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Metropolis-Hastings within
Partially Collapsed Gibbs Samplers

David A. van Dyk and Xiyun Jiao

Abstract

The Partially Collapsed Gibbs (PCG) sampléiecs a hew strategy for improving the con-
vergence of a Gibbs sampler. PCG achieves faster convergence by reducing the conditioning
in some of the draws of its parent Gibbs sampler. Although this can significantly improve
convergence, care must be taken to ensure that the stationary distribution is preserved. The con-
ditional distributions sampled in a PCG sampler may be incompatible and permuting their order
may upset the stationary distribution of the chain. Extra care must be taken when Metropolis-
Hastings (MH) updates are used in some or all of the updates. Reducing the conditioning in
an MH within Gibbs sampler can change the stationary distribution, even when the PCG sam-
pler would work perfectly if MH were not used. In fact, a number of samplers of this sort
that have been advocated in the literature do not actually have the target stationary distribu-
tions. In this article, we illustrate the challenges that may arise when using MH within a PCG
sampler and develop a general strategy for using such updates while maintaining the desired
stationary distribution. Theoretical arguments provide guidance when choosing betffieen di
ent MH within PCG sampling schemes. Finally we illustrate the MH within PCG sampler and
its computational advantage using several examples from our applied work.

Key Words:Astrostatistics; Blocking; Factor Analysis; Gibbs sampler; Incompatible Gibbs sam-
pler; Metropolis-Hastings; Metropolis within Gibbs; Spectral Analysis.

1 Introduction

The popularity of the Gibbs sampler stems from its simplicity and poweffextvely generate
samples from a high-dimensional probability distribution. It can sometimes, however, be very
slow to converge, especially when it is used to fit highly structured or complex models. The
Partially Collapsed Gibbs (PCG) sampldfars a strategy for improving the convergence char-
acteristics of a Gibbs sampler (van Dyk and Park, 2008; Park and van Dyk, 2009; van Dyk and
Park, 2011). A PCG sampler achieves faster convergence by reducing the conditioning in some

or all of the component draws of its parent Gibbs sampler. That is, one or more of the complete

*Professor David A. van Dyk holds a Chair in Statistics in the Department of Mathematics at Imperial College
London, SW7 2AZ (dvandyk@imperial.ac.uk); Xiyun Jiao is a postgraduate student in Statistics at Imperial College.

ACCEPTED MANUSCRIPT
1



Downloaded by [Imperial College London Library] at 07:54 01 September 2014

ACCEPTED MANUSCRIPT

conditional distributions is replaced by the corresponding conditional distribution of a multivariate
marginal distribution of the target. For example, we might consider samp(ifagy,) rather than
p(v1ly2, w3), wherep(y1y,) is a conditional distribution of the marginal distributiqu(y/ 1, ¥»), of

the targetp(y1, ¥, ¥3). This strategy has already been proven useful in improving the convergence
properties of numerous samplers (e.g., Bernerdi. 2013; Berrett and Calder, 2012; Caretral.,

2014; Dobigeon and Tourneret, 2010; Hatsl, 2012; Huet al,, 2012, 2013; Kaikt al,, 2010,
2011; Lin and Tourneret, 2010; Lindstenal,, 2013; Parket al,, 2008; Park and van Dyk, 2009;
Park, 2011; Parkt al,, 2012a,b; Zhao and Lian, 2014, etc.).

Although the PCG sampler can be verffi@ent, it must be implemented with care to make
sure that the stationary distribution of the resulting sampler is indeed the target. Unlike the ordi-
nary Gibbs sampler, the conditional distributions sampled in a PCG sampler may be incompatible,
meaning there is no joint distribution of which they are simultaneously the conditional distribu-
tions. In this case, permuting the order of the updates can change the stationary distribution of the
chain.

As with an ordinary Gibbs sampler, we sometimes find that one or more of the conditional
draws of a PCG sampler is not available in closed form and we may consider implementing such
draws with the help of a Metropolis-Hastings (MH) sampler. Reducing the conditioning in one
draw of an MH within Gibbs sampler, however, may alter the stationary distribution of the chain.
This can happen even when the PCG sampler would work perfectly well if all of the conditional
updates were available without resorting to MH updates. Examples arise even in a two-step MH
within PCG sampler. Woodaret al. (2012), for example, points out this problem in certain sam-
plers described in the literature for regression with functional predictors. Although they do not use
the framework of PCG, these samplers are simple special cases of improper MH within PCG sam-
plers. They first analyze the functional predictors in isolation of the regression and then use MH to
update the regression parameters conditional on parameters describing the functional predictors.
The first step #ectively samples the functional parameters marginally and the second uses MH for
sampling from the complete conditional of the regression parameters. In this article we pay spe-
cial attention to this situation because it is both conceptually simple and important in practice. In

Section 3.2 we propose two simple strategies that maintain the target distribution and in Section 4
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we compare the performance of the two strategies theoretically.

In this article, we illustrate diiculties that may arise when using MH updates within a PCG
sampler and develop a general strategy for using such updates while maintaining the target station-
ary distribution. We begin in Section 2 with two motivating examples that are chosen to review
the subtleties of the PCG sampler, illustrate the complications that arise when MH is introduced
into PCG, and set the stage for the methodological and theoretical contributions of this article.
Section 2 ends by reviewing the method of van Dyk and Park (2008) for establishing the stationary
distribution of a PCG sampler. The MH within PCG sampler is introduced in Section 3 along with
methods for ensuring that its stationary distribution is the target distribution and several strategies
for implementing the sampler while maintaining this target. Theoretical arguments are presented
in Section 4 with the aim of guiding the choice betweeffaident implementations of the MH
within PCG sampler. The proposed methods and theoretical results are illustrated in Section 5 in
the context of several examples, including factor analysis and two examples from high-energy as-
trophysics. The factor analysis example contrasts the step-ordering constraints of MH within PCG
and of the related ECME algorithm (Liu and Rubin, 1994). Final discussion appears in Section 6

and technical details of several of the MH within PCG samplers appear in an online appendix.

2 Background and Motivating Examples

2.1 Notation

We aim to sample from the target distributign(y), by constructing a Markov chaig®,t =
1,2,...} with the stationary distribution(y), wherey is a multivariate random variable. That is,
we aim to construct a Markov chain such thél) = p(y). We refer to a sampler ggoperif it has
a stationary distribution and that distribution coincides with the targets(:2),= p(v); otherwise
we call the sampleimproper. Typically p(y) is the posterior distribution in a Bayesian analysis,
but this is not necessary. In data-driven examples, we use standard Bayesian notation.

To facilitate discussion of the relevant samplers, we divideto J possibly multivariate non-
overlapping subcomponents, i.¢.,.= (1,...,¢;), and define # = {1,2,...,J}. The methods
that we consider are Gibbs-type samplers that rely on the conditional distributions of #iifyer
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or its multivariate marginal distributions. When conditional distributions cannot be sampled di-
rectly, we may use MH. For example, suppose we wish to sample the conditional distribution
p(y¥j,lyj,) of the marginal distributiom(yj,, ¥|,), but cannot do so directly. In this case, we spec-

ify a jJumping rule (i.e., a proposal distribution), denotedﬁmjz(whwjl, v, ;z/}s), where the sub-

script specifies the target conditional distribution and we use primes to indicate the current value
of the subcomponents ¢f notice that the jumping rule may depend on subcomponents other than
yj, andy/, namely,y;,. In the MH update, we samp)"® ~ J,;, (.10} . ¥,.¥},) and set

P W )T i (0 5, . 0)

PO, W) T i W5, W 0 075,)
rentvalue is retained, i.ef;, = ¢ . This MH transition kernel, denoted by, j, (I . ¥, ¥}.),

: otherwise the cur-

Wi, = 4}, " with probabilityr = min{l,

has stationary distributiop(y,l¥j,). We can also express the iterates explicitly. For instance,
D~ Mopa(aly™, w4 0) is a typical expression for sampling from an MH transition ker-

nel with stationary distributiom(y2ly"™, ). Notice that this transition kernel dependsydh

because the acceptance probability involy&sand because{™" is set toy) if the proposal is

rejected. Next we introduce two examples that illustrate the advantages and potential pitfalls that

may arise when using PCG samplers when MH is required for some of their updates.

