4 Branching Processes

Organise by generations: Discrete time.
If P (no offspring) $\neq 0$ there is a probability that the process will die out.
Let $X=$ number of offspring of an individual

$$
p(x)=\mathrm{P}(X=x)=\quad \text { "offspring prob. function" }
$$

Assume:
(i) p same for all individuals
(ii) individuals reproduce independently
(iii) process starts with a single individual at time 0 .

Assumptions (i) and (ii) define the Galton-Watson discrete time branching process.

Two random variables of interest:

$$
\begin{aligned}
& Z_{n}=\text { number of individuals at time } n \quad\left(Z_{0}=1 \text { by (iii) }\right) \\
& T_{n}=\text { total number born up to and including generation } n
\end{aligned}
$$

e.g.

$$
p(0)=r \quad p(1)=q \quad p(z)=p
$$

What is the probability that the second generation will contain 0 or 1 member?

$$
\begin{aligned}
\mathrm{P}\left(Z_{2}=0\right) & =\mathrm{P}\left(Z_{1}=0\right)+\mathrm{P}\left(Z_{1}=1\right) \times \mathrm{P}\left(Z_{2}=0 \mid Z_{1}=1\right)+\mathrm{P}\left(Z_{1}=2\right) \times \mathrm{P}\left(Z_{2}=0 \mid Z_{1}=2\right) \\
& =r+q r+p r^{2} \\
\mathrm{P}\left(Z_{1}=1\right) & =\mathrm{P}\left(Z_{1}=1\right) \times \mathrm{P}\left(Z_{2}=1 \mid Z_{1}=1\right)+\mathrm{P}\left(Z_{1}=2\right) \times \mathrm{P}\left(Z_{2}=1 \mid Z_{1}=2\right) \\
& =q^{2}+p(r q+q r)=q^{2}+2 p q r .
\end{aligned}
$$

Note: things can be complicated because

$$
Z_{2}=X_{1}+X_{2}+\ldots X_{Z_{1}}
$$

with Z_{1} a random variable.

4.1 Revision: Probability generating functions

Suppose a discrete random variable X takes values in $\{0,1,2, \ldots\}$ and has probability function $p(x)$.

Then p.g.f. is

$$
\begin{array}{ll}
\Pi_{X}(s)=\mathrm{E}\left(s^{X}\right)=\sum_{x=0}^{\infty} p(x) s^{x} \\
\text { Note: } & \Pi(0)=p(0) \\
& \Pi(1)=\sum p(x)=1
\end{array}
$$

pgf uniquely determines the distribution and vice versa.

4.2 Some important pgfs

Distribution	pdf	Range	pgf
Bernoulli (p)	$p^{x} q^{1-x}$	0,1	$q+p s$
$\operatorname{Binomial}(n, p)$	$\binom{n}{x} p^{x} q^{n-x}$	$0,1,2, \ldots, n$	$(q+p s)^{n}$
$\operatorname{Poisson}(\mu)$	$\frac{e^{-\mu} \mu^{x}}{x!}$	$0,1,2 \ldots$	$e^{-\mu(1-s)}$
$\operatorname{Geometric,~} G_{1}(p)$	$q^{x-1} p$	$1,2, \ldots$	$\frac{p s}{1-q s}$

Negative Binomial $\quad\binom{x-1}{r-1} q^{x-r} p^{r} \quad r, r+1, \ldots \quad\left(\frac{p s}{1-q s}\right)^{r}$

4.3 Calculating moments using pgfs

$$
\Pi(s)=\sum_{x=0}^{\infty} p(x) s^{x}=\mathrm{E}\left(s^{X}\right)
$$

Then

$$
\begin{aligned}
\Pi^{\prime}(s) & =\mathrm{E}\left(X s^{X-1}\right) \\
\Pi^{\prime}(1) & =\mathrm{E}(X)
\end{aligned}
$$

Likewise

$$
\begin{aligned}
\Pi^{\prime \prime}(s) & =\mathrm{E}\left[X(X-1) s^{X-2}\right] \\
\Pi^{\prime \prime}(1) & =\mathrm{E}[X(X-1)]=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)
\end{aligned}
$$

So

$$
\begin{aligned}
& \operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-E^{2}(X) \\
&=\left[\Pi^{\prime \prime}(1)+\mathrm{E}(X)\right]-\Pi^{\prime}(1)^{2} \\
& \operatorname{var}(X)=\Pi^{\prime \prime}(1)+\Pi^{\prime}(1)-\Pi^{\prime}(1)^{2} \\
& \mu=\Pi^{\prime}(1) ; \quad \sigma^{2}=\Pi^{\prime \prime}(1)+\mu-\mu^{2}
\end{aligned}
$$

4.4 Distribution of sums of independent rvs

X, Y independent discrete rvs on $\{0,1,2, \ldots\}$, let $Z=X+Y$.

$$
\begin{aligned}
\Pi_{Z}(s) & =\mathrm{E}\left(s^{Z}\right)=\mathrm{E}\left(s^{X+Y}\right) \\
& =\mathrm{E}\left(s^{X}\right) \mathrm{E}\left(s^{Y}\right) \quad \text { (indep) } \\
& =\Pi_{X}(s) \Pi_{Y}(s)
\end{aligned}
$$

In general:
If

$$
Z=\sum_{i=1}^{n} X_{i}
$$

with X_{i} independent discrete rvs with pgfs $\Pi_{i}(s), i=1, \ldots, n$, then

$$
\Pi_{Z}(s)=\Pi_{1}(s) \Pi_{2}(s) \ldots \Pi_{n}(s) .
$$

In particular, if X_{i} are identically distributed with $\operatorname{pgf} \Pi(s)$, then

$$
\Pi_{Z}(s)=[\Pi(s)]^{n} .
$$

e.g. Q: If $X_{i} \sim G_{1}(p), i=1, \ldots, n$ (number of trials up to and including the 1 st success) are independent, find the pgf of $Z=\sum_{i=1}^{n} X_{i}$, and hence identify the distribution of Z.

