## M3S4/M4S4: Applied probability: 2007-8 Solutions 6: Continuous time Markov processes

1. We have,

$$
Q=\left(\begin{array}{cccccc}
0 & 0 & 0 & & & \\
\nu & -\nu & 0 & 0 & & \\
0 & 2 \nu & -2 \nu & 0 & 0 & \\
& & & & & \\
& & & i \nu & -i \nu & 0
\end{array}\right)
$$

We calculate $p_{0 j}(t), 0<j$, by solving

$$
\frac{d}{d t} P(t)=P(t) Q
$$

i.e.

$$
\left(\frac{d}{d t} p_{i j}(t)\right)=\left(p_{i j}(t)\right)\left(\begin{array}{ccccccc}
0 & 0 & 0 & & & \\
\nu & -\nu & 0 & 0 & & \\
0 & 2 \nu & -2 \nu & 0 & 0 & \\
& & & & & \\
& & & i \nu & -i \nu & 0
\end{array}\right)
$$

Giving

$$
\frac{d}{d t} p_{i j}(t)=-j \nu p_{i j}(t)+(j+1) \nu p_{i, j+1}(t)
$$

Multiply by $s^{j}$ and sum over $j$ to give

$$
\frac{\partial}{\partial t} \sum_{j=0}^{\infty} p_{i j}(t) s^{j}=-\nu \sum_{j=1}^{\infty} j p_{i j}(t) s^{j}+\nu \sum_{j=0}^{\infty}(j+1) p_{i, j+1}(t) s^{j}
$$

Note that,

$$
\frac{\partial}{\partial s} \Pi_{i}(s, t)=\frac{\partial}{\partial s} \sum_{j=0}^{\infty} p_{i j}(t) s^{j}=\sum_{j=1}^{\infty} j p_{i j}(t) s^{j-1} .
$$

So, we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \sum_{j=0}^{\infty} p_{i j}(t) s^{j} & =-\nu s \sum_{j=1}^{\infty} j p_{i j}(t) s^{j-1}+\nu \sum_{j=1}^{\infty} j p_{i j}(t) s^{j-1} \\
\frac{\partial}{\partial t} \Pi_{i}(s, t) & =\nu(1-s) \frac{\partial}{\partial s} \Pi_{i}(s, t)
\end{aligned}
$$

as required.
2. From lectures the differential difference equations for general birth and death process are given by,

$$
\begin{aligned}
\frac{d}{d t} p_{0}(t) & =-\beta_{0} p_{0}(t)+\nu_{1} p_{1}(t) \\
\frac{d}{d t} p_{j}(t) & =\beta_{j-1} p_{j-1}(t)-\left(\beta_{j}+\nu_{j}\right) p_{j}(t)+\nu_{j+1} p_{j+1}(t) \quad j \geq 1
\end{aligned}
$$

(a) When $\beta_{n}=\lambda, \nu_{n}=0$, we have for $j>0$ :

$$
\frac{d}{d t} p_{j}(t)=\lambda p_{j-1}(t)-\lambda p_{j}(t)
$$

(b) When $\beta_{n}=\beta n, \nu_{n}=0$, we have for $j>0$ :

$$
\frac{d}{d t} p_{j}(t)=(j-1) \beta p_{j-1}(t)-j \beta p_{j}(t)
$$

3. (a) $\frac{1}{\lambda}$.
(b) $\frac{3}{\lambda}+\frac{2}{\nu}$.
(c) $\frac{1}{\lambda^{2}}$.
(d) $\frac{3}{\lambda^{2}}+\frac{2}{\nu^{2}}$.
4. (a)

$$
\begin{aligned}
& \mathrm{P}(\text { wake during } \delta t)=\beta \delta t+o(\delta t) \\
& \mathrm{P}(\text { sleep during } \delta t)=\nu \delta t+o(\delta t)
\end{aligned}
$$

If there are $i$ awake then $N-i$ are asleep.

$$
\begin{aligned}
i \rightarrow i+1 & =(N-i) \beta & & \text { (one of the }(N-i) \text { wake) } \\
i \rightarrow i-1 & =\nu i & & \text { (one of the } i \text { sleep) }
\end{aligned}
$$

