence.
Let T : p⋆2F → p!1F be a cohomological correspondence. Let Z−1 = ∅ ⊆ Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆
X = Zd be a filtration by closed subschemes on X.

Proposition 2.9.9. Assume that p⋆1(Zl) ⊆ p⋆2(Zl) for all 0 ≤ l ≤ d (set theoretically). Then we

have an action of T on RΓ(Ẑl,F ), RΓc(Ul,F )and RΓc(Ẑl \ Ẑl−1,F ) for all i, compatible with the
natural morphisms. The spectral sequence of theorem 2.9.7 is T -equivariant.

Proof. We need to explain how we can attach to T a map of triangles:

p⋆2(jl)!j
⋆
l F //

��

p⋆2F //

T

��

p⋆2 (̂il)⋆(̂il)
⋆F

��

//

p!1(jl)!j
⋆
l F // p!1F // (p1)

!(̂il)⋆(̂il)
⋆F //

We have that p⋆2(Ul) ⊆ p⋆1(Ul). Let us write CUl,1 = p⋆1(Ul) and CUl,2 = p⋆2(Ul). Let jCUl,k
:

CUl,k ↪→ X be the open immersions for k = 1, 2. We have a chain of maps:

(jCUl,2
)!j

⋆
CUl,2

p⋆2F → (jCUl,2
)!j

⋆
CUl,2

p!1F → (jCUl,1
)!j

⋆
CUl,1

p!1F .

We observe that thanks to the base change theorem we have: (jCUl,2
)!j

⋆
CUl,2

p⋆2F = p⋆2(jl)!j
⋆
l F . On

the other hand, we claim that we have a map (jCUl,1
)!j

⋆
CUl,1

p!1F → (p1)
!(jl)⋆(jl)

⋆F . By adjunction

this map is equivalent to a map (p1)!(jCUl,1
)!j

⋆
CUl,1

p!1F → (jl)⋆(jl)
⋆F . Since (p1)!(jCUl,1

)!j
⋆
CUl,1

p!1F =

(jl)!(p
′
1)!(p

′
1)

!(jl)
!F for p′1 : CUl,1 → Ul, this map is just given by the co-unit of the adjunction

(p′1)!(p
′
1)

! → Id. □

2.10. Compact dynamic correspondences and finite rank operators. In this section we investigate
the case of compact dynamic correspondences.

Before we move on, let us briefly recall the definition of the cohomology with support in a closed
subset. If Y → Spec A is a scheme, i : Z ↪→ Y is a closed subscheme of Y , and if F ∈ D(OY,■),

we let RΓZ(Y,F ) = RΓ(Z, i!F ). We let î : Ẑ → Y be the closed subset of the locale. We let

RΓẐ(Y,F ) = RΓ(Ẑ, î!F )

Lemma 2.10.1. (1) We have a natural map RΓZ(Y,F ) → RΓẐ(Y,F ).

(2) If Z ⊆ Y ′ j
↪→ Y with Y ′ open in Y , then RΓZ(Y,F ) = RΓZ(Y

′, j⋆F ) and RΓẐ(Y,F ) =
RΓẐ(Y

′, j⋆F ).
(3) Let jU : U ↪→ Y and jU ′ : U ′ ↪→ Y be open subsets. We assume that U ⊆ Z ⊆ U ′ ⊆

Y . Then we have natural maps: RΓ(Y, (jU )!j
⋆
UF ) → RΓZ(Y,F ) → RΓẐ(Y,F ) →

RΓ(Y, (jU ′)!j
⋆
U ′F ).

(4) If Z is proper and if F has coherent cohomology groups, RΓZ(Y,F ) has finite cohomology
groups.
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Proof. For the first point, we have a factorization i : Z
u→ Ẑ

î→ Y . We deduce that there is a map
u⋆i

!F → î!F (by adjunction this is given by the identity i!F → u!î!F ). The second point follows
immediately from the fact that j⋆ = j!. For the third point, we just use the standard adjunctions.
For the last point, we observe that if F has coherent cohomology groups, the same holds for i!F
and one uses the finiteness of the cohomology of proper schemes. □

Lemma 2.10.2. Let X̄ be a scheme and let D+, D−, D
′
+, D

′
− be closed subschemes. Assume that:

(1) D+ ⊆
◦
D′

+⊆ D′
+,

(2) D′
− ⊆

◦
D−⊆ D−.

Let F ∈ D(OX̄,■). We have natural maps:

RΓD+,D−(X̄,F ) → RΓ
X̄\(

◦
D′

+∪
◦

D−)
(X̄\

◦
D′

+,F ) → RΓD′
+,D′

−
(X̄,F )

RΓD−,D+
(X̄,F ) → RΓ

X̄\(
◦

D′
+∪

◦
D−)

(X̄\
◦
D′

+,F ) → RΓD′
−,D′

+
(X̄,F )

Proof. For the first line, we consider the composition of the following natural maps. The map

RΓD+,D−(X̄,F ) → RΓ∅,D−(X̄\
◦
D′

+,F ) deduced from the map X̄\
◦
D′

+→ X̄, by applying lemma

2.2.7. The map RΓ∅,D−(X̄\
◦
D′

+,F ) → RΓ
X̄\(

◦
D′

+∪
◦

D−)
(X̄\

◦
D′

+,F ) obtained by applying lemma

2.10.1. The map RΓ
X̄\(

◦
D′

+∪
◦

D−)
(X̄\

◦
D′

+,F ) → RΓ∅,D′
−
(X̄\

◦
D′

+,F ) obtained by applying lemma

2.10.1. The map RΓ∅,D′
−
(X̄\

◦
D′

+,F ) = RΓ∅,D′
−
(X̄,F ) → RΓD′

+,D′
−
(X̄,F ) obtained by applying

lemma 2.2.6 to the map X̄ \D′
+ → X̄\

◦
D′

+.
For the second line, we consider the composite of the following natural maps. The map

RΓD−,D+
(X̄,F ) → RΓD−,∅(X̄\

◦
D′

+,F ) deduced by applying lemma 2.2.7 to the map X̄\
◦
D′

+→ X̄.

The map RΓD−,∅(X̄\
◦
D′

+,F ) → RΓ
X̄\(

◦
D′

+∪
◦

D−)
(X̄\

◦
D′

+,F ) obtained by applying lemma 2.10.1.

The map RΓ
X̄\(

◦
D′

+∪
◦

D−)
(X̄\

◦
D′

+,F ) → RΓD′
−,∅(X̄\

◦
D′

+,F ) obtained by applying lemma 2.10.1.

The natural map RΓD′
−,∅(X̄\

◦
D′

+,F ) = RΓD′
−,(X̄,F ) → RΓD′

−,D′
+
(X̄,F ) obtained by lemma

2.2.6. □

Let (C,X, p1, p2) be a correspondence. Let T : p⋆2F → p!1F be a map in D(OC,■).

Proposition 2.10.3. Let C = (C̄, X̄, p̄1, p̄2, D+, D−) be a compact dynamic compactification. Assume
that F has coherent cohomology groups, and that the map T extends to a map over a neighborhood

of C̄ \ (
◦

(p̄⋆1D
+) ∪

◦
(p̄⋆2D−)) in C̄. Then the endomorphism TC of proposition 2.2.10 has finite rank

(see definition 2.4.5).

Proof. We only consider the case of RΓD−,D+
(X̄,F ). It suffices to show that the map RΓp̄⋆

2D−,p̄⋆
2D+

(C̄, p⋆2F ) →
RΓp̄⋆

1D−,p̄⋆
1D+(C̄, p

!
1F ) has finite rank.

By lemma 2.10.2, we deduce that we have the following factorization of this map:

RΓp̄⋆
2D−,p̄⋆

2D+
(C̄, p⋆2F )

��

// RΓp̄⋆
1D−,p̄⋆

1D+
(C̄, p!1F )

RΓ
C̄\

◦
p̄⋆
2D−∪

◦
p̄⋆
1D

+
(C̄\

◦
p̄⋆1D

+, p⋆2F ) // RΓ
C̄\

◦
p̄⋆
2D−∪

◦
p̄⋆
1D

+
(C̄\

◦
p̄⋆1D

+, p!1F )

OO

By lemma 2.10.1, the complex RΓ
C̄\

◦
p̄⋆
2D−∪

◦
p̄⋆
1D

+
(C̄\

◦
p̄⋆1D

+, p⋆2F ) has finite cohomology. □
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Proposition 2.10.4. Let (C̄, X̄, p̄1, p̄2, D+, D−) and (C̄, X̄, p̄1, p̄2, D
′
+, D

′
−) be two dynamic corre-

spondences. We assume that D+ ⊆
◦
D′

+⊆ D′
+ and D− ⊆

◦
D′

−⊆ D′
−. Assume also that p̄⋆1D+ ⊇ p̄⋆2D

′
+

and that p̄⋆2D− ⊇ p̄⋆1D
′
−. Then the following holds:

(1) The correspondences (C̄, X̄, p̄1, p̄2, D+, D−), (C̄, X̄, p̄1, p̄2, D+, D
′
−), (C̄, X̄, p̄1, p̄2, D

′
+, D−),

(C̄, X̄, p̄1, p̄2, D
′
+, D

′
−) are compact dynamic,

(2) Let C = C̄ \ p̄⋆1D+ ∪ p̄⋆2D−. Let T : p⋆2F → p!1F be a map. Then there are canonical maps
T : RΓD′

+,D−(X̄,F ) → RΓD+,D′
−
(X̄,F ) and T : RΓD−,D′

+
(X̄,F ) → RΓD′

−,D+
(X̄,F ).

(3) We have the following diagrams:

RΓD+,D−(X̄,F )

��

RΓD+,D′
−
(X̄,F )

��

oo

RΓD′
+,D−(X̄,F )

T
66

RΓD′
+,D′

−
(X̄,F )oo

RΓD−,D+(X̄,F )

��

RΓD−,D′
+
(X̄,F )

��

oo

RΓD′
−,D+

(X̄,F )

T
66

RΓD′
−,D′

+
(X̄,F )oo

where the horizontal maps and vertical maps are the maps given by lemma 2.2.6 and go-
ing around in this diagram yields the map TC of proposition 2.2.10 acting on the various
cohomology with support.

(4) After taking the ordinary part in the above diagrams, all maps become quasi-isomorphisms.
(5) We have canonical quasi-isomorphisms between RΓD+,D−(X̄,F )C−ord and RΓD−,D+

(X̄,F )C−ord,

RΓD′
+,D−(X̄,F )C−ord and RΓD−,D′

+
(X̄,F )C−ord, ... .

Proof. The first point is clear, for example p̄⋆2D+ ⊆ p̄⋆2
◦
D′

+⊆ p̄⋆1D+. For the second point, we
consider the following composition:

T : RΓD′
+,D−(X̄,F ) → RΓp⋆

2D
′
+,p⋆

2D−(C̄, p
⋆
2F ) → RΓp⋆

1D+,p⋆
1D

′
−
(C̄, p!1F ) → RΓD+,D′

−
(X̄,F ).

One proceeds similarly with RΓD′
−,D′

+
(X̄,F ). The third and fourth point are clear. Let us prove

the last point. By lemma 2.10.2, we have a commutative diagram :

RΓD′
−,D+

(X̄,F ) //

))

RΓD−,D′
+
(X̄,F )

RΓ
X̄\

◦
D′

+∪
◦

D′
−

(X̄\
◦
D′

+,F )

55

))

RΓD+,D′
−
(X̄,F ) //

55

RΓD′
+,D−(X̄,F )

It follows that we can define an action of T on these 5 complexes using (2). On the ordinary part,
all spaces are quasi-isomorphic. □

2.11. Control theorems and change of support. In this section we want to investigate a situation
where we have both a strict dynamic and a compact dynamic correspondence and we want to
compare the ordinary cohomologies. The setting is the following. We consider three dynamic
correspondences (C̄, X̄, p̄1, p̄2, D+, D−), (C̄, X̄, p̄1, p̄2, D

′
+, D

′
−) and (C̄, X̄, p̄1, p̄2, D

′′
+, D

′′
−) . We
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assume that

D′′
+ ⊆

◦
D′

+⊆ D′
+ ⊆

◦
D+⊆ D+

D′′
− ⊆

◦
D′

−⊆ D′
− ⊆

◦
D−⊆ D−

We let X = X̄ \D+∪D− and X ′ = X̄ \D′
+∪D′

− and X ′′ = X̄ \D′′
+∪D′′

−. We let C = C̄ \ p̄⋆1D+∪
p̄⋆2D−, C

′ = C̄ \ p̄⋆1D′
+ ∪ p̄⋆2D′

− and C ′′ = C̄ \ p̄⋆1D′′
+ ∪ p̄⋆2D′′

−. We call p′i and p′′i the restrictions
of p̄i to C ′ and C ′′ respectively. We assume that over C ′′, we have that s(p′′1)

⋆D+ ≥ (p′′2)
⋆D+

and s(p′′2)
⋆D− ≥ (p′′1)

⋆D− for some 0 < s < 1. We also assume that p̄⋆1D
′
+ ⊆ p̄⋆2D

′′
+ and that

p̄⋆2D
′
− ⊆ p̄⋆1D

′′
−.

Remark 2.11.1. In the case that D′′
+ = D′′

− = ∅, then (C̄, X̄, p̄1, p̄2, D+, D−) is simply a strict dy-

namic correspondence. Here, we consider a situation where the compactification (C̄, X̄, p̄1, p̄2, D+, D−)
is dynamic and “becomes strict dynamic” if we further restrict to C ′′.

Remark 2.11.2. The compactifications (C̄, X̄, p̄1, p̄2, D
′
+, D

′
−) and (C̄, X̄, p̄1, p̄2, D

′′
+, D

′′
−) are com-

pact dynamic by proposition 2.10.4.

Remark 2.11.3. We see that the closure of X in X ′ and the closure of C in C ′ are proper.

We assume that D+, D−, D
′′
+, D

′′
− are locally principal subschemes. We furthermore assume

that we have a coherent sheaf F ′′ over X ′′, and a cohomological correspondence T : (p′′2)
⋆F ′′ →

(p′′1)
!F ′′. We let F be the restriction of F ′′ to X.

Theorem 2.11.4. (1) The operator T acts on the canonical diagrams:

RΓD′′
+,D−(X̄,F

′′) //

��

RΓD+,D−(X̄,F )

��

RΓD′′
+,D′′

−
(X̄,F ′′) // RΓD+,D′′

−
(X̄,F ′′)

RΓD−,D′′
+
(X̄,F ′′) //

��

RΓD−,D+
(X̄,F )

��

RΓD′′
−,D′′

+
(X̄,F ′′) // RΓD′′

−,D+
(X̄,F ′′)

(2) The correspondence (C,X, p1, p2) admits a strict dynamic compactification and RΓD+,D−(X̄,F )ord =

RΓD−,D+(X̄,F )ord = RΓ(X,F )C−ord.
(3) Assume that the map T factors into a map:

(p′′2)
⋆F ′′(D+)

!!

(p′′2)
⋆F ′′ //

OO

(p′′1)
!F ′′

(p′′1)
!F ′′(−D−)

OO

and that we have maps (p′′2)
⋆OX′′(D+) → (p′′1)

⋆OX′′(D+) and (p′′2)
⋆OX′′(−D−) → (p′′1)

⋆OX′′(−D−).
Then in the ordinary part of the diagram in (1), all maps become quasi-isomorphisms, and
we obtain a canonical quasi-isomorphism:

RΓD′′
+,D′′

−
(X̄,F ′′)ord = RΓD′′

−,D′′
+
(X̄,F ′′)ord → RΓ(X̄,F )C−ord.

(4) In general, after replacing D+ and D− by a multiple nD+ and nD− for n ∈ Z>0, there
exists m ≥ 0 such that we have a quasi-isomorphism:

RΓD′′
+,D′′

−
(X̄,F ′′(mD+−mD−))

ord = RΓD′′
−,D′′

+
(X̄,F ′′(mD+−mD−))

ord → RΓD+,D−(X̄,F )ord.



31

Proof. For the first point, the maps are given lemma 2.2.6. The operator T acts equivariently by
construction. For the second point, we letX be the closure ofX in X̄. We see thatX ⊆ X ′′. We let
C be the closure of C in C̄. We observe that C ⊆ C ′′. It follows that (C,X, p1, p2, D+∩X,D−∩X)
is a strict dynamic compactification. Moreover, the map RΓD+,D−(X̄,F ) → RΓD+∩X,D−∩X(X,F )

is a quasi-isomorphism by lemma 2.2.8. This map induces a quasi-isomorphism RΓD+,D−(X̄,F )ord →
RΓ(X,F )C−ord. Considering RΓD−,D+

(X̄,F ), one also gets a quasi-isomorphism RΓD−,D+
(X̄,F )ord →

RΓ(X,F )C−ord.
For the next point, we will first prove that RΓD′′

+,D−(X̄,F
′′)ord = RΓD−,D′′

+
(X̄,F ′′)ord. The

proof is similar to the proof of proposition 2.10.4. We claim that we have a commutative diagram
:

RΓD′′
+,D−(X̄,F

′′) //

))

RΓD′
+,D−(X̄,F

′′)

RΓc(X̄ \ {
◦
D′

+ ∪D−},F ′′)

55

))

RΓD−,D′′
+
(X̄,F ′′) //

55

RΓD−,D′
+
(X̄,F ′′)

together with maps (abusively denoted) T : RΓD′
+,D−(X̄,F

′′) → RΓD′′
+,D−(X̄,F

′′) as well as T :

RΓD−,D′
+
(X̄,F ′′) → RΓD−,D′′

+
(X̄,F ′′) inducing the endomorphism T when you go around the di-

agram. Passing to the ordinary part we deduce that RΓD′′
+,D−(X̄,F

′′)ord = RΓD−,D′′
+
(X̄,F ′′)ord.

Now we observe by corollary 2.3.11 that the maps RΓD′′
+,D−(X̄,F

′′) → RΓD′′
+,D′′

−
(X̄,F ′′(−mD−))

induce an isomorphism RΓD′′
+,D−(X̄,F

′′) → limm RΓD′′
+,D′′

−
(X̄,F ′′(−mD−)). But by assumption,

the map T on the limit factors as maps RΓD′′
+,D′′

−
(X̄,F ′′(−mD−)) → RΓD′′

+,D′′
−
(X̄,F ′′(−(m +

1)D−)) for any m ≥ 0. We deduce that RΓD′′
+,D−(X̄,F

′′)ord = RΓD′′
+,D′′

−
(X̄,F )ord

We similarly observe by corollary 2.3.11 that the maps RΓD−,D′′
+
(X̄,F ′′(mD+)) → RΓD−,D+

(X̄,F )

induce an isomorphism colimm≥0RΓD−,D′′
+
(X̄,F ′′(mD+)) → RΓD−,D+

(X̄,F ). But by assump-

tion, the map T on the colimit factors as maps RΓD−,D′′
+
(X̄,F ′′(mD+)) → RΓD−,D′′

+
(X̄,F ′′((m−

1)D+)) for any m > 0. It follows that the colimit is constant on the ordinary part.
Regarding the last point, by lemma 2.5.3 and lemma 2.1.17, after replacing D+ and D−

by a multiple nD+ and nD− for n ∈ Z>0, there exists m ≥ 0 such that the twisted map
T : (p′′2)

⋆F ′′(mD+ −mD−) → (p′′1)
!F ′′(mD+ −mD−) satisfies the factorization of (2) and such

that we have maps (p′′2)
⋆OX′′(D+) → (p′′1)

⋆OX′′(D+) and (p′′2)
⋆OX′′(−D−) → (p′′1)

⋆OX′′(−D−).
The last point is now a direct consequence of (2).

□

3. The Siegel Shimura varieties

3.1. The group G. We let G = GSp2g be the symplectic group realized as the group of symplec-

tic similitudes of the 2g-dimensional free module Z2g = V with canonical basis e1, · · · , e2g, and
equipped with the symplectic form with matrix(

0 S
−S 0

)
with S the antidiagonal matrix with 1 on the antidiagonal. We have ⟨ei, ej⟩ = 0 if i+ j ̸= 2g + 1,
⟨ei, e2g+1−i⟩ = 1 for 1 ≤ i ≤ g.

