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Metropolis-Hastings within
Partially Collapsed Gibbs Samplers

David A. van Dyk and Xiyun Jiao∗

Abstract

The Partially Collapsed Gibbs (PCG) sampler offers a new strategy for improving the con-
vergence of a Gibbs sampler. PCG achieves faster convergence by reducing the conditioning
in some of the draws of its parent Gibbs sampler. Although this can significantly improve
convergence, care must be taken to ensure that the stationary distribution is preserved. The con-
ditional distributions sampled in a PCG sampler may be incompatible and permuting their order
may upset the stationary distribution of the chain. Extra care must be taken when Metropolis-
Hastings (MH) updates are used in some or all of the updates. Reducing the conditioning in
an MH within Gibbs sampler can change the stationary distribution, even when the PCG sam-
pler would work perfectly if MH were not used. In fact, a number of samplers of this sort
that have been advocated in the literature do not actually have the target stationary distribu-
tions. In this article, we illustrate the challenges that may arise when using MH within a PCG
sampler and develop a general strategy for using such updates while maintaining the desired
stationary distribution. Theoretical arguments provide guidance when choosing between differ-
ent MH within PCG sampling schemes. Finally we illustrate the MH within PCG sampler and
its computational advantage using several examples from our applied work.

Key Words:Astrostatistics; Blocking; Factor Analysis; Gibbs sampler; Incompatible Gibbs sam-
pler; Metropolis-Hastings; Metropolis within Gibbs; Spectral Analysis.

1 Introduction

The popularity of the Gibbs sampler stems from its simplicity and power to effectively generate

samples from a high-dimensional probability distribution. It can sometimes, however, be very

slow to converge, especially when it is used to fit highly structured or complex models. The

Partially Collapsed Gibbs (PCG) sampler offers a strategy for improving the convergence char-

acteristics of a Gibbs sampler (van Dyk and Park, 2008; Park and van Dyk, 2009; van Dyk and

Park, 2011). A PCG sampler achieves faster convergence by reducing the conditioning in some

or all of the component draws of its parent Gibbs sampler. That is, one or more of the complete
∗Professor David A. van Dyk holds a Chair in Statistics in the Department of Mathematics at Imperial College

London, SW7 2AZ (dvandyk@imperial.ac.uk); Xiyun Jiao is a postgraduate student in Statistics at Imperial College.

1
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
7:

54
 0

1 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

conditional distributions is replaced by the corresponding conditional distribution of a multivariate

marginal distribution of the target. For example, we might consider samplingp(ψ1|ψ2) rather than

p(ψ1|ψ2, ψ3), wherep(ψ1|ψ2) is a conditional distribution of the marginal distribution,p(ψ1, ψ2), of

the targetp(ψ1, ψ2, ψ3). This strategy has already been proven useful in improving the convergence

properties of numerous samplers (e.g., Bernardiet al., 2013; Berrett and Calder, 2012; Caronet al.,

2014; Dobigeon and Tourneret, 2010; Hanset al., 2012; Huet al., 2012, 2013; Kailet al., 2010,

2011; Lin and Tourneret, 2010; Lindstenet al., 2013; Parket al., 2008; Park and van Dyk, 2009;

Park, 2011; Parket al., 2012a,b; Zhao and Lian, 2014, etc.).

Although the PCG sampler can be very efficient, it must be implemented with care to make

sure that the stationary distribution of the resulting sampler is indeed the target. Unlike the ordi-

nary Gibbs sampler, the conditional distributions sampled in a PCG sampler may be incompatible,

meaning there is no joint distribution of which they are simultaneously the conditional distribu-

tions. In this case, permuting the order of the updates can change the stationary distribution of the

chain.

As with an ordinary Gibbs sampler, we sometimes find that one or more of the conditional

draws of a PCG sampler is not available in closed form and we may consider implementing such

draws with the help of a Metropolis-Hastings (MH) sampler. Reducing the conditioning in one

draw of an MH within Gibbs sampler, however, may alter the stationary distribution of the chain.

This can happen even when the PCG sampler would work perfectly well if all of the conditional

updates were available without resorting to MH updates. Examples arise even in a two-step MH

within PCG sampler. Woodardet al. (2012), for example, points out this problem in certain sam-

plers described in the literature for regression with functional predictors. Although they do not use

the framework of PCG, these samplers are simple special cases of improper MH within PCG sam-

plers. They first analyze the functional predictors in isolation of the regression and then use MH to

update the regression parameters conditional on parameters describing the functional predictors.

The first step effectively samples the functional parameters marginally and the second uses MH for

sampling from the complete conditional of the regression parameters. In this article we pay spe-

cial attention to this situation because it is both conceptually simple and important in practice. In

Section 3.2 we propose two simple strategies that maintain the target distribution and in Section 4
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we compare the performance of the two strategies theoretically.

In this article, we illustrate difficulties that may arise when using MH updates within a PCG

sampler and develop a general strategy for using such updates while maintaining the target station-

ary distribution. We begin in Section 2 with two motivating examples that are chosen to review

the subtleties of the PCG sampler, illustrate the complications that arise when MH is introduced

into PCG, and set the stage for the methodological and theoretical contributions of this article.

Section 2 ends by reviewing the method of van Dyk and Park (2008) for establishing the stationary

distribution of a PCG sampler. The MH within PCG sampler is introduced in Section 3 along with

methods for ensuring that its stationary distribution is the target distribution and several strategies

for implementing the sampler while maintaining this target. Theoretical arguments are presented

in Section 4 with the aim of guiding the choice between different implementations of the MH

within PCG sampler. The proposed methods and theoretical results are illustrated in Section 5 in

the context of several examples, including factor analysis and two examples from high-energy as-

trophysics. The factor analysis example contrasts the step-ordering constraints of MH within PCG

and of the related ECME algorithm (Liu and Rubin, 1994). Final discussion appears in Section 6

and technical details of several of the MH within PCG samplers appear in an online appendix.

2 Background and Motivating Examples

2.1 Notation

We aim to sample from the target distribution,p(ψ), by constructing a Markov chain{ψ(t), t =

1,2, . . . } with the stationary distributionπ(ψ), whereψ is a multivariate random variable. That is,

we aim to construct a Markov chain such thatπ(ψ) = p(ψ). We refer to a sampler asproperif it has

a stationary distribution and that distribution coincides with the target, i.e.,π(ψ) = p(ψ); otherwise

we call the samplerimproper. Typically p(ψ) is the posterior distribution in a Bayesian analysis,

but this is not necessary. In data-driven examples, we use standard Bayesian notation.

To facilitate discussion of the relevant samplers, we divideψ into J possibly multivariate non-

overlapping subcomponents, i.e.,ψ = (ψ1, . . . , ψJ), and defineJ = {1,2, . . . , J}. The methods

that we consider are Gibbs-type samplers that rely on the conditional distributions of eitherp(ψ)
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or its multivariate marginal distributions. When conditional distributions cannot be sampled di-

rectly, we may use MH. For example, suppose we wish to sample the conditional distribution

p(ψ j1|ψ j2) of the marginal distributionp(ψ j1, ψ j2), but cannot do so directly. In this case, we spec-

ify a jumping rule (i.e., a proposal distribution), denoted byJ j1| j2(ψ j1|ψ
′
j1
, ψ′j2, ψ

′
j3
), where the sub-

script specifies the target conditional distribution and we use primes to indicate the current value

of the subcomponents ofψ; notice that the jumping rule may depend on subcomponents other than

ψ′j1 andψ′j2, namely,ψ′j3. In the MH update, we sampleψprop
j1
∼ J j1| j2(ψ j1|ψ

′
j1
, ψ′j2, ψ

′
j3
) and set

ψ j1 = ψ
prop
j1

with probability r = min




1,

p(ψprop
j1
|ψ′j2)J j1| j2(ψ

′
j1
|ψprop

j1
, ψ′j2, ψ

′
j3
)

p(ψ′j1|ψ
′
j2
)J j1| j2(ψ

prop
j1
|ψ′j1, ψ

′
j2
, ψ′j3)




; otherwise the cur-

rent value is retained, i.e.,ψ j1 = ψ′j1. This MH transition kernel, denoted byM j1| j2(ψ j1|ψ
′
j1
, ψ′j2, ψ

′
j3
),

has stationary distributionp(ψ j1|ψ j2). We can also express the iterates explicitly. For instance,

ψ(t+1)
2 ∼ M2|1,3(ψ2|ψ

(t+1)
1 , ψ(t)

2 , ψ
(t)
3 ) is a typical expression for sampling from an MH transition ker-

nel with stationary distributionp(ψ2|ψ
(t+1)
1 , ψ(t)

3 ). Notice that this transition kernel depends onψ(t)
2

because the acceptance probability involvesψ(t)
2 and becauseψ(t+1)

2 is set toψ(t)
2 if the proposal is

rejected. Next we introduce two examples that illustrate the advantages and potential pitfalls that

may arise when using PCG samplers when MH is required for some of their updates.

2.2 Spectral analysis in X-ray astronomy

We begin with an example from our applied work in X-ray astronomy that involves a spectral anal-

ysis model that can be fitted with the Data Augmentation algorithm and Gibbs-type samplers (van

Dyk et al., 2001; van Dyk and Meng, 2010). We use variants of this example as a running illus-

tration of the methods we propose. The X-ray detectors used in astronomy are typically onboard

space-based observatories and record the number of photons detected in each of a large number

of energy bins. Spectral analysis aims to estimate the distribution of the photon energies. We use

Poisson models for the recorded photon counts, where the expected count is parameterized as a

function of the energy,Ei of bin i. A simple example is

Xi
ind∼ Poisson

{
Λi = α(Ei

−β + γI {i = μ})e−φ/Ei

}
, for i = 1, . . . , n, (1)

whereXi is the count in bini; α, β, γ, μ andφ are model parameters;I {∙} is the indicator function;

andn is the number of energy bins. TheαEi
−β term in (1) is acontinuum—a smooth term that
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extends over a wide range of energies. TheαγI {i = μ} term is anemission line—a sharp narrow

term that describes a distinct aberration from the continuum. The emission line in (1) is very narrow

in that it is contained entirely in one energy bin. The parameters of the continuum and emission

line describe the composition, temperature, and general physical environment of the source. The

factore−φ/Ei in (1) accounts for absorption—lower energy photons are more likely to be absorbed

by inter-stellar material and not be recorded by the detector. A typical spectral model might contain

multiple summed continua and emission lines. We use a simple example here to focus attention on

computational issues. Sinceα, β, γ andφ are often blocked in the samplers we discuss, we refer

to them jointly asθ = (α, β, γ, φ). We assume thatθ andμ area priori independent and thatμ is a

priori uniform on{1, . . . , n}.

