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Abstract

The multinomial probit (MNP) model is a useful tool for describing discrete-choice data and there

are a variety of methods for fitting the model. Among them, the algorithms provided by Imai and

van Dyk (2005a), based on Marginal Data Augmentation, are widely used, because they are efficient

in terms of convergence and allow the possibly improper prior distribution to be specified directly on

identifiable parameters. Burgette and Nordheim (2012) modify a model and algorithm of Imai and

van Dyk (2005a) to avoid an arbitrary choice that is often made to establish identifiability. There is

an error in the algorithms of Imai and van Dyk (2005a), however, which affects both their algorithms

and that of Burgette and Nordheim (2012). This error can alter the stationary distribution and the

resulting fitted parameters as well as the efficiency of these algorithms. We propose a correction and

use both a simulation study and a real-data analysis to illustrate the difference between the original and

corrected algorithms, both in terms of their estimated posterior distributions and their convergence

properties. In some cases, the effect on the stationary distribution can be substantial.
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1 Introduction

The multinomial probit (MNP) model is widely used for describing discrete-choice data in social sciences

and transportation studies. It is often preferred over the multinomial logit model because it does not

assume independence of irrelevant alternatives; see, e.g., Hausman and Wise (1978) for details. Moreover,

the MNP model has a strong connection with the multiperiod probit model, for which binary choices are

observed over multiple time periods with correlated errors (McCulloch and Rossi, 1994).

The use of the MNP model was once restricted, because methods, like maximum likelihood estimates

or simulated moments (McFadden, 1989), require evaluating high-dimensional normal integrals, which are

typically intractable. More recently, advances in Bayesian simulations have boosted the development of

Markov chain Monte Carlo (MCMC) algorithms for fitting the MNP model (e.g., McCulloch and Rossi

(1994), Nobile (1998), McCulloch et al. (2000), Imai and van Dyk (2005a), and Burgette and Nordheim

(2012)). These algorithms avoided evaluating multidimensional integrals, provided reliable model fitting,

and thus revitalized the use of the MNP model in practice.

Current MCMC algorithms specify a set of latent Gaussian variables as augmented data, whose relative

magnitudes determine the choices. Since the augmented model is not identifiable given the observations,

a proper prior distribution is required to ensure that the posterior distribution is proper. McCulloch

and Rossi (1994) advocate a Gibbs sampler which was the first feasible Bayesian approach to fitting the

MNP model. In their specification, however, the prior distribution for the identifiable parameters is only

determined as a byproduct (Imai and van Dyk, 2005a, henceforth IvD). An improvement of McCulloch

and Rossi (1994) is the “hybrid Markov chain” introduced by Nobile (1998), which adds a Metropolis

step to sample the unidentifiable parameters. McCulloch et al. (2000) propose another modification of

McCulloch and Rossi (1994) which specifies a prior distribution directly on the identifiable parameters.

IvD review these MCMC algorithms, compare their computational performance, and find that, first, Nobile

(1998) can be less sensitive to starting values than McCulloch and Rossi (1994); second, although Nobile’s

method significantly improves the convergence of the overall chain, the gain seems to be primary for the

unidentifiable parameter with only slight gain for the identifiable ones; and third, although McCulloch

et al. (2000) solve the problem of prior specification, their algorithm can be less efficient in terms of

convergence than either McCulloch and Rossi (1994) or Nobile (1998) (This final point was also noted

by McCulloch et al. (2000) and Nobile (2000).) Moreover, IvD point out an error in Nobile’s derivation

which can alter its stationary distribution. Ironically, as we shall see, the algorithms of IvD also contain

an error.
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IvD develop new samplers based on the Marginal Data Augmentation (MDA) algorithm (Meng and

van Dyk, 1999). The new algorithms are easy to implement because they only include draws from standard

distributions. IvD demonstrate that first, their methods are at least as quick as the fastest methods in

terms of convergence, and second, the model is specified in terms of possibly improper prior distributions

that are set directly on the identifiable parameters, making the priors relatively easy to interpret. Because

of their apparent advantages, IvD’s algorithms have been widely used in practice to fit MNP models; see,

e.g., Berrett and Calder (2012), Burgette and Nordheim (2012), Chaudoin (2014), Horiuchi et al. (2007),

Hruschka (2007), Lu et al. (2012), Queralt (2012), Sinclair and Whitford (2013), Vincent et al. (2013),

Zhang et al. (2008), etc. This success has been aided by a popular R package (MNP , Imai and van Dyk

(2005b)).

Unfortunately, there are two errors in IvD’s algorithms; both occur when sampling the variance-

covariance matrix. First, IvD reparameterize the variables to facilitate the sampling of the variance-

covariance matrix, and they make a mistake when transforming to the original parameterization. Second,

when updating the variance-covariance matrix, a constraint on the matrix is overlooked. These errors can

alter the stationary distribution and hence the fitted values and standard errors of the model parameters.

