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Summary. Data from over 4000 recent association football (soccer) matches from the main English
competitions show clear evidence that the rate of scoring goals changes over the course of a match.
This rate tends to increase over the game but is also influenced by the current score. We develop a
model for a soccer match that incorporates parameters for both the attacking and the defensive
strength of a team, home advantage, the current score and the time left to play. This model treats
the number of goals scored by the two teams as interacting birth processes and shows a satis-
factory fit to the data. We also investigate football clichés and find evidence that contradicts the
cliché that a team is more vulnerable just after it has scored a goal. Our model has applications in
the football spread betting market, where prices are updated during a match, and may be useful to
both bookmakers and bettors.

Keywords: Exponential distribution; Football (soccer); Goal times; Likelihood function; Maximum
likelihood; Spread betting; Two-dimensional birth process

1. Introduction

There are various reasons for applying statistical techniques to model sporting events. Models are
often used to suggest strategic improvements for either individual competitors (e.g. Ladany and
Machol (1977)) or to improve the excitement from the spectator’s viewpoint (Ridder ef al., 1994).
Sometimes models are developed to test the fairness of either the rules of the game or the structure
of competitions, such as leagues and cups (Barnett and Hilditch, 1993; Appleton, 1995); often
sporting events provide a novel application of recently developed statistical theory (Robinson and
Tawn, 1995; Smith, 1988). Predicting the probability of future outcomes is probably the most
popular requirement of analyses, e.g. in newspaper or media predictions (Stefani and Clarke,
1992; Dixon and Coles, 1997). Our motivations for modelling football goal times are to develop
an increased understanding of the scoring process and to provide probability estimates of future
outcomes that are of use in spread betting.

Betting on the outcome of football matches can take many forms. In the UK, football pools,
which typically involve the selection of a number of matches that are thought to be those most
likely to be a draw, have been popular for many years. Fixed odds betting where bets are made on
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a home win, draw or an away win is another popular form of gambling. Spread or index betting is
a relatively new, more complicated, type of gambling for association football. Although a full
description is deferred until Section 5, it is useful to point out here that certain spread bets require
accurate estimates of the distribution of the final score conditional on the current score at any
given time during a football match between specified teams on a specified date.

In Sections 2 and 3 we develop a model that gives information on the score behaviour over 90
minutes for future matches. The model is based on Dixon and Coles (1997) who examined fixed
odds betting using a Poisson regression model for full-time scores. Although the Poisson distri-
bution is a reasonable fit to the full-time results, an examination of goal time data shows a clear
deviation from a homogeneous model over the 90 minutes of a match. We develop a non-homo-
geneous model and fit to league and cup goal time data from 1993 to 1996.

In Section 4 we use the model to investigate some interesting footballing clichés (often used by
commentators):

(a) a team is never more vulnerable than just after they have scored a goal—we test for this
effect that is sometimes called the ‘immediate strike back’;

(b) more goals are scored as the game progresses, perhaps because of tiredness of players—
the model is used to assess whether this is evident and the significance of the effect if it
exists;

(c) teams tend to score more or fewer goals depending on the current score—for example teams
may try to defend a lead or to restore equality if they are ahead or behind respectively.

In Section 2 we present an empirical study of the available data. In Section 3 we develop the
model and apply it to the data of Section 2. Applications of the model and the clichés above are
considered in Section 4, and in Section 5 we describe spread betting and give an example of how
the model can be used to set prices or to bet in this market.

2. Data

A wealth of information is available from each football match played. Obviously scores are
recorded, but also available are the times of the goals, the goal scorers, the team’s league position
at the time of playing and so on. An individual team’s performance in any particular game could
also be affected by many external factors: newly signed players or the sacking of a manager for
example. Though this information is also available, it is less easily formalized and its qualitative
value is subjective. Consequently, our model exploits only each team’s history of match scores,
and the goal times within each match.

Data on 10409 goal times have been collected, from newspapers and weekly football maga-
zines, for 4012 league and cup matches over the period 1993-1996 for 92 English league clubs
from four divisions: the Football Association premiership, and Divisions 1-3 of the Football
League. Fig. 1 summarizes these data by aggregating goal times over all teams. Matches are
played over two periods, each of 45 minutes. Some cup competitions allow extra time of 30
minutes, but these data have been ignored. Goal times are generally recorded to the integer part of
the time of the goal although there are often discrepancies between sources. Thus, there is an
occasional repeated time, where two goals have been scored in the same minute.

