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1 Introduction

Most of this course is about RANDOM PROCESSES or STOCHASTIC PRO-

CESSES (SPs). SPs are systems which evolve in time (usually) whilst undergoing

random fluctuations. This random variation is ubiquitous, one of the greatest steps

in understanding how the world works is through understanding chance:

• by learning what can be said about inherently unpredictable events.

• by learning how to manipulate the occurrence of inherently unpredictable

events.

This course is about the practical aspects of building useful models of real events

and discovering properties of these models NOT the mathematical niceties involved.

1.1 Examples

1. Epidemics: One of you catches ’flu

- what is the chance you’ll catch it?

- what is the chance you’ll catch it just before an exam?

- How many will catch it?

- will it spread throughout the college?

- will some people die of it? how many?

- How can we prevent a potential epidemic?

2. Genetics: If a couple’s first child is colour blind, what is the probability that

subsequent children will be?

3. Network traffic: In a network which passes messages randomly between

nodes:

- what’s the chance that two arrive together?

- what if the links have different transmission speeds?
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- is the behaviour different if the messages are of random lengths/different

lengths?

4. Simulated Annealing: a stochastic optimization strategy which can be guar-

anteed to find the global maximum of a multimodal function.

- how should the parameters be chosen to get the best results?

- how long will it take?

5. Markov Chain Monte Carlo (MCMC): is a modern statistical tool which

brings together results from SPs and simulation enabling potentially compu-

tationally intractable (Bayesian) statistics to be used in practice.
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2 Revision

2.1 Notation

Ω = event space = set of possible outcomes

• Coin: Ω = {H,T}.

• Die: Ω = {1, 2, 3, 4, 5, 6}.

• Number of people in a queue at a given time.

• Number of cars passing M1 bridge per hour.

Event is a subset of Ω : A ⊂ Ω.

Probability is a mapping P : Ω→ R such that

I: 0 ≤ P(A) ≤ 1 ∀ events A.

II: P(Ω) = 1.

III: If Ai ∩ Aj = φ ∀ i 6= j then

P(A1 ∪ A2 ∪ . . . ∪ An) =
n∑

i=1

P(Ai).

Addition Law: P(A ∪B) = P(A) + P(B)− P(A ∩B).

Conditional Prob:

P(A |B) =
P(A ∩B)
P(B)

P(B) 6= 0.

Independence: P(A ∩B) = P(A)P(B)

Complement: P(A) = 1− P(A).

De Morgans Laws:

P(A ∪B) = P(A ∩B)

P(A ∩B) = P(A ∪B)
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Theorem of Total Probability:

P(A) =
∑

i

P(A |Bi)P(Bi) where Bi ∩Bj = φ ∀ i 6= j;∪iBi = Ω.

Def: A random variable is a function

X : Ω→ R

Upper case: the name of the random variable

Lower case: particular values....

e.g. P(X = x) = 0.6 (P(x)).

Def: The probability function of a r.v. X gives the probability that X takes a

particular range of values in R.

2.2 Discrete Random Variables

Range of X contains finite or countably infinite number of points.

e.g. 1: Discrete Uniform

P(x) =
1

n
ΩX = n equally spaced points.

e.g. 2: Bernoulli

P(x) = px(1− p)1−x = pxq1−x ΩX = {0, 1}.

e.g. 3: Binomial p = P(success) X = Number of successes in n trials:

P(x) =

(
n

x

)

pxqn−x ΩX = {0, 1, . . . , n}, X ∼ Binomial(n, p).

e.g. 4: Geometric

p = P(success) X = Number of trials up to and including first success:

P(x) = qx−1p ΩX = {1, 2, . . .} X ∼ G1(x)

p = P(success) X = Number of trials before first failure:

P(x) = qpx ΩX = {0, 1, . . .} X ∼ G0(x)
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e.g. 5: Negative Binomial

p = P(success) X = Number of trials up to and including kth success:

P(x) =

(
x− 1
k − 1

)

pkqx−k ΩX = {k, k + 1, . . .}

e.g. 6: Poisson

P(x) =
e−μμx

x!
ΩX = {0, 1, . . .} X ∼ Poisson(μ).

