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Abstract: Marginal Data Augmentation and Parameter-Expanded Data Augmen-

tation are related methods for improving the convergence properties of the two-step

Gibbs sampler known as the Data Augmentation sampler. These methods expand

the parameter space with a so-called working parameter that is unidentifiable given

the observed data but is identifiable given the so-called augmented data. Although

these methods can result in enormous computational gains, their use has been

somewhat limited due to the constrained framework they are constructed under

and the necessary identification of a working parameter. This article proposes a

new prescriptive framework that greatly expands the class of problems that can

benefit from the key idea underlying these methods. In particular, we show how

working parameters can automatically be introduced into any Gibbs sampler, and

explore how they should be updated vis-à-vis the updating of the model parameters

in order to either fully or partially marginalize them from the target distribution.

A prior distribution is specified on the working parameters and the convergence

properties of the Markov chain depend on this choice. Under certain conditions

the optimal choice is improper and results in a non-positive recurrent joint Markov

chain on the expanded parameter space. This leads to unexplored technical dif-

ficulties when one attempts to exploit the computational advantage in multi-step

mcmc samplers, the very chains that might benefit most from this technology. In

this article we develop strategies and theory that allow optimal marginal methods

to be used in multi-step samplers. We illustrate the potential to dramatically im-

prove the convergence properties of mcmc samplers by applying the marginal Gibbs

sampler to a logistic mixed model.
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1. Expanding State Spaces in MCMC

Constructing a Markov chain on an expanded state space in the context
of Monte Carlo sampling can greatly simplify the required component draws or
lead to chains with better mixing properties. In a Bayesian context, we aim to
construct a Markov chain with stationary distribution

p(ψ | Y ) =
∫

p(ψ, α | Y )dα ∝
∫

p(Y | ψ, α)p(ψ, α)dα, (1.1)
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where ψ is a vector of unobserved quantities of interest, perhaps including model
parameters, latent variables, or missing data; Y represents observed or fixed
quantities including the observed data; and α represents unobserved quantities
introduced into the model for computational reasons.

In the statistical literature, the oldest and best known example of an ex-
panded state space Markov chain Monte Carlo (mcmc) sampler is the data aug-
mentation (DA) sampler (Tanner and Wong (1987)). The DA sampler introduces
latent variables or missing data into the model, which are expressed as α in
(1.1). In its simplest form, DA oscillates between sampling ψ ∼ p(ψ | Y, α) and
α ∼ p(α | Y, ψ). This is advantageous when the conditional draws are simple
but sampling p(ψ | Y ) directly is complex or impossible under practical con-
straints. Da samplers can exhibit poor mixing and their traditional motivation
is computational simplicity rather than speed.

Although equivalent to the DA sampler in its mathematical form, the use of
auxiliary variables, is generally motivated by computational speed rather than
simplicity (Edwards and Sokal (1988); Besag and Green (1993); Higdon (1998)).
In particular, consider a situation where again p(ψ | Y, α) and p(α | Y, ψ) are
easy to sample, but p(ψ | Y ) is not. In some cases, a Gibbs sampler can be
used to sample p(ψ | Y ) by splitting ψ into a number of subcomponents. Like
the DA sampler, the Gibbs sampler can exhibit poor mixing if the components
of ψ are highly correlated. If the computational cost of conditioning on α is
offset by the gain that stems from blocking ψ into one conditional step, the DA

sampler is attractive for its speed. This is the situation that motivated auxiliary-
variable methods such as the slice sampler (Neal (1997)). The slice sampler can
be formulated as a special case of the DA sampler in which the target distribution
can be written as

p(ψ | Y ) = π(ψ | Y )
n∏

i=1

li(ψ | Y ), (1.2)

where any of the factors on the right-hand side might not depend on Y . The
model is expanded via p(α | Y, ψ), a uniform distribution on the rectangle
[{0, l1(ψ | Y )}, · · · , {0, ln(ψ | Y )}], in which case p(α | Y, ψ) is easy to sample and
p(ψ | Y, α) may be easy to sample directly or via some Markov chain technique.
Although this method is formally a special case of DA, it is more prescriptive
than DA and has led to many useful samplers. In fact, Damien, Wakefield, and
Walker (1999) used its easy implementation in a large class of application as the
primary motivation for the method.

In this paper we focus on another strategy based on a special case of (1.1),
namely, the method of working parameters. After being introduced by Meng
and van Dyk (1997) and Liu, Rubin, and Wu (1998) in the context of the EM

algorithm, working parameters have were used to improve the convergence of DA
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samplers by Liu and Wu (1999) and Meng and van Dyk (1999). In a given model,
a working parameter is not part of the standard model formulation and is not
sampled in a typical DA sampler. Thus, if we let α represent the working param-
eter, the target posterior distribution is p(ψ | Y, α). Conditional augmentation
methods aim to find the optimal value of α in terms of the rate of convergence
of the resulting sampler. Marginal data augmentation (MDA), on the other hand,
constructs Markov chains on the expanded parameter space of (ψ, α) and effec-
tively marginalize out α by updating it in both steps. This results in draws
from the marginal distribution p(ψ | Y ) =

∫
p(ψ, α | Y )dα. To be sure that

the likelihood is unaffected, it is required that α be unidentifiable in (1.1), i.e.,
p(Y | ψ, α) = p(Y | ψ). Thus, the first step in implementing these methods is
the sometimes subtle task of finding a suitable working parameter—a task that
we aim to simpify. Once we have the expanded model, however, two-step sam-
plers based on a transformation of (ψ, α) can exhibit significant computational
advantage, see Section 2.1. For example, new samplers for probit regression,
multinomial probit models, t-models, random-effects models, and factor analysis
illustrate the potential for marginal methods to dramatically improve the con-
vergence of DA samplers. (Meng and van Dyk (1999); Liu and Wu (1999); van
Dyk and Meng (2001); Imai and van Dyk (2005a,b); Gelman et al. (2008); Ghosh
and Dunson (2009)).

Marginal mcmc methods construct a Markov chain with stationary distri-
bution p(ψ, α | Y ) ∝ p(Y | ψ, α)p(ψ)p(α) = p(Y | ψ)p(ψ)p(α) ∝ p(ψ|Y )p(α),
where α is a working parameter. (More generally, we discuss replacing p(α) with
p(α | ψ).) Because there is much more flexibility in the construction of mcmc

samplers than in DA samplers, there is much more flexibility in how α is updated.
One of the goals of this paper is to describe the possibilities and give general
advice on efficient updating schemes. Because it is unidentified and introduced
purely for computational reasons, we can choose the prior distribution on α to
improve computation. Sometimes the optimal sampler in terms of the conver-
gence of ψ occurs when p(α) is improper. Because α is unidentifiable, p(ψ, α | Y )
is improper if p(α) is. Thus, although certain subchains may have the desired
stationary distribution in this case, the resulting joint chain may not be posi-
tive recurrent since it has no (proper) stationary distribution. In particular, the
subchain for ψ may not have the correct stationary distribution (Meng and van
Dyk (1999)). Although these difficulties have been discussed for two-step sam-
plers (Meng and van Dyk (1999); Liu and Wu (1999)), they have not yet been
explored in multi-step samplers, where their potential for improving mixing is
most needed. The primary aim of this article is to develop and illustrate theory
and methods that allow these powerful techniques to be easily applied in complex
mcmc samplers.
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The article is organized into five sections. Section 2 gives background mate-
rial on MDA and on a logistic mixed model used as a running example to illustrate
marginal methods and their significant computational advantage. Sections 3
introduces partially marginalized Gibbs samplers and more general marginal
MCMC methods. Theoretical results appear in Section 4. We conclude with
a brief discussion in Section 5. An appendix gives technical details and supple-
mental illustrations.