In this section we consider only aggregated features of the data; it is stressed that this is a much
simpler method than modelling match-specific effects which is the approach developed later in the
paper. Examining aggregated data over teams is the approach taken by many researchers for
modelling sporting events; for example Chedzoy (1995) examined aggregated goal time data.
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Fig. 1. Histograms of goal times: distributions of all goal times for matches that ended in (a) a home win, (b) a
draw and (c) an away win; (d) distribution for all matches ( , kernel density estimate)

However, this can often lead to spurious findings: for instance Clarke and Norman (1995) showed
how spurious home advantage effects can appear when averaging over teams.

Figs 1(a)—1(c) are histograms of goal times for matches that ended in a home win, a draw and
an away win respectively and Fig. 1(d) shows all the goal times. Two features are evident from
Fig. 1. Firstly, a noticeably high number of goals are scored in the last part of each half (around 45
and 90 minutes). This increased number of goals scored is due to injury time, usually between 0
and 5 minutes, added on by the referee. Goals scored in injury time are recorded as 45 or 90 min-
utes for the first and second halves respectively.

The second feature is that an increasing number of goals are scored throughout the 90 minutes.
On the basis of Fig. 1, it is tempting to conclude that, for each particular match, scoring rates
increase throughout time, perhaps because of tiredness of players. However, this may be a spurious
effect due to averaging. For example, if scoring rates remained constant while the score was (0, 0)
but increased as soon as a goal had been scored, then, averaged over matches, this could lead to
the gradual increases observed in Fig. 1. Thus two possible reasons for the inhomogeneity over
time are

(a) a gradual increase in scoring rates (e.g. because of tiredness) and
(b) wvariation due to dependence on the current score.

Applying standard survival analysis techniques (e.g. Crowder et al. (1991)) we can examine these
effects at this stage by using aggregated data.

In a match picked at random, let T, be the time to the next goal while the current score is
(x, y)forx, y=0, 1,2, ..., and let J,, be a censoring indicator that is 0 if the match ends before
the next goal is scored and is 1 if a goal is observed. Then, assuming that T, ~ exp(v,,), standard
survival analysis gives the maximum likelihood estimate of v,, as

X N N
Py =20 | D boui
p P
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where N = 4012 is the number of matches, ¢,,, and J,,; are the observed times to the next goal
and censoring indicators respectively, at score (x, y) in match i. In match i, if score (x, y) occurs
and is the final score, then J,,;, = 0 and ¢,,; = 90 minus the time of the final goal scored; if the
score (x, y) never occurs, then J,,; and #,,; are both taken to be 0. Fig. 2 displays the observed
times to the first goal, i.e. #y; for i such that dy; = 1, and Table 1 gives the estimates of the rates
Vy, for x, y < 2. Although in general the rates are increasing, which could be due to a gradual
increase in scoring rates with time, there is some evidence that the rate depends on the current
score. For example, the rates when the score is (1, 1) and (2, 0) are significantly different, and
these scores should occur at approximately the same time in a (random) match. We investigate this
further in Section 3.
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Fig. 2. Histogram of the time to the first goal: censored observations, i.e. matches which ended (0, 0), are not
shown (in this data set there are 310 (0, 0) results) ( , kernel density estimate of the times to the first goal)

Table 1. Estimates and standard errors of the
rate of the time to the next goal, in a match
picked at random, when the score is (0, 0), (1,
0), (0, 1), (1, 1), (2, 0), (0, 2) (2, 1), (1, 2) and
(2, 2)t

Rate Estimate Standard error
Voo 0.0250 0.0004
V1o 0.0289 0.0007
Vor 0.0293 0.0009
v 0.0302 0.0010
Vao 0.0353 0.0014
Vo2 0.0315 0.0018
Yy 0.0327 0.0019
V12 0.0369 0.0026
Voo 0.0372 0.0029

tFor example, vy, = 0.025 corresponds to a scoring
rate of one goal every 40 minutes on average while
the score is (0, 0).



Model for Association Football Matches 527
3. Modelling match-specific goal times

With the aim of developing a model that can provide estimates for a future match between
specified teams, several features are required of a statistical model. The model should take into
account the different abilities of both teams in a match, with an allowance for home advantage. In
addition a measure of a team’s ability is likely to be based on their recent performance and the
ability of the teams that they have played against. Finally the model should be sufficiently flexible
that the scoring rate or intensity within a match can vary with time and with knowledge of the
result ‘so far’.

