1 Introduction — Random variation

In general a statistical analysis may consist of:
e Summarization of data.
e Prediction.
e Decision making.
e Answering a specific question of interest.

We may view a statistical analysis as attempting to separate the signalin the data from
the nouse.
The accompanying handout of datasets gives three examples of types of data that we

may be interested in.

1.1 Methods of summarizing data

Dataset 1

Number of cracks in a test situation. We assume that the beams are ‘similar’ and that
the experimental conditions were fixed by the experimenter as much as possible. Even
allowing for this we see that the number of cracks observed in each beam varies from beam
to beam. The processes which lead to the generation of the cracks are complex. This means
that we cannot predict exactly the number of cracks we will observe in a new beam.
We need to find a simple model to describe the variability that we see.

This will allow us to answer questions of interest such as:

e What is the probability that 3 or more cracks will appear in a similar beam under

similar experimental conditions ?

Here the number of cracks is an example of a discrete random wvariable — it can only take
one of a countable number of values.

Other examples of discrete random variables include:

e The toss of a coin where the outcome is Head/Tail.

e No of defective items found when 10 components are selected and tested.

Can we summarize dataset 1 in a more informative manner ?



Frequency Table:

Number of cracks | Frequency | Proportion
0 14 0.467
1 10 0.333
2 4 0.133
3 2 0.067
>3 0 0.0
Total 30 1.0

Note that we have lost the ordering of the data — this may be relevant if we expect a trend
with time.

So, referring to the question of interest described above, the observed proportion of
3 or more cracks is 0.067. This is an estimate of the ‘true’ probability. We envisage an
infinite number of beams under similar test conditions — this is the population. We have
obtained a sample of size 30 from this population. We are really interested in the population
probability of 3 or greater cracks.

We are interested in finding those situations in which we can find ‘good’ estimates.



Frequency diagram (bar chart)
A frequency diagram provides a graphical representation of the data. If we plot the pro-
portions against number of cracks then we have an estimate of the probability distribution

from which the data have been generated.

frequency

number of cracks

Figure 1: Frequency diagram for dataset 1

Dataset 2

Each percentage is a realization of what is known as a continuous random variable. One
assumption we may make is that there is no trend with time. The percentages change from
day to day in a way which we cannot predict — again we need to find a model for the ash
percentage. For example, we may assume that the percentages are in general close to some
value p, but there is some unpredictable variability about this value which produces the
day-to-day values. The way such variability is described is via a probability distribution. For
example, we may assume that the day-to-day percentages can be modelled by a probability

distribution which is symmetric about u. We then may wish to estimate the value of pu.



Questions of interest here may include:

e What is our best guess (or estimate) of the average percentage ash content ?
e [s the average percentage ash content equal to 17 7

e What sort of spread around the average value would we expect ?

We can summarize the data more informatively using a histogram. A histogram is
simply a grouping of the data into a number of boxes and is an estimate of the probability
distribution from which the data arise. This allows us to understand the variability more

easily — for example are the data symmetric or skewed? Are there any outlying (or extreme)

observations?
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1.2 Summary statistics

Any quantity which is calculated from the data is known as a statistic. Statistics can
be used to summarize a given dataset. Most simple statistics are measures of either the
location or the spread of the data.

Suppose that n measurements have been taken on the random variable under consider-
ation (eg number of cracks, percentage ash, breaking stress).

Denote these measurements by z1,x»,...,z,. So x; is the first observation, x5 is the
second observation, etc.
Definition: the sample mean (or sample expected value) of the observations is given by:

. m AT+t YT
T = = )
n n

(1)
For dataset 1 we have

24
21 =1,29=0,---,230 =0 and x=%=0.8. (2)

For dataset 2 we have
T = 167, To = 173, 0, T100 — 18.0 and 7 =17.138.

Definition: the sample median of a sample of n measurements is the middle number when
the measurements are arranged in ascending order.
If n is odd then the sample median is given by measurement x(,1)/2.
If n is even then the sample median is given by (z(n/2) + Z(n/2)+1)/2.
For dataset 1 we have the value 0 occurring 14 times and the value 1 occurring 10 times
and so the median is the value 1 — for data of these type the sample median is not such a
good summary of a ‘typical’ value of the data.
For dataset 2 the sample median is given by the sample average of the 50th and 51st
observations. In this case, both of these values are 17.2 and so the median is 17.2 also.
When the distribution from which the data has arisen is heavily skewed (that is, not

symmetric) then the median may be thought of as ‘a more typical value’.