2. Background

2.1. A simplified formulation of marginal data augmentation

Meng and van Dyk (1999) introduced MDA to improve performance of the
two-step DA sampler; see Liu and Wu (1999) for a similar formulation of many of
the same ideas. Here we introduce a simpler but more prescriptive formulation
that can easily be generalized to multi-step Gibbs samplers and more general
MCMC samplers. Starting with a target posterior distribution, p(ψ | Y ), with
ψ = (ψ1, ψ2), we introduce a working parameter α and define the joint posterior
distribution

p(ψ, α | Y ) = p(ψ | Y )p(α). (2.1)

This joint model is always easy to specify and ensures that the working pa-
rameter is unidentifiable given the observed data. Because ψ and α are a posterori
independent, we must introduce a joint transformation of ψ and α to construct a
DA sampler that is substantively affected by the working parameter. To do this,
we define a transformation of ψ1 that is indexed by the working parameter α,
ψ̃1 = Dα(ψ1), where Dα is an invertible and differentiable mapping and there
exists a0 such that Da0 is an identity mapping. We consider constructing sam-
plers of either the joint posterior distribution p(ψ̃1, ψ2, α | Y ) or the marginal
posterior distribution p(ψ̃1, ψ2 | Y ) =

∫
p(ψ̃1, ψ2, α | Y )dα. These two strategies

are called joint augmentation and marginal augmentation (van Dyk and Meng
(2000, 2010)). Because we introduce a more general strategy that encompasses
both, however, we blur the distinction and refer to these techniques generally as
MDA. In particular, consider

SCHEME 0: Sample ψ̃1 ∼ p(ψ̃1 | Y, ψ2, α = a0) and ψ2 ∼ p(ψ2 | Y, ψ̃1, α = a0).

MDA SCHEME 1: Sample (ψ̃1, α) ∼ p(ψ̃1, α | Y, ψ2) and (ψ2, α) ∼ p(ψ2, α | Y, ψ̃1).

MDA SCHEME 2: Sample ψ̃1 ∼ p(ψ̃1 | Y, ψ2, α) and (ψ2, α) ∼ p(ψ2, α | Y, ψ̃1).

MDA SCHEME 3: Sample ψ̃1 ∼ p(ψ̃1 | Y, ψ2, α), ψ2 ∼ p(ψ2 | Y, ψ̃1, α), and α ∼
p(α | Y, ψ̃1, ψ2).
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When α = a0, ψ̃ = ψ so that SCHEME 0 is simply the standard DA sampler. By
sampling α rather than conditioning on it in each step, SCHEME 1 constructs a
marginal Markov chain on (ψ̃1, ψ2) with stationary distribution p(ψ̃1, ψ2 | Y ) =∫

p(ψ̃1, ψ2, α | Y )dα. When this is done in some but not all steps (e.g., SCHEME 2),
we use the term partial marginalization. Because it fully marginalizes out α,
SCHEME 1 can be written: sample ψ̃1 ∼ p(ψ̃1, | Y, ψ2) and ψ2 ∼ p(ψ2, | Y, ψ̃1).
Although this bares a striking resemblance to SCHEME 0, we illustrate how the
introduction of α, transformation, and marginalization can dramatically improve
convergence. An advantage of sampling α along with (ψ̃1, ψ2) is the ability to
transform to obtain a sample of (ψ1, ψ2).

Gaussian Example. We begin with a simple illustrative example that we re-
turn to several times to clarify ideas. This is not meant to introduce useful new
samplers but rather to illustrate subtle features of the methods in a concrete
example. We suppose ψ follows a bivariate Gaussian distribution with mean
µ = (µ1, µ2) and variance Σ, and that we would like to sample p(ψ | µ,Σ).
We parameterize Σ in terms of the marginal variances and correlation, i.e., σ2

1,
σ2

2, and %, respectively, and we introduce a scalar working parameter, α, with
working prior distribution, α ∼ N(0, ω2σ2

1), independent of ψ. We could use
any working prior distribution; we use this distribution to facilitate simple sam-
pling. The working parameter enters the Gibbs sampler via the transformation
ψ̃ = (ψ̃1, ψ̃2) = (ψ1 + α,ψ2) = Dα(ψ); clearly a0 = 0. We can easily compute
the Gaussian joint distribution, p(ψ̃, α), and all of the relevant conditional and
marginal distributions. The lag-one autocorrelation for ψ2 is %2 for SCHEMES 0
and 3 and is %2/(1 + ω2) for SCHEMES 1 and 2. The first four rows of Figure 1
illustrate the convergence of the four sampling schemes, each run with % = 0.95
and ω2 = 25, and the advantage of SCHEMES 1 and 2. (Appendix A gives an
illustrative example of the advantage of SCHEME 1 in exploring multi-modal dis-
tributions.)

The example illustrates the advantage of the simplified formulation given
in (2.1). The working parameter, α, is not specified as an unidentifiable pa-
rameter that is identifiable given the augmented data. Indeed there is no data
augmentation in this simple example.

The marginal chain for ψ2 under both SCHEMES 0 and 1 is Markovian, and
Meng and van Dyk (1999) showed the geometric rate of convergence of this
marginal chain under SCHEME 1 dominates that of SCHEME 0. Moreover, while
SCHEMES 1 and 2 have the same lag-one autocorrelation for linear combinations
of ψ2, the geometric rate of convergence of SCHEME 1 can be no worse than
that of SCHEME 2 for the joint Markov chain; see Marchev and Hobert (2004)
for a detailed analysis of the geometric convergence of marginal augmentation
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Figure 1. Six Sampling Schemes for the Gaussian Example. The figure gives
time series plots and autocorrelation plots for ψ1 and ψ2 for each of six sampling
schemes. MDA SCHEMES 1 and 2 outperform MDA SCHEMES 0 and 3, which are
indistinguishable. (Although the slowly diminishing high-order autocorrelations
of Scheme 2 make comparisons difficult, these correlations are all reduced as ω2

increases.) Although MDA SCHEMES 1 and 2 have the same lag-one autocorrela-
tion for ψ2, MDA SCHEME 1 is clearly superior. By adding a second working pa-
rameter, PMG SCHEME 1 improves the convergence of MDA SCHEME 1; although
MDA SCHEME 1 performs very well, PMG SCHEME 1 produces essentially inde-
pendent draws of ψ2. Finally, in contrast to MDA SCHEME 3, PMG SCHEME 3
offers marked improvement over SCHEME 0, illustrating the potential benefit of
the optional steps.
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in a two-step example. Because SCHEME 2 can be viewed as a blocked version
of SCHEME 3, we expect it to preform better. The key to these results is the
basic observation that less conditioning in any step of a Gibbs sampler tends to
improve the overall convergence of the sampler; see van Dyk and Park (2008) for
discussion of this principle in problems that do not involve working parameters.
SCHEME 2 eliminates the conditioning on α in the second step of SCHEME 0 and thus
improves convergence. SCHEME 1 further improves convergence by eliminating the
conditioning on α in the first step. We aim to exploit this basic observation in
multi-step samplers involving working parameters.

The computational advantage of all MDA methods relies on the ability to
jointly sample components of the working parameter and of the transformed
model parameters. If this were not possible, the advantage of MDA would van-
ish in the Gaussian example, see SCHEME 3. This key observation is of central
importance when selecting the transformation Dα. While any transformation
can in principle improve convergence, the improvement may not be realized if
the working parameters cannot be at least partially marginalized through joint
draws with components of the transformed model parameter; see, however, the
discussion and Gaussian example in Section 4.1. In this regard selecting the
transformations and working parameters is akin to selecting the partition of the
model parameter used to construct a Gibbs sampler. The goal in both cases is a
set of complete conditional distributions that can be easily sampled.