Before describing our model for goal times, we summarize the model of Dixon and Coles
(1997) and Maher (1982) for full-time results. The basic assumption of the model is that the
number of goals scored by the home and away teams in any particular game are independent
Poisson variables, whose means are determined by the attack and defence qualities of each side.
More explicitly, in a match between teams indexed i and j, let X ; and Y, ; be the number of goals
scored by the home and away sides respectively. Then the model is

X,, ~ Poisson(a.3,y,), G.1)

Y, ~ Poisson(a ),

where X, and Y;; are independent and a;, 8;> 0 Vi. The a; measure the ‘attack’ rate of the
teams, the 3; measure the respective ‘defence’ rates, and y, > 0 is a parameter that allows for the
home effect.

It follows from model (3.1) that, with n teams, attack parameters {a, ..., a,}, defence param-
eters {B1, ..., B,} and the home effect parameter y, are to be estimated. As such, the model is
overparameterized, so the constraint

n
n_l Z a; = 1
i=1

is imposed. For the English league system, that comprises the Premier League and Divisions 1-3
of the Football League, n = 92, so the model has 184 identifiable parameters.

The basic framework of inference is the likelihood function. With matches indexed £k =1, .. .,
N, and corresponding scores (x;, i), this takes the form, up to proportionality,

N
Lla, By i=1,...,n) = p exp(—A)A} exp(—piuy (32)
=1

where
Ak = QipBiwyV ns
B = QjwBiw

and i(k) and j(k) denote respectively the indices of the home and away teams playing in match k.

A structural limitation of model (3.2) is the fact that the parameters are static, i.e. it is assumed
that teams have a constant performance rate, as determined by a, and 8, from week to week.
Dixon and Coles (1997) extended this model to allow for fluctuations in a team’s ability by
downweighting the likelihood contributions of past data and defining time-dependent parameters.

For notational simplicity, we restrict attention subsequently to an extension of the static model
to within-match goal time modelling and time references will be to time elapsed during a match.
The extension to the dynamic model is immediate, and all subsequent results are obtained by
employing the likelihood weighting technique to allow for ability fluctuations.
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3.1. Model for goal times

In this section we develop a model for the home—away scoring process that can be thought of
as a two-dimensional birth process with the home and away scores as two different species (for
example see Fig. 3). First we consider the goal scoring process for a particular match & between
teams i(k) and j(k). There are two scoring processes, H,; and A, for home and away goals with
intensities A,(f) and u,(¢) that are allowed to vary with time ¢ and with status of the process. Here
t € [0, 1] is the (rescaled) time elapsed during the match. The approach that we take is to specify
parametrically the form of the intensities A,(¢) and u,(¢) and to use regression techniques to select
a suitable family of models. If the processes H, and A4, are taken to be independent homogeneous
Poisson processes with intensities

Ai(t) = Ae = By Vs
(3.3)

pi(t) = i = ajwBig

for all ¢ € [0, 1] then the model reduces to the full-time scores model of the previous section.
Fig. 1 shows that, for within-match modelling, such a homogeneous process is unsuitable; we
develop a more structured model in stages.

Within this framework, we model the two types of time variation alluded to in Section 2, these
being the continuously increasing scoring rates and the variation due to dependence on the current
score. First we consider models that only incorporate the second type, and then we extend the
model to incorporate both types of non-stationarity. Firstly we assume that the two processes, H
and A4, are independent, conditional on the processes up to time ¢, and that the scoring rates are
piecewise constant in the sense that the home and away intensities are constant until a goal is
scored and only change at those times. Then, for a goal-less match, the rates are constant
throughout the 90 minutes, i.e. A,(f) = A, and u,(¢) = pu, for all ¢ € [0, 1], and are taken to be as
in equations (3.3). For non-goal-less matches, denote the goal times in match & by

< . . . . .
] . 3.3) .
o . . ﬁs
«
8 Ts
3
&
o . . . A .
5
o0
H "
T, N T,
- . P .
T,
T
o ——t N . . .
0 1 2 3 4

Home goals (species 1)

Fig. 3. Graphical representation of the scoring process in a match with final score (3, 3): the home and
away goals can be considered as two species in a two-dimensional birth process; the transition (goal) times are
denoted by T;, i =1 ..., 6, along the line segments



Model for Association Football Matches 529
(e, i) = {(ter, Je): 1=1, ..., my},

where m; = x; + y; and ¢, , are the total number of goals and the time of the /th goal in match £
respectively and J, is an indicator that is 0 for a home goal and 1 for an away goal. Let 4, and
Uy, (for x, y=20, 1, ...) be parameters that determine the (homogeneous) scoring rates during
which the score is (x, y). Also define the home and away scoring rates in match & at time ¢ and
score (x, y) to be

lk(t) = lxy)'k
and

Wi(t) = Uy hi

where ¢ is the set of times during which the score is (x, y) and A, and u, are given by equations
(3.3). Since the rates depend only on the current score, we can think of the process as a two-
dimensional (time homogeneous) birth process with states E = {(0, 0), (1, 0), (0, 1), ...} and
exponential transition times that depend on the current state. For example, the distribution of the
time to the first home goal conditionally on the score being (0, 0) is exponential with rate 1A .

