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Abstract The morphology of sunspot groups is predictive both of theirfuture evo-
lution and of explosive associated events higher in the solar atmosphere, such as
solar flares and coronal mass ejections. To aid in this prediction, sunspot groups
are manually classified according to one of a number of schemes. This process is
both laborious and prone to inconsistencies stemming from the subjective nature
of the classification. In this paper we describe how mathematical morphology can
be used to extract numerical summaries of sunspot images that are relevant to their
classification and can be used as features in an automated classification scheme.
We include a general overview of basic morphological operations and describe our
ongoing work on detecting and classifying sunspot groups using these techniques.
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1 Scientific Background and Motivation

The Sun’sphotosphereis the region that emits the light that we see. The deeper re-
gions are opaque and the higher and much less densecoronais only one-millionth
as bright as the photosphere in visible light. Sunspots are dark areas on the pho-
tosphere that result from intense magnetic fields. The magnetic fields inhibit con-
vection, cooling the corresponding surface regions. Areason the photosphere where
the surface temperature has been reduced then appear as darkspots when viewed
in optical light. Sunspots can also be seen inmagnetogramswhich are images that
represent variations in the strength of magnetic fields in the Sun’s photosphere [3].
In magnetograms, sunspots correspond to high flux regions that appear as areas of
opposite magnetic polarity.

The classification and tracking of sunspots is an active undertaking of solar-
physicists hoping to untangle connections between sunspotactivity and various so-
lar phenomena. Recent studies, for example, suggest that solar flares are related
to the magnetically active regions around sunspot groups [5]. As a result, vari-
ous sunspot classification schemes aim to characterize magnetic flux content in
the active-regions on the solar disk [4]. One particular scheme—the Mount Wilson
classification—puts solar active-regions into four classes based on the complexity
of magnetic flux distribution. When combined with space weather data, this scheme
can be used to predict activity in the solar corona such as highly energetic solar
flares and massive bursts of solar wind known as coronal mass ejections [4]. While
precise precise predictions remain elusive, the complexity of the magnetic flux dis-
tribution of sunspot groups can be used to infer trends and tendencies in the patters
of solar flares and coronal mass ejections

Recently launched NASA missions such as the Solar Dynamics Observatory—
with its continuous science data downlink rate of 130 Megabits per second—are pro-
ducing an unprecedented volume of solar data. Nonetheless the majority of sunspot
classification is still performed through visual inspection by experts [2]. This is a
laborious process and, as with all manual procedures, is susceptible to bias from
the human observer [4]. Since the morphology of sunspot groups form a contin-
uous spectrum rather than a set of discrete and obvious classes, there is a level
of subjectivity in manual classification. One of the attractions of the Mount Wil-
son scheme is its reliance on a relatively simply set of classification rules. While
this may aid manual classification it introduces artificial dichotomies that may hin-
der scientific understanding. Even with the relatively straightforward Mount Wilson
scheme, trained experts do not always agree on classifications. As a result, there is a
need for an automated, objective and reliable procedure fordetecting and classifying
sunspot groups.

The Mount Wilson classification scheme divides sunspot groups into four classes.
The simplest morphologically is theα class which consists of groups that are dom-
inated by a singleunipolar sunspot, i.e., a sunspot with a magnetic field that is
dominated either by a positive or a negative polarity. The second class, theβ class,
is made up of groups with both polarities, but with a simple and distinct spatial
division between the polarities. In particular a straight line can be drawn through
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the group that nearly divides the negative from the positivepolarities. Groups in the
third class,β γ, are alsobipolar, but are sufficiently complex that a straight line can-
not divide the positive and the negative polarities. Finally, in the fourth class,β γδ ,
the positive and negative polarities are scattered throughout the region and cannot
be easily separated. Example of the sunspot groups from the four classes appear in
Figure 1.