In practice, we do not observeX = (X1, . . . ,Xn) directly because photon counts are subject to

stochastic censoring, misclassification, and background contamination. First, because the sensi-

tivity of the detector varies with energy, the probability that a photon is detected depends on its

energy. Combining this with background contamination,

X̃i | Xi
ind∼ Binomial

{
Xi ,Ai

}
+ Poisson(ξi), for i = 1, . . . , n, (2)

whereX̃ = (X̃1, . . . , X̃n) are the photon counts, including background, that are not absorbed,A =

(A1, . . . ,An) is theeffective areaof the detector which describes its sensitivity, andξ = (ξ1, . . . , ξn)

is the expected background count. Second, misclassification occurs because a photon with en-

ergy Ei has probabilityPi j of being recorded in binj. Combining these effects, the conditional

distribution of the observed photon countsY = (Y1, . . . ,Yn) given X̃ is

Y | X̃ ind∼
n∑

i=1

Multinomial
{
X̃i , (Pi1, . . . ,Pin)

}
, (3)

and marginally,

Yj
ind∼ Poisson

{ n∑

i=1

Pi j (AiΛi + ξi)
}
, for j = 1, . . . , n, (4)

whereΛi is given by (1). WhileA andP = {Pi j } are typically assumed known from instrumental

calibration (see Leeet al., 2011, and Xuet al., 2014, for an exception),ξ is often specified in terms

of a number of unknown parameters.
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The model in (1) is a finite mixture model and can be fitted via the standard data augmentation

scheme that setsXi = XiC+XiL, whereXiC
ind∼ Poisson

(
αEi

−βe−φ/Ei
)
andXiL

ind∼ Poisson
(
αγI {i = μ}e−φ/Ei

)
,

are the photon counts in bini generated from the continuum and emission line, respectively. We

consider samplers that targetp(X,XL, θ, μ|Y) rather thanp(θ, μ|Y) both because the ideal data,X, is

of scientific interest and because its introduction simplifies the complete conditional distributions,

especially in more complex models with multiple summed continua and spectral lines. Assuming

ξ is known, this leads to a Gibbs sampler for (1)–(4):

Step 1: (X(t+1),X(t+1)
L ) ∼ p(X,XL|Y, θ(t), μ(t)), (Sampler 1)

Step 2:θ(t+1) ∼ p(θ|Y,X(t+1),X(t+1)
L , μ(t)),

Step 3:μ(t+1) ∼ p(μ|Y,X(t+1),X(t+1)
L , θ(t+1)),

whereXL = (X1L, . . . ,XnL). We separateμ and θ into two steps to facilitate derivation of the

partially collapsed versions of this sampler. BecauseXL completely specifies the line location,μ,

Varπ(μ|XL) = 0, Sampler 1 is not irreducible, andμ(t) = μ(0) for all t, for any choice ofμ(0). This

problem can be solved by updatingμ without conditioning onXL. In particular, we can replace

Step 3 of Sampler 1 with (X(t+1)
L , μ(t+1)) ∼ p(XL, μ|Y,X(t+1), θ(t+1)) and permute the steps to

Step 1: (X?
L , μ

(t+1)) ∼ p(XL, μ|Y,X(t), θ(t)), (Sampler 2)

Step 2: (X(t+1),X(t+1)
L ) ∼ p(X,XL|Y, θ(t), μ(t+1)),

Step 3:θ(t+1) ∼ p(θ|Y,X(t+1),X(t+1)
L , μ(t+1)).

The sampledXL in Step 1 is denoted byX?
L because it is not an output of the Markov transition

kernel;XL is updated again in Step 2. In factX?
L is a redundant quantity in that it is not used at all

subsequent to Step 1 and replacing Step 1 withμ(t+1) ∼ p(μ|Y,X(t), θ(t)) does not alter the Markov

transition kernel of Sampler 2. The resulting sampler, that is,

Step 1:μ(t+1) ∼ p(μ|Y,X(t), θ(t)), (Sampler 3)

Step 2: (X(t+1),X(t+1)
L ) ∼ p(X,XL|Y, θ(t), μ(t+1)),

Step 3:θ(t+1) ∼ p(θ|Y,X(t+1),X(t+1)
L , μ(t+1)),
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is an example of a PCG sampler composed of incompatible conditional distributions. A variant of

this sampler was discussed in Park and van Dyk (2009).

By its construction, the stationary distribution of Sampler 3 isp(X,XL, θ, μ|Y), see Section 2.4.

Unlike an ordinary Gibbs sampler, however, permuting its steps may alter its stationary distri-

bution. Suppose, for example, we obtain (X(t),X(t)
L , θ

(t), μ(t)) from p(X,XL, θ, μ|Y) and updateμ

according to Step 1 of Sampler 3. The joint distribution of (X(t),X(t)
L , θ

(t), μ(t+1)) would be
∫

p(μ(t+1)|Y,X(t), θ(t))p(X(t),X(t)
L , θ

(t), μ(t)|Y)dμ(t) = p(X(t), θ(t), μ(t+1)|Y)p(X(t)
L |Y,X

(t), θ(t)). (5)

It is the conditional independence ofX(t)
L andμ(t+1) in (5) that makes Sampler 3 so much faster

than Sampler 1; recall Varπ(μ|XL) = 0. Because the joint distribution ofθ(t) andμ(t+1) in (5) is

their posterior distribution and Step 2 conditions only onθ(t) andμ(t+1), the joint distribution of the

unknowns after Step 2, that is, of (X(t+1),X(t+1)
L , θ(t), μ(t+1)), is again the target posterior distribution.

Thus a cyclic permutation of the steps in Sampler 3 that ends either with Step 2 or Step 3 results

in a proper sampler, but ending with Step 1 does not. With non-cyclic permutations, the stationary

distribution is unknown.

2.3 A common error in the simplest PCG sampler

The potential pitfalls of introducing MH updates into a PCG sampler can be illustrated using the

simplest possible PCG sampler. To see this, we start with a two-step Gibbs sampler with target

distributionp(ψ1, ψ2), where the second step relies on an MH update:

Step 1:ψ(t+1)
1 ∼ p(ψ1|ψ

(t)
2 ), (Sampler 4)

Step 2:ψ(t+1)
2 ∼ M2|1(ψ2|ψ

(t+1)
1 , ψ(t)

2 ).

While this sampler is proper, replacing Step 1 withψ(t+1)
1 ∼ p(ψ1) results in an improper sampler:

Step 1:ψ(t+1)
1 ∼ p(ψ1), (Sampler 5)

Step 2:ψ(t+1)
2 ∼ M2|1(ψ2|ψ

(t+1)
1 , ψ(t)

2 ).

The problem with Sampler 5 can be illustrated using a simulation study. Figure 1 compares 10,000
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draws generated by Samplers 4 and 5 withp(ψ1, ψ2) given by


ψ1

ψ2


 ∼ N2







0

0


 ,




1 0.9

0.9 1





 . (6)

The MH jumping rule in Step 2 of both samplers is a Gaussian distribution centered at the previous

draw with variance equal to 3. Sampler 5 underestimates the correlation of the target distribution

and overestimates the marginal variance ofψ2. Of course, if we repeat Step 2 a sufficient number of

times within each iteration of Sampler 5, it would deliver a draw (nearly) from its target,p(ψ2|ψ1),

and Sampler 5 would deliver (nearly) independent draws fromp(ψ1, ψ2). We discuss this strategy

for constructing an approximately proper sampler in Section 3.2. Similarly, iterating Step 2 of

Sampler 4 would (nearly) lead to a standard two-step Gibbs sampler.

The key to understanding the failure of Sampler 5 (without iterating Step 2) lies in the MH

jumping rule used in Step 2 of both samplers. The kernelM2|1 depends onψ(t)
2 through its

acceptance probability and its output if its proposal is rejected, thusM2|1 must be written as

M2|1(ψ2|ψ
(t+1)
1 , ψ(t)

2 ). AlthoughM2|1 delivers a draw fromp(ψ2|ψ
(t+1)
1 ) if given a sample (ψ(t+1)

1 , ψ(t)
2 )

from the target distribution, in Sampler 5,ψ(t+1)
1 andψ(t)

2 are independent andM2|1 does not deliver

a draw fromp(ψ2|ψ
(t+1)
1 ).

Unfortunately, there are several examples of samplers in the literature that have the same struc-

ture as the improper Sampler 5, for instance, Liuet al. (2009), Lunnet al. (2009), McCandless

et al. (2010), and even in the popular WinBUGS package (Spiegelhalter, Thomas, Best and Lunn

2003), see Section 5.1. These samplers do not generally exhibit the desired stationary distributions.

2.4 Convergence of the Partially Collapsed Gibbs sampler

A three-phase framework for deriving proper PCG samplers is given in van Dyk and Park (2008).

Consider the Gibbs sampler in Figure 2(a) that updates the components ofψ = (ψ1, ψ2, ψ3, ψ4) in

three steps. In the first phase of the framework, one or more steps of the parent Gibbs sampler

are replaced by steps that update, rather than condition on, some components ofψ. This is illus-

trated in Figure 2(b), where the updateψ1 ∼ p(ψ1|ψ′2, ψ
′
3, ψ

′
4) in Step 1 is replaced with (ψ1, ψ

?
3 ) ∼

p(ψ1, ψ3|ψ′2, ψ
′
4). Notice that in the modified step,ψ3 is sampled rather than conditioned upon. This
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conditioning reductionphase is key to the improved convergence properties of the PCG sampler.