Now consider how this model can be extended to model the injury time effect that is evident
in Fig. 1. As no data are available showing how much injury time is added, goal times of 45 and
90 minutes are considered as (possibly) censored observations. We introduce new parameters
p., i =1, 2, that represent a multiplicative adjustment to the scoring intensity over the periods
(44, 45] and (89, 90] minutes with respect to that predicted by the particular regression model
fitted. Thus for models with this effect added the home scoring rate is taken to be

pidydi  for t € (44/90, 45/90],
M) =4 poddi  for t € (89/90, 90/90], (3.4)
v otherwise

and similarly for the away rate u,(?).

3.1.1. Likelihood

The likelihood for this process, for a particular match %, is essentially that of a two-dimensional
pure birth process (for example see Moller and Sorensen (1994)). It can be derived by considering
the process as a sequence of independent times between goals (home or away). In match £,
conditional on the score being (x, y), the distribution of the time to the next home or away goal is
exponential with rate 4,,4, and u,,u, respectively. The likelihood contribution from each interval
is then the likelihood of an observed or censored exponential for the home component multiplied
by a censored or observed exponential for the away component respectively. The contribution
from the final period that does not end in a goal is a censored exponential for both components.
Then taking the product over each of the intervals the likelihood for match £ is

L(ty, Ji) = exp (—A[0, 1])exp (—YI0, 1]) lﬁl Ae(te) ™ it )’ 3-5)

where

]

Alty, 1] = J (1) dt

n

and
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7]

Yin 6= | miodr
n
are the home and away integrated intensities respectively. Scores between matches are assumed to
be independent, and so the overall likelihood is given by taking the product over matches. In the
remainder of this section, the models are fitted to the 4012 matches described in Section 2.

3.1.2. Regression models
As specified, the model is overparameterized; we reduce the dimension via a hierarchy of
regression models. With 7 teams, in each model there are 2n — 1 team-specific parameters and a
home effect parameter, as in equation (3.2). In addition there are a varying number of within-
match parameters, that are defined by our regression models. Setting 4,, = 1 and u,, = 1 for all
x and y and fixing p, = 1, i = 1, 2, leads to the same likelihood as the homogeneous Poisson
model. Maximum likelihood is used to estimate the 2n = 184 parameters in this simplest model,
termed model I, and standard errors are obtained by using the observed information matrix (Cox
and Hinkley, 1974). Table 2 gives the log-likelihood (up to proportionality) and the number of
parameters for this and subsequent models. The home parameter estimate is ¥, = 1.37, indicating
a home advantage; the relative advantage from playing at home remains approximately constant
for all subsequent models. Introducing the injury time parameters, defined in equations (3.4), gives
model II; maximum likelihood estimates (with standard errors in parentheses) of the injury time
parameters are p; = 1.48 (0.14) and p, = 2.18 (0.17). Thus, as expected, there is a significant
increase in rate for goals recorded as 45 or 90 minutes because of injury time, i.e. p; >1 and
Dy > 1. .

This basic model is extended to model III by defining the 4,,, in terms of two parameters Ao
and A, by

1 forx —y =0,
Axy= 110 fOl'X—y? 1,
lo[ forx—ys—l

with p,, defined similarly for s, and uo;. The injury time parameters are also included. We have
abused the notation slightly here, since, for example, 4, represents the rate for scores other than
(1, 0) and indicates that the home team is leading. Likelihood ratio tests in conjunction with
parameter estimates show that this model gives a significantly improved fit over model I and
model II. Many other models are fitted by defining A,, and u,, in this piecewise constant manner,
and likelihood ratio tests are used to assess parsimonious fits. The best-fitting model in this time
homogeneous case is defined as model IV, which defines 4,, by six parameters as

Table 2. Log-likelihood values for the model fits

Model Number of Log-likelihood
parameters
I 184 0.00
il 186 46.33
I 190 92.42
v 198 114.00
\Y% 188 126.70
VI 196 150.41




Model for Association Football Matches 531

1 forx=0,y=0,

Ao forx=1,y=0,

Aot forx=0,y=1,
Ay =14 Au forx=1,y=1,

Axn forx—y=0,x,y=2,
A forx—y=1,x=2,
A, forx—y<-1,y=2.

The six away parameters u,, are defined similarly.

