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Abstract The morphology of sunspot groups is predictive both of theiure evo-
lution and of explosive associated events higher in ther sglaosphere, such as
solar flares and coronal mass ejections. To aid in this ptiedicsunspot groups
are manually classified according to one of a number of schelités process is
both laborious and prone to inconsistencies stemming floenstibjective nature
of the classification. In this paper we describe how matheaanorphology can
be used to extract numerical summaries of sunspot imagearéhaelevant to their
classification and can be used as features in an automatsifickation scheme.
We include a general overview of basic morphological openatand describe our
ongoing work on detecting and classifying sunspot groupgubese techniques.
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1 Scientific Background and Motivation

The Sun’sphotospherés the region that emits the light that we see. The deeper re-
gions are opaque and the higher and much less dmseais only one-millionth
as bright as the photosphere in visible light. Sunspots ark dreas on the pho-
tosphere that result from intense magnetic fields. The ntagfields inhibit con-
vection, cooling the corresponding surface regions. Aogathe photosphere where
the surface temperature has been reduced then appear aspdtskvhen viewed
in optical light. Sunspots can also be seemiagnetogramsvhich are images that
represent variations in the strength of magnetic fieldsénShn’s photosphere [3].
In magnetograms, sunspots correspond to high flux regi@asppear as areas of
opposite magnetic polarity.

The classification and tracking of sunspots is an active dakieg of solar-
physicists hoping to untangle connections between sursspioity and various so-
lar phenomena. Recent studies, for example, suggest tteatfloes are related
to the magnetically active regions around sunspot groupsA$ a result, vari-
ous sunspot classification schemes aim to characterize etiaglux content in
the active-regions on the solar disk [4]. One particulaesecb—the Mount Wilson
classification—puts solar active-regions into four cladsased on the complexity
of magnetic flux distribution. When combined with space \weatata, this scheme
can be used to predict activity in the solar corona such ashhignergetic solar
flares and massive bursts of solar wind known as coronal njestsoas [4]. While
precise precise predictions remain elusive, the compl@fithe magnetic flux dis-
tribution of sunspot groups can be used to infer trends amdktecies in the patters
of solar flares and coronal mass ejections

Recently launched NASA missions such as the Solar Dynanise®atory—
with its continuous science data downlink rate of 130 Metggi®r second—are pro-
ducing an unprecedented volume of solar data. Nonethdlesaajority of sunspot
classification is still performed through visual inspentlyy experts [2]. This is a
laborious process and, as with all manual procedures, eptible to bias from
the human observer [4]. Since the morphology of sunspotpggdorm a contin-
uous spectrum rather than a set of discrete and obviouseslaeere is a level
of subjectivity in manual classification. One of the attiacs of the Mount Wil-
son scheme is its reliance on a relatively simply set of diaason rules. While
this may aid manual classification it introduces artifici@hstomies that may hin-
der scientific understanding. Even with the relativelyigtigforward Mount Wilson
scheme, trained experts do not always agree on classifisaths a result, there is a
need for an automated, objective and reliable procedusf@cting and classifying
sunspot groups.

The Mount Wilson classification scheme divides sunspotgsauto four classes.
The simplest morphologically is the class which consists of groups that are dom-
inated by a singlaunipolar sunspot, i.e., a sunspot with a magnetic field that is
dominated either by a positive or a negative polarity. Tteoed class, th@ class,
is made up of groups with both polarities, but with a simple aistinct spatial
division between the polarities. In particular a straighelcan be drawn through
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the group that nearly divides the negative from the posjivarities. Groups in the
third class By, are alsdipolar, but are sufficiently complex that a straight line can-
not divide the positive and the negative polarities. Finatl the fourth classpyd,
the positive and negative polarities are scattered throuigthe region and cannot
be easily separated. Example of the sunspot groups fronothreelasses appear in
Figure 1.