We let h0 : ResC/RGm → GR be the morphism z = (x + iy) 7→
(

x Sy
−Sy x

)
and we let X be

the G(R) conjugacy class of h0. This is a Hermitian symmetric domain. The pair (G,X) is the
Siegel Shimura datum. We have (ResC/RGm)C = (Gm)C × (Gm)C, via z 7→ (z, z̄). For any h ∈ X,
there is an associated cocharacter µh : (Gm)C → GC given by the rule µ(z) = h(z, 1). To fix ideas,



32

we choose the following representative in the conjugacy class of µh: µ(z) = diag(Idg, zIdg). We let
PStd
µ = P std be the stabilizer of ⟨e1, · · · , eg⟩. We let Pµ = P be the opposite parabolic, Mµ = M

be the Levi and UP be the unipotent radical. We let T = {diag(t1, · · · , t2g), tit2g+1−i = c} be the

diagonal torus. The maximal torus of the derived group is T der = {diag(t1, · · · , tg, t−1
g , · · · , t−1

1 ).
The center Z consists of scalar diagonal elements. We identify the group of characters of T , X⋆(T ),
with tuples κ = (k1, · · · , kg; k) ∈ Zg × Z satisfying

∑g
i=1 ki = k mod 2, by

κ(diag(zt1, · · · , ztg, zt−1
g , · · · , zt−1

1 )) = zk
g∏

i=1

tki
i .

We let B ⊆ P be the Borel which is upper triangular on the diagonal g × g blocks. We let
Φ be the set of roots. The positive roots for B are denoted by Φ+. We have a decomposition
Φ+ = Φ+

M

∐
Φ+,M where Φ+

M accounts for the positive roots in m = Lie(M) and Φ+,M for the
positive roots in uP = Lie(UP ). We let ρ = 1

2

∑
α∈Φ+ α, ρnc =

1
2

∑
α∈Φ+,M α.

The dominant cone X⋆(T )+ is given by the condition 0 ≥ k1 ≥ · · · ≥ kg. The dominant cone
for the Levi M , denoted by X⋆(T )+,M , is given by the condition k1 ≥ · · · ≥ kg.

We let X⋆(T ) be the group of cocharacters of T . We define a map v : T (Qp) → X⋆(T ) as follows:
T (Qp) = Q×

p ⊗ X⋆(T ), and we compose with the valuation Q×
p → Z (normalized by v(p) = 1).

The map v has a section X⋆(T ) → T (Qp), sending λ to λ(p), so that T (Qp) = X⋆(T )×T (Zp). We
write T+(Qp) (resp. T++(Qp)) for the set of those t ∈ T (Qp) for which v(t) is dominant (resp.
dominant regular).

We let W be the Weyl group, and WM be the Weyl group of the Levi. We let MW be the set of
minimal length representatives of the quotient WM\W . The set MW is defined by the condition
w.X⋆(T )+ ⊆ X⋆(T )+,M , or equivalently by the condition w−1Φ+,M ⊆ Φ+. We have a concrete
realization of these groups: W identifies with the subgroup of permutations w of {1, · · · , 2g} such
that w(i) + w(2g + 1− i) = 2g + 1, via the formula:

w(diag(t1, · · · , t2g)) = diag(tw−1(1), · · · , tw−1(2g))

Also, WM ⊆ W is the subgroup of permutation w such that w({1, · · · , g}) = {1, · · · , g}. Finally,
MW is the subset of w such that w−1(g + 1) < w−1(g + 2) · · · < w−1(2g).

There is a partial order on W and thus a partial order on MW , as well as a length function

ℓ : MW → [0, g(g+1)
2 ]. The set MW , the order and length function have a geometric interpretation

that we now recall. Let FL = P\G be the partial flag variety (viewed as a scheme for the moment).
There is a G-action on FL by translation, and the stratification by B-orbits is FL =

∐
w∈MW Cw

where Cw = P\PwB is a Bruhat cell. We have ℓ(w) = dim Cw, and w′ ≤ w if and only if
Cw′ ⊆ Cw. To w ∈ MW , we can attach the following set w−1{g + 1, · · · , 2g} ∩ {g + 1, · · · , 2g}
(this set actually determines w) and a sequence of numbers (w1, · · · , wg) given by wi − wi−1 = 0
if g + i /∈ w−1{g + 1, · · · , 2g}, wi − wi−1 = 1 if g + i ∈ w−1{g + 1, · · · , 2g} (with the convention
w0 = 0). The sequence (w1, · · · , wg) has the following geometric interpretation: for any x ∈ P\G,
we let x−1Px be the corresponding parabolic, equal to the stabilizer of x−1⟨eg+1, · · · , e2g⟩. If
x ∈ Cw, then wi = dim(x−1⟨eg+1, · · · , e2g⟩ ∩ ⟨eg+1, · · · , eg+i⟩).

3.2. Shimura varieties. For any neat compact open subgroup K ⊆ G(Af ) we have the Shimura
variety SK,Q → Spec Q. At the level of complex points, we have SK,Q(C) = G(Q)\(X×G(Af )/K).

For any connected affine Q-scheme Spec R, we have that SK,Q(Spec R) consists of the following
list of data (A, λ, η), up to isomorphism:

(1) A→ Spec R is an abelian scheme of dimension g,
(2) λ : A→ AD is a quasi-polarization,
(3) η : V ⊗Z Af → H1(A) ⊗Z Q is a K-orbit of symplectic isomorphism (up to a similitude

factor) of pro-étale sheaves.

An isomorphism ξ : (A, λ, η) → (A′, λ′, η′) is a quasi-isogeny ξ : A→ A′ for which η′ = H1(ξ) ◦ η
and ξDλξ = rλ for some r ∈ Q>0.

We let Stor
K,Q,Σ be a toroidal compactification, depending on a suitable choice Σ of K-admissible

polyhedral cone decompositions ([FC90], [Lan13]).
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3.3. Hodge-Tate period map. We now fix a prime p and a neat compact open subgroup Kp ⊆
G(Ap

f ). We also fix a compact open subgroup Kp ⊆ G(Qp). We fix a cone decomposition Σ which

is KpKp-admissible. We let Stor
KpKp,Σ

be the adic space over Spa(Qp,Zp) attached to the scheme

Stor
KpKp,Σ

. Let Stor
Kp,Σ = limK′

p⊆Kp Stor
KpK′

p,Σ
be the perfectoid Siegel moduli space [Sch15], [PS16] (the

same cone decomposition is used at each stage of the tower). We let SKp be the open complement
of the boundary in Stor

Kp,Σ. We have a G(Qp)-equivariant map πHT : SKp → FL = P\G which can

be extended to a Kp-equivariant map πHT : Stor
Kp,Σ → FL (since only Kp acts on Stor

Kp,Σ). Let us

briefly recall how this map is constructed on a (C,OC)-point corresponding to an abelian scheme A
together with an isomorphism Ψ : Q2g

p → Tp(A)⊗Zp
Qp. We have the Hodge-Tate exact sequence

0 → LieA → Tp(A)⊗Zp
C → ωAt → 0.

There exists an element g(Ψ) ∈ G(C) such that Ψ(⟨g(Ψ)(eg+1), · · · , g(Ψ)(e2g)⟩) = LieA. We let
πHT ((A,Ψ)) = g(Ψ)−1.

Remark 3.3.1. The map πHT is indeed G(Qp)-equivariant: for f ∈ G(Qp), we have f.(A,Ψ) =
(A,Ψ ◦ f) and g(Ψ ◦ f) = f−1g(Ψ), so πHT ((A,Ψ ◦ f)) = πHT ((A,Ψ))f .

3.4. Igusa towers. We consider the ordinary Igusa tower. We first recall the definition given in
[CS17], section 4 (notably def. 4.3.1) of the perfectoid Igusa tower. Then we explain that this
perfectoid Igusa tower is actually an inverse limit of finite level Igusa tower which are more classical
objects. Finally, we give the relation with the Siegel Shimura variety.

3.4.1. Definition of Igusa towers. We consider the p-divisible group over Zp: Xord = (µp∞)g ⊕
(Qp/Zp)

g, equipped with its canonical polarization λcan : Xord → XD
ord = (Qp/Zp)

g⊕ (µp∞)g given
by (

0 SId(Qp/Zp)g

−SId(µp∞ )g 0

)
.

where S is the antidiagonal matrix with 1 on the antidiagonal. The Frobenius of the Dieudonné
module of Xord|Fp

corresponds to the element bord = diag(p−1Idg, Idg) ∈ G(Q̆p). We now consider
the Igusa variety corresponding to this element bord. We let Nilp/Zp be the category of Zp-algebras
on which p is nilpotent. We let IGKp be the p-adic formal scheme over Zp representing the functor
sending R ∈ Nilp/Zp to the set of isomorphism classes of (A, λ, ηp, j) consisting of:

(1) An abelian variety of dimension g, A → Spec R, equipped with a prime-to-p polarization
λ, and a Kp-level structure ηp,

(2) An isomorphism j : Xord → A[p∞] such that there exists c ∈ Z×
p and a commutative

diagram:

Xord
j
//

cλcan

��

A[p∞]

λ

��

XD
ord A[p∞]D

jD
oo

An isomorphism (A, λ, ηp, j) → (A′, λ′, ηp′, j′) is a prime-to-p quasi-isogeny ξ : A → A′ matching
λ and λ′ up to an element in Z×

(p),>0, and matching ηp with ηp′ and j with j′.

There is another equivalent formulation of the moduli problem, up to quasi-isogeny. The formal
scheme IGKp parametrizes isomorphism classes of quadruples (A, λ, ηp, j) consisting of:

(1)’ An abelian variety of dimension g, A→ Spec R, equipped with a quasi-polarization λ, and
a Kp-level structure ηp,



34

(2)’ A quasi-isogeny j : Xord → A[p∞] such that there exists c ∈ Q×
p and a commutative

diagram:

Xord
j
//

cλcan

��

A[p∞]

λ

��

XD
ord A[p∞]D

jD
oo

An isomorphism (A, ηp, λ, j) → (A′, ηp′, λ′, j′) is a quasi-isogeny ξ : A→ A′ matching λ and λ′ up
to an element in Q>0, and matching ηp with ηp′ and j with j′.

3.4.2. The group Jord. We define a functor in groups Jbord := Jord on Nilp/Zp by the rule: for
any R ∈ Nilp/Zp, Jord(R) = Qisogsymp(Xord ×Spec Zp

Spec R) is the group of self quasi-isogenies

of Xord respecting the polarization up to a similitude factor in Q×
p .

Let X̃ord = lim×p Xord be the universal cover of Xord ([SW13], sect. 3.1). Then we recall that

Qisogsymp(Xord ×Spec Zp Spec R) = Autsymp(X̃ord ×Spec Zp Spec R).
We give a description of Jord. We recall that M =Mµ is the Levi of Pµ = P .

Lemma 3.4.3. The group Jord is a representable group scheme over Spf Zp. We have Jord =
Mµ(Qp)⋉UJord

where M(Qp) is a locally profinite group viewed as a locally constant group scheme

over Spf Zp, and UJb
= µ̃p∞ ⊗Qp Sym2Qg

p, where µ̃p∞ is the universal cover of µp∞ . The action

of M(Qp) on UJb
is given by the usual action of M(Qp) on Sym2Qg

p ≃ UP (Qp).

Proof. We first compute the group of all automorphisms of X̃ord. Since Xord = Xord,m ⊕Xord,et is

a direct sum of its multiplicative and étale part, Aut(X̃ord) has the shape:(
Aut(X̃ord,m) Hom(X̃ord,et, X̃ord,m)

0 Aut(X̃ord,et)

)
We have that Aut(X̃ord,m) ≃ Aut(X̃ord,et) ≃ GLg(Qp) and Hom(X̃ord,et, X̃ord,m) = µ̃p∞⊗Mg×g(Qp).
Taking the polarization into account yields the promised description. □

From the second formulation of the moduli problem, it is clear thet Jord acts on the right on
IGKp . Namely, we have (A, λ, ηp, j)g = (A, λ, ηp, j ◦ g) for any element g ∈ Jord.

We let Jord ×Spf Zp Spa(Qp,Zp) =: Jan
ord be the adic generic fiber of Jord. We have an exact

sequence

0 → Tp(µp∞) → µ̃p∞ → µp∞ → 0.

We denote as usual Tp(µp∞) × Spa(Qp,Zp) = Zp(1) (this is a profinite étale group scheme over

Spa(Qp,Zp)). We let Ĝm = µp∞ × Spa(Qp,Zp) be the open unit ball with its multiplicative group
structure. We deduce that µ̃p∞ × Spa(Qp,Zp) fits in an exact sequence:

0 → Zp(1) → µ̃p∞ × Spa(Qp,Zp) → Ĝm → 0.

It follows that Jan
ord is the semi-direct product of the locally profinite groupM(Qp) by a unipotent

group UJord
× Spa(Qp,Zp) which fits in an exact sequence:

0 → Sym2Zg
p(1) → UJord

× Spa(Qp,Zp) → Ĝm ⊗Zp
Sym2Zg

p → 0.

Since multiplication by p is an isomorphism in µ̃p∞ × Spa(Qp,Zp), we deduce an embedding
Qp(1) → µ̃p∞ × Spa(Qp,Zp). We can define a locally profinite sub-group scheme P ′(Qp) ↪→ Jan

ord,

generated by the Levi M(Qp) and the unipotent radical UP (Qp)(1) ≃ Qp(1) ⊗Zp
Sym2Zg

p. Over

Spa(Qcycl
p ,Zcycl

p ), the choice of an isomorphism Zp(1) = Zp identifies P (Qp) and P
′(Qp).

Remark 3.4.4. We note that Jan
ord is g(g+1)

2 -dimensional. In that sense it is much bigger than P ′(Qp)
which is zero dimensional.
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3.4.5. Finite level Igusa varieties. We now want to consider finite level Igusa varieties and we will
see that they can be organized in a tower which enjoys very good properties, similar to the tower
of Shimura varieties over Q.

The finite level Igusa varieties will be parametrized by compact open subgroups Kp,P of P ′(Qp),
or which is the same thing, compact open subgroups of P (Qp) which are stable under the Galois
action on P (Qp) where Galois acts on the unipotent radical via multiplication by the cyclotomic
character.

Remark 3.4.6. We give a motivation for considering these compact open subgroups. The canonical
choice of compact open subgroup we want to consider is J int

ord := Autsymp(Xord) and its generic
fiber J int

ord×Spa(Qp,Zp) =: P ′(Zp), the semi direct product of M(Zp) by UP (Zp)(1). We also want
to allow any finite index subgroup of P ′(Zp) as well as any conjugate by M(Qp). Since P ′(Qp)
is generated by P ′(Zp) and M(Qp), we are exactly led to consider P ′(Qp) and its compact open
subgroups.

We write UKp,P
= Kp,P ∩UP (Qp)(1) andMKp,P

= Kp,P ∩M(Qp) = K
Gal(Qcycl

p /Qp)

p,P . When p > 2

we in fact have Kp,P = MKp,P
⋉ UKp,P

. Indeed given g = m · u ∈ Kp,P and σ ∈ Gal(Qcycl
p /Qp)

with χcycl(σ)− 1 ∈ Z×
p , we see that σ(g)−1g = (1− χcycl(σ))u ∈ Kp,P and hence u ∈ Kp,P .

Remark 3.4.7. We remark therefore that when p > 2 we have a bijection between compact open
subgroup of P (Qp) which are a semi-direct products MKp,P

⋉ UKp,P
and compact open subgroup

of P ′(Qp).

For any compact open subgroup Kp,P of P ′(Qp), we let Kp,P be the schematic closure in Jord.
2

Lemma 3.4.8. The group scheme Kp,P is a profinite flat group scheme over Spec Zp. Its generic
fiber is Kp,P .

Proof. We first assume that Kp,P = P ′(Zp). Then Kp,P = J int
ord. We then consider the general

case. It is easy to see that a general Kp,P can always be conjugated by an element x ∈M(Qp) to a
finite index subgroup of P ′(Zp). Indeed, we first consider the Levi quotient Kp,M , and use that any
maximal compact subgroup of GLg(Qp) is conjugated to GLg(Zp). We can then further conjugate
by the element diag(1, · · · , 1, p, · · · , p) in the center of M(Qp) to have Kp,UP

⊆ UP (Zp)(1). We

thus reduce to the case that Kp,P ⊆ P ′(Zp) is of finite index. We see that Kp,P = limnKp,P n

where Kp,P n is the schematic closure of Kp,P inM(Z/pnZ)⋉µpn ⊗Zp
Sym2Zg

p. By [Ray74], section

2, each Kp,P n is a finite flat group scheme over Spec Zp. □

Taking the schematic closure of the exact sequence 1 → UKp,P
→ Kp,P →MKp,P

→ 1 yields an

exact sequence 1 → UKp,P
→ Kp,P → MKp,P

→ 1 where MKp,P
is a profinite étale group scheme.

We also let T̂Kp,P
:= µ̃p∞ ⊗ Sym2Zg

p/UKp,P
. This is a formal torus, isogenous to Ĝm ⊗ Sym2Zg

p.

Proposition 3.4.9. (1) For any compact open subgroup Kp,P , the fpqc quotient of IGKp by Kp,P

exists as a p-adic formal scheme and is denoted by IGKpKp,P
.

(2) The map IGKp → IGKpKp,P
is a Kp,P -torsor in the fpqc-topology.

(3) The formal scheme IGKpKp,P
is smooth of finite type over Zp.

(4) For any compact open subgroup Kp,P , the fpqc quotient of IGKp by UKp,P
exists as a

p-adic formal scheme and is denoted by IGKpUKp,P
.

(5) The map IGKpUKp,P
→ IGKpKp,P

is a profinite étale map with group MKp,P
.

(6) The action of Jord on IGKp induces an action of the formal torus T̂Kp,P
on IGKpUKp,P

and the formal completions at closed points are homogeneous spaces under the formal torus
T̂Kp,P

.
(7) Let K ′

p,P ⊆ Kp,P be another compact. The map IGKpUK′
p,P

→ IGKpUKp,P
is finite flat.

This map is equivariant with respect to the action of T̂K′
p,P

on the source, the action of T̂Kp,P

on the target, and the natural isogeny T̂K′
p,P

→ T̂Kp,P
. The map IGKpK′

p,P
→ IGKpKp,P

is also finite flat.

2This means that Kp,P is defined by the sheaf of ideals in OJord
of sections vanishing on Kp,P
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Remark 3.4.10. The point (6), implies that the completed local rings at a closed point x of

ÔIGKpUKp,P
,x is isomorphic to OT̂Kp,P

⊗Zp
W (k(x)). By (5), for any closed point x ∈ IGKpKp,P

and any x′ ∈ IGKpUKp,P
above x, we have an isomorphism:

ÔIGKpKp,P
,x⊗̂W (k(x))W (k(x′)) ≃ ÔIGKpUKp,P

,x′ .

Remark 3.4.11. In the situation of (7), assume that UKp,P
=

∏
α∈Φ+,M Kp,α admits a decomposition

as a product for all the roots in Φ+,M and that UK′
p,P

=
∏

α∈Φ+,M pnαKp,α. Let x
′ be a closed point

in IGKpK′
p,P

mapping to a closed point x ∈ IGKpKp,P
Then the induced map between completions

at x′ and x is isomorphic to:∏
α∈Φ+,M

Ĝm,W (k(x′)) →
∏

α∈Φ+,M

Ĝm,W (k(x))

(xα) → (xp
nα

α )

Proof. We first consider the case where Kp,P = P ′(Zp). Let us take as an alternative definition of
IGKpP ′(Zp) the ordinary locus in the formal scheme corresponding to the level KpG(Zp)-Shimura
variety. This is a smooth formal scheme by the deformation theory of abelian varieties. We
have a natural map IGKp → IGKpKp,P

. Let us prove that this map has a section fpqc-locally
by giving another construction of IGKp . Over IGKpKp,P

, the p-divisible group is an extension
0 → A[p∞]m → A[p∞] → A[p∞]e → 0. We first define a pro-étale covering IGKp,UP (Zp)(1) →
IGKpP ′(Zp) as the space of isomorphisms x : µg

p∞ → A[p∞]m, y : (Qp/Zp)
g → A[p∞]e and

c ∈ Z×
p , such that (xD, yD) ◦ λ ◦ (x, y) = cλcan.