Now consider models that have continuously varying rates with time, but which do not have
rates that depend on the current score. In this case the varying intensities are incorporated by
considering the process as a time inhomogeneous birth process. The likelihood of this process is
taken to be equation (3.5), only now the intensities are allowed to vary as a function of time. In
particular, we model a linear change by defining

A0 = ) + &1ty

K = i) + &t

and using )f,': (and ) in place of A, (and ;) in equation (3.5). This model, termed model V, is
similar to model II with two time variation parameters &, and &, added. Other models, such as
quadratic variation, match-specific rates or an exponential form to guarantee positivity, can easily
be fitted. However, we found the above linear model to be adequate in practice and this gives
estimates &, = 0.70(0.08) and &, = 0.65 (0.07).

Finally, fitting a model that incorporates both types of intensity variation and fitting a variety of
regression models suggests that both score dependence and time variation effects are evident, and
the best-fitting model is model VI. This model has parameters and estimates as defined in Table 3.
Examples of team-specific parameter estimates are given in Table 4. The conclusions drawn from
this final model are as follows.

(a) The scoring rate generally increases for both teams throughout the match (Sl and éz are
significantly greater than 0). This is most likely due to tiredness of players that leads to
mistakes in defending.

(b) The attack and defence parameters generally decrease and increase respectively from the
premiership down to the third division.

(c) The scoring rates of home and away teams depend on the current score. If the scores are
level, the scoring rates are similar to those at (0, 0). If the home team is leading, the home
and away rates generally decrease and increase respectively. This may be due to defending
a lead, or trying to restore equality. If the away team is leading, the rates of both home and
away teams tend to increase. A possible explanation for this is that a draw for the away

Table3. Maximum likelihood estimates, with standard errors in parentheses, obtained by using

model VI
Match state Home team parameters Away team parameters
(1,0) 210 = 0.86 (0.05) o = 1.33 (0.09)
©, 1) Aot = 1.10 (0.08) oy = 1.07 (0.08)
xy,x+y>landx—y=1 A2 = 1.01 (0.06) Bty = 1.53 (0.11)
@y, x+y>landx—y=< -1 Az = 1.13 (0.10) fu, = 1.16 (0.11)
Time variation & =0.67 (0.08) & =0.47 (0.07)
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Table 4. Maximum likelihood estimates of a sample of the team-specific parameters,
with standard errors in parentheses, obtained by using model VIt

Team Division a )

Manchester United Premier 2.55(0.31) 0.28 (0.06)
Newecastle United Premier 2.27(0.29) 0.36 (0.07)
Birmingham City 1 1.10 (0.14) 0.60 (0.10)
Sheffield United 1 1.17 (0.17) 0.68 (0.11)
Carlisle United 2 0.86 (0.12) 0.91 (0.15)
Stockport County 2 0.89 (0.13) 0.84 (0.13)
York City 2 0.76 (0.12) 0.90 (0.14)
Leyton Orient 3 0.35 (0.08) 1.34 (0.20)
Colchester United 3 0.68 (0.10) 1.25 (0.20)

tA full set of parameter estimates for 1997 is available from M. Robinson.

team is considered a good result, whereas for the home team a draw is a bad result. This
would lead to the home team defending a narrow lead more strongly than the away team in
a similar situation.

(d) The scoring rates generally increase once a goal has been scored. This supports the com-
monly held opinion that teams play more openly once ‘the deadlock has been broken’.

It is possible that the scoring rates are independent of the current score for most of the game
and change only in the final part of the match. Although we found no evidence for this, this may
be due to the limited information that was available.

Table 5 summarizes the results from model VI for a particular match (Newcastle United
(home) versus Manchester United); for example, the home and away scoring rates at the kick-off

Table 5. Estimated scoring rates conditional on the scores for Newcastle United versus Manchester United on
March 2nd, 1996+