A: Pgf of $G_{1}(p)$

$$
\Pi_{X}(s)=\frac{p s}{1-q s} .
$$

So pgf of Z is

$$
\Pi_{Z}(s)=\left(\frac{p s}{1-q s}\right)^{n}
$$

which is the pgf of a negative binomial distribution.
Intuitively:
Neg. bin. $=$ number trials up to and including nth success
$=$ sum of n sequences of trials each consisting of number of failures followed by a success.
$=$ sum of n geometrics.

4.5 Distribution of sums of a random number of independent rvs

Let

$$
Z=X_{1}+X_{2}+\ldots+X_{N}
$$

N is a rv on $\{0,1,2, \ldots\}$
X_{i} iid rvs on $\{0,1,2, \ldots\}$
(Convention $Z=0$ when $N=0$).

$$
\begin{aligned}
\Pi_{Z}(s) & =\sum_{z=0}^{\infty} \mathrm{P}(Z=z) s^{z} \\
\mathrm{P}(Z=z) & =\sum_{n=0}^{\infty} \mathrm{P}(Z=z \mid N=n) \mathrm{P}(N=n) \quad \text { (Thm T.P.) } \\
\Pi_{Z}(s) & =\sum_{n=0}^{\infty} \mathrm{P}(N=n) \sum_{z=0}^{\infty} \mathrm{P}(Z=z \mid N=n) s^{z} \\
& =\sum_{n=0}^{\infty} \mathrm{P}(N=n)\left[\Pi_{X}(s)\right]^{n} \quad\left(\text { since } X_{i} \text { iid }\right) \\
& =\Pi_{N}\left[\Pi_{X}(s)\right]
\end{aligned}
$$

If Z is the sum of N independent discrete rvs $X_{1}, X_{2}, \ldots, X_{N}$, each with range $\{0,1,2, \ldots\}$ each having pgf $\Pi_{X}(s)$ and where N is a rv with range $\{0,1,2, \ldots\}$ and $\operatorname{pgf} \Pi_{N}(s)$ then

$$
\Pi_{Z}(s)=\Pi_{N}\left[\Pi_{X}(s)\right]
$$

and Z has a compound distribution.
e.g. Q: Suppose $N \sim G_{0}(p)$ and each $X_{i} \sim \operatorname{Binomial}(1, \theta)$ (independent).

Find the distribution of $Z=\sum_{i=1}^{N} X_{i}$.
A:

$$
\begin{aligned}
& \Pi_{N}(s)=\frac{q}{1-p s} \\
& \Pi_{X}(s)=1-\theta+\theta s
\end{aligned}
$$

So

$$
\begin{aligned}
\Pi_{Z}(s) & =\frac{q}{1-p(1-\theta+\theta s)} \\
& =\frac{q}{q+p \theta-p \theta s}=\frac{q /(q+p \theta)}{1-(p \theta s /(q+p \theta))} \\
& =\frac{1-p \theta /(q+p \theta)}{1-(p \theta /(q+p \theta)) s}
\end{aligned}
$$

which is the pgf of $G_{0}\left(\frac{p \theta}{q+p \theta}\right)$ distribution.
Note: even in the cases where $Z=\sum_{i=1}^{N} X_{i}$ does not have a recognisable pgf, we can still use the resultant pgf to find properties (e.g. moments) of the distribution of Z.

We have probability generating function (pgf):

$$
\Pi_{X}(s)=E\left(s^{X}\right)
$$

Also: moment generating function (mgf):

$$
\Phi_{X}(t)=\mathrm{E}\left(e^{t X}\right)
$$

Take transformation $s=e^{t}$:

$$
\Pi_{X}\left(e^{t}\right)=\mathrm{E}\left(e^{t X}\right)
$$

the mgf has many properties in common with the pgf but can be used for a wider class of distributions.

4.6 Branching processes and pgfs

Recall $Z_{n}=$ number of individuals at time $n\left(Z_{0}=1\right)$, and $X_{i}=$ number of offspring of individual i. We have

$$
Z_{2}=X_{1}+X_{2}+\ldots X_{Z_{1}}
$$

So,

$$
\Pi_{2}(s)=\Pi_{1}\left[\Pi_{1}(s)\right]
$$

e.g. consider the branching process in which

$$
p(0)=r \quad p(1)=q \quad p(2)=p .
$$

So

$$
\Pi(s)=\Pi_{1}(s)=\sum_{x=0}^{2} p(x) s^{x}=r+q s+p s^{2}
$$

and

$$
\begin{aligned}
\Pi_{2}(s) & =\Pi_{1}\left[\Pi_{1}(s)\right]=r+q \Pi_{1}(s)+p \Pi_{1}(s)^{2} \\
& =r+q\left(r+q s+p s^{2}\right)+p\left(r+q s+p s^{2}\right)^{2} \\
& =r+q r+p r^{2}+\left(q^{2}+2 p q r\right) s+\left(p q+p q^{2}+2 p^{2} r\right) s^{2}+2 p^{2} q s^{3}+p^{3} s^{4}
\end{aligned}
$$

Coefficients of $s^{x}(x=0,1,2, \ldots, 4)$ give probability $Z_{2}=x$.
What about the nth generation?
Let

$$
Y_{i}=\text { number offspring of } i \text { th member of }(n-1) \text { th generation }
$$