Because this classification scheme is defined in terms of the morphology of the
sunspots, we propose to use methods from mathematical morphology to extract
features from the magnetograms that can be used in an automated classification
technique, such as a classification tree, support vector machine or some other com-
mon method, to reconstruct the Mount Wilson classification.We use a data set that
consists of magnetogram images collected by the Solar and Heliospheric Obser-
vatory/Michelson Doppler Imager (SOHO/MDI). Each magnetogram includes the
date and time the image was taken, the location on the solar disk, and the iden-
tification number of the sunspot group given jointly by the U.S. Air Force and
the National Oceanic and Atmospheric Administration (USAF/NOAA). The man-
ual classification of the sunspot group by USAF/NOAA according to the Mount
Wilson scheme is also provided.

The primary goal of this article is to make progress toward anautomatic sunspot
classification method that relies on features extracted using techniques from math-
ematical morphology. We begin in Section 2 with an overview of the mathemati-
cal morphology methods that we employ. In Section 3 we describe how we com-
pute relevant numerical summaries of the magnetogram images using mathematical
morphology and methods for using these summaries for classification. Finally in
Section 4 we discuss the road forward toward automated sunspot classification.

2 Mathematical Morphology

Mathematical morphology is a powerful tool for image analysis, which was devel-
oped about forty years ago. Unlike other tools (e.g., Fourier methods), morpho-
logical operators relate directly to shape. When used appropriately, morphological
operations can simplify images by preserving their essential shapes and eliminating
noise. For detailed descriptions of the subject, see [6, 7].

2.1 Binary and Greyscale Images

Objects in digitized images are only approximations to their counterparts in the real
world. One reason is simply because their domains are definedin different spaces:
images are pixelated and thus “discrete” while the object itself is “continuous” in
nature. We will useZZ2 to denote the space of objects in binary images. That is
ZZ

2 can be thought of as a two dimensional grid of pixels that is infinitely tall and
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(a): α (b): β

(c): β γ (d): β γδ

Fig. 1 Examples of the four classes of sunspot groups used in the Mount Wilson scheme. Theα
class (a) is dominated by a single pole that appears black or white in the magnetogram, depending
on the polarity (positive or negative). Theβ class (b) has regions of both positive and negative
polarity that can be separated by a straight line. Theβ γ class (c) also exhibits both polarities but
they cannot be easily separated into two regions. In theβ γδ class (d) the two polarities are scattered
throughout the region.

infinitely wide. We can treatZZ2 as the discrete version of the Euclidean plane IR2,
and represent it as a two dimensional Cartesian square grid.1

A binary image, f , is a image where each pixel is either black or white. For
example we can assign the value 1 (i.e., black) to a pixel if itbelongs to an object,
otherwise the value 0 (i.e., white). Notice that we can always consider objects (i.e.,
the “black” parts) in a binary image as sets and the image itself as the union of all
such sets. See Figure 2(a) for a binary image. Mathematically, we can write a binary
image as a mapping, which maps each pixel of a subsetD f of ZZ2 into the couple
{0,1}:

f : D f ⊂ ZZ
2 −→ {0,1},

whereD f is some subset ofZZ2 and is called the definition domain off .
More generally, agreyscale image, f , is a mapping which maps each element in

a subsetD f of ZZ2 into the set of non-negative integers IN0:

1 Originally mathematical morphology was defined in thed-dimensional Euclidean space IRd, but
there is no great difficulty in translating the this theory from IRd to its discrete versionZZd. In our
discussion about mathematical morphology, we useZZ

2, but understand that that the development
would work equally well for eitherZZd or IRd.
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(a) (b)

Fig. 2 (a): a binary image and (b) a greyscale image.

original dilated eroded opened closed

(a) (c) (e) (g) (i)

(b) (d) (f) (g) (j)

Fig. 3 Top row: (a) a binary image that has been (c) dilated, (e) eroded, (g) opened, and (i) closed.
Bottom row: (b) a greyscale image that has been (d) dilated, (f) eroded, (h) opened, and (j) closed.
For the binary image a vertical line was used as the SE in the morphological operations. For the
greyscale image, a rectangle was used.

f : D f ⊂ ZZ
2 −→ IN0.

Very often the set of non-negative integers under consideration is {0, . . . ,255},
where the larger the value, the brighter the pixel is. In mathematical morphology,
it is useful to treat the pixel values of a greyscale image as the heights of a surface
above the image plane. See Figure 2(b) for a greyscale image.
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B

X D (X)B

Fig. 4 Dilation of a setX by a disk-shaped structuring elementB.