They also can affect the efficiency of convergence.

Burgette and Nordheim (2012, henceforth BN) modify the model of IvD by changing the manner in

which unidentifiability in the scale is addressed. In particular, they fix the trace of the variance-covariance

matrix while IvD, like previous authors, fix the first diagonal element. BN’s algorithm for sampling from

the posterior distribution builds upon Algorithm 1 of IvD. Thus the two errors made by IvD also affect

BN’s algorithm. BN even make another mistake when updating the regression coefficient parameter, β.

In this paper, we explain how to correct the errors in algorithms of both IvD and BN, and use both a

simulation study and a real-data analysis to illustrate the difference between the original and the corrected

algorithms in terms of their estimated posterior distributions and convergence properties. The corrections

we propose will be implemented in the MNP R package.

The remainder of this paper is organized into five sections. We introduce the MNP model in Section 2.

In Section 3, we present the original algorithms in IvD and BN, point out their errors, and provide the

corrected algorithms. We also include a short review of MDA, which is used by all the algorithms we

consider. In Sections 4 and 5, we use a simulation study and a real-data example, respectively, to

illustrate the difference between the original and corrected algorithms. Conclusion and final remarks

appear in Section 6.
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2 Multinomial Probit Model

We consider a (p+ 1)-class multinomial model. Each observation is a binary (p+ 1)-vector, di = (di1, . . . ,

di,(p+1)). We model di by conditioning on a latent multivariate normal variable, Ui =
(
Ui1, . . . , Ui,(p+1)

)
;

dij is one if Uij is larger than all the other components of Ui. Specifically,

Ui ∼ Np+1

(
X0
i β,Σ

0
)
and dij =

 1 if Uij = max{Ui1, . . . , Ui,(p+1)}

0 otherwise
, for i = 1, . . . , n, (1)

where X0
i is a ((p + 1) × q) matrix of known covariates, β is a q-vector of unknown parameters, and Σ0

is a ((p+ 1)× (p+ 1)) unknown variance-covariance matrix.

Model (1) is unidentifiable because shifting Ui by any constant or rescaling Ui by any positive constant,

does not alter the distribution of di. To avoid this, IvD and BN both follow McCulloch and Rossi (1994),

by expressing each Uij relative to a base category (e.g., Ui,(p+1)), and obtain the new latent variable,

Wi = (Wi1, . . . ,Wip), where Wij = Uij −Ui,(p+1). The distribution of Wi is still multivariate normal, that

is,

Wi ∼ Np(Xiβ,Σ), (2)

where Xi = PX0
i and Σ = PΣ0PT with P = [Ip,−J ], with Ip a (p× p) identity matrix and J a column

p-vector of ones. For simplicity, we collapse di into Yi, which is an integer in {0, . . . , p}, defined as

Yi =

 0 if max{Wi1, . . . ,Wip}< 0

k if Wik = max{0,Wi1, . . . ,Wip}
, for i = 1, . . . , n. (3)

To ensure identifiability, we must also set the scale. IvD adopt the standard solution of McCulloch

and Rossi (1994); they set the first diagonal element of Σ to one, i.e., σ211 = 1. BN propose a different

solution; they fix the trace of the variance-covariance matrix, i.e., trace(Σ) = p. They argue that the trace

restriction is a better choice from three reasons. First, the trace restriction makes it possible to specify

a symmetric prior for Σ that is invariant to permutations of rows and columns. Second, when using the

variance-element restriction (as in IvD), the estimated predicted choice probabilities under the posterior

distribution can vary largely with the choice of the category corresponding to the unit variance. The trace-

restricted fits tend to be intermediate among the results of the p possible variance-element restricted fits.

Third, the trace restriction yields marginal posterior distributions that are easier to interpret.

To overcome difficulties stemming from the constraint, σ211 = 1, on the variance-covariance matrix,
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motivated by McCulloch and Rossi (1994), IvD set W̃i = αWi, for i = 1, . . . , n, where α > 0. Then

W̃i ∼ Np(Xiβ̃, Σ̃), where β̃ = αβ and Σ̃ = α2Σ. Because Σ̃ can be any positive-definite matrix, IvD

specify an inverse-Wishart prior distribution, Σ̃ ∼ Inv-Wishart(ν, S̃). After transforming to α2 = σ̃211 and