2.2 Spectral analysis in X-ray astronomy

We begin with an example from our applied work in X-ray astronomy that involves a spectral anal-
ysis model that can be fitted with the Data Augmentation algorithm and Gibbs-type samplers (van
Dyk et al, 2001; van Dyk and Meng, 2010). We use variants of this example as a running illus-
tration of the methods we propose. The X-ray detectors used in astronomy are typically onboard
space-based observatories and record the number of photons detected in each of a large number
of energy bins. Spectral analysis aims to estimate the distribution of the photon energies. We use
Poisson models for the recorded photon counts, where the expected count is parameterized as a

function of the energyg; of bini. A simple example is
X Poissor{Ai =a(E P +yl{i = u})e‘¢/E‘}, fori=1,...,n, (1)

whereX; is the count in bin; a, B, y, u and¢ are model parameterk;} is the indicator function;

andn is the number of energy bins. Tl term in (1) is acontinuura—a smooth term that
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extends over a wide range of energies. &he{i = u} term is anemission line—a sharp narrow
term that describes a distinct aberration from the continuum. The emission line in (1) is very narrow
in that it is contained entirely in one energy bin. The parameters of the continuum and emission
line describe the composition, temperature, and general physical environment of the source. The
factore *’% in (1) accounts for absorption—lower energy photons are more likely to be absorbed
by inter-stellar material and not be recorded by the detector. A typical spectral model might contain
multiple summed continua and emission lines. We use a simple example here to focus attention on
computational issues. Sineg B, y and¢ are often blocked in the samplers we discuss, we refer
to them jointly a9l = (a, 8,7, ¢). We assume thaandu area priori independent and thatis a
priori uniform on{l,...,n}.

In practice, we do not observe = (Xg,..., X,) directly because photon counts are subject to
stochastic censoring, misclassification, and background contamination. First, because the sensi-
tivity of the detector varies with energy, the probability that a photon is detected depends on its

energy. Combining this with background contamination,
X | X ™ Binomial{ X, A} + Poisson{), for i=1,...,n, (2)

whereX = (X4,...,X,) are the photon counts, including background, that are not absohbed,

(A4, ..., An) is theeffective areaof the detector which describes its sensitivity, &nel (&1, ..., &)

is the expected background count. Second, misclassification occurs because a photon with en-
ergy E; has probabilityP;; of being recorded in bir). Combining thesefects, the conditional

distribution of the observed photon couits= (Y4, ..., Y,) givenX is
n
yixey Multinomial{f(i, (Pus...., Pm)}, 3)
i=1
and marginally,
n
Y~ Poissor{ Z Pii (A + gi)}, forj=1,....n, 4)
i=1

whereA; is given by (1). WhileA andP = {P;;} are typically assumed known from instrumental
calibration (see Leet al,, 2011, and Xet al,, 2014, for an exceptiond,is often specified in terms

of a number of unknown parameters.
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The model in (1) is a finite mixture model and can be fitted via the standard data augmentation
scheme that sed§ = Xic+X , whereXc < Poissor(aEi‘ﬁe‘WEi) andX; ~ Poissor(ayl{i = y}e‘¢/Ei),
are the photon counts in birgenerated from the continuum and emission line, respectively. We
consider samplers that targatX, X, 6, u|Y) rather tham(6, u|Y) both because the ideal da¥§,is
of scientific interest and because its introduction simplifies the complete conditional distributions,
especially in more complex models with multiple summed continua and spectral lines. Assuming

£is known, this leads to a Gibbs sampler for (1)—(4):

Step 1 K&, X)) ~ p(X, X, I, 60, 1), (Sampler 1)
Step 2: 641 ~ p(a]Y, XD, XY, 1),

Step 3: 4D ~ p(ulY, XD, XD gDy,

where X, = (Xq,...,Xn). We separater and 6 into two steps to facilitate derivation of the
partially collapsed versions of this sampler. BecaXiseompletely specifies the line locatigm,
Var,(u|X ) = 0, Sampler 1 is not irreducible, apd = 4© for all t, for any choice ofu©@. This
problem can be solved by updatipgwithout conditioning onX,. In particular, we can replace
Step 3 of Sampler 1 with{"*, D) ~ p(X_, ulY, X&D, 9Dy and permute the steps to

Step 1: K, u®™) ~ p(Xe, ulY, X9, 60), (Sampler 2)
Step 2: KD, X["Y) ~ pOX XY, 60, ),

Step 3: 9t o p(HIY, X(t+1), XI(_t+1),,Ll(t+l))-

The sampledX, in Step 1 is denoted b} because it is not an output of the Markov transition
kernel; X, is updated again in Step 2. In faxf is a redundant quantity in that it is not used at alll
subsequent to Step 1 and replacing Step 1 wht) ~ p(u|Y, X®, 69) does not alter the Markov
transition kernel of Sampler 2. The resulting sampler, that is,

Step 1: u®D ~ p(ulY, XO, g0, (Sampler 3)
Step 2: Q((Hl), X|(_t+l)) - p(X, XY, Q(t),/l(t+1)),

Step 3:60D ~ p(g)Y, X&), XI(_t+l), D),

ACCEPTED MANUSCRIPT
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is an example of a PCG sampler composed of incompatible conditional distributions. A variant of
this sampler was discussed in Park and van Dyk (2009).

By its construction, the stationary distribution of Sampler B(X, X., 6, u|Y), see Section 2.4.
Unlike an ordinary Gibbs sampler, however, permuting its steps may alter its stationary distri-
bution. Suppose, for example, we obtak(® X", 60, u®) from p(X, X_, 6, ulY) and updateu
according to Step 1 of Sampler 3. The joint distributionX( X", 60, 1Dy would be

f p(/,l(t+l)|Y, X(t), g(t)) p(X(t), XI(_t)’ g(t), /J(t)|Y)du(t) - p(X(t), g(t), ,u(t+1)|Y) p(X|(_t)|Y, X(t), g(t)). (5)

It is the conditional independence ¥f” andx®? in (5) that makes Sampler 3 so much faster
than Sampler 1; recall Vau|X.) = 0. Because the joint distribution éf% and ™Y in (5) is

their posterior distribution and Step 2 conditions onlygéhanduY, the joint distribution of the
unknowns after Step 2, that is, of¢+D, X"V, ¢®, 4, D) is again the target posterior distribution.
Thus a cyclic permutation of the steps in Sampler 3 that ends either with Step 2 or Step 3 results
in a proper sampler, but ending with Step 1 does not. With non-cyclic permutations, the stationary

distribution is unknown.

2.3 A common error in the simplest PCG sampler

The potential pitfalls of introducing MH updates into a PCG sampler can be illustrated using the
simplest possible PCG sampler. To see this, we start with a two-step Gibbs sampler with target
distributionp(y¥1, ¥2), where the second step relies on an MH update:

Step L:y{™ ~ plyalyd), (Sampler 4)

Step 2:45™ ~ Mop(Walyd™, yd).

While this sampler is proper, replacing Step 1 WMIHI) ~ p(¥1) results in an improper sampler:
Step 1y ~ p(y), (Sampler 5)

(t+1)

Step 2:y5," ~ M2|1(%02|l/’(1t+1),l//g))-

The problem with Sampler 5 can be illustrated using a simulation study. Figure 1 compares 10,000
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draws generated by Samplers 4 and 5 v, v») given by

o]l M ) .

The MH jumping rule in Step 2 of both samplers is a Gaussian distribution centered at the previous

draw with variance equal to 3. Sampler 5 underestimates the correlation of the target distribution
and overestimates the marginal variance £fOf course, if we repeat Step 2 alcient number of

times within each iteration of Sampler 5, it would deliver a draw (nearly) from its tap@eijy,),

and Sampler 5 would deliver (nearly) independent draws fpfun, v»). We discuss this strategy

for constructing an approximately proper sampler in Section 3.2. Similarly, iterating Step 2 of
Sampler 4 would (nearly) lead to a standard two-step Gibbs sampler.

The key to understanding the failure of Sampler 5 (without iterating Step 2) lies in the MH
jumping rule used in Step 2 of both samplers. The kevh&|; depends on//g) through its
acceptance probability and its output if its proposal is rejected, Migs must be written as
Mo,y D). Although My delivers a draw fronp(y,ly"*?) if given a sampley*?, D)
from the target distribution, in Sampler&{*" andy{ are independent antit,; does not deliver
a draw fromp(y,ly ).

Unfortunately, there are several examples of samplers in the literature that have the same struc-
ture as the improper Sampler 5, for instance, &iwal. (2009), Lunnet al. (2009), McCandless
et al. (2010), and even in the popular WinBUGS package (Spiegelhalter, Thomas, Best and Lunn

2003), see Section 5.1. These samplers do not generally exhibit the desired stationary distributions.

