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ABSTRACT

We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry
level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted
of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover
the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic
surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results
from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring
accuracy (or bias) A, goodness of fit χ2, precision P, and success rate f. For some methods we identify outliers as
an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality
control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ2 < 1.5, with some of the methods
already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically
in the range f = 20%–40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and
light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face
value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and
|A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and
f depend mostly on season length, while P depends mostly on cadence and campaign duration.

Key words: gravitational lensing: strong – methods: data analysis

1. INTRODUCTION

The past decade has seen the emergence of a concordance
cosmology, ΛCDM, in which the contents of the universe are
dominated by dark matter and dark energy. Even though the
basic parameters appear to be robustly measured, more stringent
measurements are sought as a way to improve our understanding
of the nature of these mysterious components, as well as a way
to test the model against signatures of new physics (Suyu et al.
2012; Weinberg et al. 2013).

20 Also at Department of Physics and Astronomy, University of California, Los
Angeles CA 90095, USA.
21 Also at Center for Urban Science + Progress, New York University,
Brooklyn, NY 11201, USA.

Achieving better cosmography means two things. On the one
hand, increasingly higher quality data are being obtained (e.g.,
Planck Collaboration et al. 2014) in order to improve the pre-
cision of each method. On the other hand, independent obser-
vational methods are being exploited to break the degeneracies
inherent to each method and to uncover unknown systematic
uncertainties, thus improving accuracy. With precision and ac-
curacy rigorously under control, potential inconsistencies might
reveal new physics, such as the presence of additional families
of neutrinos or deviations from general relativity.

In the past few years, strong lens time delays (Refsdal
1964; Kochanek 2002) have made something of a comeback,
becoming an increasingly popular probe of cosmography (Oguri
2007; Coe & Moustakas 2009; Dobke et al. 2009; Paraficz
& Hjorth 2010; Treu et al. 2013; Sereno & Paraficz 2014).
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The configuration most suitable for this work consists of a
quasar with variable luminosity, being lensed by a foreground
elliptical galaxy that creates multiple images of the quasar (e.g.,
Treu 2010, for a recent review). Differences in optical paths
and gravitational potentials give rise to time delays between the
images. In turn, the observable time delays, combined with a
model of the mass distribution in the main deflector and along
the line of sight, provide information on the so-called time-
delay distance, which is a combination of angular diameter
distances. The time delay distance is primarily sensitive to the
Hubble constant (Suyu et al. 2013), but can also constrain other
cosmological parameters, especially with large numbers of time
delay systems and in combination with other methods (Paraficz
& Hjorth 2009; Linder 2011).

At the time of writing, only a fraction of the hundred or
so known gravitationally lensed quasars has well-measured
time delays, owing to the considerable observational challenge
associated with this measurement. Accurate time delays in the
optical require long and well-sampled light curves as well as
sophisticated algorithms that account for data irregularities
and astrophysical effects such as microlensing (e.g., Tewes
et al. 2013a). Radio wavelength light curves have been used
to determine time delays with great accuracy (e.g., Fassnacht
et al. 2002), but unfortunately are restricted to the radio-loud
subset of systems. In all cases, the success rate is limited by the
intrinsic variability of the sources.

The number of systems with known time delays is about to
increase dramatically. In the immediate future, as more lensed
quasars are discovered (e.g., via the STRIDES program22), there
will be more opportunities to identify highly variable systems
in cosmologically favorable configurations for targeted follow-
up. The state-of-the-art project COSMOGRAIL23 with its newly
developed methods (Tewes et al. 2013a) has shown the potential
power of extracting time delay data from sparsely sampled
photometric data (Tewes et al. 2013b). In the near future,
the upcoming cadenced optical imaging surveys will provide
light curves for large samples of lensed quasars. For example,
the Large Synoptic Survey Telescope (LSST; LSST Science
Collaboration et al. 2009; Ivezic et al. 2008) will repeatedly
observe approximately 18,000 deg2 of sky for 10 years, and is
predicted to find and monitor several thousand time delay lens
systems (Oguri & Marshall 2010; LSST Dark Energy Science
Collaboration 2012).

In preparation for this wealth of light curves, it is crucial
to carry out a systematic study of the current algorithms for
time delay determination. Such an investigation has two main
goals. The first is to determine whether current methods have
sufficient precision and accuracy to exploit the kind of data
anticipated in the next decade. Identifying limitations and failure
modes of current methods is a necessary step to develop the next
generation of measurement algorithms. In parallel, the second
goal is to test the impact of different observational strategies.
For example, what kind of cadence, duration, and sensitivity
is required to obtain precise and accurate time delays? Is the
LSST baseline strategy sufficient to meet the goals of time delay
cosmography or can we identify changes that would improve the
outcome?

With these two goals in mind, a time delay challenge (TDC)
was initiated in 2013 October. The challenge “Evil” Team (G.D.,
C.D.F., K.L., P.J.M., N.R., T.T.) simulated large numbers of

22 strides.physics.ucsb.edu
23 http://www.cosmograil.org

time delay light curves, including all anticipated physical and
experimental effects. The wider community was then invited to
extract time delay signals from these mock light curves, blindly,
using their own algorithms as “Good Teams.”24 This invitation
was made by the posting of an initial version of Paper I of this
series (Dobler et al. 2014) on the arxiv.org preprint server, and
on the TDC Web site (http://timedelaychallenge.org/).

The two first ladders of this challenge are TDC0 and TDC1.
TDC0 consisted of a small set of simulated data, which was used
mostly as a debugging and validation tool. TDC0 is discussed
in detail in Paper I. Four statistics were used to evaluate the
performance of every method’s submitted time delays Δ̃t i and
uncertainties δi , in light of the true time delay value (defined as
positive in the input), Δti . These four metrics are as follow: the
success fraction

f ≡ Nsubmitted

N
, (1)

where N is the total number of light curves available for analysis
in the ladder; the χ2 value:

χ2 = 1

f N

∑
i

(
Δ̃t i − Δti

δi

)2

; (2)

the “precision”

P = 1

f N

∑
i

(
δi

Δti

)
; (3)

and the “accuracy” or “bias”

A = 1

f N

∑
i

Δ̃t i − Δti

Δti
. (4)

In addition to the sample metrics we also define the analogous
metrics for each individual point Ai, Pi, and χ2

i . Thus, A, P, and
χ2 defined above are the averages of the individual point values.

Target thresholds in each of these sample metrics were set
for the teams entering TDC0. The seven “Good” Teams whose
methods passed these thresholds were given access to the TDC1
data set, which consisted of several thousand light curves. This
large number was motivated by the goals of revealing the
potential biases of each algorithm at the sub-percent level and
testing the ability of current pipelines to handle large volumes
of data.

To put this challenge in a cosmological context, absolute
distance measurements with 1% precision and accuracy are
highly desirable for the study of dark energy (Suyu et al.
2012; Weinberg et al. 2013) and other cosmological parameters.
Therefore, in order for the time delay method to be competitive
it has to be demonstrated that the delays can be measured with
sub-percent accuracy and that the combination of precision for
each system and the available sample size is sufficient to bring
the statistical uncertainties to sub-percent level in the near future.
The total uncertainty on the time delay distance, and therefore
on the derived cosmology, depends on both the time delay and
on the residual uncertainties from modeling the lens potential
and the structure along the line of sight. Thus, controlling the
precision and accuracy of the time delay measurement is a

24 We note here that the tongue-in-cheek names “evil” and “good” teams do
not denote any despicable intention or moral judgment, but were chosen to
capture the desire of the challenge designers to produce significantly realistic
(and difficult) light curves as well as an incentive for the outside teams to
participate.
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Table 1
The Observing Parameters for the Five Rungs of TDC1

Rung Mean Cadence Cadence Dispersion Season Campaign Length
(days) (days) (months) (yr) (epochs)

0 3.0 1.0 8.0 5 400
1 3.0 1.0 4.0 10 400
2 3.0 0.0 4.0 5 200
3 3.0 1.0 4.0 5 200
4 6.0 1.0 4.0 10 200

necessary, but not sufficient, condition. In this first challenge
we focus on just the time delay aspect of the measurement.
The assessment of residual systematic uncertainties in the other
components of time delay lens cosmography, and the distillation
of the time delay measurement biases and uncertainties into a
single cosmology metric is left for future work.

This paper focuses on TDC1, the analysis period of which
closed on 2014 July 1, and it is structured as follows. Section 2
contains a brief recap of the light curve generation process,
and describes the design of TDC1. In Section 3 we describe
the response of the community to the challenge and give a brief
summary of each method that was applied, and then in Section 4
we analyze the submissions. We look at some of the apparent
implications of the TDC1 results for future survey strategies
in Section 5, and briefly discuss our findings in Section 6. In
Section 7 we summarize our conclusions.

2. DESCRIPTION OF TIME DELAY CHALLENGE TDC1

In TDC1, the “Evil” Team simulated several thousand realis-
tic mock light curve pairs, using the methods outlined in Paper I.
In this section, we first describe the general five rung design of
TDC1, and then describe the process of generating these light
curves step by step, revealing quantitative details of all the ele-
ments considered. We emphasize that TDC1 was purely a light
curve analysis challenge; no additional information regarding
the gravitational lensing configuration, such as positions of the
multiple images, or redshifts of the source and deflector, was
given. This choice was motivated by the goal of performing the
simplest possible test of time delay algorithms. As discussed at
the end of this paper, the inclusion of additional lensing infor-
mation could provide means to further improve the performance
of the methods.

2.1. The Rungs of the Challenge

Each rung of TDC1 represents a possible wide-field survey
that has monitored sufficient sky area that we are in possession
of light curves for 1000 gravitationally lensed active galactic
nucleus (AGN) image pairs. The number of lens systems in
this sample is somewhat less than 1000: quad systems are
presented as two pairs, flagged as coming from the same system
but enabling two independent time delay measurements. The
five rungs of TDC1 span a selection of possible observing
strategies, ranging from a high cadence, long season dedicated
survey (such as COSMOGRAIL might evolve into), to the
kind of “universal cadence” strategy that might be adopted
for an “all-sky” synoptic imaging survey (such as is being
designed for LSST). The challenge allows four control variables
to be investigated (within small plausible ranges): cadence,
sampling regularity, observing season length, and campaign
duration. Table 1 gives the values of these control variables for
each rung.

To make the mock data generation more efficient, and to
better enable comparison of results between the different rungs,
we re-used the same catalog of lenses for all the rungs. This
trick was disguised from the “Good” Teams by randomly re-
allocating the light curve identification labels in each rung. In
addition, the random noise was independently generated in each
rung. As a consequence, the submissions for different rungs may
be deemed independent, as if they had addressed 5000 lensed
image pairs.

2.2. Lens Sample

The time delays between the light curves of gravitationally
lensed images are determined primarily by the macro structure
of the lens galaxy. For the TDC1 sources and lenses we use the
mock LSST catalog of lensed quasar systems prepared by Oguri
& Marshall (2010, hereafter OM10).25 This sample was drawn
from plausible physical distributions for the various key prop-
erties of lensed quasar systems and very approximate observing
conditions expected with LSST, namely, a characteristic angular
resolution of 0.75 arcsec and a 10σ limiting magnitude per mon-
itoring epoch of 23.3 in the i band. Assuming a survey area of
18,000 deg2, these numbers correspond to an OM10-predicted
mock sample of some 2813 lenses. Given these constraints, we
randomly drew 720 doubly imaged and 152 quadruply imaged
quasars from this catalog, to give a total of 1024 independent
time delayed image pairs. As Figure 1 shows, the mean time
delay in TDC1 is several tens of days. We rejected all time
delays outside the range 5 to 120 days as we drew the mock
sample, since the typical observing cadence and season length
are expected to be a few days and a few months, respectively.
The same time delay range constraint reduced the parent OM10
mock lens sample by 76%, to 2124 lenses. When analyzing the
submissions, we found that very few accurate measurements
of time delays less than 10 days were possible, and so in the
rest of this paper we focus on the range 10 < Δt < 120 days.
Imposing this narrower range on the OM10 mock LSST lens
sample results in 1990 systems. While the image pairs with
5 days < Δt < 10 days were not used in the analysis, they are
still there in the TDC1 data set for potential future use.