Σ = Σ̃/σ̃211, the implied prior distribution on (α2,Σ) is

α2|Σ ∼ α2
0trace(SΣ−1)/χ2

νp, and p(Σ) ∝ |Σ|−(ν+p+1)/2[trace(SΣ−1)]
−νp/2

I{σ211 = 1}, (4)

where S = S̃/α2
0 and the first diagonal element of S is one; I is an indicator function which equals one

when the condition in the brackets is satisfied, and zero otherwise. They also specify a normal prior

distribution for β, β ∼ Nq(β0, A). For simplicity, we set β0 = 0. BN adopt the same strategy for setting

their prior distribution in the context of the constraint, trace(Σ) = p. In particular, their implied prior

distribution for (α2,Σ) is almost the same as IvD except that

p(Σ) ∝ |Σ|−(ν+p+1)/2[trace(SΣ−1)]
−νp/2

I{trace(Σ) = p}, (5)

where trace(S) = p. They use the same prior distribution as IvD for β, i.e., β ∼ Nq(0, A). As IvD state,

this choice of prior distribution allows both informative and diffuse priors for unknown parameters while

maintaining simplicity and efficiency of the algorithms.

3 MDA Algorithms for Fitting MNP Models

3.1 Marginal Data Augmentation

The algorithms of IvD and BN are all based on the method of MDA. To describe and correct the errors

in these algorithms, we briefly review MDA. First, denoting (β,Σ) by θ, the Data Augmentation (DA)

algorithm (Tanner and Wong, 1987) is designed to sample from the posterior distribution, p(θ,W |Y ), by

updating from p(W |θ, Y ) and p(θ|W,Y ) iteratively. In this section, we regard Y , θ and W as generic

observed data, unknown parameter of interest, and latent variables, respectively.

Although easy to implement, the DA algorithm can be slow to converge. The MDA algorithm (Meng

and van Dyk, 1999) improves the convergence rate of a standard DA algorithm by expanding its state

space. Specifically, MDA introduces a working parameter, α, into the augmented-data model p(W,Y |θ);

α is not identifiable under the observed-data model p(Y |θ). An MCMC sampler is run on the expanded
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model p(W̃ , Y |θ, α), which is designed to maintain p(Y |θ) as its marginal distribution, that is,

∫
p(W̃ , Y |θ, α)dW̃ = p(Y |θ). (6)

A general method for introducing α into an augmented-data model is to use a one-to-one mapping,

W̃ = Fα(W ), for any given α, (7)

which is differentiable when W is continuous. For each F , there typically exists a value α0 such that Fα0

is an identity function, Fα0(W ) = W . With this construction, the MDA algorithm proceeds by iterating

Step 1: (W̃ (t+1), α?) ∼ p(W̃ , α|θ(t), Y ), (8)

Step 2: (θ(t+1), α(t+1)) ∼ p(θ, α|W̃ (t+1), Y ).

Note that in the sampler in (8), α is sampled in both steps and its first update is not part of the final

output. We define such updates as intermediate quantities and indicate them with superscript “?”. The

sampler in (8) is a collapsed DA sampler (Liu et al., 1994), since its two steps can be considered as

sampling W̃ and θ with α integrated out. In this regard, the sampler in (8) is equivalent to a standard

DA sampler constructed for the conditional distributions of p(W̃ , θ|Y ). Thus the marginal Markov chain,

{θ(t), t = 0, 1, . . . }, produced by the sampler in (8) is reversible with p(θ|Y ) as its stationary distribution.

Collapsing α out increases the (expected) variance of the conditional distributions sampled in (8). This

enables bigger jumps and faster convergence, see Meng and van Dyk (1999) and van Dyk and Meng (2001)

for more details.

3.2 Errors in Algorithms and the Corrections

We refer to Algorithms 1 and 2 of IvD as Algorithms 1.1 and 2.1. This allows us to clearly number

the corrected versions of these algorithms. Similarly, we refer to the algorithm of BN as Algorithm 3.1.

Algorithm 1.1 is displayed here and Algorithms 2.1 and 3.1 in Appendices A and B.

To obtain posterior samples under the MNP model, Algorithm 1.1 proceeds by sampling iteratively

from p(α2, W̃ |Y, β,Σ), p(α2, β|Y, W̃ ,Σ) and p(α2,Σ|Y, W̃ −αXβ, β). The first of these draws is obtained

via a sequence of conditional draws, see Step 1(b) of Algorithm 1.1. Note that this algorithm marginalizes

α out in each step. Algorithm 2.1 proceeds by sampling iteratively from p(α2, W̃ |Y, β,Σ), p(α2,Σ|Y,

W̃−αXβ, β) and p(β|Y,W,Σ), again using a sequence of conditional draws for updating W̃ . Algorithm 2.1
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Algorithm 1.1
Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0) and W (0).
while t < T do

Step 1: Update
(

(α2)
?
, W̃ ?

