5

5. (i) In a binary symmetric channel, where X denotes the digit transmitted and Y denotes the digit received, the following transmissions probabilities hold, with all transmissions independent.

$\mathbf{P}(Y=1 \mid X=1) =$	0.9	$\mathbf{P}(Y=0 \mid X=0)$	=	0.9
$\mathbf{P}(Y=1 \mid X=0) =$	0.1	$\mathbf{P}(Y=0 \mid X=1)$	=	0.1

The probability of a 1 being transmitted is 0.7.

- (a) Find the probability that a 0 is received.
- (b) If a 0 is received, find the probability that a 0 was transmitted.
- (c) If a 5 bit string of all zeros is transmitted, what is the probability that the received string will contain at most one error?
- (ii) In a study to design an email SPAM filter, the following events are defined
 - S: email is SPAM
 - A_1 : email contains the string "cheapest"
 - A_2 : email contains the string "meds"
 - A_3 : email contains the string "credit"

It is found that,

$$\begin{array}{rclrcrcrcr} P(A_1 \mid S) &=& 0.2 & P(A_2 \mid S) &=& 0.4 & P(A_3 \mid S) &=& 0.2 \\ P(A_1 \mid \overline{S}) &=& 0.05 & P(A_2 \mid \overline{S}) &=& 0.1 & P(A_3 \mid \overline{S}) &=& 0.01 \end{array}$$

Conditional on S assume that A_1, A_2 and A_3 are independent. Given that P(S) = 0.2, find the probability that the email is SPAM if

- (a) A_1 occurs (= p_1 , say).
- (b) both A_1 and A_2 occur (= p_2 , say).
- (c) A_1 , A_2 and A_3 occur (= p_3 , say).
- (d) Explain why $p_3 > p_2 > p_1$.

E. McCoy

M. Crowder

6

- 6. (i) The lifetime, T, of a particular component is normally distributed with mean 6 years and variance 0.25 years².
 What is the reliability of the component at 7 years?
 - (ii) The lifetimes, T_A and T_B of components of type A and B in hours, have probability density function

$$f(t) = \lambda e^{-\lambda t} \qquad t > 0,$$

with $\lambda = 0.1$ and $\lambda = 0.5$ for components A and B respectively.

- (a) Show that f(t) is a valid probability density function.
- (b) Determine the reliability functions and hazard rates associated with T_A and T_B .
- (c) Determine the reliability of each type of component at 90 minutes.
- (d) A system is made up of six components, A_1 and A_2 , of type A and B_1 , B_2 , B_3 and B_4 , of type B. All components operate independently and each have lifetimes as described above. The system functions as long as there a path of functioning components between S and T.

Determine the reliability of the system at 90 minutes.

E. McCoy

M. Crowder