3 We have a lift of the Frobenius map F :
IGKpP ′(Zp) → IGKpP ′(Zp) and F : IGKpUP (Zp)(1) → IGKpUP (Zp)(1). We now define IGKp =
lim×F IGKpUP (Zp)(1). This parametrizes splittings of the sequence 0 → A[p∞]m → A[p∞] →
A[p∞]e → 0 over IGKpUP (Zp)(1), thus we indeed recover our original space IGKp . Since IGKpP ′(Zp)

is smooth, the map F is finite flat and thus

IGKp → IGKpP ′(Zp)

is a profinite flat map. The case where Kp,P = P ′(Zp)n is the principal level congruence subgroup
of elements of P ′(Zp) reducing to 1-mod pn can be treated similarly. A general Kp,P can always be
conjugated by an element x ∈M(Qp) to a finite index subgroup of P ′(Zp). We thus reduce to the
case P ′(Zp)n ⊆ Kp,P ⊆ P ′(Zp). Now we need to consider the fpqc quotient of IGKpP (Zp)n by the

finite flat group scheme Kp,P /P (Zp)n. We can invoke [Ray67]. This finishes the proof of (1) and
(2). The proof of (4) follows along similar lines: we already treated the case Kp,P = P ′(Zp). The
case Kp,P = P ′(Zp)n follows similarly. We then treat the general case using [Ray67]. We deduce

point (5). By Serre-Tate theory ([Kat81]), the action of T̂P ′(Zp) on the formal completions of the
local rings of IGKpUP (Zp)(1) at any closed point x is simply transitive, so we have isomorphisms

T̂P ′(Zp) ×Spf Zp Spf W (k(x)) ≃ ̂IGKpUP (Zp)(1)

x

which intertwines the Frobenius map on both sides for any closed point x. We deduce that there
are isomorphisms:

T̂P ′(Zp)n ×Spf Zp
Spf W (k(xn)) ≃ ̂IGKpUP (Zp)(1)n

xn

for any n and any closed point xn of IGKpUP (Zp)(1)n . We finally deduce point (6) by passing to

the quotient by UKp,P
/UP (Zp)(1)n for n large enough. This implies (3). Indeed, by (4) the formal

schemes IGKpKp,P
are formally smooth, and they are also of finite type (as we noticed earlier

during the proof of (1) and (2)). The remaining points follow easily.
□

3In this formula, λ stands for the map A[p∞]m ⊕ A[p∞]et → At[p∞]m ⊕ At[p∞]et deduced from the map

λ : A → At.



37

3.4.12. Variant over Zcycl
p . When comparing with Shimura varieties, it is useful to work over Zcycl

p

as well. We let IGKp,Zcycl
p

= IGKp ×Spf Zp
Spf Zcycl

p . For any compact open subgroup Kp,P of

P (Qp), we let IGKpKp,P ,Zcycl
p

be the quotient of IGKp,Zcycl
p

by Kp,P . If Kp,P arises from a subgroup

of P ′(Qp), then IGKpKp,P ,Zcycl
p

= IGKpKp,P
×Spf Zp

Spf Zcycl
p .

3.4.13. Hecke correspondences. For any g ∈M(Qp) and any compact open subgroupKp,P , gKp,P g
−1∩

Kp,P is again a compact open subgroup, and we define a Hecke correspondence:

IGKp.gKp,P g−1∩Kp,P

p2

vv

p1

((

IGKp,Kp,P
IGKpKp,P

where p1 is induced by the inclusion gKp,P g
−1 ∩ Kp,P ⊆ Kp,P , and p2 is given by the action

map [g] : IGKp.gKp,P g−1∩Kp,P
→ IGKp.Kp,P∩g−1Kp,P g, followed by the projection induced by the

inclusion g−1Kp,P g ∩Kp,P ⊆ Kp,P . The projection maps are finite flat by proposition 3.4.9.

Remark 3.4.14. We can also work over Zcycl
p , in which case we can consider any element g ∈ P (Qp).

3.4.15. Partial toroidal compactifications. We construct partial toroidal compactification of our
Igusa variety. This is a special case of [CS19], sect. 3.2. Let Σ be a KpG(Zp)-admissible cone

decomposition. We construct IGtor
Kp,Σ, a toroidal (partial) compactification of IGKp as follows. We

first let IGtor
KpP ′(Zp),Σ be the ordinary locus in the toroidal compactification of the Shimura variety

of level KpG(Zp). We next construct the pro-étale torsor: IGtor
KpUP (Zp)(1),Σ → IGtor

KpP (Zp),Σ as the

space of isomorphisms µg
p∞ → A[p∞]m, c ∈ Z×

p . This is justified because the connected part of the
p-divisible group extends over the toroidal compactification.

We have a lifting of the Frobenius map F : IGtor
KpP ′(Zp),Σ → IGtor

KpP ′(Zp),Σ and F : IGtor
KpUP (Zp)(1),Σ →

IGtor
KpUP (Zp)(1),Σ. We let IGtor

Kp,Σ = limF IGtor
KpUP (Zp)(1),Σ. By construction, we have an open im-

mersion IGKp ↪→ IGtor
Kp,Σ.

Proposition 3.4.16. The space IGtor
Kp,Σ carries an action of P ′(Zp), extending the action on IGKp .

For any Kp,P ⊆ P ′(Zp), the categorical quotient of IGtor
Kp,Σ by Kp,P exists and is denoted by

IGtor
KpKp,P ,Σ.

Proof. The map IGtor
Kp,Σ → IGtor

KpP (Zp),Σ is profinite flat. Moreover, by normality the action of

P ′(Zp) extends to IGtor
KpUP (Zp)(1),Σ and then to limF IGtor

KpUP (Zp)(1),Σ. Since the map IGtor
Kp,Σ →

IGtor
KpP ′(Zp),Σ is affine, we can cover IGtor

Kp,Σ by open affine ∪iSpf Ai, stable under the action of

P ′(Zp). For each i, A
Kp,P

i is finite over A
P ′(Zp)
i . We deduce that the Spf A

Kp,P

i glue to give the
desired space. □

We have by construction an open immersion IGKpKp,P
↪→ IGtor

KpKp,P ,Σ. We say that IGtor
KpKp,P ,Σ

is a partial toroidal compactification of IGKpKp,P
.

By blowing up at the boundary as in [Lan17], we can obtain more toroidal compactifications
for more general cone decompositions. In the sequel, we ignore the dependence on the cone de-
composition and simply denote by IGtor

KpKp,P
a partial toroidal compactification for a suitable cone

decomposition. The coherent cohomology doesn’t depend on the choice of the cone decomposition.

3.4.17. Relation to Shimura varieties. We work over Zcycl
p and fix an isomorphism Zp(1) = Zp.

Let IGKp,Zcycl
p

= IGKp,Zcycl
p

× Spa(Qcycl
p ,Zcycl

p ). We have a P (Qp)-equivariant map IGKp,Zcycl
p

→
SKp × Spa(Qcycl

p ,Zcycl
p ) which sends A equipped with the isomorphism (Qp/Zp)

g ⊕ µg
p∞ → A[p∞]

to the level structure Zg
p ⊕ Zg

p(1) = Z2g
p → Tp(A) (using our fixed isomorphism Zp(1) = Zp).

We deduce that we have an injective, G(Qp)-equivariant map IGKp,Zcycl
p

×P (Qp) G(Qp) → SKp ×
Spa(Qcycl

p ,Zcycl
p ). Let x ∈ G(Qp), and let Kp be a compact open subgroup of G(Qp). Let Kp,P =
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P (Qp) ∩ xKpx
−1. The map IGKp ×P (Qp) G(Qp) → SKp × Spa(Qcycl

p ,Zcycl
p ) induces an open

immersion:
IGKpKp,P ,Zcycl

p

x→ SKpKp
× Spa(Qcycl

p ,Zcycl
p ).

Remark 3.4.18. In general this map doesn’t descend to a map: IGKpKp,P

x→ SKpKp
because

the level structure on both sides are formulated in a different way. One uses isomorphisms with
µg
p∞ ⊕ (Qp/Zp)

g on the left, and isomorphisms with (Qp/Zp)
2g on the right. For certain level

structure, it does however descend. See the section 4.1 below.

3.4.19. Integral model of Shimura varieties. We review the standard method to obtain integral
models of the Shimura variety of deep level by normalization (following for example [Lan16] and
[MP19]). We first consider Shimura varieties with level given by maximal compact open subgroups.
In that case, we have a natural moduli theoretic definition of the integral structure. For a general
level, we consider maps towards Shimura varieties whose level is a maximal compact open subgroup,
and we take a normalization.

We let Ag,d → Spec Z be the moduli stack of abelian varieties of dimension g, with a degree d2

polarization (see [dJ93]). For any δ = (δ1, · · · , δg) ∈ Zg
≥0 with (δ1 | δ2 | · · · | δg) and

∏g
i=1 δi = d,

we let Mδ ∈ GL2g(Q) be the matrix with diagonal coefficients (δ1, · · · , δg, 1, · · · , 1). We let Kδ =

MδGL2g(Ẑ)M−1
δ ∩ G(Af ). We let Ag,δ → Ag,d be the locally closed substack where the kernel of

the polarization is isomorphic, locally in the étale topology, to
∏g

i=1 Z/δiZ × µδi . By definition,
we have Ag,δ,Q = SKδ,Q. We also see easily that we have the decomposition

Ag,d,Q =
∐
δ

SKδ,Q.

We let Ag,d be the p-adic formal completion of Ag,d and we let Aord
g,d be the ordinary locus. We

let Ag,δ be the p-adic formal completion of Ag,δ and we let Aord
g,δ be the ordinary locus. We have

Aord
g,d =

∐
δ A

ord
g,δ .

Lemma 3.4.20. We have Aord
g,δ = IGKδ,P

where Kδ,P = Kp
δ (Kδ,p ∩ P (Qp)).

Proof. Clear from the definition. □

Let us fix K = KpK
p. We now give the construction of certain integral models for the Shimura

variety of level K, depending on some auxiliary data. Let d1, · · · , dr be positive integers and let
δ1, · · · , δr be sequences (δi,1, · · · , δi,g) as above with

∏g
j=1 δi,j = di. We also fix maps K ↪→ Kδi

induced by conjugation by elements of G(Af ) followed by inclusion. They induce finite maps
SKpKp,Q →

∏r
i=1Ag,di,Q. We let SKpKp

→ Spec Zp be the normalization of
∏r

i=1Ag,di
× Spec Zp

in SKpKp,Qp
.

Remark 3.4.21. The space SKpKp
→ Spec Zp will in general depend on the choice of the auxiliary

spaces Ag,di
.

One can perform a similar construction over Zcycl
p . We let SKpKp,Zcycl

p
→ Spec Zcycl

p be the

normalization of
∏r

i=1Ag,di
× Spec Zcycl

p in SKpKp,Qcycl
p

.

Remark 3.4.22. In general, the natural map SKpKp,Zcycl
p

→ SKpKp
×Spec Zp

Spec Zcycl
p is not an

isomorphism.

3.4.23. Toroidal compactifications. We obtain integral models of toroidal compactifications in the
same way. We consider a finite map Stor

KpKp,Q →
∏r

i=1A
tor
g,di,Q. We let Stor

KpKp
→ Spec Zp be

the normalization of
∏r

i=1A
tor
g,di

× Spec Zp in Stor
KpKp,Qp

. A similar variant holds over Zcycl
p . The

following lemma shows that despite the fact that the integral model depends on choices, the
ordinary locus is independent on the choices.

Lemma 3.4.24. The map of section 3.4.17

IGKpKp,P ,Zcycl
p

x→ SKpKp,Zcycl
p

comes from an open immersion of formal schemes:

IGKpKp,P ,Zcycl
p

↪→ SKpKp,Zcycl
p
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Proof. The maps IGKpKp,P ,Zcycl
p

→
∏

Aord
g,δi,Zcycl

p
are finite and the source is normal by proposition

3.4.9. □

The above map extends to maps between toroidal compactifications IGtor
KpKp,P ,Zcycl

p
↪→ Stor

KpKp,Zcycl
p

for suitable choices of cone decomposition.

Remark 3.4.25. In general, the map does not descend to a map IGtor
KpKp,P

↪→ Stor
KpKp

.

4. Higher Hida theory in fixed weight and the Cousin complex

4.1. The Siegel variety of Iwahori level. Let n ∈ Z≥0. Let Kp,n ⊆ G(Qp) be the Iwahori subgroup
of matrices in G(Zp), reducing modulo pn to B(Z/pnZ).

4.1.1. Definition and integral models. Let Stor
KpKp,n,Qp

be a toroidal compactification of the Siegel

moduli space of level Kp,nK
p over Spec Qp. Away from the boundary, we have a self-dual chain

of isogenies:
A = Ag → Ag+1 → · · · → A2g → A1 → · · · → Ag = A.

For 0 ≤ i ≤ g, the group Ker(Ag → Ag+i) is a totally isotropic subgroup of A[pn], locally isomorphic
to (Z/pnZ)i. The total map A→ A is multiplication by pn.

We now construct an integral model Stor
KpKp,n

→ Spec Zp. We observe that Ag+i is equipped

with a polarization of degree p2ng−2in = di for 1 ≤ i ≤ g. We also let d0 = 1.
We therefore get a map SKpKp,n,Q →

∏g
i=0Ag,di

. We define SKpKp,n
→ Spec Zp by normalizing∏g

i=0Ag,di × Spec Zp in SKpKp,n,Qp . We construct similarly Stor
KpKp,n

. See section 3.4.19.

By [FC90], I, prop. 2.7, we have a chain of isogenies of semi-abelian schemes

A = Ag → Ag+1 → · · · → A2g → A1 → · · · → Ag = A

where the total map A→ A is multiplication by pn.

Remark 4.1.2. When n = 1, Stor
KpKp,1

is the usual integral model of Iwahori level.

We let 0 ⊆ Hg+1 ⊆ Hg+2 ⊆ · · · ⊆ H2g = H⊥
2g ⊆ H1 ⊆ H2 ⊆ · · · ⊆ A[pn] = Hg be the full flag of

subgroups of A[pn], given by the kernel of the maps A→ Ag+i, and we let Gri = Hi/Hi−1. They are

finite flat group scheme of order pn over the interior of the Shimura variety and Gr2g−i+1 = GrDi .

4.1.3. Special fiber. We let Stor
KpKp,n,Fp

be the special fiber. For each w ∈ MW , we let Stor
KpKp,n,Fp,w

be the locus where Grw−1(i) is a multiplicative group scheme for i = g + 1, · · · , 2g.

Remark 4.1.4. Clearly, Stor
KpKp,n,Fp,w

is included in the ordinary locus. However, unless n = 1, the

ordinary locus is bigger than ∪w∈MWStor
KpKp,n,Fp,w

.

4.1.5. Formal schemes and adic spaces. Let Stor
KpKp,n

be the formal completion of Stor
KpKp,n

. We

also define Stor
KpKp,n,w

to be the open formal scheme corresponding to Stor
KpKp,n,Fp,w

.

We let Stor
KpKp,n

be the associated adic space over Spa(Qp,Zp). We have a set theoretical map

πHT,Kp,n : |Stor
KpKp,n

| → |FL|/Kp,n, obtained by passing the Hodge-Tate period map to the quotient

(see section 4.5 of [BP21]). Let Stor
KpKp,n,w

be the adic space associated to Stor
KpKp,n,w

.

Lemma 4.1.6. We have π−1
HT,Kp,n

(w ·Kp,n) = Stor
KpKp,n,w

(the closure of Stor
KpKp,n,w

).

Proof. We know that π−1
HT,Kp,n

(FL(Qp)) = Stor
KpKp,n,ord

, is the closure of the ordinary locus. On

π−1
HT (w) we have that Lie(A) = ⟨ew−1(i), g + 1 ≤ i ≤ 2g⟩, so that ew−1(i), g + 1 ≤ i ≤ 2g span the

multiplicative part of the Tate module. Passing to Kp,n orbits, we have that Hg+i for 1 ≤ i ≤ g
corresponds to ⟨eg+1, . . . , eg+i⟩ mod pn, from which we deduce that Grg+i is multiplicative if
g + i ∈ w−1{g + 1, . . . , 2g} and étale otherwise. □

Lemma 4.1.7. We have Stor
KpKp,n,w

= IGtor
Kp,P,wKp for Kp,P,w = wKp,nw

−1 ∩ P (Qp).

Proof. This follows from lemma 3.4.24. Note that here the embedding is defined over Zp, not only
Zcycl
p . □
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4.1.8. Cartier divisors. For all 1 ≤ i ≤ 2g, we let ℓGri be the co-Lie complex of Gri ([Far10], sect.
2). We let δi = det(ℓGri). We have a canonical section OStor

KpKp,n
→ δi. It follows that V (δ−1

i )

defines an effective Cartier divisor Di on S
tor
KpKp,n

, supported on the special fiber. The complement

of Di is the locus where Gri is étale.
We have a canonical isomorphism of Cartier divisors δiδ2g+1−i = p−nOStor so we get the impor-

tant identity: Di +D2g+1−i = (pn) for all 1 ≤ i ≤ g.

Lemma 4.1.9. We have Stor
KpKp,n,Fp,w

= Stor
KpKp,n,Fp

\
∑g

i=1Dw−1(i). We have ∪w∈MWStor
KpKp,n,Fp,w

=

Stor
KpKp,n,Fp

\
∑g

i=1Di ∩D2g+1−i

Proof. Stor
KpKp,n,Fp,w

is given by the condition that Grw−1(g+i) is multiplicative for 1 ≤ i ≤ g,

equivalently by the condition that Grw−1(g+1−i) is étale for 1 ≤ i ≤ g. □

4.1.10. Interlude: blow-ups and Cartier divisors. Let X̄ be a scheme and let D1, D2 be effective
Cartier divisors.

Proposition-construction 4.1.11. There exists a blow-up p : ˜̄X → X̄ and effective Cartier divisors

D′
1, D

′
2 on ˜̄X with disjoint support and with the property that p⋆D1 +D′

2 = p⋆D2 +D′
1.

Proof. We let ˜̄X be the blow-up of X̄ along the ideal generated by OX̄(−D1) and OX̄(−D2). We

now check that ˜̄X has the claimed properties. The question is local on X̄, so we may assume that
X̄ = Spec A is affine and that D1 = V (x1), D2 = V (x2) for x1, x2 ∈ A. Then we let I = (x1, x2)

and ˜̄X = Proj(
⊕

n I
n). We have maps x′i :

⊕
n I

n−1 xi→
⊕

n I
n, which define sections of O ˜̄X

(1)

and Cartier Divisors D′
i. We also have maps xi :

⊕
n I

n xi→
⊕

n I
n which correspond to p⋆Di. We

have the relation x′1x2 = x′2x1. Finally V (x′1, x
′
2) = Proj(⊕nI

n/(x1, x2)I
n−1) = ∅. □

4.1.12. A certain blow-up. We will now perform a suitable blow-up of our space. We let Zi =∑i
k=1Dg+k.

Proposition 4.1.13. There exists a blow-up S̃tor
KpKp,n

→ Stor
KpKp,n

satisfying the following properties:

(1) for all 0 ≤ i ≤ g and all 0 ≤ j ≤ i we have effective Cartier divisors Zi,>j and Zi,<j on

S̃tor with disjoint support, and Zi,>j − Zi,<j = Zi − V (pnj).
(2) For any increasing sequence j1 ≤ · · · ≤ jk, we can consider the open subset

S̃tor
KpKp,n,=j1,··· ,=jk

= ∩k
i=1Z

c
i,>ji ∩ Z

c
i,<ji

of S̃tor
KpKp,n

. This open subset is empty unless ji − ji−1 ∈ {0, 1} (where j0 = 0 by con-

vention). The map S̃tor
KpKp,n,=j1,··· ,=jk

→ Stor
KpKp,n

is an open immersion, and the image

of S̃tor
KpKp,n,=j1,··· ,=jk

identifies with the open sub-scheme where Grg+i is multiplicative if

ji − ji−1 = 1, and étale if ji − ji−1 = 0.

(3) Over S̃tor
KpKp,n,=j1,··· ,=jk

, we have Zk+1,>jk = Dg+k+1 and Zk+1,<jk+1 = Dg−k = V (pn)−
Dg+k+1.

Proof. We construct S̃tor
KpKp,n

inductively. For each 1 ≤ k ≤ g, we construct a tower of blow-

ups S̃tor
KpKp,n,k

→ S̃tor
KpKp,n,k−1 → · · · → Stor

KpKp,n
where S̃tor

KpKp,n,k
satisfies the properties of the

proposition for all indices i ≤ k. We first consider k = 1. We observe that Z1,>0 = Dg+1

and Z1,<1 = Dg. Therefore, we can take S̃tor
KpKp,n,1

= Stor
KpKp,n,1

. We assume that we have

constructed S̃tor
KpKp,n,k

. We apply proposition-construction 4.1.11 to the divisors Zk+1 and V (pnj)

for 0 ≤ j ≤ k + 1 to obtain a blow-up S̃tor
KpKp,n,k+1 → S̃tor

KpKp,n,k
with divisors with disjoint

support Zk+1,>j and Zk+1,<j with the property that Zk+1,>j − Zk+1,<j = Zk+1 − V (pnj). We

see that if we restrict to S̃tor
k,=j1,··· ,=jk

then Zk = V (pnjk) so that Zk+1 − V (pnjk) = Dg+k+1 =

Zk+1,>jk , Zk+1 − V (pn(jk+1)) = −Dg−k−1 = −Zk+1,<jk+1 and Zk+1,>j = S̃tor
k,=j1,··· ,=jk

for j < jk,

Zk+1,<j = S̃tor
k,=j1,··· ,=jk

for j > jk + 1. It follows that the map S̃tor
KpKp,n,k+1 → S̃tor

KpKp,n,k
induces

an isomorphism

S̃tor
KpKp,n,k+1 ×S̃tor

KpKp,n,k
S̃tor
k,=j1,··· ,=jk

→ S̃tor
KpKp,n,k,=j1,··· ,=jk

.
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□

Recall that to each w ∈ MW we have attached a sequence (w1, · · · , wg) of integers at the bottom
of section 3.1.