)
via p(α2, W̃ |Y, β(t),Σ(t)) by

(a) sampling (α2)
? from p(α2|Σ(t)): (α2)

? ∼ α2
0trace

(
SΣ(t)−1

)
/χ2

νp;

(b) sampling W̃ ? from p(W̃ ?|Y, (α2)
?
, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik from p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix C for details;

end for
Set W̃ ?

i = α?W ?
i .

end for
Step 2: Update

(
(α2)

?
, β(t+1)

)
via p(α2, β|Y, W̃ ?,Σ(t)) by

(a) sampling (α2)
? from p(α2|Y, W̃ ?,Σ(t)):

(α2)
? ∼

∑n
i=1 (W̃ ?

i −Xiβ̂)
T

Σ(t)−1
(W̃ ?

i −Xiβ̂) + β̂TA−1β̂ + trace
(
S̃Σ(t)−1

)
χ2
(n+ν)p

,

where β̂ =
(∑n

i=1X
T
i Σ(t)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t)−1

W̃ ?
i

)
;

(b) sampling β̃? from p(β̃|Y, W̃ ?, (α2)
?
,Σ(t)):

β̃? ∼ Nq

[
β̂, (α2)

?

(
n∑
i=1

XT
i Σ(t)−1

Xi +A−1

)−1]
,

and setting β(t+1) = β̃?/α?.

Step 3: Update
(

(α2)
(t+1)

,Σ(t+1)
)

via p(α2,Σ|Y, W̃ ?, β(t+1)) by

(a) sampling Σ̃? from p(Σ̃|Y,Z, β(t+1)):

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

ZiZ
T
i

)
,

where Zi = W̃ ?
i − α?Xiβ(t+1);

(b) setting α(t+1) = σ̃?11, Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, and W (t+1) = W̃ ?/α(t+1).

return β(t+1), Σ(t+1) and W (t+1)

t+ 1← t
end while

does not marginalize α out when sampling β. Algorithm 3.1 is an adaption of Algorithm 1.1. The only

difference occurs in Step 3 when sampling (α2,Σ). In Algorithm 1.1, α2 is set to the first element of Σ̃ in

Step 3(b), while it is set to trace(Σ̃)/p in Step 3(b) of Algorithm 3.1.

Unfortunately, there are two errors in these algorithms, which may severely alter their stationary

distributions, fitted values, and convergence properties. In Algorithm 1.1, both errors are in Step 3. The

first is rather simple. The transformation from (Z, β(t+1), α(t+1), Σ̃?) to the original parameterization

(W (t+1), β(t+1), α(t+1),Σ(t+1)) should involve setting

W
(t+1)
i =

(
Zi + α(t+1)Xiβ

(t+1)
)
/α(t+1), for i = 1, . . . , n, (9)
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Figure 1: The posterior samples of W7, W8, and W34 obtained with Algorithms 1.2 and 1.3 appear in the first and
second rows, respectively. The samples from Algorithm 1.2 not adhering to the constraint (10) are plotted in red.

instead ofW (t+1)
i = W̃ ?

i /α
(t+1), see Step 3(b). The correct inverse transformation is necessary to guarantee

that the joint stationary distribution of (W (t+1), β(t+1), α(t+1),Σ(t+1)) is the target posterior distribution.

The second problem is more subtle. When sampling Σ̃? while conditioning on Y , Z, and β(t+1),

Algorithm 1.1 uses Inv-Wishart(n + ν,
∑n

i=1 ZiZ
T
i ), see Step 3(a). This however ignores a constraint on

Σ̃? imposed by Y and the current value of Z and β. This constraint is on the first diagonal element of

Σ̃?, i.e., (σ̃?11)
2. In particular, if we set Z̃i (σ̃?11) = Zi + (σ̃?11)Xiβ

(t+1), for i = 1, . . . , n, the updated value

of σ̃?11 must satisfy

 max
{
Z̃i1 (σ̃?11) , . . . , Z̃ip (σ̃?11)

}
< 0 if Yi = 0

max
{

0, Z̃i1 (σ̃?11) , . . . , Z̃ip (σ̃?11)
}

= Z̃ik (σ̃?11) if Yi = k
, for i = 1, . . . , n. (10)

Thus, the conditional distribution of Σ̃? given Y , Z, and β(t+1) in Step 3(a) should be a constrained

inverse-Wishart distribution.

To illustrate the effect of the two corrections to Algorithm 1.1, we compare it with two new algorithms:

Algorithm 1.2: This is a partial correction to Algorithm 1.1. The only difference is that Algorithm 1.2

transforms (Z, β(t+1), α(t+1), Σ̃?) to (W (t+1), β(t+1), α(t+1),Σ(t+1)) using (9) in Step 3(b).
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Figure 2: Quantile-quantile plots for comparing posterior draws from different algorithms in the simulation study.
The columns correspond to five parameters, i.e., β1, β2, log

(
1+ρ12

1−ρ12

)
, log(σ2

22), and log(σ2
11). The first row compares

draws from Algorithms 1.1 and 1.3, the second row compares draws from Algorithms 2.1 and 2.2, and the last row
compares draws from Algorithms 3.1 and 3.2.