2.4 Convergence of the Partially Collapsed Gibbs sampler

A three-phase framework for deriving proper PCG samplers is given in van Dyk and Park (2008).
Consider the Gibbs sampler in Figure 2(a) that updates the components @f1, ¥, v3, ¥4) in

three steps. In the first phase of the framework, one or more steps of the parent Gibbs sampler
are replaced by steps that update, rather than condition on, some compongenishd is illus-

trated in Figure 2(b), where the update ~ p(y1ly5, 3, ¥,) in Step 1 is replaced withyg, y3) ~

P(y1, walys, ). Notice that in the modified step; is sampled rather than conditioned upon. This
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conditioning reductiorphase is key to the improved convergence properties of the PCG sampler.
By conditioning on less, we expect to increase the variance of the updating distribution, at least on
average. This is evident in Section 2.2 where the complete conditionaifiddampler 1 has zero
variance, but its update with reduced conditioning in Sampler 2 readily alldarenove across its
parameter space. More formally, van Dyk and Park (2008) showed that sampling more unknowns
in any set of steps of a Gibbs sampler can only reduce the so-called cyclic-permutation bound on
the spectral radius of the sampler. The resulting substantial improvement in the rate of convergence
is illustrated in the examples given in Bernaetlal. (2013), Berrett and Calder (2012), Caretral.

(2014), Dobigeon and Tourneret (2010), ehal.(2012), Huet al. (2013), Kailet al.(2010, 2011),

Lin and Tourneret (2010), Lindstext al. (2013), Parlet al. (2008), Park and van Dyk (2009), Park

et al.(2012a), Parlet al. (2012b), and Zhao and Lian (2014), among otheZanditioning reduc-

tion was calledmarginalizationby van Dyk and Park (2008).)

The conditioning reduction phase results in one or more componemisefng updated in
multiple stepsj/s is updated in Steps 1 and 3 in Figure 2(b). If the same component is updated
in two consecutive steps (without MH), the Markov transition kernel does not depend on the first
update. We call quantities that are updated in a sampler, but doffiect &s transition kernel
redundant quantities-they must be updated subsequently or they would be part of the output of
the iteration. The second phase of the framework ipgonutethe steps of the sampler with
reduced conditioning to make as many of the updates redundant as possible. For example, we
permuted the steps in Figure 2(b) so tiatis updated in Steps 2 and 3 of Figure 2(c) arjdis
redundant.

In the third phase, redundant quantities are removeirmmedfrom the updating scheme.

For example, Step 2 in Figure 2(d) does not updateBy construction, this does noffact the
overall transition kernel. The resulting step samples from a conditional distribution of a marginal
distribution of p(y). For example, Step 2 in Figure 2(d) simulates from a conditional distribu-
tion of p(¥1, Yo, Y4 rather than ofp(y1, ¥, w3, ¥4). We refer to steps that sample or target such
distributions aseduced stepand to steps that sample or target a complete conditioriallaseps

In some cases, the result of the three-phase framework is simply a blocked or collapsed (Liu

et al, 1994) version of the parent Gibbs sampler. In other cases, however, the resulting PCG sam-
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pler is composed of draws from a set of incompatible conditional distributions (e.g., Sampler 3).
Since all three phases preserve the stationary distribution of the parent sampler, we know that the
resulting PCG sampler is proper. Because reducing the conditioning can significantly improve the
rate of convergence of the sampler, while permutation typically has a mifemt,eand trimming

has no &ect on the rate of convergence, we generally expect the PCG sampler to exhibit better

and often much better convergence properties than its parent Gibbs sampler.

3 Using MH Algorithm within the PCG Sampler

3.1 Identifying the stationary distributions

We now consider the use of MH updates for some of the steps of a PCG sampler. As the example in
Section 2.3 illustrates, introducing MH into a well behaved PCG sampler can destroy the sampler’s
stationary distribution. Thus, care must be taken to guarantee that an MH within PCG sampler is
proper. Here we describe the basic complication that arises when MH is introduced into a PCG
sampler and give advice as to how to ensure that the sampler is proper.

When deriving a PCG sampler (without MH), the conditioning reduction phase means some
components ofy are updated in multiple steps. If the same component is updated in consecutive
steps, the Markov transition kernel does not depend on the first update. The first update is therefore
redundant and can be omitted withotfiegting the stationary distribution of the chain.

This situation is more complicated when some of the steps of the PCG sampler require MH
updates. Suppose, for example, we wish to sample fsm with v = (¥4, ¥, ¥3) using a proper
PCG sampler in whicly; andy, are jointly updated in Stel via a draw from the conditional
distribution p(y1, ¥,l¥3). Suppose also that, is to be updated according to its full conditional
distribution, p(y2ly1, ¥3) in StepK + 1, but this cannot be done directly and we wish to use an MH
update. The remaining unknowngs, are updated in other steps of the sampler, which perhaps

involve dividingys into multiple subcomponents. That is, StépandK + 1 of the sampler are

StepK: (", u%) ~ plys, walpy), (Sampler Fragment 1)
StepK + 11 Y™ ~ Mora(Walyl™, us, ).

ACCEPTED MANUSCRIPT
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If we were able to draw, directly from its complete conditional distribution in Sté&p+ 1,

would be redundant and we could remove it from the sampler by replacing the update i Step
with the reduced step!™ ~ p(y1ly}). The MH update in Stel + 1, however, depends art

and replacing it Withb(zt) may change the chain’s stationary distribution in an unpredictable way. In
short, the MH update used in St&p+ 1 means that we cannot reduce SkepGenerally speaking,

an MH update in a step that follows a reduced step is problematic because reduced steps result in
independences that do not exist in the target. (A reduced step that follows an MH step, however, is
not inherently problematic.) More precisely, the keroel, ;, (.1}, ¥},. ¥3,), can generally only

be used if no component of (,, ¥j,, ¥j,) is trimmed in the previous step.

Luckily, the stationary distribution of an MH within PCG sampler can be verified using the
same methods that are used for an ordinary PCG sampler. In particular, the three-phase framework
of van Dyk and Park (2008) can be directly applied. The first two phases, conditioning reduction
and permutation, apply equally well to MH within Gibbs samplers. Neither updating additional
components of in one or more steps nor permuting the order of the steps upsets the stationary dis-
tribution of an MH within Gibbs sampler. The final phase involves removing redundant updates.
Because an MH step generally depends on the current draaié of the components af not
reduced out in that step, there are fewer redundant draws when some steps involve MH. Nonethe-
less, any redundant updates that are identified can safely be removed in the trimming phase—by
definition they do notfiiect the transition kernelhe critical point is that unlike with an ordinary
Gibbs sampler, we cannot simply replace some of the component draws of a PCG sampler with
MH updates. Rather we must construct an MH within PCG sampler by applying the three-phase
framework.

Now suppose we wish to reduce the conditioning in an MH step. In Sampler Fragment 1, for
example, ifp(ysly1, ¥2) is a standard distribution with known normalization, then we can evaluate
P(Yaly1) o« Y1, ¥2) = P, Y2, ¥3)/ P(Ysla, ¥2) and sampley, ~ Maa(walyy, ¥5). Replacing
StepK + 1 of Sampler Fragment 1 with this reduced MH step, however, can alter the chain’s
stationary distribution in unpredictable ways. Instead, we propose to replace the full MH step with
the reduced MH stefollowed immediatelyy a direct draw from the complete conditional of the

reduced quantities. In Sampler Fragment 1 this would entail replacing<Step with

ACCEPTED MANUSCRIPT
11



Downloaded by [Imperial College London Library] at 07:54 01 September 2014

ACCEPTED MANUSCRIPT

StepK + 1 with Reduced Conditioningy ™ ~ Maa(woly™*™, %) andys ~ p(walyd™™, y D).

This strategy ensures that the target stationary distribution is maintained. The expectation is that
the updates of the reduced quantities will be trimmed after the steps are appropriately permuted and
that the reduced MH step can be employed in the final sampler. We denote the transition kernel
of the full step (i.e., the reduced MH step followed by the complete conditional of the reduced

guantities) byM*. In Sampler Fragment 1, we rewrite the step with reduced conditioning
StepK + 1 with Reduced Conditioningyd™", yz) ~ M3, (V2. valul ™, 3).

