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seen ⇓1. a) {Xt} is second-order stationary if E{Xt} is a finite constant for all t, var{Xt} is
a finite constant for all t, and cov{Xt, Xt+τ} = sτ , a finite quantity depending
only on τ and not on t. 4

sim. seen ⇓
b)

Xt = αXt−1 + εt − 2αεt−1.

i)

(1− αB)Xt = (1− 2αB)εt

Φ(B)Xt = Θ(B)εt.

2

ii) For stationarity, roots of Φ(z) must lie outside the unit circle:

1− αz = 0 ⇒ z =
1

α
.

∣
∣
∣
∣
1

α

∣
∣
∣
∣ > 1 ⇒ |α| < 1.

For invertibility, roots of Θ(z) must lie outside the unit circle: 2

1− 2αz = 0 ⇒ z =
1

2α
.

∣
∣
∣
∣

1

2α

∣
∣
∣
∣ > 1 ⇒ |α| <

1

2
.

To ensure both stationarity and invertibility we must have 2

−
1

2
< α <

1

2
.

1

unseen ⇓
iii)

Xt = Θ(B)Φ−1(B)εt

= (1− 2αB)(1 + αB + α2B2 + α3B3 + . . .)εt

=
[
1 +B(α− 2α) +B2(α2 − 2α2) +B3(α3 − 2α3) + . . .

]
εt

=
[
1− αB − α2B2 − α3B3 − . . .

]
εt

= εt −
∞∑

j=1

αjεt−j .

5

iv)

var{Xt} = var





εt −

∞∑

j=1

αjεt−j






= σ2
ε +

∞∑

j=1

α2jσ2
ε

= σ2
ε

∞∑

j=0

α2j =
σ2
ε

1− α2
.

4
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sim. seen ⇓2. a) We have that σ2
ε = 1 and σ2

η = θ2.

sτ,X = cov{Xt, Xt+τ} = E{XtXt+τ}

= E{(εt + θεt−1)(εt + θεt−1)}

= E{εtεt+τ}+ θE{εtεt+τ−1}+ θE{εt−1εt+τ}+ θ2E{εt−1εt+τ−1}.

Above expectations are non-zero in the following cases:

t = t+ τ ⇒ τ = 0; t− 1 = t+ τ ⇒ τ = −1;

t = t+ τ − 1⇒ τ = 1; t− 1 = t+ τ − 1⇒ τ = 0.

Giving,

sτ,X =






σ2
ε + σ2

ε θ
2 = 1 + θ2 τ = 0

θσ2
ε = θ τ = ±1

0 otherwise,

and,

sτ,Y =






σ2
η + σ2

η
1
θ2 = θ2 + 1 τ = 0

1
θ
σ2
η = θ τ = ±1

0 otherwise,

so, sτ,X = sτ,Y . 8
For {Xt} to be invertible the roots of 1 + θz must lie outside the unit circle,
i.e., |θ| < 1.
For {Yt} to be invertible the roots of 1 + 1

θ
z must lie outside the unit circle,

i.e., |θ| > 1.
So, {Xt} is invertible and {Yt} is not. 2

unseen ⇓
b)

Xt = εt + (−1)t−1εt−1.

i)

E{Xt} = E{εt}+ (−1)t−1E{εt−1} = 0.

1

cov{Xt, Xt+τ} = E{XtXt+τ}

= E{(εt + (−1)t−1εt−1)(εt+τ + (−1)t+τ−1εt+τ−1)}

= E{εtεt+τ}+ (−1)t−1E{εt−1εt+τ}+

(−1)t+τ−1E{εtεt+τ−1}+ (−1)t−1(−1)t+τ−1E{εt−1εt+τ−1.}

Above expectations are non-zero when τ = 0,±1 (as in part (a)). Giving, 3

τ = 0 cov{Xt, Xt} = σ2
ε + (−1)t−1+t−1σ2

ε

= σ2
ε (1 + (−1)2(t−1)) = 2σ2

ε .

τ = 1 cov{Xt, Xt+1} = (−1)tσ2
ε

τ = −1 cov{Xt, Xt−1} = (−1)t−1σ2
ε

Giving,

cov{Xt, Xt+τ} =






2σ2
ε τ = 0

(−1)tσ2
ε τ = 1

(−1)t−1σ2
ε τ = −1

0 otherwise.
5

ii) {Xt} is not second order stationary as cov{Xt, Xt+τ} depends on t.
1
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seen ⇓3. a) A digital filter L that transforms an input sequence {xt} into an output sequence
{yt} is called a linear time-invariant (LTI) digital filter if it has the following
three properties:

[1] Scale-preservation:
L {{αxt}} = αL {{xt}} .

[2] Superposition:

L {{xt,1 + xt,2}} = L {{xt,1}}+ L {{xt,2}} .

[3] Time invariance:
If

L {{xt}} = {yt}, then L {{xt+τ}} = {yt+τ}.

Where τ is integer-valued, and the notation {xt+τ} refers to the sequence
whose t-th element is xt+τ . 3

b) i)

sτ,ε =

{
σ2
ε τ = 0

0 otherwise.

Sε(f) =

∞∑

τ=−∞

sτ,εe
−i2πfτ = σ2

ε |f | ≤
1

2
.

i.e., a constant spectrum. 3

sim. seen ⇓
ii)

L1{{e
i2πft}} = ei2πft − 0.2ei2πf(t−1)

= ei2πft(1− 0.2e−i2πf )

= ei2πftG1(f);

L2{{e
i2πft}} = ei2πft − 2ei2πf(t−1) + ei2πf(t−2)

= ei2πft(1− 2e−i2πf + e−i4πf )

= ei2πft(1− e−i2πf )2

= ei2πftG2(f).

so,
G1(f) = 1− 0.2e−i2πf and G2(f) = (1− e−i2πf )2.