By conditioning on less, we expect to increase the variance of the updating distribution, at least on

average. This is evident in Section 2.2 where the complete conditional forμ in Sampler 1 has zero

variance, but its update with reduced conditioning in Sampler 2 readily allowsμ to move across its

parameter space. More formally, van Dyk and Park (2008) showed that sampling more unknowns

in any set of steps of a Gibbs sampler can only reduce the so-called cyclic-permutation bound on

the spectral radius of the sampler. The resulting substantial improvement in the rate of convergence

is illustrated in the examples given in Bernardiet al.(2013), Berrett and Calder (2012), Caronet al.

(2014), Dobigeon and Tourneret (2010), Huet al.(2012), Huet al.(2013), Kailet al.(2010, 2011),

Lin and Tourneret (2010), Lindstenet al.(2013), Parket al.(2008), Park and van Dyk (2009), Park

et al. (2012a), Parket al. (2012b), and Zhao and Lian (2014), among others. (Conditioning reduc-

tion was calledmarginalizationby van Dyk and Park (2008).)

The conditioning reduction phase results in one or more components ofψ being updated in

multiple steps;ψ3 is updated in Steps 1 and 3 in Figure 2(b). If the same component is updated

in two consecutive steps (without MH), the Markov transition kernel does not depend on the first

update. We call quantities that are updated in a sampler, but do not affect its transition kernel

redundant quantities—they must be updated subsequently or they would be part of the output of

the iteration. The second phase of the framework is topermutethe steps of the sampler with

reduced conditioning to make as many of the updates redundant as possible. For example, we

permuted the steps in Figure 2(b) so thatψ3 is updated in Steps 2 and 3 of Figure 2(c) andψ?3 is

redundant.

In the third phase, redundant quantities are removed ortrimmedfrom the updating scheme.

For example, Step 2 in Figure 2(d) does not updateψ3. By construction, this does not affect the

overall transition kernel. The resulting step samples from a conditional distribution of a marginal

distribution of p(ψ). For example, Step 2 in Figure 2(d) simulates from a conditional distribu-

tion of p(ψ1, ψ2, ψ4) rather than ofp(ψ1, ψ2, ψ3, ψ4). We refer to steps that sample or target such

distributions asreduced stepsand to steps that sample or target a complete conditional asfull steps.

In some cases, the result of the three-phase framework is simply a blocked or collapsed (Liu

et al., 1994) version of the parent Gibbs sampler. In other cases, however, the resulting PCG sam-
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pler is composed of draws from a set of incompatible conditional distributions (e.g., Sampler 3).

Since all three phases preserve the stationary distribution of the parent sampler, we know that the

resulting PCG sampler is proper. Because reducing the conditioning can significantly improve the

rate of convergence of the sampler, while permutation typically has a minor effect, and trimming

has no effect on the rate of convergence, we generally expect the PCG sampler to exhibit better

and often much better convergence properties than its parent Gibbs sampler.

3 Using MH Algorithm within the PCG Sampler

3.1 Identifying the stationary distributions

We now consider the use of MH updates for some of the steps of a PCG sampler. As the example in

Section 2.3 illustrates, introducing MH into a well behaved PCG sampler can destroy the sampler’s

stationary distribution. Thus, care must be taken to guarantee that an MH within PCG sampler is

proper. Here we describe the basic complication that arises when MH is introduced into a PCG

sampler and give advice as to how to ensure that the sampler is proper.

When deriving a PCG sampler (without MH), the conditioning reduction phase means some

components ofψ are updated in multiple steps. If the same component is updated in consecutive

steps, the Markov transition kernel does not depend on the first update. The first update is therefore

redundant and can be omitted without affecting the stationary distribution of the chain.

This situation is more complicated when some of the steps of the PCG sampler require MH

updates. Suppose, for example, we wish to sample fromp(ψ) with ψ = (ψ1, ψ2, ψ3) using a proper

PCG sampler in whichψ1 andψ2 are jointly updated in StepK via a draw from the conditional

distribution p(ψ1, ψ2|ψ3). Suppose also thatψ2 is to be updated according to its full conditional

distribution,p(ψ2|ψ1, ψ3) in StepK +1, but this cannot be done directly and we wish to use an MH

update. The remaining unknowns,ψ3, are updated in other steps of the sampler, which perhaps

involve dividingψ3 into multiple subcomponents. That is, StepsK andK + 1 of the sampler are

StepK: (ψ(t+1)
1 , ψ?2 ) ∼ p(ψ1, ψ2|ψ′3), (Sampler Fragment 1)

StepK + 1: ψ(t+1)
2 ∼ M2|1,3(ψ2|ψ

(t+1)
1 , ψ?2 , ψ

′
3).
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If we were able to drawψ2 directly from its complete conditional distribution in StepK + 1, ψ?2

would be redundant and we could remove it from the sampler by replacing the update in StepK

with the reduced stepψ(t+1)
1 ∼ p(ψ1|ψ′3). The MH update in StepK + 1, however, depends onψ?2

and replacing it withψ(t)
2 may change the chain’s stationary distribution in an unpredictable way. In

short, the MH update used in StepK +1 means that we cannot reduce StepK. Generally speaking,

an MH update in a step that follows a reduced step is problematic because reduced steps result in

independences that do not exist in the target. (A reduced step that follows an MH step, however, is

not inherently problematic.) More precisely, the kernel,M j1| j2(ψ j1|ψ
′
j1
, ψ′j2, ψ

′
j3
), can generally only

be used if no component of (ψ j1, ψ j2, ψ j3) is trimmed in the previous step.

Luckily, the stationary distribution of an MH within PCG sampler can be verified using the

same methods that are used for an ordinary PCG sampler. In particular, the three-phase framework

of van Dyk and Park (2008) can be directly applied. The first two phases, conditioning reduction

and permutation, apply equally well to MH within Gibbs samplers. Neither updating additional

components ofψ in one or more steps nor permuting the order of the steps upsets the stationary dis-

tribution of an MH within Gibbs sampler. The final phase involves removing redundant updates.

Because an MH step generally depends on the current draws ofall of the components ofψ not

reduced out in that step, there are fewer redundant draws when some steps involve MH. Nonethe-

less, any redundant updates that are identified can safely be removed in the trimming phase—by

definition they do not affect the transition kernel.The critical point is that unlike with an ordinary

Gibbs sampler, we cannot simply replace some of the component draws of a PCG sampler with

MH updates. Rather we must construct an MH within PCG sampler by applying the three-phase

framework.

Now suppose we wish to reduce the conditioning in an MH step. In Sampler Fragment 1, for

example, ifp(ψ3|ψ1, ψ2) is a standard distribution with known normalization, then we can evaluate

p(ψ2|ψ1) ∝ p(ψ1, ψ2) = p(ψ1, ψ2, ψ3)/p(ψ3|ψ1, ψ2) and sampleψ2 ∼ M2|1(ψ2|ψ′1, ψ
′
2). Replacing

StepK + 1 of Sampler Fragment 1 with this reduced MH step, however, can alter the chain’s

stationary distribution in unpredictable ways. Instead, we propose to replace the full MH step with

the reduced MH stepfollowed immediatelyby a direct draw from the complete conditional of the

reduced quantities. In Sampler Fragment 1 this would entail replacing StepK + 1 with

11
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StepK + 1 with Reduced Conditioning:ψ(t+1)
2 ∼ M2|1(ψ2|ψ

(t+1)
1 , ψ?2 ) andψ3 ∼ p(ψ3|ψ

(t+1)
1 , ψ(t+1)

2 ).

This strategy ensures that the target stationary distribution is maintained. The expectation is that

the updates of the reduced quantities will be trimmed after the steps are appropriately permuted and

that the reduced MH step can be employed in the final sampler. We denote the transition kernel

of the full step (i.e., the reduced MH step followed by the complete conditional of the reduced

quantities) byM?. In Sampler Fragment 1, we rewrite the step with reduced conditioning

StepK + 1 with Reduced Conditioning: (ψ(t+1)
2 , ψ3) ∼ M?

2,3|1(ψ2, ψ3|ψ
(t+1)
1 , ψ?2 ).

Notice that this full update is not formally an MH update and has the advantage that it does not

depend on all of the components ofψ. Thus, this step can follow a step that reducesψ3 out.

We now illustrate the construction of a proper MH within PCG sampler for the spectral model

given in (1). For simplicity, we assume thatX is observed directly and we can ignore (2)–(4).

Figure 3(a) gives a six-step Gibbs sampler. Three of its steps require MH updates; the details of all

the steps are given in Appendix B. The conditioning in four of the steps is reduced in Figure 3(b),

and the steps are permuted in Figure 3(c) to allow the redundant draws ofX?
L andα? to be trimmed

in four steps. Sampler 6, the resulting proper MH within PCG sampler, appears in Figure 4.

3.2 Using MH following a reduced step

Using a full MH step immediately following a reduced step can be problematic. Sampler 5 illus-

trates this in its simplest form: a draw from a marginal distribution followed by an MH update of

the conditional distribution of the remaining unknowns. As noted in Section 2.3 this is a particu-

larly common problem in practice, even in its simplest form. In more complicated PCG samplers,

the general phenomenon of introducing a full MH step immediately following a reduced step is

the typical path by which introducing MH leads to an improper sampler. This is illustrated in

Sampler Fragment 1, where we are unable to replace the update in StepK with the reduced step

ψ(t+1)
1 ∼ p(ψ1|ψ′3). Thus, this case is particularly important and we propose two alternate samplers

that maintain the basic structure of the underlying PCG sampler while allowing a form of MH in

the step following a reduced step. Both solutions are conceptually straightforward.
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We begin by studying a special case that is useful for illustrating the two alternative samplers

that we propose. We discuss the more general situation below. In particular we start in the general

setting of Sampler Fragment 1, but consider a PCG sampler in whichψ1 is updated in StepK via

a direct draw from the conditional distributionp(ψ1|ψ3) of the marginal distributionp(ψ1, ψ3), i.e.,

a reduced step. Again suppose that an MH update is required to updateψ2 in StepK + 1. That is,

StepsK andK + 1 of the parent PCG sampler are

StepK: ψ(t+1)
1 ∼ p(ψ1|ψ′3), (Sampler Fragment 2)

StepK + 1: ψ(t+1)
2 ∼ p(ψ2|ψ

(t+1)
1 , ψ′3).