2.3 Continuous Random Variables

Continuous sample space e.g. time, length.

CDF:

FX(x) = P(X ≤ x) x ∈ R.

A continuous rv is one which has a continuous CDF.

PDF:

f(x) = F
′
(x).

Expectation:

E(X) =
∫

xf(x) dx.

If X can take only positive values

E(X) =
∫ ∞

0
[1− F (x)] dx.

e.g. 1: Uniform

f(x) =






1
b−a a ≤ x ≤ b

0 otherwise

e.g. 2: Exponential

f(x) = λe−λx x ≥ 0; X ∼ Exponential(λ).

e.g. 3: Gamma

f(x) =
xn−1λne−λx

(n− 1)!
x ≥ 0; X ∼ Gamma(n, λ).

If Xi, i = 1, . . . , n are iid exponential rvs. Then X =
∑
Xi ∼ Gamma(n, λ).
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e.g. 4: Normal

f(x) =
1

σ
√
2π
exp

[

−
(x− μ)2

2σ2

]

x ∈ R; X ∼ N(μ, σ2).

Standard normal distribution: μ = 0, σ = 1.

Notation for normal: pdf: f(x) = φ(x), cdf: F (x) = Φ(x).

Central Limit Theorem:
X − μ
σ/
√
n
≈ N(0, 1).
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3 Random/Stochastic Processes

A collection of rvs {X(t); t ∈ R} or {Xn;n = 0, 1, 2, . . .}

Discrete Time random process - observed only at specific times.

e.g. Gambler’s ruin:

Player A has $k

Player B has $(a− k), a > k > 0

Play a series of games in which A has prob. p of winning and q = 1 − p of

losing.

Define rv Xn : A’s money after n games.

Then (X1, X2, . . . , Xn) is a realisation of a discrete time random process.

Continuous Time random process.

e.g. Number of customers in queue for ATM

e.g. Angle of barometer pointer

Discrete State Space

e.g. Gambler’s ruin.

e.g. ATM customers

Continuous State Space

e.g. Angle of barometer pointer

3.1 Some Fundamental Random Processes

1. Bernoulli Process

A sequence of Bernoulli trials: Y1, Y2, . . .. Each trial independent, same p.

Some questions of interest:

Q1: Xn =
∑n
i=1 Yi: What is the distribution of Xn?

Q2: What is the distribution of Xn given Xn−1?
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A1: Xn is number of successes in n trials ⇒ Xn ∼ Binomial(n, p)

A2: Only two possible values

Xn = Xn−1 or Xn = Xn−1 + 1

P(Xn = x |Xn−1 = x) = P(Yn = 0) = 1− p

P(Xn = x+ 1 |Xn−1 = x) = P(Yn = 1) = p

2. Poisson Process

Continuous time analogue of Bernoulli. Events occur at “random” times.

I: P(exactly 1 event occurs in any time interval of length δt) = λδt+ o(δt)

[o(δt)/δt→ 0 as δt→ 0]

II: P(2 or more . . . δt) = o(δt)

III: Occurrence of events after time t is independent of occurrence of events

before t.

Let X(t) = number of events by t. Then X(t) ∼ Poisson(λt) (X(0) = 0).

(proof later....)

Let Tk be the time between (k − 1)th and kth events,

P(T1 > t) = P(no of events in [0, t])

= P(X(t) = 0)

=
e−λt(λt)0

0!
= e−λt.

Let cdf of T1 be F (t). Then F (t) = 1− P(T1 > t) = 1− e−λt

So f(t) = λe−λt (Exponential).

By III, Tk has the same distribution.

Let Wn be the time to the nth event.

So, Wn = T1 + . . .+ Tn

Since Ti ∼ Exponential(λ) iid, Wn ∼ Gamma(n, λ).