Because this classification scheme is defined in terms of trphmology of the
sunspots, we propose to use methods from mathematical wlomhto extract
features from the magnetograms that can be used in an a@wrolaissification
technique, such as a classification tree, support vectonimaor some other com-
mon method, to reconstruct the Mount Wilson classificatie.use a data set that
consists of magnetogram images collected by the Solar afidsgkeric Obser-
vatory/Michelson Doppler Imager (SOHO/MDI). Each maggesm includes the
date and time the image was taken, the location on the sad&r dind the iden-
tification number of the sunspot group given jointly by the &J.Air Force and
the National Oceanic and Atmospheric Administration (UBXBAA). The man-
ual classification of the sunspot group by USAF/NOAA accogdio the Mount
Wilson scheme is also provided.

The primary goal of this article is to make progress towardatomatic sunspot
classification method that relies on features extractetgugichniques from math-
ematical morphology. We begin in Section 2 with an overvidwhe mathemati-
cal morphology methods that we employ. In Section 3 we desdibw we com-
pute relevant numerical summaries of the magnetogram isnagjeg mathematical
morphology and methods for using these summaries for @lzeson. Finally in
Section 4 we discuss the road forward toward automated stinkgssification.

2 Mathematical Morphology

Mathematical morphology is a powerful tool for image analywhich was devel-

oped about forty years ago. Unlike other tools (e.g., Fouriethods), morpho-
logical operators relate directly to shape. When used gpjately, morphological

operations can simplify images by preserving their esaksttiapes and eliminating
noise. For detailed descriptions of the subject, see [6, 7].

2.1 Binary and Greyscale Images

Objects in digitized images are only approximations tortheunterparts in the real
world. One reason is simply because their domains are defindifferent spaces:
images are pixelated and thus “discrete” while the objeetfitis “continuous” in
nature. We will useZ? to denote the space of objects in binary images. That is
Z? can be thought of as a two dimensional grid of pixels that fimitely tall and
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(@) a (b): B

(c): By (d): Byd

.

Fig. 1 Examples of the four classes of sunspot groups used in thextblilson scheme. The
class (a) is dominated by a single pole that appears blackibe in the magnetogram, depending
on the polarity (positive or negative). T class (b) has regions of both positive and negative
polarity that can be separated by a straight line. Blpeclass (c) also exhibits both polarities but
they cannot be easily separated into two regions. Iithieclass (d) the two polarities are scattered
throughout the region.

infinitely wide. We can treaZ? as the discrete version of the Euclidean plarfe R
and represent it as a two dimensional Cartesian squaré grid.

A binary image f, is a image where each pixel is either black or white. For
example we can assign the value 1 (i.e., black) to a pixeliélongs to an object,
otherwise the value 0O (i.e., white). Notice that we can abvegnsider objects (i.e.,
the “black” parts) in a binary image as sets and the imag# @sehe union of all
such sets. See Figure 2(a) for a binary image. Mathemativadl can write a binary
image as a mapping, which maps each pixel of a subgeif Z into the couple
{0,1}:

f: 9 cZz?> —{0,1},

whereZ; is some subset &2 and is called the definition domain 6f
More generally, @reyscale imagef, is a mapping which maps each elementin
a subsetZ; of Z? into the set of non-negative integerg:N

1 Originally mathematical morphology was defined in thdimensional Euclidean spacé! fout
there is no great difficulty in translating the this theoryrfr RY to its discrete versio@?. In our
discussion about mathematical morphology, we Z2ebut understand that that the development
would work equally well for eithez® or RY.
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Fig. 3 Top row: (a) a binary image that has been (c) dilated, (e)eztp(h) opened, and (i) closed.
Bottom row: (b) a greyscale image that has been (d) dilafedrgded, (h) opened, and (j) closed.
For the binary image a vertical line was used as the SE in thpptméogical operations. For the
greyscale image, a rectangle was used.

f:@fCZZ—>N0.

Very often the set of non-negative integers under consiideras {0,...,255},
where the larger the value, the brighter the pixel is. In reathtical morphology,
it is useful to treat the pixel values of a greyscale imagéaseights of a surface
above the image plane. See Figure 2(b) for a greyscale image.
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Fig. 4 Dilation of a setX by a disk-shaped structuring elemé&nt
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2.2 Dilation and Erosion

In mathematical morphology there are two basic operatidifation and erosion
These are the basic building blocks and many other morpluabgperations can
be expressed in terms of dilation and erosion. We first deflagah.