Example

Yearly earnings of maths graduates (in thousands of pounds):
16 18 22 20 17 20 21 58

For these data the sample mean is 24 thousand pounds, whilst the sample median is 20
thousand pounds. Hence the latter is a more representative value.
Definition: the sample mode is that value of x which occurs with the greatest frequency.

For dataset 1 the sample mode is the value 0.

Example
For the yearly earnings data the sample mode is 20.

All of these sample quantities we have defined are estimates of the corresponding pop-
ulation characteristics.

Note that for a symmetric probability distribution, the mean, the median and the mode
are the same.

As well as a measure of the location we might also want a measure of the spread of the
distribution.

Definition: the sample variance s? is given by

It is easier to use the formula:

1
n—1

§* = [i xf — nTZ] .
i=1
The sample standard deviation s is given by the square root of the sample variance. The
standard deviation is more easy to interpret as it is on the same scale as the original
measurements.

As a measure of spread it is most appropriate to think about the standard deviation

for a symmetric distribution (such as the normal).



Dataset 3.
Let the measurements for material 1 be denoted by x1, x5, ..., 19, and the measure-

ments for material 2 be denoted by y1, 99, ..., y10- The sample mean and sample standard
deviation are given by:

Material 1

T = 209.0 M Pa, s, =22.26 MPa
Material 2

Y= 2277 MPa, s,=24.54 MPa

If we assume that the measurements arise from separate populations with means p, and

Hy, then we may be interested in the hypothesis p; = p,. Do these sample values give
evidence for or against this hypothesis ?



2 Probability

As we saw in Section 1 we are required to propose probabilistic models for data. In this
chapter we will look at the theory of probability. Probabilities are defined upon events,
and so we first look at set theory and describe various operations that can be carried out

on events.

2.1 Set theory
2.1.1 The sample space

The collection of all possible outcomes of an experiment is called the sample space of the
experiment. We will denote the sample space by S.
Examples:

Dataset 1: S ={0,1,2,...}.

Dataset 2: S = {z:0 <z <100}.

Toss of a coin: S ={H,T}.

Roll of a six-sided die: S = {1,2,3,4,5,6}.

2.1.2 Relations of set theory

The statement that a possible outcome of an experiment s is a member of S is denoted
symbolically by the relation s € S.

When an experiment has been performed and we say that some event has occurred then
this is shorthand for saying that the outcome of the experiment satisfied certain conditions
which specified that event. Any event can be regarded as a certain subset of possible
outcomes in the sample space S.

Example: roll of a die. Denote by A the event that an even number is obtained. Then A
is represented by the subset A = {2,4,6}.

It is said that an event A is contained in another event B if every outcome that belongs
to the subset defining the event A also belongs to the subset B. We write A C B and say
that A is a subset of B. Equivalently, if A C B, we may say that B contains A and may
write B D A.

Note that A C S for any event A.

Example: roll of a die, suppose A is the event of an even number being obtained and
C' is the event that a number greater than 1 is obtained. Then A = {2,4,6} and C =
{2,3,4,5,6} and A C C.

Example 2.1



2.1.3 The empty set

Some events are impossible. For example when a die is rolled it is impossible to obtain a
negative number. Hence the event that a negative number will be obtained is defined by
the subset of S that contains no outcomes. This subset of S is called the empty set and is
denoted by the symbol ¢.

Note that every set contains the empty set and so ¢ C A C S.

2.1.4 Operations of set theory

Unions

If A and B are any 2 events then the union of A and B is defined to be the event
containing all outcomes that belong to A alone, to B alone or to both A and B. We denote
the union of A and B by AU B.
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For any events A and B the union has the following properties:

AUgp=A
AUA=A
AUS =S
AUuB=BUA
The union of n events Ay, Ay, - - -, A, is defined to be the event that contains all outcomes

which belong to at least one of the n events.
Notation: Ay UAyU---UA, or U A,
Intersections

If A and B are any 2 events then the intersection of A and B is defined to be the event

containing all outcomes that belong both to A and to B. We denote the intersection of A
and B by AN B.

For any events A and B the intersection has the following properties:

AN¢g=¢
ANA=A4A
ANS=A4
ANB=BnA

The intersection of n events A;, As,---, A, is defined to be the event that contains all
outcomes which belong to all of the n events.
Notation: A; NA;N---NA, or N, A,;.

Example 2.2
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2.1.5 Complements

The complement of an event A is defined to be event that contains all outcomes in the
sample space S which do not belong to A.

Notation: the complement of A is written as A.

The complement has the following properties:

(4)=4
¢=35
AUA=S
ANA=¢
Examples:

Dataset 1: if A = {> 3} cracks then A = {0, 1,2}.
Dataset 2: if

A={z:15 <z <17}
then
A={z:0<2<15,17 <z < 100}.