For SCHEMES 1 and 2 in the Gaussian example, the lag-one autocorrelation
goes to zero as ω2 goes to infinity. We generally expect more diffuse working prior
distributions to result in samplers that mix better. In this, as in many examples,
the optimal choice of prior distribution on α is improper. This complicates the
situation because the joint target distribution, p(ψ, α | Y ) = p(ψ | Y )p(α), is also
improper. Indeed, the first draw of SCHEME 1 is improper and under SCHEME 2, the
joint Markov chain, M(ψ, α) = {(ψ(t), α(t)), t = 1, 2, . . .} is not positive recurrent;
we use the notation M(x) for the chain {x(t), t = 1, 2, . . .}. Meng and van Dyk
(1999) showed, however, that in some cases the marginal chain for a component
of ψ may still be positive recurrent with the corresponding marginal distribution
as its stationary distribution. We generalize these results to multi-step chains in
Section 4.2.

2.2. Motivating example: logistic mixed model

The MDA methods described in Section 2.1 are designed for two-step DA sam-
plers. In this section, we introduce a multi-step slice sampler to motivate the
extension of marginal methods to more complex and realistic situations. Con-
sider the logistic mixed model,

yij ∼ Bernoulli(pij) with logit(pij) = x′
ij(β + bi), (2.2)
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where yij is the binary response of unit j within group i, pij is the probability
that yij equals one rather than zero, xij is a q × 1 vector of observed covariates,
β is a q× 1 vector of fixed effects, and bi is a q× 1 vector of random effects, with
i = 1, . . . ,m and j = 1, . . . , ni, i.e., there are m groups with sizes n1, . . . , nm.
We assume the random effects are independently distributed, bi ∼ N(0, T ), with
T a diagonal matrix with diagonal elements (τ2

1 , . . . , τ2
q ) and independent prior

distributions τ2
k ∼ ν0τ

2
k,0/χ2

ν0
; we use a flat prior distribution on the fixed effects.

We focus on the posterior distribution of the unknown parameters (b, β, T )
with b = (b1, . . . , bm),

p(b, β, T | Y ) ∝
m∏

i=1

ni∏
j=1

[
exp{x′

ij(bi + β)}
exp{x′

ij(bi + β)}+1

]yij
[
1−

exp{x′
ij(bi + β)}

exp{x′
ij(bi + β)}+1

]1−yij

×
m∏

i=1

|T |−1/2 exp
(
−1

2
b′iT

−1bi

)
× |T |−(ν0/2+1) exp

{
−1

2
tr(ν0T0T

−1)
}

,

where Y = (yij , i = 1, . . . ,m, j = 1, . . . , ni). Since the posterior distribution is
not a standard density function, it is common practice to use mcmc methods.
We begin with an outline of a slice sampler based on the data augmentation
scheme of Damien, Wakefield, and Walker (1999).

Following Damien, Wakefield, and Walker (1999), we suppose

yij = I
[
vij ≤ g−1{x′

ij(β + bi)}
]
, (2.3)

where I is an indicator function, g−1 is the inverse logistic link function, and
vij ∼ Unif(0, 1). Model (2.3) reformulates (2.2) using the auxiliary variable V =
(vij , i = 1, . . . ,m, j = 1, . . . , ni); (2.2) represents p(Y | β, b) =

∫
p(Y, V | β, b)dV

and (2.3) represents p(Y | V, β, b). Using (2.3) we construct:

Slice Sampler for the Logistic Mixed Model

STEP 1: For each i and j, independently draw

vij | Y, b, β, T ∼

Unif
[
0, g−1{x′

ij(β + bi)}
]

if yij = 1

Unif
[
g−1{x′

ij(β + bi)}, 1
]

if yij = 0.
(2.4)

STEP 2: For k = 1, . . . , q, sample (b,k, βk, τ
2
k ) via two conditional draws, where

b,k = (b1k, . . . , bmk); here bik and βk represent component k of bi and β.
Although it is suppressed in the notation, we condition on Y , V , and all of
the components except the kth of β and each bi.

CYCLE k: For k = 1, . . . , q repeat the following two substeps.
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SUBSTEP 1: For each i, independently draw bik | βk, τ
2
k ∼ N(0, τ2

k ) subject
to the constraint{

vij ≤ g−1{x′
ij(β + bi)} if yij = 1

vij > g−1{x′
ij(β + bi)} if yij = 0,

for j = 1, . . . , ni. (2.5)

SUBSTEP 2: Draw (βk, τ
2
k ) | b,k by independently drawing βk given b,k uni-

formly subject to (2.5) and τ2
k | b,k ∼ (ν0τ

2
k,0 +

∑m
i=1 bik)/χ2

m+ν0
.

This sampler consists of 2q + 1 complete conditional draws; see Damien, Wake-
field, and Walker (1999). To improve its convergence using marginal methods we
must extend MDA. This is the topic of Section 3.

3. Marginal MCMC Methods

3.1. Model expansion

Suppose we wish to obtain a Monte Carlo sample from p(ψ | Y ), where
ψ = (ψ1, . . . , ψP ) and each ψp may be multivariate. To focus attention on the
working parameters, in the remainder of the paper we use ψ to represent all
unobserved quantities except for the vector working parameter α. Thus, missing
data and auxiliary variables are treated as components of ψ. We can construct
a ‘standard’ Gibbs sampler beginning with an initial ψ(0), by iterating
STEP 1: ψ1 ∼ p(ψ1 | Y, ψ−1),

...
STEP P : ψP ∼ p(ψP | Y, ψ−P ),
where ψ−p denotes (ψ1, . . . , ψp−1, ψp+1, . . . , ψP ). We assume the standard Gibbs-
sampler regularity conditions (Roberts (1996); Tierney (1994, 1996)) so the lim-
iting distribution of ψ(t) is p(ψ | Y ).

We introduce a working parameter by expanding the target posterior distri-
bution, p(ψ | Y ) to

p(ψ, α | Y ) = p(ψ | Y )p(α | ψ), (3.1)

where p(α | ψ) is a prior distribution on α. The conditional independence as-
sumed in (3.1) assures that α is a working parameter, i.e., p(Y | ψ, α) = p(Y | ψ).
To construct a sampler we introduce a transformation of ψp that depends on α

for each p: ψ̃p = Dα,p(ψp), where each Dα,p is again an invertible and differen-
tiable mapping and there exists a0 such that each Da0,p is an identity mapping.
Algorithms are constructed by sampling from a set of conditional distributions
of p(ψ̃, α | Y ), with p(ψ̃, α | Y ) obtained with a change of variable of (3.1). As
with MDA the primary goal when selecting the transformations, is to be sure that
components of α and ψ can be jointly updated.
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The fact that we do not require p(ψ, α) = p(ψ)p(α) as in (2.1) has implica-
tions for statistical inference. In particular, the marginal posterior distribution
of ψ,

p(ψ | Y ) ∝ p(Y | ψ)
∫

p(ψ, α)dα, (3.2)

and the conditional posterior distribution of ψ given α,

p(ψ | Y, α) ∝ p(Y | ψ)p(ψ | α), (3.3)

may differ because of their respective prior distributions on ψ. Thus, samplers
that explicitly or implicitly condition on α (or part of α) throughout the iteration
have a different stationary distribution than those that sample α along with ψ.
Although either of these distributions may be the target distribution, the goal
is to construct samplers of p(ψ | Y ) with much better convergence properties
than the corresponding samplers of p(ψ | Y, α). Of course if ψ and α are a priori
independent, p(ψ | Y ) = p(ψ | Y, α), and, thus we often assume such indepen-
dence. In some cases, however, we can formulate the desired prior distribution
on ψ as the corresponding marginal distribution of p(ψ, α); see McCulloch and
Rossi (1994); Nobile (1998); Imai and van Dyk (2005a).