Score Estimated scoring rates for the following times and scores:
Time = 0 min Time = 30 min
0 1 2 0 1 2
0 1.00 (0.26) 1.10 (0.29) 1.14 (0.31) 1.23(0.26) 1.32 (0.29) 1.36 (0.31)
0.92 (0.20) 0.98 (0.23) 1.06 (0.25) 1.07 (0.20) 1.14 (0.23) 1.22 (0.25)
1 0.87 (0.23) 1.00 (0.26) 1.14 (0.31) 1.09 (0.23) 1.23 (0.26) 1.36 (0.31)
1.22 (0.28) 0.92 (0.20) 1.06 (0.25) 1.38 (0.28) 1.07 (0.20) 1.22 (0.25)
2 1.01 (0.27) 1.01 (0.27) 1.00 (0.26) 1.24 (0.27) 1.24 (0.27) 1.23 (0.26)
1.40 (0.32) 1.40 (0.32) 0.92 (0.20) 1.56 (0.32) 1.56 (0.32) 1.07 (0.20)
Time = 60 min Time = 89 min
0 1.45(0.26) 1.55(0.30) 1.58 (0.31) 1.67 (0.27) 1.77 (0.30) 1.80(0.31)
1.23(0.20) 1.30(0.23) 1.38 (0.25) 1.38(0.21) 1.45 (0.24) 1.53(0.25)
1 1.32(0.23) 1.45 (0.26) 1.58 (0.31) 1.53 (0.24) 1.67 (0.27) 1.80 (0.31)
1.54 (0.27) 1.23 (0.20) 1.38 (0.25) 1.69 (0.28) 1.38(0.21) 1.53(0.25)
2 1.46 (0.27) 1.46 (0.27) 1.45 (0.26) 1.68 (0.27) 1.68 (0.27) 1.67 (0.27)
1.72 (0.32) 1.72 (0.32) 1.23 (0.20) 1.87 (0.32) 1.87 (0.32) 1.38(0.21)

TThe rates are given at four times of the match, and row labels represent the home team score. For example the scoring rate
of Newcastle in the 89th minute if the score is (1, 0) is 1.53. Note that the scoring intensities are based on the goals per
match and not goals per minute. Approximate standard errors, in parentheses, are obtained by using the delta method.
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are 1.00 and 0.92, with approximate standard errors, obtained by using the delta method, 0.26 and
0.20. At time 30 minutes, if the score is (0, 1), the scoring rate of the home team goes up to 1.32
goals per 90 minutes.

3.1.3.  Assessing the model fit

The last 600 games of the 1995-1996 season have been retained to be used as a cross-validation
assessinent of the model fit. These games have not been included in our model development of
Section 3 and are treated as a hold-out sample. The data are in addition to the 4012 games of
Section 2. The column headed ‘Observed’ in Table 6 gives the proportion of these remaining 600
games that ended in the scores given in the first column. The other columns give the mean
proportions of these games that ended in each score obtained by simulating from model VI. The
general agreement of the simulated probabilities with the observed proportions, each being
contained within the 95% confidence intervals, goes some way to showing that model VI is a good
fit to future data.

4. Applications

4.1. Match outcome probabilities

The motivation for the development of the full-time scores model of Dixon and Coles (1997)
was to estimate the probability of full-time outcomes (home win, draw or away win) for future
matches. We now consider how to use our score model to estimate such probabilities. Recalling
the birth process formulation of Fig. 3, we require the probability of being in each state
{(x, y): x, y=10, 1, ...} at 90 minutes. This is given by integrating over all possible times and for
each possible route to arrive at the point (x, y). Since the heavy computation makes direct
calculation infeasible, we use Monte Carlo techniques and for each particular match we simulate
the goal process from our fitted model. This leads to estimates of the distribution of the final score,
and hence probabilities of match outcomes. Table 7 compares a selection of match outcome prob-
abilities for model VI and model I. Accounting for the standard errors, the home and away win
probability estimates are similar; the draw probabilities generally differ. Dixon and Coles (1997)
examined the full-time score results and found a complex dependence structure between home and
away scores that they modelled approximately in an ad hoc way. Model VI successfully captures
the observed behaviour without having explicitly modelled such dependence. For example the

Table 6. Observed and simulated score probabilitiest

Score Model VI Approximate Observed
probability confidence interval
(0, 0) 0.09 (0.08,0.11) 0.09
(1,0) 0.12 (0.11, 0.14) 0.13
©, 1) 0.08 (0.07, 0.09) 0.07
1,1 0.13 (0.12,0.14) 0.13
(x,0) 0.13 (0.11, 0.16) 0.16
(x, 1) 0.16 (0.13,0.17) 0.15
©, ») 0.06 (0.05, 0.07) 0.07
1,y 0.09 (0.08, 0.10) 0.09
x,») 0.14 (0.11, 0.16) 0.11
1The x and y represent scores 2, 3, ..., over which proportions have been

aggregated. Approximate 95% confidence intervals were obtained by
simulation from the asymptotic distribution of the maximum likelihood
estimates.
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Table 7. Maximum likelihood estimates of match outcome probabilities for five example matches obtained by
using model | and model VIt