2.2 Dilation and Erosion

In mathematical morphology there are two basic operations:dilation anderosion.
These are the basic building blocks and many other morphological operations can
be expressed in terms of dilation and erosion. We first define dilation.

Suppose we have a setX ⊂ ZZ
2 and a curserB that scrolls acrossZZ2. If we record

the location ofB whenever it intersects or “runs into”X the result is called the
dilation of X by B, denoted byDB(X). This is illustrated in Figure 4. Notices that
the dilation ofX is a bloated version ofX, where the degree and character of the
bloating is determined by the shape and size ofB. The dilation ofX by B is the
answer to the question: “What is the location ofB whenB hits X?” (We defineA
hits BasA∩B 6= φ .) In other words,DB(X) is the set of all pointsx such thatB hits
X when the location ororigin of B is atx.

We callB a structuring element(SE). Generally speaking a SE is a subset ofZZ
2

with a known shape and origin. SE elements are used to examineor transform the
image f under study. As with dilation, all morphological operatorstreat the image
as a set (i.e., a binary image) and use one or more SEs to examine it. We could also
say these operators use the shape(s) of the SE(s) to transform f . Notice that the SEB
is arbitrary, hence one can always choose a suitable SE to perform the desired task.
This gives the user a great flexibility in applying morphological methods. Usually
SEs are regular and small in size when compared to the image. For example, in the
case of a binary image in Figure 4,B is a disk with a small radius and with its center
as the origin.

The formal definition of dilation is:

DB(X)≡ {x ∈ ZZ
d | Bx ∩X 6= φ},

whereBx is the SEB placed with its origin atx. Figure 5 shows the dilation of the
images displayed in Figure 2.

The erosion ofX by B, denoted byEB(X), is the answer to the question: “Where
is the origin ofB whenB fitswholly insideX?” That is,EB(X) is the set of pointsx
such thatB fitswholly insideX when the origin ofB is atx. The formal definition
of erosion is:

EB(X)≡ {x ∈ ZZ
d | Bx ⊂ X}.
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(a) (b)

Fig. 5 (a): dilation of the image in Figure 2(a) with a vertical lineas SE; (b) dilation of the image
in Figure 2(b) with a rectangle as SE.

B

X EB(X)

Fig. 6 Erosion of a setX by a disk-shaped structuring elementB.

See Figure 6 for an example, and Figure 7 for examples of eroded images.2

2.3 Opening and Closing

Dilation and erosion remove information and in general the lost information cannot
be retrieved. The search for an operation that attempts to revert the effects of dila-
tion and erosion leads to the definition of, respectively, morphologicalclosingand
opening. We first give the definition of opening, and for that, we definethe reflection
Ǎ of a setA: Ǎ≡ {−a | a∈ A}. That is,Ǎ is the mirror image ofA about the origin.

The opening ofX by B, denoted byOB(X), is defined as the erosion ofX by B
followed by the dilation byB̌. That is:

2 It is easy to verify that dilation and erosion form a pair of dual transformations:

DB(X) ≡ {EB(X
c)}c.

This duality property means that, when using the same SE, thedilation of a setX is equivalent to
the complement of the erosion of the complement (i.e., the “background”) of the setX.
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(a) (b)

Fig. 7 (a): erosion of the image in Figure 2(a) with a vertical line as SE; (b) erosion of the image
in Figure 2(b) with a rectangle as SE.

X O (X)B

B

Fig. 8 Opening of a setX by a disk-shaped structuring elementB.

OB(X)≡ DB̌{EB(X)}.

Figure 8 is an example of opening. Notice thatX has been rounded byB from the
inside, and that those disks which are smaller in size than the SEB vanishafter
opening.

Also notice the filtering effect of opening: those image structures that cannot
contain the SEB are removed from the image. Therefore the size and shape ofB
should be carefully chosen for the information to be extracted from the image. For
example, if one wants to remove linear features but not disk shaped structures,B
should be chosen as a disk of a suitable size. Examples of opened images can be
found in Figure 9.

