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Comment on Article by Polson and Scott

Babak Shahbaba∗, Yaming Yu† and David A. van Dyk‡

1 Introduction

Polson and Scott’s paper presents the enlightening observation that the standard SVM
can be embedded into a statistical latent variable model. This is aligned with other
recent work, in which the penalty term in the convex optimization for several popular
non-Bayesian models has been replaced by a prior distribution in order to develop an
alternative Bayesian approach. See, for example, the Bayesian lasso model by Park
and Casella (2008) and Hans (2009), and the Bayesian bridge regression model by
Armagan (2009). Following the work of Andrews and Mallows (1974) and West (1987),
the prior distributions used in these methods are expressed as scale mixtures of normal
distributions. For example, in bridge regression (Frank and Friedman 1993), which
includes both ridge regression (Hoerl and Kennard 1970) and lasso (Tibshirani 1996)
as special cases, the regression parameters are estimated by minimizing the penalized
residual sum of squares (using centered data),

β̂ = arg min
β


(y −Xβ)T (y −Xβ) + λ

p∑

j=1

|βj |γ



where β = (β1, . . . , βp). In the Bayesian framework, the penalty term can be replaced
by a prior distribution of the form P (β) ∝ exp(−λ|βj |γ). When 0 < γ ≤ 2, the penalty
can be represented as a scale mixture of normal distributions (West 1987).

The current paper follows a similar approach in its replacement of the regularization
term in SVM with a prior distribution. The authors also followed similar steps to
specify the likelihood since unlike ridge regression, the likelihood is not readily available
for SVM. In particular, they insightfully replace the part of the objective function that
depends on the data with exp[−2

∑n
i=1 max(1−yiX

T
i β, 0)] and use results from Andrews

and Mallows (1974).

2 A Bayesian SVM model or a Bayesian model with SVM
properties

While the authors presented the critical first step of formulating a Bayesian model that
encompasses SVM, in general it is not necessary to limit our choice of prior distributions
in a Bayesian model by forcing mathematical compatibility with the penalty term in the
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corresponding non-Bayesian model. Such penalty terms usually serve a specific purpose
in the original form of these models, where the estimates are obtained using convex
optimization. In the process of transforming the penalty term to a prior distribution,
we may formulate a new procedure with different or even improved properties, or we
may arrive at properties similar to the original method, but by different means. For
example, the Bayesian lasso model proposed by Park and Casella (2008) replaces the L1

penalty term with a prior distribution that is a scale mixture of normal distributions,
but the resulting model lacks what has made lasso popular: its sparsity. We can of
course achieve sparsity using a spike and slab prior (as the authors did in Section 4.2)
if that is what we desire, but this strategy completely circumvents lasso’s standard L1

regularization term. Thus we can mimic the desired properties (e.g., sparsity) of popular
non-Bayesian models without striving for mathematical equivalence.

The authors use the term
∑n

i=1 max(1 − yiX
T β, 0) in the objective function to

specify their (pseudo) likelihood function. This term, which the authors refer to as “the
awkward SVM optimality criterion”, is in fact the constraint function in the original
form of SVM, and it is quite reasonable in that context. Assuming that the two classes
are perfectly separable, and we scale β such that |XT

i β| (i.e., the distance from the
hyperplane) is equal to 1 for all points on the boundary of the slab, the above constraint
is imposed so the two classes fall on the correct sides of the separating hyperplane; that
is, yiX

T
i β ≥ 1 for i = 1, . . . , n. In this case, the objective function is in fact ||β||2, whose

minimization is equivalent to the maximization of the margin (width) of the slab. Now
the question is: should we start from a constraint function, that makes perfect sense in
an optimization problem, and attempt to find a mathematically equivalent model, or
would it be more appropriate to focus on what is desirable (e.g., using the kernel trick
to create a rich class of nonlinear models) in SVM, in order to define an alternative
Bayesian model?

