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1 Introduction

Doctor Trotta is to be congratulated for his lucid summary of recent advances in
Bayesian fitting of cosmological models and of the outstanding challenges in the
more difficult problem of model selection. This situation is not unique to cosmol-
ogy. Differences among statistical paradigms such as frequency-based or Bayesian
methods are generally much more pronounced in model checking and selection than
in fitting. Indeed no consensus exists even among Bayesians or among frequentists
as to the best way forward in model selection. As such this remains an active area of
statistical research where the experience of cosmologists may lead to insight with
impact on more general statistical methodology. It is also a subtle area where one
must be wary of all-purpose solutions. As Doctor Trotta points out, model selection
in cosmology is not confined to nested models (e.g., adding “extra parameters in the
ΛCDM beyond the vanilla ones”) but includes the more technically challenging case
of comparing non-nested models “whose parameter spaces are largely or completely
disjoint”. Such seemingly innocuous differences may be highly consequential and
lead to subtle technical issues. I hope to illustrate some of the subtleties involved and
the advantages of a mixed approach that considers and compares various methods
in the context of a specific model selection problem.

2 Methods for Model Selection and Checking

Model checking problems often begin with a default or presumed model,

Null Hypothesis: E.g., the Universe is “Flat”.
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The scientist asks whether the model is consistent with the data or if it is plausible
that the data were generated under the model. If not, we aim to characterize the
inconsistency, improve the model, and recheck the improved model. In principle
this cycle of model improvement can be iterated, perhaps with the acquisition of
new data, until a satisfactory model is obtained.

We may also have a model that we suspect or hope is better than the null model,

Alternative Hypothesis: E.g., the Universe is “Hyperbolic”.

With a competing model in hand, we typically aim to decide between or weigh
the evidence for the two (or more) models. These procedures are known as model
selection and model comparison. In some situations we may wish to assume the null
hypothesis until we have substantial evidence it is implausible. This is analogous to
assuming a defendant is innocent, until proven guilty in a court of law. Similarly
we may not wish to overturn a long standing standard model without truly solid
evidence. In other situations we may not have any particular reason to favor one
model over another and may wish to simply weigh the relative evidence for each.

These are surprisingly subtle problems and despite decades of research, discus-
sion, and sometimes heated arguments, little consensus exists among statisticians as
how to best tackle them. This is especially concerning because competing methods
may lead to very different conclusions. Part of the difficulty is that model selection is
somewhat ill-posed. Statisticians view models as parsimonious mathematical sum-
maries of complex phenomena. They are not meant to capture the full complexity of
that which they summarize. As such different models can be viewed as approxima-
tions with various tradeoffs between simplicity and detail, no one of which may be
‘true’ or even better than the others; they are simply different. Nonetheless we may
wish to investigate how a particular model differs from reality (i.e., model checking)
or which of a set of models better approximates a particular aspect of reality (i.e.,
model comparison). Remembering that models are not meant to be perfect, how-
ever, it is no surprise that there is no completely general theory for model selection
nor is there always a clear cut answer to model selection problems. Model checking,
comparison, and selection are nuanced endeavors into the shades of grey.

Frequency-Based Methods. The standard frequency based method begins with a
statement of a null and an alternative hypothesis,

H0: E.g., the Universe is Flat: Ωκ = 0, and
H1: E.g., the Universe is not Flat: Ωκ 6= 0,

and computes a test statistic, T , with known distribution under H0. A threshold,
T ? is then computed as, e.g., the smallest value such that Prob(T > T ?|Ωκ =
0,other parameters) ≤ α,, where α is the significance level of the test. Under the
assumption that H0 holds, T is greater than T ? with probability less than α . This is
an infrequent occurrence if α is small. Thus, we typically choose a small value of
α and if we observe T > T ? conclude that there is sufficient evidence to declare H0
implausible. In this example, we would conclude that the Universe is not flat.

This paradigm is generally advocated on the basis of its control of the probability
of false positive. That is, we will wrongly conclude that H0 is implausible with
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probability less than α , when H0 actually holds. On the other hand the method offers
no characterization of the strength of evidence, a task left to the notorious p-value,
see below. Another important sticking point lies in the derivation of a test statistic
with known distribution under H0. This can be a difficult if not impossible task in
complex models that have numerous unknown parameters.

Bayesian Methods. Because Bayesian methods treat parameters as random quan-
tities there is no problem in principle with unknown parameters under either H0 or
HA. In particular the prior predictive distribution, given in Trotta’s equation (2) spec-
ifies how likely the data, d, is under model i ∈ {0,1}. In a Bayesian paradigm the
model consists of a specification of both the likelihood and the prior distribution and
both are compared together. The typical method for comparing two models involves
the Bayes Factor, or the posterior probability of H0. Unlike standard frequency-
based methods, both the Bayes Factor and p(H0|M ) treat H0 and H1 essentially
symmetrically. There is no need to treat H0 as the default or a priori assumed model.