3.2. Partially marginalized Gibbs samplers

Generalizing MDA, we can construct a marginal Gibbs (MG) sampler using
conditional distributions of the marginal distribution

p(ψ̃|Y ) =
∫

p(ψ̃, α | Y )dα. (3.4)

Because this marginal distribution is often difficult to work with, we may sample
p(ψ̃p | Y, ψ̃−p) indirectly by sampling p(ψ̃p, α | Y, ψ̃−p). This may involve first
sampling p(α | Y, ψ̃−p) and then sampling p(ψ̃p | Y, ψ̃−p, α). The second step is
computationally equivalent to sampling p(ψp | Y, ψ−p, α), which is the same as
STEP p of the standard Gibbs sampler when α and ψ are a priori independent,
and transforming ψp to get ψ̃p. This avoids the integration in (3.4).

Rather than marginalizing α out or sampling it in each step, an intermediate
strategy is to sample a part of α while conditioning on the rest of α in each step.
Because this strategy aims to partially accomplish the integration in (3.4), we
call the resulting samplers partially marginalizied Gibbs (PMG) samplers. We use
this term in the same way we did for MDA in Section 2.1. Full marginalization
would involve fully sampling α in each step of the sampler. Because we are only
partially accomplishing this, we use the term partial marginalization.

To describe the sampling scheme, we introduce partitions of α for each step
of the sampler. Setting α = (α1, . . . , αJ), let J = {J1, . . . ,JP } be a set of
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index sets, with Jp ⊂ {1, . . . , J} for p = 1, . . . , P . Let α(p) be the collection of
components of α corresponding to the index set Jp, i.e., α(p) = {αj : j ∈ Jp}.
Finally let, J c

p be the complement of Jp and αc
(p) be the collection of components

of α not in α(p), αc
(p) = {αj : j ∈ J c

p }. To construct a PMG sampler, we replace

STEP p of the standard Gibbs sampler with (ψ̃p, α(p)) ∼ p(ψ̃p, α(p) | Y, ψ̃−p, α
c
(p)),

where we condition on the most recently sampled value of each element of ψ̃−p

and αc
(p). At the end of each iteration we compose ψ̃(t+1) and α(t+1) of the most

recently sampled values of their components.
In this setup we do not put any restrictions on the partitions of α, some

components may be sampled in multiple steps or not at all. In any particular
step, we may sample all of or none of α, so αc

(p) or α(p) may be empty. We also
do not require that all of the components of α are sampled in at least one of
the P steps because it may be advantageous to sample some components of α in
separate steps, as in MDA SCHEME 3 in the example in Section 2.1. To accomplish
this, we may add a set of P ′ optional steps to each iteration to sample components
of α not sampled in other steps. Thus, we define another set of partitions of α,
{α(p), p = P + 1, . . . , P + P ′}, in the PMG sampler.

Partially Marginalizied Gibbs Sampler:

STEP 1: (ψ̃1, α(1)) ∼ p(ψ̃1, α(1) | Y, ψ̃−1, α
c
(1)),

...

STEP P : (ψ̃P , α(P )) ∼ p(ψ̃P , α(P ) | Y, ψ̃−P , αc
(P )),

STEP P + 1 (optional): α(P+1) ∼ p(α(P+1) | Y, ψ̃(t+1), αc
(P+1)),

...

STEP P + P ′ (optional): α(P+P ′) ∼ p(α(P+P ′) | Y, ψ̃(t+1), αc
(P+P ′)),

STEP P + P ′ + 1: Set ψ
(t+1)
p = D−1

α(t+1),p
(ψ̃(t+1)

p ) for each p.

If α(p) = ∅ at each step and the optional steps are omitted, the result is a Gibbs
sampler on the transformed parameter ψ̃, which implicitly conditions on α. In
particular, if we condition on α = a0, this PMG sampler becomes what we call
the corresponding standard Gibbs sampler. On the other hand, if α(p) = α for
each step, α is removed from the Markov chain and the sampler is a true MG

sampler that completely marginalizes out α in the sense that all draws are from
conditional distributions of (3.4). In this case, we may replace each STEP p with
ψ̃p ∼

∫
p(ψ̃p, α | Y, ψ̃−p)dα, since α is not used in subsequent steps. Also in this
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case the optional steps do not effect the transition kernel of, M(ψ̃), and are not
used. Generally, STEP P + P ′ + 1 is required to recover ψ, however, so we must
draw α at least once in the iteration.

As discussed in Section 2.1, we expect that sampling more components of α

in any step of a PMG sampler improves its convergence. Technical results to this
effect are elusive owing to the non-Markovian character of the marginal chains of
ψ and components of ψ in multi-step samplers. The theoretical development in
van Dyk and Park (2008) applies directly to the joint chain of (ψ, α) and indicates
that sampling more components of α in any step of a PMG sampler should improve
the convergence of this chain. Insofar as we are interested only in the marginal
chain of ψ, however, this may be of limited interest. Thus, we do not pursue a full
exploration of application of these theoretical results in this setting. Nonetheless,
this observation gives a hint of the theoretical advantage of marginalization in
multi-step chains involving working parameters. When combined with empirical
results, we believe that there is strong evidence of the advantage, see Section 4.3.

Gaussian Example: To illustrate the advantage of the PMG sampler over MDA

even in a two-step sampler, we introduce a second working parameter and a
second transformation in the Gaussian example. Suppose β is a second scalar
working parameter with prior distribution, β ∼ N(0, ωσ2

2), a priori independent
of ψ and α. Because ψ and (α, β) are a priori independent, the samplers all
have the same target distribution. We introduce β along with α into the model
via the transformation ψ̃ = ( ψ̃1, ψ̃2) = (ψ1 + α,ψ2 + β). The framework of
the PMG sampler allows numerous sampling schemes with each of α and β being
sampled or conditioned upon when sampling ψ1 and ψ2 and/or being sampled
in optional steps. We start with MDA SCHEME 1 because it is the fastest and
consider two possibilities for adding β to this sampler. The two samplers are
named analogously,

PMG SCHEME 1:
Sample ( ψ̃1, α, β) ∼ p( ψ̃1, α, β | ψ̃2) and ( ψ̃2, α, β) ∼ p( ψ̃2, α, β | ψ̃1),

PMG SCHEME 2:
Sample ( ψ̃1, α, β) ∼ p( ψ̃1, α, β | ψ̃2) and ( ψ̃2, α) ∼ p( ψ̃2, α | ψ̃1, β).

The basic instinct to sample as many components of the working parameter as
possible in each step suggests that PMG SCHEME 1 dominates both PMG SCHEME 2
and MDA SCHEME 1. The latter comparison stems from MDA SCHEME 1’s implicit
conditioning on β = 0 in both of its steps. Comparing MDA SCHEME 1 and
PMG SCHEME 1 in Figure 1 illustrates the advantage of the PMG sampler. The
autocorrelation of ψ2 is essentially eliminated by adding β to the sampler.



MARGINAL MARKOV CHAIN MONTE CARLO METHODS 1435

3.3. Marginal MCMC methods

Section 4 discusses the asymptotic calculations required to verify the sta-
tionary distribution of a PMG chain when p(α) is improper. Segregating the
computational complexity of the sampler into a number of simpler parts reduces
the complexity of these calculations. For example, consider

The Nested mcmc within Gibbs Sampler

STEP 1: ψ
(t+1)
1 ∼ K(ψ1 | ψ′

1; ψ−1),
...

STEP P: ψ
(t+1)
P ∼ K(ψP | ψ′

P ; ψ−P ),

where ψ′
p is generic notation for the previous draw of ψp, and K(ψp | ψ′

p; ψ−p)
is a transition kernel for an irreducible aperiodic Markov chain with unique sta-
tionary distribution p(ψp | Y, ψ−p). Clearly the resulting chain, M(ψ), is an
irreducible aperiodic Markov chain with unique stationary distribution p(ψ | Y ).
The kernels in the individual steps may be formulated as direct draws from the
conditional distribution, p(ψp|Y, ψ−1), or by using a PMG sampler with the correct
stationary distribution for M(ψp). If an improper working prior distribution is
used, the stationary distribution can be verified using the methods of Section 4.
Other mcmc methods such as Metropolis-Hastings may be used for some steps.
The advantage of this strategy is that we relegate the algorithmic complexity
introduced with working parameters to a small subset of the draws, and thus
simplify the asymptotic calculations required when using improper working prior
distributions. This strategy is illustrated using the logistic mixed model in Sec-
tions 3.4 and 4.3.

