M3S4/M4S4: Applied probability: 2007-8
 Solutions 5: Markov Chains

1. (a)

$$
P=\begin{gathered}
1 \\
2 \\
3 \\
\vdots \\
\vdots \\
a-1 \\
a
\end{gathered}\left(\begin{array}{ccccccc}
q & p & 0 & 0 & 0 & \ldots & 0 \\
q & 0 & p & 0 & 0 & \ldots & 0 \\
0 & q & 0 & p & 0 & \ldots & 0 \\
\vdots & & \ddots & \ddots & \ddots & & \\
\vdots & & & \ddots & \ddots & \ddots & \\
0 & \ldots & & 0 & q & 0 & p \\
0 & \ldots & & 0 & 0 & 0 & 1
\end{array}\right)
$$

(b)

$$
P=\begin{gathered}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6} & \frac{5}{6} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{6} & \frac{4}{6} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{3}{6} & \frac{3}{6} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{4}{6} & \frac{2}{6} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{5}{6} & \frac{1}{6} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

2. $\mathrm{P}\left(X_{n}=j\right)=a_{j}^{(n)}$, then

$$
\begin{aligned}
\mathrm{P}\left(X_{n+1}=j\right) & =\sum_{i} \mathrm{P}\left(X_{n+1}=j \mid X_{n}=i\right) \mathrm{P}\left(X_{n}=i\right) \\
\Rightarrow a_{j}^{(n+1)} & =\sum_{i} a_{i}^{(n)} p_{i j} \Rightarrow \boldsymbol{a}^{(n+1)}=\boldsymbol{a}^{(n)} P .
\end{aligned}
$$

3. We have

$$
\begin{aligned}
\pi_{0} & =\pi_{0}(1-\alpha)+\pi_{1} \beta \\
\pi_{0}+\pi_{1} & =1
\end{aligned}
$$

So,

$$
\pi_{0}=\frac{\beta}{\alpha+\beta} \quad \pi_{1}=\frac{\alpha}{\alpha+\beta}
$$

4. From $\boldsymbol{\pi}=\boldsymbol{\pi} P$ and $\sum \pi_{j}=1$, we have

$$
\begin{aligned}
\pi_{0} & =0.5 \pi_{0}+0.2 \pi_{1}+0.1 \pi_{2} \\
\pi_{1} & =0.4 \pi_{1}+0.6 \pi_{1}+0.2 \pi_{2} \\
1 & =\pi_{0}+\pi_{1}+\pi_{2}
\end{aligned}
$$

solving these equations gives $\pi_{0}=0.235$.
5. Classes are

$$
\begin{array}{cll}
\{0\} \quad\{a\} & \text { closed } \\
\{1,2,3, \ldots a-1\} & \text { open }
\end{array}
$$

6. (a) i. only 1 closed communicating class: $\{3\}$, so yes.
ii. $\boldsymbol{\pi}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$.
(b) i. 2 closed communicating classes $\{0,1\}$ and $\{2,3\}$ so no.
ii. $\boldsymbol{\pi}=(a a b b)$ with $a+b=0.5$.
(c) i. only 1 closed communicating class: $\{0,1,2\}$ so yes.
ii. $\boldsymbol{\pi}=\left(\frac{1}{4} \frac{5}{12} \frac{1}{3} 0\right)$.
7. (a) i. irreducible period 2 .
ii. unique stationary distribution exists (not limiting).
(b) i. irreducible aperiodic.
ii. unique stationary distribution exists (also limiting).
(c) i. Classes: $\{0,4\}$ period 2 closed
\{1\} aperiodic open
$\{2,3\}$ aperiodic open
ii. a unique stationary distribution exists (not limiting).
(d) i. Classes: $\{0,3\}$ aperiodic closed
$\{2,4,6\}$ period 3 closed
$\{1,5\}$ aperiodic open
ii. more than one closed class - a unique stationary distribution does not exist.
8. (a)

$$
\begin{aligned}
f_{00}^{(n)} & =\mathrm{P}(\text { first return to } 0 \text { in } n \text { steps }) \\
& =p^{n-1} q
\end{aligned}
$$

(b) Must show $f_{00}=1$

$$
\begin{aligned}
f_{00} & =\sum_{n=1}^{\infty} f_{00}^{(n)} \\
& =q+p q+p^{2} q+p^{3} q+\ldots \\
& =\frac{q}{1-p}=\frac{q}{q}=1
\end{aligned}
$$

so state 0 is recurrent.
9. The mean return time to state 0 is $\mu_{0}=F_{00}^{\prime}(1)$, where

$$
F_{00}(s)=\sum_{n=0}^{\infty} f_{00}^{(n)} s^{n}
$$

We have (from lectures)

$$
\begin{aligned}
& f_{00}^{(1)}=1-\alpha \\
& f_{00}^{(n)}=\alpha \beta(1-\beta)^{n-2}
\end{aligned}
$$

So,

$$
\begin{aligned}
F_{00}(s) & =(1-\alpha) s+\sum_{n=2}^{\infty} \alpha \beta(1-\beta)^{n-2} s^{n} \\
& =(1-\alpha) s+s^{2} \sum_{n=0}^{\infty} \alpha \beta(1-\beta)^{n} s^{n} \\
& =(1-\alpha) s+\frac{s^{2} \alpha \beta}{1-(1-\beta) s} \\
\Rightarrow F_{00}^{\prime}(s) & =(1-\alpha)+\frac{2 \alpha \beta s(1-(1-\beta) s)+\alpha \beta s^{2}(1-\beta)}{(1-(1-\beta) s)^{2}} \\
F_{00}^{\prime}(1) & =(1-\alpha)+\frac{2 \alpha \beta^{2}+\alpha \beta(1-\beta)}{\beta^{2}} \\
& =\frac{\alpha+\beta}{\beta}
\end{aligned}
$$