Example 2.3
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2.1.6 Disjoint events

It is said that 2 events A and B are disjoint or mutually exclusive if A and B have no
outcomes in common. It follows that A and B are disjoint if and only if AN B = ¢.
Example: roll of a die: suppose A is the event of an odd number and B is the event of
an even number then A = {1,3,5}, B={2,4,6} and A and B are disjoint

Example: roll of a die: suppose A is the event of an odd number and C' is the event of a
number greater than 1 then A = {1,3,5},C = {2,3,4,5,6} and A and C are not disjoint
since they have the outcomes 3 and 5 in common.

Example 2.4

2.1.7 Further results

a) DeMorgan’s Laws: for any 2 events A and B we have

|
s
W/

(AU B) N

|
tN
]

(AN B) U

b) For any 3 events A, B and C' we have:
AN(BUC)=(ANB)U(ANCQC)
AU(BNC)=(AUB)N(AUC)

Examples 2.5-2.7
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2.2  The definition of probability

Probabilities can be defined in different ways:

Physical.
Relative frequency.

Subjective.
Probabilities, however assigned, must satisfy three specific axioms:
Axiom 1: for any event A, P(A) > 0.
Axiom 2: P(S) = 1.
Axiom 3: For any sequence of disjoint events Aq, As, As, - - -

o0

P (U, 4) = Y P(A).

=1

The mathematical definition of probability can now be given as follows:
Definition: A probability distribution, or simply a probability on a sample space S is a
specification of numbers P(A4) which satisfy Axioms 1-3.

Properties of probability:
1. P(¢) = 0.
2. For any event A, P(A") =1 —P(A).
3. For any event A, 0 < P(A4) < 1.

4. The addition law of probability
For any 2 events A and B:

P(AUuB)=P(A)+P(B) - P(ANB).
So if A and B are disjoint
P(AU B) =P(A) + P(B).
For any 3 events A, B and C:

P(AUBUC) = P(A)+P(B)+P(C)
—P(ANB)—-PANC)—-P(BNC)
+P(ANBNC).

Example 2.8
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2.2.1 Conditional probability

We now look at the way in which the probability of an event A changes after it has been
learned that some other event B has occurred. This is known as the conditional probability
of the event A given that the event B has occurred. We write this as P(A | B).
Definition: if A and B are any 2 events with P(B) > 0, then

P(A | B) = P(AN B)/P(B).
Note that now we can derive the multiplication law of probability:
P(ANB)=P(A| B)P(B) =P(B| A)P(A).
2.2.2 Independence
Two events A and B are said to be independent if
P(A| B) = P(4),

that is, knowledge of B does not change the probability of A.

So if A and B are independent we have
P(AN B) =P(A)P(B).

Examples 2.9-2.10
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2.2.3 Reliability Networks

(a) Series system

€1 €9 €3 €4

Suppose we have n components each operating independently:

Let C; be the event that component ¢ fails, 1 =1, ..., n.

P(Ci))=6; P(C))=1-0 i=1,...,n.

P(system functions) = P(C;NCyN---NCY)
= P(C]) x P(Cy) x --- x P(C}) (independent)
- (-0

Example: n =4, § = 0.1, P(system functions) = 0.9* = 0.656.

16



(b) Parallel system

€1

€3

Again, suppose we have n components each operating independently:
Again, let P(C;) = 6.

The system fails if all n components fail and

P(system functions) = 1 — P(system fails)

P(system fails) = P(C;NCyn---NC,)
= P(Cy) x P(Cy) x --- x P(Cy,) (independent).
So,
P(system functions) = 1 — §".

Example: n = 3, # = 0.1, P(system functions) = 1 — 0.1 = 0.999.
(c) Mixed system — in lectures.

17



2.2.4 Bayes Theorem

Let S denote the sample space of some experiment and consider k events Aq,---, Ay in §
such that A;,---, Ay are disjoint and U} ;A; = S. Such a set of events is said to form a
partition of S.

Consider any other event B, then

A NB,A,NB, -, A,NB

form a partition of B. Note that A; N B may equal ¢ for some A;.
So

B=(AiNB)U(A;NB)U---U (AN B).
Since the k events on the right are disjoint we have
P(B) = ¥'_,P(A;NB) (Addition Law of Probability).

Now P(A; N B) = P(4;)P(B|A;), so

P(B) = ¥F_, P(4;)P(B|4)).
Recall that

P(A;|B) = P(B|4;)P(4;)/P(B),
using the above we can therefore obtain Bayes Theorem:
P(4;B) = P(B|A)P(4)/ X5, P(4;)P(Bl4;).