Corollary 4.1.14. Let w ∈ MW . The map S̃tor
KpKp,n,=w1,··· ,=wg

→ Stor is an open immersion and

S̃tor
KpKp,n,=w1,··· ,=wg

× Spec Fp identifies with Stor
KpKp,n,Fp,w

.

Form now on, we simplify our notation and let Stor denote S̃tor
KpKp,n

.

Remark 4.1.15. We are about to define some integral cohomology over Stor, and prove a control
theorem relating the ordinary cohomology with the ordinary cohomology of the ordinary locus in
theorem 4.5.2. We want to insist that we could perform any further blow-up of Stor, whose center
is is disjoint from ∪wS

tor
Fp,w

. We would still be able to prove a version of theorem 4.5.2 for this other

model.

4.1.16. A filtration. Let w ∈ MW . We let Z>w−1 = ∩g
i=1Zi,>wi−1

Lemma 4.1.17. (1) We have Zi,>j ≤ Zi,>j′ if j
′ ≤ j and Zi,<j ≤ Zi,<j′ if j

′ ≥ j.
(2) We have Z>w−1 ⊆ Z>w′−1 if w ≤ w′.

Proof. We have Zi − V (pnj) ≤ Zi − V (pnj
′
). Passing to effective divisors gives the first item. For

the second point, we observe that w′ ≤ w implies that w′
i ≥ wi for all i. □

We construct a filtration by closed subsets: F−1 = ∅ ⊆ F0 ⊆ · · · ⊆ F g(g+1)
2

= Stor
Fp

, by letting

Fi = ∪w∈MW,ℓ(w)≤iZ>w−1.

Lemma 4.1.18. We have that Fi \ Fi−1 =
∐

w,ℓ(w)=i ∩
g
i=1(Zi,>wi−1 ∩ Zc

i,>wi
).

Proof. This follows easily from the definitions. □

We note that Stor
KpKp,n,Fp,w

⊆ ∩g
i=1(Zi,>wi−1 ∩ Zc

i,>wi
).

4.2. The Hecke correspondences. Let Cc(Kp,n\G(Qp)/Kp,n,Z) be the Hecke algebra of level Kp,n.
By [Cas], lemma 4.1.5, we have an algebra map Z[T+(Qp)/T (Zp)] → Cc(Kp,n\G(Qp)/Kp,n,Z) map-
ping t ∈ T+(Qp) to the characteristic function of [Kp,ntKp,n]. We now attach to each [Kp,ntKp,n]
a Hecke correspondence and an integral model.

4.2.1. Definition and integral model. Let t ∈ T+(Qp). Let Ctor
t,Qp

= Stor
tKp,nt−1∩Kp,nKp,Qp,Σ′ (for a

suitable choice of Σ′). Let p1 × p2 : Ctor
t,Qp

→ Stor
Qp

× Stor
Qp

be the Hecke correspondence (which is

finite for good choices of cone decompositions). We let Ctor
t be the normalization of Stor × Stor in

Ctor
t,Qp

.

Lemma 4.2.2. The universal quasi-isogeny p⋆1A → p⋆2A over Ctor
t,Qp

extends uniquely to a quasi-

isogeny p⋆1A→ p⋆2A over Ctor
t .

Proof. This is [FC90], I, prop. 2.7. □

4.2.3. Restricting the Hecke correspondence. We let Ctor
t be the p-adic formal completion of Ctor

t .
We let Ctor

t,w = p−1
1 Stor

w ∩ p−1
2 Stor

w .

Proposition 4.2.4. We have an isomorphism of correspondences:

Ctor
t,w ≃ IGtor

w(t)Kp,P,ww(t)−1∩Kp,P,wKp

over Stor
w ≃ IGKp,P,wKp (see lemma 4.1.7).

Proof. We let Ctor
t,w be the generic fiber of Ctor

t,w. This space is a union of components in the ordinary

locus of Ctor
t . We also see that IGtor

w(t)Kp,P,ww(t)−1∩Kp,P,wKp
w→ Ctor

t is a union of component of the

ordinary locus by lemma 3.4.24. It suffices to prove that they agree (since then the formal schemes
are identified by lemma 3.4.24). We have P (Qp)wKp,n =

∐
x∈I P (Qp)wx(tKp,nt

−1∩Kp,n) for some

finite set I of elements of Kp,n. We see that p⋆1Stor
w = ∪xIGtor

P (Qp)∩wx(Kp,n∩tKp,nt−1)(wx)−1Kp where
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IGtor
P (Qp)∩wx(Kp,n∩tKp,nt−1)(wx)−1Kp

wx→ Ctor
t . For a component IGtor

P (Qp)∩wx(Kp,n∩tKp,nt−1)(wx)−1Kp ,

the condition that p2(IGtor
P (Qp)∩wx(Kp,n∩tKp,nt−1)(wx)−1Kp) ⊆ Stor

w translates into the condition that

wxt ∈ P (Qp)wKp,n. We have a unique decomposition

P (Qp)wKp,n = P (Qp)w
∏

α∈w−1Φ−,M∩ϕ+

Uα,n

∏
α∈w−1Φ−,M∩ϕ−

Uα,0

where Uα is the root group corresponding to α and Uα,n is the subgroup of elements reducing
to 1 modulo pn. Let us take x ∈

∏
α∈w−1Φ−,M∩ϕ+ Uα,n

∏
α∈w−1Φ−,M∩ϕ− Uα,0. We have wxt =

wtw−1wt−1xt. We deduce that wxt ∈ P (Qp)wKp,n if and only if

t−1xt ∈
∏

α∈w−1Φ−,M∩ϕ+

Uα,n

∏
α∈w−1Φ−,M∩ϕ−

Uα,0.

This is equivalent to x ∈ tKp,nt
−1. Thus, we deduce that p2(IGtor

P (Qp)∩wx(Kp,n∩tKp,nt−1)(wx)−1Kp) ⊆
Stor
w implies that x = 1 mod tKp,nt

−1 ∩Kp,n. Therefore,

p−1
1 Stor

w ∩ p−1
2 Stor

w = IGtor
P (Qp)∩w(Kp,n∩tKp,nt−1)(w)−1Kp

w→ Ctor
t .

We finally remark that P (Qp) ∩ w(Kp,n ∩ tKp,nt
−1)(w)−1 = Kp,P,w ∩ w(t)Kp,P,ww(t)

−1. □

4.2.5. Carrying the level structure over the generic fiber of Ctor
t . We now describe how the Iwahori

level structure is taken from p⋆1A to p⋆2A over the generic fiber. If t = diag(pn1 , · · · , pn2g ) with
ni ≤ 0, then the quasi-isogeny is an isogeny with kernel L. Then we consider the filtration
L[p] ⊆ L[p2] ⊂ · · · ⊆ L[pk] = L. We can factor this isogeny as a composition of isogenies with
p-torsion kernel, say p⋆1A = G0 → G1 · · · → Gk = p⋆2A where ker(Gi → Gi+1) = L[pi+1]/L[pi].

Remark 4.2.6. We have t ∈ T++(Qp) if and only if the ranks of the groups L[pi+1]/L[pi] take all
the values p, p2, · · · , p2g−1.

The Iwahori level structure is a flag of subgroups p⋆1Hg+1 ⊆ p⋆1Hg+2 · · · on G0[p
n], and we define

a flag inductively on G1[p
n], G2[p

n], ... , p⋆2A[p
n] by the procedure we now describe. Let G,G′ be

Barsotti-Tate group schemes of height 2g over a scheme of characteristic 0. Let ϕ : G→ G′ be an
isogeny, whose kernel L ⊆ G[p] has rank ps. Let Hg+i ⊆ G[pn] be a finite flat group scheme of
rank pin. We assume that locally in the étale topology, Hg+i ≃ (Z/pnZ)i. We assume that Hg+i

and L are in generic position. This means that Hg+i ∩L is a group scheme of rank psup{0,i+s−2g}.
We define H ′

g+i ⊆ G′ as follows:

(1) If i+ s ≤ 2g, we let H ′
g+i = ϕ(Hg+i).

(2) If i+ s > 2g, we let H ′
g+i = ϕ(p−1Hg+i ∩ p−nL).

We now exhibit an isomorphism: Grg+i → Gr′g+i. If i + s ≤ 2g, this map is induced by the
isomorphism Hg+i → H ′

g+i. If i+ s > 2g, we give a construction.

The multiplication by p gives a map p−1Hg+i ∩ p−nL → Hg+i. We let H ′′
g+i be its image. The

map H ′′
g+i → Hg+i induces an isomorphism H ′′

g+i/(H
′′
g+i ∩Hg+i−1) → Grg+i.

The map ϕ : p−1Hg+i ∩ p−nL → H ′
g+i → Gr′g+i factors over multiplication by p and induces

a map: H ′′
g+i → Gr′g+i, factorizing into an isomorphism H ′′

g+i/(H
′′
g+i ∩ Hg+i−1) → Gr′g+i. In

summary, we have a diagram:

H ′′
g+i/(H

′′
g+i ∩Hg+i−1) //

��

Grg+i

Gr′g+i

where both maps are isomorphisms.
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4.2.7. Dynamics: preliminaries. Let V be a complete valuation ring for a rank 1 valuation v
extending the p-adic valuation (we normalize v by v(p) = 1). We let K be its fraction field. Let
H be a finite flat group scheme over Spec V . We recall the definition of degH, following [Far10],
section 2. We let δH = det(ℓH), with ℓH the co-Lie complex of H. We have a canonical section
V → δH . Since δH ≃ V , the canonical section is given by an element x ∈ V , well defined up to an
element in V ×. We let deg H = v(x).

Let G,G′ be Barsotti-Tate group schemes of height h over Spec V . Let ϕ : G → G′ be an
isogeny, whose kernel L ⊆ G[p] has rank ps. Let H ⊆ G[pn] be a finite flat group scheme of rank
pin. We assume that locally in the étale topology, HK ≃ (Z/pnZ)i. We assume that H and L are
in generic position. This means that HK ∩LK is a group scheme of rank psup{0,i+s−h}. We define
H ′ ⊆ G′ as follows:

(1) If i+ s ≤ h, we let H ′ be the schematic closure of ϕ(HK).
(2) If i+ s ≥ h, we let H ′ be the schematic closure of ϕ(p−1HK ∩ p−nLK).

Proposition 4.2.8. We have degH ′ ≥ degH. If i + s = h and degH = degH ′, then L is a BT1
and H is a BTn.

Proof. If i+ s ≤ h, then H → H ′ is a generic isomorphism, so degH ′ ≥ degH by [Far10], section
3, corollaire 3. Assume that i + s = h, and degH ′ = degH, so that H ≃ H ′. Let H + L
be the subgroup of G equal to the schematic closure of HK + LK . We have an exact sequence
0 → LK → (H + L)K → H ′

K → 0. We deduce that deg(H + L) ≤ degL + degH ′ by [Far10],
section 3, corollaire 3. We also have a generic isomorphism H × L → H + L. We deduce that
degH + L ≥ degL+ degH. It follows that H × L → H + L is an isomorphism. We deduce that
H[p] ∩ L = {0}, and therefore H[p] ⊕ L = G[p]. It follows that H[p] is a BT1. By induction on
l, we deduce that H[pl]/H[pl−1] × L = (G/H[pl−1])[p]. So it follows that H[pl]/H[pl−1] is a BT1
of degree degH[p] = dimG − degL. We deduce that H is a BTn. Assume that i + s ≥ h. Let
p−1H ∩ p−nL be the schematic closure of p−1HK ∩ p−nLK . We have an exact sequence

0 → p−1HK ∩ p−nLK → p−1HK × p−nLK → G[pn+1]K → 0.

We deduce that deg p−1H+deg p−nLK ≤ deg p−1H∩p−nL+degG[pn+1]. We have exact sequences:
0 → H[p] → p−1H → H → 0, as well as 0 → G[pn] → p−nL → L → 0, so that deg p−1H =
degH + degG[p], deg p−nL = degL + degG[pn]. We finally deduce that degH ′ = deg p−1H ∩
p−nL− degL ≥ degH. □

4.2.9. Dynamic of Hecke correspondences. We recall that Zi =
∑i

k=1Dg+k.

Corollary 4.2.10. Over Ctor
t , we have: p⋆2Zi ≥ p⋆1Zi for all 1 ≤ i ≤ g. Moreover, if t ∈ T++(Qp),

the support of p⋆2Zi − p⋆1Zi contains p
⋆
1 ∩i

j=0 (Zi<j ∪ Zi>j) and p
⋆
2 ∩i

j=0 (Zi<j ∪ Zi>j).

Proof. By normality, it suffices to check this in codimension 1. Let V = OCtor
t ,x where x is a

generic point of the special fiber (indeed, both divisors are supported on the special fiber). The
isogeny p⋆1A→ p⋆2A can be written as a composition of isogenies whose kernel is a finite flat group
scheme killed by p (see section 4.2.1). We may therefore apply proposition 4.2.8 and deduce that
deg(p⋆2Hg+i,x) ≥ deg(p⋆1Hg+i,x). Moreover, in case t ∈ T++(Qp) and we have equality, the groups
p⋆1Hg+i,x and p⋆1Hg+i,x are BTn’s and their degree is a multiple of n. □

Lemma 4.2.11. We have p⋆1Zi,>j ≤ p⋆2Zi,>j and p⋆2Zi,<j ≤ p⋆1Zi,<j.

Proof. We have p⋆1
∑

1≤k≤iDg+k ⊆ p⋆2
∑

1≤k≤iDg+k and p⋆1V (pnj) = p⋆2V (pnj). We deduce that

p⋆1
∑

1≤k≤iDg+k − V (pnj) ⊆ p⋆2
∑

1≤k≤iDg+k − V (pnj). Since
∑

1≤k≤iDg+k − V (pnj) = Zi,>j −
Zi,<j and they have disjoint support (see proposition 4.1.13). Taking effective divisors on both
sides yields the promised inequalities. □

Lemma 4.2.12. For any w ∈ W , we let Iw,1 = {1, · · · , g} ∩ w{1, · · · , g} and Iw,2 = {1, · · · , g} ∩
w{g + 1, · · · , 2g}. We have:

p⋆1
∑

i∈Iw,1

Dw−1(i) + p⋆2
∑

i∈Iw,2

Dw−1(i) ≥ p⋆2
∑

i∈Iw,1

Dw−1(i) + p⋆1
∑

i∈Iw,2

Dw−1(i)



44

Proof. Granting that Di + D2g+1−i = (pn), this is just another way of writing the identity

p⋆2
∑k

i=1Dg+i ≥ p⋆1
∑k

i=1Dg+i. □

Lemma 4.2.13. We have that Ctor
t,w = Ctor

t \
∑

i∈Iw,1
p⋆1Dw−1(i) +

∑
i∈Iw,2

p⋆2Dw−1(i).

Proof. By definition, Ctor
t,w = Ctor

t \
∑g

i=1 p
⋆
1Dw−1(i) +

∑g
i=1 p

⋆
2Dw−1(i). We can use the last lemma.

□

The following proposition illustrates that the correspondence is extremely well behaved over
∪w∈MWCtor

t,w.

Proposition 4.2.14. (1) The open formal scheme equal to the complement of
∑g

i=1 p
⋆
1Di ∩

p⋆2D2g+1−i is ∪w∈MWCtor
t,w.

(2) Over ∪w∈MWCtor
t,w we have p⋆2Zi = p⋆1Zi for all 1 ≤ i ≤ g.

(3) Over ∪w∈MWCtor
t,w there are natural isomorphisms p⋆1Gri → p⋆2Gri for all 1 ≤ i ≤ 2g.

Proof. By lemma 4.2.13, we see that ∪w∈MWCtor
t,w is included in the complement of

∑g
i=1 p

⋆
1Di ∩

p⋆2D2g+1−i. Let us denote by U the complement of
∑g

i=1 p
⋆
1Di ∩ p⋆2D2g+1−i. Let x ∈ U . We

first see that either x /∈ p⋆1Dg or x /∈ p⋆2Dg+1. In the first case, p⋆1Hg+1 is multiplicative, in the
second case p⋆2Hg+1 is étale. We consider a discrete valuation ring V of mixed characteristic and
a map x̃ : Spec V → U mapping the special point of Spec V to x. We have n ≥ deg p⋆2Hg+1,x ≥
deg p⋆1Hg+1,x ≥ 0. If p⋆2Hg+1,x is étale then deg p⋆2Hg+1,x = deg p⋆1Hg+1,x = 0 and all groups
are étale. If p⋆1Hg+1,x is multiplicative then deg p⋆2Hg+1,x = deg p⋆1Hg+1,x = n and all groups are
multiplicative. Proceeding by induction in the same way, we prove that p⋆2Grg+i,x and p⋆1Grg+i,x

are either both étale or both multiplicative. It remains to see that we have a natural isomorphism
between both groups. In order to see this we go back to the construction of section 4.2.5 and one
sees that all the construction give integral isomorphisms since the groups involved are extensions
of étale and multiplicative groups.

□

The following proposition shows in particular that if t ∈ T++(Qp), then the correspondence is
well behaved exactly over ∪w∈MWCtor

t,w.

Proposition 4.2.15. Let t ∈ T++(Qp) and let 1 ≤ k ≤ g.

(1) The complement of p⋆2
∑k

i=1 Zi − p⋆1
∑k

i=1 Zi is the locus where p⋆1Grg+i and p⋆2Grg+i are
multiplicative or étale BT’s of the same type for all 1 ≤ i ≤ k.

(2) On the complement of p⋆2
∑k

i=1 Zi−p⋆1
∑k

i=1 Zi, we have a natural isomorphism p⋆1Grg+i →
p⋆2Grg+i.

(3) The support of p⋆2
∑k

i=1 Zi−p⋆1
∑k

i=1 Zi is equal to the support of
∑k

i=1 p
⋆
1Dg−i+1∩p⋆2Dg+i.

Proof. On the locus where p⋆1Grg+i and p
⋆
2Grg+i are multiplicative or étale BT’s of the same type

for all 1 ≤ i ≤ k we have p⋆2Dg+i = p⋆1Dg+i. Conversely, let us consider the open subscheme where

p⋆2
∑k

i=1(k+1− i)Dg+i = p⋆1
∑k

i=1(k+1− i)Dg+i, or what amounts to the same: p⋆2
∑k′

i=1Dg+i =

p⋆1
∑k′

i=1Dg+i for all k′ ≤ k. We consider a valuation ring V of mixed characteristic and a map
x : Spec V → Ctor

t mapping to this open subscheme. We therefore assume that for all g+1 ≤ k′ ≤ k,
deg(p⋆2Hk′,x) = deg(p⋆1Hk′,x). We deduce from proposition 4.2.8 that p⋆1Hk′,x is a BTn. Since this
is true for all k′, we deduce that p⋆1Grk′,x ≃ p⋆2Grk′,x is a multiplicative or an étale BTn for all
k′. This proves the first point. The second point follows from the construction of section 4.2.5.
Regarding the last point, we check that if p⋆1Grg+i and p

⋆
2Grg+i are multiplicative or étale BT’s of

the same type for all 1 ≤ i < k′ then p⋆1Grg+k′ and p⋆2Grg+k′ are not multiplicative or étale BT’s
of the same type if and only if p⋆1Grg+k′ is not multiplicative and p⋆2Grg+k′ is not étale. □

4.3. The cohomological correspondence.
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4.3.1. Automorphic sheaves. Over Stor, we can attach to the semi-abelian scheme A a M -torsor
MdR. We consider the relative logarithmic de Rham homology H1,dR(A), and its filtration 0 →
ωAt → H1,dR(A) → Lie(A) → 0. The torsor MdR → Stor parametrizes triples (ψ1, ψ2, c), where
ψ1 : Og

Stor → LieA, ψ2 : Og
Stor → ω(At), c ∈ O×

Stor is such that ψ2 = c(ψt
1)

−1. Let Rep(M) be
the category of representations of M over Zp-modules. We therefore get a functor Rep(M) →
Coh(Stor). Let us try to make this functor explicit.

Let κ ∈ X⋆(T )M,+. We can attach to κ the following representation Vκ of M over Zp, which is
a model of the highest weight κ representation. We let Vκ be the space of functions f : M → A1

such that f(mb) = w0,Mκ(b
−1)f(m), ∀(m, b) ∈M ×B ∩M , equipped with the action m′.f(m) =

f(m−1m′).
To the representation Vκ, we attach the sheaf ωκ = π⋆OMdR

[−w0,Mκ], where π :MdR → Stor is
the projection and [−w0,Mκ] stands for the isotypic part for the action of B ∩M .