To give an overview of this sample, we show the distributions
of time delays Δt between images in our 1024 image pairs (in
Figure 1), and detection magnitudes i3 in the 872 lens systems
(in Figure 2). The i3 quantity is the i-band magnitude of the third
brightest image in a quad system or the magnitude of the fainter
image in a double-image system. (It is an important parameter
because it helped OM10 characterize the detectability of lensed
quasars: lenses are assumed to be measurable if i3 is above
the 10σ limiting magnitude of a survey.) The lens abundance
rises fairly steeply with i3, so in order to probe the relationship

25 The OM10 catalog is available from
https://github.com/drphilmarshall/OM10.
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Figure 1. Time delay distributions, from both the parent OM10 catalog and the
sample used in the TDC1 analysis, for the double-image (top) and quad-image
(bottom) systems.

between it and the time delay measurement accuracy, we split
the magnitude range 20–24 into four sub-ranges, and selected
approximately equal numbers of systems in each sub-range.

In summary, our sample is similar to OM10’s, except that
the brighter lenses and intermediate time delays are somewhat
over-represented. As we will discuss later in this paper, this
allows us to sample the range of magnitudes more evenly, while
introducing negligible bias in the inferred performance of the
methods.

2.3. Generation of Intrinsic Light Curves

The mechanism for generating intrinsic light curves is de-
scribed in Paper I. In TDC1, we needed to simulate many more
data sets; the most time-consuming part was generating the
damped random walk (DRW) stochastic process with which
we modeled the intrinsic AGN light curves. The interval be-
tween discrete epochs had to be 0.01 days in order to enable
the counter-image light curve to be simulated with a time delay
precision sufficient to not affect the ensemble metrics. Each of
these intrinsic light curves took approximately 1–2 CPU hours to
make, so for efficiency we created just 500 intrinsic light curves,

Figure 2. Detection magnitude “i3” distributions for the double (top) and quad
(bottom) systems. For doubles, i3 is the magnitude of the fainter image, while
for quad systems it is the magnitude of the third-brightest image. Distributions
are shown both for the parent OM10 sample, and the sample used for TDC1.

each of 10 yr length, and re-cycled them between several mock
data sets, with different starting epochs chosen relative to the
season gaps, so that all the release data could be considered to
be independent.

The DRW light curves represent light curve fluctuations, and
have zero mean magnitude. They are determined by only two
parameters: the characteristic timescale τ and the characteristic
amplitude of the fluctuations σ . These were drawn from distribu-
tions designed to match that observed for the spectroscopically
confirmed (i < 19.1 mag) quasars in MacLeod et al. (2010).
Their log τ and log SF∞ (asymptotic rms variability on long
timescales) parameters were drawn uniformly from the ranges
[1.5 : 3.0] and [−1.1: − 0.3], respectively. The endpoints of
these ranges correspond to 30 and 1000 days, and 0.08 and 0.5
mag. The rms fluctuation level was derived for each light curve
via σ = SF∞/

√
τ .

2.4. Modeling Microlensing

Microlensing is an important source of systematic error
because it makes the multiply imaged light curves differ by more

4
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than the time delay and the macrolens magnification ratio. In
galaxy-scale lenses, the variability of the microlensing typically
has a timescale significantly larger than that of the quasar
intrinsic variability (although occasional caustic crossing events
can provide some transient rapid variability). We expect the
most successful light curve measurement algorithms to model
an additional microlensing light curve component individually
at each image.

Given an OM10 catalog convergence κ , shear γ and surface
density in stars F∗ at each image position, we generated
a static stellar field with a mean mass per star of 0.3 M�
(Schechter et al. 2004). We then calculated its source plane
magnification map and convolved this with a Gaussian kernel
to represent the extended accretion disk of the source quasar;
we drew source sizes s (Gaussian radii) uniformly from the
range [1014–1016] cm. When calculating the microlensing light
curves, we assumed Gaussian distributions for the components
of the relative velocity v between the source and the stars in the
lens, with standard deviation of 500 km s−1 in each direction.26

In the Appendix we show how the scatter in microlensing
variability amplitude depends on F∗, κ , and source size. Finally,
we note that there are several characteristic timescales in
microlensing light curves, ranging from the crossing time of
the mean stellar mass Einstein Radius (Paraficz et al. 2006) to
the source caustic crossing time, to the density of caustics in the
network, and those can give rise occasionally to quasi-periodic
features.

2.5. Photometric and Systematic Errors

Following Tewes et al. (2013a) we considered several sources
of observational error when generating the light curve fluxes.
The main source of statistical uncertainty is the sky brightness,
which we assume dominates the photometry. We used the
approximate distribution of 5σ limiting point source magnitudes
from one of the LSST project operations simulator outputs
(L. Jones 2014, private communication), and converted these
to flux uncertainties. The mean and standard deviation of the
5σ i-band limiting flux was found to be 0.263 and 0.081 AB
nanomaggies27, respectively; to add photometric noise to a light
curve flux we first drew an rms photometric uncertainty from a
Gaussian of mean 0.053 and width 0.016 nanomaggies (dividing
the above numbers by 5), and then drew a noise value from a
Gaussian of width equal to this rms. The minimum noise value
was set to be 0.001 nanomaggies.

Beyond this basic (though possibly epoch-dependent) Gaus-
sian noise, we might expect additional flux errors to be present
as the observing set-up changes over a long monitoring cam-
paign. To mimic such fluctuations, we added the following three
types of “evilness” to the light curves.

1. Flux uncertainty under-estimation: for each pair of light
curves and for approximately 1 in every 10 epochs, we
added noise that was three times larger than standard, but
reported it as the normal one.

2. Calibration error: for each pair of light curves and for
approximately 1 every 10 epochs, we added correlated
noise, i.e., both points were higher or lower than in the
normal case.

26 The microlensing code used in this work, MULES, is freely available at
https://github.com/gdobler/mules.
27 One “AB maggy” is the flux corresponding to an AB magnitude of 0.0
(Stoughton et al. 2002). Thus, 0.263 nanomaggies is the flux corresponding to
an AB magnitude of 24.

3. Episodic transparency loss: we took a subset of the data (a
few weeks every year), and offset the fluxes by 1% or 3%.

There could be more than one type of “evilness” present
in any given light curve: the combinations applied to the
TDC1 light curves were as follows. 3% of the light curves,
selected randomly, were contaminated with a single type of
“evilness.” Another 1% were contaminated with two types, and
3% were contaminated with all three. In total then, 15% of
the light curves were contaminated with these simulated bad
observational conditions.

2.6. Example TDC1 Light Curves

Figures 3 and 4 illustrate the process of generating TDC1 data
in each of the five rungs, using light curves selected randomly
from those data sets. The top panels show the AGN intrinsic
light curves in magnitudes. The panels beneath them show the
microlensing magnifications (also in magnitudes). The third
panels show the AGN light curves with microlensing effects,
and the effect of sampling is shown in the fourth panels. Finally,
the sparsely sampled noisy mock light curves are shown on the
bottom panels, in flux units.

Comparing panels 3 and 5, we can easily see how two similar
curves become difficult to associate by eye once the sparse
sampling and the addition of noise have been applied. Table 2
shows the values of the input parameters τ , σ , v, s, F∗, enabling
some intuition to be developed by comparing plots shown for
the different rungs.

3. RESPONSE TO THE CHALLENGE

As described in Section 1, the TDC was presented to the
community as two “ladders,” TDC0 and TDC1. The TDC0 data
were used as a gateway to TDC1; in order to gain access to
the TDC1 data, each “Good” Team had to submit a set of time
delays inferred from TDC0 that met the targets described in
Section 1, and in more detail in Paper I. In total, 13 “Good”
Teams participated in TDC0, many of which submitted multiple
sets of solutions. Seven teams passed TDC0 and, went on
to participate in TDC1. One of the teams submitted results
based on three different algorithms: those were considered
independent submissions. In addition, the “Evil” Team did an
in-house analysis of the TDC1 data, using a relatively simple
procedure, to serve as a baseline comparison for the “Good”
Team submissions. All 10 of these algorithms are described
below and some of their properties are summarized in Table 3. It
is worth noting that the teams continued to develop their methods
between TDC0 and TDC1 and beyond, and the description given
here is for the versions of the methods that were applied to
TDC1.

3.1. Benchmark Technique by Rumbaugh (“Evil” Team)

The baseline method used by the “Evil” Team was a χ2-
based Markov Chain Monte Carlo (MCMC) approach. While
the member of the team that wrote and executed this baseline
method (N.R.) did not work directly on simulating the light
curves, this method should not be considered blind in the same
way as the “Good” Teams’.

In practice the method consists of comparing a shifted copy
of one of the light curves to the other light curve, and using
a χ2 function to compute the posterior probability distribution
function for the time delay. Matching the light curves requires
some interpolation, which was carried out using a boxcar kernel

5
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Figure 3. Illustration of the process of generating time delay light curves, with examples taken from the Rung 0 (left), Rung 2 (middle), and Rung 3 (right) samples.
The panels in each figure show, going from the top to the bottom, (1) the input AGN light curves, (2) the microlensing contributions in magnitudes, (3) the AGN light
curves including the microlensing contributions, (4) the result of down-sampling to the required cadence and season length, and (5) the final sparsely sampled noisy
light curves.

Figure 4. Same as Figure 3, but for the longer campaign-duration light curves of Rungs 1 and 4.

Table 2
The Parameters Used to Make the Simulated Data Shown in Figures 3 and 4, to Enable Study

of Their Effects on the Light Curves

Rung τ σ v s F∗A F∗B

(days) (mag/day−1/2) (km s−1) (1014 cm)

0 37.8 0.017 731 3.87 0.037 0.062
1 83.0 0.017 731 38.7 0.037 0.062
2 40.6 0.039 1462 3.87 0.037 0.062
3 37.8 0.017 731 3.87 0.019 0.031
4 178.0 0.017 365 3.87 0.037 0.062
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Table 3
Summary of Methods Explicitly Accounting for Microlensing

Method Microlensing

Rumbaugh No
Shafieloo Yes
PyCS-d3cs Yes
PyCS-sdi Yes
PyCS-spl Yes
Jackson-manchester Yes
Kumar Yes
JPL No
Hojjati Yes
DeltaTBayes No

with a full width of 10 days. This particular kernel was chosen
to save computational time; however, the choice of the kernel
did not have a significant effect on the accuracy or precision
of the method. In order to gain additional computational speed,
the correlation between temporally close data points introduced
by the smoothing kernel was neglected. This approximation
reduced the computation time by about an order of magnitude,
while providing only marginally worse accuracy. The posterior
was sampled using the emcee (Foreman-Mackey et al. 2013)
software package. For each trial value of the time delay, only the
overlapping parts of the time-shifted light curves were used in
the computation of the change in χ2. To avoid calculations using
small overlap regions, a maximum time delay was imposed
equal to 75% of the shortest season length of the data set
currently being analyzed. Time delay point estimates were
chosen to be the median of the output sample values, with the
uncertainties chosen to be half the width of the region containing
68.3% of the chain surrounding the median.

Before applying the benchmark technique to TDC1 data, it
was tested on the TDC0 data, as well as on an additional set of
simulated data designed to be similar to TDC0. In this testing,
the smoothing kernel was varied, as well as several other aspects
of the method as indicated above (including whether or not the
full covariance matrix was used). The accuracy and precision of
the inference were found to not depend significantly on these
choices.

