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Abstract
This article discusses a number of statistical aspects of source detection, the
computation of intervals and upper limits for a source intensity, and accessing
the sensitivity of a detection procedure. Emphasis is placed on model diag-
nostics, validation, and improvement as means of avoiding odd behaviors in
these procedures such as over abundant short or empty intervals. Improved
model specification is viewed as a better response to systematic uncertainties,
the look elsewhere effect, and general model inadequacy than simply insisting
on a significance level of 5σ for source detection. We advocate reporting both
the upper limit and the sensitivity to better represent the strength of evidence
for detection and the reported source intensity. Finally, we explore the use of
decision theoretic analysis to derive detection procedures, intervals, and limits
in order to focus attention on the statistical properties of primary interest.

1 Introduction
Over the past 10-15 years there has been much discussion in the high energy physics community as
to how best to derive statistical criterion for source detection and how best to compute intervals and
limits for source intensities, see e.g., [1–3]; and the proceedings for the Phystat Conference Series (URL:
phystat.org). This paper picks up a number of threads in this discussion from a statistical point of view
and with an emphasis on encouraging adequate model specification and proper reporting of results. From
my point of view the discussion has been too focused on technical properties and somewhat superficial
concerns pertaining to statistical procedures. Thus, this paper explores a decision theoretic approach
with the aim of focusing attention on the statistical properties most pertinent to ultimate scientific goals.

The paper is organized into five sections. In Section 2 we review the basic statistical framework
for source detections and setting intervals and upper limits for the source intensity. Important in this
is the clarification of a difference in nomenclature used in high energy physics and in astrophysics. In
Section 3 we discuss a number of concerns that have arisen with this framework. The use of decision
theoretic analysis to derive new procedures for detection and computing intervals and limits is explored
in Section 4. The paper is summarized in Section 5.

2 Detection, Intervals, and Upper Limits
2.1 A Simple Poisson Model
To focus attention on the statistical issues we frame our discussion in terms of a simple detection problem
involving a contaminated Poisson count. The methods and issues described are general, but the salient
points are evident in this simple example. Thus, we consider the Poisson model for a source count,1

n|(λS , λB, τS) ∼ Poisson
(
τS(λS + λB)

)
, (1)

where n is the source count, λS is the source intensity, λB is the background intensity, and τS is the
source exposure time. We typically have a second background-only exposure that we model as

nB|(λB, r, τB) ∼ Poisson(rτBλB), (2)
1The notation X|Y ∼ Distribution(Y ) describes the conditional distribution of X given Y . For example, X|Y ∼

Poisson(g(Y )) means that the conditional probability mass function of X given Y is exp{−g(Y )}g(Y )X/X!.
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Fig. 1: The Power of the Detection Plotted as a Function of the Source Intensity, λS . The two panels correspond
to λB = 1 and 5. In each panel the power is given for three values of α and their corresponding detection
thresholds. The power of the detection increases with the source intensity and decreases with the background
intensity. Insisting on a lower probability of a false detection (smaller α) decreases the power of the detection.

where nB is the background count, τB is the background exposure time, and r is the relative area of the
background and source exposures. For clarify, we sometimes assume λB is known. In any case, λS is of
primary interest. We wish to determine if there is a source and if so how strong it is. Even if we cannot
detect a source, we may wish to quantify how strong a possible source could be and go undetected.

A standard statistical hypothesis testing framework is used for source detection. In particular the
default or null hypothesis states that there is no source. We assume this to be true unless we find this
assumption to be at odds with the observed data, in which case we reject the null hypothesis in favor of
the alternative hypotheses that a source is present. Formally, we write

H0 : There is no source, i.e., λS = 0 (3)

HA : There is a source, i.e., λS > 0. (4)

2.2 Detection
To determine whether the observed data are at odds with the null hypothesis, we first identify a test statis-
tic which is a function of the data for which larger (or smaller) values correspond to stronger evidence
against the null hypothesis. In our simple Poisson example, the source count, n, is an obvious choice.
Having identified a test statistic, we define the detection threshold, n?, as the smallest value such that

Pr(n > n?|λS = 0, λB, τS , τB, r) ≤ α. (5)

By conditioning on λS = 0 we are assuming there is no source. Under the null hypothesis the probability
of a source count larger than n? is less than or equal to the significance level of the detection, α. If α is set
sufficiently small, and the source count is greater than n?, we conclude that there is sufficient evidence
to reject the null hypothesis in favor of the alternative hypothesis that a source is present.