Remark 4.3.2. The torsor MdR depends on our choice of A. By definition of the moduli problem,
we could have considered another isogenous semi-abelian scheme (any Ai for example). We would
have obtained another natural torsor, identified with MdR over Qp. The sheaf ωκ depends on the
choice of A, and also on the choice of the model Vκ.

Remark 4.3.3. We normalize the construction in such a way that the standard representation of
M , which has highest weight ((0, · · · , 0,−1); 1), corresponds to Lie(A). Therefore, ωA corresponds
to κ = ((1, 0, · · · , 0);−1).

We have an isomorphism p⋆2ω
κ[1/p] → p⋆1ω

κ[1/p] over Ct,Qp
induced by the isomorphism of

torsors p⋆1MdR = p⋆2MdR over Ct,Qp .

Lemma 4.3.4. Over Ctor
t,w, the map p⋆2ω

κ[1/p] → p⋆1ω
κ[1/p] has the property that p⋆2ω

κ ⊆ ⟨w0,Mκ,w(t)⟩p⋆1ωκ.

Proof. We have a natural isomorphism p⋆1Tp(A)⊗Zp
Qp → p⋆2Tp(A)⊗Qp, induced by the isogeny

p⋆1A → p⋆2A. We let x1 be a local section of p⋆1(Tp(A)
m ⊕ Tp(A)

et) (compatible with the Kp,P,w-
level structure), then x2 = x1 ◦ w(t) is a local section of p⋆2(Tp(A)

m ⊕ Tp(A)
et) by proposition

4.2.4. Both x1 and x2 induce sections of MdR, via the Hodge-Tate map, Tp(A)
m → Lie(A) and

Tp(A)
et → ωAt . There is an isomorphism p⋆2ω

κ[1/p] → p⋆1ω
κ[1/p] mapping a function f(x2 ◦m)

to the function f(x1w(t) ◦m) = w(t)−1f(x1 ◦m). The lattice p⋆2ω
κ is given by sections g(x2 ◦m)

taking integral values. The lattice p⋆1ω
κ is given by sections g(x1 ◦ m) taking integral values.

We deduce that w(t)−1f(x1 ◦ m) takes integral values. As the eigenvalue with greater p-adic
valuation of w(t)−1 acting on the representation Vκ is ⟨−w0,Mκ,w(t)⟩, we deduce that f(x1 ◦m) ∈
⟨w0,Mκ,w(t)⟩p⋆1ωκ. □

4.3.5. Nebentypus. Let Kp,1,n ⊆ Kp,n be the subgroup of elements congruent to U(Zp) modulo pn.
We have an isomorphism Kp,n/Kp,1,n = T (Z/pnZ). We now work over Zp(ζpn). We have a map
Stor
KpKp,1,n,Qp(ζpn ) → Stor

KpKp,n,Qp(ζpn ). We define an integral model Stor
KpKp,1,n,Zp(ζpn ) → Stor

Zp(ζpn ) by

normalization.

Lemma 4.3.6. The restriction of the map π : Stor
KpKp,1,n,Zp(ζpn ) → Stor

Zp(ζpn ) to Stor
Zp(ζpn ) \

∑g
i=1Di ∩

D2g+1−i is a finite étale map with Galois group T (Z/pnZ). Moreover,

Stor
KpKp,1,n,Zp(ζpn ) ×Stor

Zp(ζpn )
IGtor

Kp,P,wKp,Zp(ζpn ) = IGtor
Kp,P,1,wKp,Zp(ζpn )

where Kp,P,1,w = wKp,1,nw
−1 ∩ P (Qp).

Proof. We first argue that the group schemes Gri extend to finite flat group schemes over Stor
Zp(ζpn )\∑d

i=1Di ∩D2g+1−i. Indeed, over S
tor
Zp(ζpn ) \

∑d
i=1Dw−1(i), the groups {Grw−1(g+l)}1≤l≤g are mul-

tiplicative, thus finite flat. Since Grw−1(l) = GrDw−1(2g+1−l) for 1 ≤ l ≤ g, it is also finite flat. We

recall that integral closure commutes with étale localization ([Sta22], TAG 03GE). We take an étale

map U → Stor
Zp(ζpn ) \

∑d
i=1Dw−1(i) such that Grw−1(l)|U is isomorphic to Z/pnZ and Grw−1(g+l) is

isomorphic to µpn . It is clear that

Stor
KpKp,1,n,Qp(ζpn ) ×Stor

Zp(ζpn )
UQp = T (Z/pnZ)× UQp .
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We deduce that

Stor
KpKp,1,n,Zp(ζpn ) ×Stor

Zp(ζpn )
U = T (Z/pnZ)×Spec Zp(ζpn ) U.

□

Let χ : T (Z/pnZ) → Zp(ζpn)× be a character. We let O(χ) be the subsheaf of

π⋆OStor
KpKp,1,n,Zp(ζpn )

of sections s which satisfy ts = χ(t)s for any t ∈ T (Z/pnZ). This is a coherent sheaf and an

invertible sheaf over Stor
Zp(ζpn ) \

∑d
i=1Di ∩D2g+1−i. We let ωκ(χ) = ωκ ⊗ O(χ).

4.3.7. Model of the Hecke correspondence. Let w ∈ MW . Let t ∈ T+(Qp). Consider the corre-
spondence:

Ctor
t,w

""||

Stor
w Stor

w

Lemma 4.3.8. The map Trp1
: (p1)⋆OCtor

t,w
→ OStor

w
factors through ⟨w−1w0,Mρ+ ρ, t⟩OStor

w
.

Proof. We apply proposition 3.4.9 as in remark 3.4.11. The unipotent part of w(t)Kp,P,ww(t)
−1 ∩

Kp,P,w is ∏
α∈Φ+,M

psup{0,α(w(v(t)))}Kpα.

It is a simple exercise to see that w−1w0,Mρ + ρ =
∑

α∈(w−1Φ+,M )∩Φ+ α so that the trace map

factors through ⟨w−1w0,Mρ+ ρ, t⟩OStor
w

. □

Let κ ∈ X⋆(T )M,+.

Proposition 4.3.9. We have a natural cohomological correspondence over Ctor
t,w: tw : p⋆2ω

κ → p!1ω
κ

which is ⟨−w−1w0,M (κ + ρ) − ρ, t⟩tnaivew where tnaivew is the rational map obtained as the tensor
product of p⋆2ω

κ[1/p] → p⋆1ω
κ[1/p] and the fundamental class: p⋆2OStor

w
→ p!1OStor

w
given by the

trace of p1.

Proof. This follows from lemma 4.3.4 and lemma 4.3.8. □

Remark 4.3.10. The normalization of the map depends on t ∈ T+(Qp) and not just on its class
modulo T (Zp).

We let C(κ) = {w ∈ MW,w−1w0,M (κ+ρ) ∈ X⋆(T )−Q}. As X⋆(T )−Q is a fundamental domain for

the action of W on X⋆(T )Q, C(κ) is nonempty and w−1w0,M (κ+ ρ) is independent of w ∈ C(κ).

Proposition 4.3.11. We have a cohomological correspondence t : p⋆2ω
κ → p!1ω

κ over Ctor
t \

∑g
i=1 p

⋆
1Di∩

p⋆2D2g+1−i which is p−⟨w−1w0,M (κ+ρ)−ρ,t⟩tnaive for any w ∈ C(κ), where tnaive is the rational map
obtained as the tensor product of p⋆2ω

κ[1/p] → p⋆1ω
κ[1/p] and the fundamental class given by the

map (induced from the trace):

p⋆2OStor\
∑g

i=1 Di∩D2g+i−1
→ p!1OStor\

∑g
i=1 Di∩D2g+i−1

.

Proof. We first observe that p1 : Ctor
t \

∑g
i=1 p

⋆
1Di∩p⋆2D2g+1−i → Stor \

∑g
i=1Di∩D2g+i−1 is an lci

map, as both the source and target are smooth over Spec Zp. We deduce that p!1OStor\
∑g

i=1 Di∩D2g+i−1

is an invertible sheaf and we have a fundamental class p⋆2OStor\
∑g

i=1 Di∩D2g+i−1
→ p!1OStor\

∑g
i=1 Di∩D2g+i−1

(see [FP21], prop. 2.6). We therefore get a rational map tnaive of locally free sheaves tnaive :
p⋆2ω

κ 99K p!1ω
κ. We claim that t is a true map. It suffices to prove this at each generic point of the

special fiber, and this follows from proposition 4.3.9. □
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Remark 4.3.12. The restriction of t to Ctor
t,w is tw for all w ∈ C(κ). More generally, for all w′ ∈ MW ,

it restricts to pnw′ tw′ , where nw′ = ⟨(w′)−1(w0,M (κ + ρ) + ρ, t⟩ − ⟨w−1(w0,M (κ + ρ) + ρ, t⟩. If
t ∈ T++(Qp), nw′ > 0 for w′ ̸∈ C(κ).

Proposition 4.3.13. Assume that t ∈ T++(Qp). There exists k ∈ Z≥0 (depending on κ) such that
t can be extended to a cohomological correspondence t̃ : p⋆2ω

κ(−k
∑g

i=1 Zi) → p!1ω
κ(−k

∑g
i=1 Zi)

over Ctor.

Proof. Let us denote by I the ideal corresponding to the effective Cartier divisor p⋆2
∑g

i=1 Zi −
p⋆1

∑g
i=1 Zi. By proposition 4.3.11, we have a map p⋆2ω

κ → colimkI −kp!1ω
κ. Since p⋆2ω

κ is pseudo-
coherent, there exists k such that this map factors through a map p⋆2ω

κ → I −kp!1ω
κ. □

From now on, we fix t ∈ T++(Qp) and we let ω̃κ = ωκ(−k′
∑g

i=1 Zi) for k′ ≥ k, where k is
given by proposition 4.3.13 and k′ is taken to be large enough (how large we need to take k′ will
be explained in the proof of proposition 4.5.8).

Lemma 4.3.14. We have a factorization:

t̃ : p⋆2ω̃
κ → OCtor

t
((k′ − k)(

g∑
i=1

p⋆2Zi −
g∑

i=1

p⋆1Zi))⊗ p⋆2ω̃
κ → p!1ω̃

κ.

Proof. We consider the sequence of maps

OCtor
t

((k′ − k)(

g∑
i=1

p⋆2Zi −
g∑

i=1

p⋆1Zi))⊗ p⋆2ω̃
κ → p⋆2ω

κ(−k
g∑

i=1

Zi)⊗ p⋆1OStor ((k − k′)

g∑
i=1

Zi) →

p!1ω
κ(−k

g∑
i=1

Zi)⊗ p⋆1OStor ((k − k′)

g∑
i=1

Zi) → p!1ω̃
κ.

□

4.3.15. Nebentypus. It is also possible to consider a Nebentypus. Let χ : T (Z/pnZ) → Zp(ζpn)×.

Lemma 4.3.16. Over Ctor
t,Zp(ζpn ) \

∑d
i=1 p

⋆
1Di ∩ p⋆2D2g+1−i we have canonical isomorphisms p⋆1Gri =

p⋆2Gri, inducing an isomorphism p⋆2O(χ) → p⋆1O(χ).

Proof. This follows from proposition 4.2.14. □

Proposition 4.3.17. Over Ctor
t,w,Zp(ζpn ), we have a natural cohomological correspondence tw : p⋆2ω

κ(χ) →
p!1ω

κ(χ) which is ⟨−w−1(w0,M (κ + ρ) − ρ, t⟩tnaivew where tnaivew is the rational map obtained as
the tensor product of p⋆2ω

κ[1/p] → p⋆1ω
κ[1/p], of p⋆2O(χ) → p⋆1O(χ), and the fundamental class:

p⋆2OStor
w,Zp(ζpn )

→ p!1OStor
w,Zp(ζpn )

given by the trace of p1.

Proof. This is analogue to proposition 4.3.9. □

We define a cohomological correspondence: t : p⋆2ω
κ(χ) → p!1ω

κ(χ) over Ctor
t,Zp(ζpn ) \

∑g
i=1 p

⋆
1Di∩

p⋆2D2g+1−i which is ⟨−w−1w0,M (κ+ ρ)− ρ, t⟩tnaive for any w ∈ C(κ), where tnaive is the rational
map obtained as the tensor product of p⋆2ω

κ(χ)[1/p] → p⋆1ω
κ(χ)[1/p], the isomorphism p⋆2O(χ) →

p⋆1O(χ) and the fundamental class given by the map (induced from the trace):

p⋆2OStor
Zp(ζpn )

\
∑g

i=1 Di∩D2g+i−1
→ p!1OStor

Zp(ζpn )
\
∑g

i=1 Di∩D2g+i−1
.

Proposition 4.3.18. Assume that t ∈ T++(Qp). There exists k ∈ Z≥0 (depending on κ and χ) such
that t can be extended to a cohomological correspondence over Ctor

t,Zp(ζpn ):

t̃ : p⋆2ω
κ(χ)(−k

g∑
i=1

Zi) → p!1ω
κ(χ)(−k

g∑
i=1

Zi).

Proof. This is analogue to proposition 4.3.13. □

For simplicity, we let ω̃κ(χ) = ωκ(χ)(−k′
∑g

i=1 Zi) for some k′ ≥ k where k is given by the
proposition.
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Remark 4.3.19. We remark that the existence of normalized cohomological correspondences in
propositions 4.3.13 and 4.3.18 imply that the normalized Hecke operators for t ∈ T++(Qp) preserve
a lattice in rational coherent cohomology, and so the eigenvalues are p-adically integral. This proves
conjecture 5.10.7 of [BP21] in the Siegel case.

4.4. Higher Hida cohomology groups in weight κ. Let w ∈ MW . We construct higher Hida
cohomology groups labeled by w.

4.4.1. A strict dynamical correspondence. Let t ∈ T++(Qp). We study the correspondence (Ctor
t,w,S

tor
w ).

We let Stor
Fp,(w−1,w+1) = ∩iZi,<wi+1 ∩ Zi,>wi+1. We Dw,− = ∪Zi,>wi and Dw,+ = ∪iZi,<wi .

Lemma 4.4.2. Let Ctor
t,Fp,(w−1,w+1) = p−1

1 Stor
Fp,(w−1,w+1) ∩ p

−1
2 Stor

Fp,(w−1,w+1). Then

(Ctor
t,Fp,(w−1,w+1), S

tor
Fp,(w−1,w+1), p1, p2, Dw,+, Dw,−)

is a strict dynamic compactification of (Ctor
t,Fp,w

, Stor
Fp,w

).

Proof. We first work on Ct. By lemma 4.2.11, we see that p⋆2Zi,>wi
≥ p⋆1Zi,>wi

and p⋆1Zi,<wi
≥

p⋆1Zi,<wi
. By corollary 4.2.10, we find that the support of p⋆2(Zi,>wi

−Zi,<wi
)−p⋆1(Zi,>wi

−Zi,<wi
)

contains p⋆1 ∩i
j=0 (Zi<j ∪ Zi>j) and p⋆2 ∩i

j=0 (Zi<j ∪ Zi>j). We now consider this property in

Ctor
t,Fp,(w−1,w+1). We deduce that the support of p⋆2(Zi,>wi

−Zi,<wi
)− p⋆1(Zi,>wi

−Zi,<wi
) contains

p⋆1Zi,>wi
and p⋆2Zi,<wi

. In particular, the support of p⋆1Zi,<wi
− p⋆2Zi,<wi

+ p⋆2Zi,>wi
contains

p⋆1Zi,>wi .
Taking local generators f+ and f− of Zi,<wi and Zi,>wi , we deduce that there exists an identity:

p⋆1f+p
⋆
2f− = hp⋆2f+ where h vanishes (at least) on p⋆1Zi,<wi

. Since Zi,>wi
and Zi,<wi

have disjoint
support, we deduce that there exists an identity af+ + bf− = 1. It follows that:

p⋆1f+ = p⋆1f+(p
⋆
2af+ + p⋆2bf−)

= (p⋆1f+p
⋆
2a+ hp⋆2b)p

⋆
2f+

The function p⋆1f+p
⋆
2a + hp⋆2b vanishes on p⋆1Zi,<wi

. We deduce that there exists 0 < s < 1 such
that sp⋆1Zi,<wi

≥ p⋆2Zi,<wi
. One argues similarly with Zi,>wi

and then sum over all i.
□

We record the following corollary for future use:

Corollary 4.4.3. Let i ∈ {1, 2}. There exists m ∈ Z≥0 (depending on w and i) such that the

canonical map OCtor
t

→ OCtor
t

(m(p⋆2
∑g

i=1 Zi − p⋆1
∑g

i=1 Zi)) can be factored over p−1
i Stor

Fp,(w−1,w+1)

through maps:

Op−1
i Stor

Fp,(w−1,w+1)
→ Op−1

i Stor
Fp,(w−1,w+1)

(p⋆1Dw,++p
⋆
2Dw,+) → Op−1

i Stor
Fp,(w−1,w+1)

(m(p⋆2

g∑
i=1

Zi−p⋆1
g∑

i=1

Zi)).

Proof. We construct the dual maps

Op−1
i Stor

Fp,(w−1,w+1)
(−m(p⋆2

g∑
i=1

Zi−p⋆1
g∑

i=1

Zi)) → Op−1
i Stor

Fp,(w−1,w+1)
(−p⋆1Dw,+−p⋆2Dw,+) → Op−1

i Stor
Fp,(w−1,w+1)

.

We first do some local computations. Let {Ui}i be a finite affine open cover of p−1
i Stor

Fp,(w−1,w+1)

which trivializes Op−1
i Stor

Fp,(w−1,w+1)
(−(p⋆2

∑g
i=1 Zi − p⋆1

∑g
i=1 Zi)) and Op−1

i Stor
Fp,(w−1,w+1)

(−p⋆1Dw,+ −
p⋆2Dw,+). A generatorXi of Op−1

i Stor
Fp,(w−1,w+1)

(−p⋆1Dw,+−p⋆2Dw,+)(Ui) maps to gi ∈ Op−1
i Stor

Fp,(w−1,w+1)
(Ui)

and a generator Yi of Op−1
i Stor

Fp,(w−1,w+1)
(−(p⋆2

∑g
i=1 Zi−p⋆1

∑g
i=1 Zi)) maps to fi ∈ Op−1

i Stor
Fp,(w−1,w+1)

(Ui).

Over p−1
i Stor

Fp,(w−1,w+1), p
⋆
2

∑g
i=1 Zi−p⋆1

∑g
i=1 Zi and p

⋆
1Dw,++p⋆2Dw,+ have the same support. In-

deed, the complement of p⋆1Dw,+ + p⋆2Dw,+ is Ctor
t,Fp,w

. On the other hand, the complement of

p⋆2
∑g

i=1 Zi − p⋆1
∑g

i=1 Zi in Ctor
t,Fp

is ∪w′Ctor
t,Fp,w′ and (∪w′Ctor

t,Fp,w′) ∩ p−1
i Stor

Fp,(w−1,w+1) = Ctor
t,Fp,w

.

We deduce that there exists n such that fni = higi for some hi ∈ Op−1
i Stor

Fp,(w−1,w+1)
(Ui) and for

all i. Let Ui,j = Ui ∩ Uj . There exists units ai,j and bi,j ∈ Op−1
i Stor

Fp,(w−1,w+1)
(Ui,j)

× such that

Xi = bi,jXj and Y n
i = ai,jY

n
j . We deduce that fi = ai,jfj and gi = bi,jgj . It follows that
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gj(hj − bi,ja
−1
i,j hi) = 0 in Op−1

i Stor
Fp,(w−1,w+1)

(Ui,j). We deduce that f2ni = (h2i gi)gi. We observe that

gjh
2
j − bi,ja

−2
i,j h

2
i gi = gjh

2
j − b2i,ja

−2
i,j h

2
i gj = gj(hj − bi,ja

−1
i,j hi)(hj + bi,ja

−1
i,j hi) = 0. We now set

m = 2n. It follows that the map defined locally by sending Y m
i to gih

2
iXi glues to give a map

Op−1
i Stor

Fp,(w−1,w+1)
(−2m(p⋆2

∑g
i=1 Zi − p⋆1

∑g
i=1 Zi)) → Op−1

i Stor
Fp,(w−1,w+1)

(−p⋆1Dw,+ − p⋆2Dw,+) . □

Proposition 4.4.4. For all s ≥ 0, the correspondence (Stor
w,Z/psZ, C

tor
t,w,Z/psZ) admits a strict dynamical

compactification.