Time delay estimates from three implementations of this
method were submitted, with the aim of producing answers of
different degrees of reliability. The three implementations were
obtained by restricting the submissions to those systems with
estimated time delay uncertainty below 6, 10, and 20 days. The
submissions resulting from these cuts are named Gold, Silver,
and Bronze, respectively.

3.2. Gaussian Processes by Hojjati & Linder

This “Good” Team implemented Gaussian process (GP) re-
gression to estimate the time delays (see Hojjati et al. 2013,
for the basic approach). GPs are widely used as a model-
independent technique for reconstructing an underlying func-
tion from noisy measurements. The GP is specified by a mean
function, and a covariance (kernel) function characterized by a
set of hyperparameters, describing the time delay, relative mag-
nitude shift, QSO variability and coherence length, microlensing
variability and coherence length, and measurement noise. This
approach is very flexible, not assuming a physical model for the
quasar or microlensing input, but allowing the data to decide
how best to describe the signal in terms of a GP. The hyperpa-
rameters were fitted to data using the GP likelihood through a

Bayesian analysis. The parallel and highly efficient fitting code
employed two covariance kernels, two optimization methods,
and variation of priors to cross-check the results for robustness.
The team passed or rejected a system, based on the consistency
of fits and their likelihood weights, and then assigned a final
best fit, uncertainty, and confidence class to the passed systems.

The overall philosophy emphasized complete automation
and accuracy of estimation, rather than precision (e.g., fitting
down to five day delays and placing no cut on precision)
or numbers of fits. Within this, the team fine-tuned samples
based on their confidence in the fit, and to a lesser extent the
error estimation. Six samples were submitted, with the basic
three representing progressively more inclusive fit confidence
along the lines of, e.g., gold, silver, bronze estimation. These
correspond to the samples nicknamed Lannister, Targaryen,
and Baratheon, respectively. In addition, a more conservative
sample (nicknamed Tully) and one with tighter error assignment
(nicknamed Stark) were submitted. Catastrophic outliers were
identified by running selected samples (e.g., especially short or
long time delays) with controlled priors, and also an analysis
of the best-fit parameters for the selected systems. The sample
nicknamed “Freefolk” was the result of such analysis.

A correction to the mean function treatment in the code
significantly increased the consistency of the fits. However,
since this modification was made after the TDC1 submission
deadline, this is not reflected in the results presented in this
paper; see the updates and discussion by Hojjati & Linder
(2014). Furthermore, the method has benefited from, and was
improved after, a reanalysis of the fits and the investigation of
the hyperparameter behavior using the unblinded TDC1 data.

3.3. FOT by Romero-Wolf & Moustakas

The Full of Time (FOT) team’s GP inference algorithm took a
Bayesian approach to solve for the delay between a pair of light
curves. The probability of the light curve parameters M̄ (mean
magnitude), σ (characteristic amplitude of the fluctuations),
and τ (characteristic timescale) given the data is proportional
to the product of the likelihood function for a CAR process
(Kelly et al. 2009; MacLeod et al. 2010) and uniform priors.
Details about the CAR process can be also found in Paper I. The
emcee (Foreman-Mackey et al. 2013) MCMC ensemble sampler
provides an estimate of the posterior probability distribution for
the light curve parameters. To reconstruct the delay, the pair of
light curves were combined into a single time series assuming
a delay and magnitude offset. The probability of the delay and
magnitude offset, along with light curve parameters, is given by
the CAR process likelihood function of the combined light curve
and uniform priors. The light curve delay and its uncertainty
were then inferred from the marginalized posterior distribution
for the time delay given the light curves. The algorithm did not
characterize or fit for microlensing, although it identifies the
data sets that are most likely to have microlensing variations. A
more thorough description of this method and internal tests are
being written up by L. A. Moustakas & A. Romero-Wolf (2014,
in preparation).

The procedure was tested by generating tens of thousands
of “blind” time-delayed light curves through the CAR process,
with varying (irregular) observational patterns and campaigns,
photometric uncertainties, magnitude offsets, and time delays.
These were then processed with the inference technique de-
scribed above. Both the successful recovery rate and the pre-
cision of the (marginalized) time delay and magnitude off-
set were then studied as a function of each “observational”

7



The Astrophysical Journal, 800:11 (23pp), 2015 February 10 Liao et al.

parameter (i.e., the observational campaign factors and the as-
sumed photometric precision).

To avoid outliers, a set of consistency requirements between
the posterior distributions for the individual and combined light
curve parameters were required. A solution was rejected if the
mean of the posterior σ distributions from each light curve
and their combinations differed by more than 2.6 root-sum-
squared standard deviations. The means of the posterior log10 τ
distributions for each light curve must also agree to within
one standard deviation, forcing a consistency in the physical
behavior of the reconstructed “stitched” data set compared
to the input data. Additional quality cuts were included from
inspection of the reconstructed time delay and time delay
uncertainty scatter relation. These required that delays less than
100 days have uncertainties smaller than 10 days. The ratio of
the delay uncertainty to the delay was also required to be smaller
than 2.

3.4. Smoothing and Cross-correlation
by Aghamousa & Shafieloo

This “Good” Team combined various statistical methods
of data analysis in order to estimate the time delay between
different light curves. At different stages of their analysis
they used iterative smoothing, cross-correlation, simulations
and error estimation, bias control, and significance testing
to prepare their results. Given the limited timeframe (they
started the project in early 2014 May), they had to make some
approximations in their error analysis.

In their approach to estimate the time delay between a
pair of light curves A1 and A2, they first smoothed over both
light curves using an iterative smoothing method (Shafieloo
et al. 2006; Shafieloo 2007, 2012; Shafieloo & Clarkson 2010),
producing the smoothed light curves Asmooth

1 and Asmooth
2 . During

smoothing, they recorded the ranges with no data available
(which would have resulted in unreliable smoothing). The
algorithm was set to automatically detect such ranges. Then,
they calculated the cross-correlation between A1 and Asmooth

2
and also between A2 and Asmooth

1 for different time delays,
and found the maximum correlations. These two maximum
correlations should be for the same time delays (that is, the
absolute values of the time delays should be consistent with each
other). The difference between these two estimated time delays
(with maximum correlations) was part of the total uncertainty
considered for each pair (in the estimated time delay). To
estimate the error on each derived time delay, the team also
simulated many realizations of the data for each rung, and
for various time delays. Knowing the fiducial values, they
derived the expected uncertainties in the estimated values of the
time delays.

This team also performed bias control, since long time delays
have a limited data overlap between the two light curves. In the
case of the quad sample, they used different combinations of the
smoothed and raw light curves to test the internal consistency
of the results and relative errors. These internal consistency
relations can be used to adjust the estimated error-bars for each
pair (considering the consistency of all light curves as a prior).
The team selected for cross-correlations between the two light
curves with more than 50% or 60% correlation coefficients. Pairs
with potentially high bias were cut as well. In this methodology
the light curves are compared in multi-segments. The effect of
micro-lensing can be considered as a linear distortion in these
segments. While the correlation coefficient is unchanged under
linear transformation, there is no concern for micro-lensing in

this algorithm and the method is unaffected. Additional details
of this method will be described in a separate paper Aghamousa
& Shafieloo (2014).

3.5. Supervised Pelt by Jackson

All pairs of joint light curves were inspected by eye by this
team, using a Python tool developed for the purpose. An initial
Pelt et al. (1994) statistic was calculated for a large range of time
delays, and its minimum found, but this resulted in catastrophic
errors in many cases and was frequently over-ridden by visual
inspection. Time delays were regarded as believable if (1) at least
three coincident points of inflection were detected in the light
curves, (2) if no discordant features were seen (i.e., differences
between the light curves which could not be plausibly attributed
to microlensing) and (3) if the plot of the Pelt statistic against
time delay showed a smooth and well-defined minimum.

In the process of assessing the light curves by eye, the
following operations were available to find a time delay fitting
the above criteria: (1) smoothing of either light curve to match
the scatter of the other; (2) adjustment of the zero-point of each
segment of the light curve to match the zero-point of the segment
of the other light curve that it overlapped using the current time
delay; (3) manual adjustment of the current time delay; (4)
deletion of one or more segments of the light curve if they were
judged to be severely affected by microlensing. In practice, this
was the case if a simple rescaling of a whole segment of data
between the two light curves produced residuals much larger
than those of other rescaled segments. This will happen if the
microlensing produces a large change in flux over the period of
one data segment; the method therefore roughly corresponds to
assuming that microlensing produces variations on a timescale
larger than those of the intrinsic brightness variations of the
quasar, and deleting regions of data where this is not the case. In
most cases, the delay and its error bar were calculated after this
process using 100 instances of resampling of the data set using
the observed flux errors and a small Gaussian error in each time
stamp. This allowed the calculation of a set of delays, in each
case using the delay from the Pelt statistic minimum, from which
the mean and scatter was used for the delay and its error. In a few
cases, mostly those in which the Pelt statistic versus time delay
plot had a local minimum around the optimum, an additional
error, or in some cases a minor adjustment to the value, was
estimated by eye. The error bar was also adjusted in cases where
the optimization using smoothing and adjustment of the zero
point resulted in a significant reduction of the error estimated
by the resampling process. With practice, about 100 pairs of light
curves per hour could be processed, so that thousands or tens
of thousands of light curve pairs could in principle be analyzed
using this method.

The same basic algorithm was used for all submissions, but
different submissions were made by separating the objects into
three categories, again by eye, according to confidence that the
time delay was correct within the stated error. Evaluations with
less confidence corresponded to violation of one or more of the
believability conditions, and the least certain category usually
involved light-curves with only two clearly detected points of
inflection. (For each of the three categories, subsidiary submis-
sions were also made with a smaller number of rungs). Three
catastrophic errors in rung 0 of the original blind submission
were due to incorrect entry of a minus sign during the manual
adjustment process in three objects; these were corrected in a
non-blind submission which consisted of the original blind sub-
mission for all rungs, and all three confidence levels with the
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three signs corrected. The program was accordingly modified to
question the user in the case of large changes imposed by hand.

3.6. PYCS by Bonvin, Tewes, Courbin, & Meylan

The PyCS team made submissions using three time delay
measurement methods: d3cs, spl, and sdi. The latter two build
on initial estimations provided by the former. The following
subsections summarize each of these three methods (see V.
Bonvin et al., in preparation, for more details).

3.6.1. d3cs: D3 Curve Shifting

This first method is based on human inspection of the light
curves, in the spirit of citizen science projects. The PyCS
team has developed a dedicated browser-based visualization
interface, using the D3.js JavaScript library28 by Bostock et al.
(2011). The tool is now publicly available online.29

The main motivation behind this time-consuming yet simple
approach were to obtain, for each light curve pair, (1) a rough
initial estimate for the time delay and its associated uncertainty,
and (2) a robust characterization of the confidence that this
estimate is not a catastrophic error. The interface asks each user
to pick a confidence category for the proposed solution, among
four choices:

1. “doubtless” if a catastrophic error can be virtually excluded,
2. “plausible” if the solution yields a good fit and no other

solutions are seen,
3. “multimodal” if the proposed solution is only one among

two or more possible solutions,
4. “uninformative” if the data does not reveal any delay.

At least two human estimates were obtained for each pair
of curves. The database of d3cs estimates was then carefully
reduced to a single estimate per pair, resolving any conflicts
between estimates in a conservative way. A key result of this
step was a sample of 1628 “doubtless” time-delay estimates,
which the team hoped to be free from any catastrophic outliers.
Through this exercise, the team demonstrated that such an
approach remains tractable for about 5000 light curves, with
typical human inspection times of a minute per light curve pair
and user.