3.4. Marginal slice sampling in the logistic mixed model

In this section we nest several PMG samplers within the slice sampler pre-
sented in Section 2.2. The samplers illustrate both the use and computational
efficiency of marginal mcmc methods and how auxiliary and working parameters
can be combined to create simple fast algorithms.

The data augmentation scheme used in this slice sampler has great potential
primarily because it results in the only known general Gibbs sampler for the
generalized linear mixed model that involves only standard distributions. Unfor-
tunately, as illustrated in Section 4.3, the algorithm can be slow to converge. To
improve computational efficiency, we suggest recentering the random effect using
a working parameter, i.e., setting b̃i = α + bi, where α = (α1, . . . , αq)′ is a q × 1
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working parameter. This transformation is motivated by the goal to jointly sam-
ple components of α and components of (b, β, T ), and results in a reformulation
of model (2.3) as

yij = I
[
vij ≤ g−1{x′

ij(β̃ + b̃i)}
]
, with b̃i ∼ N(α, T ), (3.5)

where β̃ = β − α. Using the prior distribution, αk
i.i.d.∼ N(0, ω), we incorporate

αk into CYCLE k of STEP 2.

SUBSTEP 1: Draw α?
k ∼ N(0, ω) and, for each i, independently draw b?

ik | βk, τ
2
k ∼

N(0, τ2
k ) subject to (2.5) with bi replaced with b?

i . Set b̃,k = b?
,k+α?

k. (Starred
quantities are intermediate.)

SUBSTEP 2: Draw (βk, τ
2
k , αk) | b̃,k by sampling

τ2
k ∼

{∑m
i=1(b̃ik − b̃·k)2 + νkτ

2
k,0

}
χ2

m+ν0−1

,

αk | τ2
k ∼ N(b̃·k, τ2

k/m), and β̃k uniformly subject to (2.5) with bi replaced
with b̃i; here b̃·k =

∑m
i=1 b̃ik/m. Transform to the original scale by setting

βk = β̃k + αk and bi = b̃i − αk.

Because αk is updated in both substeps, it is completely marginalized out of the
transition kernel K{b,k, βk, τ

2
k | b′,k, β

′
k, (τ

2
k )′}. (Here other model parameters are

fixed.) Because each αk is updated along with the model parameters, no optional
steps are used. Before we investigate the performance of this sampler, we discuss
convergence results that allow p(α) to be improper.

4. Theoretical Results

4.1. The advantage of the optional steps

Theorem 1 shows that using the optional steps of a PMG sampler to update
components of α that are not updated along with ψ can sometimes be much less
efficient than updating α along with ψ.

Theorem 1. In a PMG sampler with (i) ψ and α a priori independent, (ii)
Dα,p(ψp) = ψp for p = 2, . . . , P , and (iii) α(p) = ∅ for p = 1, . . . , P , the Markov
transition kernel for ψ−1 is identical to that of the corresponding standard Gibbs
sampler regardless of α(p) for p = P + 1, . . . , P ′.

The proof of this and other results appear in Appendix C. If we define ψ
(t)
1 =

D−1
α(t−1),1

(ψ̃(t)
1 ), it can also be shown that M(ψ) is Markovian with transition
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kernel equal to that of the standard Gibbs sampler. Because suppositions 1 and
2 of Theorem 1 hold for MDA samplers, “SCHEME 3” of van Dyk and Meng (2001)
is obsolete, at least for M(ψ−1). This is why MDA SCHEME 3 offers no advantage
over SCHEME 0 in Figure 1. As we illustrate next, however, optional steps can be
useful for PMG samplers that, unlike MDA, do not adhere to the suppositions of
Theorem 1.

Gaussian Example: Consider a sampler that introduces both of the working
parameters α and β into the bivariate Gaussian sampler using a sampling scheme
that includes an optional step:

PMG SCHEME 3: Sample ψ̃1 ∼ p( ψ̃1 | ψ̃2, α, β), ψ̃2 ∼ p( ψ̃2 | ψ̃1, α, β), and
(α, β) ∼ p(α, β | ψ̃1, ψ̃2).

Figure 1 shows that PMG SCHEME 3 performs much better than MDA SCHEME 3. As
the proof of Theorem 1 illustrates, the basic problem with MDA SCHEME 3 is that
the transformation affects only ψ1 and, even when we compute ψ = D−1

α (ψ̃), has
no affect on ψ−1. With PMG SCHEME 3, on the other hand, the effects of the two
working parameters are convolved within the sampler. Thus, optional steps can
be useful in PMG samplers that are not MDA samplers.

4.2. Improving computational efficiency

As discussed in Section 2.1, when it is useful to marginalize out working pa-
rameters, more diffuse working prior distributions tend to result in better mixing
samplers. In the limit when the working prior distribution becomes improper,
however, technical difficulties may arise; the transition kernel may become im-
proper or the Markov chain may become non-positive recurrent. Both of these
difficulties may occur when the joint posterior distribution of (ψ, α) is improper.
For example, if ψ and α are a priori independent, the posterior distribution of
the working parameter is

p(α | Y ) =
∫

p(ψ, α | Y )dψ ∝ p(α)
∫

p(Y | ψ)p(ψ)dψ ∝ p(α), (4.1)

which is improper if p(α) is improper. Clearly, care must be taken when using
improper working prior distributions. The example in Appendix B illustrates how
a poor choice of an improper working prior distribution may upset the stationary
distribution of the chain.

To address the technical difficulties associated with improper working prior
distributions, we begin with a generalization of Lemma 1 of Liu and Wu (1999);
the generalization accounts for the possibility that the stationary distribution
depends on the choice of the working prior distribution. This is the case when ψ

and α are not a priori independent, see also Imai and van Dyk (2005a).
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Lemma 1. Suppose we have a sequence of proper Markovian transition kernels,
Km(ξ | ξ′), each with proper stationary distribution, πm(ξ). If (i) K∞(ξ | ξ′) =
limm→∞Km(ξ | ξ′) is a proper Markovian transition function, and (ii) π∞(ξ) =
limm→∞ πm(ξ) represents a proper distribution, then π∞(ξ) is the stationary dis-
tribution of K∞(ξ | ξ′).

The goal is to establish conditions for PMG samplers that guarantee that
their stationary distribution is the target distribution when improper working
prior distributions are used. We focus on verifying condition (i) of Lemma 1,
leaving the verification of (ii) as the standard exercise of establishing that the
posterior distribution is integrable under the (limiting) prior distribution p(ψ) =∫

p(ψ, α)dα. Although Lemma 1 cannot be applied directly to the Markov chain
M(ψ, α), because the limiting kernel is improper (at least when ψ and α are a
priori independent and p(α) is improper in the limit), it can be applied in some
cases to M(ψ) or subchains of M(ψ).

In this section, we assume a sequence of PMG samplers with each sampler
constructed with

1. ψ and α a priori independent,

2. Dα,p(ψp) = ψp for p = 2, . . . , P ,

3. α(1) = α,

and using a sequence of proper working prior distributions pm(α). Because α is
completely updated in STEP 1, the optional steps are unnecessary and we assume
P ′ = 0. We also assume that the resulting transition kernels Km(ψ̃, α | ψ̃′, α′)
have proper stationary distributions πm(ψ, α). Although these assumptions limit
the use of improper working prior distributions, more general updating schemes
can be used with proper working prior distributions. The next several results
use Lemma 1 to verify that the limiting Markovian marginal transition kernels of
M(ψ−1) and M(ψ) have the desired stationary distributions. We label these two
results, i.e., the limiting behavior or M(ψ−1) and M(ψ), as R1 and R2. Meng and
van Dyk (1999) and Liu and Wu (1999) only establish the stationary distribution
of the marginal chain of one of the draws (R1 in a two-step sampler). Thus, R2

is more general than their result even in a two-step sampler. Figure 2 outlines
the theoretical results. Corollary 1 establishes the sufficiency of conditions Ca

1

and Ca
2 for results R1 and R2, respectively; see below. Corollary 2 shows how

a minor modification of the samplers along with the weaker condition, Ca
1 , can

establish the stronger result, R2. Finally, Theorem 2 and Corollary 3 establish
conditions Cb

1 and Cb
2 that imply Ca

1 and Ca
2 , respectively but are easier to verify.