Because MH is needed for StepK + 1, these steps cannot be blocked.

One straightforward general solution to the intractability ofp(ψ2|ψ
(t+1)
1 , ψ′3) is simply to iterate

the MH update within StepK + 1 to obtain a draw from the conditional distribution,

Iterated MH Strategy:

StepK: ψ(t+1)
1 ∼ p(ψ1|ψ′3), (Sampler Fragment 3)

StepK + 1: Sampleψ(t+l/L)
2 ∼ M2|1,3(ψ2|ψ

(t+1)
1 , ψ(t+(l−1)/L)

2 , ψ′3), for l = 1, . . . , L, to obtainψ(t+1)
2

approx∼

p(ψ2|ψ
(t+1)
1 , ψ′3) at the subiterationl = L.

We discuss methods for determining how largeL must be in Sections 4.1 and 5.1. With sufficiently

largeL, the iterated MH strategy delivers a draw that approximately followsp(ψ2|ψ
(t+1)
1 , ψ′3) and

thus the sampler isapproximately proper. In this special case the iterated MH strategy effectively

blocks StepsK andK + 1 to (nearly) deliver an independent draw fromp(ψ1, ψ2|ψ′3).

Another solution to the intractability ofp(ψ2|ψ
(t+1)
1 , ψ′3) is a joint MH update on the blocked

version of StepsK andK + 1,

Joint MH Strategy:

StepK: Update (ψ1, ψ2) jointly via an MH update with jumping ruleJ1,2|3(ψ1, ψ2|ψ
(t)
2 , ψ

′
3) = p(ψ1|ψ′3)J2|1,3(ψ2|ψ1, ψ

(t)
2 , ψ

′
3),

StepK + 1: Omit. (Sampler Fragment 4)

The jumping rule in StepK of Sampler Fragment 4 is exactly the concatenation of StepK and the

jumping rule in StepK + 1 of Sampler Fragment 3. By concatenating we avoid iteration. In the

13
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joint MH strategy, however, the proposedψ1 andψ2 are accepted or rejected together, whereas in

the iterated MH strategy only the proposedψ2 is accepted or rejected.

The iterated MH strategy is in some sense a thinned version of the joint MH strategy. This,

however, is an over simplification for two reasons. First, the iterated MH strategy updatesψ1 only

once for everyL updates ofψ2 whereas the joint MH strategy updates both together. Second,

although the jumping rule in the joint MH strategy is the same as that used by the iterated MH

strategy at its first subiteration, the acceptance probabilities differ. This results in a systematic

difference in the performance of the resulting samplers, see Section 4.1.

Generalizing Sampler Fragment 2, StepsK andK+1 may not block even without MH. Suppose

ψ = (ψ1, ψ2, ψ3, ψ4) and the parent PCG sampler contains the two steps

StepK: ψ(t+1)
1 ∼ p(ψ1|ψ

(t)
3 , ψ

′
4), (Sampler Fragment 5)

StepK + 1: (ψ(t+1)
2 , ψ(t+1)

3 ) ∼ p(ψ2, ψ3|ψ
(t+1)
1 , ψ′4),

where StepK is a reduced step and StepK + 1 cannot be sampled directly. Here the con-

ditional distributions cannot be blocked into a single step. We can still use the iterated MH

strategy in StepK + 1 to obtain a draw approximately fromp(ψ2, ψ3|ψ
(t+1)
1 , ψ′4) and an approxi-

mately proper sampler. Likewise we can implement the joint MH strategy, using the jumping rule

p(ψ1|ψ
(t)
3 , ψ

′
4)J2,3|1,4(ψ2, ψ3|ψ1, ψ

(t)
2 , ψ

(t)
3 , ψ

′
4). The stationary distribution of the joint jumping rule is

p(ψ1|ψ
(t)
3 , ψ

′
4)p(ψ2, ψ3|ψ1, ψ

′
4). Although a legitimate joint distribution on (ψ1, ψ2, ψ3), this does not

correspond to a conditional distribution ofp(ψ).

3.3 To block or not to block

Section 3.2 discusses the case where StepK + 1 of Sampler Fragment 2 requires MH. We now

consider the case where StepK requires MH. In particular,

StepK: ψ(t+1)
1 ∼ M1|3(ψ1|ψ

(t)
1 , ψ

′
3), (Sampler Fragment 6)

StepK + 1: ψ(t+1)
2 ∼ p(ψ2|ψ

(t+1)
1 , ψ′3).

Sampler Fragment 6 does not lead to convergence problems because the inputs to StepK+1 follow

the correct distribution; Figure A in the online appendix verifies the stationary distribution of its

parent chain.
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We might consider blocking the two steps in Sampler Fragment 6 into a single MH update as

StepK: Update (ψ1, ψ2) jointly via the MH jumping rule J1,2|3(ψ1, ψ2|ψ
(t)
1 , ψ

′
3) =

J1|3(ψ1|ψ
(t)
1 , ψ

′
3)p(ψ2|ψ1, ψ

′
3),

StepK + 1: Omit. (Sampler Fragment 7)

The jumping rule in Sampler Fragment 7 is exactly the concatenation of the jumping rules in the

two steps of Sampler Fragment 6. There is a fundamental difference, however, in that the transition

kernel corresponding to the concatenated jumping rule depends onψ(t)
2 : if the MH proposal is

rejected, (ψ(t+1)
1 , ψ(t+1)

2 ) = (ψ(t)
1 , ψ

(t)
2 ), whereas neither of the steps in Sampler Fragment 6 depends

on ψ(t)
2 . This means that care must be taken to ensure blocking in this way does not upset the

stationary distribution of the chain.

Steps 3 and 4 of Sampler 6 are an example of Sampler Fragment 6, withψ1 = β, ψ2 = α and

ψ3 = (γ, μ, φ). Blocking Steps 3 and 4 of Sampler 6 results in Sampler 7, see the second panel of

Figure 4. Unfortunately, this is an improper sampler, which we verify using a simulation study.

We begin by generating an artificial data set consisting ofn = 550 bins withα = 37.62, β = 1,

γ = 40/37.62,μ = 250, andφ = 0.2, see Figure 5. We run two versions of Sampler 7. Sampler 7(a)

uses the concatenated jumping rule given in Sampler Fragment 7 to update (α, β), while Sampler

7(b) uses an independent bivariate normal jumping rule centered at the current value of (α, β). We

use a uniform prior distribution for each parameter, and run 30,000 iterations of Samplers 6, 7(a),

and 7(b) using the same starting values (α = 30, β = 3, γ = 1, μ = 10 andφ = 0.5). Scatter

plots of (α, β, φ) for the last 10,000 draws from the three samplers appear in Figure 6, which shows

that Samplers 7(a) and 7(b) underestimate the correlations of the target distribution; this effect is

especially dramatic for Sampler 7(b). Figure 7 compares the marginal distributions ofα, β, and

φ generated with Samplers 6 and 7(b), and shows that Sampler 7(b) underestimates the marginal

variances of all three parameters. (The marginals generated with Sampler 7(a) are more similar to

those generated with Sampler 6.)

The problem with Sampler 7 can be understood in the terms of Section 3.2. Blocking the

updates forα andβ results in an MH step that follows directly after a pair of reduced steps (the

updates ofμ andφ). If μ andφ were known, and Steps 1 and 2 were removed, both versions of

Sampler 7 would be proper. As it is, the stationary distribution of Sampler 7 cannot be verified
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with the three-phase framework.

The comparison between Sampler Fragments 6 and 7 is similar to that between the iterated and

joint MH strategies in Section 3.2. Theoretical perspectives on these choices appear in Sec. 4.

4 Theory

4.1 Comparing the iterated and joint MH strategies

In this section we compare the iterated and joint MH strategies in terms of their acceptance prob-

abilities. Although it is generally recognized that an acceptance probability of 20% to 40% is best

for a symmetric Metropolis jumping rule (Robertset al., 1997), we argue that the better choice be-

tween the two strategies is determined by maximizing the acceptance probability. This is because

both the iterated and joint MH strategies start with thesame proposal—they are numerically iden-

tical. The rule of thumb for tuning the acceptance probability to between 20% and 40% is based on

comparingdifferent proposal distributionswith an eye on avoiding high acceptance rates because

they typically correspond to jumping rules that propose very small steps. In this case the initial

step sizes are the same and we aim to reduce correlation by increasing the jumping probability. We

begin with theoretical results and then illustrate them numerically.

To simplify notation we suppress the conditioning onψ3 in Sampler Fragments 3 and 4. This

is equivalent to a formal comparison of the iterated and joint MH strategies as alternatives to the

improper two-step Sampler 5. We assume that (i) the sampler has been verified to be proper so that

π = p and (ii) the jumping rule used to updateψ2 does not depend onψ1, i.e.,J2|1(ψ2|ψ′1, ψ
′
2) =

J2|1(ψ2|ψ′2). While the transition kernelM2|1(ψ2|ψ′1, ψ
′
2) will typically depend onψ′1, the jumping

rule often will not, for example, a symmetric Metropolis-type jumping rule does not.