Proof. We let S̄tor
w,Z/psZ be the the closure of Stor

w,Z/psZ in Stor
Z/psZ and C̄tor

t,w,Z/psZ be p⋆1S̄
tor
w,Z/psZ ∩

p⋆2S̄
tor
w,Z/psZ. When s = 1, lemma 4.4.2 proves that this is a strict dynamical compactification. The

general case is deduced by lemma 2.1.34. □

Using the cohomological correspondence of proposition 4.3.9, tw : p⋆2ω
κ → p!1ω

κ, proposition
4.4.4, theorem 2.5.1, and proposition 2.6.13 we can define (recall that the support condition is
hidden in the notation):

RΓw(K
pKw,p,P , κ) = lim

s
RΓ(Stor

Z/psZ,w, ω
κ)C

tor
t,Z/psZ−ord

RΓw(K
pKw,p,P , κ, cusp) = lim

s
RΓ(Stor

Z/psZ,w, ω
κ(−D))C

tor
t,Z/psZ−ord

We can also allow a Nebentypus χ and define (over Zp(ζpn)):

RΓw(K
pKw,p,P , κ, χ) = lim

s
RΓ(Stor

Zp(ζpn )/ps,w, ω
κ(χ))C

tor
t,Z/psZ−ord

RΓw(K
pKw,p,P , κ, χ, cusp) = lim

s
RΓ(Stor

Zp(ζpn )/ps,w, ω
κ(χ)(−D))C

tor
t,Z/psZ−ord

Proposition 4.4.5. The cohomologies RΓw(K
pKw,p,P , κ), RΓw(K

pKw,p,P , κ, cusp), RΓw(K
pKw,p,P , κ, χ)

and RΓw(K
pKw,p,P , κ, χ, cusp) are independent of a specific choice of element t ∈ T++(Qp). They

are perfect complexes of Zp-modules and carry an action of T (Qp). Moreover, the action of T (Qp)
is locally algebraic, with algebraic part given by ν = −w−1w0,M (κ+ ρ)− ρ.

Remark 4.4.6. On RΓw(KpKw,p,P , κ), RΓw(K
pKw,p,P , κ, cusp), the action of T (Zp) is given by ν.

On RΓw(KpKw,p,P , κ, χ), RΓw(K
pKw,p,P , κ, χ, cusp), the action of T (Zp) is given by νχ.

Proof. We only consider RΓw(K
pKw,p,P , κ). The other cases are similar. In proposition 4.4.4, the

construction of a compactification S̄tor
w,Z/psZ of Stor

w,Z/psZ, with boundaryD = D+∪D− is independent

of the choice of t ∈ T+(Qp). We deduce that T+(Qp) acts on RΓD+,D−(S̄
tor
w,Z/psZ, ω

κ). Let t and t′

be two elements in T++(Qp). We see that RΓ(Stor
Z/ps,w, ω

κ)C
tor
t,Z/psZ−ord and RΓ(Stor

Zp/ps,w, ω
κ)C

tor
t′,Z/psZ−ord

are direct factors of the cohomology with support RΓD+,D−(S̄
tor
w,Z/psZ, ω

κ). Since there exists n and

u, u′ ∈ T+(Qp) such that tn = t′u′ and (t′)n = tu it is easy to deduce that these direct factors are
quasi-isomorphic. If follows from theorem 2.6.8 that RΓw(K

pKw,p,P , κ) is a perfect complex. The
property that T (Zp) acts via ν follows from the construction (and the normalization of the Hecke
correspondences in proposition 4.3.9). □

4.5. The Cousin complex. In this section we construct a spectral sequence from higher Hida coho-
mology to classical cohomology.

4.5.1. The Cousin spectral sequence. Let t ∈ T++(Qp). Let ω̃
κ and ω̃κ be as in proposition 4.3.13

and 4.3.18.

Theorem 4.5.2. There are spectral sequences:

(1) ⊕w∈C(κ), ℓ(w)=pH
p+q
w (KpKw,p,P , κ) ⇒ Hp+q(Stor, ω̃κ)t−ord

(2) ⊕w∈C(κ), ℓ(w)=pH
p+q
w (KpKw,p,P , κ, cusp) ⇒ Hp+q(Stor, ω̃κ(−D))t−ord

More generally, let χ : T (Z/pnZ) → Zp(ζpn)×. We have spectral sequences:

(1) ⊕w∈C(κ), ℓ(w)=pH
p+q
w (KpKw,p,P , κ, χ) ⇒ Hp+q(Stor

Zp(ζpn ), ω̃
κ(χ))t−ord
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(2) ⊕w∈C(κ), ℓ(w)=pH
p+q
w (KpKw,p,P , κ, χ, cusp) ⇒ Hp+q(Stor

Zp(ζpn ), ω̃
κ(−D))t−ord

Remark 4.5.3. The differentials and the abutment in the spectral sequence of theorem 4.5.2 depend
in principle on the choice of the integral models Stor and w̃κ. The higher Hida complexes are
however canonical.

Corollary 4.5.4. Let κ ∈ X⋆(T )+ be such that C(κ) = {w}. There is a canonical isomorphism:

RΓw(K
pKw,p,P , κ) ≃ RΓ(Stor, ω̃κ)t−ord

and similarly for cuspidal cohomology. Let χ : T (Z/pnZ) → Zp(ζpn)× be a character. There is a
canonical isomorphism:

RΓw(K
pKw,p,P , κ, χ) ≃ RΓ(Stor

Zp(ζpn ), ω̃
κ(χ))t−ord

and similarly for cuspidal cohomology.

Corollary 4.5.5. Let κ ∈ X⋆(T )+ be such that C(κ) = {w}. Let ν = −w−1w0,M (κ+ ρ)− ρ. There
is a canonical isomorphism:

RΓw(K
pKw,p,P , κ)⊗Qp(−ν) ≃ RΓ(Stor

Qp
, ωκ)ord

of T (Qp)-modules, and similarly for cuspidal cohomology. Let χ : T (Z/pnZ) → Zp(ζpn)× be a
character. There is an isomorphism of T (Qp)-modules:

RΓw(K
pKw,p,P , κ, χ)⊗Qp(ζpn)(−ν) ≃ RΓ(Stor

Qp(ζpn ), ω
κ(χ))ord.

4.5.6. proof of the main result. We recall the filtration by closed subsets defined in section 4.1.16:
F−1 = ∅ ⊆ F0 ⊆ · · · ⊆ F g(g+1)

2
= Stor

Fp
, where Fi = ∪w,ℓ(w)≤iZ>w−1. Let us also recall the

definitions of D−,w =
∑g

i=1 Zi,>wi and D+,w =
∑g

i=1 Zi,<wi .

Lemma 4.5.7. We have that Fi \ Fi−1 =
∐

w,ℓ(w)=i(Z>w−1 \D−,w).

Proof. This follows from lemma 4.1.18. □

By theorem 2.9.7, we have a spectral sequence:

Hp+q
c (F̂p \ F̂p−1, ω̃

κ) ⇒ Hp+q(Stor, ω̃κ).

We see by lemma 2.9.3 and lemma 4.5.7 that

RΓc(F̂p \ F̂p−1, ω̃
κ) = ⊕w,ℓ(w)=pRΓ(S

tor, lim
m

lim
n
ω̃κ(−mD−,w)/I

n
Z,>w−1).

We have an action of t ∈ T++(Qp) on the spectral sequence by proposition 2.9.9 and corollary
4.2.10.

The key proposition which implies theorem 4.5.2 is the following (given that the ordinary part
of the right hand side is RΓw(KpKw,p,P , κ) by corollary 2.3.11):

Proposition 4.5.8. The map

RΓ(Stor, lim
m

lim
n
ω̃κ(−mD−,w)/I

n
Z,>w−1) → RΓ(Stor, lim

n
colimr lim

m
ω̃κ(−mD−,w + rD+,w)/p

n)

induces a quasi-isomorphism on the ordinary part.

Proof. We consider the cohomological correspondence:

p⋆2 lim
m

lim
n

(
ω̃κ(−mD−,w)/I

n
Z,>w−1

)
→ p!1 lim

m
lim
n

(
ω̃κ(−mD−,w)/I

n
Z,>w−1

)
We tensor with p⋆2I

n−1
Z,>w−1/I

n
Z,>w−1 → p⋆1I

n−1
Z,>w−1/I

n
Z,>w−1, we see that the cohomological

correspondence induces a map:

p⋆2 lim
m

(
ω̃κ(−mD−,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1

)
→ p!1 lim

m

(
ω̃κ(−mD−,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1

)
We claim that it factors into a map:
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p⋆2 limm

(
ω̃κ(−mD−,w +D+,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1

)
,,

p⋆2 limm

(
ω̃κ(−mD−,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1

)
OO

// p!1 limm

(
ω̃κ(−mD−,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1

)
This follows from the property that the original cohomological correspondence factors into

p⋆2ω̃
κ → OCtor

t
((k′ − k)

g∑
i=1

p⋆2Zi −
g∑

i=1

p⋆1Zi)⊗ p⋆2ω̃
κ → p!1ω̃

κ

by lemma 4.3.14, and an application of corollary 4.4.3 (at this place we choose k′ large enough).
An application of lemma 2.4.4 implies that the map:

RΓ(Stor, lim
m

lim
n
ω̃κ(−mD−,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1) →

RΓ(Stor, lim
n

colimr lim
m
ω̃κ(−mD−,w + rD+,w)⊗ I n−1

Z,>w−1/I
n
Z,>w−1)

is a quasi-isomorphism on the ordinary part. This implies that

RΓ(Stor, lim
m

lim
n
ω̃κ(−mD−,w)/I

n
Z,>w−1) → RΓ(Stor, lim

n
colimr lim

m
ω̃κ(−mD−,w+rD+,w)/I

n
Z,>w−1)

is a quasi-isomorphism on the ordinary part. Finally we can pass to the limit over n and observe
that the inclusion (p) ⊆ IZ,>w−1 is an equality over Stor

w .
□

5. Higher Hida theory in p-adic families

5.1. Strict dynamic compactifications of Hecke correspondences. Let w ∈ MW . We let Bw =
wBw−1 and let Tw = wTw−1 = T and Nw = wNw−1 be its maximal torus and unipotent radical.
Let Kp,P ⊆ P ′(Qp) be a compact open subgroup. We say that a compact Kp,P is decomposable
with respect to w if:

(1) We have Kp,P =MKp,P
⋉ UKp,P

(this condition is automatic if p > 2, see remark 3.4.7).
(2) Kp,P has an Iwahori decomposition with respect to Bw:

Kp,P = Nw,Kp,P
× Tw,Kp,P

× N̄w,Kp,P
.

(3) MKp,P
is a subgroup of the Iwahori subgroup ofM(Qp) (with respect to B∩M = Bw∩M)

and admits an Iwahori decomposition NMKp,P
× Tw,Kp,P

× N̄MKp,P
.

Remark 5.1.1. These compact open subgroups are cofinal among all compact open subgroups. We
could probably use more general compacts, but it simplifies some arguments to restrict to these
compact open subgroups.

Remark 5.1.2. Let t0 = diag(1g, p1g). Let Kp,P be a decomposable compact. For n large enough,
t−n
0 Kp,P t

n
0 ⊆ P ′(Zp).

Remark 5.1.3. Note that Kp,P also has an Iwahori decomposition with respect to B:

Kp,P = NKp,P
× Tw,Kp,P

× N̄Kp,P

with N̄Kp,P
= N̄MKp,P

, NKp,P
= NMKp,P

× UKp,P
.

Elements t ∈ Tw(Qp)
++ = wT (Qp)

++w−1 define Hecke correspondences IGtor
KptKp,P t−1∩Kp,P

over IGtor
KpKp,P

. Given a formal scheme X over Spf Zp, we let XZ/pnZ be the corresponding scheme

over Spec Z/pnZ.

Theorem 5.1.4. For any decomposable compact open subgroup Kp,P ⊆ P ′(Qp), for any n ∈ Z≥0,
and any t ∈ Tw(Qp)

++, the correspondence ((IGtor
Kp(tKp,P t−1∩Kp,P ))Z/pnZ, (IG

tor
KpKp,P

)Z/pnZ, p1, p2)

admits a strict dynamic compactification.
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Proof. We first let K ′′
p ⊆ G(Qp) be the Iwahori level subgroup and let K ′

p,P = wK ′′
pw

−1 ∩ P (Qp).
In this case, the theorem follows from proposition 4.4.4.Now the theorem holds for any compact
open subgroup satisfying Kp,P ⊆ K ′

p,P by lemma 2.1.33. Also, if the theorem is satisfied by a

compact open subgroup Kp,P , it is satisfied by any conjugate by t0 = diag(1g, p1g) and for r large
enough, t−r

0 Kp,P t
r
0 ⊆ K ′

p,P . □

5.2. Definition of higher Hida complexes. We define higher Hida complexes by taking a suitable
limit of cohomology of Igusa varieties with coefficients in the structural sheaf.

5.2.1. Working at finite level. We first generalize the definition given in section 4.4 to the case of
an arbitrary decomposable compact open subgroup, in weight 0.

Lemma 5.2.2. Let t ∈ Tw(Qp)
+ and consider the correspondence (IGtor

Kp(tKp,P t−1∩Kp,P ), IG
tor
KpKp,P

, p1, p2).

We have a cohomological correspondence p⋆2OIGKpKp,P
→ p!1OIGKpKp,P

, given by ⟨−w0,Mρ −
wρ, t⟩Trp1 .

Proof. Analogue to lemma 4.3.8. □

We let

RΓw(K
pKp,P ) = RΓ(IGtor

Kp,Kp,P
,OIGKp,Kp,P

)ord = lim
s

RΓ((IGtor
Kp,Kp,P

)Z/psZ,O(IGKp,Kp,P
)Z/psZ)

ord.

The ordinary part is taken for the action of any t ∈ T++
w (Qp) (the ordinary part does not depend

on such choice). It is legitimate to take the ordinary part because of theorem 5.1.4 (of course,
taking the ordinary part hides a support condition). Also, note that we have transition maps in
the limit by proposition 2.6.13. We have a similar definition for cuspidal cohomology:

RΓw(K
pKp,P , cusp) = RΓ(IGtor

Kp,Kp,P
,OIGtor

Kp,Kp,P

(−D))ord = lim
s

RΓ((IGtor
Kp,Kp,P

)Z/psZ,O(IGKp,Kp,P
(−D))Z/psZ)

ord.

Proposition 5.2.3. RΓw(K
pKp,P ) and RΓw(K

pKp,P , cusp) belong to D(Zp[T (Qp)]) and are perfect
complexes of Zp[Tw(Zp)/Tw,Kp,P

]-modules.

Proof. This is a consequence of theorem 2.6.10. □

5.2.4. Independence of the compact. The ordinary cohomology of a decomposable compact open
subgroup only depends on the torus part of the compact. This generalizes a standard result in the
theory of Jacquet modules (see [Cas], sect. 4.1, the canonical lifting).

Proposition 5.2.5. If Kp,P and K ′
p,P are two decomposable compact open subgroups and if Tw,Kp,P

=

Tw,K′
p,P

, then there is a natural quasi-isomorphism RΓw(K
pKp,P ) = RΓw(K

pK ′
p,P ) and similarly

for cuspidal cohomology.

Proof. Let Kp,P = Nw,Kp,P
×Tw,Kp,P

×N̄w,Kp,P
and K ′

p,P = N ′
w,Kp,P

×Tw,Kp,P
×N̄ ′

w,Kp,P
. We first

claim that there exists N ′′
w,Kp,P

⊆ Nw,Kp,P
∩N ′

w,Kp,P
such thatK ′′

p,P = N ′′
w,Kp,P

×Tw,Kp,P
×N̄w,Kp,P

and K ′′′
p,P = N ′′

w,Kp,P
× Tw,Kp,P

× N̄ ′
w,Kp,P

are decomposable compact open subgroups. Indeed, by

conjugating by t0, we may assume that Kp,P ⊆ P ′(Zp) and K ′
p,P ⊆ P ′(Zp). One can take K ′′

p,P

(resp. K ′′′
p,P ) to be the intersection of Kp,P (resp. K ′

p,P ) with {M ∈ P ′(Zp), M mod pnZp ∈
B(Z/pnZ)} for n large enough. We will show that the theorem holds for Kp,P and K ′′

p,P , K
′
p,P and

K ′′′
p,P and finally K ′′

p,P and K ′′′
p,P . Let us denote by Kn,m = Kp.t−mKp,P t

m ∩ tnKp,P t
−n. We can

consider the following infinite diagram:

IGtor
K0,2

##

// IGtor
K1,1

##{{

// IGtor
K2,0

{{

IGtor
K0,1

##

// IGtor
K1,0

{{

IGtor
K0,0
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This induces a diagram on cohomology where all maps are quasi-isomorphisms by proposition
2.8.2.

RΓw(K0,2) // RΓw(K1,1)

xx

// RΓw(K2,0)

xx
RΓw(K0,1)

ff

// RΓw(K1,0)

ff

xx
RΓw(K0,0)

ff

If we let K ′′
n,m = Kp.t−mK ′′

p,P t
m ∩ tnK ′′

p,P t
−n we see that there exists n,m, l, r such that

K ′′
n,0 ⊆ Km,0 ⊆ K ′′

l,0 ⊆ Kr,0. If we consider the trace maps RΓw(K
′′
n,0) → RΓw(Km,0) →

RΓw(K
′′
l,0) → RΓw(Kr,0), then we deduce that all maps are quasi-isomorphisms. Therefore

RΓw(K
pKp,P ) = RΓw(K

pK ′′
p,P ). We prove similarly that RΓw(K

pK ′
p,P ) = RΓw(K

pK ′′′
p,P ). The

proof that RΓw(K
pK ′′

p,P ) = RΓw(K
pK ′′′

p,P ) is similar, using pull back maps instead of traces. □

5.2.6. Passing to the limit. Let Kp,P be a decomposable compact open subgroup. We assume
Kp,P ⊆ P ′(Zp) for simplicity. We now let (Kp,P )n = {M ∈ Kp,P ,M mod pn ∈ N(Z/pn)}. We let
RΓw(K

p) = limm colimnRΓw(K
p(Kp,P )n)⊗ Z/pmZ. We define similarly RΓw(K

p, cusp).

Proposition 5.2.7. The complexes RΓw(K
p) and RΓw(K

p, cusp) are admissible complexes (see def-
inition 1.4.1) and their construction is independent of the choice of Kp,P .

Proof. The independence on the compact follows as in proposition 5.2.5 (one checks easily that the
quasi-isomorphism is functorial in n). We let T ′(Zp/p

nZp) be the p-subgroup of T (Zp/p
nZp).

For n large enough, the complex RΓw(K
p(Kp,P )n) is a perfect complex of Zp[T

′(Zp/p
nZp)]-

modules by proposition 5.2.3. We can let M•
n be a minimal representative of this complex (see

[KT17], sect. 2.2). This means that M i
n = Zp[T

′(Zp/p
nZp)]

kn,i and the differentials in this
complex are zero modulo the maximal ideal of Zp[T

′(Zp/p
nZp)]. We have quasi-isomorphisms

M•
n → (M•

n+1)
Tw,(Kp,P )n . By minimality, we deduce that kn,i = kn+1,i and the map M i

n → M i
n+1

identifies with the canonical injection Zp[T
′(Zp/p

nZp)]
kn,i ↪→ Zp[T

′(Zp/p
n+1Zp)]

kn+1,i (we think
of Zp[T

′(Zp/p
nZp)] as functions on T ′(Zp/p

nZp)). The proposition boils down to the fact that
limm colimnZ/pmZ[T ′(Zp/p

nZp)] = C0(T ′(Zp),Zp). □

The complexes RΓw(K
p) and RΓw(K

p, cusp) belong to D(Zp[T (Qp)]). We now twist the action
of T (Qp) by w. This twist is motivated by section 4.1.5: the relevant Igusa variety is embedded
via w inside the global Shimura variety. Also, note that we have dropped any reference to the
compact Kp,P in the notation.

5.3. Control theorem. We now study the specialization of these complexes in locally algebraic
weights.

5.3.1. Higher Hida complexes in fixed weight. We revisit the construction of section 4.4 for more
general compact open subgroups. Let Kp,P be a decomposable compact open subgroup. After
conjugation, we can assume that Kp,P ⊆ P ′(Zp) (this assumption is not really crucial but we keep

it for simplicity). There is a map IGtor
KpKp,P

→ Ator
g providing a natural semi-abelian scheme A

and therefore there is a natural M -torsor MdR over IGtor
KpKp,P

. For any κ ∈ X⋆(T )M,+ we have

a corresponding sheaf ωκ over IGtor
KpKp,P

. We let RΓw(K
pKp,P , κ) = RΓ(IGtor

KpKp,P
, ωκ)ord =

limn RΓ(IG
tor
KpKp,P ,Z/pnZ, ω

κ)ord (where the ordinary part is taken for the action of some t ∈
T++
w (Qp)). We define similarly RΓw(K

pKp,P , κ, cusp). If κ is the trivial character, we simply
recover the cohomology groups considered in section 5.2.1. These are T (Qp)-modules. The action
of T (Qp) is locally algebraic with weight ν = −w−1w0,M (κ+ ρ)− ρ. We now explain how we can
recover these cohomologies from RΓw(K

p) and RΓw(K
p, cusp).
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5.3.2. Reduction of the torsor. We have an exact sequence 1 → UKp,P
→ Kp,P →MKp,P

→ 1 and

there is a MKp,P
-torsor IGtor

KpUKp,P
→ IGtor

KpKp,P
.