Algorithm 1.3: This algorithm completely corrects Algorithm 1.1. In particular, Steps 0, 1, and 2 of

Algorithm 1.3 are the same as Algorithm 1.1. In Step 3(a), however, Algorithm 1.3 updates Σ̃? by

sampling from a constrained inverse-Wishart distribution, that is,

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

ZiZ
T
i

)
subject to the constraint in (10).

This is accomplished by simple rejection sampling; we iteratively sample from the unconstrained

inverse-Wishart distribution until (10) is satisfied. Finally, in Step 3(b), Algorithm 1.3 sets α(t+1) =

σ̃?11, Σ(t+1) = Σ̃?/
(
α(t+1)

)2, and W (t+1)
i = (Zi + α(t+1)Xiβ

(t+1))/α(t+1).

Algorithms 2.1 and 3.1 are adaptions of Algorithm 1.1. Thus, both corrections affect these algorithms

as well. The corrected versions of Algorithms 2.1 and 3.1 are called Algorithms 2.2 and 3.2 respectively.

See Appendices A and B for details of these algorithms.
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Figure 3: The sampling results of Algorithm 1.1 for the simulation study. The columns correspond to trace plots,
autocorrelation plots, and histograms. The rows correspond to four parameters: β1, β2, log

(
1+ρ12

1−ρ12

)
, and log(σ2

22).

4 Simulation Study

We use a simulation study to illustrate the differences in the convergence properties of Algorithms 1.1, 1.2,

and 1.3, Algorithms 2.1 and 2.2, and Algorithms 3.1 and 3.2. We set n = 50, p = 2, q = 2, β = (−
√

2, 1),

Σ =
(

1 0.5
0.5 1

)
. For Xi =

(
Xi1,1 Xi1,2
Xi2,1 Xi2,2

)
, we sample Xij,1 (j = 1, 2) from a uniform distribution on

(−0.5, 0.5) for i = 1, . . . , 25, on (0.4, 1.5) for i = 26, . . . , 50, and sample Xij,2 (j = 1, 2) from a uniform

distribution on (−1, 1) for i = 1, . . . , 25, on (0.8, 3) for i = 26, . . . , 50. We specify the prior distribution of

Σ and α2 as in Section 2, with ν = p, α2
0 = ν, and S = Diag(1, 1), and for β, as β ∼ Nq[0,Diag(100, 100)].

For each algorithm, we run a chain of length 15,000 and discard the first 5,000 draws.

Figure 1 presents the posterior samples of W7, W8, and W34 obtained with Algorithms 1.2 and 1.3

respectively. The draws obtained with Algorithm 1.2 that do not adhere to the constraint (10) are colored

in red, which illustrates the second problem of Algorithm 1.1 described in Section 3.2. Such draws are

rejected in Step 3(a) of Algorithm 1.3.

Most importantly, Algorithms 1.1 (or 1.2), 2.1, and 3.1 do not return draws from the target poste-
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Figure 4: The sampling results of Algorithm 1.3 for the simulation study. The columns correspond to trace plots,
autocorrelation plots, and histograms. The rows correspond to four parameters: β1, β2, log

(
1+ρ12

1−ρ12

)
, and log(σ2

22).

rior distribution. Figure 2 shows the quantile-quantile plots of parameters to compare the stationary

distributions of original and corrected algorithms. The first row of Figure 2 compares Algorithms 1.1

and 1.3. The distributions of β differ slightly for the two algorithms, while the distributions of Σ dif-

fer significantly, especially the correlation parameter, ρ12 = σ12/(σ11σ22). For Algorithms 1.2 and 1.3

(not shown), the distributions of β are again similar, while the distributions of Σ again differ, but not

as severely as Algorithms 1.1 and 1.3. The second row shows the quantile-quantile plots that compare

Algorithms 2.1 and 2.2. The distributions of both β and Σ are slightly different for the two algorithms.

The last row of Figure 2 compares Algorithms 3.1 and 3.2. The distributions of β are rather similar for

the two algorithms, while the distributions of Σ are different, particularly ρ12 and σ222.

