Example 2.1

Suppose we toss three coins. The possible outcomes can be described as follows:

1^{st}	2^{nd}	3^{rd}
Н	Н	Н
Η	Η	Τ
Η	Τ	Η
Τ	Η	Η
Η	${ m T}$	T
Τ	Η	T
${\rm T}$	${ m T}$	Η
${\bf T}$	T	${ m T}$

i.e. 8 possible outcomes.

Let A = event of 2 Heads and 1 Tail occurring.

So $A = \{HHT, HTH, THH\}$. i.e. 3 of the outcomes are contained in the event A. If we obtain the outcome THH we say the event A has occurred.

Example 2.2

Suppose we are interested in describing the state of supply of concrete and steel to a construction site;

 E_1 = event that there is a shortage of concrete,

 E_2 = event that there is a shortage of steel.

 $E_1 \cup E_2 = \text{short of } either \text{ concrete or steel or } both.$

 $E_1 \cap E_2 = \text{short of } both \text{ concrete and steel.}$

Example 2.3

Toss of 3 coins.

B = event that the first two tosses produce different outcomes.

 $B = \{HTH, THH, HTT, THT\}$ $B' = \{HHH, HHT, TTH, TTT\}$

Example 2.4

We can write $A = (A \cap B) \cup (A \cap B')$

 $-(A \cap B)$ and $(A \cap B')$ are disjoint (IMPORTANT TRICK).

Examples of De Morgan's law:

Example 2.5

Recall, $(A \cup B)' = A' \cap B'$.

Consider a chain made up of two links. Chain breaks if either link fails.

Let A = breakage of link 1,

B = breakage of link 2.

Failure of chain = $A \cup B$ \Rightarrow no failure = $(A \cup B)'$.

Also, no failure means both links do not fail i.e. $A' \cap B'$.

Therefore, $(A \cup B)' = A' \cap B'$.

Example 2.6

Water for a city comes from two sources, A and B:

Let E_1 = event that branch 1 fails.

 E_2 = event that branch 2 fails.

 E_3 = event that branch 3 fails.

 \Rightarrow No water in the city = $(E_1 \cap E_2) \cup E_3$.

Alternatively

Water in city = $(E'_1 \cap E'_3) \cup (E'_2 \cap E'_3)$,

therefore, no water in city

$$= [(E'_1 \cap E'_3) \cup (E'_2 \cap E'_3)]'$$

$$= (E'_1 \cap E'_3)' \cap (E'_2 \cap E'_3)' \text{ by De Morgan's law}$$

$$= (E_1 \cup E_3) \cap (E_2 \cup E_3) \text{ by De Morgan's law}$$

$$= (E_1 \cap E_2) \cup E_3.$$

Example 2.7

Selecting a number from the real line: $S = \{x : -\infty < x < \infty\}.$

Let

$$A = \{x: 1 \le x \le 5\}$$

$$B = \{x : 3 < x \le 7\}$$

$$C = \{x: x \le 0\}$$

Describe the following:

(a)
$$A' = \{x : x < 1 \text{ or } x > 5\}.$$

(b)
$$A \cup B = \{x : 1 \le x \le 7\}.$$

(c)
$$B \cap C' = B$$
.

(d)
$$A' \cap B' \cap C' = \{x : 0 < x < 1 \text{ or } x > 7\}.$$

(e)
$$(A \cup B) \cap C = \phi$$
.

Example 2.8

Let E_i = event that student i fails the stats exam, i = 1, 2.

$$P(E_1) = 0.7$$
, $P(E_2) = 0.8$, $P(E_1 \cap E_2) = 0.6$

What is the probability that at least one will fail?

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) = 0.7 + 0.8 - 0.6 = 0.9$$

Note,

$$P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)} = \frac{0.6}{0.8} = 0.75 \neq P(E_1)$$
 NOT independent

Example 2.9

Roll of a dice.

Let event $A = \text{even} = \{2,4,6\}$, and event $B = \{1,2,3,4\}$.

We show that A and B are independent.

$$P(A) = \frac{1}{2}, \quad P(B) = \frac{2}{3}, \quad P(A \cap B) = \frac{1}{3}.$$

So, $P(A \cap B) = P(A)P(B)$.

i.e.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/3}{2/3} = \frac{1}{2} = P(A).$$

half of the events in B are even.

Similarly,

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1/3}{1/2} = \frac{2}{3} = P(B).$$

two-thirds of the events in A are in B.

Example 2.10

Recall Example 2.6, $E_{\rm i}=$ failure of branch i.

Failures occur independently with the following probabilities:

$$P(E_1) = 0.3$$
, $P(E_2) = 0.2$, $P(E_3) = 0.1$.