The final results also describe how to construct the optimal sampler. We begin
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Figure 2. The Theoretical Results of Section 4.2. The conditions of parts (i)
and (ii) of Corollary 1 are represented by Ca

1 and Ca
2 , respectively; the results

of Corollary 1 are represented by R1 and R2. Theorem 2 and Corollary 3
provide conditions that may be easier to verify in practice; these are labeled
Cb

1 and Cb
2, respectively. Corollary 2 shows that for a modified PMG sampler

R2 follows from Ca
1 . The vertical arrows indicate that the conditions and

results in the second row are all stronger than those in the first row.

with Corollary 1, which applies Lemma 1 directly to the Markov chains M(ψ−1)
and M(ψ).

Corollary 1. If Mm(ψ̃, α) is generated with a PMG sampler constructed with
ψ and α a priori independent, Dα,p(ψp) = ψp for p = 2, . . . , P , α(1) = α, and
proper working prior distribution, pm(α), and if p(ψ | Y ) is a proper distribution,
then the subchains, Mm(ψ−1) and Mm(ψ) are Markovian with transition kernels
Km{ψ−1 | ψ′

−1} and Km{ψ | ψ′
−1} ≡ Km(ψ | ψ′) and stationary distributions

p(ψ−1 | Y ) and p(ψ | Y ), respectively, for each m1 . Thus,

(i) if K∞{ψ−1 | ψ′
−1} = limm→∞Km{ψ−1 | ψ′

−1} is a proper Markovian transi-
tion kernel, then p(ψ−1 | Y ) is the stationary distribution of M∞(ψ−1), the
Markov chain sampled under K∞{ψ−1 | (ψ−1)′}, and,

(ii) if K∞{ψ | ψ′
−1} = limm→∞Km{ψ | ψ′

−1} is a proper Markovian transition
kernel, then p(ψ | Y ) is the stationary distribution of M∞(ψ), the Markov
chain sampled under K∞{ψ | ψ′

−1}.

The proof of all results in this section are in Appendix C. Part (i) of Corol-
lary 1 is useful when ψ−1 is of primary interest, e.g., when ψ1 is an auxiliary
variable. Integrating out ψ1 and using Fatou’s lemma, the supposition of (i)
follows from the supposition of (ii). If it is easier to verify the condition of (i)
but if p(ψ | Y ) is the target distribution, we can alter the sampler by replacing
the transformation in STEP P + P ′ + 1 with a direct draw of the conditional of
ψ1 given ψ−1.

Corollary 2. Consider a sequence of PMG samplers as described in Corollary 1,
but with the transformation STEP P + P ′ + 1 in each iteration of each sampler

1The notation Km{ψ | ψ′
−1} emphasizes that the kernel of M(ψ) does not depend on the previous

value of ψ1.
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replaced with: Draw ψ1 ∼ p(ψ1 | Y, ψ−1). Then Mm(ψ) is Markovian for each
m and, if K∞{ψ−1 | ψ′

−1} = limm→∞Km{ψ−1 | ψ′
−1} is a proper Markovian

kernel, then p(ψ | Y ) is the stationary distribution of M∞(ψ), the Markov chain
sampled under the limiting kernel.

If ψ and α are not a priori independent, the results of Corollaries 1 and 2 still
follow as long as condition (ii) of Lemma 1 holds. The following theorem, which
extends Lemma 1 of van Dyk and Meng (2001), develops equivalent conditions
that may be still easier to verify for part (i) of Corollary 1 and for Corollary 2.
The theorem also describes how to construct the optimal sampler.

Theorem 2. Consider the sequence of PMG samplers in Corollary 1, but with
α(2) = α. If

(i) there exists an improper working prior distribution p∞(α) such that pm(ψp,
α(p) | Y, ψ̃−p, α

c
(p)) → p∞(ψp, α(p) | Y, ψ̃−p, α

c
(p)) as m → ∞ for p = 2, . . . , P ,

with pm denoting the conditional distributions under the proper working prior
distribution, pm(α), and p∞ denoting the same proper distributions under
p∞(α); and

(ii)
∫
K∞{ψ−1, α | Dα?,1(ψ1), ψ′

−1}dα is invariant to α?, where K∞{ψ−1, α | ψ̃1,
ψ′
−1} is the kernel for STEPS 2-P of the PMG sampler run with the improper

working prior distribution, p∞(α),

then limm→∞Km{ψ−1 | ψ′
−1} is the proper transition kernel of the same PMG

sampler with working prior distribution p∞(α), except that STEP 1 is replaced
with STEP 1: Sample ψ̃1 ∼ p{ψ̃1 | Y, ψ′

−1, α = a0}.

We can derive similar equivalent conditions for part (ii) of Corollary 1. This
requires that the transition kernel K∞(ψ|ψ′, α?) be invariant to α?, the draw of α

in STEP 1. Taking account of the transformation in STEP P + P ′ + 1, supposition
(iii) of Corollary 3 assures this invariance.

Corollary 3. Consider a sequence of PMG samplers as in Corollary 1, but with
α(2) = α. If in addition to supposition (i) of Theorem 2,

(iii)
∫

pm

[
D−1

α?,1{Dα,1(ψ1)} | ψ′
−1

] ∣∣ J {Dα,1(ψ1)|α?} J−1{Dα,1(ψ1) | α}
∣∣

× K∞{ψ−1, α | Dα,1(ψ1), ψ′
−1}dα is invariant to α?,

then limm→∞Km(ψ | ψ′) is the proper transition kernel, that corresponds to
implementing the same PMG sampler with improper working prior distribution
p∞(α), except that STEP 1 is replaced with STEP 1: Sample ψ̃1 ∼ p{ψ̃1 | Y, ψ′

1, α =
a0}.

Applying the change of variable ψ?
1 = D−1

α?,1{Dα,1(ψ1)} to the density given
by the integrand of condition (iii) implies supposition (ii) of Theorem 2. Thus,
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the suppositions of the corollary are stronger than those of the theorem, and
we can ignore (ii) when applying the corollary. We generally verify (iii) by
verifying that K∞(ψ|ψ′, α?) does not depend on α?. This strategy is illustrated
in Appendix D where we verify the limiting kernel for the logistic mixed model.

Gaussian Example: In the Gaussian example with a single location working
parameter on ψ1, the transition kernel under MDA SCHEME 1 with proper working
prior distribution can be represented as follows; for simplicity we set µ1 = µ2 = 0
and σ1 = σ2 = 1. Given ψ′

2:

STEP 1: Sample ψ̃1 ∼ N(%ψ′
2, 1 − %2 + ω2).

STEP 2: Sample ψ2 | ψ̃1 ∼ N
(

%
1+ω2 ψ̃1,

1+ω2−%2

1+ω2

)
and

α | ψ̃1, ψ2 ∼ N
{

ω2

1+ω2 ψ̃1− %ω2

1+ω2−%2

(
ψ2− %

1+ω2 ψ̃1

)
,
(
1− %2ω4

ω2(1+ω2−%2)

)
ω2

1+ω2

}
.

STEP 3: Set ψ1 = ψ̃1 − α.