Giving

$$
Q=\begin{gathered}
0 \\
1 \\
2 \\
3 \\
\vdots \\
N
\end{gathered}\left(\begin{array}{cccccc}
-N \beta & N \beta & 0 & 0 & & \\
\nu & -\nu-\beta(N-1) & \beta(N-1) & 0 & & \\
0 & 2 \nu & -2 \nu-\beta(N-2) & \beta(N-2) & & \\
& & \ddots & \ddots & \ddots & \\
& & & & & \\
\\
& & & & & N \nu-N \nu
\end{array}\right)
$$

(b) For the stationary distribution, solve $\boldsymbol{\pi} Q=0$, from notes, for a general birth and death process we have

$$
\begin{aligned}
\pi_{n} & =\frac{\beta_{n-1} \beta_{n-2} \ldots \beta_{0}}{\nu_{n} \ldots \nu_{1}} \pi_{0} \quad n \geq 1 \\
\pi_{n} & =\frac{(N \beta)(\beta(N-1))(\beta(N-2)) \ldots(\beta(N-(n-1)))}{\nu(2 \nu)(3 \nu) \ldots(n \nu)} \pi_{0} \\
& =\frac{\beta^{n}}{\nu^{n}} \frac{N!}{n!(N-n)!} \pi_{0} \\
\pi_{n} & =\binom{N}{n}\left(\frac{\beta}{\nu}\right)^{n} \pi_{0} \quad n \geq 1
\end{aligned}
$$

also, $\sum_{n=1}^{N} \pi_{n}=1$, giving

$$
\pi_{0}=\frac{1}{1+\sum_{n=1}^{N}\binom{N}{n}\left(\frac{\beta}{\nu}\right)^{n}}
$$

(c) For one individual we have

$$
Q=\begin{gathered}
s \\
w
\end{gathered}\left(\begin{array}{cc}
-\beta & \beta \\
\nu & -\nu
\end{array}\right)
$$

(d) From the Forward Differential Equations:

$$
\begin{aligned}
\frac{d}{d t} P(t) & =P(t) Q \\
\frac{d}{d t}\left(1-p_{s w}(t)\right) & =-\beta\left(1-p_{s w}(t)\right)+\nu p_{s w}(t) \\
\Rightarrow-\frac{d}{d t} p_{s w}(t) & =p_{s w}(t)(\beta+\nu)-\beta \\
\Rightarrow \int \frac{d p_{s w}(t)}{p_{s w}(t)(\beta+\nu)-\beta} & =\int-1 d t \\
\Rightarrow \frac{\log \left(p_{s w}(t)(\beta+\nu)-\beta\right)}{\beta+\nu} & =-t+c
\end{aligned}
$$

From $p_{s w}(0)=0$ we find $c=\frac{\log (-\beta)}{(\beta+\nu)}$ giving

$$
p_{s w}(t)=\frac{\beta}{\beta+\nu}\left(1-e^{-(\beta+\nu) t}\right)
$$

Also

$$
\frac{d}{d t}\left(1-p_{w w}(t)\right)=-\beta\left(1-p_{w w}(t)\right)+\nu p_{w w}(t)
$$

same solution as above, except we have $p_{w w}(0)=1$ giving

$$
p_{w w}(t)=\frac{\beta+\nu e^{-(\beta+\nu) t}}{\beta+\nu}
$$

(e) From the hint, we have

$$
\begin{aligned}
\mathrm{E}\left(X_{m}(t)\right) & =m p_{w w}+(N-m) p_{s w} \\
& =m\left(\frac{\beta+\nu e^{-(\beta+\nu) t}}{\beta+\nu}\right)+(N-m)\left(\frac{\beta}{\beta+\nu}\left(1-e^{-(\beta+\nu) t}\right)\right) \\
& =m e^{-(\beta+\nu) t}+\frac{N \beta}{\beta+\nu}\left(1-e^{-(\beta+\nu) t}\right)
\end{aligned}
$$