We choose a small value of α to minimizing the probability of a false detection. Of course, we
can compute Pr(n > n?) for positive values of λS , in which case this becomes the probability of a true
detection, which we would like to be as large as possible. The probability of a true detection depends on
the the value of λS , is known as the power of the detection, and can be written

β(λS) = Pr(n > n?|λS , λB, τS , τB, r) . (6)

Note β(λS = 0) ≤ α and β(λS) is simply the probability of a detection, false or true depending on λS .
The dependencies of the power on the source intensity and the level of the test are illustrated in Fig. 1.
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(a) Sampling Distribution of a 95% Interval. The
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(b) Under Coverage. The plot shows the true cover-
age of 95% intervals that are only reported when a
source is detected with significance level α = 0.05
and with λB = 5. The true coverage is far below
the nominal coverage for weak sources.

Fig. 2: Distribution and Under Coverage of Selectively Reported Confidence Intervals of [4].

2.3 Confidence Intervals, Sensitivity, Upper Limits, and Upper Bounds
A formal hypothesis test is only the first step in source detection. Whether or not there is a detection,
we typically want to quantify the plausible values for the (possible) source intensity. This is certainly
of interest in the event of a detection, but even in the absence of detection there is typically a non-zero
probability of a false negative, that is, an undetected source. Formally, this probability that a source goes
undetected is 1− β(λS) and is generally expected to diminish as λS increases but to approach 1− α for
λS near zero. (In principle β(λS) may be discontinuous at zero or may not asymptotically approach one,
but these are unusual cases.) Thus, even in the absence of a detection, a quantification of the plausible
values of λS is of value. This quantification typically takes the form of an upper limit and/or an interval.

A frequentist confidence interval for λS aims to give the plausible values of λS . This is defined to
be any interval that includes the true value of λS a given proportion of the time over the long run upon
repetition of an experiment. Formally, we can derive an interval I(λS) for each value of λS , such that

Pr(n ∈ I(λS)|λS) ≥ 95%, (7)

where 95% is the confidence level and can be replaced by any desired level. Upon observing a particular
value of nobs of n, a frequency confidence interval can be constructed as

{λS : n ∈ I(λS)}. (8)

Here we avoid the issue of nuisance parameters, such as λB . The probability in Equation 7 clearly
depends on λB and thus so do the intervals I(λS) which complicates the construction of the confidence
interval in Equation 8. Although this is an important issue, it is not central to our discussion, and we
will simply fix λB at some known value when computing confidence intervals. Fig. 2(a), for example,
illustrates the frequency properties of a Garwood’s (1936) choice of interval for λS .

The upper end point of a one-sided confidence interval is called an upper limit by physicists (or an
upper bound by astronomers). This is the largest plausible value of the source intensity consistent with
the observation. Fig. 2(a) illustrates how one sided confidence intervals arise when n is relatively small.

In astronomy, an upper limit is used to quantify the source intensity of a possible, but undetected
source. In particular, to an astronomer an upper limit is the maximum intensity that a source can have
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Fig. 3: Effect of α and βmin on the Upper Limit. The five curves in each panel give the probability of detection,
β(λS) for each of five values of the significance level, α, from left to right: 0.143, 0.053, 0.017, 0.005, and 0.001.
When computing sensitivities we derive the minimum value of λS that has at least a probability of βmin of being
detected. This is done for βmin = 0.50 in the first panel and 0.95 in the second. The sensitivity of the detection
increase as βmin increases and as α decreases.

without having at least a probability of βmin of being detected under an α-level detection threshold,
or conversely, the smallest intensity that a source can have with at least a probability of βmin of being
detected under an α-level detection threshold, see [5]. Physicists generally refer to this as the sensitivity
of the detection. We will use the term “sensativity” from now on. Computing the sensitivity requires
two probability calculations. The detection threshold is computed with the probability calculation in
Inequality 5 and the probability of detection is computed using Equation 6. This is illustrated in Fig. 3.