Proposition 5.3.3. There is a map of torsors, equivariant for the map MKp,P
→Mµ:

IGtor
KpUKp,P

//

π

&&

MdR

��

IGtor
KpKp,P

Proof. If A is the semi-abelian scheme over IGKp,P
, we have a Hodge-Tate map Tp(A[p

∞]et) →
ωAt (of pro-étale sheaves over IGKp,P

), inducing an isomorphism: Tp(A[p
∞]et) ⊗Zp OIGUKp,P

→
ωAt⊗OIGKp,P

. This provides an equivariant map IGUKp,P
→MdR. □

5.3.4. Control. Recall that Kp,P has an Iwahori decomposition with respect to B : NKp,P
×

Tw,Kp,P
× NKp,P

. We let TKp,P
= w−1Tw,Kp,P

w. Recall that we have twisted the action of
T (Qp) by w on RΓw(K

p).

Theorem 5.3.5. We have a canonical isomorphism:

RHomTKp,P
(ν,RΓw(K

p)) = RΓw(K
pKp,P , κ)

and similarly for cuspidal cohomology.

Proof. We let (Kp,P )
′′
n = {M ∈ Kp,P ,M ∈ B(Z/pn) mod pn}. We have

RΓw(K
pKp,P , κ) = RΓ(IGtor

KpKp,P
, ωκ)ord

= RΓ(IGtor
Kp(Kp,P )′′n

, ωκ)ord by a version of proposition 5.2.5,

= RΓ(IGtor
KpBKp,P

, ωκ)ord by passing to the limit over n.

We have by definition:

RΓw(K
p) = RΓ(IGtor

KpNKp,P
,OIGtor

KpNKp,P

)ord

= RΓ(IGtor
KpBKp,P

, π⋆OIGtor
KpNKp,P

)ord because IGtor
KpNKp,P

→ IGtor
KpBKp,P

is affine.

By proposition 5.3.3, we have a map OMdR
→ OIGUKp,P

. It induces a surjective map which is

thought as the projection to the lowest weight vector: ωκ → (π⋆OIGNKp,P
⊗ ω0,Mκ)

Tw,Kp,P .

Let K be the kernel of this map. One checks that RΓ(IGtor
KpBKp,P

,K)ord = 0 as in [Pil20], sect.

10.7 for example. It follows that

RΓ(IGtor
KpBKp,P

, ωκ)ord = RΓ(IGtor
KpBKp,P

, (π⋆OIGKpU(Zp)
⊗ ω0,Mκ)

Tw,Kp,P )ord.

We then check that

RHomTKp,P
(ν,RΓw(K

p)) = RΓ(IGtor
KpBKp,P

, (π⋆OIGKpNKp,P
⊗ w−1ω0,Mκ)

TKp,P )ord

= RΓ(IGtor
KpBKp,P

, (π⋆OIGKpNKp,P
⊗ ω0,Mκ)

Tw,Kp,P )ord

In the first equality we exchange sheaf cohomology and group cohomology. In this process, ν =
−w−1w0,M (κ + ρ) − ρ becomes −w−1w0,M (κ) since the factor −w−1w0,M (ρ) − ρ is absorbed by
the normalization of the trace map. □

Let us fix some definitions. Let ν = νalgχ : T (Zp) → Zp(ζpn)×, with νalg ∈ X⋆(T ) and χ a finite
order character. Let κ = −w0,Mw(ν + ρ)− ρ. We let RΓw(K

p, κ, χ) = RHomT (Zp)(ν,RΓw(K
p)⊗

Zp(ζpn)) and we define similarly the cuspidal part. If χ is trivial, we also simply use RΓw(K
p, κ)

for RΓw(K
p, κ, 0).

We can compare with section 4.4. We have RΓw(K
pKw,p,P , κ) = RΓw(K

p, κ) and RΓw(K
pKw,p,P , κ, χ) =

RΓw(K
p, κ, χ). It is justified to drop Kw,p,P from the notation since the ordinary cohomology is

independent of the choice of the compact Kp,P as explained in theorem 5.2.7.
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5.4. Ordinary Hecke algebras. Let Λ = Zp[[T (Zp)]]. We let M•
w = RHomT (Zp)(1,RΓw(K

p) ⊗ Λ)
and M•

w,cusp = RHomT (Zp)(1,RΓw(K
p, cusp)⊗ Λ)

Lemma 5.4.1. The complexes M•
w and M•

w,cusp are perfect complexes of Λ-modules.

Proof. Let T ′(Zp) be the pro-p subgroup of T (Zp). We observe that RHomT ′(Zp)(1, C0(T ′(Zp),Zp)⊗Λ) =
Λ[0]. We deduce from proposition 5.2.7 that RHomT ′(Zp)(1,RΓw(K

p) ⊗ Λ) is a perfect complex
of Λ-modules. Since T (Zp)/T

′(Zp) = T (Fp) is a group of order prime to p, we deduce that
RHomT (Zp)(1,RΓw(K

p)⊗Λ) is a direct factor of RHomT ′(Zp)(1,RΓw(K
p)⊗Λ) and also a perfect

complex. □

We clarify the relation between both complexes.

Lemma 5.4.2. We have

RΓw(K
p) = RHomZp(RHomΛ(M

•
w,Λ),Zp)

and similarly for cuspidal cohomology.

Proof. There is an anti-equivalence of categories from admissible complexes to perfect complexes
of Λ-modules, given by i : M 7→ HomZp

(M,Zp). This uses that Λ is the algebra of measures

on T (Zp). Let i−1 be a quasi-inverse given by HomZp
(−,Zp). We have a second functor given

by j : M 7→ (M ⊗ Λ)T (Zp). We claim that j ◦ i−1 is simply the duality functor HomΛ(−,Λ)
on perfect complexes of Λ-modules. It suffices to check this on Λ[0]. We have a natural map
HomZp

(Λ,Zp)⊗Zp
Λ → HomZp

(Λ,Λ), which induces an isomorphism (HomZp
(Λ,Zp)⊗Zp

Λ)T (Zp) →
HomΛ(Λ,Λ). We deduce that one can construct RΓw(K

p) form Mw by applying HomΛ(−,Λ) and
the HomZp

(−,Zp). □

Remark 5.4.3. Let Kp,P be a decomposable compact with Tw,Kp,P
= T (Zp). We have the formula:

M•
w = RΓ(IGtor

KpBKp,P
, (π⋆OIGtor

KpNKp,P

⊗ Λ)Tw(Zp))ord.

Let νuniv : T (Zp) → Λ× be the universal character. Let κuniv be defined by the formula κuniv =
−w0,Mw(ν

univ + ρ) − ρ. In this last formula, Tw(Zp) acts on π⋆OIGtor
KpNKp,P

since Tw(Zp) is the

diagonal torus of BKp,P
. It acts on Λ = Zp[[T (Zp)]] via the character w0,Mκ

univ (this is the

composition of Tw(Zp)
w−1

→ T (Zp)
w−1w0,Mκuniv

→ Λ×).

For any ν = νalgχ : T (Zp) → Zp(ζpn)×, with νalg ∈ X⋆(T ) and χ a finite order character, and
for κ = −w0,Mw(ν + ρ)− ρ, we have:

M•
w ⊗Λ,−ν Zp(ζpn) = RΓw(K

p, κ, χ).

We let Tw be the image of the Hecke algebra in End(M•
w). This is a finite Λ-algebra. We let

Ew = Spec Tw → Spec Λ. This is the ordinary Hecke eigenvariety. We define similarly Tw,cusp.

5.5. Duality.

Theorem 5.5.1. We have a duality, for which the adjoint of t ∈ T (Qp) is w0t
−1 ∈ T (Qp).

RΓw(K
p, κ, χ)⊗ RΓw0,Mww0(K

p,−w0,Mκ− 2ρnc, w0χ
−1) → Zp(ζpn)[−d]

Proof. We take the compact Kp,P = {M = 1 mod pn}. By theorem 2.7.4, the duality is a perfect
pairing

RΓ(IGtor
KpKp,P

, ωκ)ord ⊗ RΓ(IGtor
KpKp,P

, ωκ−2ρnc)−,ord → Zp(ζpn)[−d]
where on RΓ(IGtor

KpKp,P
, ωκ−2ρnc)−,ord the ordinary part is taken with respect to the map T−(Qp) →

T (Qp)
w→M(Qp). The adjoint of t is t−1. Now we can consider the following diagram:

T−(Qp)
w // M(Qp)

w0,M

��

T+(Qp)

w0

OO

w0,Mww0
// M(Qp)
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We deduce that conjugation by w0,M induces an isomorphism

RΓ(IGtor
KpKp,P

, ωκ−2ρnc)−,ord ≃ RΓ(IGtor
KpKp,P

, ωκ−2ρnc)ord.

□

Theorem 5.5.2. We have a perfect pairing M•
w ⊗M•

w0,Mww0,cusp → Λ[−d], for which the adjoint of

t is w0t
−1.

Proof. This follows as in the previous theorem. □

5.6. The case of GSp4. In this subsection we state a conjecture and prove an optimal vanishing
results for our cohomology in the case of the group GSp4.

Conjecture 5.6.1. The cohomology RΓw(K
p) is an admissible complex of amplitude [ℓ(w), g(g+1)

2 ]
and RΓw(K

p, cusp) is an admissible complex of amplitude [0, ℓ(w)].

Remark 5.6.2. The conjecture is equivalent to the conjecture that M•
w is a perfect complex of

Λ-modules of amplitude [ℓ(w), g(g+1)
2 ] and M•

w,cusp is a perfect complex of amplitude [0, ℓ(w)] (see
lemma 5.4.2). The conjecture is compatible with duality between the cuspidal and non-cuspidal
part.

Proposition 5.6.3. The conjecture holds when g = 1 and g = 2.

Proof. The case g = 1 is easy and was treated in [BP20]. Actually in that case the stronger
assertion holds that the cuspidal and non-cuspidal theories for w = Id are in degree 0 and dually,
the cuspidal and non-cuspidal theories for w = wM

0 are in degree 1. We now consider the case
that g = 2. It suffices to prove that M•

w ⊗Λ Fp and M•
w,cusp ⊗Λ Fp have the correct amplitude as

Fp-vector spaces for all the maps Λ → Fp corresponding to all the residual characters κ. We now
use the notations from section 4.4. Let Kp ⊆ G(Qp) be the Iwahori subgroup. We want to prove
that

M•
w,cusp ⊗Λ Fp = RΓw(K

pKw,p,P , κ, cusp)⊗ Z/pZ = RΓw(K
p, κ, cusp)⊗ Z/pZ

has amplitude [0, ℓ(w)]. We let (IgKpKw,p,P
)Z/pZ be the corresponding component of the ordinary

locus. When w = Id, RΓw(K
pKw,p,P , κ, cusp)⊗ Z/pZ is a direct summand of

RΓ((IgKpKw,p,P
)Z/pZ, ω

κ(−cusp))

(in that case the support condition has D− = ∅, so we consider usual cohomology) which is concen-
trated in degree 0 since the image of (IgKpKw,p,P

)Z/pZ in the minimal compactification is affine and
the relative cohomology to the minimal compactification vanishes ([Lan17], thm. 8.6). When w is
the length one element, we consider Stor

Fp,(w−1,w+1) which is a compactification of (IgKpKw,p,P
)Z/pZ.

Concretely, Stor
(w−1,w+1) = Z2,<2 ∩ Z1,>0. We have locally principal subschemes Dw,+ = Z1,<1 and

Dw,− = Z2,>1. By lemma 4.4.2, we know that (Ctor
t,Fp,(w−1,w+1), S

tor
Fp,(w−1,w+1), p1, p2, Dw,+, Dw,−)

is a strict dynamic compactification of ((IgKpw(t)Kw,p,Pw(t)−1∩Kw,p,P
)Z/pZ, (IgKpKw,p,P

)Z/pZ, p1, p2).

We deduce that the cohomology RΓw(K
pKw,p,P , κ, cusp)⊗Z/pZ is a direct summand of RΓ(Stor

(w−1,w+1)\
Dw,+, ω

κ(−cusp)). We observe that Stor
(w−1,w+1) \Dw,+ is contained in the p-rank at least one lo-

cus, which has cohomological dimension 1 in the minimal compactification (being covered by two
affines). When w is the length two element, it is easier to prove the dual statement for the non-
cuspidal cohomology, namely that the cohomology of the length one element is in the range [1, 3].
This is clear as there is no non-zero section with non-trivial support.

□

Remark 5.6.4. The same kind argument would apply to prove the expected vanishing of RΓw(K
p)

or RΓw(K
p, cusp) for certain particular w and all values of g, but we were not able to find a general

argument.

6. Higher Coleman theory and Higher Hida theory

6.1. Overconvergent cohomology with support.
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6.1.1. Cohomology with support. We first recall some definitions of cohomology with support as
considered in [BP21].

Let X̄ be a quasi-compact rigid space. Let p̄1, p̄2 : C̄ → X̄ be a correspondence over X̄ with p̄1
and p̄2 finite flat maps.

Remark 6.1.2. If X̄ is a toroidal compactification of a Shimura variety, we can rarely impose
simultaneously that p̄1 and p̄2 are finite flat (for the same choice of cone decomposition). However,
all the support conditions we will consider behave nicely at the boundary and typically make sense
for any choice of cone decomposition. We therefore keep this assumption for simplicity.

We let T = p̄2p̄
−1
1 (−) and T t = p̄1p̄

−1
2 (−).

Definition 6.1.3. A open/closed support condition, for the correspondence C̄ is a pair (U ,Z) where
U is a finite union of quasi-Stein open subspaces and Z is a closed with complement a finite union of

quasi-Stein open subspaces such that T (U) ⊆ U and T t(Z) ⊆
◦
Z. The open/closed support condition

is called a quasi-compact open/closed support condition if U is a quasi-compact open subset and Z
is the complement of a quasi-compact open subset.

Let Um = Tm(U) and Zn = (T t)n(Z). Let F be a coherent sheaf (or even a Banach sheaf
[BP21], def. 2.5.2) defined in a neighborhood of U ∩ Z in X̄ , equipped with a cohomological
correspondence T : p⋆2F → p!1F which is assumed to be compact if F is a Banach sheaf ([BP21],
def. 2.5.3). This is automatic if F is coherent.

We can consider the cohomology with support RΓm,n := RΓUm∩Zn
(Um,F ). We have natural

maps RΓm,n → RΓm+1,n and RΓm,n+1 → RΓm,n.
In the quasi-compact case, these cohomologies are represented by complexes of Banach modules.

In general they are represented by projective systems of complexes of Banach modules ([BP21],
lem. 2.5.20).

Proposition 6.1.4 ([BP21], thm 5.3.7). The operator T acts on the cohomology RΓm,n and is potent
compact (T 2 is compact). Moreover, the finite slope part RΓfs

m,n are quasi-isomorphic for varying
m and n.

One can actually always reduce to working with quasi-compact support conditions by the fol-
lowing lemma:

Lemma 6.1.5. Let (U ,Z) be an open/closed support condition. Then there exists a quasi-compact
open/closed support condition (U ′,Z ′) such that T (U) ⊆ U ′ ⊆ U and T t(Z) ⊆ Z ′ ⊆ Z.

Proof. Observe that T (U) ⊆ U . We can write U as a union ∪iUi of quasi-compact opens. Since
T (U) is closed, hence compact in the constructible topology, we deduce that there exists a quasi-
compact open U ′ such that T (U) ⊆ U ′ ⊆ U . We similarly find a Z ′. □

Corollary 6.1.6. In the setting of lemma 6.1.5, the finite slope part of RΓU∩Z(U ,F ) and RΓU ′∩Z′(U ′,F )
are quasi-isomorphic.

Proof. We claim that the finite slope part of cohomology for each of the following support conditions
are quasi-isomorphic: (U ,Z), (U ′,Z), (U ,Z ′), (U ′,Z ′). Let us compare (U ,Z) and (U ′,Z) and leave
the remaining cases to the reader. We have restriction maps: RΓU∩Z(U ,F ) → RΓU ′∩Z(U ′,F ) →
RΓT (U)∩Z(T (U),F ). The correspondence provides a map T : RΓT (U)∩Z(T (U),F ) → RΓU∩Z(U ,F ).
Composing the map T with the restriction maps yields an endomorphism of the various cohomolo-
gies. It is obvious that on the finite slope part, the restriction map induce quasi-isomorphisms. □

Proposition 6.1.7. Let (U ,Z) and (U ′,Z ′) be two open/closed support conditions. Assume that
∩m,nT

m(U)∩ (T t)n(Z) = ∩m,nT
m(U ′)∩ (T t)n(Z ′). Then RΓU∩Z(U ,F )fs and RΓU ′∩Z′(U ′,F )fs

are canonically quasi-isomorphic.

Proof. We can assume that the support conditions are quasi-compact by lemma 6.1.5. If (U ,Z)
and (U ′,Z ′) are two support conditions, then (U ∪ U ′,Z ∪ Z ′) is also a support condition. We
therefore reduce to the situation that U ⊆ U ′ and Z ⊆ Z ′. Let us assume that U ⊆ U ′ and Z = Z ′.
One treats similarly the case that U = U ′ and Z ⊆ Z ′.
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We see that there existsm,n such that U ′
m∩Zn ⊆ U . Indeed, we know that ∩m,nU ′

m∩Zn

⋂
Uc =

∅. But all these sets are compact in the constructible topology. Therefore there must exist m,n
such that U ′

m ∩ Zn ⊆ U .
We may further replace Z by Zn. We thus reduce to the case that U ′

m ∩ Z ⊆ U . We now
consider the following commutative diagram:

RΓU ′∩Z(U ′,F ) //

��

RΓU∩Z(U ,F )

��uu

RΓU ′
m∩Z(U ′

m,F ) // RΓUm∩Z(Um,F )

We know that on the finite slope part, the two vertical arrows are quasi-isomorphisms. This
implies that all maps in this diagram are quasi-isomorphisms. □

6.1.8. Application to Siegel varieties. We now apply this to our Shimura variety Stor of level
Kp,n, viewed as an adic space over Spa(Qp,Zp). We consider two kinds of support conditions.
We let w ∈ MW . Let ϵ ∈ Q. We let U≥w−ϵ = {x ∈ Stor, ∀i,degHg+i(x) ≥ n(wi − ϵ)} and
U≤w+ϵ = {x ∈ Stor, ∀i,degHg+i(x) ≤ n(wi + ϵ)}. These are quasi-compact open subsets. We let

Z<w+ϵ = ∪ϵ′<ϵU≤w+ϵ′ and Z>w−ϵ = ∪ϵ′>ϵU≥w−ϵ′ . These are closed subsets with quasi-compact
complement. Let t ∈ T++(Qp). We write T for the correspondence Ctor

t .

Proposition 6.1.9. (1) For any ϵ ∈]0, 1[∩Q, there exists ϵ′ < ϵ such that T (U≥w−ϵ) ⊆ U≥w−ϵ′ .
(2) For any ϵ ∈]0, 1[∩Q, there exists ϵ′ < ϵ such that T t(U≤w+ϵ) ⊆ U≤w+ϵ′ .
(3) For any 0 < ϵ′ < ϵ < 1, there exists n such that Tn(U≥w−ϵ) ⊆ U≥w−ϵ′ .
(4) For any 0 < ϵ′ < ϵ < 1, there exists n such that (T t)n(U≤w+ϵ) ⊆ U≤w+ϵ′ .

Proof. It follows from proposition 4.2.15 that for a point x ∈ Ctor
t , degHg+i(p1(x)) ≤ degHg+i(p2(x))

and if equality holds they are multiples of n. Points (1) and (2) follow from this and quasi-
compactness. Points (3) and (4) are proved as in [Pil11], prop. 2.5. See also [Pil11], thm. 3.1. □

Proposition 6.1.10. For any ϵ ∈]0, 1[∩Q, the pair (U≥w−ϵ,Z<w+ϵ) is a quasi-compact open/closed

support condition. Moreover, ∩m,nT
m(U≥w−ϵ) ∩ (T t)n(Z<w+ϵ) = Stor

w .