A typical criticism of Bayesian methods in general is their requirement that one
specifies a prior distribution. Of course, when informative prior information is avail-
able, Bayesian methods offer a principled method of combining this information
with the current data. In many situations, these concerns are of little practical impor-
tance because the posterior distribution, parameter estimates, error bars, and interval
estimates are quite insensitive to the choice of prior distribution. Unfortunately, the
same is not true of prior predictive distributions and Bayes factors which can be
quite sensitive to the choice of prior distribution. As an example, suppose we ob-
serve a Gaussian variable with mean µ and variance one, use a Gaussian prior distri-
bution on µ with mean zero and variance τ2, and are interested in testing H0 : µ = 0
against H1 : µ 6= 0. Using (2) we can compute the prior predictive distribution of
d which is a Gaussian distribution with mean zero and variance 1+ τ2 and is plot-
ted in the lefthand panel of Figure 1 for several values of τ2. The prior predictive
distribution is highly dependent on the prior distribution and p(d|M ) can be made
arbitrarily small for any value of d by choosing τ2 large enough. The righthand
panel of Figure 1 illustrates the effect on the log Bayes factor, which varies from
indifference between H0 and H1 to strong support for H1 to strong support for H0 as
τ2 increases.

Reflecting on Figure 1, it is clear that we must think carefully about our choice
of prior distribution and it is critical that the prior distribution accurately summa-
rizes available prior information. The typical strategy of using “non-informative”
prior distributions with large variances clearly effects the Bayes factor. In fact “im-
proper” prior distributions (e.g., with infinite variance) result in improper prior pre-
dictive distributions and undefined Bayes factors. There is no simple default prior
distribution available when computing Bayes Factors. This is especially problematic
when the parameter space is large and in particular when the HA and H0 are either
not nested or the dimension of the parameter space under HA is much larger than
that under H0. Specifying subjective prior distributions in large multivariate spaces
involves careful consideration of the correlations and likely relationships among the
parameters. In model selection problems, the hypothesized models may be rather
speculative and little prior information about the values of the parameters may be
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Fig. 1 The dependence of the prior predictive distribution and the Bayes factor on the choice of
prior distribution. The lefthand panel plots the prior predictive distribution for the Gaussian ex-
ample describe in the text with five choices of the prior distribution. The righthand plot shows the
effect of the prior variance, τ2, on the Bayes factor. Results are highly dependent on the prior dis-
tribution and the prior must be chosen with care to accurately represent available prior information.

forthcoming. Thus, we may have little information for a the choice of prior and the
prior may heavily influence results. In such situations, it is absolutely critical that
the choice of prior distribution be reported along with the Bayes factor.

I worry about the application of Bayes factors in cosmology, just as I gener-
ally worry about their use by scientists and statistician alike. Doctor Trotta men-
tions the “Astronomer’s Prior” (Ωκ ∼ Unif(−1,1)) and the “Curvature Scale Prior”
(log |Ωκ | ∼Unif(−5,0)). In the inflationary model he notes that “little if anything is
known a priori about the free parameter Ψ ...” and that “non-linear transformations
... in general change ... the model comparison results.” Understandably convenient
prior distributions are used in the absence of well quantified substantive prior knowl-
edge. Unfortunately, Bayes factors based on such priors lead to questionable results.

P-values. In the context of frequency based hypothesis testing, the p-value is
often reported to quantify the degree of evidence, p-value = prob(T > T ?|Ωκ =
0,other parameters). Although they are endemic in data analysis, there is a large
literature on the difficulties of interpreting p-values, especially when testing precise
null hypotheses (e.g., Berger and Delampady, 1987). When compared to Bayes fac-
tors and the posterior probability of H0, p-values vastly overstate the evidence for
H1, even when compared to Bayesian methods that use the prior most favorable to
H1 from a large class of priors. This is because p-values are computed given data
as extreme or more extreme than d. This is much stronger evidence for H1 than
d. (In some cases p-values agree with Bayesian measures computed with “as ex-
treme or more extreme’ data (Berger and Sellke, 1987)). P-values cannot be simply
recalibrated to agree with Bayesian measures because the magnitude of the dis-
crepancy depends on the sample size, the model, and the precision of H0. In short
p-values should be avoided because they are difficult to interpret, have questionable
frequency properties, and bias inference in the direction of false discovery.
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3 The Bottom Line

There are other statistical paradigms and hybrid methods that aim to evaluate models
and decide between them, e.g., posterior-predictive-p-values (Gelman et al., 1996),
conditional error probabilities (Berger et al., 1997), decision theory (e.g., Casella
and Berger, 1990; van Dyk, 2011), etc. Still there are no silver bullets. Most statis-
ticians agree that model selection should be rephrased into model fitting problems
whenever possible. In the case of nested models, it is often possible to fit the larger
model and report interval for the parameters that are free in the larger but not the
smaller model. The added value of the larger model can be assessed by examining
the likely values of these parameters. This avoids the problem of model selection,
but may not adequately address the scientific question. In such cases, I agree with
Doctor Trotta that Bayesian methods are most promising. Despite their dependence
on the choice of prior distribution, Bayes factors represent a principled probability-
based assessment of the relative evidence for H0 and H1. Unlike p-vales, they aim to
answer the right questions and like other Bayesian methods, they have no problem
with nuisance parameters. Various strategies exist for mitigating their dependence
on the prior distribution. For example, Berger and Delampady (1987) recommends
optimizing the Bayes factor over a class of priors and Berger and Pericchi (2001)
review methods that use a subset of the data to construct an informative prior distri-
bution and the remainder to compute the Bayes factor. Overall, I view Bayes factors
as the most promising method for model selection. Clearly care must be taken when
selecting prior distributions and sensitivity analyses must be conducted. But at a
fundamental level Bayes factors answer the questions of most interest to scientists.
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