3. Simple Birth Process

A population of individuals, such that each one gives birth to new individuals

at rate β. e.g. bacterial colony, cancer cells.
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If population is of size x at time t then overall birth rate is βx

I: P(exactly 1 birth in short interval of length δt) = βxδt+ o(δt)

II: P(2 or more births in interval δt) = o(δt)

III: Any individuals probability of giving birth after t is independent of events

before t.

Might be interested in:

-X(t) = size of population at t

- Wn = time to nth birth

- Tn = time between (n− 1)th and nth birth

For some processes (e.g. Poisson) the maths is simple. For others the maths is

difficult/impossible, in which case we can resort to either simulation methods or

adopt a deterministic approach (model average, large population).

3.2 Poisson Deterministic Model

P(1 event in [t, t+ δt]) = λδt+ o(δt)

P(0 event in [t, t+ δt]) = 1− λδt+ o(δt)

⇒ Expected number of events in [t, t+ δt]

= 1× (λδt+ o(δt)) + 0× (1− λδt+ o(δt))

= λδt+ o(δt)

Deterministic model: number of events in [t+ δt] is taken to be λδt+ o(δt).

Let D(t) = number events by t in deterministic model. Then

D(t+ δt) = D(t) + λδt+ o(δt)

⇒
D(t+ δt)−D(t)

δt
= λ+

o(δt)

δt

⇒
dD

dt
= λ

⇒ D(t) = λt+ c
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Figure 1: Sample trajectories vs. E(X(t)) = λt, λ = 2

and since D(0) = 0

D(t) = λt

Note: the trajectory of the average may have a different shape from any possible

trajectory.

e.g. X(t) ∼ Poisson(λt)⇒ E(X(t)) = λt (see Figure 1).

Note: This is a general method for finding the deterministic solution.

In general:

{X(t); t ≥ 0} is a stochastic process in continuous time

X(t) = number of events by t

D(t) = number of events by t in deterministic model

⇒ D(t+ δt) = D(t) + h(D, t)δt+ o(δt)

⇒
dD

dt
= h(D, t)
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Same general approach applies in discrete case:

e.g. A simple branching process

Some cultures pass surname via male offspring only. Let the number sons a man

has be a rv taking values 0, 1, 2, . . . and assume each man reproduces independently

of the others.

Start with 1 man (generation 0) and let Xn be the number in the nth generation

(x0 = 1).

In a deterministic approximation, assume each man produces s sons.

Then

xn = sxn−1

= s2xn−2

...

= snx0

= sn.

3.3 Point Processes

Stochastic processes consisting of events occurring in time.

Stationary: distribution of number of events occurring in (u, u+ t] is the same as

the distribution in (0, t] for all t > 0, u > 0.

e.g: stationary – Poisson process

Some rvs of interest:

- number of events by time t, X(t).

- time between (n− 1)th and nth, Tn

- time to nth event, Wn

Multivariate point process: each event may be one of several types.

e.g. occurrence of death in a population is a point process, but can categorise
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according to cause of death.

e.g. Poisson process with rate λ, each event one of k types.

P(type i) = pi
∑
pi = 1.

Occurrence of each type independent of others.

Consider occurrence of type i events in [t, t+ δt].

1.

P(1 type i event in [t, t+ δt]) = P(1 event in [t, t+ δt] and it’s type i)

= P(1 in [t, t+ δt])× P(type i | 1 event)

= (λδt+ o(δt))× pi

= λpiδt+ o(δt).

2.

P(> 1 event in [t, t+ δt]) = o(δt)

P(> 1 event of type i in [t, t+ δt]) = o(δt)

3. Events in a Poisson process are independent and the different types are inde-

pendent ⇒ type i events are mutually independent and occurrence of type i

event after t is independent of occurrence before t.

Occurrence of type i events is a Poisson process, rate λpi

e.g. k independent Poisson processes, with rates λ1, . . . , λk, occur simultaneously

and independently.

Consider events occurring in [t, t+ δt]:

1.