3.6.2. spl: Free-knot Spline Fit

The spl method is a simplified version of the “free-knot
spline technique” described by Tewes et al. (2013a) and im-
plemented in the PyCS software package. Using the d3cs es-
timate as the starting point, the method simultaneously fits a
single spline representing the intrinsic QSO variability, and
a smoother “extrinsic” spline representing the differential mi-
crolensing variability, to the light curves. During this iterative
process, the curves were shifted in time so as to optimize the fit.
The fit was repeated 20 times, starting from different initial con-
ditions, to test and improve the robustness of the resulting delay
against local minima of the χ2 hyper surface. Such a model fit
was then used to generate 40 simulated noisy light curves with
a range of true time delays around the best-fit solution. By re-
running the spline fit on these simulated curves, and comparing
the resulting delays with the true input time delays, the delay
measurement uncertainty was estimated.

28 Data-Driven Documents, http://www.d3js.org/.
29 https://www.astro.uni-bonn.de/∼mtewes/d3cs/tdc1/—see “Read me first”
for help.

The splmethod for TDC1 is simpler, faster, and significantly
less conservative in the uncertainty estimation than the free-
knot spline technique that was applied to the COSMOGRAIL
data30 by Tewes et al. (2013b) and Rathna Kumar et al.
(2013). In particular, the temporal density of spline knots was
automatically determined from signal-to-noise ratios measured
on the two light curves, and only white noise was used in the
generative model. With these simplifications, the team expects
the resulting TDC1 error estimates to be rather optimistic. The
entire spl analysis took about 5 CPU-minutes for an average
TDC1 pair.

3.6.3. sdi

The third method, sdi (for spline difference) was inspired by
the “regression difference technique” of Tewes et al. (2013a),
replacing the GP regressions by spline fits to speed up the
analysis. The method involves fitting a different spline to each
of the two light curves, and then minimizing the variability of
the difference between these two splines by shifting them in
time with respect to each other. The advantage of this approach
is that it does not require an explicit microlensing model. To
estimate the uncertainty, this method uses the simulated light
curves provided by the spl technique. As in the spl technique,
the estimates from d3cswere used as the starting point to define
the time delay intervals in which sdi optimizes its cost function.

3.6.4. Identification of Catastrophic Failures

To prevent catastrophic failures, this team relied solely on the
d3cs “doubtless” sample. The spl and sdimethods do not alter
this confidence classification. Furthermore, a small number of
spl and sdi measurements that did not lie within 1.5σ of the
corresponding d3cs estimates were rejected.

3.6.5. Differences between Submissions

For all three methods, the submissions were named following
the scheme A-B-C-D.dt, where

A gives the method, d3cs, spl, or sdi;
B gives the method parameters, with vanilla denoting the a

priori best or simplest;
C gives the confidence category, with dou for doubtless and

doupla for both doubtless and plausible light curve pairs.
The doupla submissions are expected to be contaminated
by some catastrophic outliers, but feature more than twice
the number of time delays than the dou sample; and

D gives the filter that selects systems according to different
criteria across all rungs, mostly based on the blind relative
precision δi/|Δ̃ti |. The code full corresponds to no filter.
XXXbestP selects the XXX “best” systems in terms of blind
relative precision, P3percent selects the largest number
of systems so that the average blind relative precision is
approximately 3%, and 100largestabstd is the selection
of the 100 largest delays.

Submissions that share the same method and method param-
eters (A and B) differ only in the selection of systems, and not
in the numerical values of the estimates. They can thus be seen
as subsamples of the A-B-dou/doupla-full submissions.

30 http://www.cosmograil.org
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3.7. Difference-smoothing by Rathna Kumar, Stalin, & Prabhu

The difference-smoothing technique, originally introduced
by Rathna Kumar et al. (2013), is based on the principle of
minimizing the residuals of a high-pass filtered difference light
curve between the lensed quasar images. The method is a point
estimator that determines an optimal time delay between two
given light curves, and an optimal shift in flux to one of the
light curves, besides allowing for smooth extrinsic variability.
To estimate the uncertainty of the measured time delay in Rathna
Kumar et al. (2013), this team made use of simulations produced
and adjusted according to Tewes et al. (2013a). However, for
participation in the TDC, they made use of a modified version
of the difference-smoothing technique as presented by Rathna
Kumar et al. (2014). In that paper, they describe an optimal way
to adjust the two free parameters in the technique according
to the peculiarities of the light curves under analysis and also
introduce a recipe for simulating light curves having true delays
at discrete intervals in a plausible range around the optimal
time delay found. These simulations were used to estimate the
uncertainty of the measured value of the time delay. Outliers
were identified by noting when the team’s technique was found
to return random time delays which were uncorrelated with the
true delays in their simulated light curves.

The free parameters in the technique are decorrelation length
and smoothing timescale. For participation in the TDC, the value
of decorrelation length was set equal to the mean temporal sam-
pling of the light curves and the value of smoothing timescale
was set equal to the largest integer multiple of decorrelation
length for which the amplitude of residual extrinsic variabil-
ity was less than the 3σ level of noise for each of the light
curves. In the absence of significant extrinsic variability be-
tween the light curves, the value of smoothing timescale was set
equal to ∞.

3.8. Δ t-Bayes by Tak, Meng, van Dyk, Siemiginowska,
Kashyap, & Mandel

A fully Bayesian approach was developed by this team, based
on the key assumption that one of the unobserved underlying
light curves is a shifted version of the other. The horizontal shift
is the time delay (Δt), and the vertical shift is the magnitude off-
set (c). Both shifts are treated as unknown parameters. Specifi-
cally, from the state-space modeling perspective, it was observed
that x(t) ≡ {x(t1), x(t2), . . . , x(tn)} and y(t), transformed into
the logarithm of flux, around the irregularly sampled underlying
light curves, X(t) and Y(t) ≡ X(t − Δt) + c each, with measure-
ment errors in log scale. The posterior distribution for Δt is
of primary interest. Also, it was assumed that the unobserved
true process X(t) follows an Ornstein-Uhlenbeck process (also
known as CAR) as described by Kelly et al. (2009), although
a different parameterization was used for more efficient model
fitting. Harva & Raychaudhury (2006) proposed a similar idea,
but they assumed a different model for the underlying process.

This Bayesian approach treats the unknown parameters as
random variables and this team uses specific prior distribu-
tions for the time delay and magnitude offset: p(Δt, c) ∝
δ{|Δt |∈[0,(tn−t1)]}. A uniform prior on c is a typical choice because
this y-shift is related to the mean of observed data or the under-
lying process. The uniform prior on Δt constrains its values to
ensure that the shifted light curves overlap in time. This naively
informative hyperprior distribution on the parameters governing
the underlying process is p(M̄, σ, τ ) ∝ τ−2e−1/τ , where M̄ , σ ,

τ are CAR parameters as defined above and in Paper I. This puts
a uniform prior on M̄ and σ , and an inverse-Γ(1, 1) prior on τ .

The full posterior distribution was obtained by multiplying
together (1) the likelihood for the state-space representation,
(2) the prior for the underlying process, Δt , and c, and (3)
the hyperpriors for M̄, σ , and τ . The team proposed a Gibbs
sampler for this full posterior distribution (algorithm 2) and
its approximation (algorithm 1) in TDC1. Details of the two
samplers were submitted to the “Evil” Team and will appear
in a separate paper, in preparation. In order to obtain the time
delay from its posterior distribution, three Markov chains were
combined with starting values chosen randomly around the
most likely values. Rigorous convergence checks of the Markov
chains were conducted using trace plots, autocorrelation plots,
and the Gelman–Rubin diagnostic statistic, applied to all of the
model parameters.

The model did not account for the microlensing. However,
when it was suspected it after a visual inspection, this team ac-
counted for its polynomial long-term effect (linear or quadratic)
by the regression and ran the model on the residuals. This worked
well because the intrinsic variability of quasar data did not dis-
appear even after the long-term trend was removed.

4. ANALYSIS OF THE SUBMISSIONS

4.1. Lessons from TDC0 Applied to TDC1

During the analysis of the TDC0 submissions, the “Evil”
Team noticed that several teams were affected by outliers: most
of their submitted time delay estimates were good, but a few
differed from the truth by more than would be expected, given
their uncertainties. To characterize this, an additional metric
X was introduced: X is the fraction of pairs with χ2

i < 10,
i.e., the fraction without outliers. X = 1 means that none of
the submitted delays is an outlier. Outliers in this category
could stem from underestimated error bars, or for example
by convergence on the wrong solution in the presence of light
curve features (due to, e.g., microlensing) that are not taken into
account by the method’s model.

We will return to the issue of outliers, and how they can be
identified based on lensing geometry or cosmological analysis,
after we present the main results of TDC1. In this section, we
give the unfiltered statistics as well as the metrics calculated
after points with χ2

i > 10 have been removed, in order to give
an idea of how well a method could do if outliers could be
identified and rejected.

We also consider an additional cut, based only on the accuracy
parameter |Ai | < 0.1, and the related quantity XA, which counts
the fraction of systems satisfying this alternative criterion, i.e.,
we take |Ai | > 0.1 as outliers rather than χ2

i > 10 in this case.
This cut was chosen to quantify the number of systems for which
the time-delay would be much more uncertain than the 3%–5%
modeling error that can be obtained in the reconstruction of the
difference in gravitational potential between two images in the
best cases (Suyu et al. 2013, 2014). In some sense this cut filters
out the systems that are not cosmologically consistent and thus
could be rejected by a joint cosmological analysis.

Finally, as a third way to illustrate the potential of each method
once outliers have been removed, we also consider the median,
16 and 84 percentile of the statistics Ai, Pi , and χ2

i for each
method, as opposed to the means defined in Section 1.
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4.2. Blind and Non-blind Submissions

One of the main goals of this TDC is to achieve a true
blind testing of the algorithms. To achieve this, TDC0 truth
files were not revealed until after the deadline of TDC1, lest
they give too much away about the data generation process. In
addition, upon requests from each “Good” Team we provided
only minimal feedback after each submission, in the form of
the metrics listed above rounded to two significant digits. This
was deemed to be a reasonable compromise between preserving
the blindness of the challenge, and helping teams to identify
coding errors that had nothing to do with their actual chosen
algorithms. Only submissions made prior to any feedback
were considered truly blind, even though resubmissions by the
teams who decided to take advantage of this opportunity were
accepted. Resubmissions were considered not fully blind for
the purpose of this analysis. Note that all of the “representative”
submissions referred in later sections were made fully blind.

4.3. Basic Statistics

The metrics for each submission are shown in Tables 4
and 5, separated by challenge rung. In order to visually compare
the different algorithms in a relatively clear manner, we have
chosen to show only one submission for each team. This
“representative” algorithm was chosen by each team after the
true time delays were unblinded, and therefore it is somewhat
indicative of the best performance of each method. Results
for all the other submissions are available at the TDC Web
site. Importantly, it should be kept in mind that this is a
multi-dimensional problem, and there is not necessarily a
“best” submission, not even within each method. Rather, each
submission is a tradeoff between competing needs of achieving
low P and A, while keeping χ2 reasonable and f and X as high
as possible. Some of the statistics are mathematically inter-
dependent. For example, χ2 and P both contain the submitted
uncertainty estimates: teams could decide to reduce their χ2 at
the price of increasing their P, and vice versa.

The metrics obtained by these submissions are plotted in
Figures 5–9. The plots show the metrics that have been computed
directly from the submitted values, together with the recomputed
metrics after rejecting the outliers using the χ2

i < 10 cut. The
corner plots in Figures 5–9 also show a shaded region that
represents the TDC1 soft targets that were estimated in Paper
I as the metric values needed for methods to be competitive,
namely:

1. f > 0.5
2. χ2 < 1.5
3. |A| < 0.03 [goal 0.002]
4. P < 0.03.

