Solutions to Exercises I

1. (a)
$$A \cap B' \cap C'$$

(b)
$$A \cap B \cap C'$$

(c)
$$A \cap B \cap C$$

(d)
$$A \cup B \cup C$$

(e)
$$(A \cap B \cap C') \cup (A \cap B' \cap C) \cup (A' \cap B \cap C) \cup (A \cap B \cap C)$$

(f)
$$(A \cap B' \cap C') \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C)$$

(g)
$$(A \cap B \cap C') \cup (A \cap B' \cap C) \cup (A' \cap B \cap C)$$

(h)
$$A' \cap B' \cap C'$$

(i)
$$(A \cap B \cap C)'$$

2. (a)
$$1 - \left(\frac{5}{6}\right)^4 = 0.5177$$
.

(b)
$$1 - \left(\frac{35}{36}\right)^{24} = 0.4914.$$

 \rightarrow (a) is more probable.

3. (a)
$$S = \{(i, j): i, j = 1, 2, \dots, 6\}.$$

(b)

$$B = \{(i,j): i = 1,2,3 \text{ and } j = 1,2,\dots,6\}.$$

$$C = \{(i,j): i+j=6 \text{ and } i,j=1,2,\dots,6\}.$$

$$P((i,j)) = \frac{1}{36} \text{ for } i,j=1,2,\dots,6.$$

$$P(B) = \frac{18}{36} = \boxed{\frac{1}{2}} \quad P(C) = \boxed{\frac{5}{36}}.$$

$$B \cap C = \{(1,5),(2,4),(3,3)\}$$

$$P(B \cap C) = \frac{3}{36} = \frac{1}{12}$$

$$P(C|B) = \frac{P(B \cap C)}{P(B)} = \frac{\frac{1}{12}}{\frac{1}{2}} = \boxed{\frac{1}{6}}$$

$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{\frac{1}{12}}{\frac{5}{22}} = \boxed{\frac{3}{5}}$$

4. (a)
$$S = \{1, 2, \dots, n - r + 1\}$$

(b)
$$S = \{r, r+1, \dots, n\}$$

5. Let S = event that it snows tomorrow, R = event that it rains tomorrow, L = event that I am late.

$$P(S) = \frac{3}{5}, \quad P(R) = \frac{2}{5}, \quad P(L|R) = \frac{1}{5}, \quad P(L|S) = \frac{3}{5}.$$

$$P(L) = P(L|R)P(R) + P(L|S)P(S)$$

$$= \frac{1}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{3}{5} = \boxed{\frac{11}{25}}$$

P(car makes a turn) = P(L
$$\cup$$
 R) = P(L) + P(R) (since disjoint)
 = $\frac{1}{3} + \frac{1}{3} = \boxed{\frac{2}{3}}$.

$$P(L|\text{makes a turn}) = \frac{P(\text{makes a turn}|L)P(L)}{P(\text{makes a turn})}$$
$$= \frac{\frac{1 \times \frac{1}{3}}{2}}{\frac{2}{3}} = \boxed{\frac{1}{2}}.$$

(b)

P(at least one car turns left) = 1 - P(neither car turns left)
=
$$1 - \left(\frac{2}{3}\right)^2 = \left\lceil \frac{5}{9} \right\rceil$$

Let A = event that at least one car makes a turn Let B = event that at least one car turns left

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$
$$= \frac{1 \times \frac{5}{9}}{P(A)}$$

Let C_i = event that car i makes a turn, i = 1, 2.

$$P(A) = P(\text{at least one car makes a turn}) = 1 - P(\text{neither car makes a turn})$$

$$= 1 - P(C'_1 \cap C'_2)$$

$$= 1 - P(C'_1)P(C'_2) \quad (\text{independent})$$

$$= 1 - \frac{1}{3} \times \frac{1}{3} = \frac{8}{9}.$$

Alternatively,

P(at least one car makes a turn) = P(car 1 makes a turn)+
P(car 2 makes a turn) - P(both cars make a turn)
= P(C₁) + P(C₂) - P(C₁ \cap C₂)
= P(C₁) + P(C₂) - P(C₁) \times P(C₂) (independent)
=
$$\frac{2}{3} + \frac{2}{3} - \left(\frac{2}{3}\right)^2 = \frac{8}{9}$$
.

So,

$$P(B|A) = \frac{\frac{5}{9}}{P(A)}$$
$$= \frac{5}{9} \times \frac{9}{8} = \frac{5}{8}$$

7. Let $O_i = \text{output of resistor } i, i = 1, 2.$

$$P(O_i < 14) = 0.05, P(O_i > 16) = 0.1, i = 1, 2$$

(a)

$$P((14 < O_1 < 16) \cap (14 < O_2 < 16)) = P(14 < O_1 < 16)P(14 < O_2 < 16).$$

Now,

$$P(14 < O_i < 16) = 1 - P((O_i < 14) \cup (O_i > 16))$$

= 1 - [P(O_i < 14) + P(O_i > 16)]
= 1 - [0.05 + 0.1] = 0.85.