The sensitivity of the detection is analogous to a sample size in that they both quantify the strength
of an experiment. Larger sample sizes correspond to more powerful experiments that can detect weaker
signals. Likewise smaller (i.e., better) sensitivities indicate a more powerful observation: any source
with intensity greater than the sensitivity is expected to be detected (as calibrated by α and βmin). The
sensitivity directly quantifies the power in terms of the quantity of primary interest: the source intensity.

In a typical statistical power calculation, we find the minimum exposer time, τS , by solving Equa-
tion 6 so that the probability of detection achieves a minimum value for a given λS . For example, we
might want to find the minimum exposure time so that β(λS = 2) ≥ 0.90 if we want to be sure there is at
least a 90% chance of detecting a source with intensity equal to two counts per unit time. The sensitivity
of the detection is found by solving the same equation, but for λS with τS fixed. It is important to notice
that all of these calculations can be done before the observation is made. Like power, the sensitivity does
not depend on the data and can be computed in advance.
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3 Addressing Concerns (Please Forgive my Soap Box!)
3.1 What Should be Reported?
A typical procedure for source detection in astronomy involves reporting different quantities depending
on whether the source is detected [5]. When there is a detection astronomers often (i) report a detection
and (ii) report a confidence interval for λS . When there is not a detection astronomers often (i) report no
detection and (ii) report a detection sensitivity for λS . Similarly, with power-constrained limits, the data-
dependent upper limit is only reported if it is greater than the sensitivity of the detection, otherwise the
data-independent sensitivity is reported, see, e.g., [6]. Deciding whether or not to report an interval (or
limit) based on the data alters its frequency properties [5,7]. This is illustrated in Fig. 2(b) which reports
the frequency coverage of intervals that are only reported in the case of a detection. For small values
of λS , the coverage can be far below its nominal value. Unfortunately, frequency properties depend on
what you would have done, had you had a different data set.

To eliminate the coverage problems described in Fig. 2(b) and to provide a more complete sum-
mary of what was learned from the observation, [5] proposes that we always report

1. whether the source was detected,
2. a confidence interval for the source intensity (which may be a one-sided upper limit), and
3. the sensitivity of the detection, in order to quantify the strength of the experiment.

This is in contrast to both the power-constrained limit that report the larger of the sensitivity and the
upper limit and to CLS [8] that alters the upper limit in order to produce a smoothed version of the
power-constrained limit [9]. Both of these procedures sacrifice frequency properties and lack a clear
probabilistic interpretation. By reporting both the upper limit and the sensitivity, we provide both the
largest value of λS consistent with the data (the upper limit) and the smallest value that we have sen-
sitivity to detect. Reporting both the upper limit and the sensitivity is certainly more informative than
reporting either max(upper limit, sensitivity) or a smoothed version of this maximum.

3.2 Short or Empty Confidence Intervals
One particular concern regarding available methods is the possibility that frequency-based intervals may
be empty or very short. The former case is generally disconcerting and the later is interpreted by some
users as implying an exaggerated experimental sensitivity. In my view this stems for a simple misunder-
standing of the proper interpretation of the frequency-based intervals. Recall that a (say) 95% frequency-
based interval is simply an interval constructed so that there is a 95% probability that an experiment
conducted as formalized by the probabilistic model will result in an interval that contains the true value
of λS . Fig. 2(a) illustrates that the same experiment sometimes produces relatively short and sometimes
produces relatively long intervals. The sensitivity of an experiment, however, does not depend on the
observed count. In the example in Fig. 2(a), the sensitivity is the same regardless of whether we observe
n = 0 and obtain a short interval, or observe n = 8 and obtain a long interval.