Suppose we have a 9¢tc Z2 and a curseB that scrolls acros&?. If we record
the location ofB whenever it intersects or “runs intX the result is called the
dilation of X by B, denoted byDg(X). This is illustrated in Figure 4. Notices that
the dilation ofX is a bloated version ok, where the degree and character of the
bloating is determined by the shape and siz&8oThe dilation ofX by B is the
answer to the question: “What is the locationBivhenB hits X?” (We defineA
hits BasANB # ¢.) In other wordsPg(X) is the set of all pointg such thaB hits
X when the location oorigin of B is atx.

We callB astructuring elementSE). Generally speaking a SE is a subseZ8f
with a known shape and origin. SE elements are used to examinansform the
imagef under study. As with dilation, all morphological operattesat the image
as a set (i.e., a binary image) and use one or more SEs to ex@&mive could also
say these operators use the shape(s) of the SE(s) to tnanifbiotice that the SB
is arbitrary, hence one can always choose a suitable SE fiorpethe desired task.
This gives the user a great flexibility in applying morphatzd methods. Usually
SEs are regular and small in size when compared to the imagexBmple, in the
case of a binary image in FigureRjs a disk with a small radius and with its center
as the origin.

The formal definition of dilation is:

De(X) = {x€ Z%| BynX # ¢},

whereBy is the SEB placed with its origin ak. Figure 5 shows the dilation of the
images displayed in Figure 2.

The erosion oK by B, denoted byEg(X), is the answer to the question: “Where
is the origin ofB whenB fitswholly insideX?” That is,Eg(X) is the set of pointg
such thatB fitswholly inside X when the origin oB is atx. The formal definition
of erosion is:

Es(X) = {x ez | By C X}.
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Fig. 5 (a): dilation of the image in Figure 2(a) with a vertical liag SE; (b) dilation of the image
in Figure 2(b) with a rectangle as SE.
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Fig. 6 Erosion of a seX by a disk-shaped structuring eleméht

See Figure 6 for an example, and Figure 7 for examples of drinaages:

2.3 Opening and Closing

Dilation and erosion remove information and in general ts information cannot
be retrieved. The search for an operation that attemptssartréhe effects of dila-
tion and erosion leads to the definition of, respectivelyrphologicalclosingand
opening We first give the definition of opening, and for that, we deflreereflection
AofasetA: A= {—a|ac A}. Thatis,Ais the mirror image oA about the origin.

The opening o by B, denoted byOg(X), is defined as the erosion ¥fby B
followed by the dilation byB. That is:

2 |t is easy to verify that dilation and erosion form a pair ofbitransformations:
De(X) = {Eg(X°)}".

This duality property means that, when using the same SHlikdhigon of a seiX is equivalent to
the complement of the erosion of the complement (i.e., tleKground”) of the seX.
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Fig. 7 (a): erosion of the image in Figure 2(a) with a vertical liseSE; (b) erosion of the image
in Figure 2(b) with a rectangle as SE.
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Fig. 8 Opening of a seX by a disk-shaped structuring eleméht

Os(X) = Dy{Es(X)}.

Figure 8 is an example of opening. Notice tixahas been rounded & from the
inside, and that those disks which are smaller in size tharStB vanishafter
opening.

Also notice the filtering effect of opening: those image stiues that cannot
contain the SBB are removed from the image. Therefore the size and shape of
should be carefully chosen for the information to be exgddtom the image. For
example, if one wants to remove linear features but not dislpsd structure®
should be chosen as a disk of a suitable size. Examples okdperages can be
found in Figure 9.

The closing ofX by B, denoted byCg(X), is defined as the dilation of by B
followed by the erosion bf. That is:

Cs(X) =Eg{Dg(X)}.

See Figure 10 for an example of closing. As opposite to oggmilosing rounded
the objects “from outside”. See also Figure 11 for exampletased images.

3 Opening and closing also share a dual prope®/(X) = {Cg(X°)}°.
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Fig. 9 (a): opening of the image in Figure 2(a) with a disk as SE; fi®ning of the image in
Figure 2(b) with a rectangle as SE.
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Fig. 11 (a): opening of the image in Figure 2(a) with a disk as SE; @®ning of the image in
Figure 2(b) with a rectangle as SE.