Then

$$
Z_{n}=Y_{1}+Y_{2} \ldots+Y_{Z_{n-1}},
$$

so,

$$
\begin{aligned}
\Pi_{n}(s) & =\Pi_{n-1}[\Pi(s)] \\
& =\Pi_{n-2}[\Pi[\Pi(s)]] \\
& =\vdots \\
& =\underbrace{\Pi[\Pi[\ldots[\Pi(s)] \ldots]}_{n}
\end{aligned}
$$

writing this out explicitly can be complicated.
But sometimes we get lucky: e.g. $X \sim \operatorname{Binomial}(1, p)$, then $\Pi_{X}(s)=q+p s$.
So,

$$
\begin{aligned}
\Pi_{2}(s)= & q+p(q+p s)=q+p q+p^{2} s \\
\Pi_{3}(s)= & q+p(q+p(q+p s)) \\
= & q+p q+p^{2} q+p^{3} s \\
& \vdots \\
\Pi_{n}(s)= & q+p q+p^{2} q+\ldots+p^{n-1} q+p^{n} s .
\end{aligned}
$$

Now $\Pi_{n}(1)=1$, so

$$
\begin{aligned}
\left(1-p^{n}\right) & =q+p q+p^{2} q+\ldots+p^{n-1} q \\
\Pi_{n}(s) & =1-p^{n}+p^{n} s
\end{aligned}
$$

This is the pgf of a $\operatorname{Binomial}\left(1, p^{n}\right)$ distribution.
\Rightarrow The distribution of the number of cases in the nth generation is Bernoulli with parameter p^{n}. i.e:

$$
\begin{aligned}
& \mathrm{P}\left(Z_{n}=1\right)=p^{n} \\
& \mathrm{P}\left(Z_{n}=0\right)=1-p^{n}
\end{aligned}
$$

4.7 Mean and Variance of size of nth generation of a branching process

mean: Let $\mu=\mathrm{E}(X)$ and let $\mu_{n}=\mathrm{E}\left(Z_{n}\right)$.

$$
\begin{aligned}
\mu & =\Pi^{\prime}(1) \\
\Pi_{n}(s) & =\Pi_{n-1}[\Pi(s)] \\
\Rightarrow \Pi_{n}^{\prime}(s) & =\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime}(s) \\
\Pi_{n}^{\prime}(1) & =\Pi_{n-1}^{\prime}[\Pi(1)] \Pi^{\prime}(1) \\
& =\Pi_{n-1}^{\prime}(1) \Pi^{\prime}(1) \\
\text { so } \mu & =\mu_{n-1} \mu=\mu_{n-2} \mu^{2}=\ldots=\mu^{n}
\end{aligned}
$$

Note: as $n \rightarrow \infty$

$$
\mu_{n}=\mu^{n} \rightarrow \begin{cases}\infty & \mu>1 \\ 1 & \mu=1 \\ 0 & \mu<1\end{cases}
$$

so, at first sight, it looks as if the generation size will either increase unboundedly (if $\mu>1$) or die out (if $\mu<1$) - slightly more complicated....
variance: Let $\sigma^{2}=\operatorname{var}(X)$ and let $\sigma_{n}^{2}=\operatorname{var}\left(Z_{n}\right)$.

$$
\begin{align*}
\Pi_{n}^{\prime}(s) & =\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime}(s) \\
\Pi_{n}^{\prime \prime}(s) & =\Pi_{n-1}^{\prime \prime}[\Pi(s)] \Pi^{\prime}(s)^{2}+\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime \prime}(s) \tag{1}
\end{align*}
$$

Now $\Pi(1)=1, \Pi^{\prime}(1)=\mu, \Pi^{\prime \prime}(1)=\sigma^{2}-\mu+\mu^{2}$.
Also, since $\sigma_{n}^{2}=\Pi_{n}^{\prime \prime}(1)+\mu_{n}-\mu_{n}^{2}$, we have

$$
\begin{aligned}
\Pi_{n}^{\prime \prime}(1) & =\sigma_{n}^{2}-\mu^{n}+\mu^{2 n} \\
\text { and } \quad \Pi_{n-1}^{\prime \prime}(1) & =\sigma_{n-1}^{2}-\mu^{n-1}+\mu^{2 n-2} .
\end{aligned}
$$

From (1),

$$
\begin{aligned}
\Pi_{n}^{\prime \prime}(1) & =\Pi_{n-1}^{\prime \prime}(1) \Pi^{\prime}(1)^{2}+\Pi_{n-1}^{\prime}(1) \Pi^{\prime \prime}(1) \\
\sigma_{n}^{2}-\mu^{n}+\mu^{2 n} & =\left(\sigma_{n-1}^{2}-\mu^{n-1}+\mu^{2 n-2}\right) \mu^{2}+\mu^{n-1}\left(\sigma^{2}-\mu+\mu^{2}\right) \\
\Rightarrow \sigma_{n}^{2} & =\mu^{2} \sigma_{n-1}^{2}+\mu^{n-1} \sigma^{2}
\end{aligned}
$$

Leading to

$$
\sigma_{n}^{2}=\mu^{n-1} \sigma^{2}\left(1+\mu+\mu^{2}+\ldots+\mu^{n-1}\right)
$$

So, we have

$$
\sigma_{n}^{2}= \begin{cases}\mu^{n-1} \sigma^{2} \frac{1-\mu^{n}}{1-\mu} & \mu \neq 1 \\ n \sigma^{2} & \mu=1\end{cases}
$$