Another difficulty is a tendency to interpret the pre-data probabilities associated with frequency
intervals as post-data probabilities. A 95% interval will produce intervals that contain the true value of
λS 95% of the time when observations are generated under the model, regardless of the true value of
λS . Such a procure can produce empty intervals, so long as they are produced less that 5% of the time
and overall at least 95% of the intervals contain the true value. (Of course the empty intervals may be
wasteful!) This is not to say that an empty—or any other particular—interval has a 95% chance of con-
taining the true value. An empty interval certainly does not contain the true value of λS , regardless of the
frequency probability of the interval. Although our intuition leads us to interpret these probabilities in a
post-data manner, frequency-based probabilities say nothing about the properties of a particular interval.
Bayesian methods are better suited to quantifing post-data probabilities. The precise nature of frequency
probabilities may be appealing, but precise probabilities are not necessary relevant probabilities.
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Under the construction described in Section 2.3, we can further interpret the intervals as reporting
values of λS that are consistent with the observation, where “consistent” is calibrated by the probability
level associated with the interval. Short or empty intervals simply mean that there are few or no values of
λS that are consistent with the observations. As illustrated in Fig. 2(a), very short intervals are possible,
but are expected to be rare. Depending on how the interval is constructed, the same can be said for empty
intervals. If empty or short intervals (relative to the sensitivity) are common, it is a clear indication
that the probabilistic model used to describe the observation is inadequate—regardless of the strength of
the subjective prior belief in the underlying model. Model checking, validation, and improvement are
standard components of any statistical analysis. I expect far more would be gained by focusing on model
improvement rather than on statistical properties of a particular statistical procedure.

3.3 5σ

It has become standard to require α = 1/1.7× 106 for a detection in high energy physics, corresponding
to the probability that a standard normal variable exceeds five standard deviations from its mean. This
corresponds to a false positive rate of one in 1.7million experiments. Of course, the motivation is not
to keep the false detection rate this low, but to attempt to account for other concerns such as the look
elsewhere effect [3, 10], calibration and/or systematic errors, and statistical error rates that are not well
calibrated due to general model misspecification [3, 11]. Unfortunately, reducing α does not really ad-
dress these concerns. We do not know the actual effects of systematics and the look elsewhere effect on
the final analysis. They likely induce both increased bias and variance. Reducing α does not address bias
at all and is a completely uncalibrated response to variance. Even in the absence of these problems, sta-
tistical procedures are not well calibrated at such extreme depths in the tails of the sampling distributions,
which are typically based on asymptotic approximations. Computing extreme tail probabilities poses its
own challenges in all but the simplest cases [12]. Taken together these concerns lead us to conclude that
we have no idea what the probability of a false detection is—the procedure itself is wholly uncalibrated.

The difficulty here is similar to what leads to over-abundant empty or narrow confidence intervals:
model misspecification. The solution is not to crank down the value of α, but rather to directly deal with
systematics, calibration, the look elsewhere effect, and general model misspecification. Model check-
ing and improvement are the key to better statistical properties of detection procedures, intervals, and
limits [2, 13]. Hiding unrealistic assumptions and using ad hoc fixes (such as using a 5σ detection crite-
rion) do not address the root problems, but do make evaluating their effects more difficult. Calibration,
systematics, and the look elsewhere effect must be modeled directly. Reasonable model specification
is far more important than the detailed properties of a statistical procedure or the choice of a Bayesian,
Frequentist, or other procedure. The ultimate goal is honest frequency error rates and/or a calibrated
Bayesian procedure, both of which depend absolutely on careful model specification.