Notice that this full update is not formally an MH update and has the advantage that it does not
depend on all of the componentsyaf Thus, this step can follow a step that redugesut.

We now illustrate the construction of a proper MH within PCG sampler for the spectral model
given in (1). For simplicity, we assume th&tis observed directly and we can ignore (2)—(4).
Figure 3(a) gives a six-step Gibbs sampler. Three of its steps require MH updates; the details of all
the steps are given in Appendix B. The conditioning in four of the steps is reduced in Figure 3(b),
and the steps are permuted in Figure 3(c) to allow the redundant draXgsaofda™ to be trimmed

in four steps. Sampler 6, the resulting proper MH within PCG sampler, appears in Figure 4.

3.2 Using MH following a reduced step

Using a full MH step immediately following a reduced step can be problematic. Sampler 5 illus-
trates this in its simplest form: a draw from a marginal distribution followed by an MH update of
the conditional distribution of the remaining unknowns. As noted in Section 2.3 this is a particu-
larly common problem in practice, even in its simplest form. In more complicated PCG samplers,
the general phenomenon of introducing a full MH step immediately following a reduced step is
the typical path by which introducing MH leads to an improper sampler. This is illustrated in
Sampler Fragment 1, where we are unable to replace the update iK Stiép the reduced step

(1“1) ~ p(¥1lyy). Thus, this case is particularly important and we propose two alternate samplers
that maintain the basic structure of the underlying PCG sampler while allowing a form of MH in

the step following a reduced step. Both solutions are conceptually straightforward.
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We begin by studying a special case that is useful for illustrating the two alternative samplers
that we propose. We discuss the more general situation below. In particular we start in the general
setting of Sampler Fragment 1, but consider a PCG sampler in whichupdated in Stei via
a direct draw from the conditional distributiqofy[3) of the marginal distributiom(y 1, ¥3), i.e.,

a reduced step. Again suppose that an MH update is required to ugdatStepK + 1. That is,
StepsK andK + 1 of the parent PCG sampler are

StepK: y{* ~ p(yalyy), (Sampler Fragment 2)
StepK + L1 y5* ~ p(aly ™, vp).

Because MH is needed for St&p+ 1, these steps cannot be blocked.
One straightforward general solution to the intractabilit;pgtrzwx(l“l), y3) is simply to iterate
the MH update within Stef + 1 to obtain a draw from the conditional distribution,

Iterated MH Strategy

StepK: ¢ ~ p(ylys), (Sampler Fragment 3)

StepK + 1: Samplepd™™™ ~ Moy sl ™, ¢S gy for | = 1, L, to obtaingd™ 2>
p(lﬁzllﬁ(f*l), y) at the subiteratioh= L.

We discuss methods for determining how lakgaust be in Sections 4.1 and 5.1. WitHistiently
largeL, the iterated MH strategy delivers a draw that approximately foIIpW&lw(l”l), y3) and
thus the sampler igpproximately properin this special case the iterated MH strate¢fgetively
blocks StepK andK + 1 to (nearly) deliver an independent draw frqufy, yly3).

Another solution to the intractability qﬁ(wzlw(l”l), y3) is a joint MH update on the blocked

version of StepK andK + 1,

Joint MH Strategy

StepK: Update {1, ;) jointly via an MH update with jumping rulg as(wa, 2lyy), w4) = Palws) Tan a(Walya,

StepK + 1. Omit. (Sampler Fragment 4)

The jumping rule in StefK of Sampler Fragment 4 is exactly the concatenation of &tepd the

jumping rule in StefK + 1 of Sampler Fragment 3. By concatenating we avoid iteration. In the
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joint MH strategy, however, the proposed andy, are accepted or rejected together, whereas in
the iterated MH strategy only the proposkgdis accepted or rejected.

The iterated MH strategy is in some sense a thinned version of the joint MH strategy. This,
however, is an over simplification for two reasons. First, the iterated MH strategy ugdaiaty
once for everyL updates ofy, whereas the joint MH strategy updates both together. Second,
although the jumping rule in the joint MH strategy is the same as that used by the iterated MH
strategy at its first subiteration, the acceptance probabiliti@srdiThis results in a systematic
difference in the performance of the resulting samplers, see Section 4.1.

Generalizing Sampler Fragment 2, St&pandK + 1 may not block even without MH. Suppose
U = (Y1, Y2, W3, 4) and the parent PCG sampler contains the two steps

StepK: v ~ pludy, vy, (Sampler Fragment 5)

StepK + 1: 5™, i) ~ plya, vy, v,

where StepK is a reduced step and Stép+ 1 cannot be sampled directly. Here the con-
ditional distributions cannot be blocked into a single step. We can still use the iterated MH
strategy in StegK + 1 to obtain a draw approximately from(y, ¢y, y,) and an approxi-
mately proper sampler. Likewise we can implement the joint MH strategy, using the jumping rule
PO, W) T an.a(a Wl v, Q. y,). The stationary distribution of the joint jumping rule is
paly?, ) P2, w3l w,). Although a legitimate joint distribution omyg, 2, ¥3), this does not

correspond to a conditional distribution pfy).

3.3 To block or not to block

Section 3.2 discusses the case where 8tepl of Sampler Fragment 2 requires MH. We now
consider the case where Stépequires MH. In particular,

StepK: ¢ ~ Mua(ualy®, ), (Sampler Fragment 6)

(t+1) (t+1)

StepK + 1: v, 7 ~ plvaly” . ¢3).

Sampler Fragment 6 does not lead to convergence problems because the input&te Stejow
the correct distribution; Figure A in the online appendix verifies the stationary distribution of its

parent chain.
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We might consider blocking the two steps in Sampler Fragment 6 into a single MH update as

StepK: Update {1,4) jointly via the MH jumping rule Jisa(, oyl uy) =
Tl vy palin, ),

StepK + 1: Omit. (Sampler Fragment 7)

The jumping rule in Sampler Fragment 7 is exactly the concatenation of the jumping rules in the
two steps of Sampler Fragment 6. There is a fundamertardnce, however, in that the transition
kernel corresponding to the concatenated jumping rule dependé;)orif the MH proposal is
rejected, ¢,y = 0, yY), whereas neither of the steps in Sampler Fragment 6 depends
on a//(zt). This means that care must be taken to ensure blocking in this way does not upset the
stationary distribution of the chain.

Steps 3 and 4 of Sampler 6 are an example of Sampler Fragment 6y witB, ¥, = @ and
w3 = (v, u, ¢). Blocking Steps 3 and 4 of Sampler 6 results in Sampler 7, see the second panel of
Figure 4. Unfortunately, this is an improper sampler, which we verify using a simulation study.
We begin by generating an artificial data set consisting ef 550 bins witha = 37.62,8 = 1,
v =40/37.62,u = 250, andp = 0.2, see Figure 5. We run two versions of Sampler 7. Sampler 7(a)
uses the concatenated jumping rule given in Sampler Fragment 7 to updatewhile Sampler
7(b) uses an independent bivariate normal jumping rule centered at the current vaiye) o¥\Ne
use a uniform prior distribution for each parameter, and run 30,000 iterations of Samplers 6, 7(a),
and 7(b) using the same starting values< 30,8 = 3,y = 1, u = 10 and¢ = 0.5). Scatter
plots of @, 8, ¢) for the last 10,000 draws from the three samplers appear in Figure 6, which shows
that Samplers 7(a) and 7(b) underestimate the correlations of the target distributiorfiteittisse
especially dramatic for Sampler 7(b). Figure 7 compares the marginal distributiengpand
¢ generated with Samplers 6 and 7(b), and shows that Sampler 7(b) underestimates the marginal
variances of all three parameters. (The marginals generated with Sampler 7(a) are more similar to
those generated with Sampler 6.)

The problem with Sampler 7 can be understood in the terms of Section 3.2. Blocking the
updates forr andp results in an MH step that follows directly after a pair of reduced steps (the
updates oz and¢). If u and¢ were known, and Steps 1 and 2 were removed, both versions of

Sampler 7 would be proper. As it is, the stationary distribution of Sampler 7 cannot be verified
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with the three-phase framework.
The comparison between Sampler Fragments 6 and 7 is similar to that between the iterated and

joint MH strategies in Section 3.2. Theoretical perspectives on these choices appear in Sec. 4.