The acceptance probability of the first draw in StepK + 1 of the iterated MH strategy is

r iter =
p(ψprop

2 |ψ
(t+1/L)
1 )J2|1(ψ

(t)
2 |ψ

prop
2 )

p(ψ(t)
2 |ψ

(t+1/L)
1 )J2|1(ψ

prop
2 |ψ

(t)
2 )

, (7)
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whereψ(t+1/L)
1 ∼ p(ψ1) andψprop

2 ∼ J2|1(ψ2|ψ
(t)
2 ). With the joint MH strategy, it is

r joint =
p(ψprop

1 , ψ
prop
2 ){p(ψ(t)

1 )J2|1(ψ
(t)
2 |ψ

prop
2 )}

p(ψ(t)
1 , ψ

(t)
2 ){p(ψprop

1 )J2|1(ψ
prop
2 |ψ

(t)
2 )}

=
p(ψprop

2 |ψ
prop
1 )J2|1(ψ

(t)
2 |ψ

prop
2 )

p(ψ(t)
2 |ψ

(t)
1 )J2|1(ψ

prop
2 |ψ

(t)
2 )

, (8)

whereψprop
1 ∼ p(ψ1) andψprop

2 ∼ J2|1(ψ2|ψ
(t)
2 ).

Lemma 4.1 In the setting described in the previous paragraph,

Eπ[r iter/r joint] ≥ 1. (9)

The expectation in (9) is under the common stationary distribution,π, of both chains and is condi-

tional on the random seed used at the start of each iteration. That is, since (ψ(t+1/L)
1 , ψ

prop
2 ) sampled

under the iterated MH strategy and (ψ
prop
1 , ψ

prop
2 ) sampled under the joint MH strategy are drawn

in exactly the same way, we assume these quantities are numerically equal. Expression (9) asserts

that while both strategies start with the same proposal—(ψ(t+1/L)
1 , ψ

prop
2 ) under the iterated MH strat-

egy and (ψprop
1 , ψ

prop
2 ) under the joint—the iterated MH strategy is on average more likely to accept

ψ2. (The iterated MH strategyalwaysacceptsψ1.)

Proof: With the numerical equality of the proposals,

r iter

r joint
=

p(ψ(t)
2 |ψ

(t)
1 )

p(ψ(t)
2 |ψ

(t+1/L)
1 )

, (10)

where (ψ(t)
1 , ψ

(t)
2 , ψ

(t+1/L)
1 ) ∼ π(ψ(t)

1 , ψ
(t)
2 )π1(ψ

(t+1/L)
1 ) with π1 theψ1 marginal distribution ofπ. Because

(ψ(t)
1 , ψ

(t)
2 ) ∼ π andπ = p, the numerator of (10) is the conditional density ofψ2 evaluated atψ(t)

2 .

This is not true of the denominator becauseψ(t)
2 is independent ofψ(t+1/L)

1 . Thus, we might expect

that the numerator of (10) is typically larger than the denominator, as claimed in (9).

Recalling thatπ = p, substituting (10) into (9), and applying Jensen’s inequality, we need only

verify that
∫

log
[
π(ψ2|ψ1)

]
π(ψ1, ψ2)dψ1dψ2 ≥

∫
log

[
π(ψ2|ψ1)

]
π(ψ1)π(ψ2)dψ1dψ2. (11)

Expression (11) can be verified using a standard property of entropy along with the Kullback-

Leiber (KL) divergence. In particular, because KL is nonnegative,
∫

log
[
π(ψ2)

]
π(ψ1)π(ψ2)dψ1dψ2 ≥

∫
log

[
π(ψ2|ψ1)

]
π(ψ1)π(ψ2)dψ1dψ2. (12)
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(The standard KL expression can be recovered by adding
∫

log
[
π(ψ2)

]
π(ψ1)π(ψ2)dψ1dψ2 to both

sides of (12).) But a standard property of entropy (e.g., Ebrahimiet al., 1999) is
∫

log
[
π(ψ2|ψ1)

]
π(ψ1, ψ2)dψ1dψ2 ≥

∫
log

[
π(ψ2)

]
π(ψ1)π(ψ2)dψ1dψ2. (13)

Combining (12) and (13) gives (11) and hence the desired result.�

We now return to the bivariate Gaussian simulation of Section 2.3 to compare the computa-

tional performance of the iterated and joint MH strategies. Again we sampleψ1 from its marginal

distribution and use the same MH jumping rule to updateψ2 according to its conditional distribu-

tion. The iterated strategy is run withL = 7, in order to returnψ(t+1)
2 that is essentially independent

of ψ(t)
2 . The value ofL was set using an initial MH run of 5,000 iterations and inspecting the

autocorrelation function. The initial MH sampler delivers essentially independent draws after 7

iterations, see Figure 8(a). Of course, the computational cost per iteration of the iterated MH strat-

egy depends onL. With L = 7, each iteration requires eight univariate normal draws, whereas the

joint strategy requires two. The autocorrelation functions ofψ2 for both the iterated and joint MH

strategies appear in Figure 8(b)–(c) and show the clear computational advantage of the iterated MH

strategy. It returns essentially independent draws, whereas the joint MH strategy requires almost

thirty iterations to obtain nearly independent draws.

In practice, it is important to check that the value ofL used in Sampler Fragment 3 delivers

samples that are essentially independent of the starting value of the iterated MH strategy. For-

tunately, a simple diagnostic is available through the autocorrelation function ofψ(t)
2 in Sampler

Fragment 3, e.g., Figure 8(b). If the lag one autocorrelation is not essentially zero, the run should

be repeated with a larger value ofL. If ψ2 is updated elsewhere in the sampler, the efficacy of the

iterated MH strategy can be isolated by computing the correlation between the initial input ofψ2

and the final output after iteration of the MH update in StepK + 1 of Sampler Fragment 3. Xu

et al. (2014) propose testing the hypothesis thatψ(t)
2 andψ(t+1)

2 are uncorrelated by computing,

ρ̂ =

∑T
t=T0+1(ψ

(t)
2 − ψ̂2)(ψ

(t+1)
2 − ψ̂2)

∑T
t=T0+1(ψ

(t)
2 − ψ̂2)2

, where ψ̂2 =

T∑

t=T0+1

ψ(t)
2 ,

whereT0 is the burn in size. IfL is large enough, then for largeT, (T−T0)ρ̂2/(1− ρ̂2)
approx
∼ N(0,1).
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4.2 Comparing the samplers with and without blocking

To compare the blocking strategy in Sampler Fragment 7 with Sampler Fragment 6, we compute

its acceptance rate, again suppressing the conditioning onψ3 for simplicity, as

rblocked=
p(ψprop

1 , ψ
prop
2 )J1(ψ

(t)
1 |ψ

prop
1 )p(ψ(t)

2 |ψ
(t)
1 )

p(ψ(t)
1 , ψ

(t)
2 )J1(ψ

prop
1 |ψ

(t)
1 )p(ψprop

2 |ψ
prop
1 )

=
p(ψprop

1 )J1(ψ
(t)
1 |ψ

prop
1 )

p(ψ(t)
1 )J1(ψ

prop
1 |ψ

(t)
1 )

= rnot blocked, (14)

wherernot blockedis the acceptance probability of StepK in Sampler Fragment 6, where there is no

blocking. This means that Sampler Fragments 6 and 7 are identical in terms of their update ofψ1,

but whereas Sampler Fragment 6 updatesψ2 with a new value at every iteration, blocking causes

ψ2 to only be updated ifψ1 is updated. Thus, we expect the blocking strategy of Sampler Fragment

7 to reduce the efficiency of the sampler, and contrary to general advice regarding blocking (e.g.,

Liu et al., 1994), the blocking strategy of Sampler Fragment 7 should be avoided.

Together, the results of Sections 4.1 and 4.2 should be taken to discourage the combining of an

MH update and a direct draw from a conditional distribution into a single MH update.

5 Examples

5.1 The simplest MH within PCG sampler

MH within PCG samplers are useful for fitting multi-component models in which part of the model

must be fitted off-line. Consider a two-step sampler that updatesψ1 andψ2 each in turn, but for

computational reasons, we wish to updateψ1 off-line. This may, for example, stem from the use of

computer models that involve some costly evaluations in the update ofψ1. As an illustration, we

consider the problem of accounting for calibration uncertainty in high-energy astrophysics (Lee

et al., 2011) using a special case of model (4) in Section 2.2:

Yj∼Poisson{AjαEj
−β}, for j = 1, . . . , n. (15)

Here we consider the case where the effective area vectorA = (A1, . . . ,An) is not known, and must

be estimated along withα andβ. In-space calibration and sophisticated modelling of the instrument

result in a representative sample of possibleA values. Leeet al. (2011) shows how a Principal

19
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
7:

54
 0

1 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

Component Analysis (PCA) of this sample can be used to derive a degenerate multivariate normal

prior for A. In particular, we can writeA(Z) = A0+QZ, whereA0 (n×1) andQ (n×q) are known, the

components of the (q× 1) vector,Z, are independent standard normal variables, andq� n. Since

A is a deterministic function ofZ, we can confine attention to the parameter (Z, α, β). With the

expectation thatY would be relatively noninformative forA(Z) and to simplify computation, Lee

et al. (2011) suggests adoptingp(Z)p(α, β|Z,Y) as the target distribution for statistical inference,

an approximation that they callPragmatic Bayes. Thus, the target can be sampled by first drawing

Z ∼ p(Z) and then updatingα andβ givenZ. Using a uniform prior forα andβ: p(α, β) ∝ 1, the

complete conditional forα is in closed form, butβ requires MH.

One might be tempted to implement the following improper MH within PCG sampler:

Step 1:Z(t+1) ∼ p(Z), (Sampler 8)

Step 2:β(t+1) ∼ Mβ|Y,α,A(Z)(β|α(t), β(t),A(Z(t+1))),

Step 3:α(t+1) ∼ p(α|Y, β(t+1),A(Z(t+1))).

This update ofα andβ reflects the simple form of (15). Methods for fitting more general spectral

models were considered by Leeet al.(2011). To derive an (approximately) proper sampler, we can

remove the conditioning onα and implement the iterated MH strategy in Step 2:

Step 1:Z(t+1) ∼ p(Z), (Sampler 9)

Step 2:β(t+l/L) ∼ Mβ|Y,A(Z)(β|β(t+(l−1)/L),A(Z(t+1))), for l = 1, . . . , L,

Step 3:α(t+1) ∼ p(α|Y, β(t+1),A(Z(t+1))).