As discussed in Paper I, in this exploratory challenge, these
targets were deemed sufficient given the current lensed quasar
sample of a few tens of systems. In the long run, for samples of
thousands of lenses, a desirable goal is to improve the accuracy
or bias to sub-percent level (|A| < 0.2%; see Hojjati & Linder
2014 for the cosmological requirement derivation), such that the
contribution of time delay measurement to the error budget of
cosmological parameters would be smaller than the projected
statistical uncertainties. We emphasize that these targets are
approximate and only with a fully cosmological challenge would
they be translated into a single indicator of performance, as we
outline in the final section of this paper.

As is shown in the figures, most of the algorithms achieved
the |A| and χ2 criteria, especially after the rejection of outliers
in the submissions. The “Evil” Team’s baseline method had
a large fraction of outliers, but once those were rejected, it did
not perform significantly worse than many of the “Good” Teams
submissions. The criterion that proved more difficult to meet was
the one on the success fraction f, where teams were typically
closer to the threshold for TDC0 (shown also in the cornerplot
as a lighter shaded region) than for TDC1. As we discuss below,
this is due to the strategy that most teams followed, i.e., to have
high standards of acceptance in order to reduce outliers. Notably,
for many of the methods |A| is at the sub-percent level—well
below the target of 0.03—which is very promising in view of
future cosmological studies.

Interestingly, the “Evil” light curves did not yield significantly
poorer statistics than the regular ones. From this comparison
we infer that the methods used are generally robust to small
and realistic unknown light curve systematics like the ones
introduced by the “Evil” Team. This is encouraging and bodes
well for the application of the methods to real data.

4.4. Trends with Intrinsic Properties of the Light Curves
and Implications for Future Work

We now investigate how the quality of the inferred time delays
depends on the intrinsic properties of the light curves. We wish
to discover general trends that are not inherent to the peculiar-
ities of each method. In order to carry out this investigation, in
Figure 10 we plot the individual accuracy, precision and good-
ness of fit of each submission (Ai, Pi, and χ2

i ) as a function of
true time delay, the variability parameters of the intrinsic quasar
light curves (τ and σ ), and the magnitude of the fainter image of
each pair (i2). In this illustration we show the results for Rung 1;
the other rungs give similar results. Figure 11 shows summary
statistics of the same data, represented by the average statistics
in bins of the variable on the abscissa—the color scheme is the
same as described in the legend to Figure 5.

We can see in these figures a few global trends. The most
prominent appears to be between P and the true time delay.
P decreases with time delay consistent with the time delay
uncertainty being approximately constant in days, as expected
if the absolute precision is driven by the sampling of the light
curves. Qualitatively, Pi and Ai also appear to decrease (i.e.,
improve) as σ increases, also as expected: the light curves with
the highest variability amplitudes should be easier to interpret
and therefore should yield higher precision and fewer outliers.

Remarkably, we see very little dependency on i2, as if the
signal-to-noise ratio of the fainter image is not as important,
once it is passes some minimum threshold. This suggests
that the simulated data are of sufficient quality and that the
photometric uncertainty is subdominant with respect to the
uncertainties introduced by microlensing and sampling. The
weak dependency on the magnitude of the fainter image i2
implies that the statistics we derive from the TDC1 data set
are very similar to what we would have derived from a random
subset of OM10. In fact, by recomputing weighted averages
of the statistics to match the OM10 i2 magnitude distribution,
we verified that the changes of the statistics would have been
comparable to their uncertainty.

Finally, we investigated the level of agreement between the
algorithms to see whether success was due solely to the proper-
ties of the light curves or whether it depended on the specifics
of each algorithm. The results are shown in Figure 12 for three

11



The Astrophysical Journal, 800:11 (23pp), 2015 February 10 Liao et al.

Table 4
Mean and Median Statistics for the “Representative” Submissions

Method Rung f χ2 P A χ2
median Pmedian Amedian

0 0 0.36 195000 ± 76000 0.078 ± 0.004 −0.181 ± 0.065 0.085189
0.078 0.0550.083

0.036 −0.0040.025
0.86

0 1 0.36 390000 ± 150000 0.08 ± 0.005 −0.281 ± 0.061 0.472046
0.46 0.0520.088

0.039 −0.0210.04
0.98

0 2 0.32 3996 ± 1052 0.082 ± 0.005 −0.28 ± 0.042 0.421199
0.4 0.0590.088

0.041 −0.020.05
0.97

0 3 0.33 920000 ± 500000 0.08 ± 0.005 −0.247 ± 0.053 0.372527
0.36 0.050.098

0.036 −0.0130.034
0.97

0 4 0.35 950000 ± 240000 0.042 ± 0.004 −0.712 ± 0.03 16136671657
16136 0.0080.087

0.007 −1.00.99
0.007

1 0 0.53 0.579 ± 0.047 0.038 ± 0.001 −0.018 ± 0.001 0.260.77
0.22 0.0340.028

0.016 −0.0150.016
0.024

1 1 0.37 0.543 ± 0.049 0.045 ± 0.001 −0.022 ± 0.001 0.240.69
0.22 0.040.025

0.015 −0.020.017
0.022

1 2 0.35 0.89 ± 0.19 0.053 ± 0.001 −0.025 ± 0.002 0.230.92
0.21 0.0470.034

0.021 −0.020.024
0.038

1 3 0.34 0.524 ± 0.077 0.059 ± 0.002 −0.021 ± 0.002 0.170.67
0.15 0.0510.037

0.02 −0.0180.025
0.029

1 4 0.35 0.608 ± 0.072 0.056 ± 0.002 −0.024 ± 0.002 0.20.84
0.18 0.0510.036

0.024 −0.0190.024
0.035

2 0 0.53 0.125 ± 0.011 0.205 ± 0.007 −0.017 ± 0.004 0.0430.178
0.039 0.1510.198

0.078 −0.0080.046
0.062

2 1 0.27 0.138 ± 0.016 0.233 ± 0.01 −0.025 ± 0.006 0.0540.216
0.05 0.190.17

0.1 −0.0080.05
0.086

2 2 0.21 0.043 ± 0.004 0.242 ± 0.01 −0.015 ± 0.004 0.0210.058
0.019 0.2010.207

0.092 −0.0090.04
0.056

2 3 0.3 0.099 ± 0.013 0.247 ± 0.011 −0.03 ± 0.006 0.0390.121
0.035 0.170.266

0.085 −0.0130.046
0.08

2 4 0.21 0.178 ± 0.018 0.363 ± 0.015 −0.059 ± 0.011 0.0970.252
0.084 0.320.27

0.15 −0.040.12
0.15

3 0 0.53 1.068 ± 0.069 0.043 ± 0.003 −0.0 ± 0.003 0.461.67
0.4 0.0220.041

0.012 0.00.025
0.025

3 1 0.26 1.031 ± 0.097 0.04 ± 0.003 0.008 ± 0.003 0.491.47
0.46 0.0270.034

0.014 0.0040.033
0.026

3 2 0.21 1.02 ± 0.13 0.043 ± 0.004 −0.002 ± 0.004 0.381.43
0.34 0.0260.037

0.013 0.0030.02
0.033

3 3 0.3 0.813 ± 0.074 0.068 ± 0.006 −0.004 ± 0.006 0.391.04
0.37 0.0340.066

0.019 −0.0020.032
0.032

3 4 0.21 1.07 ± 0.23 0.098 ± 0.014 0.0 ± 0.008 0.241.41
0.22 0.0640.06

0.034 0.0030.054
0.04

4 0 0.53 0.497 ± 0.047 0.033 ± 0.002 −0.0 ± 0.001 0.150.75
0.14 0.0180.038

0.011 0.00.012
0.012

4 1 0.27 0.528 ± 0.066 0.028 ± 0.002 0.0 ± 0.002 0.160.78
0.15 0.020.021

0.01 −0.0010.015
0.012

4 2 0.21 0.464 ± 0.069 0.028 ± 0.002 −0.001 ± 0.002 0.150.54
0.13 0.020.023

0.011 0.00.013
0.01

4 3 0.3 0.542 ± 0.074 0.042 ± 0.003 −0.003 ± 0.003 0.160.76
0.14 0.0230.038

0.013 −0.0010.017
0.015

4 4 0.21 0.665 ± 0.065 0.045 ± 0.003 0.001 ± 0.003 0.310.94
0.29 0.0320.035

0.015 −0.0010.035
0.028

5 0 0.68 0.91 ± 0.092 0.032 ± 0.001 0.003 ± 0.002 0.241.19
0.23 0.0240.034

0.014 0.0010.022
0.015

5 1 0.27 1.76 ± 0.42 0.037 ± 0.002 −0.002 ± 0.003 0.391.86
0.36 0.030.029

0.015 −0.0010.026
0.026

5 2 0.32 1.57 ± 0.21 0.043 ± 0.001 −0.003 ± 0.004 0.441.93
0.41 0.0360.036

0.017 −0.0010.036
0.043

5 3 0.35 1.89 ± 0.31 0.036 ± 0.001 0.002 ± 0.003 0.422.3
0.4 0.0290.03

0.015 0.0010.029
0.031

5 4 0.18 7.2 ± 2.7 0.05 ± 0.003 −0.021 ± 0.007 1.54.3
1.4 0.0430.04

0.021 −0.0160.072
0.068

6 0 0.04 0.32 ± 0.071 0.077 ± 0.017 0.005 ± 0.011 0.110.66
0.1 0.0440.06

0.027 0.00.027
0.037

6 1 0.02 66 ± 64 0.175 ± 0.055 2.3 ± 2.2 0.360.25
0.27 0.0930.13

0.037 0.0420.056
0.047

6 2 0.03 0.71 ± 0.21 0.142 ± 0.021 0.027 ± 0.032 0.370.78
0.36 0.1170.098

0.064 0.0290.077
0.089

6 3 0.02 1.7 ± 1.2 0.168 ± 0.031 0.14 ± 0.1 0.330.9
0.3 0.1180.079

0.068 0.020.119
0.056

6 4 0.01 0.19 ± 0.1 0.55 ± 0.12 0.169 ± 0.058 0.0660.169
0.051 0.480.2

0.25 0.160.24
0.19

7 0 0.33 65 ± 51 0.04 ± 0.003 −0.011 ± 0.009 0.63.44
0.55 0.0210.057

0.015 −0.00.029
0.034

7 1 0.24 2.71 ± 0.5 0.036 ± 0.003 0.002 ± 0.006 0.673.14
0.62 0.0210.045

0.015 0.0010.034
0.029

7 2 0.37 3.21 ± 0.55 0.04 ± 0.003 0.008 ± 0.006 0.743.39
0.69 0.0230.051

0.015 −0.00.036
0.029

7 3 0.3 2.39 ± 0.39 0.051 ± 0.004 0.02 ± 0.012 0.652.49
0.6 0.0250.067

0.018 −0.00.035
0.035

7 4 0.22 185 ± 119 0.062 ± 0.005 −0.03 ± 0.02 0.63.47
0.53 0.0350.104

0.026 −0.0010.061
0.064

8 0 0.44 109 ± 58 0.047 ± 0.004 −0.025 ± 0.032 0.161.21
0.15 0.0250.047

0.016 0.00.019
0.021

8 1 0.22 88 ± 38 0.101 ± 0.05 −0.02 ± 0.019 0.172.4
0.16 0.0290.066

0.016 0.00.026
0.04

8 2 0.18 91 ± 72 0.07 ± 0.006 −0.006 ± 0.019 0.140.81
0.14 0.0460.076

0.028 0.00.032
0.032

8 3 0.19 27 ± 21 0.059 ± 0.004 −0.008 ± 0.013 0.241.34
0.23 0.0410.064

0.025 0.0010.033
0.041

8 4 0.16 2.6 ± 1.1 0.068 ± 0.004 −0.0 ± 0.006 0.31.29
0.28 0.0550.07

0.032 0.0010.045
0.049

9 4 0.27 8.7 ± 3.5 0.035 ± 0.002 0.003 ± 0.006 0.552.79
0.47 0.0240.037

0.014 0.00.031
0.042

Notes. Method: 0, Rumbaugh-Gold; 1, Shafieloo-Arman7; 2, PyCS-d3cs-vanilla-dou-full; 3, PyCS-sdi-vanilla-dou-full; 4, PyCS-spl-vanilla-dou-full;
5, Jackson-manchester2_0_3_4; 6, Kumar; 7, JPL; 8, Hojjati-Stark; 9, DeltaTBayes-DeltaTBayes1.