While presenting the standard SVM in a Bayesian form has many advantages, as
described by the authors, it is not yet clear how some of the major issues plaguing the
standard SVM can be resolved by this Bayesian formulation. For example, one of the
main disadvantages of the standard SVM is that its predictions are not probabilistic.
Another disadvantage is that the extension to classification problems with multiple
classes is not straightforward. Can these issues be addressed by the authors proposed
Bayesian formulation?

Indeed, there is an existing class of Bayesian models that is closely related to SVM
that answers all the above concerns: Gaussian process (GP) models (Neal 1998). The
kernel function of SVM corresponds to the covariance function of a GP (Neal 2004).
For nonlinear classification (and regression) models using GP, the prior distributions
are quite flexible, the predictions are probabilistic, and the extension to multinomial
classification is straightforward.

The main disadvantage of the GP model compared to SVM is its computational
cost. In recent years, many researchers have focused on improving the computational
time of GP models (e.g., Seeger et al. 2003). By formulating the SVM in terms of latent
variables in a model that can be fit with EM or data augmentation, the authors have set
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the stage for the use of a large and flexible class of sometimes very efficient algorithms.
This is the topic of our next section.

3 Computation

With their introduction of latent variables, Polson and Scott illustrate yet another rich
class of problems where despite the lack of apparent missing data, the EM and data
augmentation (DA) algorithms can be used to derive simple and stable computational
schemes. While a similar approach has been proposed for lasso and bridge regression,
the idea goes back much further, even before the general formulation of EM in the
landmark paper by Dempster et al. (1977). In the context of least absolute deviations
(LAD) regression, Schlossmacher (1973) proposed a method which was later identified
as an EM algorithm using precisely this idea. In the usual regression context, the LAD
problem is to minimize the function

D(θ) =
n∑

i=1

|yi −Xiθ|

where (y1, . . . , yn) are the responses and (X>
1 , . . . , X>

n ) is a matrix of covariates. Schloss-
macher’s approach is an iteratively reweighted least squares algorithm; at each iteration,
the weights are inversely proportional to the absolute residuals. There seems to be a
common thread that connects LAD, lasso, and now SVM, offering opportunities to
borrow ideas between these methods.

Schlossmacher’s algorithm brings about another potential point of interest. It is
nontrivial to find the latent variable formulation that renders Schlossmacher’s algorithm
an EM algorithm. However, it is easy to derive Schlossmacher’s algorithm using the
majorization-minimization (MM) principle (Lange et al. 2000). MM can be regarded
as a generalization of EM without missing data. Given a function l(θ) that is to be
maximized, one finds a function Q(θ|θ̃) such that l(θ) ≥ Q(θ|θ̃) for all θ and θ̃ and
l(θ) = Q(θ|θ). At each iteration, the MM algorithm maximizes the surrogate Q with
respect to its first argument. The sequence of θ(t) monotonically increases l(θ) because
l(θ(t+1)) ≥ Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) = l(θ(t)). Would there be an advantage of using
MM in deriving optimization algorithms in the SVM context?

The latent variable formulation has an obvious advantage in that once it is obtained,
we have the large arsenal of missing data and imputation methods at our disposal. The
authors make use of efficient variants of EM such as the ECME algorithm. There
are other algorithms in the EM family that could potentially help. Examples include
the AECM algorithm of Meng and van Dyk (1997) and the PXEM algorithm of Liu
et al. (1998). Like EM, these algorithms maintain the stable monotonic convergence
properties of EM. They cannot always be used of course because they rely on special
model structures. If applicable, however, they can result in dramatic improvement
in speed while maintaining stability and without sacrificing much of the simplicity, a
feature shared by the ECME algorithm. It seems worthwhile to explore the possibility
of AECM and PXEM in the SVM context. There are MCMC-counterparts to most EM-
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type algorithms (van Dyk and Meng 2011) that could be equally attractive for fitting the
SVM. Reparameterization (Roberts and Sahu 1997) and parameter expansion (Liu and
Wu 1999) are powerful methods that apply to a variety of problems and the partially
collapsed Gibbs sampler (van Dyk and Park 2008) offers a stochastic counterpart to
ECME. We wonder if such methods or their extensions (Yu and Meng, to appear) could
be relevant in the SVM context.
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