4.8 Total number of individuals

Let T_{n} be the total number up to and including generation n. Then

$$
\begin{aligned}
\mathrm{E}\left(T_{n}\right) & =\mathrm{E}\left(Z_{0}+Z_{1}+Z_{2} \ldots+Z_{n}\right) \\
& =1+\mathrm{E}\left(Z_{1}\right)+\mathrm{E}\left(Z_{2}\right)+\ldots+\mathrm{E}\left(Z_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1+\mu+\mu^{2}+\ldots+\mu^{n} \\
& =\left\{\begin{array}{cc}
\frac{\mu^{n+1}-1}{\mu-1} & \mu \neq 1 \\
n+1 & \mu=1
\end{array}\right. \\
\lim _{n \rightarrow \infty} \mathrm{E}\left(T_{n}\right) & =\left\{\begin{array}{cl}
\infty & \mu \geq 1 \\
\frac{1}{1-\mu} & \mu<1
\end{array}\right.
\end{aligned}
$$

4.9 Probability of ultimate extinction

Necessary that $\mathrm{P}(X=0)=p(0) \neq 0$.

Let $\theta_{n}=\mathrm{P}(n$th generation contains 0 individuals $)$
$=\mathrm{P}($ extinction occurs by nth generation $)$
$\theta_{n}=\mathrm{P}\left(Z_{n}=0\right)=\Pi_{n}(0)$
Now $\mathrm{P}($ extinct by nth generation $)=\mathrm{P}($ extinct by $(n-1)$ th $)+\mathrm{P}($ extinct at nth $)$.
So, $\theta_{n}=\theta_{n-1}+\mathrm{P}($ extinct at nth $)$
$\Rightarrow \theta_{n} \geq \theta_{n-1}$.
Now,

$$
\begin{aligned}
\Pi_{n}(s) & =\Pi\left[\Pi_{n-1}(s)\right] \\
\Pi_{n}(0) & =\Pi\left[\Pi_{n-1}(0)\right] \\
\theta_{n} & =\Pi\left(\theta_{n-1}\right) .
\end{aligned}
$$

θ_{n} is a non-decreasing sequence that is bounded above by 1 (it is a probability), hence, by the monotone convergence theorem $\lim _{n \rightarrow \infty} \theta_{n}=\theta^{*}$ exists and $\theta^{*} \leq 1$.

Now $\lim _{n \rightarrow \infty} \theta_{n}=\Pi\left(\lim _{n \rightarrow \infty} \theta_{n-1}\right)$, so θ^{*} satisfies

$$
\theta=\Pi(\theta), \quad \theta \in[0,1] .
$$

Consider

$$
\Pi(\theta)=\sum_{x=0}^{\infty} p(x) \theta^{x}
$$

$\Pi(0)=p(0)(>0)$, and $\Pi(1)=1$, also $\Pi^{\prime}(1)>0$ and for $\theta>0, \Pi^{\prime \prime}(\theta)>0$, so $\Pi(\theta)$ is a convex increasing function for $\theta \in[0,1]$ and so solutions of $\theta=\Pi(\theta)$ are determined by slope of $\Pi(\theta)$ at $\theta=1$, i.e. by $\Pi^{\prime}(1)=\mu$.

So,

1. If $\mu<1$ there is one solution at $\theta^{*}=1$.
\Rightarrow extinction is certain.
2. If $\mu>1$ there are two solutions: $\theta^{*}<1$ and $\theta^{*}=1$, as θ_{n} is increasing, we want the smaller solution.
\Rightarrow extinction is NOT certain.
3. If $\mu=1$ solution is $\theta^{*}=1$.
\Rightarrow extinction is certain.

Note: mean size of nth generation is μ^{n}. So if extinction does not occur the size will increase without bound.

Summary:

$\mathrm{P}($ ultimate extinction of branching process $)=$ smallest positive solution of $\theta=\Pi(\theta)$

1. $\mu \leq 1 \Rightarrow \theta^{*}=1 \Rightarrow$ ultimate extinction certain.
2. $\mu>1 \Rightarrow \theta^{*}<1 \Rightarrow$ ultimate extinction not certain
e.g.

$$
X \sim \operatorname{Binomial}(3, p) ; \quad \theta=\Pi(\theta) \quad \Rightarrow \quad \theta=(q+p \theta)^{3} .
$$

i.e.

$$
\begin{equation*}
p^{3} \theta^{3}+3 p^{2} q \theta^{2}+\left(3 p q^{2}-1\right) \theta+q^{3}=0 \tag{2}
\end{equation*}
$$

Now $\mathrm{E}(X)=\mu=3 p$ i.e. $\mu>1$ when $p>1 / 3$, and

$$
\mathrm{P}(\text { extinction })=\text { smallest solution of } \theta=\Pi(\theta)
$$

Since we know $\theta=1$ is a solution, we can factorise (2):

$$
(\theta-1)\left(p^{3} \theta^{2}+\left(3 p^{2} q+p^{3}\right) \theta-q^{3}\right)=0
$$

e.g. if $p=1 / 2$ (i.e $p>1 / 3$ satisfied), we know that θ^{*} satisfies

$$
\theta^{2}+4 \theta-1=0 \quad \Rightarrow \quad \theta^{*}=\sqrt{5}-2=0.236
$$

4.10 Generalizations of simple branching process

1: k individuals in generation 0

Let
$Z_{n_{i}}=$ number individuals in nth generation descended from i th ancestor

$$
S_{n}=Z_{n_{1}}+Z_{n_{2}}+\ldots+Z_{n_{k}}
$$

Then,

$$
\Pi_{S_{n}}=\left[\Pi_{n}(s)\right]^{k}
$$

2: Immigration: W_{n} immigrants arrive at nth generation and start to reproduce. Let pgf for number of immigrants be $\Psi(s)$.