Example 2.11
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3 Random Variables and their distributions

3.1 Definition and notation

Recall:
Dataset 1: number of cracks X, S = {0,1,2,...}.
Dataset 2: percentage ash content Y, S = {z : 0 <z < 100}.
Other example: Toss of a coin, outcome Z: S = {H,T}.
In the above X, Y and Z are examples of random variables.
Important note: capital letters will denote random variables, lower case letters will
denote particular values (realizations).
When the outcomes can be listed we have a discrete random variable, otherwise we
have a continuous random variable.
Let p, =P(X =), i=1,2,3, ....
Then any set of p;’s such that

1. Di > O, and

forms a probability distribution over x1,xo, T3, ...
The distribution function F(x) of a discrete random variable is given by

F(x]) X<~,1;] sz pl +p2+.+pj.

We now give some examples of distributions which can be used as models for discrete

random variables.

3.2 The uniform distribution

Suppose that the value of a random variable X is equally likely to be any one of the &
integers 1,2, ..., k.
Then the probability distribution of X is given by:

1 =
P(X =a)={ F forz=1,2,...,k
0 otherwise

The distribution function is given by

forj =1,2, ...,k

x|~

F(j) =P(X <) sz PPt tp =

Examples:

Outcome when we roll a fair die.

Outcome when a fair coin is tossed.
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3.3 The Binomial Distribution

Suppose we have n independent trials with the outcome of each being either a success
denoted 1 or a failure denoted 0. Let Y;, 2 = 1,...,n be random variables representing the
outcomes of each of the n trials.

Suppose also that the probability of success on each trial is constant and is given by p.
That is,

and

fori=1,..,n.

Let X denote the number of successes we obtain in the n trials, that is

The sample space of X is given by S = 0,1,2,...,n, that is, we can obtain between 0
and n successes. We now derive the probabilities of obtaining each of these outcomes.
Suppose we observe x successes and n — x failures.

Then the probability distribution of X is given by:

n
F(1—p)»® f =0,1,2,..
P(X =)= <x>p( P fora =002

0 otherwise

where

Derivation in lectures.
Examples 3.1-3.2

3.4 The Poisson Distribution

Many physical problems are concerned with events occurring independently of one another
in time or space.

Examples

(i) Counts measured by a Geiger counter in 8-minute intervals

(ii) Traffic accidents on a particular road per day.

(iii) Fatigue cracks along a continuous piece of weld.
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(iv) Number of cracks in concrete beams.
(v) Telephone calls arriving at an exchange in 10 second periods.

A Poisson process is a simple model for such examples. Such a model assumes that in
a unit time interval (or a unit length) the event of interest occurs randomly (so there is no
clustering) at a rate A > 0.

Let X denote the number of events occurring in time intervals of length ¢. Since we
have a rate of A in unit time, the rate in an interval of length ¢ is At.

The random variable X then has the Poisson distribution given by

e X0 for 3 =0,1,2,..
0 otherwise

Note: the sample here space is S = {0,1,2,...}.
We can simplify the above by putting p = At. We then obtain

<22 forz=0,1,2

5 Ly g e

P(sz):{

0 otherwise

The distribution function is given by

F(j)=P(X <j) = zj:P(X =i) forj=0,1,2,...

=0

Example 3.3

3.5 Continuous Distributions

For a continuous random variable X we have a function f, called the probability density
function (pdf). Every probability density function must satisfy:

(i) f(xz) >0, and

(ii) [%% f(z)dz = 1.

For any interval A we have

P(X € A) = /Af(x)dx.

The distribution function is given by
Flao) =P(X <m) = [ f(z)ds.
Notes:
(i) P(X = z) = 0 for a continuous random variable X.
(i) £F(z) = f(z).
(i)
P(a < X <b) = F(b) — F(a) =/
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3.6 The Uniform Distribution

Suppose we have a continuous random variable that is equally likely to occur in any interval
of length ¢ within the range [a,b]. Then the probability density function of this random

variable is

b
0 otherwise

f(:v):{ %a fora <z <.

Notes: show that this is a pdf and derive distribution function in lectures.