In practice the choice between opening or closing dependbetypes of ob-
jects or noise to be extracted/removed. For example, thevahof “salt noise”
—white dots in the image—requires opening, while “peppéseib—black dots in
the image—requires closing.
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2.4 Other Morphological Operations

There are other useful morphological operators, but dupaoeslimitation, we omit
their detailed descriptions here. One such operatickeétetonizationthe skeleton
of an binary object is defined as the union of the centers ahallmaximal balls
inside the object. It is useful for extracting summary feastto represent the object.
Another useful operator for detecting object boundariesasphological gradient
typically defined as the arithmetic differenbg(X) — Eg(X).

3 Detection and Classification of Sunspot Groups

We aim to develop an automatic procedure for detecting aassifling sunspot
groups according to the Mount Wilson scheme. Given the cerxilyl of the mag-
netogram images, we adopt an imaging-oriented modularoappr That is, the
ultimate problem of detection and classification is brokeo ia sequence of sub-
problems, and simple and effective imaging techniques ppéea to sequentially
solve these sub-problems.

Since the Mount Wilson scheme relies on characterizing ttage and distri-
bution of magnetic flux in sunspot groups, mathematical molggy is utilized to
extract scientifically meaningful features from the avaldgemagnetograms. That is,
the morphological operations described in Section 2 ard tesexamine the distri-
bution of positive and negative magnetic polarities visilol the magnetogram. In
particular, we characterize the complexity of the sunspatig based on the scatter
of magnetic flux and the separation of the two polarities.his tvay, our proce-
dure tailors a classifier to utilize expert knowledge in ¢omging an interpretable
and effective classifier. Another approach to classificatad the other extreme, is
to generate a large set of numerical summaries to use agdeatua “blackbox”
classifier. While this approach can also yield an effectlasdifier, the results tend
to be much more difficult to interpret in terms of the undertyscience.

3.1 Science-Driven Feature Extraction

In this section we describe the procedure that we employtr@enumerical sum-
maries of the magnetogram images that will serve as feaintb® ultimate clas-
sification. Our strategy is to derive features that are taildo distinguish between
the four classes in the Mount Wilson scheme. Since all foassgs are defined in
terms of the distribution of the positively and negativeljeated magnetic fields,
we begin by using morphological operators to identify thgioas of positive and
negative polarity in a magnetogram.

To do this we first clean the image using a morphological apgaperation with
a spherical structuring element of radius 2. This smoothsihite sunspots—the re-



Morphological Image Analysis and Its Application to Sunisftassification 11

gions of positively oriented magnetic field that appear hitthe magnetograms—
so that smooth boundaries can be obtained after threslgoWiter cleaning we ex-
tract the white sunspot by selecting pixels with magnetaograensity greater than
a given threshold, namely greater thas 2.5s, wherex ands are, respectively,
the mean and sample standard deviation of all the pixel galu¢ghe image. Next
we aim to extract the black sunspots—the regions of nedatiréented magnetic
polarities that appear black in the magnetograms. To doabigvert the original
image by multiplying by negative one so that it looks like enfihegative, and then
clean and threshold the inverted image in exactly the samdidweith the original
image when extracting the white sunspots.

Figure 12 illustrates our feature extraction routinedoi3, By, andfyd sunspot
groups. In this figure, the first row is the original magnetogithat appears in Fig-
ure 1, the second row is the cleaned magnetogram, the thirdsrthe extracted
white sunspot, and the fourth row is the extracted blackgoing he columns rep-
resenta, 3, By, andByd types, respectively. We will describe the final two rows
below.

Given the extracted white and black sunspots, we are in dipo$o define a
feature that aims to identify sunspot groups in¢helass. Since this class is defined
by “A unipolar sunspot group”, an extreme ratio of the numdieextracted pixels
the white and black sunspotBl{ and Ng, respectively) should be indicative of
an a group. This ratio is denotefNw/Ng| and is given, for each representative
magnetogram, beneath its respective column in Figure 12.