4 A More Coherent Approach?
4.1 Hypothesis Testing in High Energy Physics
Source detection in high energy physics is often conducted using a more involved hypothesis-testing
procedure than is described in Sections 2–3. In addition to testing the hypotheses in Equations 3–4, a
second hypothesis test is often conducted in tandem that interchanges the roles of the null and alterna-
tive hypotheses, see [14]. Rather than under the default assumption of no source, a second “detection
threshold” is computed under the assumption that there is a source and the significance test is conducted
treating the original alternative hypothesis as the null hypothesis and treating the original null hypothesis
as the alternative hypothesis. (For clarity, we continue to use H0 for the hypothesis of no source and HA

for the hypothesis that there is a source. In the reversed formulation of the significance test, we assume
HA when computing the second detection threshold, n?

A, in analogy to Equation 5.)

This reversed formulation of the hypothesis test is motivated by a well-known challenge associated
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Fig. 4: Combining the Original and Reversed Significance Tests. The two curves in each panel depict the distri-
bution of the test statistic under H0 (left, red) and HA (right, blue). Although we use the notation of our running
example, here we assume that both distributions are fully specified, i.e., that they do not depend on any unknown
parameters. The “detection” thresholds are denoted by n?

0 and n?
A, where n?

0 is the 1-α percentile of the distribution
of the test statistic underH0 and n?

A is the α percentile underHA. The three panels give the decision regions under
three scenarios: (a) n?

0 > n?
A, (b) n?

0 < n?
A, and (c) n?

0 = n?
A. We accept H0, but reject HA if n < min(n?

0, n
?
A);

reject H0, but accept HA if n > max(n?
0, n

?
A); reject both H0 and HA if n?

0 < n < n?
A; and accept both H0 and

HA if n?
A < n < n?

0. Notice that in each of the scenarios, at most three of the four decisions is possible.

with model selection: a model being the better of two at explaining the data does not mean that it is an
adequate model. In the context of hypothesis testing, rejecting the null hypothesis indicates that the
hypothesis is inadequate for explaining the data, at least in the dimension quantified by the test statistic.
This alone, however, is not enough for us to conclude that the alternative hypothesis is adequate. There
are other possibilities besides the model given in Equations 1–2 with λS = 0 and with λS > 0. The
reversed hypothesis test aims to identify evidence that λS > 0 is inadequate as well. Of course, all
hypothesis tests look for evidence in the dimension specified by the test statistic, so the interplay of the
original and the reversed hypothesis tests depends intimately on the two choices of test statistics.

The decision in the original hypothesis testing framework involves either acceptingH0 or rejecting
H0. When we conduct both the original and the reversed hypothesis test, each test has these two possible
outcomes, leading to a total of four possibilities:
exclusion: accept H0 and reject H1,

discovery: reject H0 and accept H1,

no decision: accept both hypotheses (either is possible), or

excluding both: reject both hypotheses (neither is possible).

As illutrated in Figure 4, in any particular situation only one of “no decision” and “exclude both” is
possible, depending on the ordering of the detection thresholds for the two hypothesis tests.

While it is completely standard to use model diagnostics and checking to evaluate the adequacy
of any statistical model, formal symmetric testing of H0 and HA in this way is unusual, if not unique
to high energy physics. Inverting a significance test to form confidence intervals or upper limits is a
related and very common technique. This involves treating each possible value of the parameter as a
null hypothesis and compiling the interval as the set of parameter values that are not rejected at a given
α-level. An additional complication arrises in high energy physics in that different significance levels
are used for the original and the reversed significance tests, typically 5σ and 2σ, respectively. In the
following section we employ a decision theoretic approach to analyze the use of such symmetric testing.

154



Table 1: Loss Functions. Table (a) gives a detailed loss function for the six possible errors if we assume either H0

or HA is true. To simplify calculations, Table (b) gives a loss function where the cost of all errors except a false
detection are equal.