The closing ofX by B, denoted byCB(X), is defined as the dilation ofX by B
followed by the erosion by̌B. That is:

CB(X)≡ EB̌{DB(X)}.

See Figure 10 for an example of closing. As opposite to opening, closing rounded
the objects “from outside”. See also Figure 11 for examples of closed images.3

3 Opening and closing also share a dual property:OB(X) = {CB(Xc)}c.



Morphological Image Analysis and Its Application to Sunspot Classification 9

(a) (b)

Fig. 9 (a): opening of the image in Figure 2(a) with a disk as SE; (b) opening of the image in
Figure 2(b) with a rectangle as SE.

C (X)
BX

B

Fig. 10 Closing of a setX by a diskB.

(a) (b)

Fig. 11 (a): opening of the image in Figure 2(a) with a disk as SE; (b) opening of the image in
Figure 2(b) with a rectangle as SE.

In practice the choice between opening or closing depends onthe types of ob-
jects or noise to be extracted/removed. For example, the removal of “salt noise”
—white dots in the image—requires opening, while “pepper noise”—black dots in
the image—requires closing.
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2.4 Other Morphological Operations

There are other useful morphological operators, but due to space limitation, we omit
their detailed descriptions here. One such operation isskeletonization: the skeleton
of an binary object is defined as the union of the centers of allthe maximal balls
inside the object. It is useful for extracting summary features to represent the object.
Another useful operator for detecting object boundaries ismorphological gradient,
typically defined as the arithmetic differenceDB(X)−EB(X).

3 Detection and Classification of Sunspot Groups

We aim to develop an automatic procedure for detecting and classifying sunspot
groups according to the Mount Wilson scheme. Given the complexity of the mag-
netogram images, we adopt an imaging-oriented modular approach. That is, the
ultimate problem of detection and classification is broken into a sequence of sub-
problems, and simple and effective imaging techniques are applied to sequentially
solve these sub-problems.

Since the Mount Wilson scheme relies on characterizing the shape and distri-
bution of magnetic flux in sunspot groups, mathematical morphology is utilized to
extract scientifically meaningful features from the available magnetograms. That is,
the morphological operations described in Section 2 are used to examine the distri-
bution of positive and negative magnetic polarities visible in the magnetogram. In
particular, we characterize the complexity of the sunspot group based on the scatter
of magnetic flux and the separation of the two polarities. In this way, our proce-
dure tailors a classifier to utilize expert knowledge in constructing an interpretable
and effective classifier. Another approach to classification, at the other extreme, is
to generate a large set of numerical summaries to use as features in a “blackbox”
classifier. While this approach can also yield an effective classifier, the results tend
to be much more difficult to interpret in terms of the underlying science.

3.1 Science-Driven Feature Extraction

In this section we describe the procedure that we employ to extract numerical sum-
maries of the magnetogram images that will serve as featuresin the ultimate clas-
sification. Our strategy is to derive features that are tailored to distinguish between
the four classes in the Mount Wilson scheme. Since all four classes are defined in
terms of the distribution of the positively and negatively oriented magnetic fields,
we begin by using morphological operators to identify the regions of positive and
negative polarity in a magnetogram.

To do this we first clean the image using a morphological opening operation with
a spherical structuring element of radius 2. This smooths the white sunspots—the re-
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gions of positively oriented magnetic field that appear white in the magnetograms—
so that smooth boundaries can be obtained after thresholding. After cleaning we ex-
tract the white sunspot by selecting pixels with magnetogram intensity greater than
a given threshold, namely greater than ¯x+ 2.5s, where ¯x and s are, respectively,
the mean and sample standard deviation of all the pixel values in the image. Next
we aim to extract the black sunspots—the regions of negatively oriented magnetic
polarities that appear black in the magnetograms. To do this,we invert the original
image by multiplying by negative one so that it looks like a film negative, and then
clean and threshold the inverted image in exactly the same wedid with the original
image when extracting the white sunspots.

Figure 12 illustrates our feature extraction routine forα, β , β γ, andβ γδ sunspot
groups. In this figure, the first row is the original magnetogram that appears in Fig-
ure 1, the second row is the cleaned magnetogram, the third row is the extracted
white sunspot, and the fourth row is the extracted black sunspot. The columns rep-
resentα, β , β γ, andβ γδ types, respectively. We will describe the final two rows
below.