representative rungs. Clearly, some light curves do not contain
enough information for any method to be successful (hence the
peak at zero). In Rung 0, there is a bump around 6 indicating
that for very good light curve a majority of the methods are

successful. However, as the quality of data degrades in the next
rungs it appears that there is a continuum distribution. Therefore
we conclude that different methods pick up different features of
the light curves and accuracy varies widely between methods.
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Table 5
Filtered Statistics for the “Representative” Submissions

Method Rung f3.3σ χ2
3.3σ P3.3σ A3.3σ X fA χ2

A PA AA XA

0 0 0.29 0.379 ± 0.072 0.087 ± 0.005 −0.003 ± 0.004 0.8 0.28 0.299 ± 0.056 0.08 ± 0.004 −0.0 ± 0.002 0.77
0 1 0.23 0.577 ± 0.095 0.096 ± 0.006 −0.01 ± 0.007 0.65 0.22 3.9 ± 2.3 0.082 ± 0.005 −0.004 ± 0.002 0.62
0 2 0.23 0.8 ± 0.11 0.098 ± 0.005 −0.007 ± 0.006 0.73 0.21 0.74 ± 0.23 0.09 ± 0.005 −0.002 ± 0.003 0.66
0 3 0.22 0.59 ± 0.1 0.097 ± 0.006 0.0 ± 0.007 0.66 0.21 1.26 ± 0.4 0.087 ± 0.006 −0.002 ± 0.002 0.64
0 4 0.11 0.37 ± 0.11 0.119 ± 0.009 −0.009 ± 0.006 0.3 0.1 0.26 ± 0.058 0.112 ± 0.008 −0.003 ± 0.004 0.28
1 0 0.53 0.552 ± 0.04 0.038 ± 0.001 −0.017 ± 0.001 1.0 0.52 0.53 ± 0.038 0.038 ± 0.001 −0.017 ± 0.001 0.99
1 1 0.37 0.543 ± 0.049 0.045 ± 0.001 −0.022 ± 0.001 1.0 0.36 0.497 ± 0.041 0.044 ± 0.001 −0.021 ± 0.001 0.99
1 2 0.35 0.673 ± 0.068 0.053 ± 0.001 −0.025 ± 0.002 0.99 0.33 0.73 ± 0.19 0.052 ± 0.001 −0.021 ± 0.002 0.95
1 3 0.34 0.458 ± 0.039 0.059 ± 0.002 −0.02 ± 0.002 1.0 0.33 0.419 ± 0.036 0.058 ± 0.002 −0.018 ± 0.002 0.97
1 4 0.35 0.559 ± 0.052 0.056 ± 0.002 −0.024 ± 0.002 1.0 0.33 0.535 ± 0.069 0.055 ± 0.002 −0.021 ± 0.002 0.97
2 0 0.53 0.125 ± 0.011 0.205 ± 0.007 −0.017 ± 0.004 1.0 0.45 0.081 ± 0.008 0.17 ± 0.006 −0.005 ± 0.002 0.83
2 1 0.27 0.138 ± 0.016 0.233 ± 0.01 −0.025 ± 0.006 1.0 0.21 0.078 ± 0.01 0.191 ± 0.008 −0.006 ± 0.003 0.79
2 2 0.21 0.043 ± 0.004 0.242 ± 0.01 −0.015 ± 0.004 1.0 0.19 0.033 ± 0.004 0.217 ± 0.009 −0.007 ± 0.003 0.9
2 3 0.3 0.099 ± 0.013 0.247 ± 0.011 −0.03 ± 0.006 1.0 0.25 0.056 ± 0.005 0.201 ± 0.01 −0.007 ± 0.003 0.83
2 4 0.21 0.178 ± 0.018 0.363 ± 0.015 −0.059 ± 0.011 1.0 0.12 0.063 ± 0.008 0.287 ± 0.018 −0.007 ± 0.005 0.55
3 0 0.53 1.048 ± 0.066 0.043 ± 0.003 −0.0 ± 0.003 1.0 0.5 0.956 ± 0.068 0.037 ± 0.003 0.001 ± 0.001 0.94
3 1 0.26 0.977 ± 0.081 0.04 ± 0.003 0.006 ± 0.003 1.0 0.25 0.858 ± 0.069 0.037 ± 0.003 0.004 ± 0.002 0.95
3 2 0.21 0.94 ± 0.1 0.043 ± 0.004 −0.002 ± 0.004 0.99 0.2 0.92 ± 0.13 0.035 ± 0.002 −0.003 ± 0.002 0.93
3 3 0.3 0.813 ± 0.074 0.068 ± 0.006 −0.004 ± 0.006 1.0 0.27 0.747 ± 0.073 0.05 ± 0.004 −0.003 ± 0.002 0.92
3 4 0.21 0.804 ± 0.096 0.098 ± 0.015 0.005 ± 0.006 0.99 0.19 0.64 ± 0.11 0.069 ± 0.004 0.005 ± 0.003 0.86
4 0 0.53 0.472 ± 0.04 0.033 ± 0.002 −0.0 ± 0.001 1.0 0.52 0.483 ± 0.048 0.029 ± 0.001 0.0 ± 0.001 0.98
4 1 0.27 0.528 ± 0.066 0.028 ± 0.002 0.0 ± 0.002 1.0 0.27 0.467 ± 0.051 0.027 ± 0.002 −0.0 ± 0.001 0.99
4 2 0.21 0.464 ± 0.069 0.028 ± 0.002 −0.001 ± 0.002 1.0 0.21 0.431 ± 0.064 0.028 ± 0.002 −0.001 ± 0.001 0.99
4 3 0.3 0.494 ± 0.057 0.042 ± 0.003 −0.001 ± 0.003 1.0 0.29 0.455 ± 0.052 0.037 ± 0.003 −0.001 ± 0.001 0.97
4 4 0.21 0.665 ± 0.065 0.045 ± 0.003 0.001 ± 0.003 1.0 0.2 0.571 ± 0.056 0.041 ± 0.002 0.0 ± 0.002 0.95
5 0 0.68 0.741 ± 0.053 0.032 ± 0.001 0.004 ± 0.002 0.99 0.65 0.659 ± 0.054 0.03 ± 0.001 0.002 ± 0.001 0.95
5 1 0.27 0.926 ± 0.098 0.037 ± 0.002 −0.003 ± 0.003 0.97 0.26 1.42 ± 0.42 0.034 ± 0.002 −0.001 ± 0.002 0.93
5 2 0.31 1.083 ± 0.096 0.043 ± 0.001 −0.002 ± 0.003 0.97 0.29 1.08 ± 0.13 0.04 ± 0.001 −0.001 ± 0.002 0.92
5 3 0.34 1.165 ± 0.099 0.036 ± 0.001 0.002 ± 0.003 0.98 0.32 1.23 ± 0.17 0.032 ± 0.001 0.0 ± 0.002 0.91
5 4 0.16 2.12 ± 0.2 0.052 ± 0.003 −0.015 ± 0.007 0.92 0.15 5.4 ± 3.1 0.044 ± 0.002 −0.011 ± 0.004 0.82
6 0 0.04 0.32 ± 0.071 0.077 ± 0.017 0.005 ± 0.011 1.0 0.04 0.32 ± 0.073 0.063 ± 0.01 −0.004 ± 0.006 0.97
6 1 0.02 0.334 ± 0.051 0.121 ± 0.016 0.04 ± 0.014 0.95 0.02 0.31 ± 0.053 0.111 ± 0.016 0.027 ± 0.012 0.86
6 2 0.03 0.71 ± 0.21 0.142 ± 0.021 0.027 ± 0.032 1.0 0.02 0.333 ± 0.087 0.111 ± 0.012 0.019 ± 0.011 0.75
6 3 0.02 0.51 ± 0.15 0.155 ± 0.03 0.037 ± 0.02 0.95 0.02 0.278 ± 0.095 0.13 ± 0.034 −0.003 ± 0.011 0.64
6 4 0.01 0.19 ± 0.1 0.55 ± 0.12 0.169 ± 0.058 1.0 0.0 0.024 ± 0.011 0.358 ± 0.075 −0.005 ± 0.026 0.33
7 0 0.31 1.42 ± 0.12 0.041 ± 0.003 −0.001 ± 0.004 0.95 0.3 1.82 ± 0.28 0.033 ± 0.003 −0.001 ± 0.002 0.89
7 1 0.23 1.39 ± 0.13 0.037 ± 0.003 −0.0 ± 0.006 0.95 0.22 2.25 ± 0.47 0.028 ± 0.002 0.002 ± 0.002 0.91
7 2 0.35 1.41 ± 0.1 0.04 ± 0.003 0.006 ± 0.004 0.94 0.33 2.06 ± 0.34 0.032 ± 0.002 −0.001 ± 0.002 0.89
7 3 0.28 1.28 ± 0.11 0.051 ± 0.004 0.007 ± 0.007 0.95 0.26 1.82 ± 0.32 0.033 ± 0.002 −0.003 ± 0.002 0.87
7 4 0.21 1.33 ± 0.14 0.063 ± 0.005 0.003 ± 0.007 0.93 0.18 1.93 ± 0.44 0.043 ± 0.004 0.002 ± 0.003 0.79
8 0 0.42 0.531 ± 0.054 0.047 ± 0.004 −0.0 ± 0.002 0.95 0.41 0.81 ± 0.14 0.041 ± 0.003 −0.001 ± 0.001 0.93
8 1 0.2 0.596 ± 0.087 0.105 ± 0.056 −0.004 ± 0.004 0.9 0.2 0.76 ± 0.14 0.101 ± 0.057 −0.001 ± 0.002 0.89
8 2 0.17 0.62 ± 0.11 0.07 ± 0.006 0.003 ± 0.004 0.96 0.16 0.354 ± 0.064 0.064 ± 0.005 −0.001 ± 0.003 0.88
8 3 0.18 0.78 ± 0.12 0.06 ± 0.004 −0.003 ± 0.005 0.96 0.17 1.03 ± 0.34 0.053 ± 0.004 0.0 ± 0.003 0.89
8 4 0.16 0.89 ± 0.14 0.07 ± 0.004 0.002 ± 0.005 0.98 0.15 1.59 ± 0.69 0.063 ± 0.004 0.002 ± 0.003 0.9
9 4 0.25 1.2 ± 0.1 0.036 ± 0.003 −0.006 ± 0.004 0.94 0.25 3.7 ± 1.4 0.03 ± 0.002 −0.002 ± 0.002 0.91

Notes. Method 0:Rumbaugh-Gold, 1:Shafieloo-Arman7, 2:PyCS-d3cs-vanilla-dou-full, 3:PyCS-sdi-vanilla-dou-full, 4:PyCS-spl-vanilla-dou-full, 5:Jackson-
manchester2_0_3_4, 6:Kumar, 7:JPL, 8:Hojjati-Stark, 9:DeltaTBayes-DeltaTBayes1.

5. IMPLICATIONS FOR OBSERVING STRATEGY

By comparing the results from the different TDC1 rungs, we
can now answer the following question: How does time delay
measurement accuracy depend on observing cadence, season
length and campaign length?