P(1 event) =
k∑

i=1

P(1 event of type i and no other)

=
k∑

i=1

[λiδt+ o(δt)]
k∏

j=1;j 6=i

[1− λjδt+ o(δt)]

=
k∑

i=1

[λiδt+ o(δt)] = (
∑
λi)δt+ o(δt).
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2.

P(> 1 event) = 1− P(1 event)− P(0 event)

P(0 event) =
k∏

i=1

[1− λiδt+ o(δt)]

= 1− (
∑
λi)δt+ o(δt)

⇒ P(> 1 event) = 1− [(
∑
λi)δt+ o(δt)]− [1− (

∑
λi)δt+ o(δt)]

= o(δt)

3. since the processes are independent, the 3rd postulate is satisfied.

Pooled process is a Poisson process with rate
∑
λi

Theorem (without proof) analogous to CLT

A superposition of k point processes in which ‘no single process dominates the rest’,

is asymptotically a Poisson process.

If the k processes are Poisson, the result is exact (c.f. sum k normals).

⇒ huge importance of Poisson process.

3.4 Non-homogeneous Poisson process

- λ changes with time: λ(t)

Consider X(t) - the number of events which have occurred by t.

pn(t) = P(X(t) = n) t > 0

po(0) = 1 pn(0) = 0, n = 1, 2, 3 . . . (Init. Cond.)

pn(t+ δt) = P(n events in (0, t] and 0 in [t, t+ δt])

+P(n− 1 events in (0, t] and 1 in [t, t+ δt])

+P(n− 2 events in (0, t] and 2 in [t, t+ δt])

+
...

+P(0 events in (0, t] and n in [t, t+ δt])

= pn(t)× [1− λ(t)δt+ o(δt)]

+pn−1(t)× [λ(t)δt+ o(δt)]
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+pn−2(t)× o(δt)

+
...

+p0(t)× o(δt)

= pn(t) + (pn−1(t)− pn(t))λ(t)δt+ o(δt)

⇒
pn(t+ δt)− pn(t)

δt
= (pn−1(t)− pn(t))λ(t) +

o(δt)

δt

As δt→ 0 we get

d

dt
pn(t) = (pn−1(t)− pn(t))λ(t) n = 1, 2, . . .

For n = 0, similarly

d

dt
p0(t) = −p0(t)λ(t) ⇒

1

p0(t)

d

dt
p0(t) = −λ(t)

Define

μ(t) =
∫ t

0
λ(u) du t ≥ 0 (so μ(0) = 0)

Then,

ln p0(t) = −μ(t) + c

Using p0(0) = 1, μ(0) = 0⇒ c = 0 so

p0(t) = e
−μ(t)

From this

d

dt
p1(t) = (p0(t)− p1(t))λ(t)

= e−μ(t)λ(t)− p1(t)λ(t)
d

dt
p1(t) + p1(t)λ(t) = e−μ(t)λ(t)

Multiply by integrating factor eμ(t):

eμ(t)
d

dt
p1(t) + p1(t)λ(t)e

μ(t) = λ(t)

d

dt
(p1(t)e

μ(t)) = λ(t)

⇒ p1(t)e
μ(t) = μ(t) + c

Using p1(0) = 0 and μ(0) = 0 gives c = 0, so

p1(t) = e
−μ(t)μ(t)
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By induction

pn(t) =
e−μ(t)[μ(t)]n

n!

That is: The number of events occurring in a non-homogeneous Poisson process

with rate λ(t) during the interval (0, t] has a Poisson process with parameter

μ(t) =
∫ t

0
λ(u) du t ≥ 0

Q: Given a non-homog. Poisson process with rate λ(t), what is the distribution of

the time to the first event?

A: Let T1 = time to first event.