In the limit as ω2 → ∞, the draw in STEP 1 becomes improper, but (ψ1, ψ2) does
not depend on ψ̃1, and, thus the limiting transition kernel K(ψ | ψ′) is proper.
To see this we note that in the limit, STEP 2 becomes: Sample ψ2 ∼ N(0, 1) and
α | ψ̃1, ψ2 ∼ N(ψ̃1 − %ψ2, 1 − %2). The limiting kernel K∞(ψ2 | ψ′

2) is clearly
proper. Thus, if we replace STEP 3 with ψ1 ∼ p(ψ1|ψ2), Corollary 2 guarantees
the stationary distribution of M(ψ) under the limiting kernel to be the target,
which is evident. On the other hand, transforming the limiting p(α | ψ̃1, ψ2) via
the transformation in STEP 3, we find ψ1 | ψ̃1, ψ2 ∼ N(%ψ2, 1 − %2). Thus the
limiting kernel for M(ψ) is proper and by part (ii) of Corollary 1, has the desired
stationary distribution, as is again evident.

4.3. Improper working prior distribution in the logistic mixed model

We now illustrate the computational advantage of PMG sampling when p(α)
is improper. Starting with model (3.5), we use p(αk) ∝ 1 for each k and replace
CYCLE k of the slice sampler as follows.

SUBSTEP 1: For each i, draw b?
ik | βk, τ

2
k

indep.∼ N(0, τ2
k ) subject to (2.5) with bi

replaced with b?
i .

SUBSTEP 2: Draw (βk, τ
2
k , αk) | b?

,k by sampling

τ2
k ∼

{∑m
i=1(b

?
ik − b?

·k)
2 + νkτ

2
k,0

}
χ2

m+ν0−1

,



1442 DAVID A. VAN DYK

αk | τ2
k ∼ N(b?

·k, τ
2
k/m), and β̃k uniformly subject to (2.5) with bi replaced

with b?
i ; here b?

·k =
∑m

i=1 b?
ik/m. Transform to the original scale by setting

βk = β̃k + αk and bi = b?
i − αk.

This sampler’s stationary distribution is verified in Appendix D using the method
of Section 4.2.

We compare the convergence properties of the standard slice sampler and the
PMG sampler for a logistic mixed model using a simulation with one covariate. We
generated three data sets according to (2.2), each with m = 11,

∑
i ni = 54, and

ni varying between 4 and 5. The covariates, xij , were independently generated as
xij ∼ N(0, 1), and the variance of the random effect was set to τ2 = 0.5. The three
data sets differed in the magnitude of the fixed effect, which was set to β = 0, 1.5,

and 10. The magnitude of the effect of the covariate determines the ability of the
covariate to predict the outcome and can be an important factor in determining
the relative efficiency of the DA and MDA samplers for probit regression; see van
Dyk and Meng (2001). We generated Markov chains of length 10,000 using
both the standard slice sampler and the PMG sampler with an improper working
prior distribution. We fit model (2.2) to each of the three data sets using both
samplers; each initialized at β(0) = 0.5, (τ2)(0) = 1. The first 500 draws of each
chain is illustrated in Figure 3. The marginal algorithm significantly improves
the autocorrelation of the Markov chains. Quantile-quantile plots comparing the
samples generated by the two methods verify that they have the same stationary
distribution; these plots are omitted.

To illustrate the effect of multiple working parameters, we simulated a data
set using two random effects. The data was again generated according to (2.2)
with m = 11,

∑
i ni = 54, and ni varying between 4 and 5. The covariates, xij ,

were independently generated as xij ∼ N2(0, I) with I the identity matrix. The
variances of the random effect were set at τ2

1 = τ2
2 = 0.5 and the fixed effects were

set at β1 = β2 = 0. We again generated Markov chains of length 10,000 using
the standard slice sampler and three PMG samplers, the first PMG sampler with a
working parameter for the first covariate, the second with a working parameter for
the second covariate, and the third with both working parameters. Both working
parameters were location parameters with flat working prior distributions, as
described above. Each chain was initialized at β

(0)
1 = β

(0)
2 = 0.5 and (τ2

1 )(0) =
(τ2

2 )(0) = 1; the first 500 draws of β1 and β2 from each chain are illustrated in
Figure 4, which clearly illustrates the computational advantage of using both
working parameters.

5. Concluding Remarks

The transformation that we use to introduce the working parameter into
the model are componentwise transformations. That is, we insist on setting
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Figure 3. Convergence of Posterior Sampling Algorithms for Fitting a Logistic
Regression Model with One Covariate. The first two rows compare the standard
slice sampler with the PMG sampler for the data set generated with β = 0, the
second two rows compare the samplers for the data generated with β = 1.5, and
the final two rows compare the samplers for the data generated with β = 10. In
all cases the PMG sampler performs better than the standard slice sampler. The
improvement is especially strong for the fixed effect when the autocorrelation for
the standard sampler is at its worst.
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Figure 4. Convergence of Posterior Sampling Algorithms for Fitting a Lo-
gistic Regression Model with Two Covariates. The rows of the figure cor-
respond to the standard slice sampler, a PMG sampler implemented with a
location working parameter for the first random effect, a PMG sampler im-
plemented with a location working parameter for the second random effect,
and a PMG sampler implemented with both working parameters. Notice that
each working parameter improves convergence, and including both working
parameters produces the best sampler.

ψ̃p = Dα,p(ψp) for each p rather than considering the more general class of
transformations ψ̃ = Dα(ψ). The reason for this can be illustrated using the
simple bivariate Gaussian example once again. Consider transforming (ψ1, ψ2)
to {ψ1 − µ1 − α(ψ2 − µ2), ψ2}. If we take αopt = ρσ1/σ2, the two components
of the transformation are independent, resulting in independent draws from the
corresponding two-step Gibbs sampler. Relative to conditioning on α = αopt,
averaging over α slows the sampler down. In the general case, the transforma-
tion ψ̃ = Dα(ψ) can be viewed as a family of transformations of ψ indexed by
α. In principle, we can then pick the optimal value of α to decorrelate the com-
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ponents of ψ̃. Although this may be a useful strategy in practice, it involves a
different strategy and different computational methods. Thus, we have chosen
not to consider the general class of transformations here.

Generally speaking, one needs to find a good working prior distribution, both
in terms of computational ease and efficiency. van Dyk and Meng (2001) intro-
duce several criteria for choosing the working prior distribution in MDA samplers.
These criteria recommend the distribution that results in the fastest EM algorithm
using the same data augmentation scheme and conditional distributions. In prin-
ciple a similar strategy can be employed in the multi-step regime by comparing
the rates of convergence of the ECM or CM mode-finding algorithms (Meng and
Rubin (1993)) as a function of the working prior distribution. These rates of con-
vergence are mathematically more complex that that of EM, however, mitigating
the attractiveness of such criteria. In practice it is generally easy enough to try
a few different working prior distributions and observe the autocorrelation of a
few quantities of interest in order to determine a good choice of the distribution,
see for example Figure 6 in Appendix B.
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Appendix

A. Using Marginalization to Jump Between Modes

As suggested by a reviewer, here we describe a simple example that illustrates
how marginal methods can improve an MCMC sampler’s ability to jump between
modes of a distribution. Suppose the target distribution is the mixture of two
bivariate Gaussian distributions,

p(ψ1, ψ2) =
1
2

N2

[(
0
0

)
,

(
1 0
0 1

)]
+

1
2

N2

[(
µ1

µ2

)
,

(
1 0
0 1

)]
.