Figure 13 shows the variation in the |A|, P, and f metrics
with cadence and season length, assuming outliers to have been
rejected by |Ai | > 0.1. Each pair of connected points plotted in
the panels of this figure represents a simple test where the control
variable (cadence or season length) is varied, while keeping the
others constant. Campaign length and cadence regularity were
also investigated in a similar manner, but the results—which are
less striking—are not shown here. The six tests we carried out

in total are summarized in Table 6. The top two rows in the table
correspond to the plots shown in the left and right columns of
the figure, respectively.

Figure 13 shows some interesting diversity between methods.
Despite this, some approximate general trends can be seen.
Greater accuracy and success fractions seem to be associated
primarily with longer seasons, but there is considerable scatter
between submissions, perhaps due to residual outliers in some
cases. In most methods, little dependence of accuracy on
cadence, campaign lengths beyond five years, or the regularity
of the sampling was seen. The success fraction seems to be
somewhat dependent on cadence but less so on campaign length.
In general, the trends in precision with cadence and season
length seem to be less marked, and show less scatter, than those

13
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Figure 5. Results for TDC1 Rung 0, showing metrics for the “representative” submission for each of the 10 algorithms. This includes the baseline submission by the
“Evil” Team (“Rumbaugh”). The f, P, A, and χ2 metrics are defined in Section 1, while X is defined in Section 4.1. The shaded regions of each plot represent the
soft targets for TDC1, as presented in the TDC0 paper. Both unfiltered results (open symbols) and results filtered by χ2

i < 10 (solid symbols) are presented, and they
are connected by dashed lines to show the improvements. Rung 0 simulates 3 day cadence and 8 month seasons over a 5 yr campaign with 400 observations in total
(Table 1).

Figure 6. Same as Figure 5, but showing the results of TDC1 Rung 1, which simulates 3 day cadence and 4 month seasons over a 10 yr campaign with 400 observations
in total (Table 1).
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Figure 7. Same as Figure 5, but showing the results of TDC1 Rung 2, which simulates 3 day cadence and 4 month seasons over a 5 yr campaign with 200 observations
in total (Table 1), and exactly regular time sampling.

Figure 8. Same as Figure 5, but showing the results of TDC1, Rung 3, which simulates 3 day cadence and 4 month seasons over a 5 yr campaign with 200 observations
in total (Table 1), and with 1 day scatter in the separations between observations.

in accuracy and success fraction. In general, cadence seems to
be the most important factor for precision.

While the variation of time delay measurement with ob-
serving strategy seems to be somewhat algorithm-dependent,
we can nevertheless hope to capture the general trends just

described. Focusing on the PyCS-SPL results, we derived
a very approximate power-law model for how the A, P,
and f metrics varied with the main three quantities that de-
scribe the observing strategies in the rungs, mean cadence
(cad), mean season length (sea), and campaign length (camp).
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Figure 9. Same as Figure 5, but showing the results of TDC1, Rung 4, which simulates 6 day cadence and 4 month seasons over a 10 yr campaign with 200 observations
in total (Table 1).

Figure 10. Unfiltered results of Rung 1: individual metrics of each “representative” submission (Ai, Pi, χ2
i ) as a function of true time delay dt , the variability parameters

of the intrinsic quasar light curves (τ , σ ), and the magnitude of the fainter image of each pair (i2). The color scheme is the same as that described in the legend of
Figure 5.
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Figure 11. Summary unfiltered statistics of the same data in Figure 10, represented by the average statistics in bins of the variable on the abscissa. The color scheme
is the same as described in the legend to Figure 5.

Figure 12. Distribution of the number of systems for which the time delay
was successfully measured to a level of |Ai | < 0.1, plotted as a function of
the number of algorithms (out of 10) that measure the time delays to this
level. The plot shows Rungs 0, 1, and 4, which represent COSMOGRAIL-like,
“optimistic” LSST, and “realistic” LSST programs, respectively. For Rung 0,
there were more than ∼200 systems for which none of the algorithms achieved
the desired A, but also a large number of systems for which five, six, or seven
of the algorithms successfully recovered this level. For Rungs 1 and 4, fewer of
the systems were successfully recovered at the |Ai | < 0.1 level.

We find

|A|model ≈ 0.06%

(
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(

camp

5 yr

)−0.2

.

We can see that in this model, the accuracy metric A is the
most sensitive to the observing strategy. It is also the case that
it is the metric most sensitive to how the outliers are rejected.
Rejecting outliers that have χ2

i > 10 gives similar conclusions
to those drawn here, but slightly different model parameters,
in the sense that there is even stronger dependence of A on the
observing strategy. In both cases the dependence of A on cadence
is relatively weak. The season length and campaign length seem
to be more important parameters: doubling either of these results
in approximately a factor of two improvement in A. We note
that constraining the total number of observations weakens
these dependencies somewhat: for example, at fixed cadence,
lengthening the season means shortening the campaign, and in
our model, |A| then decreases only as the ratio of the season
length to the campaign length to the power of 0.1. The results
of the fixed epoch number tests in Table 6 bore this out.

The precision and success fraction metrics’ dependence on
observing strategy is weaker, but it is interesting to note that
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Figure 13. Changes in accuracy A (top row), precision P (middle row) and success fraction f (bottom row) with cadence (left) and season length (right), seen in
the different TDC1 submissions. The gray approximate power-law model was derived by visual inspection of the pyCS-SPL results; the signs of the indices were
pre-determined according to our expectations.

the precision depends more strongly on cadence than the season
length, while the opposite is true for the success fraction. This
can be understood qualitatively as the presence of large gaps
reducing the overlap between light curves, making it more
difficult to reliably and uniquely identify common features

between them. Conversely, if the signal is properly identified,
then the precision is driven by the total number of observation
points, i.e., a combination of cadence and campaign duration.
As a rough rule of thumb, we might have in mind that season
length largely determines bias, while cadence controls precision.

18



The Astrophysical Journal, 800:11 (23pp), 2015 February 10 Liao et al.

Table 6
Exploring Time Delay Estimation Performance Against Observing Strategy

Rungs Variable Parameter Fixed Parameters

1, 4 Cadence (3, 6 days) 4 month seasons, 10 yr campaign
0, 3 Season (4, 8 months) 3 day cadence, 5 yr campaign

3, 4 Cadence (3,6 days) 4 month seasons, 200 epochs length
0, 1 Season (4, 8 months) 3 day cadence, 400 epochs length
1,3 Campaign (5, 10 yr) 3 day cadence, 4 month seasons
2, 3 Cadence dispersion (0, 1 days) 3 day cadence, 4 month season, 5 yr campaign

Note. The tests defined in the top two rows (above the line) are illustrated in Figure 13.

The precision of an ensemble average parameter, such as the
cosmological parameters, may yet depend primarily on season
length, however, through the success fraction.

These simple model conclusions represent small extrapola-
tions—we did not, for example, test doubling the season length
and cadence simultaneously—but they represent a first approx-
imation to the response of the more accurate time delay estima-
tion routines to variations in observing strategy.

Finally, we note briefly the implications of this model for
the sample of lensed quasars that was forecast for LSST by
Oguri & Marshall (2010). Rung 4 represents something like
the “universal cadence” planned for LSST (Ivezic et al. 2008),
albeit with slightly shorter seasons. A cadence of 6 days would
be well within the reach of such a strategy, but would require
using observations from most of the filters in the set. While in
this work we have only simulated and analyzed single filter light
curves, AGN variability has been observed to be significantly
correlated across the optical and near infrared bands (see, e.g.,
Schmidt et al. 2012), and microlensing variability is expected,
and observed, to vary smoothly with wavelength due to source
size effects (e.g., Poindexter et al. 2008). With sufficiently
sophisticated algorithms we might expect to be able to measure
time delays from multi-filter light curves with fidelity not
dissimilar to that shown by the TDC1 methods tested here.
The three day cadence of Rung 1 could be achieved by LSST
without changing the total number of visits; the impact of such a
strategy on the various different LSST science cases would need
to be investigated. We take Rungs 1 and 4 to span the range of
possibilities for the LSST time sampling.

Our model suggests that, if outliers with |Ai | > 0.1 can be
rejected (perhaps during a joint analysis of the ensemble), the
cadence is effectively unimportant for time delay measurement
bias, and with LSST we might expect to achieve an accuracy
metric of |A| = 0.03%–0.06%. Such a small time delay mea-
surement bias is well below the systematic errors expected from
lens modeling. Meanwhile, the expected precision achievable
per lens in the Rung 1 and 4 cadences would be 2.6%–4.3%,
and the success fractions would be 20%–26%. The mock lenses
used in this data challenge were not quite randomly drawn from
the OM10 catalog, but instead had approximately uniformly
distributed i3 image magnitudes within four broad magnitude
bins (Section 2.2). Correcting for this, we find that we might,
with the present-day algorithms (tested here and represented
by our simple model), expect to be able to make time delay
measurements with the above accuracy in at least 20% of an
LSST sample of 1990 lenses selected to have i3 < 23.3 and
10 days < Δt < 120 days. This would correspond to a well-
measured sample of around 400 lensed quasars. We must expect
these numbers to be refined as the LSST observing strategy is de-
fined, and further time delay measurement tests are carried out.

6. DISCUSSION

In this section, we give a brief analysis of each method’s
performance, discussing how they performed and what can be
improved in the future. We note that the performance of each
method must be evaluated in multi-dimensional metric space.
Each “Good” Team had to make choices with respect to which
metric to optimize. Some teams decided to favor inclusiveness
(high f) at the cost of a higher fraction of outliers (lower X) or
lower precision P, and vice-versa. In fact, some of the teams
submitted multiple entries spanning the range of parameter
space, and illustrating these competitive needs. Therefore, at
this stage it is not possible, nor useful, to identify a “best”
submission, not even within each method. It is more fruitful to
understand the tradeoffs and explore the range covered by each
method, and then identify areas for improvement.

6.1. Gaussian Processes, by Hojjati & Linder

The GP method attained its twin goals of an automated
fitting pipeline and very good fit accuracy. The main issue to
address is one of outliers, which can be handled in two ways:
global clipping and image information. This team found that the
outliers were not due to multi-modal fit distributions—indeed
the fits often have better likelihood for the data than the truth.
However, the cosmology derived from the outliers would be
discrepant from the cosmology from the global fit ensemble,
and in this way, outliers could be recognized and clipped.
Another approach would be to use information such as image
separation (not provided in TDC1) to recognize and discard
discrepant fits. While these considerations would lower the
accepted fraction of fits, the correction of the mean function
discussed in Section 3.2 raises the fraction over those given here.
This, and a set of new but simple selection criteria (no limits on
precision were imposed by this team for TDC1 submissions),
discussed in a follow-up paper by Hojjati & Linder (2014), give
considerable improvement in the precision and fraction, and
further improvement in accuracy.

6.2. FOT, by Romero-Wolf & Moustakas

The unblinding of the TDC1 simulated data provided valuable
information on the behavior of this team’s Bayesian inference
algorithm. For the most part, the technique identified catas-
trophic outliers. However, some light curve pairs still resulted
in large contributions to the χ2 estimator. Identifying this sub-
set of outliers that pass the quality cuts has provided valuable
insight into the behavior of this technique, and will allow for
future refinement and development to reduce the probability of
mis-reconstructions.
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6.3. Smoothing and Cross-correlation,
by Aghamousa & Shafieloo

Throughout the challenge this team’s main concern was to
achieve a high f value without having any outliers. This was
achieved with f > 0.3 for all five rungs. This conservative
approach yielded average χ2 values of around 0.5–0.9 for
different Rungs with P of about 0.03–0.06. As noted before,
since χ2 and P are correlated, by simply dividing all estimated
errors by a factor of

√
2, χ2 of ∼1, and P of ∼0.02–0.04

could be achieved trivially. After the true time delays were
revealed, a calibration bias of 0.5 days for all the submissions
was discovered, resulting in A ∼ 1.8%–2.5% (the method had
been calibrated only on TDC0 Rung 0, owing to lack of time).
By adding a calibration correction of 0.5 days to all this team’s
submissions’ delay estimates, the bias was removed, improving
A to 0.1%–0.6%. To summarize, this method seems promising in
both reliability and precision, and is automated in all steps. There
is also the potential to improve the error estimation by doing
appropriate simulations for each set of light curves separately.