Given the extracted white and black sunspots, we are in a position to define a
feature that aims to identify sunspot groups in theα class. Since this class is defined
by “A unipolar sunspot group”, an extreme ratio of the numberof extracted pixels
the white and black sunspots (NW and NB, respectively) should be indicative of
an α group. This ratio is denoted|NW/NB| and is given, for each representative
magnetogram, beneath its respective column in Figure 12.

The difference between theβ , β γ, andβ γδ classes is the degree of separation
between the white and black sunspots. In theβ class they can be largely separated
by a straight line, in theβ γ class they can be largely separated, but not by a straight
line, and in theβ γδ class they are mixed. Thus to distinguish between these groups
we aim to identify the best boundary between the the white andblack sunspots
and to access the quality of this boundary. We do this by combining the extracted
white and black sunspots into the same image and using a standard region growing
operation to produce the separating boundary. In Figure 12,the fifth row shows the
combined image, with the white and black sunspots plotted inblue and yellow, and
the sixth row illustrates the resulting separating boundary. Notice that the boundary
becomes more complex for theβ γ group thanβ group and even more so for the
β γδ group.

A natural way to distinguishβ groups andβ γ groups is to measure the “rough-
ness” of the separating line. A good example of roughness measure is the averaged
second derivative, which we compute using second differencing. In some cases the
region growing operation results in more than one separating line, indicating poor
separation between the white and black sunspots. In this case the group should be
classified as aβ γδ group.

To help identify sunspot groups in theβ γδ class we must quantify the degree
of scatter or mixture of the region’s positive and negative polarities. In order to do
this we introduce a spatial complexity measure. In particular, letW be the set of
pixels in an extracted white sunspot. We then compute the center of mass,c, of W .
For each pixelw∈ W , the number of pixels that a line segment fromw to c passes



12 D. Stenning, V. Kashyap, T. C. M. Lee, D. A. van Dyk, and C. A.Young

type-α type-β type-β γ type-β γδ

(6.13, 0.93, 0.050) (0.78, 0.92, 0.52) (1.10, 0.96, 0.47) (2.50, 0.52, 0.18)

Fig. 12 Top row: original magnetograms for four types of sunspots. Second row: morphologically
cleaned magnetograms. Third row: extracted white sunspot.Fourth row: extracted black sunspot.
Fifth row: detected white (in blue) and black (in yellow) sunspots. The green dots are their centers
of mass. Bottom row: separating line(s) between the white and black sunspots. The parenthetical
summaries at the bottom are the area ratio of white to black sunspots and the spatial complexity
measureA(·) values for the white and for the black sunspots. We expect thearea ratio to be more
extreme forα groups and the complexity measurements to be smaller for theβ γδ groups than for
β or β γ groups.
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through is denotedL(w) and of these, the number of blue pixels is denotedl(w).
(Recall that blue pixels correspond to the white sunspots.)The spatial complexity
measure,A(W ), is computed as

A(W ) =
1

|W | ∑
w∈W

l(w)
L(w)

,

where|W | is the number of pixels inW . Notice thatL(w)≥ l(w) and 0≤A(W )≤ 1.
To see whyA(W ) can be used as a spatial complexity measure, observe that if the
white sunspot pixels are scattered (and disconnected) around in the image, then for
mostw∈W , l(w) is small relative toL(w), and thus a small value ofA(W ) indicates
high spatial complexity ofW .

A similar quantityA(B) can be computed for the set of pixels in an extracted
black sunspotB. TheA(W ) andA(B) values for each of the representative magne-
tograms are given beneath the columns in Figure 12. The greendots in the fifth row
of Figure12 are the centers of mass ofW andB.

The full procedure for computing the features is outlined inTable 1.

Table 1Feature Extraction Procedure
1. Clean the original magnetogram image using morphological operations.
2. Extract the “white sunspots” by thresholding the cleanedimage.
3. Apply the above steps to the negative of the image to extract the “black sunspots”.
4. Compare the relative areas of the white and black sunspots(for discriminatingα from the other

three types).
5. Compute the separating line for the white and black sunspots (for discriminatingβ andβ γ).
6. Compute the complexity measuresA(W ) andA(B) (for discriminatingβ γδ from the rest).