(a)

Decision
no exclude

Truth exclusion discovery decision both
H0 0 C01 C0e C0n

HA C10 0 C1e C1n

(b)

Decision
no exclude

Truth exclusion discovery decision both
H0 0 C c c
HA c 0 c c

4.2 A Decision Theoretic Approach: Loss, Risk, and Bayes Risk
Although concerns about detection procedures are often expressed in terms of detailed observations
about the character of procedures under certain circumstances (e.g., the upper limit may increase as n
decreases), a desire for strict adherence to frequency properties (e.g., the “Goldilocks effect”: coverage
should be above a minimum, but no more than the minimum); and apprehension about Bayesian methods
and their prior distributions, e.g., [1], ultimately we are primarialy concerned with rates of detection
errors and ensuring that intervals and limits do a good job of capturing the true source intensities. In this
section, we discuss a decision theoretic analysis that allows us to directly optimize a detection procedure
in terms of the quantities of ultimate interest.

We begin with a loss function that quantifies the cost of the possible errors in a significance test
with the four possible decision: “exclusion”, “discovery”, “no decision”, and “exclude both”. With four
possible decisions there are more possible errors than the “false detection” and “false negative” of a
standard significance test, see Table 1(a). While it can be argued that “no decision” is not an “error”
regardless of the truth, this decision is clearly less desirable than a true exclusion or a true discovery. In
this regard it is appropriate to assign a non-zero loss to this decision, even if it is not an “error”. A more
complete table would include a third row, “Truth = Neither” to capture the possibility that neither H0 nor
HA holds. We avoid this possibility because the necessary probability calculations are arbitrary when
no true model is specified. In Table 1(a), C01 is the cost of the most troubling error, a false positive.
The costs of the all other errors are likely significantly smaller than C01. The loss function in Table 1(b)
quantifies this by setting the cost of all other errors to c � C = C01. That is, for simplicity we assume
that all errors except a false detection have an equal cost that is dominated by the cost of a false detection.
Finally we assume that C + c = 1; this is simply a choice of scale for the loss function.

Given detection thresholds, n?
0 and n?

A, we compute the risk, which is the expected loss, underH0,

Risk(n∗0, n
∗
A|H0) = C Pr[n > max(n∗0, n

∗
A)|H0] + c

{
Pr[n∗0 < n < n∗A|H0] + Pr[n∗A < n < n∗0|H0]

}
and under HA,

Risk(n∗0, n
∗
A|H1) = cPr[n > min(n∗0, n

∗
A)|H1] + c

{
Pr[n∗0 < n < n∗A|H1] + Pr[n∗A < n < n∗0|H1]

}
.

Our goal is to find n?
0 and n?

A to minimize the risk. The Bayes risk averages Risk(n∗0, n
∗
A|H0) and

Risk(n∗0, n
∗
A|HA) using a probability of HA, denoted by π,

Bayes Risk(n∗0, n
∗
A|π) = (1− π) Risk(n∗0, n

∗
A|H0) + π Risk(n∗0, n

∗
A|HA).

To minimize the Bayes risk, we make a simplifying assumption that the test statistic has a continuous
distribution with probability density function f0 under H0 and fA under HA. This is not the case in the
Poisson model, where n is a count. Under this assumption the Bayes risk is minimized either when

C =
(1− π)f0(n∗0) + πfA(n∗0)
2(1− π)f0(n∗0) + πfA(n∗0)

=
(1− π)f0(n∗A) + πfA(n∗A)
2(1− π)f0(n∗A) + πfA(n∗A)
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or at a point where the Bayes risk is not differentiable, n∗0 = n∗A. Thus the optimal choice of n?
0 and

n?
A occurs when n?

0 = n?
A, with the particular optimal value of n?

0 = n?
A determined by C and c. This

corresponds to the standard detection setup in that there are only two possible decisions, see Fig. 4(c).
This result depends on the simple loss function given in Table 1(b) and would be different if different
costs were assigned to a false exclusion and the “no decision” and “exclude both” decisions under H0

and/or HA. Of course quantifying the relative costs of the various errors in Table 1 is not an easy task.

The result can be understood by referring to Fig. 4(a). Suppose we fix n?
0 and adjust n?