Then

P(T1 > t) = P(0 events in (0, t])

= p0(t)

= e−μ(t)

So,

F (t) = 1− P(T1 > t) = 1− e
−μ(t)

f(t) = λ(t)e−μ(t)

In general:

The number of events occurring in a non-homogeneous Poisson process with rate λ(t)

during any interval (t1, t2] 0 ≤ t1 < t2, has a Poisson distribution with parameter

μ(t1, t2) =
∫ t2

t1

λ(t) dt = μ(t2)− μ(t1).

The time until the first event after t1 has pdf

f(t) = λ(t)e−μ(t1,t) t > t1.

3.5 Compound Poisson Process

Events arrive according to a Poisson process, X(t).

Each event is associated with another event, for which Yi occurrences occur, Yi iid.
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e.g. Cars arriving at airport: number occupants.

e.g. Earthquakes: no. killed.

e.g. Insurance claims: amount claimed.

Let Poisson process have rate λ and E(Yi) = μ, var(Yi) = σ
2.

Let S(t) = no. occurrences by t, then

S(t) =
X(t)∑

i=1

Yi.

Difficult to find distribution of S(t) because X(t) is a rv. So, let’s look at mean and

variance. (Later use pgfs).

1.

E(S(t)) =
∞∑

s=0

sP(S(t) = s)

=
∑

s

s
∞∑

x=0

P(S(t) = s |X(t) = x)P(X(t) = x)

=
∑

x

P(X(t) = x)
∑

s

sP(S(t) = s |X(t) = x)

=
∑

x

P(X(t) = x)xμ

= μλt (since E(X(t)) = λt)

−→ A general method E(X) = EY [E(X |Y )].

2.

var(S(t)) = λt(σ2 + μ2) Problem sheet.

3.6 Doubly-stochastic Poisson process

λ(t) is a rv.

e.g. I use a particular piece of software sporadically. When I do, I refer to the

manual at times which follow a Poisson process with rate λ.

So the rate of referral is randomly 0 or λ.
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3.7 General Point Processes: Notation

Mean time function of a point process is

μ(t) = E(X(t)).

Variance time function

σ2(t) = var(X(t)).

Index of dispersion

I(t) =
σ2(t)

μ(t)

e.g. Poisson process:

μ(t) = λt; σ2(t) = λt; I(t) = 1.

So: if events occur with mean time function λt, but more regularly that Pois-

son, I(t) < 1.

e.g. Compound Poisson process

μ(t) = μλt; σ2(t) = λt(σ2 + μ2); I(t) = μ+
σ2

μ
.

Let Y be the number of occurrences at each compound event, then

I(t) = μ+
σ2

μ
=
μ2 + σ2

μ
=
E(Y 2)

E(Y )

=

∑
y2P(y)

∑
yP(y)

=

∑
y2P(y)−

∑
yP(y) +

∑
yP(y)

∑
yP(y)

= 1 +

∑
y(y − 1)P(y)
∑
yP(y)

and this is > 1 unless P(y) = 0 for y > 1.

That is:

the index of dispersion of a compound Poisson process is greater

that 1 unless Y has a Bernoulli distribution.
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3.8 The autocorrelation function

The correlation between the number of events occurring in the intervals (0, t] and

(kt, (k + 1)t].

Denote the number of events in (kt, (k + 1)t] by X(kt, (k + 1)t), k = 0, 1, . . ..

For stationary processes

var (X(kt, (k + 1)t)) = σ2(t) ∀k

i.e. NOT a function of k. Also, the autocorrelation function of order k is

ρk(t) =
cov (X(0, t), X(kt, (k + 1)t))

σ2(t)
t > 0

For a Poisson process, ρk(t) = 0.

In fact, the autocorrelation function contains no information not already in the

variance-time function:

e.g. Let k = 0. Then

σ2(2t) = var (X(0, 2t))

= var (X(0, t) +X(t, 2t))

= var (X(0, t)) + var (X(t, 2t)) + 2cov (X(0, t), X(t, 2t))

= σ2(t) + σ2(t) + 2ρ1(t)σ
2(t)

So that

ρ1(t) =
σ2(2t)

2σ2(t)
− 1.

i.e. ρ1(t) is a function of variance-time function.
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