$$
\begin{aligned}
Z_{n}^{*} & =\text { size of } n \text {th generation }(n=0,1,2, \ldots) \text { with } \operatorname{pgf} \Pi_{n}^{*}(s) \\
Z_{0}^{*} & =1 \\
Z_{1}^{*} & =W_{1}+Z_{1} \\
\Pi_{1}^{*}(s) & =\Psi(s) \Pi(s) \\
Z_{2}^{*} & =W_{2}+Z_{2} \\
\Pi_{2}^{*}(s) & =\Psi(s) \Pi_{1}^{*}(\Pi(s)),
\end{aligned}
$$

as $\Pi_{1}^{*}(\Pi(s))$ is the pgf of the number of offspring of the Z_{1}^{*} members of generation 1 , each of these has offspring according to a distribution with $\operatorname{pgf} \Pi(s)$. In general

$$
\begin{aligned}
\Pi_{n}^{*}(s) & =\Psi(s) \Pi_{n-1}^{*}[\Pi(s)] \\
& =\Psi(s) \Psi[\Pi(s)] \Pi_{n-2}^{*}[\Pi[\Pi(s)]] \\
& =\ldots \\
& =\Psi(s) \Psi[\Pi(s)] \ldots \Psi[\overbrace{\Pi[\Pi[\ldots[\Pi(s)]}^{(n-1) \Pi^{\prime} s} \ldots] \underbrace{\Pi[\Pi[\Pi \ldots[\Pi(s)]}_{n \Pi^{\prime} s} \ldots]
\end{aligned}
$$

e.g. Suppose that the number of offspring, X, has a Bernoulli distribution and the number of immigrants has a Poisson distribution.

1. Derive the pgf of size of nth generation $\Pi_{n}^{*}(s)$ and
2. investigate its behaviour as $n \rightarrow \infty$.

A: 1. $X \sim \operatorname{Binomial}(1, p), \quad W_{n} \sim \operatorname{Poisson}(\mu), n=1,2, \ldots$

$$
\Pi(s)=q+p s \quad \Psi(s)=e^{-\mu(1-s)}
$$

So,

$$
\begin{aligned}
\Pi_{1}^{*}(s) & =e^{-\mu(1-s)}(q+p s) \\
\Pi_{2}^{*}(s) & =\Psi(s) \Pi_{1}^{*}(\Pi(s)) \\
& =e^{-\mu(1-s)} \Pi_{1}^{*}(q+p s) \\
& =e^{-\mu(1-s)}(q+p(q+p s)) e^{-\mu(1-q-p s)} \\
& =e^{-\mu(1+p)(1-s)}\left(1-p^{2}+p^{2} s\right) \\
\Pi_{3}^{*}(s) & =\Psi(s) \Pi_{2}^{*}(\Pi(s)) \\
& =e^{-\mu(1-s)\left(1+p+p^{2}\right)}\left(1-p^{3}+p^{3} s\right) \\
& =\vdots \\
\Pi_{n}^{*}(s) & =e^{-\mu(1-s)\left(1+p+p^{2}+\ldots+p^{n-1}\right)}\left(1-p^{n}+p^{n} s\right) \\
& =e^{-\mu(1-s)\left(1-p^{n}\right) /(1-p)}\left(1-p^{n}+p^{n} s\right) .
\end{aligned}
$$

2. As $n \rightarrow \infty, p^{n} \rightarrow 0 \quad(0<p<1)$, so

$$
\Pi_{n}^{*}(s) \rightarrow e^{-\mu(1-s) /(1-p)} \quad \text { as } n \rightarrow \infty .
$$

This is the pgf of a Poisson distribution with parameter $\mu /(1-p)$.

- Without immigration a branching process either becomes extinct of increases unboundedly.
- With immigration there is also the possibility that there is a limiting distribution for generation size.

5 Random Walks

Consider a particle at some position on a line, moving with the following transition probabilities:

- with prob p it moves 1 unit to the right.
- with $\operatorname{prob} q$ it moves 1 unit to the left.
- with prob r it stays where it is.

Position at time n is given by,

$$
X_{n}=Z_{1}+\ldots+Z_{n} \quad Z_{n}=\left\{\begin{array}{r}
+1 \\
-1 \\
0
\end{array}\right.
$$

A random process $\left\{X_{n} ; n=0,1,2, \ldots\right\}$ is a random walk if, for $n \geq 1$

$$
X_{n}=Z_{1}+\ldots Z_{n}
$$

where $\left\{Z_{i}\right\}, i=1,2, \ldots$ is a sequence of iid rvs. If the only possible values for Z_{i} are $-1,0+1$ then the process is a simple random walk

5.1 Random walks with barriers

Absorbing barriers

Flip fair coin: $p=q=\frac{1}{2}, r=0$.
$\mathrm{H} \rightarrow$ you win $£ 1, \quad \mathrm{~T} \rightarrow$ you lose $£ 1$.
Let $Z_{n}=$ amount you win on nth flip.
Then $X_{n}=$ total amount you've won up to and including nth flip.
BUT, say you decide to stop playing if you lose $£ 50 \Rightarrow$ State space $=\{-50,-49, \ldots\}$
and -50 is an absorbing barrier (once entered cannot be left).