Match Estimates from model I Estimates from model VI

Home win Draw Away win  Home win Draw Away win

Newcastle United versus Manchester United  0.39 (0.07) 0.26 (0.02) 0.35(0.07) 0.38 (0.08) 0.30(0.02) 0.32(0.07)
Birmingham City versus Sheffield United 0.48 (0.07) 0.26 (0.02) 0.26 (0.07) 0.47 (0.08) 0.29 (0.03) 0.24 (0.07)
Carlisle United versus Stockport County 0.43 (0.07) 0.26 (0.02) 0.31(0.06) 0.44 (0.08) 0.28 (0.02) 0.28 (0.07)
Leyton Orient versus Colchester United 0.29 (0.06) 0.28 (0.02) 0.43 (0.06) 0.29 (0.07) 0.32(0.02) 0.39(0.08)
Manchester United versus York City 0.92 (0.03) 0.06 (0.02) 0.02 (0.01) 0.93 (0.04) 0.05(0.03) 0.02(0.01)

tApproximate standard errors, obtained by simulation from the asymptotic distribution of the maximum likelihood
estimates, are given in parentheses.

estimated probability that a random match will end in a home win, a draw or an away win is given
in Table 8. The row labelled ‘Observed’ is the proportion of all matches that ended in that outcome
and estimates from the models are obtained by simulation from the fitted model. It is seen that
model I generally underestimates the probability of draws and overestimates away win probabilities
whereas model VI more accurately reflects the observed proportions. Similar findings are obtained
for the probabilities of exact scores. The close agreement with the observed probabilities provides
further evidence that the model captures many features of the observed data.

4.2. Footballing clichés

The results of Section 3.1 indicate both a general increase in scoring rates throughout the match,
possibly due to fatigue of players, and a change in scoring rate which depends on the current score
and which may be due to defending a lead and/or trying to restore equality.

The model can also be used to examine whether there is any evidence for the immediate strike
back by introducing a new parameter ¢ that measures the scoring rate immediately after a team
has conceded a goal, relative to that predicted by our model. For example if the home team
concedes a goal at time #, then 1,(¢) in equation (3.5) is replaced by d A,(¢) for t € (¢, t, +¢€)
where ¢ is a small time interval. Fitting model VI with this effect included gives 6 = 0.70(0.05)
and 0.97(0.04) for ¢ =2 and ¢ =5 minutes, suggesting that there is no evidence for the
immediate strike back, and in fact the opposite appears to be true, i.e. teams are less likely to
concede a goal immediately after scoring than in open play. This may be due to the time that
it takes for the match to restart following a goal. The immediate strike-back effect has been
suggested probably because people have a tendency to overestimate the frequency of surprising
events.

Table 8. Observed and simulated average probabilities of a home win,
draw and away win

Probabilities for the following results:

Home win Draw Away win
Observed 0.452 0.287 0.260
Model I 0.463 0.256 0.281

Model VI 0.458 0.287 0.255
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5. Application to spread betting

5.1. Introduction

This section gives a brief overview of spread betting. For a more detailed examination, see Jackson
(1994). Spread bets can be made on a variety of sports, and the easiest way to describe spread
betting is via an example in cricket. Imagine that England have just been put into bat in a test-
match, and a spread betting company (a bookmaker) is taking bets on how many runs will be
scored in England’s innings. The way in which the bets are made is as follows. If the bookmakers
think that England will score, say, between 200 and 220 runs, then they offer a spread of 200-220
runs. As a bettor, you then have two options. Firstly, if you think that England will score more
than 220 runs then you would bet, say, £1 per run on ‘higher than 220° which is termed buying
runs at 220 for £1 per run. If you buy runs and on completion of their innings England make 350
runs then you make a profit of 350 — 220 = 130 X £1 = £130. If, in contrast, you buy at 220 and
England make 150, then you make a loss of 220 — 150 = £70. Alternatively, if you think that
England will score fewer than 200, then you would bet ‘lower than 200’ or sell runs at 200 for £1
per run. This time, if England make 350 runs, you make a loss of 350 — 200 = £150, or if they
score 150 runs, you make a profit of 200 — 150 = £50.

The terminology arises because spread betting has many features in common with trading on
the stock-market. For instance each type of spread offered is termed a (betting) market. Prices are
offered on many commodities such as the number of points that a team will score in a league
competition or the number of seats which will be won by a party in a parliamentary election.

One further feature, which occurs in many markets, is something termed ‘betting in the
running’. Here, the spreads are continuously updated, and trading can continue throughout the
course of an event. Thus in the cricket example runs may be bought and sold at any time until the
end of the innings at the spread currently being offered, and the spread fluctuates as England’s
innings unfolds.