3.7 The exponential distribution

@ (b)

= S = o

o o3 o o

— —

o (@)

= = B

o) D

- o - o

FalN Z o«

(72} (72}

= = 4

L L

(e} (e}

> o > o

= —i = — 7

= =

o o

<< 1 << b

[aa) [va)

[a (=} lad o

o o- 7\ T T T T T o o- 7\ T T T T T

(0} 1 2 3 4 5 (0] 1 2 3 4 5

X X
(©) (d)

= < = <]

o ™ o

= =

(&S] (&]

= = B

] ]

- o - o

S = S

[%2) [%2)

= = 4

L (AT}

() ()

> (=} > (=}

= —i = —

= =

o o

<< << b

o o

o o

o = o =

a o a o :

0} 1 2 3 4 5 (0] 1 2 3 4 5

X X
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Suppose we have events occurring in a Poisson process of rate A\ but we are interested
in the random variable describing the time between events 7. It can be shown that this
random variable has an exponential distribution with parameter A\. The probability density

function of an exponential random variable is given by:
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£(t) = Aexp(—At) for t > 0.
B 0 otherwise, that is for ¢t <0

This probability density function is shown with various values of A in Figure 3.
Notes: show that this is a probability density function and derive in lectures the distribu-

tion function, which is given by

F(ty) =1 —exp(—Aty) forty > 0.

10

06 08
| |
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0.2
|

Figure 5: Exponential distribution function for A = 2.0

As well as arising naturally as the time between events in a Poisson process the expo-
nential distribution is also used to model the lifetimes of components which do not fail —
the reason for this is the lack of memory property of the exponential distribution which will

be discussed in lectures. This property states that:

P(T>s+tT >s)=P(T >1t).

3.8 The normal distribution

The normal distribution is of great importance for the following reasons:
1. Tt is often suitable as a probability model for measurements of weight, length, strength,
etc.
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2. Non-normal data can often be transformed to normality.
3. The central limit theorem states that when we take a sample of size n from any distri-
bution with a mean y and a variance o2, the sample mean X will have a distribution which
gets closer and closer to normality as n increases.
4. Can be used as an approximation to the binomial or the Poisson distributions when we
have large n or A respectively (though this is less useful now that computers can be used
to evaluate binomial/Poisson probabilities).
5. Many standard statistical techniques are based on the normal distribution.

If the continuous random variable X has probability density function

1
(27r)1/2

exp (—x2/2) —00< 2z <00

then we say that X has the (standard) normal distribution with mean 0 and variance 1.
We write X ~ N(0,1).
The standard normal distribution is symmetric about 0 and is shown in Figure 1.

The distribution function is given by:

F(zg) =P(X < x¢) = P(xp) = /mo ! exp (—332/2) dx.

—00 (27‘(’ )1/ 2
This integral cannot be evaluated analytically hence its values are calculated numerically
and are widely-tabulated. The distribution function of the standard normal distribution is
shown in Figure 2 on the right.

Example 3.4: how to use standard normal tables.

3.9 Mean and variance

Recall in Section 1 we informally discussed measures of location and spread for sets of
data. Here we define the mean and the variance as summaries of a distribution. Note that
for some distributions the mean is not a good measure of the location of the distribution
and the variance is not a good measure of the spread of a distribution. For normal data
the mean and the standard deviation (which is the square root of the variance) are good

summaries of location and spread.
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For a discrete random variable X the expected value (or mean) is defined as
i=1

For a continuous random variable with probability density function f(z) the expected
value (or mean) is defined as

E(X) = /O:Oacf(x)dx

Example 3.5:
Properties:
(i) For constants a and b we have

E(aX +b) =aE(X)+0b.
(ii) For random variables X and Y we have
EX+Y)=EX)+E(Y).
(iii) For constants ay, ..., ax and b and random variables X, ..., Xj we have
E(ai X+ ... + ax Xy +0) = a1 E(Xy) + ... + a, E(Xg) + b.
The variance of a random variable X is defined as
var(X) = E[(X — p)?]
where
p=E(X).

So the variance is the mean of the squared distances from the mean.
The standard deviation is defined as

sd(X) = var(X)2.

Note that the standard deviation is on the same scale as the data.
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Properties:

(i) For constants a and b we have
var(aX + b) = a’var(X).
(ii) For independent random variables X and Y we have

var(X +Y) = var(X) + var(Y).

(iii) For constants ay, ..., ax and b and independent random variables X7, ..., X} we have

var(a; X + ... + ax Xg + b) = a2var(X;) + +... + avar(Xp).
Examples:

Binomial distribution: E(X) = np, var(X) = np(1 — p).
Poisson distribution: F(X) = pu, var(X) = p.

Uniform distribution: E(X) = (b+ a)/2, var(X) = (b — a)?/12.
Exponential distribution: F(X) = A7}, var(X) = A72.

Proofs: in class.

3.10 The normal distribution revisited

If the continuous random variable X has probability density function

1 (z —p)

2
f(a:):wexp(— 52 ),—oo<x<oo

then X has a normal distribution with mean p and standard deviation o. We write X ~
N(u,0?). Figure 4 shows the effect of changing the values of x4 and o.