5. (a) The Backward Differential Equations are given by,

$$
\frac{d}{d t} P(t)=Q P(t)
$$

For the linear birth and death process we have

$$
Q=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & & \\
\nu & -(\nu+\beta) & \beta & 0 & & \\
0 & 2 \nu & -(2 \nu+2 \beta) & 2 \beta & 0 & \\
0 & 0 & 3 \nu & -(3 \nu+3 \beta) & 3 \beta & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Thus,

$$
\begin{aligned}
\frac{d}{d t} p_{0 j}(t) & =0 \quad \forall j \\
\frac{d}{d t} p_{i j}(t) & =i \nu p_{i-1, j}(t)-i(\nu+\beta) p_{i j}(t)+i \beta p_{i+1, j}(t) \quad \forall j(i>0)
\end{aligned}
$$

Multiply by $s^{j}$ and sum over $j$ to give

$$
\frac{\partial}{\partial t} \Pi_{i}(s, t)=i \nu \Pi_{i-1}(s, t)-i(\nu+\beta) \Pi_{i}(s, t)+i \beta \Pi_{i+1}(s, t) \quad i>0 .
$$

(b) $\Pi_{i}(s, t)$ is the pgf of $X_{i}(t)$ - the number of individuals at time $t$ given that $X(0)=$ $i$. We can write

$$
X_{i}(t)=\underbrace{X_{1}(t)+X_{1}(t)+\ldots+X_{1}(t)}_{i \text { times }}
$$

(a colony of size $i$ can be thought of as $i$ colonies of size 1 ).
So, by standard pgf results, we have

$$
\Pi_{i}(t)=\left[\Pi_{1}(t)\right]^{i}
$$

(c) When $i=1$,

$$
\begin{aligned}
\frac{\partial}{\partial t} \Pi_{1}(s, t) & =\nu \Pi_{0}(s, t)-(\nu+\beta) \Pi_{1}(s, t)+\beta\left[\Pi_{1}(s, t)\right]^{2} \\
\Pi_{0}(s, t) & =p_{00}(t)+p_{01}(t) s+p_{02}(t) s^{2}+\ldots \\
& =1 \quad\left(\text { as } p_{00}(t)=1 \text { and } p_{0 j}(t)=0 \forall j\right) .
\end{aligned}
$$

Let $y=\Pi_{1}(s, t)$,

$$
\frac{d y}{\partial t}=\nu-(\nu+\beta) y+\beta y^{2}=(\beta y-\nu)(y-1) .
$$

Case $\beta=\nu$ :

$$
\begin{aligned}
\frac{d y}{d t} & =\beta(y-1)^{2} \\
\int \frac{d y}{(y-1)^{2}} & =\int \beta d t \\
\frac{-1}{y-1} & =\beta t+c \Rightarrow y=1-\frac{1}{\beta t+c} \\
\Rightarrow \Pi_{1}(s, t) & =\frac{\beta t+c-1}{\beta t+c}
\end{aligned}
$$

Initial condition $\Pi_{1}(s, 0)=s$ gives $s=(c-1) / c$ and

$$
\Pi_{1}(s, t)=\frac{\beta t+s(1-\beta t)}{\beta t+1-s \beta t}
$$

which agrees with the lecture notes.
Case $\beta \neq \nu$ :

$$
\begin{aligned}
& \frac{d y}{d t}=(\beta y-\nu)(y-1) \\
& \int\left(\frac{\beta}{\nu-\beta y}-\frac{1}{1-y}\right) d y=\int(\beta-\nu) d t \\
&-\log (\nu-\beta y)+\log (1-y)=(\beta-\nu) t+c \\
& \Pi_{1}(s, 0)=s \Rightarrow c=-\log (\nu-\beta s)+\log (1-s)
\end{aligned}
$$

So (after some algebra!)

$$
\Pi_{1}(s, t)=\frac{\nu(1-s)-(\nu-\beta s) e^{(\nu-\beta) t}}{\beta(1-s)-(\nu-\beta s) e^{(\nu-\beta) t}}
$$

again in accordance with lecture notes.