Two common markets for spread betting on football matches are the total number of goals to
be scored in a match and the difference between the final home and away scores. For these
markets, the spreads are usually quoted as fractions of a goal, to represent some form of an
average outcome. For example, in a match between two teams A and B, the bookmaker might
display a spread for the total number of goals scored as 2.2—2.4. In this case the bettor then has
the option either to buy at 2.4 or to sell at 2.2. If four goals are scored, then buying leads to a gain
of 4.0 — 2.4 = 1.6, and selling to a loss of 4.0 — 2.2 = 1.8. The spread is updated, and trading
may continue, throughout the 90 minutes of the match.

A final consideration is that in practice different prices may be quoted by competing spread
betting companies for the same event. This affects both bettors and bookmakers, as rational bettors
will choose the best price on offer at a given time, whereas bookmakers may want to attract bets
by adjusting prices. This aspect is illustrated in the next section.

5.2. Application example

For illustration, we now consider how our model can be used to bet on (or to set) prices in the case
where the commodity is the total number of goals scored in a match. The extension to betting on
other football markets, such as the difference in the number of home and away goals scored, is
immediate. Consider the game between Watford and Norwich City, played on November 27th,
1995. For this match, we have betting prices from two, competing, spread betting firms. We
examine the problem from a bettor’s viewpoint and exploit the competition in bookmakers by
choosing to bet on the bookmaker with the best price. For example, we would buy at the lower of
the buying prices (the higher quote in the spread) and sell at the higher of the selling prices. Thus,
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in practice, the spread is usually less than the spreads quoted by individual bookmakers. Fig. 4
shows the best buying and selling prices that are available at each time point from 0 to 85 minutes.
The upper and lower bounds of the shaded region represent the best buy and sell price respec-
tively at each time point. Thus before the kick-off, at ¢ = 0, both firms quoted a spread for the
total number of goals as 2.4-2.7. At ¢ = 18, the spreads were 2.2-2.5 and 2.0-2.3, giving the
best spread width of 0.1 at ¢+ = 18. Two away goals were scored, at 32 and 46 minutes, and this is
reflected in the two jumps at these times.

Model VI is used to compute the expected gain that arises from either selling or buying goals
at’any given time. Let () be a random variable that denotes the total goals scored at full time
conditionally on the number scored at time #, and define Pr{ W (¢) = i} = a,(¥). Also let ¢,(¢) and
cp(?) be the best offered selling and buying prices at time ¢ respectively. Then the estimated
expected gain from buying at time ¢ is given by

ga.»(t){i — ()} = E[W(D)] - (),

and for selling is ¢,(#) — E[W(¢)]. Simulation from model VI for this match is used to obtain
E[W(#)] for all ¢, and the resulting expected return for selling is shown in Fig. 5 for every time
point z € [0, 85]. If the model estimates are without error, we receive a positive expected return if
we sell at times where the line lies above 0. In this example, it is always beneficial to sell and
always detrimental to buy. Fig. 5 suggests that the expected gain is generally positive, even
accounting for uncertainty in model parameter estimates, although it should be borne in mind that
confidence intervals have been calculated assuming that the fitted model is correct, and that the
only uncertainty is in the parameter estimates.

Data for continuously updated spread prices are not readily available: we have collected data
for a few matches and most seem to exhibit inaccuracies such as that demonstrated above,

3.0 35

2.5

Total number of goals
2.0

1.5

1.0

Time (min)

Fig. 4. Best offered selling and buying prices from two competing companies for Watford versus Norwich City,
played on November 27th, 1995: for a given time point t, the upper and lower bounds of the shaded region
represent the best buying and selling prices respectively from the two bookmakers (------ , estimated expected
number of goals (obtained from model VI) that will be scored conditionally on the score at time £ -oeoeeeeee
approxmate 90% confidence intervals, obtained from the asymptotic maximum likelihood estimates dlstnbutlon),
the jumps at t =32 and t = 46 are due to goals being scored at these times; data were available only up to
t = 85 minutes
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Fig.5. Expected gain which arises from selling 1 unit at each time point throughout the match (- ,
approximate 90% confidence intervals)

although with such small samples it is difficult to draw definite conclusions. We regard this as an
important application area for further study, which will be of particular interest to spread betting
companies.

6. Conclusions

Our model for the goal scoring process gives an improvement of match outcome estimates over
the models of Maher (1982) and Dixon and Coles (1997). It is shown that there are two time
inhomogeneous effects in the scoring process, these being a continuously increasing rate for both
the home and the away teams, perhaps due to increased defensive mistakes as players become
tired, and a variation due to the rate dependence on the current score. The dependence is most
noticeable when the home team has a narrow lead when the home and away scoring rates decrease
and increase significantly. We have found no evidence for the immediate strike back.

The main use of the model is to investigate setting prices in the spread betting market. Prelim-
inary evidence suggests that there are inaccuracies in current prices.
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