Figures 3 and 4 show the sampling results of Algorithms 1.1 and 1.3 respectively. The columns in

both figures correspond to trace plots, autocorrelation plots, and histograms. The rows correspond to four

parameters, namely, β1, β2, log
(
1+ρ12
1−ρ12

)
, and log(σ222). Algorithm 1.3 has better convergence properties

than Algorithm 1.1 for all the four parameters in terms of mixing and autocorrelation. The convergence of

11



Alg. 1.1 Alg. 1.2 Alg. 1.3 Alg. 2.1 Alg. 2.2 Alg. 3.1 Alg. 3.2

β1 0.693 1.592 1.610 1.575 2.111 1.935 2.573

β2 0.443 1.584 1.305 1.384 1.342 2.492 3.413

log
(
σ211
)

- - - - - 1.445 1.351

log
(
1+ρ12
1−ρ12

)
0.060 0.625 0.865 0.782 1.070 0.768 1.163

log
(
σ222
)

0.506 1.334 0.703 1.474 0.823 1.261 1.216

Table 1: Effective sample size per second for each of five parameters, i.e., β1, β2, log
(
σ2
11

)
, log

(
1+ρ12

1−ρ12

)
, and

log
(
σ2
22

)
in the simulation study, as obtained with Algorithms 1.1–1.3, Algorithms 2.1–2.2, and Algorithms 3.1–3.2

respectively.

Algorithm 1.2 is better than Algorithm 1.1, but not as good as Algorithm 1.3. Moreover, Algorithms 2.2

and 3.2 have slightly better convergence properties than Algorithms 2.1 and 3.1 respectively. We omit

the corresponding plots for Algorithms 1.2, 2.1, 2.2, 3.1, and 3.2 to save space.

To further compare the convergence properties of these algorithms, we compute the effective sample

size (ESS), defined by

ESS(θ) =
T

1 + 2
∑∞

t=1 ρt(θ)
, (11)

where T is the total posterior sample size and ρt(θ) is the lag-t autocorrelation of the parameter θ. ESS

gives an estimate of the equivalent number of independent iterations that a Markov chain represents,

and it indicates how well the chain mixes, see Kass et al. (1998) and Liu (2001). We use the function

“effectiveSize” in the R package coda to calculate ESS. To account for the required CPU time, we compare

ESS per second of these algorithms. The larger the value, the more efficient is the algorithm. The

first three columns in Table 1 present the ESS per second for each parameter for Algorithms 1.1–1.3,

respectively. The fourth and fifth columns correspond to Algorithms 2.1 and 2.2, and the last two

columns correspond to Algorithms 3.1 and 3.2. We find that in terms of ESS per second, Algorithm 1.3 is

more efficient than Algorithm 1.1 even though it is more computationally demanding per iteration, and it

performs similarly to Algorithm 1.2. Algorithm 2.2 performs similarly to Algorithm 2.1, and Algorithm 3.2

performs slightly better than Algorithm 3.1.
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Figure 5: Quantile-quantile plots for comparing Algorithms 1.1 and 1.3 in the margarine-purchase data analysis.

5 Data Analysis

For a further comparison of the algorithms, we consider a data set describing margarine purchases which is

available in the bayesm package of R. Following BN, we limit analysis to purchases of six brands: “Parkay

stick”, “Blue Bonnet stick”, “Fleischmanns stick”, “House brand stick”, “Generic stick”, and “Shedd Spread

tub”, and only consider the first purchase of one of these brands for each household. This results in a

dataset consisting of n = 507 observations.

We set “Parkay stick” as the base category, and p = 5. Again following BN, we set up a model that

only includes intercept terms for the other five categories and a coefficient for log prices. Thus q = 6, and

Xi = [Ip, gi], where Ip is the identity matrix and gi is the p-vector of differences in log prices between

each category and the base. We again specify the prior distribution for Σ and α2 as in Section 2, with

ν = p, α2
0 = ν, and S = Diag(1, . . . , 1), and for β, as β ∼ Nq[0,Diag(100, . . . , 100)]. When implementing

Algorithms 1.1, 1.3, 2.1 and 2.2, we set the variance corresponding to “Blue Bonnet stick” as one. For

each algorithm, we run a chain of length 300,000, discard the first 100,000 draws, and thin the rest draws

by 10. In this way we obtain 20,000 draws from each algorithm.
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Figure 6: Quantile-quantile plots for comparing Algorithms 2.1 and 2.2 in the margarine-purchase data analysis.

Figures 5, 6, and 7 present the quantile-quantile plots of selected parameters correspondingly sampled

with Algorithms 1.1 and 1.3, Algorithms 2.1 and 2.2, and Algorithms 3.1 and 3.2 respectively. The pa-

rameters we consider are β2, β3, β4, β6, log(σ211), log(σ222), log(σ255), log
(
1+ρ14
1−ρ14

)
, log

(
1+ρ23
1−ρ23

)
, log

(
1+ρ24
1−ρ24

)
,

log
(
1+ρ34
1−ρ34

)
, and log

(
1+ρ35
1−ρ35

)
. They are selected because their stationary distributions show relatively ob-

vious difference for all three pairs of original and corrected algorithms. We find that Algorithms 1.1, 2.1,

and 3.1 all fail to deliver draws from the target posterior distribution. The situation is most substantial for

Algorithm 1.1. Moreover, in terms of autocorrelation, Algorithm 1.3 performs substantially better than

Algorithm 1.1, while Algorithms 2.2 and 3.2 perform similarly as Algorithms 2.1 and 3.1 respectively. In

addition, Algorithms 1.3, 2.2, and 3.2 take around 15% more computational time than Algorithms 1.1, 2.1,

and 3.1 respectively.