4 Theory

4.1 Comparing the iterated and joint MH strategies

In this section we compare the iterated and joint MH strategies in terms of their acceptance prob-
abilities. Although it is generally recognized that an acceptance probability of 20% to 40% is best
for a symmetric Metropolis jumping rule (Robe#dsal,, 1997), we argue that the better choice be-
tween the two strategies is determined by maximizing the acceptance probability. This is because
both the iterated and joint MH strategies start with shene proposal-they are numerically iden-
tical. The rule of thumb for tuning the acceptance probability to between 20% and 40% is based on
comparingdifferent proposal distributionw/ith an eye on avoiding high acceptance rates because
they typically correspond to jumping rules that propose very small steps. In this case the initial
step sizes are the same and we aim to reduce correlation by increasing the jumping probability. We
begin with theoretical results and then illustrate them numerically.

To simplify notation we suppress the conditioningyanin Sampler Fragments 3 and 4. This
is equivalent to a formal comparison of the iterated and joint MH strategies as alternatives to the
improper two-step Sampler 5. We assume that (i) the sampler has been verified to be proper so that
n = pand (ii) the jumping rule used to update does not depend o, i.e., To1 (Yol ¥)) =
J21(¥2ly5). While the transition kerneMp (W2ly/], v5) will typically depend ony), the jumping
rule often will not, for example, a symmetric Metropolis-type jumping rule does not.

The acceptance probability of the first draw in Skep 1 of the iterated MH strategy is

PSPl YN T (5P
PO YD) T (w Py

(7)

iter =
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wherey!"™'" ~ p(y1) andyd™® ~ Faa(w2lyY). With the joint MH strategy, it is
P w5 NP T2 (W W5 ™)) _ PwE ™ WE ) Tan (W 5

o , (®)
P p, e )T o '°'°Iw(°) P W) Ton (0 r°"|w‘°)

wherey}"™ ~ p(y) andys™ ~ Toa(Wlys).

Lemma 4.1 In the setting described in the previous paragraph,

Ezr[riter/rjoint] > 1 (9)

The expectation in (9) is under the common stationary distributipof both chains and is condi-

tional on the random seed used at the start of each iteration. That is, g{i&& (42" sampled

under the iterated MH strategy andi(*", y5"") sampled under the joint MH strategy are drawn

in exactly the same way, we assume these quantities are numerically equal. Expression (9) asserts
that while both strategies start with the same proposgd=(”, y5"") under the iterated MH strat-

egy and ¢5"°", y5"®") under the joint—the iterated MH strategy is on average more likely to accept

V». (The iterated MH strategglwaysaccepts);.)

Proof: With the numerical equality of the proposals,

Fiter _ p(w(t)ll/’(t))
Fjoint N p(w(t) (t+1/L))

(10)

where ¢,y 0, Dy < 2,y O)r (p V) with 7, they, marginal distribution ofr. Because
@Y, ) ~ 7 andx = p, the numerator of (10) is the conditional densityyafevaluated ap’,
This is not true of the denominator becauggis independent af{"™/". Thus, we might expect
that the numerator of (10) is typically larger than the denominator, as claimed in (9).

Recalling thatr = p, substituting (10) into (9), and applying Jensen’s inequality, we need only
verify that

f 10g [x(Waln)] (s, w2)chpadly, > f 100 [x(Walys)] w(wo)e(wr2) sl (11)

Expression (11) can be verified using a standard property of entropy along with the Kullback-

Leiber (KL) divergence. In particular, because KL is nonnegative,
f|09 [7(2)] () m(r2)dyrayr > f|09 [7(Walyr1)] m(1)m(2)dipads. (12)
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(The standard KL expression can be recovered by adﬂing [7(2)] m(w1)m(r2)dyr1dyr, to both
sides of (12).) But a standard property of entropy (e.g., Ebradiral, 1999) is

f 109 [x(Waln)] (s, w2)chpadly, > f l0g [1(y2)] AWs)e(wr2)cra . (13)

Combining (12) and (13) gives (11) and hence the desired rasult.

We now return to the bivariate Gaussian simulation of Section 2.3 to compare the computa-
tional performance of the iterated and joint MH strategies. Again we sagmgdl®m its marginal
distribution and use the same MH jumping rule to updat@ccording to its conditional distribu-
tion. The iterated strategy is run with= 7, in order to returrry/g”) that is essentially independent
of y{). The value ofL was set using an initial MH run of,B800 iterations and inspecting the
autocorrelation function. The initial MH sampler delivers essentially independent draws after 7
iterations, see Figure 8(a). Of course, the computational cost per iteration of the iterated MH strat-
egy depends oh. With L = 7, each iteration requires eight univariate normal draws, whereas the
joint strategy requires two. The autocorrelation functiongofor both the iterated and joint MH
strategies appear in Figure 8(b)—(c) and show the clear computational advantage of the iterated MH
strategy. It returns essentially independent draws, whereas the joint MH strategy requires almost
thirty iterations to obtain nearly independent draws.

In practice, it is important to check that the valuelotised in Sampler Fragment 3 delivers
samples that are essentially independent of the starting value of the iterated MH strategy. For-
tunately, a simple diagnostic is available through the autocorrelation functi(pﬁ) @h Sampler
Fragment 3, e.g., Figure 8(b). If the lag one autocorrelation is not essentially zero, the run should
be repeated with a larger value lof If , is updated elsewhere in the sampler, th&acy of the
iterated MH strategy can be isolated by computing the correlation between the initial infut of
and the final output after iteration of the MH update in Skep 1 of Sampler Fragment 3. Xu
et al.(2014) propose testing the hypothesis thfltandy’ ™ are uncorrelated by computing,

T O _5)wtD — g C
p= Lirpa¥y —¥2)(Y; wZ), where i, = Z ‘/’g)’

T t 7
Zt:To+1(¢(2) — Y2)? t=To+1

approx

whereT is the burn in size. I is large enough, then for lardg (T — T)p?/(1-5?) N(O, 1).
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4.2 Comparing the samplers with and without blocking

To compare the blocking strategy in Sampler Fragment 7 with Sampler Fragment 6, we compute
its acceptance rate, again suppressing the conditionigg &or simplicity, as

PWL™ ¥y VTR )PWE W) _ PUE )T ™)
SN A0 A A B GOV AATZY
wherer ot biockediS the acceptance probability of St&pin Sampler Fragment 6, where there is no

Iblocked = = I'not blocked (14)

blocking. This means that Sampler Fragments 6 and 7 are identical in terms of their upgate of
but whereas Sampler Fragment 6 updatgsvith a new value at every iteration, blocking causes
W, to only be updated if/; is updated. Thus, we expect the blocking strategy of Sampler Fragment
7 to reduce theféiciency of the sampler, and contrary to general advice regarding blocking (e.g.,
Liu et al, 1994), the blocking strategy of Sampler Fragment 7 should be avoided.
Together, the results of Sections 4.1 and 4.2 should be taken to discourage the combining of an

MH update and a direct draw from a conditional distribution into a single MH update.

5 Examples

5.1 The simplest MH within PCG sampler

MH within PCG samplers are useful for fitting multi-component models in which part of the model
must be fitted f-line. Consider a two-step sampler that updatesndy, each in turn, but for
computational reasons, we wish to updateft-line. This may, for example, stem from the use of
computer models that involve some costly evaluations in the update @&s an illustration, we
consider the problem of accounting for calibration uncertainty in high-energy astrophysics (Lee

et al, 2011) using a special case of model (4) in Section 2.2:
Yj~PoissofAeE; 7}, for j=1,...,n. (15)

Here we consider the case where tfte&ive area vectoh = (A4, ..., A,) is not known, and must
be estimated along wittaandB. In-space calibration and sophisticated modelling of the instrument

result in a representative sample of possilgalues. Leeet al. (2011) shows how a Principal
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Component Analysis (PCA) of this sample can be used to derive a degenerate multivariate normal
prior for A. In particular, we can writd(Z) = A+ QZ, whereA, (nx1) andQ (nxq) are known, the
components of theg(x 1) vector,Z, are independent standard normal variables,cardn. Since

A is a deterministic function oZ, we can confine attention to the parame@rf 8). With the
expectation tha¥ would be relatively noninformative foh(Z) and to simplify computation, Lee

et al. (2011) suggests adoptingZ) p(a, B|IZ, Y) as the target distribution for statistical inference,

an approximation that they cdfragmatic BayesThus, the target can be sampled by first drawing

Z ~ p(Z) and then updating andg givenZ. Using a uniform prior forx andg: p(«,B) « 1, the
complete conditional fod is in closed form, bug requires MH.