Reflecting barriers

A particle moves on a line between points a and b (integers with $b>a$), with the following transition probabilities:

$$
\left.\begin{array}{l}
\mathrm{P}\left(X_{n}=x+1 \mid X_{n-1}=x\right)=\frac{2}{3} \\
\mathrm{P}\left(X_{n}=x-1 \mid X_{n-1}=x\right)=\frac{1}{3}
\end{array}\right\} a<x<b
$$

$$
\begin{aligned}
& \mathrm{P}\left(X_{n}=a+1 \mid X_{n-1}=a\right)=1 \\
& \mathrm{P}\left(X_{n}=b-1 \mid X_{n-1}=b\right)=1
\end{aligned}
$$

a and b are reflecting barriers.
Can also have

$$
\begin{aligned}
\mathrm{P}\left(X_{n}=a+1 \mid X_{n-1}=a\right) & =p \\
\mathrm{P}\left(X_{n}=a \mid X_{n-1}=a\right) & =1-p
\end{aligned}
$$

and similar for b.
Note: random walks satisfy the Markov property.
i.e. the distribution of X_{n} is determined by the value of X_{n-1} (earlier history gives no extra info.)

A stochastic process in discrete time which has the Markov property is a Markov Chain.

$$
\begin{aligned}
X \text { a random walk } & \Rightarrow X \text { a Markov chain } \\
X \text { a Markov chain } & \nRightarrow X \text { a random walk }
\end{aligned}
$$

Since the Z_{i} in a random walk are iid, the transition probabilities are independent of current position, i.e.

$$
\mathrm{P}\left(X_{n}=a+1 \mid X_{n-1}=a\right)=\mathrm{P}\left(X_{n}=b+1 \mid X_{n-1}=b\right) .
$$

5.2 Gambler's ruin

Two players A and B.
A starts with $£ j, B$ with $£(a-j)$.
Play a series of indep. games until one or other is ruined.
$Z_{i}=$ amount A wins in i th game $= \pm 1$.

$$
\mathrm{P}\left(Z_{i}=1\right)=p \quad \mathrm{P}\left(Z_{i}=-1\right)=1-p=q .
$$

After n games A has $X_{n}=X_{n-1}+Z_{n}$,

$$
0<X_{n-1}<a .
$$

Stop if	X_{n-1}	$=0$	A loses
or	X_{n-1}	$=a$	A wins.

Random walk with state space $\{0,1, \ldots, a\}$ and absorbing barriers at 0 and a.
What is the probability that A loses?
Let $\quad R_{j}=$ event A is ruined if he starts with $£ j$

$$
q_{j}=\mathrm{P}\left(R_{j}\right) \quad q_{0}=1 \quad q_{n}=0
$$

For $0<j<a$,

$$
\mathrm{P}\left(R_{j}\right)=\mathrm{P}\left(R_{j} \mid W\right) \mathrm{P}(W)+\mathrm{P}\left(R_{j} \mid \bar{W}\right) \mathrm{P}(\bar{W})
$$

where $W=$ event that A wins first bet.
Now $\mathrm{P}(W)=p, \mathrm{P}(\bar{W})=q$.

$$
\mathrm{P}\left(R_{j} \mid W\right)=\mathrm{P}\left(R_{j+1}\right)=q_{j+1}
$$

because, if he wins first bet he has $£(j+1)$.
So,

$$
q_{j}=q_{j+1} p+q_{j-1} q \quad j=1, \ldots,(a-1) \quad \text { RECURRENCE RELATION }
$$

To solve this, try $q_{k}=c x^{k}$

$$
\begin{aligned}
c x^{j} & =p c x^{j+1}+q c x^{j-1} \\
x & =p s^{2}+q \quad \text { AUXILIARY/CHARACTERISTIC EQUATIONS } \\
0 & =p x^{2}-x+q \\
0 & =(p x-q)(x-1) \\
\Rightarrow x & =q / p \quad x=1
\end{aligned}
$$

General solutions:

case 1: If the roots are distinct $(p \neq q)$

$$
q_{j}=c_{1}\left(\frac{q}{p}\right)^{j}+c_{2}
$$

case 2: If the roots are equal ($p=q=\frac{1}{2}$)

$$
q_{j}=c_{1}+c_{2} j .
$$

Particular solutions: using boundary conditions $q_{0}=1, q_{a}=0$ gives
case 1: $p \neq q$

$$
q_{0}=c_{1}+c_{2} \quad q_{a}=c_{1}\left(\frac{q}{p}\right)^{a}+c_{2}
$$

Giving,

$$
q_{j}=\frac{(q / p)^{j}-(q / p)^{a}}{1-(q / p)^{a}}
$$

case 2: $p=q=\frac{1}{2}$

$$
q_{0}=c_{1} \quad q_{a}=c_{1}+a c_{2}
$$

So,

$$
q_{j}=1-\frac{j}{a}
$$

i.e. If A begins with $£ j$, the probability that A is ruined is

$$
q_{j}= \begin{cases}\frac{(q / p)^{j}-(q / p)^{a}}{1-(q / p)^{a}} & p \neq q \\ 1-\frac{j}{a} & p=q=\frac{1}{2}\end{cases}
$$

5.2.1 B with unlimited resources

e.g. casino

Case 1: $\quad p \neq q$,

$$
q_{j}=\frac{(q / p)^{j}-(q / p)^{a}}{1-(q / p)^{a}}
$$

(a) $p>q$: As $a \rightarrow \infty, \quad q_{j} \rightarrow(q / p)^{j}$.
(b) $p<q$: As $a \rightarrow \infty$,

$$
q_{j}=\frac{(p / q)^{a-j}-1}{(p / q)^{a}-1} \rightarrow 1
$$

case 2: $p=q=1 / 2$.
As $a \rightarrow \infty, \quad q_{j}=1-j / a \rightarrow 1$.