6 Conclusion

The algorithms of IvD and BN are implemented in the popular R package MNP and are widely used

for fitting MNP models. We point out errors in these algorithms and propose corrections. Using both a
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Figure 7: Quantile-quantile plots for comparing Algorithms 3.1 and 3.2 in the margarine-purchase data analysis.

simulation study and a real-data analysis, we illustrate the difference between the original and corrected

algorithms. From these analyses, we find that the errors can significantly affect the final results, especially

in that they alter the stationary distribution and hence the fitted parameters. Considering the popularity

of these algorithms, it is important that they are corrected. We have done so here and will do it soon

in the MNP package. The corrected algorithms require some what more computational time due to the

additional rejection sampling steps, however, the extra computational time is small and at least in some

cases it is made up by the improved autocorrelation of the corrected algorithms.
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Algorithm 2.1
Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0) and W (0).
while t < T do

Step 1: Update
(
(α2)

?
, Z
)

from p(α2, Z|Y, β(t),Σ(t)) by

(a) sampling (α2)
? from p(α2|Σ(t)): (α2)

? ∼ α2
0trace

(
SΣ(t)−1

)
/χ2

νp;

(b) sampling Z from p(Z|Y, (α2)
?
, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik via p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix C for details;

end for
Set Zi = α?(W ?

i −Xiβ(t)).
end for
Step 2: Update

(
(α2)

(t+1)
,Σ(t+1)

)
via p(α2,Σ|Y,Z, β(t)) by

(a) sampling Σ̃? from p(Σ̃|Y,Z, β(t)):

Σ̃? ∼ Inv-Wishart

[
n+ ν,

n∑
i=1

ZiZi
T

]
;

(b) setting α(t+1) = σ̃?11, Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, and W (t+1)

i = (Zi + α(t+1)Xiβ
(t))/α(t+1).

Step 3: Update β(t+1) via p(β|Y,W (t+1),Σ(t+1)):

β(t+1) ∼ Nq

[
β̂,

(
n∑
i=1

XT
i Σ(t+1)−1

Xi +A−1

)−1]
,

where β̂ =
(∑n

i=1X
T
i Σ(t+1)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t+1)−1

W
(t+1)
i

)
.

return β(t+1), Σ(t+1), and W (t+1)

t+ 1← t
end while

APPENDIX: Details of Algorithms 2.1–3.2

A Algorithms 2.1 and 2.2

Algorithm 2 of IvD does not marginalize α out when updating β. We call this algorithm Algorithm 2.1

in this paper. Algorithm 2.1 can be used when the prior mean of β, β0, is not equal to zero, while

Algorithm 1.1 can not.

The error arises in Step 2(a), which is the same as the error in Step 3(a) of Algorithm 1.1. Thus the

correction to Algorithm 2.1 is

Algorithm 2.2: Steps 0, 1, and 3 of Algorithm 2.2 are the same as Algorithm 2.1. In Step 2(a), however,

Algorithm 2.2 updates Σ̃? by sampling from a constrained inverse-Wishart distribution, that is,

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

ZiZ
T
i

)
subject to the constraint in (10).
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Algorithm 3.1
Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0) and W (0).
while t < T do

Step 1: Update
(

(α2)
?
, W̃ ?

)
via p(α2, W̃ |Y, β(t),Σ(t)) by

(a) sampling (α2)
? from p(α2|Σ(t)): (α2)

? ∼ α2
0trace

(
SΣ(t)−1

)
/χ2

νp;

(b) sampling W̃ ? from p(W̃ ?|Y, (α2)
?
, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik from p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix C for details;

end for
Set W̃ ?

i = α?W ?
i .

end for
Step 2: Update

(
(α2)

?
, β(t+1)

)
via p(α2, β|Y, W̃ ?,Σ(t)) by

(a) sampling (α2)
? from p(α2|Y, W̃ ?,Σ(t)):

(α2)
? ∼

∑n
i=1 (W̃ ?

i −Xiβ̂)
T

Σ(t)−1
(W̃ ?

i −Xiβ̂) + β̂TA−1β̂ + trace
(
S̃Σ(t)−1

)
χ2
(n+ν)p

,

where β̂ =
(∑n

i=1X
T
i Σ(t)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t)−1

W̃ ?
i

)
;

(b) sampling β̃? from p(β̃|Y, W̃ ?, (α2)
?
,Σ(t)):

β̃? ∼ Nq

[
β̂, (α2)

?