The difference between the, By, andByd classes is the degree of separation
between the white and black sunspots. In fhelass they can be largely separated
by a straight line, in th@y class they can be largely separated, but not by a straight
line, and in thgByd class they are mixed. Thus to distinguish between thesegrou
we aim to identify the best boundary between the the white ldadk sunspots
and to access the quality of this boundary. We do this by comgithe extracted
white and black sunspots into the same image and using assthrefjion growing
operation to produce the separating boundary. In Figuréhtjfth row shows the
combined image, with the white and black sunspots plottddua and yellow, and
the sixth row illustrates the resulting separating boupddotice that the boundary
becomes more complex for thy group thanB group and even more so for the
Byd group.

A natural way to distinguislfs groups ang3y groups is to measure the “rough-
ness” of the separating line. A good example of roughnessuneas the averaged
second derivative, which we compute using second difféengnén some cases the
region growing operation results in more than one sepayditie, indicating poor
separation between the white and black sunspots. In théstbasgroup should be
classified as #yd group.

To help identify sunspot groups in th#y/d class we must quantify the degree
of scatter or mixture of the region’s positive and negatigtapties. In order to do
this we introduce a spatial complexity measure. In pardicuét 7 be the set of
pixels in an extracted white sunspot. We then compute theecefimassg, of 7.
For each pixelv € 7, the number of pixels that a line segment franto ¢ passes
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type3 type By type3yd

- i
- .h .

(6.13, 0.93, 0.050) (0.78,0.92, 0.52) (1.10,0.96,0.47)  .5020.52, 0.18)

Fig. 12 Top row: original magnetograms for four types of sunspots.0Bd row: morphologically
cleaned magnetograms. Third row: extracted white sun§jooirth row: extracted black sunspot.
Fifth row: detected white (in blue) and black (in yellow) spots. The green dots are their centers
of mass. Bottom row: separating line(s) between the whiteldack sunspots. The parenthetical
summaries at the bottom are the area ratio of white to blankmats and the spatial complexity
measureéA(-) values for the white and for the black sunspots. We expecarthe ratio to be more
extreme fora groups and the complexity measurements to be smaller fg8 ybegroups than for

B or By groups.
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through is denotedl(w) and of these, the number of blue pixels is dend{ed.
(Recall that blue pixels correspond to the white sunspdtse) spatial complexity
measureA(# ), is computed as

1w
71,2, Lw)’

weW

AW =

where|# | is the number of pixels it#". Notice that(w) > | (w) and 0< A(#) < 1.

To see whyA(%#') can be used as a spatial complexity measure, observe that if t
white sunspot pixels are scattered (and disconnectedpdriouthe image, then for
mostw € %, | (w) is small relative td-(w), and thus a small value &{#) indicates
high spatial complexity o# .

A similar quantityA(%) can be computed for the set of pixels in an extracted
black sunspa#. TheA(#') andA(%) values for each of the representative magne-
tograms are given beneath the columns in Figure 12. The gi@asnin the fifth row
of Figurel2 are the centers of mass/#fand.%.

The full procedure for computing the features is outlinedable 1.

Table 1 Feature Extraction Procedure

1. Clean the original magnetogram image using morpholbgjgerations.

2. Extract the “white sunspots” by thresholding the cleainealye.

3. Apply the above steps to the negative of the image to edttnac'black sunspots”.

4. Compare the relative areas of the white and black sung¢feotdiscriminatinga from the other
three types).

5. Compute the separating line for the white and black susgfar discriminating3 andy).

6. Compute the complexity measurs?”) andA(Z) (for discriminatingByd from the rest).

3.2 Classification

Given the set of four features described in Section 3.1 ablatigtheir quadratic and
interaction terms, we can use a standard classificatiore(giged learning) tech-
nigue to derive a classification rule. There are numerousilplesmethod, but we
focus mainly on the technique known @ndom forest$l] because it is relatively
immune to over-fitting, meaning we have to worry less aboatdiassifier being
over-sensitive to spurious relationships in the data, eveen including a large
number of features. (Four features grows to 14 features ifislede quadratic and
interaction terms.)

A random forest is a state-of-the-art nonparametric di@sshat is an ensemble
of a set ofdecision treesThe individual trees are grown by finding the best split
of the training cases into the classes based on a set of ésafihie classification in
each of the resulting subgroups is improved using new sepelassification rules.
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In a case withN training cases anglfeatures, the number of features used to make a
decision at each node of a tree is set,atherer is much less thap (one common
technique is to set= ,/p). The ensemble of trees is created by randomly selecting
N cases with replacement from the origitatraining cases. Each tree is grown by
randomly choosing features at each node and making a split based on the selected
features. Each tree is grown to completion without pruniagd the random forest
combines the individual decision trees based on the mgjesie of the trees.

