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SOLUTIONS

M3S4/M4S4   APPLIED PROBABILITY
1.  SOLUTION
(a)  [Seen]
(i) [2]

[image: image1.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

.1

.

nn

n

pthpthoh

pthoh

oh

l

l

-

+=-+

++

+


(ii) [2]
Simplifying and rearranging the above, we obtain
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so that, in the limit as 
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In the special case of 
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(iii) [6]
Multiplying the equations in (1) by 
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Then, using 
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(iv) [3]
Integrating this equation yields
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so that 
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with 
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, and using the condition given in the question that 
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(v) [2]
This is the pgf of a Poisson distribution with parameter 
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(b) [5] [Seen similar]
The number of casualties which have occurred by time t is a compound Poisson process.  In the lectures we derived that the expected number of casualties in such a process is 
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 is the mean of the number of casualties at each accident (full marks for either remembering this or deriving it).  Since the mean of a 
[image: image20.wmf](

)

0

Gq

 distribution is 
[image: image21.wmf]qp

m

=

, we have that the mean number of casualties by time t is 
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2. SOLUTION

[Part seen]
 (i) [5]
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for 
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This is a geometric distribution with parameter 
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.   In the lectures we called it a 
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(ii) [5]
We have a geometric distribution with 
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Likewise, the pgf is
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(iii) [5]
From the lectures, the probability that the population will die out is given by the smallest positive root of 
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so that 
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 the smaller of these is 1, and if 
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(iv) [5]
From the lectures, we know that the expected number born in generation n is 
[image: image42.wmf]n
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 is the mean of the offspring probability distribution.  Hence, 
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As 
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3. SOLUTION
(a)  [Seen]

(i) [2] 
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(ii) [1] A set of states, C, which it is impossible to leave: 
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(iii) [2] Two states communicate if there is a non-zero probability of moving (perhaps in more than one step) from either state to the other.  A communicating class is a set of communicating states.

Since, by definition, each state communicates with itself, each state does lie in a communicating class.  To prove the assertion we need to show that no state lies in more than one such class.  This follows from the fact that if a state s lies in two such classes, A and B, then it is possible to get from an state in A to any state in B, and vice versa, via s.  Thus A  and B form a single communicating class.  An informal argument like this is acceptable, or a more formal one if they give it.

(b) [Unseen]
(i) [3]  
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(ii) [2]  Communicating classes: {0,1},  {2},  {3}.  Classes {2} and {3} are closed since, once entered, they cannot be left.

(iii)  [2] Any distribution of the form 
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(c) [Unseen]
(i) [6] Using the equations describing the first two elements and the fourth in 
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and combining these with 
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(ii) [2] The mean time between returns is 
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4. SOLUTION
 (i) [2] [Seen] Traffic intensity is the ratio of the expected value of the service time distribution to that of the inter-arrival time distribution.  The traffic intensity of an 
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(ii) [5] [Seen] For a steady state, we have 
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From these, 
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(iii) [5] [Seen] For the 
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.  The steady state queue length distribution is thus geometric.  In the lectures, we called it 
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(iv) [8] [Unseen] The mean queue length is 
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, either from memory or by deriving the mean of the geometric distribution in (iii).  Thus 
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5. SOLUTION
(a) [8] [Unseen] The equation is in Lagrange form with
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The auxiliary equations are
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The first equation gives 
[image: image85.wmf]2

dstdt

-=

òò

  from which 
[image: image86.wmf]2

1

cst

=+

.

The second equation gives 
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Now using the condition that 
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Hence the solution is 
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(b) [Seen similar]
(i) [2] The bacterial population is not wiped out at time t if no drug treatment has occurred by that time.  Since the rate at which doses of treatment are administered is 
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, the time interval between treatments is distributed as 
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(ii) [2] Either: since no treatment has occurred by time t, the population behaves according to a simple birth process, so that, from the lectures, its size at time t has a geometric distribution 
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(iii) [5] The unconditional probability distribution of 
[image: image104.wmf](

)

t

Y

 is given by


[image: image105.wmf](

)

(

)

(

)

(

)

t

e

t

Y

P

t

Y

P

g

-

-

=

>

-

=

=

1

0

1

0


and when 
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The pgf of 
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(iv)  [3] Differentiating 
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