So,

$$P((14 < O_1 < 16) \cap (14 < O_2 < 16)) = (0.85)^2 = \boxed{0.7225}$$

(b)

P(at least one is above 16) = 1 - P(both are less than 16)
= 1 - P(
$$(O_1 < 16) \cap (O_2 < 16)$$
)
= 1 - P($O_1 < 16$)P($O_2 < 16$)
= 1 - 0.9² = 0.19.

8. D = disease D' = no disease T = test positive T' = test negative

$$P(T|D) = 0.9 P(T'|D) = 0.1$$

 $P(T'|D) = 0.1 P(T'|D') = 0.9$
 $P(D) = 0.01 P(D') = 0.99$

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)}$$

$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D')P(D')}$$

$$= \frac{\frac{9}{10} \times \frac{1}{100}}{\frac{9}{100} \times \frac{1}{100} + \frac{9}{100}}$$

$$= \frac{\frac{9}{1000}}{\frac{1008}{1000}} = \frac{9}{108} = \boxed{\frac{1}{12}}.$$

If we obtain a positive test result there is only a 1 in 12 chance that the person actually has the disease.

9. Let S = event system survives.

 A_i event that component A_i survives, i = 1, 2, 3.

 B_i event that component B_i survives, i = 1, 2.

 C_i event that component C_i survives, i = 1, 2, 3.

$$P(A'_i) = 0.1, P(B'_i) = 0.2, P(C'_i) = p.$$

$$S = A_1 \cap A_2 \cap A_3 \cap (B_1 \cup B_2) \cap (C_1 \cup C_2 \cup C_3).$$

P(S) = P(A₁)P(A₂)P(A₃)P(B₁ \cup B₂)P(C₁ \cup C₂ \cup C₃) (independence).

$$P(B_1 \cup B_2) = 1 - P(B'_1 \cap B'_2) P(C_1 \cup C_2 \cup C_3) = 1 - P(C'_1 \cap C'_2 \cap C'_3).$$

So
$$P(S) = P(A_1)P(A_2)P(A_3)(1 - P(B'_1 \cap B'_2))(1 - P(C'_1 \cap C'_2 \cap C'_3)).$$

(a)
$$P(S) = 0.9^3(1 - 0.2^2)(1 - 0.5^3) = \boxed{0.61236}$$

(b)

$$\begin{split} \mathbf{P}(S) < 0.5 & \Rightarrow \quad 0.5 > 0.9^3 (1 - 0.2^2) (1 - p^3) \\ & \Rightarrow \quad 1 - p^3 < \frac{0.5}{0.9^3 (1 - 0.2^2)} \\ & \Rightarrow \quad p^3 > \left(1 - \frac{0.5}{0.9^3 (1 - 0.2^2)}\right) \\ & \Rightarrow \quad 3 \log(p) > \log\left(1 - \frac{0.5}{0.9^3 (1 - 0.2^2)}\right) \\ & \Rightarrow \quad p > \exp\left[\frac{1}{3}\log\left(1 - \frac{0.5}{0.9^3 (1 - 0.2^2)}\right)\right] = \boxed{0.6585}. \end{split}$$

- 10. (a) $P(I \text{ survive}) = \boxed{\frac{6}{9}}$
 - (b) $P(\text{sister survives}|I \text{ survived}) = \boxed{\frac{5}{8}}$
 - (c) $P(\text{sister survives}|I|\text{died}) = \boxed{\frac{6}{8}}$
 - (d) If I choose first the probability of survival is $\frac{6}{9}$. We must work out the probability of my survival if my sister chooses first. The events

A = my sister chooses first and dies, and

B = my sister chooses first and survives form a partition.

P(I survive on the 2nd) = P(A)P(I survive on the 2nd|A)+
P(B)P(I survive on the 2nd|B)
=
$$\frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{5}{8} = \frac{6}{9}$$

so, the probability is unchanged and it makes no difference which of us goes first.

(e)

$$\begin{split} P(I \text{ survive on the } 1^{\text{st}}|\text{my sister survived on } 2^{\text{nd}}) \\ &= \frac{P\left(\text{my sister survived on } 2^{\text{nd}}|I \text{ survive on the } 1^{\text{st}}\right)P\left(I \text{ survive on the } 1^{\text{st}}\right)}{P\left(\text{my sister survived on } 2^{\text{nd}}\right)} \\ &= \frac{\frac{5}{8} \times \frac{6}{9}}{\frac{6}{9}} \quad \text{as } P(\text{my sister survived on } 2^{\text{nd}}) = P(I \text{ survived on } 2^{\text{nd}}) \\ &= \boxed{\frac{5}{8}}. \end{split}$$