One might be tempted to implement the following improper MH within PCG sampler:

Step 1:ZHY ~ p(2), (Sampler 8)
Step 2: 841 ~ Mgya.az (B, g0, AZHD)),

Step 3:a®™Y ~ p(alY, g4, AZHD)Y).

This update otr andg reflects the simple form of (15). Methods for fitting more general spectral
models were considered by Leeal.(2011). To derive an (approximately) proper sampler, we can

remove the conditioning om and implement the iterated MH strategy in Step 2:

Step 1: 2 ~ p(2), (Sampler 9)
Step 2:,8(t+|/|‘) ~ Mﬁ|Y,A(z)(ﬂ|,8(t+(l_l)/L), A(Z(t+1))), forl = 1, e, L,

Step 3:a®Y ~ p(alY, B4, AZHD)Y).

As suggested in Section 4.1, we determln@ising an initial MH run of 1000 iterations and
inspecting its autocorrelation function. We found that the component MH sampler delivers essen-
tially independent draws ¢ after 20 iterations and thus det= 20 in Step 2 of Sampler 9.

We use a simulation study to illustrate the impropriety of Sampler 8. The data are simulated
usingn = 1,078 energy bins ranging fromZ25 to 10995 keV,q = 7,Z; =15(j = 1,...,q),
a = 30 andB = 1. For each sampler, a chain of length 20,000 is run with a burnin of 10,000 from

the starting valueg; = 0 (j = 1,...,0), « = 1 andB = 1. Figure 9 shows that usirig= 20 in
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Sampler 9 is sfiiciently large and that Sampler 8 both underestimates the correlatignaoid
and the marginal variability of botta and (more dramaticallyj.

While Leeet al. (2011) recognized the hazard of Sampler 8 and proposed Sampler 9, there are
other examples in the literature where MH is used within a PCG sampler incorrectly, resulting in
improper samplers. Liat al. (2009), for example, proposed a sampler very similar to Sampler 8 in
structure, but in a completelyf@ierent setting. To predict the temperature of a particular device at
a certain time point, the parameters describing the physical properties of the device were linked to
the other parameters via a computationally expensive computer model. One of the approaches de-
scribed in Liuet al. (2009) for sampling all the model parameters from their posterior distribution
was to update the physical-property parameters from their prior distributions first, and then sample
the remaining parameters conditioning on the prior-generated values of the physical-property pa-
rameters. This approach was expected to reduce the confoundedness between the parameters and
thus improve the mixture of the Markov chain. Since the updates of the other parameters relied on
MH, this approach is problematic as illustrated in Section 2.3. In analogy to Figure @t kiu
(2009) showed that the marginal distributions of the other parameters sampled via this approach
were more variable than via the full Bayesian analysis or some other approaches. Other examples
of improper samplers that are similar in structure to Sampler 8 were proposed irtain(2009),
McCandlest al. (2010), and even the popular WinBUGS package (Spiegelhalter, Thomas, Best
and Lunn 2003), see Woodaetial. (2012) for discussion.

5.2 Spectral analysis with narrow lines in high-energy astrophysics

Section 3.3 uses a simulation study to illustrate a potential problem with Sampler Fragment 7,
that is, how the blocking of an MH update and a direct draw from a conditional distribution can
result in an improper sampler. Here we use the same simulation study to illustrate the improved
convergence properties of three proper MH within PCG samplers relative to their parent Gibbs
sampler. The only dierence is that for each sampler here, a chain of 20,000 iterations is run with
a burnin of 10,000 iterations.

As pointed out in Section 2.2, the standard Gibbs sampler for the spectral model (1) breaks

down since the resulting subchain jodoes not move from its starting value (Park and van Dyk,
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2009). To solve this problem, we sampdavithout conditioning onX, and obtain an MH within

PCG sampler, i.e., Sampler 10, given in the first panel of Figure 10. Sampler 6 in Figure 4 is
another MH within PCG sampler but with a higher degree of partial collapsing, by which we mean
more quantities are reduced out in Sampler 6 than in Sampler 10. Not only does Sampler 6 update
u without conditioning onX,, but it also reduces out of its first three steps, whereas Sampler 10
does not remove from any step. Sampler 11 attempts to further improve Sampler 6 by blocking
the MH updates g8 and¢, see the second panel of Figure 10. Unlike Sampler 7 which also blocks

2 steps of Sampler 6, Sampler 11 is proper, see Figure 11. Thus Samplers 6, 10 and 11 are all
proper MH within PCG samplers with common parent Gibbs sampler given in Figure 3(a), but
with different degrees of partial collapsing. (The derivation of Sampler 6 appears in Figure 3 and
that of Sampler 10 is omitted to save space.)

The convergence characteristicsafB, and¢ using Samplers 10 and 11 are compared in
Figure 12;y and u converge well for all three samplers. All three MH within PCG samplers
outperform the parent Gibbs sampler, since the latter does not converge to the target. Sampler 11
performs much better than Sampler 10 in terms of the mixing and autocorrelatiangoand
¢. The performance of Sampler 6 is better than Sampler 10, but not as good as Sampler 11. (To
save space, the results of the intermediate Sampler 6 are omitted in Figure 12.) These results show
that proper MH within PCG samplers outperform their parent Gibbs sampler in computational

efficiency and a higher degree of partial collapsing can improve the convergence even further.

5.3 Relating ECME with Newton-type updates to MH within PCG samplers

The Expectation-Maximization (EM) algorithm is a frequently used technique for computing max-
imum likelihood or maximizing a posterior estimate. The ExpectaBonditional Maximization
(ECM) algorithm (Meng and Rubin, 1993) extends the EM algorithm by replacing the M-step of
each EM iteration with a sequence of CM-steps, each of which maximizesotistrainedex-
pected complete-data loglikelihood function. Liu and Rubin (1994) further generalized ECM with
the ExpectatiofConditional Maximization Either (ECME) algorithm by replacing some of its CM-
steps with steps that maximize the corresponding constraiael likelihood function. ECME

can converge substantially faster than either EM or ECM while maintaining the stable monotone
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convergence and basic simplicity of its parent algorithms. The Gibbs sampler can be viewed as the
stochastic counterpart of ECM, see van Dyk and Meng (2010). PCG extends Gibbs sampling in a
manner analogous to ECME’s extension of ECM: both PCG and ECME reduce conditioning in a
subset of their parameter updates (Park and van Dyk, 2009). The analogy is not perfect, however.
In ECME, for example, the CM-steps maximizing the constrained actual likelihood must be last to
guarantee monotone convergence (Meng and van Dyk, 1997). On the other hand, with PCG, the
corresponding partially collapsed steps must be the first to guarantee a proper sampler.

For ECME, numerical methods, such as Newton-Raphson, may be used to maximize the actual
likelihood if no closed-form solution is available. In the context of PCG samplers, these Newton-
Raphson steps can often be implemented using MH updates.

Here we illustrate how this is done by using an ECME algorithm developed for a factor analysis
model by Liu and Rubin (1998). They derived EM and ECME algorithms and showed that ECME
with Newton-type updates converges more quickly than EM. Analogously, it is natural to expect
that when fitting this model under a Bayesian framework, a proper MH within PCG sampler will

be more @icient than its parent Gibbs sampler. Liu and Rubin (1998) considered the model,
Yi~Np|Z3. % = Diag(?,....03)|. fori=1,....n, (16)

whereY; is the (1x p) vector for observatiom, Z; is the (1x q) vector of theq factors,af is
componentj of the diagonal variance-covariance matrix, gha the  x p) matrix of factor
loadings. We usg; to represent columi of 8 and setY = (YlT .. .,YrT)T andZ = (ZlT .. .,ZrT)T.
We use N(O, I) as the prior foiZ; (i = 1,...,n) and specify noninformative priors fgrandZ, that
is, p(aj?) = Inv-Gamma(M1, 0.01) andp(B;) = Nq[O,V = Diag(10Q...,100)| (j = 1,...,p).
Ghosh and Dunson (2009) discuss this model and its priors in detail.

Sampler 12 (see top panel of Figure 13) is a standard Gibbs sampler in which each complete
conditional distribution can be sampled directly. To improve its convergence, we construct a proper
MH within PCG sampler, Sampler 13, which is also given in Figure 13. Becausehighly
correlated witho 3, ..., o2, Sampler 13 updatess, . .., o2 without conditioning orZ. Sinceo?
converges well with the standard Gibbs sampler in the simulation described below, we do not alter

its update in Sampler 13. The reduced updates®f.., o2 require MH steps. The derivation
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of Sampler 13 from its parent Gibbs sampler, i.e., Sampler 12, using the three-phase framework
appears in Figure 14.