Proof. This follows from proposition 6.1.9. □

We now give another kind of support conditions which are defined using the Hodge-Tate period
map. These are the support conditions used in [BP21]. Let w ∈ MW . Let FL = P\G→ Spec Zp

be the flag variety viewed as a scheme. We let Cw = P\PwB be the Bruhat cell in P\G. We let
Xw = Cw = ∪w′≤wCw′ be the Schubert cell. We let Xw be the opposite Schubert cell, equal to the
closure of P\PwBop where Bop is the opposite Borel. We let Yw = ∪w′≥wCw′ . We have a natural
inclusion Xw ↪→ Yw. We recall that there is a continuous map πHT,Kp,n

: |Stor| → |FL|/Kp,n.
Therefore, we can pull back any Kp,n-stable subset of FL to Stor.

Proposition 6.1.11. The pair (π−1
HT,Kp,n

]Xw,Fp
[, π−1

HT,Kp,n
]Yw,Fp [) is an open/closed support condi-

tion. Moreover

∩Tm(π−1
HT,Kp,n

]Xw,Fp [) ∩ (T t)n(π−1
HT,Kp,n

]Yw,Fp [) = Stor
w .

Proof. We first consider the closed analytic spaces Xw ↪→ FL and Xw ↪→ FL. We see that
Xw ↪→]Xw,Fp

[ and Xw ↪→]Yw,Fp
[ ([BP21], lemma 3.1.2). We let Bn (resp. Bop

n ) be the subgroups
of the Borel (resp. the opposite Borel) of elements reducing modulo pn to the identity. We let
Xw,n = XwBop

n and Xw
n = XwBn. These are open subsets of the flag variety equal to the tubular

neighborhood of width pn of Xw and Xw. We see easily that Xw,n ⊆]Xw,Fp
[ and Xw

n ⊆]Xw
Fp
[,

and that Xw,n ⊆ Xw,n−1, Xw
n ⊆ Xw

n−1. We claim that ]Xw,Fp
[.tn ⊆ Xw,n and ]Yw,Fp

[.t−n ⊆
Xw,n (see [BP21], lemma 3.4.1 and its proof). We deduce that ]Xw,Fp [Kp,ntKp,n ⊆ ]Xw,Fp [ and

]Yw,Fp
[Kp,nt

−1Kp,n ⊆
◦

]Yw,Fp
[=]Yw,Fp

[. This implies that we have an open/closed support condition.

We now compute Tm(π−1
HT,Kp,n

]Xw,Fp
[)∩ (T t)n(π−1

HT,Kp,n
]Yw,Fp

[). By [BP21], lem. 3.5.10.5 this set
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is contained in ]Cw,Fp
[m,0Kp,n∩]Cw,Fp

[0,nKp,n (see [BP21], sect. 3.3.6 for the definition of these

sets). Consider the Iwahori decomposition Kp,n = BKp,n × Uop
Kp,n

. We deduce easily that

]Cw,Fp
[m,0Kp,n∩]Cw,Fp

[0,nKp,n =
(
(]Cw,Fp

[m,0BKp,n
) ∩ (]Cw,Fp

[0,nU
op
Kp,n

)
)
Kp,n.

Now, by [BP21], coro. 3.3.14, (]Cw,Fp
[m,0BKp,n

) =]Cw,Fp
[m,0 and (]Cw,Fp

[0,nU
op
Kp,n

) =]Cw,Fp
[0,n so

that finally ]Cw,Fp
[m,0Kp,n∩]Cw,Fp

[0,nKp,n =]Cw,Fp
[m,nKp,n. □

6.2. Integral overconvergent cohomology and comparison with higher Hida theory. Recall that we
have fixed w ∈ MW and t ∈ T++(Qp).

6.2.1. Some integral models and blow-ups of the Shimura variety. Let ϵ ∈]0, 1[∩Q. Let ϵ′ ∈]0, ϵ[∩Q
such that T (U≥w−ϵ) ⊆ U≥w−ϵ′ and T

t(U≤w+ϵ) ⊆ U≤w+ϵ′ . We first revisit section 4.1.12.

Proposition 6.2.2. There exists a blow-up π : S̃tor → Stor satisfying the following properties:

(1) for all 0 ≤ i ≤ g we have effective divisors Zi,>wj
and Zi,<wj

on S̃tor with disjoint support,
and Zi,>wj − Zi,<wj = Zi − V (pnwj ).

(2) for all 0 ≤ i ≤ g and all η ∈ {ϵ,−ϵ, ϵ′,−ϵ′}, we have effective divisors Zi,>wj+η and

Zi,<wj+η on S̃tor with disjoint support, and Zi,>wj+η − Zi,<wj+η = Zi − V (pn(wj+η)).

(3) The map π : S̃tor → Stor induces an isomorphism π−1Stor
w,Fp

→ Stor
w,Fp

.

Proof. This is identical to the proof of proposition 4.1.13. □

We change our notation and let Stor be S̃tor. We let D+ =
∑

i Zi,<wj
, D− =

∑
i Zi,>wj

,
D+,ϵ =

∑
i Zi,<wj−ϵ, D−,ϵ =

∑
i Zi,>wj+ϵ D+,ϵ′ =

∑
i Zi,<wj−ϵ′ , D−,ϵ′ =

∑
i Zi,>wj+ϵ′ .

Proposition 6.2.3. The following holds:

(1) We have D+ ≥ D+,ϵ′ ≥ D+,ϵ and D− ≥ D−,ϵ′ ≥ D−,ϵ.
(2) We have p⋆1D+ ≥ p⋆2D+, p

⋆
1D+,ϵ ≥ p⋆2D+,ϵ′ .

(3) We have p⋆2D− ≥ p⋆1D−, p
⋆
2D−,ϵ ≥ p⋆1D−,ϵ′ .

(4) Over Ctor
t \ p⋆1D+,ϵ ∪ p⋆2D−,ϵ, there exists s ∈]0, 1[∩Q such that we have sp⋆1D+ ≥ p⋆2D+

and sp⋆2D− ≥ p⋆1D−.

Proof. The first point is obvious. The second and third point follow from proposition 6.1.9 and
lemma 4.2.11. The last point follows as in lemma 4.4.2. □

6.2.4. Integral model for the Hecke correspondence.

Proposition 6.2.5. There is a fundamental class p⋆2OCtor
t \p⋆

1D+∪p⋆
2D− → ⟨w−1w0,Mρ+ ρ, t⟩p!1OCtor

t \p⋆
1D+∪p⋆

2D−

given by the trace map.

Proof. We observe that Stor\D+∪D− and Ctor
t \p⋆1D+∪p⋆2D− are smooth. Therefore p!1OCtor

t \p⋆
1D+∪p⋆

2D−

is an invertible sheaf. The trace map gives a rational map p⋆2OCtor
t \p⋆

1D+∪p⋆
2D− → p!1OCtor

t \p⋆
1D+∪p⋆

2D− .

One checks that it induces a true map p⋆2OCtor
t \p⋆

1D+∪p⋆
2D− → ⟨w−1w0,Mρ+ ρ, t⟩p!1OCtor

t \p⋆
1D+∪p⋆

2D−

by lemma 4.3.8. □

Proposition 6.2.6. Let κ ∈ X⋆(T )Mµ,+ and χ : T (Zp) → Zp(ζpn)× be a finite order character.
We have a cohomological correspondence t : p⋆2ω

κ(χ) → p!1ω
κ(χ) over Ctor

t \ p⋆1D+ ∪ p⋆2D− which

is p−⟨w−1w0,M (κ+ρ)−ρ,t⟩tnaive where tnaive is the rational map obtained as the tensor product of
p⋆2ω

κ(χ)[1/p] → p⋆1ω
κ(χ)[1/p] and the fundamental class given by the map of proposition 6.2.5.

Proof. This follows as in proposition 4.3.11. □

Proposition 6.2.7. There is an integral model ω̃κ(χ) = ωκ(χ)(m(D+ − D−)) for some m ≥ 0,
such that the map t extends to a cohomological correspondence t̃ : p⋆2ω̃

κ(χ) → p!1ω̃
κ(χ) over Ctor

t \
p⋆1D+,ϵ ∪ p⋆2D−,ϵ. Moreover, we have the following factorization: p⋆2ω̃

κ(χ) → p⋆2ω̃
κ(χ)(D+) →

p!1ω̃
κ(χ)(−D−) → p!1ω̃

κ(χ).

Proof. This is analogue to proposition 4.3.13 and lemma 4.3.14. □



60

6.2.8. Integral overconvergent cohomology. Let Z<w+ϵ = ∩Zi,<wi+ϵ. We view î : Ẑ<w+ϵ ↪→ Stor as

a closed subset of the locale of D(OStor,■). We let U≥w−ϵ = Stor\D+,ϵ ↪→ Stor. We let î′ : Ẑ<w+ϵ∩
U≥w−ϵ ↪→ U≥w−ϵ. For any s, we consider the cohomology RΓẐ<w+ϵ∩U≥w−ϵ,Z/psZ

(U≥w−ϵ,Z/psZ, ω̃
κ(χ)) =

RΓ(U≥w−ϵ,Z/psZ, î
′
⋆(̂i

′)!ω̃κ(χ)). This cohomology fits in an exact triangle:

RΓẐ<w+ϵ∩U≥w−ϵ,Z/psZ
(U≥w−ϵ,Z/psZ, ω̃

κ(χ)) → RΓ(U≥w−ϵ,Z/psZ, ω̃
κ(χ)) → RΓ(U≥w−ϵ,Z/psZ\Z<w+ϵ, ω̃

κ(χ))
+1→

Let RΓZ<w+ϵ∩U≥w−ϵ
(U≥w+ϵ, ω

κ(χ))int = lims RΓẐ<w+ϵ∩U≥w−ϵ,Z/psZ
(U≥w+ϵ,Z/psZ, ω̃

κ(χ)).

Theorem 6.2.9. (1) The cohomology RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ))int carries an action of t.
(2) The ordinary part identifies with higher Hida theory RΓw(K

p, κ, χ).
(3) We have RΓZ<w+ϵ∩U≥w−ϵ

(U≥w−ϵ, ω
κ(χ))int ⊗Zp

Qp = RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ)) and

the image of RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ))int in RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ))fs is a
Zp-lattice.

Proof. By lemma 2.10.1, we have changing the support maps:

RΓD+,ϵ,D−,ϵ′ (S
tor
Z/psZ, ω̃

κ(χ)) → RΓẐ<w+ϵ∩U≥w−ϵ,Z/psZ
(U≥w−ϵ,Z/psZ, ω̃

κ(χ)) → RΓD+,ϵ′ ,D−,ϵ
(Stor

Z/psZ, ω̃
κ(χ))

By proposition 2.10.4, we have a map t̃ : RΓD+,ϵ′ ,D−,ϵ
(Stor

Z/psZ, ω̃
κ(χ)) → RΓD+,ϵ,D−,ϵ′ (S

tor
Z/psZ, ω̃

κ(χ))

such that when we compose with the above changing the support maps we get endomorphisms of all
the cohomologies. Moreover, they are all quasi-isomorphic when taking the ordinary part. By theo-
rem 2.11.4, the ordinary part of these cohomologies further identifies with RΓw(K

p, κ, χ)⊗Zp
Z/psZ.

The quasi-isomorphism RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ))int⊗ZpQp = RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ))
is clear. Using the triangle

RΓẐ<w+ϵ∩U≥w−ϵ,Z/psZ
(U≥w−ϵ,Z/psZ, ω̃

κ(χ)) → RΓ(U≥w−ϵ,Z/psZ, ω̃
κ(χ)) → RΓ(U≥w−ϵ,Z/psZ\Z<w+ϵ, ω̃

κ(χ))
+1→

and the analogous one for RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, ω

κ(χ)) we are left to observe that:

lim
s

RΓ(U≥w−ϵ,Z/psZ, ω̃
κ(χ))⊗Zp

Qp = RΓ(U≥w−ϵ, ω
κ(χ))

lim
s

RΓ(U≥w−ϵ,Z/psZ \ Z<w+ϵ, ω̃
κ(χ))⊗Zp

Qp = RΓ(U≥w−ϵ \ Z<w+ϵ, ω
κ(χ)).

That this gives a lattice in the finite slope part of cohomology is a consequence of [BP21] lemma
5.9.10 (which explains how to construct lattices). □

In [BP21] we conjectured a lower bound on slopes of overconvergent modular forms of a given
weight.

Corollary 6.2.10. Conjecture 5.9.2 of [BP21] holds in the Siegel case.

Proof. The conjecture is the statement that elements t ∈ T+(Qp) acting on the finite slope co-
homology have bounded below slope by a precise bound. This slope bound is equivalent to the
property that the normalized action of t stabilizes a lattice. It is also enough to check this for all
t ∈ T++(Qp) as they generate T (Qp) as a group. This follows from theorem 6.2.9. □

We remark that as a consequence, several of the results from [BP21] can be improved in the Siegel
case. In particular we can replace the“strongly small slope”conditions with the weaker“small slope”
conditions in the following theorems of [BP21]: the classicality theorem 5.12.3 and the vanishing
theorems 5.12.5 and 5.12.11 for rational coherent and Betti cohomology. As a consequence we
obtain theorem 1.5.1 of the introduction.

6.2.11. Big sheaves. We finally prove a version of the theorem 6.2.9 above in p-adic families. Let
us briefly indicate the strategy. Higher Hida theory is computed as the ordinary cohomology of
a certain “topological induction” sheaf over some finite level Igusa variety. We show that one can
replace the “topological induction” sheaf by a “locally analytic induction” sheaf. The advantage is
that this “locally analytic induction” sheaf can be defined over some formal model of a strict neigh-
borhood of the Igusa variety and provides an integral model for the locally analytic overconvergent
cohomology considered in section 6 of [BP21].
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Recall that Λ = Zp[[T (Zp)]]. Let W = Spa(Λ,Λ)×Spa(Zp,Zp) Spa(Qp,Zp) be the analytic weight
space over Spa(Qp,Zp). Let Spa(A[1/p], A) be a quasi-compact open subset of W. Let νA :
T (Zp) → A× be the restriction of the universal character.

Let Tn → Spa(Qp,Zp) be the group defined by Tn(C,C+) = {x ∈ T (C+), x mod pn ∈
T (Z/pnZ) ↪→ T (C+/pnC+)}. This is an affinoid group scheme. We let Tn = Spf O+

Tn
. This

is a formal group scheme. For n large enough, the character νA extends to a character Tn →
Gm × Spf A. We let κA = −w0,Mw(νA + ρ)− ρ. We also let Kp,P = wKp,nw

−1 ∩ P (Qp). We let
IWn → Spa(Qp,Zp) be the group defined by IWn(C,C

+) = {x ∈M(C+), x mod pn ∈MKp,P
}.

This is an affinoid group scheme. We let IWn = Spf O+
IWn

. We let BIWn be its “Borel” subgroup,
with torus Tn.

TheMKp,P
-torsor π : IGUKp,P

→ IGKp,P
= Stor

w can be pushed to a IWn-torsor π
′ : IGUKp

×MKp,n

IWn → IGKp,n
. We let

FνA = (π⋆OIGUKp,P
⊗̂A)BKp,n=−w0,MκA .

We let
FνA,n = (π′

⋆OIGUKp
×MKp,n IWn

⊗̂A)BIWn=−w0,MκA .

We have a canonical restriction map FνA,n → FνA .
We let F

κA,n
r and F νA

r be the sheaves obtained by reduction modulo pr.

Proposition 6.2.12. For any r ≥ 0, we have cohomological correspondences:

t : p⋆2F
νA,n
r

//

��

p!1F
νA,n
r

��

t : p⋆2F
νA
r

// p!1F
νA
r

Proof. We only need to define maps

p⋆2F
νA,n
r

//

��

p⋆1F
νA,n
r

��

p⋆2F
νA
r

// p⋆1F
νA
r

The cohomological correspondences are simply obtained by tensoring with the normalized funda-
mental class of proposition 6.2.5. See for example section 6.3.10 of [BP21]. □

Proposition 6.2.13. The map RΓD+,D−(S
tor
w,Z/prZ,F

νA,n
r ) → RΓD+,D−(S

tor
w,Z/prZ,F

νA
r ) induces a

quasi-isomorphism on the ordinary part. Moreover, RΓD+,D−(S
tor
w,Z/prZ,F

νA
r )ord =M•

w ⊗A/pn

Proof. For the first point, one needs to study the cohomology of the kernel of the map F νA,n
r →

F νA
r . It is easy to see that the Hecke operator is nilpotent on this kernel. Compare with [Pil20],

sect. 10.7. The property that RΓD+,D−(S
tor
w,Z/prZ,F

νA
r )ord =M•

w⊗A/pr follows from the definition.

See remark 5.4.3. □

Proposition 6.2.14. For ε sufficiently small, the sheaf FνA,n extends to a sheaf F̃νA,n over Ũ[w−ϵ,w+ϵ]

where Ũ[w−ϵ,w+ϵ] → U[w−ϵ,w+ϵ] is a further blow-up away from Stor
w , and moreover for all r > 0

we have cohomological correspondences p⋆2F̃
νA,n
r → p!1F̃

νA,n
r which furthermore factor as

p⋆2F̃
νA,n
r → p⋆2F̃

νA,n
r (D+) → p!1F̃

νA,n
r (−D−) → p!1F̃

νA,n
r .

Proof. The blow-up Ũ[w−ϵ,w+ϵ] and the sheaf F̃νA,n over Ũ[w−ϵ,w+ϵ] are constructed as in the proof
of lem. 6.6.2 of [BP21]. We remind the reader that the purpose of making this blow-up is to have
an integral model for the Hodge-Tate period map which is used to produce an extension a good
extension of the IWn-torsor on Stor

w . Maps p⋆2F
νA,n[1/p] → p⋆1F

νA,n[1/p] are constructed in lem.
6.3.10 of [BP21], and it follows from the local description given there that they extend to a map
p⋆2F

νA,n → p⋆1F
νA,n.

We now tensor with the fundamental class to get a map p⋆2F
νA,n
r (−mD−) → p!1F

νA,n(mD+)
for some m ≥ 0. We emphasize that m is independent of r as p⋆2F

νA,n → p⋆1F
νA,n is regular and
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the poles only come from the fundamental class. We may now let F̃νA,n = F̃νA,n(m′(D+ −D−))
for m′ large enough and use the dynamical property to deduce that we have a cohomological
correspondence p⋆2F̃

νA,n
r → p!1F̃

νA,n
r which moreover has the expected factorization. □

Let RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

νA,n)int = limr RΓẐ<w+ϵ∩U≥w−ϵ,Z/prZ
(U≥w−ϵ,Z/prZ, F̃

νA,n
r ). We also

want to consider locally analytic overconvergent cohomology in a fixed p-adic weight, so let ν :
T (Zp) → O×

C be a continuous character inducing a map ν : A→ OC. We let F̃ν,n = F̃νA,n⊗A,ν OC.

Theorem 6.2.15. (1) The operator t acts on RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

νA,n)int and the ordinary
part identifies with higher Hida theory M•

w ⊗Λ A.

(2) We have RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

ν,n)int ⊗OC C = RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

ν,n[1/p]) and

the image of RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

ν,n)int in RΓZ<w+ϵ∩U≥w−ϵ
(U≥w−ϵ, F̃

ν,n)fs is a lat-
tice.

Proof. This is similar to the proof of theorem 6.2.9. □

In conjecture 6.8.1 of [BP21], we conjectured that the slopes of t ∈ T+(Qp) are nonnegative
on finite slope locally analytic overconvergent cohomologies, or equivalently that these operators
preserve a lattice.

Corollary 6.2.16. Conjecture 6.8.1 of [BP21] holds in the Siegel case.

Proof. It suffices to check this for t ∈ T++(Qp) which then follows from 6.2.15 (2). □

We remark that again this implies that results from [BP21] can be improved in the Siegel case.
In particular we can replace the “strongly small slope” conditions with the weaker “small slope”
conditions in corollary 6.8.4 and theorem 6.9.3 (2) of [BP21].

Finally we can use the vanishing results of [BP21] to deduce cohomological vanishing in higher
Hida theory after inverting p:

Corollary 6.2.17. The complexes of Λ ⊗ Qp-modules M•
w ⊗ Qp have amplitude [ℓ(w), g(g+1)

2 ] and
the complexes M•

w,cusp ⊗Qp have amplitude [0, ℓ(w)].

Proof. This follows from 6.2.15 combined with [BP21], thm. 6.7.3. □
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Qué. 40 (2016), no. 1, 167–202.

[Ray67] M. Raynaud, Passage au quotient par une relation d’équivalence plate, Proc. Conf. Local Fields (Drieber-
gen, 1966), Springer, Berlin, 1967, pp. 78–85.
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