4

iii)

|G1(f)|2 = |1− 0.2 cos(2πf) + i0.2 sin(2πf)|2

= (1− 0.2 cos(2πf))2 + 0.04 sin2(2πf)

= 1− 0.4 cos(2πf) + 0.04 = 1.04− 0.4 cos(2πf).

|G2(f)|2 = |1− e−i2πf |4

= ((1− cos(2πf))2 + sin2(2πf))2

= (1− 2 cos(2πf) + 1)2

= 4(1− cos(2πf))2 = 4(2 sin2(πf))2 = 16 sin4(πf).

Both |G1(f)|2 and |G2(f)|2 increase as the frequency increases from 0 to
0.5, so both are high pass filters. 6

iv) From the properties of LTI filters, we have,

|G2(f)|2SX(f) = |G1(f)|2Sε(f)

SX(f) =
(1.04− 0.4 cos(2πf))σ2

ε

16 sin4(πf)
.

Note here that {Xt} is not stationary. 4
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seen ⇓4. a)

E{ŝτ} =
1

N

N−|τ |∑

t=1

E{XtXt+|τ |}

=
1

N

N−|τ |∑

t=1

sτ

=
(N − |τ |)

N
sτ 6= sτ .

therefore, ŝτ is a biased estimator of sτ . 4

sim. seen ⇓
b)

E{XtXt−k} = φ1,2E{Xt−1Xt−k}+ φ2,2E{Xt−2Xt−k}+ E{εtXt−k}

sk = φ1,2sk−1 + φ2,2sk−2 + E{εtXt−k}.

For k = 1, 2, 3

s1 = φ1,2s0 + φ2,2s1

s2 = φ1,2s1 + φ2,2s0

Substitute estimators into the equations to obtain,

(
ŝ1

ŝ2

)

=

(
ŝ0 ŝ1

ŝ1 ŝ0

)(
φ̂1,2

φ̂2,2

)

⇒

(
φ̂1,2

φ̂2,2

)

=
1

ŝ2
0 − ŝ

2
1

(
ŝ0 −ŝ1

−ŝ1 ŝ0

)(
ŝ1

ŝ2

)

.

The Yule-Walker estimators are,

φ̂1,2 =
ŝ0ŝ1 − ŝ1ŝ2

ŝ2
0 − ŝ

2
1

; φ̂2,2 =
ŝ0ŝ2 − ŝ2

1

ŝ2
0 − ŝ

2
1

.

6

c) Letting k = 0,
s0 = φ1,2s1 + φ2,2s2 + σ2

ε .

The Yule-Walker estimator of σ2
ε is given by,

σ̂2
ε = ŝ0 − φ̂1,2ŝ1 − φ̂2,2ŝ2

= ŝ0 −
ŝ0ŝ

2
1 − ŝ

2
1ŝ2

ŝ2
0 − ŝ

2
1

−
ŝ0ŝ

2
2 − ŝ2ŝ

2
1

ŝ2
0 − ŝ

2
1

=
ŝ3

0 − 2ŝ0ŝ
2
1 + 2ŝ2

1ŝ2 − ŝ0ŝ
2
2

ŝ2
0 − ŝ

2
1

,

as required. 4

d) The Yule-Walker estimators can be formulated as a least squares problem by
explicitly adding zeros to the observations at the beginning and end of the data.

3
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unseen ⇓5. a)

Ŝ(p)(0) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

(Xt − c)

∣
∣
∣
∣
∣

2

=
1

N

([
N∑

t=1

Xt

]

−Nc

)2

=
1

N
(NX −Nc)2 = N(X − c)2.

4

b)

Ŝ(p)(fk) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

(Xt − c)e
−i2πfkt

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

N∑

t=1

Xte
−i2πfkt − c

N∑

t=1

e−i2πfkt

∣
∣
∣
∣
∣

2

.

From the hint:

N∑

t=1

e−i2πfkt =
e−i2πfk − e−i2πfk(N+1)

1− e−i2πfk

=
e−i2πk/N − e−i2πke−i2πk/N

1− e−i2πfk

=
e−i2πk/N (1− e−i2πk)

1− e−i2πfk

=
e−i2πk/N (1− 1)

1− e−i2πfk
= 0.

Therefore,

Ŝ(p)(fk) =

∣
∣
∣
∣
∣

N∑

t=1

Xte
−i2πfkt

∣
∣
∣
∣
∣

2

,

which is independent of c. 8
If the time series is demeaned (regardless of the estimator of the mean), this

only affects the periodogram at frequency 0. If c = X, Ŝ(p)(0) = 0. 2

seen ⇓
c) Processes with a large dynamic range are more likely to produce periodograms

which are biased – this is due to sidelobe leakage via the sidelobes of Féjer’s
kernel.

2
d) One way of reducing the bias is by tapering – this has the effect of changing

the shape of the Féjer’s kernel in the expression for the expectation of the
periodogram. The spectral estimator becomes (for a zero mean process)

Ŝ(d)(fk) =

∣
∣
∣
∣
∣

N∑

t=1

htXte
−i2πfkt

∣
∣
∣
∣
∣

2

.

where the real-valued sequence {h1, h2, . . . , hN} is the data taper. This taper
attenuates the values of the time series at the beginning and end, thus making
the transition to zero implied in the truncated sum of the definition of the
peridogram less abrupt. 4
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