(
n∑
i=1

XT
i Σ(t)−1

Xi +A−1

)−1]
,

and setting β(t+1) = β̃?/α?.

Step 3: Update
(

(α2)
(t+1)

,Σ(t+1)
)

via p(α2,Σ|Y, W̃ ?, β(t+1)) by

(a) sampling Σ̃? from p(Σ̃|Y,Z, β(t+1)):

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

ZiZ
T
i

)
,

where Zi = W̃ ?
i − α?Xiβ(t+1);

(b) setting α(t+1) =
√

trace(Σ̃?/p), Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, β(t+1) = β̃?/α(t+1), and W (t+1) = W̃ ?/α(t+1).

return β(t+1), Σ(t+1), and W (t+1)

t+ 1← t
end while

Note that β(t+1) in Z̃i (σ̃?11) of the constraint (10) should be replaced by β(t) in Algorithm 2.2.

B Algorithms 3.1 and 3.2

We call the algorithm of BN Algorithm 3.1 in this paper. Algorithm 3.1 is almost the same as Algo-

rithm 1.1. The only difference is Step 3(b). Specifically, first, in Algorithm 3.1, α2 in this step is set to

trace(Σ̃)/p, while in Algorithm 1.1, α2 is set to the first element of Σ̃; second, Algorithm 3.1 sets β = β̃/α

in Step 3(b), while Algorithm 1.1 not.

Besides applying the two corrections to Step 3 of Algorithm 3.1, we further remove “β(t+1) = β̃?/α(t+1)”
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in Step 3(b) of Algorithm 3.1, because we update Σ̃? conditioning on (Y,Z, β(t+1)), not on (Y, W̃ ?, β̃?).

Thus, we get

Algorithm 3.2: This algorithm completely corrects Algorithm 3.1. In particular, Steps 0, 1, and 2 of

Algorithm 3.2 are the same as Algorithm 3.1. In Step 3(a), however, Algorithm 3.2 updates Σ̃? by

sampling from a constrained inverse-Wishart distribution, that is,

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

ZiZ
T
i

)
subject to the constraint (10?).

Constraint (10?) is an adaption of (10) by replacing σ̃?11 with r =
√

trace(Σ̃?/p). Specifically,

Z̃i(r) = Zi + rXiβ
(t+1), for i = 1, . . . , n. The updated value of r must satisfy

 max
{
Z̃i1(r), . . . , Z̃ip(r)

}
< 0 if Yi = 0

max
{

0, Z̃i1(r), . . . , Z̃ip(r)
}

= Z̃ik(r) if Yi = k
, for i = 1, . . . , n. (10?)

Finally, in Step 3(b), Algorithm 3.2 sets α(t+1) =
√

trace(Σ̃?/p), Σ(t+1) = Σ̃?/
(
α(t+1)

)2, and

W
(t+1)
i = (Zi + α(t+1)Xiβ

(t+1))/α(t+1).

C Details of Sampling W in Step 1(b) of Algorithms 1.1–3.2

Updating W in Step 1(b) of Algorithms 1.1–3.2 consists of sampling from a series of univariate truncated

normal distributions, that is, for i = 1, . . . , n and k = 1, . . . , p,

W ?
ik ∼ TN(µik, τ

2
ik),

where µik = Xikβ
(t)+Σ

(t)
k,−kΣ

(t)−1
−k,−k(W

?
i,−k−Xi,−kβ

(t)) withW ?
i,−k =

(
W ?
i1, . . . ,W

?
i,(k−1),W

(t)
i,(k+1), . . . ,W

(t)
ip

)
,

and τ2ik =
(
σ
(t)
kk

)2
−Σ

(t)
k,−kΣ

(t)−1
−k,−kΣ

(t)
−k,k; Xik is the kth row of Xi, and Xi,−k is the sub-matrix of Xi with

Xik removed. The constraint on W ?
ik is, W ?

ik ≥ max{0,W ?
i,−k}, if Yi = k; W ?

ik < 0, if Yi = 0; and

W ?
ik ≤ max{0,W ?

ij}, if Yi = j 6= k.

If the constraint on W ?
ik has the form, W ?

ik ≥ w, and w ≤ 0, we update W ?
ik with simple rejection

sampling: we iteratively sample from the unconstrained normal distribution until W ?
ik ≥ w is satisfied. If

W ?
ik ≥ w, but w > 0, we update W ?

ik with the exponential rejection sampling proposed by Robert (1995).

If the constraint on W ?
ik has the form W ?

ik ≤ w, we can apply the above sampling scheme with slight

adaption, since −W ?
ik ≥ −w.
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