Important result: if X ~ N(u,0?) then the random variable Z defined by

_X-p

0

A

is distributed as Z ~ N(0,1). This is useful for looking up in tables the values of the
distribution function for arbitrary normal distributions, that is, we don’t need a separate
set of tables for each value of p and o.

Example 3.6: how to use the normal tables for arbitrary normal distributions.

Further important results:

1. If X; and X, are independent random variables with distributions N(u;,0?) and

N (uz,02) respectively, then the random variable defined by
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7 =X+ X,
is also normal with mean
B(Z) = B(Xy) + E(Xa) = ju + i
and variance
var(Z) = var(X; + X,) = var(X,) + var(Xy) = o} + 05.

2. If X; and X, are independent random variables with distributions N(uy,0?) and

N (ug,032) respectively, then the random variable defined by
Z = X1 - XQ

is also normal with mean

and variance
var(Z) = var(X; — X,) = var(X,) + var(Xy) = o} + 05.

3. General result If X, ..., X,, are independent random variables with X; ~ N(u;, 0?)
and a4, ..., a, are constants then the random variable defined by
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Z = Z CI,Z'XZ'
=1

has a normal distribution with mean

n

E(Z)=E (Z a,-X,-) = g:laiu,-

=1

and variance
n n
var(Z) = var (Z aiXZ-> =Y ajo;.
i—1 i=1

Very important result
Definition: a random sample of size n from a distribution f(z) is a set of independent
and identically distributed random variables X1, ..., X, each with the distribution f(x).

If X1,..., X, are a random sample from the normal distribution N(u, c?) then the ran-

dom variable

_ 12
X == — Xz
ni
has a normal distribution with mean
E(X)=pu
and variance
2
_ o
ar(X) = —.
var(X) -

Note here that X is a random variable. Suppose we carry out an experiment where we
draw random samples of size n from a normal distribution — if we do this repeatedly and
evaluate the mean then each time we will get a different answer. If we were to repeat the
experiment an infinite number of times then the distribution of the X’s that we obtain is

N(u,o?/n).
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4 Statistical Analysis

4.1 Introduction

Probability theory provides us with models for random experiments. Such experiments
provide realizations x of random variables X. The observation X = x is only one of many
possible values of X. We wish to learn about the probability distribution or probability
density function which produced z — this will us allow us to make inference about the
process under study.
For example, we will be able to predict future outcomes/summarize the underlying system.
The notation we shall now use to represent our probability model is p(z|0) where 6
represents the parameter of the model — this notation makes explicit that to evaluate the
probability of seeing a particular observation we need to know the value of 6.
In Section 3 the probability models which we looked at contained parameters, for ex-
ample
(i) a binomial random variable with probability of success p so 6 = p,
(ii) a Poisson random variable with rate A so 6 = A,
(iii) a normal random variable with mean p and variance o2 so 6 = (u, o?).
In Section 3 these parameters were assumed known and we could predict the outcomes
we were likely to see, for example we could evaluate probabilities such as Pr(X > 3).
In statistical applications we are in the opposite situation — we obtain realizations (that
is, observations) from some unknown probability model and we wish to guess the values of
the parameters of the model.
After observing outcomes 1, 9, ...,x, we may be interested in:
Point estimation: guessing the value of 6.
Interval estimation: giving an interval in which we are ‘confident’ that 6 lies.
Hypothesis testing: examining a particular question of interest concerning the parameter
6, for example 6 = 0.

4.2 Point estimation

Suppose we obtain a random sample of size n from some probability model f(z|f). That
is, we obtain measurements z= (z1,...,2,) on n independent and identically distributed
random variables X = (X1, ..., X},) each with the same distribution f(z|f).

In this case we have

n

f(2|0) = f(@1, ... 2l0) = f(21]0)...f (wal6) = [ £(2:]6)-

i=1
Example: dataset 2, percentage ash content.
We could assume that zy, ...,z19 are a random sample from f(z;|u,0?) where f(.|.) is a
normal distribution, that is:
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X; ~ N(u,0°).

Definition: any real-valued function 7' = g(x1, ..., ,,) of the observations in the random
sample is called a statistic.

T is known as an estimator if we use it as a guess of the value of some unknown
parameter.
Example 4.1: a chemical plant produces a compound that contains a particular con-
stituent A. A random sample of size 10 of this compound was obtained and the percentages

of A of each were measured:
5.3,4.9,6.2,5.7,4.8
5.4, 6.1, 6.3, 5.6, 5.5.