A with the
aim of decreasing the risk under H0. Increasing n?

A increases the probability of the correct (zero cost)
decision of “exclusion” and reduced the probability of the c-cost decision of “no decision” or “either”.
Thus, we should increase n?

A to be at least as large as n?
0. Likewise, if we again fix n?

0 and increase n?
A

under HA we increase the probability of “exclusion” at the expense of the probability of “either”, both
of which have cost c so the overall risk given HA is unaffected. Similar reasoning can be used in the
scenario illustrated in Fig. 4(b) to see that n?

0 must be at least as large as n?
A to minimize the risk. Thus,

under the loss function in Table 1(b) the Bayes risk is minimized for n?
0 = n?

A, for any value of π.

4.3 Decision Analysis for Intervals and Limits
In Section 4.2 we illustrated how decision theoretic analysis can be used to derive a detection criterion.
It is important to emphasize that this construction does not aim to control the probability of a false
detection, as in Equation 5. Instead the goal is to control the overall expected loss of the procedure. Of
course, if we specify C � c, false detections will be far less frequent than false negatives. Because
we can always construct a confidence interval by inverting a test (as the set of values of λ0 such that
we cannot reject H0 : λS = λ0), the decision theoretic framework for detection leads to a confidence
interval for the source intensity. The coverage of an interval derived from inverting a test is a function of
the test’s probability of a false positive: if the probability of a false positive is less than α the coverage
of the resulting interval will be greater than 1−α. Since the decision theoretic approach does not aim to
control the probability of a false positive, however, the coverage of the resulting interval will vary.

A better strategy is to specify a loss function to directly quantify the desired properties of the
interval or limit. For example, for a interval we might use

Loss = b× length(interval)− I{interval contains θ}

and for an upper limit we might use

Loss = b× limit− I{θ < limit},

where θ is a generic parameter of interest, I{condition} is one if the condition is true and is zero oth-
erwise, and b is a tuning parameter that specifies the relative importance of length and coverage. Let
[L(Y ), U(Y )] be a generic interval computed from data Y . The risk of the interval can be written

Risk(θ) = b×
{

E(U(Y )|θ)− E(L(Y )|θ)
}
− Pr

{
θ ∈ [L(Y ), U(Y )] | θ

}
,

where the second term on the right is the coverage. Notice that if we take b equal to zero the risk depends
only on the coverage and the optimal interval is the entire parameter space (e.g., (−∞,+∞)). If we
take b equal to∞, the risk only depends on expected length and the optimal interval has L(Y ) = U(Y ).
Both the expected length and the coverage may depend on the value of θ. The Bayes risk computes the
average of both quantities using a distribution on θ.2 The goal is then to find functions L and U that
minimize the Bayes risk. This is generally accomplished by parameterizing L and U . For example in a
symmetric problem, we might consider intervals of the form θ̂ ± eσ̂, where θ̂ and σ̂ are estimates of θ
and its error. This reduces minimization of the Bayes risk to a one dimensional minimization over e.

2Frequentist decision theoretic procedures are available that avoid the use of a distribution on θ by deriving the maximum
risk over all values of θ. The interval that minimizes this maximum risk is considered optimal in the minimax sense.
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5 Summary
The most important aspect of any statistical analysis is the specification of an adequate model. The
choice of the specific procedure and/or the choice of statistical paradigm (i.e., frequency-based, Bayesian,
or other) are typically far less critical to the properties of the procedure and the ultimate outcome of
the analysis. Thus, when a statistical analysis exhibits odd behavior, the first remedy must be model
diagnostics, validation, and improvement rather than questioning the choice of statistical procedure under
the apparently inadequate model. Decision theoretic analysis allows us to directly specify the statistical
properties that we hope for in a procedure and the relative importance that we place on these properties.
This strategy is ideally suited to deriving detection procedures, intervals, and limits that exhibit properties
that are viewed as best facilitating progress on the ultimate scientific goals.
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