As an illustration we randomly divided a data set consistfigl28 magne-
tograms into a training set of 90 (70%) magnetograms andsttstf 38 (30%)
magnetograms. We fit a random forest of 250 trees using #redonfor est
routine inR to the training set and used the resulting classificatioa tolsepa-
rately classify both the training and test sets. While tlantng set had a 100%
correct classification rate, 58% of the test set was coyretdksified, based on the
USAF/NOAA classification. All of the misclassified sunspobgps were classified
into a class neighboring the USAF/NOAA classification (iadl. a sunspot groups
where classified as eitheror 3, all 8 groups af or By, all By as or By, and all
Byd aspyorByd.)

A difficulty that arrises when we try to evaluate the qualityoar proposed fea-
tures for sunspot classification is that the USAF/NOAA dfésstion is not particu-
larly reliable. An examination of the magnetograms thatespo be missclassified
by our method more often than not reveals that the USAF/NOks&sification is
incorrect or that the sunspot groups is marginal and doesleatly belong to any
one of the four classes. This is of course problematic ngtfamlevaluating the clas-
sifier but also for training the classifier because the USAJN classifications in
the training set are no more reliable than those in the tésTee problem stems
from the lack of true discrete classes. There is a continuetwéen thea class
that is “dominated by a single unipolar spot” and the bip@arass, as the second
polarity grows from negligible to equal in importance. Likise there is a contin-
uum from thef to the By and to theByd class as the bipolar group ranges from
simple distinct regions of positive and negative polamtatgroup with positive and
negative polarities scattered throughout. The lack of endisunderlying classifica-
tion lead to subjective assessments as to the proper atassifi of a group and an
inherent inconsistency in the human classification. It ilifficult and ultimately
fruitless to automatically reproduce such a human classidic.

4 Discussion

Our ultimate goal is to provide numerical descriptions anthsaries of sunspot
images that capture physical characteristics in sunspaiailement and evolution
and can be use to predict turbulent events such as solardladesoronal mass ejec-
tions. Research suggests that the morphology of the sugsmats is relevant to the
evolution of the group and predictive of such events. Thusark has focused on
developing morphological summaries that in the first plaaggtere scientific theo-
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ries about formation and evolution and secondly may be alile tised to reproduce
existing classification schemes. An immediate goal is telbgvnew classification
schemes and/or continuous numerical summaries that befiersent the observed
variability in sunspot images and are more correlated watlarsactivity. Current
classification schemes are based on static sunspot groupsrinteresting classi-
fication would characterize not just the static morpholbgyalso the development,
evolution, and track of the group. The goal is to automdiidafck the formation
and evolution of sunspot groups using the massive solarsgétghat are now com-
ing online—and for this tracking to be in terms of sunspotdess that are most
pertinent to the ultimate scientific objectives.
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of an individual chapter please use theknow edgenent environment — it will automatically
render Springer’s preferred layout.

References
1. L. Breiman. Random forestdlach. Learn, 45:5-32, October 2001.
2. T. Colak and R. S. R. Qahwaji. Automated mcintosh-basasgsdication of sunspot groups

using mdi imagesSolar Physics248(2):277-296, 2009.

3. H. J. Hagenaar. Ephemeral regions on a sequence of &Klfdchelson doppler imager mag-
netogramsThe Astrophysical Journab55(1):448—-461, 2001.

4. J.Ireland, C. A. Young, R. T. J. McAteer, C. Whelan, R. Jwet, and P. T. Gallagher. Mul-
tiresolution analysis of active region magnetic structumd its correlation with the mt. wilson
classification and flaring activitysolar Physics2008.

5. R. S. R. Qahwaji and T. Colak. Automatic short-term solareflprediction using machine
learning and sunspot associatioS®lar Physics2009.

6. J. Serralmage Analysis and Mathematical Morphologycademic Press, 1982.

7. P. Soille.Morphological Image Analysis: Principles and Applicat®springer, Berlin, second
edition, 2003.