Suppose it were assumed that these measurements formed a random sample of size 10 from
a normal distribution with mean p and known variance o2 = 0.52.
How could we guess the value of p ?
Various possibilities are open to us: we could try the mean, the median, the average of the
smallest and the largest ,...
How do we judge an estimator ?
Important idea: our estimator 7' = g(X) is a function of the random variables X1, ..., X,
and so the estimator itself has a distribution which is known as the sampling distribution.
We would like the distribution of our estimator to be ‘close to the unknown parameter 6’
with high probability.

If we have a distribution for our estimator then how could we summarize this distribu-
tion?

(i) The average value: the estimator 7' = g(X) is said to be unbiased if
E[T| =46

— on average we obtain the correct answer. If we repeated the experiment an infinite number
of times then our average answer would be the correct answer.
(ii) The variance: if we have two estimators that are unbiased then we would rather use
the one which has the smaller variance.

Recall the result from Section 3 that if we have a random sample of size n from the

normal distribution N(u,c?) then

— — 0_2

has a normal distribution with E[X] = x4 and var(X) = 2.
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So the sample mean is an unbiased estimator of p.
Example 4.1 revisited
Result: if we have a random sample of size n from the normal distribution N(u,o?) with

p and o2 both unknown then the estimator

1 & _
T = X, — X)?
P )

is an unbiased estimator of o2.
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4.3 Interval estimation

We have seen that associated with any point estimator of an unknown parameter 6 there
is a measure of the uncertainty of that estimator.
Example: Consider a random sample of size n X1, ..., X,, from N(u,o?) with o known but

p unknown. The estimator i = X has

E[X] = p
and
2
. O
X)=—.
var(X) p

An alternative method of describing the uncertainty associated with an estimate is to
give an interval within which we think that 6 lies. One way of doing this is via a confi-
dence interval.

Example 4.2: in lectures derive the confidence interval for the mean p of a normal dis-
tribution when the variance o2 is known. The 100(1 — @)% confidence interval is given

by:
= Za/QU _ Za/QU
(m N ﬁ)

where z,/7 is that value such that

l—a:P(—za/Q < Z<Za/2)

where Z ~ N(0,1). So for example for & = 0.10 we have z = 1.6449, for « = 0.05 we
have z = 1.9600 and for @ = 0.01 we have z = 2.5758. These 3 cases are appropriate for
confidence intervals of, respectively, 90 % , 95 % and 99 %.

Suppose now that X1, ..., X, are a random sample from the normal distribution N (u, o?)
where now both p and o2 are unknown.

In the case where 02 was known we used the fact that

g X—n)

a//n
has the standard normal distribution N(0,1). We cannot do this here since ¢ is unknown.

We can, however, replace o by the estimator

n 1/2

s= (2 - XP/(n-1)

i=1

consider the new random variable




This random variable does not have a normal distribution but what is known as the (stu-
dent’s) t-distribution with n — 1 degrees of freedom. The t-distribution is widely tabu-
lated for different degrees of freedom. Like the normal distribution it is symmetrical about
zero but has ‘fatter tails’, that is, there is more probability in the tails. As the degrees
of freedom n tends to infinity the t-distribution tends to the normal distribution. The
intuition here is that as we obtain more and more data our estimator for o, namely s,
becomes better and better in the sense that with high probability we will be close to the

true value. Hence it is ‘as if” we knew o and can use the normal distribution. Figure 1
shows a selection of t-distributions.
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Figure 7: A selection of t distributions
In lectures we will show that the confidence interval for u is given by:

_ lajes | tayes
(x ﬁ’“ﬁ>

where /o is that value such that
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l—a=P(—tye <T <typ)

where T has a t-distribution with n — 1 degrees of freedom.

2

Note: this interval is wider than when the variance o“ is known, reflecting the extra un-

certainty in the estimate of o2.

4.4 Hypothesis testing

We have seen one method of making inference about an unknown parameter — a confidence
interval.

Now we consider a related approach — hypothesis testing.

Example 4.3: By law the mean weight of a manufacturer’s packets must be at least
100 grams. A random sample of n packets are selected and the weight of each is deter-
mined. The weights can be assumed to be normally distributed. In this example the null

hypothesis, or hypothesis of interest, is given by

Hy: p =100 grams.
The alternative hypothesis is given by

H;: <100 grams.

How do we decide on whether we believe the null hypothesis or not ? In other words what
sets of data would lead us to believe/disbelieve the null hypothesis.

Such a decision is based on what is known as a test statistic.

Example: intuitively, we could calculate the mean of the data X and then reject the null

hypothesis if it was sufficiently small, that is, if

X<c

where c is a constant.
So for all values of X below ¢ we will reject Hy — known as the rejection region of the
test.