So: If B has unlimited resources, A 's probability of ultimate ruin when beginning with $£ j$ is

$$
q_{j}= \begin{cases}1 & p \leq q \\ (q / p)^{j} & p>q\end{cases}
$$

5.2.2 Expected duration

Let $X=$ duration when A starts with $£ j$.
Let $\mathrm{E}(X)=D_{j}$.
Let $Y=A$'s winnings on first bet. So,

$$
\begin{aligned}
\mathrm{P} & (Y=+1)=p \quad \mathrm{P}(Y=-1)=q \\
\mathrm{E}(X) & =E_{Y}[E(X \mid Y)] \\
& =\sum_{y} E(X \mid Y=y) \mathrm{P}(Y=y) \\
& =\mathrm{E}(X \mid Y=1) p+\mathrm{E}(X \mid Y=-1) q
\end{aligned}
$$

Now

$$
\begin{array}{r}
\mathrm{E}(X \mid Y=1)=1+D_{j+1} \\
\mathrm{E}(X \mid Y=-1)=1+D_{j-1}
\end{array}
$$

Hence, for $0<j<a$

$$
\begin{aligned}
& D_{j}=\left(1+D_{j+1}\right) p+\left(1+D_{j-1}\right) q \\
& D_{j}=p D_{j+1}+q D_{j-1}+1
\end{aligned}
$$

-second-order, non-homogeneous recurrence relation - so, add a particular solution to the general solution of the corresponding homogeneous recurrence relation.
case 1: $p \neq q$ (one player has advantage)
General solution for

$$
D_{j}=p D_{j+1}+q D_{j-1} .
$$

As before $D_{j}=c_{1}+c_{2}(q / p)^{j}$.
Now find a particular solution for $D_{j}=p D_{j+1}+q D_{j-1}+1, \operatorname{try} D_{j}=j /(q-p)$:

$$
\begin{aligned}
\frac{j}{q-p} & =\frac{p(j+1)}{q-p}+\frac{q(j-1)}{q-p}+1 \\
j & =p j+q j
\end{aligned}
$$

So general solution to non-homogeneous problem is:

$$
D_{j}=c_{1}+c_{2}\left(\frac{q}{p}\right)^{j}+\frac{j}{(q-p)} .
$$

Find c_{1} and c_{2} from boundary conditions:

$$
\begin{gathered}
0=D_{0}=c_{1}+c_{2} \\
0=D_{a}=c_{1}+c_{2}\left(\frac{q}{p}\right)^{a}+\frac{a}{q-p} \Rightarrow c_{2}\left[1-\left(\frac{q}{p}\right)^{a}\right]=\frac{a}{q-p} . \\
\left\{\begin{array}{l}
c_{2}=\frac{a}{(q-p)\left[1-(q / p)^{a}\right]} \\
c_{1}=\frac{-a}{(q-p)\left[1-(q / p)^{a}\right]}
\end{array}\right.
\end{gathered}
$$

case 2: $p=q$.
General solution for

$$
D_{j}=p D_{j+1}+q D_{j-1} .
$$

As before $D_{j}=c_{1}+c_{2} j$. A particular solution is $D_{j}=-j^{2}$.
So general solution to non-homogeneous problem is:

$$
D_{j}=c_{1}+c_{2} j-j^{2} .
$$

Find c_{1} and c_{2} from boundary conditions:

$$
0=D_{0}=c_{1} \quad 0=D_{a}=-a^{2}+0+c_{2} a \Rightarrow c_{1}=0, c_{2}=a .
$$

So,

$$
D_{j}=j(a-j)
$$

Note: this may not match your intuition.
e.g. One player starts with $£ 1000$ and the other with $£ 1$. They each place $£ 1$ bets on a fair coin, until one or other is ruined. What is the expected duration of the game?

We have

$$
a=1001, j=1, p=q=\frac{1}{2}
$$

Expected duration

$$
D_{j}=j(a-j)=1(1001-1)=1000 \text { games! }
$$

5.3 Unrestricted random walks

(one without barriers)
Various questions of interest:

- what is the probability of return to the origin?
- is eventual return certain?
- how far from the origin is the particle likely to be after n steps?

Let $R=$ event that particle eventually returns to the origin.
$A=$ event that the first step is to the right.
$\bar{A}=$ event that the first step is to the left.

$$
\begin{gathered}
\mathrm{P}(A)=p \quad \mathrm{P}(\bar{A})=q=1-p \\
\mathrm{P}(R)=\mathrm{P}(R \mid A) \mathrm{P}(A)+\mathrm{P}(R \mid \bar{A}) \mathrm{P}(\bar{A})
\end{gathered}
$$

Now: event $R \mid A$ is the event of eventual ruin when a gambler with a starting amount of $£ 1$ is playing against a casino with unlimited funds, so

$$
\mathrm{P}(R \mid A)= \begin{cases}1 & p \leq q \\ q / p & p>q\end{cases}
$$

Similarly,

$$
\mathrm{P}(R \mid \bar{A})= \begin{cases}1 & p \geq q \\ p / q & p<q\end{cases}
$$

(by replacing p with q).
So

$$
p<q: \mathrm{P}(R)=2 p ; \quad p=q: \mathrm{P}(R)=1 ; \quad p>q: \mathrm{P}(R)=2 q .
$$

i.e. return to the origin is certain only when $p=q$.
$p=q$: the random walk is symmetric and in this case it is recurrent - return to origin is certain.
$p \neq q$: return is not certain. There is a non-zero probability it will never return the random walk is transient.

Note: same arguments apply to every state
\Rightarrow all states are either recurrent or transient,
\Rightarrow the random walk is recurrent or transient.