As suggested in Section 4.1, we determineL using an initial MH run of 1,000 iterations and

inspecting its autocorrelation function. We found that the component MH sampler delivers essen-

tially independent draws ofβ after 20 iterations and thus setL = 20 in Step 2 of Sampler 9.

We use a simulation study to illustrate the impropriety of Sampler 8. The data are simulated

usingn = 1,078 energy bins ranging from 0.225 to 10.995 keV,q = 7, Zj = 1.5 ( j = 1, . . . , q),

α = 30 andβ = 1. For each sampler, a chain of length 20,000 is run with a burnin of 10,000 from

the starting valuesZj = 0 ( j = 1, . . . , q), α = 1 andβ = 1. Figure 9 shows that usingL = 20 in
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Sampler 9 is sufficiently large and that Sampler 8 both underestimates the correlation ofZ2 andβ

and the marginal variability of bothα and (more dramatically)β.

While Leeet al. (2011) recognized the hazard of Sampler 8 and proposed Sampler 9, there are

other examples in the literature where MH is used within a PCG sampler incorrectly, resulting in

improper samplers. Liuet al.(2009), for example, proposed a sampler very similar to Sampler 8 in

structure, but in a completely different setting. To predict the temperature of a particular device at

a certain time point, the parameters describing the physical properties of the device were linked to

the other parameters via a computationally expensive computer model. One of the approaches de-

scribed in Liuet al. (2009) for sampling all the model parameters from their posterior distribution

was to update the physical-property parameters from their prior distributions first, and then sample

the remaining parameters conditioning on the prior-generated values of the physical-property pa-

rameters. This approach was expected to reduce the confoundedness between the parameters and

thus improve the mixture of the Markov chain. Since the updates of the other parameters relied on

MH, this approach is problematic as illustrated in Section 2.3. In analogy to Figure 9, Liuet al.

(2009) showed that the marginal distributions of the other parameters sampled via this approach

were more variable than via the full Bayesian analysis or some other approaches. Other examples

of improper samplers that are similar in structure to Sampler 8 were proposed in Lunnet al.(2009),

McCandlesset al. (2010), and even the popular WinBUGS package (Spiegelhalter, Thomas, Best

and Lunn 2003), see Woodardet al. (2012) for discussion.

5.2 Spectral analysis with narrow lines in high-energy astrophysics

Section 3.3 uses a simulation study to illustrate a potential problem with Sampler Fragment 7,

that is, how the blocking of an MH update and a direct draw from a conditional distribution can

result in an improper sampler. Here we use the same simulation study to illustrate the improved

convergence properties of three proper MH within PCG samplers relative to their parent Gibbs

sampler. The only difference is that for each sampler here, a chain of 20,000 iterations is run with

a burnin of 10,000 iterations.

As pointed out in Section 2.2, the standard Gibbs sampler for the spectral model (1) breaks

down since the resulting subchain forμ does not move from its starting value (Park and van Dyk,
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2009). To solve this problem, we sampleμ without conditioning onXL and obtain an MH within

PCG sampler, i.e., Sampler 10, given in the first panel of Figure 10. Sampler 6 in Figure 4 is

another MH within PCG sampler but with a higher degree of partial collapsing, by which we mean

more quantities are reduced out in Sampler 6 than in Sampler 10. Not only does Sampler 6 update

μ without conditioning onXL, but it also reducesα out of its first three steps, whereas Sampler 10

does not removeα from any step. Sampler 11 attempts to further improve Sampler 6 by blocking

the MH updates ofβ andφ, see the second panel of Figure 10. Unlike Sampler 7 which also blocks

2 steps of Sampler 6, Sampler 11 is proper, see Figure 11. Thus Samplers 6, 10 and 11 are all

proper MH within PCG samplers with common parent Gibbs sampler given in Figure 3(a), but

with different degrees of partial collapsing. (The derivation of Sampler 6 appears in Figure 3 and

that of Sampler 10 is omitted to save space.)

The convergence characteristics ofα, β, andφ using Samplers 10 and 11 are compared in

Figure 12;γ andμ converge well for all three samplers. All three MH within PCG samplers

outperform the parent Gibbs sampler, since the latter does not converge to the target. Sampler 11

performs much better than Sampler 10 in terms of the mixing and autocorrelations ofα, β, and

φ. The performance of Sampler 6 is better than Sampler 10, but not as good as Sampler 11. (To

save space, the results of the intermediate Sampler 6 are omitted in Figure 12.) These results show

that proper MH within PCG samplers outperform their parent Gibbs sampler in computational

efficiency and a higher degree of partial collapsing can improve the convergence even further.

5.3 Relating ECME with Newton-type updates to MH within PCG samplers

The Expectation-Maximization (EM) algorithm is a frequently used technique for computing max-

imum likelihood or maximizing a posterior estimate. The Expectation/Conditional Maximization

(ECM) algorithm (Meng and Rubin, 1993) extends the EM algorithm by replacing the M-step of

each EM iteration with a sequence of CM-steps, each of which maximizes theconstrainedex-

pected complete-data loglikelihood function. Liu and Rubin (1994) further generalized ECM with

the Expectation/Conditional Maximization Either (ECME) algorithm by replacing some of its CM-

steps with steps that maximize the corresponding constrainedactual likelihood function. ECME

can converge substantially faster than either EM or ECM while maintaining the stable monotone
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convergence and basic simplicity of its parent algorithms. The Gibbs sampler can be viewed as the

stochastic counterpart of ECM, see van Dyk and Meng (2010). PCG extends Gibbs sampling in a

manner analogous to ECME’s extension of ECM: both PCG and ECME reduce conditioning in a

subset of their parameter updates (Park and van Dyk, 2009). The analogy is not perfect, however.

In ECME, for example, the CM-steps maximizing the constrained actual likelihood must be last to

guarantee monotone convergence (Meng and van Dyk, 1997). On the other hand, with PCG, the

corresponding partially collapsed steps must be the first to guarantee a proper sampler.

For ECME, numerical methods, such as Newton-Raphson, may be used to maximize the actual

likelihood if no closed-form solution is available. In the context of PCG samplers, these Newton-

Raphson steps can often be implemented using MH updates.

Here we illustrate how this is done by using an ECME algorithm developed for a factor analysis

model by Liu and Rubin (1998). They derived EM and ECME algorithms and showed that ECME

with Newton-type updates converges more quickly than EM. Analogously, it is natural to expect

that when fitting this model under a Bayesian framework, a proper MH within PCG sampler will

be more efficient than its parent Gibbs sampler. Liu and Rubin (1998) considered the model,

Yi∼Np

[
Ziβ,Σ = Diag(σ2

1, . . . , σ
2
p)
]
, for i = 1, . . . , n, (16)

whereYi is the (1× p) vector for observationi, Zi is the (1× q) vector of theq factors,σ2
j is

componentj of the diagonal variance-covariance matrix, andβ is the (q × p) matrix of factor

loadings. We useβ j to represent columnj of β and setY =
(
YT

1 , . . . ,Y
T
n

)T
andZ =

(
ZT

1 , . . . ,Z
T
n

)T
.

We use Nq(0, I ) as the prior forZi (i = 1, . . . , n) and specify noninformative priors forβ andΣ, that

is, p(σ2
j ) = Inv-Gamma(0.01,0.01) andp(β j) = Nq

[
0,V = Diag(100, . . . , 100)

]
( j = 1, . . . , p).

Ghosh and Dunson (2009) discuss this model and its priors in detail.

Sampler 12 (see top panel of Figure 13) is a standard Gibbs sampler in which each complete

conditional distribution can be sampled directly. To improve its convergence, we construct a proper

MH within PCG sampler, Sampler 13, which is also given in Figure 13. BecauseZ is highly

correlated withσ2
2, . . . , σ

2
5, Sampler 13 updatesσ2

2, . . . , σ
2
5 without conditioning onZ. Sinceσ2

1

converges well with the standard Gibbs sampler in the simulation described below, we do not alter

its update in Sampler 13. The reduced updates ofσ2
2, . . . , σ

2
5 require MH steps. The derivation
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of Sampler 13 from its parent Gibbs sampler, i.e., Sampler 12, using the three-phase framework

appears in Figure 14.

We use a simulation study to illustrate the improved convergence of the MH within PCG

sampler over its parent Gibbs sampler. In particular, we setp = 5, q = 2, andn = 100;

σ2
j ( j = 1, . . . , 5) are generated from Inv-Gamma(1,0.25) andβh j (h = 1,2; j = 1, . . . , 5) from

N(0,32). We run 20,000 iterations for each sampler with a burnin of 10,000 using the same starting

values (Zi = [1,1]T, βh j = 1, andσ2
j = 1). Figure 15 compares Samplers 12 and 13 in terms of

mixing, autocorrelation, and density estimation ofσ2
2 andσ2

3; the first two columns correspond

to Sampler 12, and the last two columns correspond to Sampler 13;σ2
1 converges well for both

samplers, andσ2
4 andσ2

5 behave similarly asσ2
2 andσ2

3. The computational advantage of Sampler

13 is evident. More importantly, the MH within PCG sampler delivers a much more trustworth

estimate of the marginal posterior distributions as illustrated in the histograms in Figure 15.

We repeated the simulation withp = 50 andq = 30 and found that Sampler 13 again outper-

formed Sampler 12 in a manner similar to what is reported in Figure 15. When run withp = 50

andq = 2, however, both samplers delivered nearly uncorrelated draws.