P(failure) =
$$P((E_1 \cap E_2) \cup E_3)$$

= $P(E_1 \cap E_2) + P(E_3) - P(E_1 \cap E_2 \cap E_3)$ addition law of probability
= $P(E_1)P(E_2) + P(E_3) - P(E_1)P(E_2)P(E_3)$ since E_1, E_2, E_3 independent
= $0.3 \times 0.2 + 0.1 - 0.3 \times 0.2 \times 0.1$
= $0.06 + 0.1 - 0.006$
= 0.154

Suppose we wish to improve branch 3 so that the overall probability of failure is 0.1.

What probability do we need to have for branch 3?

Let
$$P(E_3) = p$$
, then

P(failure) =
$$P((E_1 \cap E_2) \cup E_3)$$

= $P(E_1)P(E_2) + P(E_3) - P(E_1)P(E_2)P(E_3)$
= $0.3 \times 0.2 + p - 0.3 \times 0.2 \times p$
= $0.06 + p - 0.06p$
= $0.06 + 0.94p = 0.1$
 $\Rightarrow 0.94p = 0.04 \Rightarrow p = 0.0426$

Mixed Systems

Components mutually independent,

 $A = \text{event that component of type } A \text{ functions, } P(A) = \frac{1}{2}.$

 B_i =event that component of type B functions, $P(B_i) = \frac{1}{3}$, i = 1, 2, 3.

 C_i =event that component of type C functions, $P(C_i) = \frac{3}{4}$, i = 1, 2.

Let N = event that the network functions.

U =event that upper path functions.

L = event that the lower path functions.

$$N = (U \cap L) \cup (U \cap L') \cup (L \cap U')$$

i.e. $P(N) = P(U \cap L) + P(U \cap L') + P(L \cap U')$ since events are disjoint. Alternatively:

$$P(N) = 1 - P(N')$$

= 1 - P(network fails)
 $N' = U' \cap L'$,

i.e. $P(N') = P(U' \cap L') = P(U')P(L')$ since independent.

U functions if A functions and if the B system functions.

i.e. $U = A \cap B$ where

 $B = \text{event that } B \text{ system functions} = B_1 \cup B_2 \cup B_3.$

Now, $B_1 \cup B_2 \cup B_3 = (B_1' \cap B_2' \cap B_3')'$. So,

$$P(B) = 1 - P(B'_1 \cap B'_2 \cap B'_3) = 1 - P(B'_1)P(B'_2)P(B'_3)$$

$$= 1 - \left(\frac{2}{3}\right)^3 = 1 - \frac{8}{27} = \frac{19}{27}$$

$$P(U) = P(A \cap B) = P(A)P(B)$$

$$= \frac{1}{2} \times \frac{19}{27} = \frac{19}{54}$$
so,
$$P(U') = 1 - \frac{19}{54} = \frac{35}{54}$$

$$P(L) = P(C_1 \cap C_2) = P(C_1)P(C_2)$$

$$= \left(\frac{3}{4}\right)^2 = \frac{9}{16}$$
so,
$$P(L') = 1 - P(L) = 1 - \frac{9}{16} = \frac{7}{16}.$$

$$\Rightarrow P(N) = P(U')P(L') = \frac{35}{54} \times \frac{7}{16} = 0.284$$
so,
$$P(N) = P(\text{system function}) = 1 - P(N')$$

$$= 1 - 0.284 = 0.716$$

Example 2.11

Two boxes containing long bolts and short bolts.

Box 1 contains 60 long and 40 short.

Box 2 contains 10 long and 20 short.

We select a box at random and randomly select a bolt.

What is the probability that the bolt is long?

Let A_i = event that Box i is selected, i = 1, 2. $P(A_i) = \frac{1}{2}$.

Let B = event that a long bolt is selected.

$$P(B|A_1) = \frac{60}{100}, \quad P(B|A_2) = \frac{10}{30}.$$

 A_1 and A_2 form a partition:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2)$$
$$= \frac{1}{2} \times \frac{6}{10} + \frac{1}{2} \times \frac{1}{3}$$
$$= \frac{3}{10} + \frac{1}{6} = \frac{18+10}{60} = \frac{28}{60} = \frac{7}{15}$$

Given that a long bolt is selected, what is the probability that Box 1 was selected?

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)}$$

$$= \frac{\frac{6}{10} \times \frac{1}{2}}{\frac{7}{15}}$$

$$= \frac{3}{10} \times \frac{15}{7} = \frac{9}{14}$$

Note: in general

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^k P(A_j)P(B|A_j)}$$