5.4 Distribution of X_{n} - the position after n steps

Suppose it has made x steps to the right and y to the left.
Then $x+y=n$, so $X_{n}=x-y=2 x-n$.
So n even $\Rightarrow X_{n}$ even
n odd $\Rightarrow X_{n}$ odd

In particular $\mathrm{P}\left(X_{n}=k\right)=0$ if n and k are not either both even or both odd.
Let

$$
W_{n}=\text { number positive steps in first } n \text { steps }
$$

Then $W_{n} \sim \operatorname{Binomial}(n, p)$.

$$
\begin{aligned}
\mathrm{P}\left(W_{n}=x\right) & =\binom{n}{x} p^{x} q^{n-x} \quad 0 \leq x \leq n \\
\mathrm{P}\left(X_{n}=2 x-n\right) & =\binom{n}{x} p^{x} q^{n-x} \\
\mathrm{P}\left(X_{n}=k\right) & =\binom{n}{(n+k) / 2} p^{(n+k) / 2} q^{(n-k) / 2}
\end{aligned}
$$

X_{n} is sum of n iid rvs, Z_{i}, so use CLT to see large n behaviour:
CLT: X_{n} is approx. $N\left(\mathrm{E}\left(X_{n}\right), \operatorname{var}\left(X_{n}\right)\right)$ large n.

$$
\begin{aligned}
\mathrm{E}\left(X_{n}\right) & =\sum \mathrm{E}\left(Z_{i}\right)=\sum[1 \times p+(-1) \times q]=n(p-q) . \\
\operatorname{var}\left(X_{n}\right) & =\sum \operatorname{var}\left(Z_{i}\right) \\
& =\sum\left[\mathrm{E}\left(Z_{i}^{2}\right)-\mathrm{E}^{2}\left(Z_{i}\right)\right] \\
& =n\left[(1 \times p+1 \times q)-(p-q)^{2}\right] \\
& =4 n p q .
\end{aligned}
$$

So,

- If $p>q$ the particle drifts to the right as n increases.
- this drift is faster, the larger p.
- the variance increases with n.
- the variance is smaller the larger is p.

5.5 Return Probabilities

Recall, probability of return of a SRW (simple random walk) with $p+q=1$ is 1 if symmetric $(p=q),<1$ otherwise $(p \neq q)$.

When does the return occur? Let,

$$
\begin{aligned}
f_{n} & =\mathrm{P}(\text { first return occurs at } n) \\
& =\mathrm{P}\left(X_{n}=0 \text { and } X_{r} \neq 0 \text { for } 0<r<n\right) \\
u_{n} & =\mathrm{P}(\text { some return occurs at } n) \\
& =\mathrm{P}\left(X_{n}=0\right)
\end{aligned}
$$

Since $X_{0}=0: u_{0}=1$
Define $f_{0}=0$ for convenience.
We also have $f_{1}=u_{1}=\mathrm{P}\left(X_{1}=0\right)$.
We have already found u_{n} :

$$
u_{n}=\mathrm{P}\left(X_{n}=0\right)=\left\{\begin{array}{cc}
\binom{n}{n / 2} p^{n / 2} q^{n / 2} & n \text { even } \\
0 & n \text { odd }
\end{array}\right.
$$

Let

$$
\begin{aligned}
R & =\text { Event: return eventually occurs, } f=\mathrm{P}(R) \\
R_{n} & =\text { Event: first return is at } n, f_{n}=\mathrm{P}\left(R_{n}\right)
\end{aligned}
$$

Then $f=f_{1}+f_{2}+\ldots+f_{n}+\ldots$
To decide if a RW is recurrent or not we could find the f_{n}. Easier to find a relationship between f_{n} and u_{n}.

Let

$$
\begin{aligned}
& F(s)=\sum_{n=0}^{\infty} f_{n} s^{n} \quad \text { a pgf if } \sum f_{n}=1: \text { true if recurrent } \\
& U(s)=\sum_{n=0}^{\infty} u_{n} s^{n} \quad \text { not a pgf because } \sum u_{n} \neq 1 \text { in general. }
\end{aligned}
$$

For any random walk

$$
\begin{aligned}
& u_{1}=f_{1} \\
& u_{2}=f_{1} u_{1}+f_{2}=f_{0} u_{2}+f_{1} u_{1}+f_{2} u_{0} \\
& u_{3}=f_{0} u_{3}+f_{1} u_{2}+f_{2} u_{1}+f_{3} u_{0}
\end{aligned}
$$

In general,

$$
\begin{equation*}
u_{n}=f_{0} u_{n}+f_{1} u_{n-1}+\ldots+f_{n-1} u_{1}+f_{n} u_{0} \quad n \geq 1 \tag{3}
\end{equation*}
$$

Now,

$$
\begin{aligned}
F(s) U(s) & =\left(\sum_{r=0}^{\infty} f_{r} s^{r}\right)\left(\sum_{q=0}^{\infty} u_{q} s^{q}\right) \\
& =\sum_{n=0}^{\infty}\left(f_{0} u_{n}+f_{1} u_{n-1}+\ldots+f_{n} u_{0}\right) s^{n} \\
& =\sum_{n=1}^{\infty} u_{n} s^{n} \quad \text { from } 3 \text { and } f_{0} u_{0}=0 \\
& =\sum_{n=0}^{\infty} u_{n} s^{n}-u_{0} \\
& =U(s)-1 .
\end{aligned}
$$

That is

$$
U(s)=1+F(s) U(s) ; \quad F(s)=1-\frac{1}{U(s)}, U(s) \neq 0
$$

Let $s \rightarrow 1$ to give $\sum f_{n}=1-1 / \sum u_{n}$,
So: $\sum f_{n}=1$ iff $\sum u_{n}=\infty$
\Rightarrow a RW is recurrent iff sum of return probabilities is ∞.