6 Discussion

Since its introduction in 2008, the PCG sampler has been deployed to improve the convergence

properties of numerous Gibbs-type samplers in a variety of applied settings. As with ordinary

Gibbs samplers, MH updates are sometimes required within PCG samplers. Ensuring that the

target stationary distribution is maintained in this situation involves subtleties that do not arise in

ordinary MH within Gibbs samplers. This has led to the proposal of a number of improper samplers

in the literature. This article elucidates these subtleties, offers a strategy for guaranteeing that

the target stationary distribution is maintained, and provides advice as to how best to implement

MH within PCG samplers. Some of this advice applies equally to ordinary MH within Gibbs

samplers. It is commonly understood, for example, that blocking steps within a Gibbs sampler

should improve its convergence. We find, however, that this may not be true if MH is involved.
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Reducing conditioning in one or more steps of a Gibbs sampler as prescribed by PCG can only

improve convergence. If MH is required to implement the reduced steps, however, the overall

performance of the algorithm may deteriorate, especially if a poor choice is made for MH jump-

ing rule. Thus, there is a natural trade-off between the computational complexity of MH and the

reduced correlation afforded by partial collapsing. Generally speaking, some trial and error may

be needed to negotiate this trade-off. In practice we often start with an MH within Gibbs sampler,

which already involves MH and can be improved by partial collapsing without any added complex-

ity. We expect our strategies to extend the application of PCG samplers in practice and to provide

researchers with additional tools to improve the convergence of Gibbs-type samplers.

Supplemental Mateirals: Details of Samplers 6 and 10–13 appear in an online appendix.
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Figure 1: Proper and improper samplers for the bivariate normal target distribution. The first two panels give scatter
plots ofψ1 andψ2 for 10,000 draws from Samplers 4 and 5, respectively. The marginal distributions of the two samplers
are compared in the two quantile-quantile plots. The improper Sampler 5 severely underestimates the correlation
betweenψ1 andψ2, and slightly overestimates the variance ofψ2.

(a) Parent GibbsSampler

ψ1 ∼ p(ψ1|ψ′2, ψ
′
3, ψ

′
4)

ψ2 ∼ p(ψ2|ψ1, ψ
′
3, ψ

′
4)

(ψ3, ψ4) ∼ p(ψ3, ψ4|ψ1, ψ2)

(b) ReduceConditioning

(ψ1, ψ
?
3 ) ∼ p(ψ1, ψ3|ψ′2, ψ

′
4)

ψ2 ∼ p(ψ2|ψ1, ψ
?
3 , ψ

′
4)

(ψ3, ψ4) ∼ p(ψ3, ψ4|ψ1, ψ2)

(c) Permute

ψ2 ∼ p(ψ2|ψ′1, ψ
′
3, ψ

′
4)

(ψ1, ψ
?
3 ) ∼ p(ψ1, ψ3|ψ2, ψ

′
4)

(ψ3, ψ4) ∼ p(ψ3, ψ4|ψ1, ψ2)

(d) Trim

ψ2 ∼ p(ψ2|ψ′1, ψ
′
3, ψ

′
4)

ψ1 ∼ p(ψ1|ψ2, ψ
′
4)

(ψ3, ψ4) ∼ p(ψ3, ψ4|ψ1, ψ2)

Figure 2: A three-phase framework for deriving a proper PCG sampler. The parent Gibbs sampler appears in (a).
The sampler in (b) reduces the conditioning in Step 1 by updatingψ3 rather than conditioning on it. The steps of this
sampler are permuted in (c) to allow the redundant draw ofψ?3 —in Step 2 of (c)—to be trimmed in the PCG sampler
in (d).
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(a) Parent MH within GibbsSampler

Step 1: p(XL|X, α′, β′, γ′, μ′, φ′)
Step 2: p(α|X,XL, β

′, γ′, μ′, φ′)
Step 3:Mβ|X,XL,α,γ,μ,φ(β|XL, α, β

′, γ′, μ′, φ′)
Step 4: p(γ|X,XL, α, β, μ

′, φ′)
Step 5:Mμ|X,XL,α,β,γ,φ(μ|XL, α, β, γ, μ

′, φ′)
Step 6:Mφ|X,XL,α,β,γ,μ(φ|XL, α, β, γ, μ, φ

′)

(b) ReduceConditioning

Step 1: p(X?
L |X, α

′, β′, γ′, μ′, φ′)
Step 2: p(α?,X?

L |X, β
′, γ′, μ′, φ′)

Step 3:M?
β,XL,α|X,γ,μ,φ

(β,X?
L , α

?|β′, γ′, μ′, φ′)
Step 4: p(γ|X,X?

L , α
?, β, μ′, φ′)

Step 5:M?
μ,XL,α|X,β,γ,φ

(μ,X?
L , α

?|β, γ, μ′, φ′)
Step 6:M?

φ,XL,α|X,β,γ,μ
(φ,XL, α|β, γ, μ, φ′)

(c) Permute

Step 1:M?
μ,XL,α|X,β,γ,φ

(μ,X?
L , α

?|β′, γ′, μ′, φ′)
Step 2:M?

φ,XL,α|X,β,γ,μ
(φ,X?

L , α
?|β′, γ′, μ, φ′)

Step 3:M?
β,XL,α|X,γ,μ,φ

(β,X?
L , α

?|β′, γ′, μ, φ)
Step 4: p(α,X?

L |X, β, γ
′, μ, φ)

Step 5: p(XL|X, α, β, γ′, μ, φ)
Step 6: p(γ|X,XL, α, β, μ, φ)

(d) Trim

Step 1:Mμ|X,β,γ,φ(μ|β′, γ′, μ′, φ′)
Step 2:Mφ|X,β,γ,μ(φ|β′, γ′, μ, φ′)
Step 3:Mβ|X,γ,μ,φ(β|β′, γ′, μ, φ)
Step 4: p(α|X, β, γ′, μ, φ)
Step 5: p(XL|X, α, β, γ′, μ, φ)
Step 6: p(γ|X,XL, α, β, μ, φ)

Figure 3: Three-phase framework used to derive Sampler 6 from its parent MH within Gibbs sampler. The parent
sampler appears in (a) with Steps 3, 5 and 6 requiring MH updates. The conditioning in Steps 2, 3, 5, and 6 is reduced
in (b). The steps are permuted in (c) to allow redundant draws ofX?

L andα? to be trimmed in Steps 1–4. The resulting
proper MH within PCG sampler, i.e., Sampler 6, appears in (d).

Sampler 6
Step 1: μ ∼ Mμ|X,β,γ,φ(μ|β′, γ′, μ′, φ′),

Step 2:φ ∼ Mφ|X,β,γ,μ(φ|β′, γ′, μ, φ′),

Step 3: β ∼ Mβ|X,γ,μ,φ(β|β′, γ′, μ, φ),

Step 4:α ∼ p(α|X, β, γ′, μ, φ),

Step 5: XL ∼ p(XL|X, α, β, γ′, μ, φ),

Step 6: γ ∼ p(γ|X,XL, α, β, μ, φ).

Sampler 7
Step 1: μ ∼ Mμ|X,β,γ,φ(μ|β′, γ′, μ′, φ′),

Step 2: φ ∼ Mφ|X,β,γ,μ(φ|β′, γ′, μ, φ′),

Step 3: (α, β) ∼ Mα,β|X,γ,μ,φ(α, β|α′, β′, γ′, μ, φ),

Step 4: XL ∼ p(XL|X, α, β, γ′, μ, φ),

Step 5: γ ∼ p(γ|X,XL, α, β, μ, φ).

Figure 4: Samplers 6 and 7. Figure 3 verifies the propriety of Sampler 6, an MH within PCG sampler for fitting the
spectral model in (1). Sampler 7 blocks Steps 3 and 4 of Sampler 6 into a single MH step. Unfortunately, this results
in an improper sampler, see Section 3.3. Details of Sampler 6 are given in Section B.1 of the online appendix.
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Figure 5: A dataset simulated under the spectral model (1) and used in the simulation study in Section 3.3.
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Figure 6: Scatter plots ofα, β andφ for 10,000 draws from Samplers 6, 7(a) and 7(b) respectively. The two versions
of Sampler 7 block the two steps of Sampler 6 that updateα andβ. Unfortunately, this results in an improper sampler.
When updating (α, β), Sampler 7(a) uses the concatenation of Sampler 6’s jumping rules forα andβ, while Sampler
7(b) uses an independent bivariate normal jumping rule. The impropriety of Sampler 7(b) is especially dramatic.
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Figure 7: Quantile-quantile plots ofα, β andφ corresponding to draws generated with Samplers 6 and 7(b). Sampler
7(b) severely underestimates the marginal variances of all three parameters.
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(b) Iterated MH Strategy
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(c) Joint MH Strategy

Figure 8: Autocorrelation functions ofψ2 for (a) an initial MH run of Step 2 of Sampler 5 withψ1 fixed, (b) the iterated
MH strategy, and (c) the joint MH strategy, all under the bivariate normal simulation of Section 2.3. Panel (a) shows
that the initial MH runs deliver essentially independent draws after 7 iterations, so that iterated MH strategy was run
with L = 7. Panels (b) and (c) show that the iterated strategy outperforms the joint strategy.

31
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
7:

54
 0

1 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

(a) ACF of  β

−4 −2 0 2 4

0.
95

1.
00

1.
05

1.
10

(b) Sampler 8

Z2

β

−4 −2 0 2 4

0.
95

1.
00

1.
05

1.
10

(c) Sampler 9

Z2

β

26 28 30 32

26
27

28
29

30
31

32

(d) Q−Q Plot of  α

Draws from Sampler 8

D
ra

w
s 

fr
om

 S
am

pl
er

 9

0.95 1.00 1.05 1.10

0.
95

1.
00

1.
05

1.
10

(e) Q−Q Plot of  β

Draws from Sampler 8

D
ra

w
s 

fr
om

 S
am

pl
er

 9

Figure 9: Numerical evaluation of Samplers 8 and 9 using data simulated under model (15). (a): the diagnostic plot
suggested in Section 4.1 for the choice ofL = 20 in Sampler 9. Since the lag-one autocorrelation ofβ(t) is essentially
zero,L is sufficiently large. (b) and (c): scatter plots ofZ2 andβ from Samplers 8 and 9 respectively. (d) and (e):
quantile-quantile plots ofα andβ respectively. Sampler 9 is (approximately) proper while Sampler 8 is improper and
underestimates the correlation betweenZ2 andβ and also the marginal variability of bothα andβ.