3.2 Classification

Given the set of four features described in Section 3.1 alongwith their quadratic and
interaction terms, we can use a standard classification (supervised learning) tech-
nique to derive a classification rule. There are numerous possible method, but we
focus mainly on the technique known asrandom forests[1] because it is relatively
immune to over-fitting, meaning we have to worry less about the classifier being
over-sensitive to spurious relationships in the data, evenwhen including a large
number of features. (Four features grows to 14 features if weinclude quadratic and
interaction terms.)

A random forest is a state-of-the-art nonparametric classifier that is an ensemble
of a set ofdecision trees. The individual trees are grown by finding the best split
of the training cases into the classes based on a set of features. The classification in
each of the resulting subgroups is improved using new separate classification rules.
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In a case withN training cases andp features, the number of features used to make a
decision at each node of a tree is set atr, wherer is much less thanp (one common
technique is to setr =

√
p). The ensemble of trees is created by randomly selecting

N cases with replacement from the originalN training cases. Each tree is grown by
randomly choosingr features at each node and making a split based on the selected
features. Each tree is grown to completion without pruning ,and the random forest
combines the individual decision trees based on the majority vote of the trees.

As an illustration we randomly divided a data set consistingof 128 magne-
tograms into a training set of 90 (70%) magnetograms and testset of 38 (30%)
magnetograms. We fit a random forest of 250 trees using therandomForest
routine inR to the training set and used the resulting classification rule to sepa-
rately classify both the training and test sets. While the training set had a 100%
correct classification rate, 58% of the test set was correctly classified, based on the
USAF/NOAA classification. All of the misclassified sunspot groups were classified
into a class neighboring the USAF/NOAA classification (i.e., all α sunspot groups
where classified as eitherα or β , all β groups asβ or β γ, all β γ asβ or β γ, and all
β γδ asβ γ or β γδ .)

A difficulty that arrises when we try to evaluate the quality of our proposed fea-
tures for sunspot classification is that the USAF/NOAA classification is not particu-
larly reliable. An examination of the magnetograms that appear to be missclassified
by our method more often than not reveals that the USAF/NOAA classification is
incorrect or that the sunspot groups is marginal and does notclearly belong to any
one of the four classes. This is of course problematic not only for evaluating the clas-
sifier but also for training the classifier because the USAF/NOAA classifications in
the training set are no more reliable than those in the test set. The problem stems
from the lack of true discrete classes. There is a continuum between theα class
that is “dominated by a single unipolar spot” and the bipolarβ class, as the second
polarity grows from negligible to equal in importance. Likewise there is a contin-
uum from theβ to theβ γ and to theβ γδ class as the bipolar group ranges from
simple distinct regions of positive and negative polarity to a group with positive and
negative polarities scattered throughout. The lack of a distinct underlying classifica-
tion lead to subjective assessments as to the proper classification of a group and an
inherent inconsistency in the human classification. It is both difficult and ultimately
fruitless to automatically reproduce such a human classification.

4 Discussion

Our ultimate goal is to provide numerical descriptions and summaries of sunspot
images that capture physical characteristics in sunspot development and evolution
and can be use to predict turbulent events such as solar flaresand coronal mass ejec-
tions. Research suggests that the morphology of the sunspotgroups is relevant to the
evolution of the group and predictive of such events. Thus our work has focused on
developing morphological summaries that in the first place capture scientific theo-
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ries about formation and evolution and secondly may be able to be used to reproduce
existing classification schemes. An immediate goal is to develop new classification
schemes and/or continuous numerical summaries that betterrepresent the observed
variability in sunspot images and are more correlated with solar activity. Current
classification schemes are based on static sunspot groups. Amore interesting classi-
fication would characterize not just the static morphology,but also the development,
evolution, and track of the group. The goal is to automatically track the formation
and evolution of sunspot groups using the massive solar datasets that are now com-
ing online—and for this tracking to be in terms of sunspot features that are most
pertinent to the ultimate scientific objectives.
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