We use a simulation study to illustrate the improved convergence of the MH within PCG
sampler over its parent Gibbs sampler. In particular, wepset 5, q = 2, andn = 100;
ajz (j = 1,...,5) are generated from Inv-Gamma@125) andg,; (h = 1,2;j = 1,...,5) from
N(0, 3%). We run 20,000 iterations for each sampler with a burnin of 10,000 using the same starting
values Z; = [1,1]", Bnj = 1, andaf = 1). Figure 15 compares Samplers 12 and 13 in terms of
mixing, autocorrelation, and density estimationogfando3; the first two columns correspond
to Sampler 12, and the last two columns correspond to Samplers18onverges well for both
samplers, and ando2 behave similarly as- ando3. The computational advantage of Sampler
13 is evident. More importantly, the MH within PCG sampler delivers a much more trustworth
estimate of the marginal posterior distributions as illustrated in the histograms in Figure 15.

We repeated the simulation with= 50 andg = 30 and found that Sampler 13 again outper-
formed Sampler 12 in a manner similar to what is reported in Figure 15. When rurpwitb0

andq = 2, however, both samplers delivered nearly uncorrelated draws.

6 Discussion

Since its introduction in 2008, the PCG sampler has been deployed to improve the convergence
properties of numerous Gibbs-type samplers in a variety of applied settings. As with ordinary
Gibbs samplers, MH updates are sometimes required within PCG samplers. Ensuring that the
target stationary distribution is maintained in this situation involves subtleties that do not arise in
ordinary MH within Gibbs samplers. This has led to the proposal of a number of improper samplers
in the literature. This article elucidates these subtletié®r® a strategy for guaranteeing that

the target stationary distribution is maintained, and provides advice as to how best to implement
MH within PCG samplers. Some of this advice applies equally to ordinary MH within Gibbs
samplers. It is commonly understood, for example, that blocking steps within a Gibbs sampler

should improve its convergence. We find, however, that this may not be true if MH is involved.
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Reducing conditioning in one or more steps of a Gibbs sampler as prescribed by PCG can only
improve convergence. If MH is required to implement the reduced steps, however, the overall
performance of the algorithm may deteriorate, especially if a poor choice is made for MH jump-
ing rule. Thus, there is a natural trad&-between the computational complexity of MH and the
reduced correlationféorded by partial collapsing. Generally speaking, some trial and error may
be needed to negotiate this trad@&-on practice we often start with an MH within Gibbs sampler,
which already involves MH and can be improved by partial collapsing without any added complex-
ity. We expect our strategies to extend the application of PCG samplers in practice and to provide

researchers with additional tools to improve the convergence of Gibbs-type samplers.
Supplemental Mateirals: Details of Samplers 6 and 10—13 appear in an online appendix.
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Figure 1: Proper and improper samplers for the bivariate normal target distribution. The first two panels give scatter
plots ofy; andy, for 10,000 draws from Samplers 4 and 5, respectively. The marginal distributions of the two samplers
are compared in the two quantile-quantile plots. The improper Sampler 5 severely underestimates the correlation
betweeny; andy,, and slightly overestimates the variancejef

(a) Parent GibbSampler (b) ReduceConditioning (c) Permute (d) Trim

Y1~ PWals, o ) | (Wi ¥3) ~ P, wslvh, v)) Yo ~ palyy, v, vy) Yo ~ p(alyy, s, vy)
Y2 ~ P2l v, v)) Y2 ~ PW2lyr, w3 v (W1, ¥3) ~ P, Yalv, v)) Y1~ p(Ylva, v))
(U3, Wa) ~ P(Ws, Yala, ¥2) | (W3,0a) ~ P, Yalrs, ¥2)| (W3, ¥a) ~ PW3, Yal1, ¥2) (U3, ) ~ P, Yalb1, ¥2)

Figure 2: A three-phase framework for deriving a proper PCG sampler. The parent Gibbs sampler appears in (a).
The sampler in (b) reduces the conditioning in Step 1 by updatingther than conditioning on it. The steps of this
sampler are permuted in (c) to allow the redundant drayget-in Step 2 of (c)—to be trimmed in the PCG sampler

in (d).
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(a) Parent MH within Gibb&ampler (b) ReduceConditioning
Step 1: p(X,[X.a"." Y.t &) Step 1: pOS X, .Y/, 1 of
Step 2: p(alX, X, 8, 7 ,U ) Step 2: p(a™, XX B,/ ,y XA
Step 3 M IXXL,(r,y,,u,(ﬁ(ﬁlXL,a' ﬁ 7 I-l ¢) Step 3: M &&Q/ﬂ ¢*(ﬁ |_,a / Iﬁ YoM ’(p)
Step 4: p(VIX L@ B, 1, ¢) Step 4: p(yl % 2
Step 5: M |xxLaﬁy¢(#| L.y, 1 ¢) Step 5: M,#xmxﬁm(ﬂ B.v.i',¢')
Step 6: M:’IX,XL wﬁyu(¢ L, @B, 7, 1, ¢) Step 6: M¢x (,|x,‘3y#(¢ L’a'LB 7,/1’(?5)
(c) Permute (d) Trim
Step LMPy ixpys (s X078 Y 10, ¢7) Step L Moo (ulB’ v’ 1 ¢)
Step 2: MQXLMX,ﬁZ;’j<¢ X5 a8,y g || Step 2: Mélx,m (o v . @)
Step 3: M; ,a By e Step 3 ,7' JTN)
Step 4: p(@, X¥RH ¥, 1,6 Step 4. paIH g
Steh 5. POk 0B 1 6] Stop 5. BX I B )
Step 6: p(yIX, XL, @, 8, 1, ¢) Step 6: p(yI1X. X.. @, 3. 1, 6)

Figure 3: Three-phase framework used to derive Sampler 6 from its parent MH within Gibbs sampler. The parent
sampler appears in (a) with Steps 3, 5 and 6 requiring MH updates. The conditioning in Steps 2, 3, 5, and 6 is reduced
in (b). The steps are permuted in (c) to allow redundant draw§ @nda™ to be trimmed in Steps 1-4. The resulting
proper MH within PCG sampler, i.e., Sampler 6, appears in (d).

Sampler 6 Sampler 7
Step Ly ~ Muxpy.sWlB' v .1, ¢'), Step Ly ~ Muxpy.sWlB' v 1, ¢'),
Step 2:¢ ~ Myixpyu(@l8’. Y. 1. ¢'), Step 2:¢ ~ Moixpyu(@lB. 7' 1. ¢'),
Step 3:8 ~ Mgy ueBIB, 7', 1 9), Step 3: @.8) ~ Magixyusl@.Bla’ B,y 1, $),
Step 4:a ~ p(alX. 8.y, 1. ¢), Step 4: X, ~ p(XLIX, @, 8,7, 1, $),
Step 5: XL ~ p(XLIX, @, 8,7, 1, $), Step 5:y ~ p(yIX, XL, @, B, i, ¢).
Step 6:y ~ p(yIX, XL, @, B, u, $).-

Figure 4. Samplers 6 and 7. Figure 3 verifies the propriety of Sampler 6, an MH within PCG sampler for fitting the
spectral model in (1). Sampler 7 blocks Steps 3 and 4 of Sampler 6 into a single MH step. Unfortunately, this results
in an improper sampler, see Section 3.3. Details of Sampler 6 are given in Section B.1 of the online appendix.
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Figure 5: A dataset simulated under the spectral model (1) and used in the simulation study in Section 3.3.

Sampler 6 Sampler 7(a) Sampler 7(b)

corr=0.973 _,__\.I corr=0.984 .- corr=0.957 corr=0.929 corr=0.906 corr=0.805
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Figure 6: Scatter plots af, 8 and¢ for 10,000 draws from Samplers 6, 7(a) and 7(b) respectively. The two versions
of Sampler 7 block the two steps of Sampler 6 that updaad. Unfortunately, this results in an improper sampler.
When updatingd, 8), Sampler 7(a) uses the concatenation of Sampler 6's jumping rulesgodgs, while Sampler

7(b) uses an independent bivariate normal jumping rule. The impropriety of Sampler 7(b) is especially dramatic.
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Figure 7: Quantile-quantile plots af, 8 and¢ corresponding to draws generated with Samplers 6 and 7(b). Sampler
7(b) severely underestimates the marginal variances of all three parameters.