Sampler 10
Step 1: μ ∼ Mμ|X,α,β,γ,φ,(μ|α′, β′, γ′, μ′, φ′),

Step 2: XL ∼ p(XL|X, α′, β′, γ′, μ, φ′),

Step 3:α ∼ p(α|X,XL, β
′, γ′, μ, φ′),

Step 4: β ∼ Mβ|X,XL,α,γ,μ,φ(β|XL, α, β
′, γ′, μ, φ′),

Step 5: γ ∼ p(γ|X,XL, α, β, μ, φ
′),

Step 6: φ ∼ Mφ|X,XL,α,β,γ,μ(φ|XL, α, β, γ, μ, φ
′).

Sampler 11
Step 1: μ ∼ Mμ|X,β,γ,φ(μ|β′, γ′, μ′, φ′),

Step 2: (β, φ) ∼ Mβ,φ|X,γ,μ(β, φ|β′, γ′, μ, φ′),

Step 3:α ∼ p(α|X, β, γ′, μ, φ),

Step 4: XL ∼ p(XL|X, α, β, γ′, μ, φ),

Step 5: γ ∼ p(γ|X,XL, α, β, μ, φ).

Figure 10: Samplers 10 and 11. Sampler 10 is the proper MH within PCG sampler for the spectral model (1) with the
lowest degree of partial collapsing, while Sampler 11 is that with the highest degree of partial collapsing. Details of
Samplers 10 and 11 appear in Section B.1 of the online appendix.

32
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
7:

54
 0

1 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

(a) Parent MH within GibbsSampler

Step 1: p(XL|X, α′, β′, γ′, μ′, φ′)
Step 2: p(α|X,XL, β

′, γ′, μ′, φ′)
Step 3:Mβ|X,XL,α,γ,μ,φ(β|XL, α, β

′, γ′, μ′, φ′)
Step 4: p(γ|X,XL, α, β, μ

′, φ′)
Step 5:Mμ|X,XL,α,β,γ,φ(μ|XL, α, β, γ, μ

′, φ′)
Step 6:Mφ|X,XL,α,β,γ,μ(φ|XL, α, β, γ, μ, φ

′)

(b) ReduceConditioning

Step 1: p(X?
L |X, α

′, β′, γ′, μ′, φ′)
Step 2: p(α?,X?

L |X, β
′, γ′, μ′, φ′)

Step 3:M?
β,XL,α,φ|X,γ,μ

(β?,X?
L , α

?, φ?|β′, γ′, μ′, φ′)
Step 4: p(γ|X,X?

L , α
?, β?, μ′, φ?)

Step 5:M?
μ,XL,α|X,β,γ,φ

(μ,X?
L , α

?|β?, γ, μ′, φ?)
Step 6:M?

φ,XL,α,β|X,γ,μ
(φ,XL, α, β|β?, γ, μ, φ?)

(c) Permute

Step 1:M?
μ,XL,α|X,β,γ,φ

(μ,X?
L , α

?|β′, γ′, μ′, φ′)
Step 2:M?

φ,XL,α,β|X,γ,μ
(φ?,X?

L , α
?, β?|β′, γ′, μ, φ′)

Step 3:M?
β,XL,α,φ|X,γ,μ

(β,X?
L , α

?, φ|β?, γ′, μ, φ?)
Step 4: p(α,X?

L |X, β, γ
′, μ, φ)

Step 5: p(XL|X, α, β, γ′, μ, φ)
Step 6: p(γ|X,XL, α, β, μ, φ)

(d) Trim

Step 1:Mμ|X,β,γ,φ(μ|β′, γ′, μ′, φ′)
Step 2:Mβ,φ|X,γ,μ(β?, φ?|β′, γ′, μ, φ′)
Step 3:Mβ,φ|X,γ,μ(β, φ|β?, γ′, μ, φ?)
Step 4: p(α|X, β, γ′, μ, φ)
Step 5: p(XL|X, α, β, γ′, μ, φ)
Step 6: p(γ|X,XL, α, β, μ, φ)

Figure 11: Three-phase framework used to derive Sampler 11. The parent MH within Gibbs sampler appears in (a).
The conditioning in Steps 2, 3, 5, and 6 is reduced in (b) and the steps are permuted in (c) to allow redundant draws of
X?

L andα? to be trimmed in Steps 1–4. This leaves Steps 2 and 3 of (d) identical; one of them is omitted in Sampler 11,
see Figure 10. (In (d),β? andφ? are not redundant because they are among the inputs of Step 3.)

33
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
7:

54
 0

1 
Se

pt
em

be
r 

20
14

 



ACCEPTED MANUSCRIPT

0 4000 8000

30
40

50

Iteration

α

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

0 4000 8000

0.
9

1.
1

Iteration

β

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

0 4000 8000

0.
0

0.
2

0.
4

Iteration

φ

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

Sampler 10 
 MH within PCG 

 (least partial collapsing)

0 4000 8000
30

40
50

Iteration

α

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

0 4000 8000

0.
9

1.
1

Iteration

β

0 10 20 30 40
0.

0
0.

4
0.

8
Lag

A
ut

oc
or

re
la

tio
n

0 4000 8000

0.
0

0.
2

0.
4

Iteration

φ

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

Sampler 11
 MH within PCG 

 (most partial collapsing)

Figure 12: Comparing Samplers 10 and 11 using data simulated under model (1). The first two columns are the time-
series and autocorrelation plots for the posterior draws ofα, β, andφ respectively from Sampler 10, while the last two
columns are those from Sampler 11. Sampler 11 performs significantly better than Sampler 10.
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Sampler 12
Step 1: Zi ∼ p(Zi |Y, β′,Σ′), for i = 1, . . . , 100,

Step 2:σ2
j ∼ p(σ2

j |Y,Z, β
′), for j = 1, . . . , 5,

Step 3: β j ∼ p(β j |Y,Z,Σ), for j = 1, . . . , 5.

Sampler 13
Step 1:σ2

1 ∼ p(σ2
1|Y,Z

′, β′),

Step j: σ2
j ∼ Mσ2

j |Y,β,σ
2
1,...,σ

2
j−1,σ

2
j+1,...,σ

2
5
(σ2

j |β
′, σ2

1, . . . , σ
2
j−1, σ

2
j
′
, . . . , σ2

5
′
), for j = 2, . . . , 5,

Step 6: Zi ∼ p(Zi |Y, β′,Σ), for i = 1, . . . , 100,

Step 7: β j ∼ p(β j |Y,Z,Σ), for j = 1, . . . , 5.

Figure 13: Two samplers for fitting (16). Sampler 12 is a standard Gibbs sampler and Sampler 13 is a proper MH
within PCG sampler. Notice that Sampler 13 does not condition onZ in its updates ofσ2

2, . . . , σ
2
5. Details of Samplers

12 and 13 appear in Section B.2 of the online appendix
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(a) Parent Gibbs Sampler (Sampler12)

Step 1: p(Zi |Y, β′,Σ′), for i = 1, . . . , 100
Step 2: p(σ2

j |Y,Z, β
′), for j = 1, . . . , 5

Step 3: p(β j |Y,Z,Σ), for j = 1, . . . , 5

(b) ReduceConditioning

Step 1: p(Z?
i |Y, β

′,Σ′), for i = 1, . . . , 100
Step 2: p(σ2

1|Y,Z
?, β′)

Step 1+ j: M?
σ2

j ,Z|Y,β,σ
2
1,...,σ

2
j−1,σ

2
j+1,...,σ

2
5
(σ2

j ,Z
?|β′, σ2

1, . . . , σ
2
j−1, σ

2
j
′
, . . . , σ2

5
′), for j = 2,3,4

Step 6:M?
σ2

5,Z|β,σ
2
1,...,σ

2
4
(σ2

5,Z|β
′, σ2

1, . . . , σ
2
4, σ

2
5
′)

Step 7: p(β j |Y,Z,Σ), for j = 1, . . . , 5

(c) Permute

Step 1: p(σ2
1|Y,Z

′, β′)
Step j: M?

σ2
j ,Z|Y,β,σ

2
1,...,σ

2
j−1,σ

2
j+1,...,σ

2
5
(σ2

j ,Z
?|β′, σ2

1, . . . , σ
2
j−1, σ

2
j
′
, . . . , σ2

5
′), for j = 2, . . . , 5

Step 6: p(Zi |Y, β′,Σ), for i = 1, . . . , 100
Step 7: p(β j |Y,Z,Σ), for j = 1, . . . , 5

(d) Trim (Sampler13)

Step 1: p(σ2
1|Y,Z

′, β′),
Step j: Mσ2

j |Y,β,σ
2
1,...,σ

2
j−1,σ

2
j+1,...,σ

2
5
(σ2

j |β
′, σ2

1, . . . , σ
2
j−1, σ

2
j
′
, . . . , σ2

5
′), for j = 2, . . . , 5,

Step 6: p(Zi |Y, β′,Σ), for i = 1, . . . , 100,
Step 7: p(β j |Y,Z,Σ), for j = 1, . . . , 5.

Figure 14: Using the three-phase framework to derive Sampler 13 from its parent Gibbs sampler, i.e., Sampler 12.
The parent Gibbs sampler is in (a); the conditioning in Steps 3–6 is reduced in (b); and the steps are permuted in (c) to
allow redundant draws ofZ? to be trimmed in Steps 2–5. The resulting proper Sampler 13 is in (d).
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Figure 15: Comparing Samplers 12 and 13 using data simulated under the factor analysis model (16). The first two
columns are the time-series, autocorrelation, and histogram plots for the posterior draws ofσ2

2 andσ2
3 respectively

from Sampler 12, while the last two columns are those from Sampler 13. Sampler 13 performs significantly better
than Sampler 12 both in terms of convergence properties and in its estimates of the marginal posterior distributions.
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——– End of Document ——–
(The following is included to establish labels for the sections of the online appendix.)

A Stationary Distribution of Sampler Fragment 6

B Details of the Steps in the Gibbs-type Samplers

B.1 Details of the steps in the Gibbs-type samplers based on model (1)

B.2 Details of the steps in the Gibbs-type samplers based on model (16)
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