Summary:

A statistical test consists of the following 4 elements:
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1. The null hypothesis H;, about one or more unknown parameters.

2. The alternative hypothesis H; with which the null hypothesis is being
compared.

3. The test statistic which is computed from the data.

4. The rejection region which indicates which values of the test statistic will

lead to rejection of the null hypothesis.

How do we decide upon the size of the rejection region 7
A statistical test can result in one of two possible outcomes, namely rejecting or not
rejecting the null hypothesis. Therefore there are two types of error that can be made:
i) We could reject the null hypothesis when it is in fact true, or
ii) fail to reject the null hypothesis when it is false.
Definition: rejecting the null hypothesis if it is true is known as a type I error. We
denote by « the probability of making a type I error.
Example 4.3 revisited

4.4.1 One- and two-tailed tests

Suppose we have data Xi,...,X,, which are assumed to be normally distributed with mean
w and known variance o?.

Consider the null hypothesis
Hy:p=po.
There are various alternative hypotheses we may consider:
i) Hy : u # po — the general alternative.
i) Hy : p > po-
i) Hy @ p < po-
The test statistic in all three cases is

X — o

4 = N

If Hy is true then Z ~ N(0,1).
Intuitively the rejection regions for the three alternative hypotheses are:

i) Z < —cor Z >c,
i) Z > ¢,
iii) Z < —c.
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So for Hy : p # uo we have a two-tailed test whilst for Hy @y > pg or Hy @ p > o we
have a one-tailed test.

For significance level a (size of type I error) and H; : ju # po we choose ¢ such that
Pl—c<Z<ec)=1-«
or (equivalently)
P(Z >c)=%.
For significance level o and H;y : u < py we choose ¢ such that
Pl—o<Z<c¢)=1-a
or (equivalently)
P(Z >c¢)=a.
For significance level o and H; : 1 > pyp we choose c such that
Plc<Z<x)=1-«
or (equivalently)
P(Z<c)=a.

In each case we calculate the observed value of the statistic

_ T — o

~o/yn

for our data. If the value of z we obtain falls in the rejection region of the test then we

z

reject the null hypothesis in favour of the alternative.

Example 4.4:

4.4.2 Hypothesis testing when the variance is unknown

Suppose now we are in that situation where we have data in the form of a random sample of
size n from a normal distribution where both the mean p and the variance o? are unknown.

In this case we can no longer use the test statistic

_X—p
~o/yn

since o is unknown. Exactly as we did when deriving the confidence interval for p when

A

o? was unknown we replace o by the estimator
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and consider the test statistic

The random variable 7" has a t distribution with n — 1 degrees of freedom and the rejection
region can be found from the percentage points of this distribution. This hypothesis test
is known as the (one-sample) t-test.

Exam question:

4.4.3 Testing the equality of two normal means — variances known

Suppose we have a random sample of size n; from the normal distribution N(u1,0?) where
o2 is known and a second random sample from a normal distribution N(us, %) where o3
is known.

Further suppose we are interested in testing the hypothesis

Hy : gy = po,

that is, that the means of the two populations are equal.
Derivation of test statistic
Suppose we have

Xla X?a LEES) an ~ N(lj’lﬁ U%)
with Xy, X, ..., X,,, independent, and
Yia }/27 ey YnQ ~ N(MQ’ O-%)

with Y7, Y5, ..., Y, independent.
Then if we define

_ 1
X=—) X;
ny Z:ZI
and
| iy
Y - — i
N2 i=1
we have
2
X ~ N (,Uq, ﬁ)
n



and

2
}7 ~ N <u252> .
no

2 2
X—YNN</L1—M2,&+Q>
sl %)

So

and if Hj is true then

2 2
X-Y~N(0,ﬁ+@>.
ni na

So after standardization our test statistic becomes
. X-v
\/a%/nl + 03 /ny

~ N(0,1).

Example 4.5:

4.4.4 Testing the equality of two normal means — variances unknown

Suppose now we are in that situation where the variances of the two populations are
unknown but it can be assumed that they are equal, that is, 0? = 02 = 2.
Then we have

X-Y X-Y

Z: =
\/af/nl—i-ag/ng oy/1/ny +1/ny

We do not know o so we replace it by the estimate

o [Em = X EE (G- D)) [ = )+ (e — 1)s)
n1+n2—2 n1+n2—2

~ N(0,1).

where

= > (X — X)?

m— 1D

and

B S (G- T

ny —1:=
We then use the test statistic
X-Y

which has a t distribution with n; + ny — 2 degrees of freedom. This hypothesis test is

T =

known as the two-sample t-test.
Example 4.6:
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