6.4. Supervised Pelt, by Jackson

After the release of the true time delays, this submission was
re-examined to try to understand the reasons for the most severe
errors, especially those in which the true time delay differed
from the inference by >3σ (between 9 and 18 cases in each
rung out of a few hundred submitted). In four of the worst
cases, the problem appeared to be unrealistically low errors
fitted during the resampling process, possibly due to a small
number of anomalous points, and not corrected by eye. This
suggests that for a given set of light-curves, a minimum error
based on the fits to the ensemble should be adopted. A significant
fraction of the remaining severe errors were characterized by a
Pelt statistic versus time delay plot with a relatively bumpy and
irregular minimum, even when the eye detected a good fit in
terms of the number of coincident points of inflection. This is
more difficult to quantify, but suggests that an addition to the
resampling-derived error based on the shape of the Pelt statistic
may be useful.

6.5. PyCS d3cs, spl and sdi

The d3cs classification of the light-curve pairs into different
confidence categories proved valuable. All the resulting “doubt-
less” (dou) submissions (f = 0.31, averaging across all rungs)
are free from any catastrophic outliers. As an example, none of
the point estimates from the vanilla spl method is farther than
3.7σi or 12.0 days from the truth. For this same method, the less
pure doupla submission (f = 0.65) is contaminated by 1.0% of
delays that are off by more than 20 days, or, alternatively, 5σi .
Interestingly, the d3cs estimates for time delays shorter than
50 days are systematically biased low, leading to a significant A
of approximately −0.03 for d3cs. We speculate that this bias is
perceptual and due to users involuntarily trying to maximize the
overlap in the light curves. The sdi and spl techniques were
not influenced by this bias in their initial conditions, and both
reached a high accuracy, consistent with being unbiased. For
these two numerical techniques, the χ2 metric values are close
to unity, suggesting adequate to slightly over-estimated delay
uncertainties. The implemented simplifications to the original
techniques from Tewes et al. (2013a) seem therefore acceptable
for the level of complexity present in the TDC1 data.

6.6. Difference-smoothing, by Rathna Kumar, Stalin, & Prabhu

From the TDC1 feedback, it was realized that this procedure
overestimates the uncertainties in the measured time delays, and
hence was more prone to reporting catastrophic failures. This
problem can be solved by using a Gaussian filter of width equal
to the median rather than the mean temporal sampling of the
light curves in the process of simulating light curves having
known time delays. With this choice, the intrinsic variability in
the simulated light curves does not get smoothed out on short
timescales. Also, there were a few cases in the submissions
where the measured and true time delays were discrepant at the
level of χ2

i > 10. This points to a need to increase the plausible
range of time delays around the measured delay over which the
simulated light curves are generated to at least the 3σ confi-
dence interval implied by the inferred uncertainty, rather than
the 2σ confidence interval used in the TDC1 submissions. The
time delay measurements can be improved further by exploring
a range of reasonable values of free parameters, and selecting
those which result in the smallest uncertainty in the measured
time delay. These changes are now being rigorously tested on
the TDC1 light curves and will be described in the paper by
Rathna Kumar et al. (2014) during the revision process.

6.7. DeltaTBayes, by Tak, Meng, van Dyk, Siemiginowska,
Kashyap, & Mandel

This team considered TDC1 to be a great opportunity to
develop and improve their Bayesian approach. Considering the
team’s late entry into the challenge, the pragmatic Bayesian per-
spective was taken (Lee et al. 2011), developing the approximate
Gibbs sampling scheme (algorithm1) and applying it only to the
most realistic rung (Rung 4). The main advantage of this prag-
matic approach was the fast convergence of its Markov chains,
saving some computational time, a desirable characteristic for
analyzing large number of data sets. The method performs well
in terms of precision and accuracy. However it produces error
bars that are smaller than those from a fully Bayesian approach,
though larger than an empirical Bayesian approach, leading to
a relatively high χ2. To be balanced, several Gibbs sampling
schemes are being tested for the future.

7. SUMMARY AND CONCLUSIONS

In the next decade, dedicated efforts and the LSST survey will
deliver thousands of light curves for lensed quasars, ushering
in a revolution in time-delay cosmology (Treu et al. 2013). In
order to prepare for and make the most of this wealth of data, it is
essential to ascertain whether current algorithms are sufficiently
accurate, fast, and precise. It is also important to investigate the
optimal observing strategies for time delay determination, both
in dedicated monitoring campaigns and for LSST.

In order to investigate these two issues, we carried out
the first strong lens TDC. After the preliminary time delay
challenge TDC0 (Dobler et al. 2014), the challenge “Evil”
Team simulated several thousand time delay light curves and
made them available to the community on the challenge Web
site. Seven “Good” Teams responded to the challenge, and
blindly measured the time delays for TDC1 using 9 independent
algorithms. A simple method implemented by the “Evil” Team
as a baseline was also included. Our main findings from
analyzing the blind TDC1 submissions can be summarized as
follows.

1. The measurement of time delays from thousands of re-
alistic light curves in manageable amounts of CPU and
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investigator time has been demonstrated. This is a con-
siderable achievement given that traditionally this process
has been carried out only for very small numbers of light
curves (allowing investigators to spend significant amounts
of time on each system). Several independent approaches
were successful, ranging from cross-correlation, to scatter
minimization, to data modeling with GPs and other suit-
able sets of basis functions. Some methods relied heavily
on visual inspection, while others were almost completely
automated.

2. In Rung 0—which simulates the typical observing
parameters of a dedicated monitoring campaign like
COSMOGRAIL—the best current algorithms can recover
time delays with negligible bias (often sub-percent) and 3%
precision for over 50% of the light curves. The error bars are
generally reasonable, resulting in χ2 of the order of unity,
while the fraction of outliers is also just a few percent. These
were the requirements for a method to be competitive, as de-
scribed in Paper I. When enough information was present in
the light curves, typically six independent algorithms were
able to recover time delays within 10% of the truth.

3. As the data quality was degraded in the subsequent Rungs
1–4 (emulating some observing strategies possible with
LSST), the fraction of usable light curves also decreased,
hovering between 20% and 30%. Outliers became more
common, although they can be contained by suitably con-
servative algorithms, or by visual inspection. Once outliers
are excluded, the algorithms perform as well as in Rung 0,
albeit with a smaller fraction of the light curves (10%–30%)
yielding robust results with competitive precision and ac-
curacy. A success fraction of 20% translates to an expected
sample size of around 400 lensed quasars detected and
measured by LSST to very high accuracy—well within the
systematic error requirements of time delay cosmography.

4. We have derived approximate scalings for the time delay
metrics as a function of observing parameters. Season
and campaign length appear to be the dominant terms
controlling accuracy (or bias) and success rate, while the
precision of the time delay is most strongly related to the
cadence and campaign duration.

Much has been learned from this first blind TDC, and the re-
sults provide useful guidance and reference for designing future
experiments and improving the measurement algorithms. How-
ever, it should be emphasized that this challenge was designed
to be somewhat simplistic. In particular, TDC1 consisted of a
pure time delay estimation challenge from light curves alone:
teams were not given the image positions, nor the deflector and
source redshifts. It is likely therefore that the results of this chal-
lenge might be overly pessimistic. In real life, investigators will
have access to the full lensing configurations, and will be able
to use this information as a prior for their time delay inference
(for example using the lensing geometry for quads).

Furthermore, a fully cosmological challenge should enable
outlier rejection based on cosmological self-consistency in a
joint analysis of the ensemble of lenses. It should be possible to
identify and reject outliers that lead to cosmological parameters
(chiefly H0) that are inconsistent with those inferred from
the majority of sample. Another limitation of the simplicity
of TDC1 is that the metrics measure how well an algorithm
performs on time-delay estimation, not directly on cosmological
parameter inference.

Given the encouraging results of TDC1, we plan to overcome
these two limitations in the future. In the short term, we plan

to translate the simple metrics adopted here into a full cosmo-
logical estimation tool by introducing the available additional
information, and justifiable assumptions about the underlying
lens models. In the longer term, we plan to organize a second
TDC, to further test our ability to handle outliers, and to inves-
tigate the measurement of time delays from multi-band data,
and in which more information will be provided for each sys-
tem with the ultimate goal for the “Good” Teams of inferring
cosmological parameters, rather than just time delays.

The TDC0 and TDC1 data will remain available at
http://timedelaychallenge.org for any team who might be in-
terested in using them for developing algorithms for strong lens
time delay measurement.
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APPENDIX

FACTORS AFFECTING THE RMS MICROLENSING
MAGNIFICATION

How sensitive is the distribution of mock light curves to the
random realizations of the positions of the stars in the lens?
We generated 30 star field realizations, over fields 30 Einstein
Radii (RE) by 30 RE in area, with different random seeds for
each fixed F∗ or κ , and calculated the mean of their standard
deviations as a characteristic measure of the rms fluctuation in
the microlensing magnification. Figure 14 shows how this rms
fluctuation varies as a function of F∗. The top panel shows the
case where the image arises at the minimum of the time delay
surface (where the eigenvalues of the Hessian matrix are both
positive and the image has positive parity); the bottom panel
shows the case where the image arises at a saddle point of the
time delay surface (where the eigenvalues have opposite signs
and the parity is flipped compared to the original source). For
both figures, significant trends, increasing when F∗ is small, and
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Figure 14. Mean Standard Deviation of the magnification map as a function of F∗. Each point is the result from 30 realizations with different position seeds. We show
two errors: Standard Deviation (yellow) and Standard Deviation of the mean value (red). Top figure is for a minimum-image with κ = 0.475, γ = 0.425. Bottom
figure is for a saddle-image with κ = 0.525, γ = 0.575. Both have the same macro magnification μ = 10.

Figure 15. Mean Standard Deviation of the magnification map as a function of local convergence κ (left) and source size s (right). In the left panel, κ = γ and
F∗ = 0.1 are fixed for each point, while in the right panel κ = γ = 0.45, F∗ = 0.1 are fixed for each point.

decreasing at larger F∗, are apparent. These can be explained as
follows.

At small F∗, when there are few stars, sparsely distributed in
the field, the magnification of each position is dominated by the
nearest individual star, and the variation of the map increases
with more stars that bring more caustics. However, when F∗
grows large, the magnification at any position becomes less
affected by the addition of more stars, and the magnification and
demagnification attributed to different stars will average away.
The saddle-point images are more vulnerable to demagnification
and hence show larger variations in their magnification maps
(see Schechter 2003, for more on the differences of microlensing
between minima and saddle-point images).

The left-hand panel of Figure 15 shows the effect of the
macrolens convergence κ on the standard deviation of the
source plane magnification map. κ affects the variation in two
ways, changing the stellar density fraction, and also the macro
magnification. These effects appear to approximately balance
each other at high κ . At low convergence, the magnification and
shear are also low, and the microlensing effects weaker.

Meanwhile, the right-hand panel of Figure 15 shows the rms
microlensing magnification fluctuation as a function of source
size. As expected, the fluctuations are smoothed out at large
source size, reducing the amplitude of the microlensing fluctua-
tions and ensuring that the average microlensing magnification
is unity.
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