(a) Initial long run of MH (b) Iterated MH Strategy (c) Joint MH Strategy
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Figure 8: Autocorrelation functions @, for (a) an initial MH run of Step 2 of Sampler 5 with fixed, (b) the iterated

MH strategy, and (c) the joint MH strategy, all under the bivariate normal simulation of Section 2.3. Panel (a) shows
that the initial MH runs deliver essentially independent draws after 7 iterations, so that iterated MH strategy was run
with L = 7. Panels (b) and (c) show that the iterated strategy outperforms the joint strategy.
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Figure 9: Numerical evaluation of Samplers 8 and 9 using data simulated under model (15). (a): the diagnostic plot
suggested in Section 4.1 for the choice_of 20 in Sampler 9. Since the lag-one autocorrelatiog®fis essentially

zero, L is suficiently large. (b) and (c): scatter plots 8§ andg from Samplers 8 and 9 respectively. (d) and (e):
guantile-quantile plots af andg respectively. Sampler 9 is (approximately) proper while Sampler 8 is improper and
underestimates the correlation betw&grandg and also the marginal variability of bothandp.

Sampler 10 Sampler 11
Step 1:pu ~ MuxapyeWla’.B .y . 1', ¢'), Step L:p ~ Muxpy.sWls’.y'.1', ¢),
Step 2: X ~ p(XLIX, @/, 8,y . i1, &), Step 2: B, ¢) ~ Mg gixyu(B: 818, 1t 8",
Step 3:a ~ p(alX, XL, 8,7, 1, '), Step 3:a ~ p(alX. 8,7, 1, $),
Step 4:8 ~ Max x .ayusBIXL, . B, 7", 1, ¢'), Step 4: XL ~ p(XLIX @, 8,7, 1, $),
Step 5iy ~ p(yIX, X, @, B, 1, ¢), Step 5:y ~ p(yIX, XL, @, B, u, ¢)-
Step 6: ¢ ~ Myxx .apyu(@IXL, @B, 7,1, ¢').

Figure 10: Samplers 10 and 11. Sampler 10 is the proper MH within PCG sampler for the spectral model (1) with the
lowest degree of partial collapsing, while Sampler 11 is that with the highest degree of partial collapsing. Details of
Samplers 10 and 11 appear in Section B.1 of the online appendix.
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(a) Parent MH within Gibb&ampler (b) ReduceConditioning
Step 1: p(X |X, a’,,B’,y’,,u’,¢') Step 1: p(X*|X, &', B,y ,,/,['; ¢’)
Step 2: p(alX, XL, 8.7 i/, ¢') Step 2: IO(CfF X* X8, Y ¢) :
Step 3: Mﬁ|xxLaW¢,(ﬁ|xL,aﬁ Yol ¢ Step 3: My s X,L Oi ¢*1B.Y 1. ¢)
Step 4: p(yIX, XL, .., ¢') Step 4: p(yX % ot 8 SN .
Step S: mexLaﬁyqs(uIXL,aﬁ%u .¢') Step STMP ix ﬂm(,u 8%, v, 1, ¢%)
Step 6: Myix x_.a8yu(@IXL, @. 8.7, 1. ¢") Step 6: WX Xy (@5 XL, BIB*, v, 1t ¢)
(c) Permute (d) Trim
Step LMy (u, X ,a*LB’ L ¢) Step 1: M (B’ y '+ )
alxpye LT XB.7.¢ 7 K
Step 2: MzXLaﬁlxjru((b* a* B*IB’ v, u¢') || Step 2 %WW Y i)
Step 3: My Wb Xroa* OB Y . 8%) || Step 3 Mg gixy (B, G187, Y, 1, 67)
Step 4: p(a/ |‘§(, s /1,(]5) Step 4: p(a|X, 5,7, u, ¢)
Step 5: p(X_|X. . 5.7/ 11, Step 5: p(XLIX, . 8,7, 11, 9)
Step 6: p(yIX, XL, . B, p, ¢) Step 6: p(yIX, XL, @, B, 1, ¢)

Figure 11: Three-phase framework used to derive Sampler 11. The parent MH within Gibbs sampler appears in (a).
The conditioning in Steps 2, 3, 5, and 6 is reduced in (b) and the steps are permuted in (c) to allow redundant draws of
X* anda™ to be trimmed in Steps 1-4. This leaves Steps 2 and 3 of (d) identical; one of them is omitted in Sampler 11,
see Figure 10. (In (dB* and¢* are not redundant because they are among the inputs of Step 3.)
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Figure 12: Comparing Samplers 10 and 11 using data simulated under model (1). The first two columns are the time-
series and autocorrelation plots for the posterior draws gf andg respectively from Sampler 10, while the last two
columns are those from Sampler 11. Sampler 11 performs significantly better than Sampler 10.
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Sampler 12
Step 1:Z ~ p(Z|Y,p’,Y), fori =1,...,100,

Step 2: % ~ p(c4IY.Z,8), for j = 1,...,5,
Step 3:8; ~ p(BjlY,Z,%),for j =1,...,5.

Sampler 13
Step 1:02 ~ p(c3IY, Z,B'),
Stepj: o~ M(szlYﬂ 0200?02 02(0-1.2|,3/, o'i, - 0'12_1, 0-12 s 0'% ), forj=2,...,5,

Step 6:Z ~ p(ZlY,p’, %), fori =1,...,100,
Step 7:8j ~ p(BjlY,Z,%), for j=1,...,5.

Figure 13: Two samplers for fitting (16). Sampler 12 is a standard Gibbs sampler and Sampler 13 is a proper MH
within PCG sampler. Notice that Sampler 13 does not conditiod iorits updates o#3, . . ., 2. Details of Samplers
12 and 13 appear in Section B.2 of the online appendix
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(a) Parent Gibbs Sampler (Sampl&¥)

Step 1: p(ZgY,,B',Z’), fori=1,...,100
Step 2:p(ciY,Z,8), for j=1,...,5
Step 3:p(BjlY, 2, %), for j=1,...,5

(b) ReduceConditioning

Step 1: p(Z*|Y,p’,%’), fori =1,...,100
Step 2: p(4Y. Z* B) , /
Step 1+ j: M* L z(af,z*wf 02,0207, .. o) for = 2,3,4

o2
ZIY,BO'1 SO0 e ]

Step 6: M*ZZLB 2 | z(ag,Zlﬂ’,of,.. 0'4, 0'5)
Step 7: p(BjlY. Z, Z) forj=1,...,5

(c) Permute

Step 1: p(al|Y Z',B) ) , . " _
Stepj: 2Z|Yﬂ0 P Ug(o'j’Z*er,’o'l""’o-j—l’ of,...,05),forj=2....5

Step 6: p(ZilY,ﬁ',Z), fori=1,...,100
Step 7: p(B;lY, 2, %), forj=1,...,5

(d) Trim (Sampler13)

Step 1: p(c2|Y,Z, B), ) ) _
Stepj: M o2\ U ..... 2(0'1-2|,8’ O'i, ..,0'1-2_1,0'1-2,...,0'2 ),forj=2,...,5,

Step 6: p(Z|Y, 3. 23 foh = i ,100,
Step 7:p(B;lY, 2, %), for j = 1,. 5

Figure 14: Using the three-phase framework to derive Sampler 13 from its parent Gibbs sampler, i.e., Sampler 12.
The parent Gibbs sampler is in (a); the conditioning in Steps 3—6 is reduced in (b); and the steps are permuted in (c) to
allow redundant draws at* to be trimmed in Steps 2-5. The resulting proper Sampler 13 is in (d).
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Figure 15: Comparing Samplers 12 and 13 using data simulated under the factor analysis model (16). The first two
columns are the time-series, autocorrelation, and histogram plots for the posterior dragvarafo respectively

from Sampler 12, while the last two columns are those from Sampler 13. Sampler 13 performs significantly better
than Sampler 12 both in terms of convergence properties and in its estimates of the marginal posterior distributions.
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(The following is included to establish labels for the sections of the online appendix.)

A Stationary Distribution of Sampler Fragment 6

B Details of the Steps in the Gibbs-type Samplers

B.1 Details of the steps in the Gibbs-type samplers based on model (1)

B.2 Details of the steps in the Gibbs-type samplers based on model (16)
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