A two step Gibbs sampler can be constructed by noting that the conditional
distribution of ψ1 give ψ2 is univariate mixture of N(0, 1) and N(µ1, 1) with mix-
ing weights proportional to φ(ψ2) and φ(ψ2 − µ2), where φ(x) is the standard
normal density function. We can construct a MG sampler, by introducing the
transformation ψ̃1 = ψ1 +α, with working prior distribution α ∼ N(0, ω2). Using
SCHEME 1, we iterate between sampling (ψ̃1, α) ∼ p(ψ̃1, α | ψ2) and (ψ2, α) ∼
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p(ψ2, α | ψ̃1). The first step is accomplished by sampling α from its prior dis-
tribution, sampling ψ1 ∼ p(ψ1 | ψ2) as in the standard Gibbs sampler, and
computing ψ̃1 = ψ1 + α. Standard probability calculations show that the second
step requires sampling from a bivariate mixture of two Gaussian distributions,

p(ψ2, α | ψ̃1) ∝
1
σ

φ

(
ψ̃1

σ2

)
N2

[(
0

ξψ̃1

)
,

(
1 0
0 ξ

)]

+
1
σ

φ

(
ψ̃1 − µ1

σ2

)
N2

[(
µ2

ξ(ψ̃1 − µ1)

)
,

(
1 0
0 ξ

)]
,

where σ2 = 1+ω2 and ξ = ω2/(1+ω2). Since the ultimate goal is to sample from
a mixture of two bivariate Gaussian distributions and the MG sampler requires a
draw from this type of distribution, the example is only a toy example. Nonethe-
less, Figure 5 illustrates the ability of this MG sampler to jump between modes
much more efficiently than its parent standard Gibbs sampler. The two samplers
were applied to three mixture distributions with modes a varying distance apart.
The first two rows show the results with (µ1, µ2) = (3, 10). Although the two
modes are 10 standard deviations apart in the ψ2 direction they are much nearer
in the φ1 direction, enabling the standard Gibbs sampler to easily jump between
modes. The next pair of rows corresponds to (µ1, µ2) = (6, 10). Here the stan-
dard Gibbs sampler is only occasionally able to jump between the modes (19
times in 10,000 iterations); this results in high autocorrelations and a poor esti-
mate of the relative size of the modes. The last two rows show that the standard
sampler is completely unable to jump between modes when (µ1, µ2) = (10, 10).
Although the performance of the MG sampler also deteriorates as the modes
grow more distant, it remains a viable sampler in all three simulations.

B. Improper Working Prior Distributions

Here we use the Gaussian example to illustrate the computational risks and
benefits of using improper working prior distributions.

Gaussian Example. Returning to the simple Gaussian example, we introduce
a new working parameter, φ ∼ (Gamma(κ0))−1, independent of ψ and a trans-
formation, (ψ̂1, ψ̂2) = (

√
φψ1, ψ2), where κ0 is the shape parameter of the gamma

distribution. We consider two sampling schemes.

MDA SCHEME 1: Sample (ψ̂1, φ) ∼ p(ψ̂1, φ | ψ2) and (ψ2, φ) ∼ p(ψ2, φ | ψ̂1),

MDA SCHEME 2: Sample ψ̂1 ∼ p(ψ̂1 | ψ2, φ) and (ψ2, φ) ∼ p(ψ2, φ | ψ̂1).

Note that these are the same sampling schemes introduced in Section 2.1 but
applied using a different expanded model. All of the steps in both schemes are
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Figure 5. Sampling from a Mixture of Bivariate Gaussian Distributions. The
first two rows illustrate the relative efficiencies of a standard Gibbs sampler and
an MG sampler when the two Gaussian distributions are close in the ψ1 direction.
The columns correspond to a time series plot and an autocorrelation plot of the
draws of ψ2, and histograms of the draws of ψ1 and ψ2. The second pair of rows
makes the same comparison when the modes are father apart in the ψ2 direction,
and the final pair when the modes are distant in both directions. The standard
Gibbs sampler quickly becomes ineffective as the modes grow more distant. When
(µ1, µ2) = (6, 10) it badly misjudges the relative size of the modes, and when
(µ1, µ2) = (10, 10) it is unable to escape the mode where it begins. Although the
MG sampler also becomes less efficient as the modes grow more distant, it gives
acceptable results in all cases.

easy to accomplish. For example, because p(ψ̂1, φ | ψ2) = p(ψ̂1 | φ, ψ2)p(φ | ψ2) =
p(ψ̂1 | φ, ψ2)p(φ) with the second equality following because φ and ψ are inde-
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Figure 6. The Risks and Benefits of Using Improper Working Prior Distributions.
The figure compares four sampling schemes in the simple Gaussian example. The
four rows correspond to a standard sampler with no working parameters, an MDA

sampler implemented with a proper working prior distribution and two MDA sam-
plers implemented with improper working prior distributions. The values in curly
brackets give the shape parameter for the gamma working prior distribution. The
columns provide autocorrelation functions for both parameters and normal quan-
tile plots that compare the Monte Carlo samples with the target standard normal
distribution. The plots illustrate both the improvement in the autocorrelation
functions resulting from the introduction of working parameters and improper
working prior distributions, and the sensitivity of the stationary distribution of
the chain to the choice of improper working prior distribution. The sampler illus-
trated in the bottom row underestimates the variance of ψ1 by about 40%.

pendent, we can sample p(ψ̂1, φ | ψ2) by first sampling φ from its working prior
distribution and then sampling ψ1 from p(ψ1|ψ2) and computing ψ̂1 =

√
φψ1.

This factorization shows that the first step in MDA SCHEME 1 is improper if the
working prior distribution is improper. Thus, we may only implement this scheme
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with a proper working prior distribution. MDA SCHEME 2, on the other hand, can
be implemented so long as p(ψ2, φ | ψ̂1) is proper. Routine calculations indicate
that this holds so long as κ0 > −1/2.

To illustrate how these samplers work, we implement MDA SCHEME 1 with
κ0 = 5 and MDA SCHEME 2 with κ0 = 0 and κ0 = −0.2 and compare them with
SCHEME 0. Both implementations of MDA SCHEME 2 use improper working prior
distributions. (SCHEME 0 is unaffected by the working parameter model and is
the same as described in Section 2.1.) The results appear in Figure 6, where the
values in curly brackets indicate the value of κ0 that was used in each run. The
plots in the first and third columns show the autocorrelation functions of ψ1 and
ψ2, respectively. Comparing MDA SCHEME 1{5} with SCHEME 0 illustrates that
the introduction of the working parameter reduces the autocorrelations of the
chains. Further comparing with the two implementations of MDA SCHEME 2 shows
that using an improper working prior distribution does even better. The second
and fourth columns compare the Monte Carlo samples with the target (standard
normal) distribution using normal quantile-quantile plots. The improved auto-
correlations of MDA SCHEME 1{5} and MDA SCHEME 2{0} result in a slightly better
match than with SCHEME 0. The MDA SCHEME 2{−0.2} sampler, on the other
hand, underestimates the variability of the target distributions of ψ1 and ψ2 by
about 40% and 35%, respectively. Section 4.2 aims to develop theory for the PMG

sampler that allows us to reap the computational benefits of improper working
prior distributions, but with the assurance that the stationary distribution of the
resulting chain is the target distribution.

C. Proofs

C.1. Proof of Theorem 1.

We aim to show that the transition kernel of M(ψ−1),

K{ψ−1 | (ψ−1)′} =
∫ [∫

K
{

ψ̃1, ψ−1, α
∣∣ ψ̃′

1, ψ
′
−1, α

′
}

dα

]
dψ̃1 (C.1)

is equal to that of the corresponding standard Gibbs sampler where, by sup-
position 2, ψ−1 = ψ̃−1. By construction the inner integral in (C.1) is simply
K

{
ψ̃1, ψ−1

∣∣ ψ̃′
1, ψ

′
−1, α

′
}

. To simplify notation we suppress the dependency on
Y and assume that P = 3. Thus, (C.1) can be written∫

K
(
ψ̃1, ψ2, ψ3

∣∣ ψ̃′
1, ψ

′
2, ψ

′
3, α

′
)

dψ̃1

=
∫

p̃
(
ψ̃1

∣∣ ψ′
2, ψ

′
3, α

′
)

p
(
ψ2

∣∣ ψ̃1, ψ
′
3, α

′
)

p
(
ψ3

∣∣ ψ̃1, ψ2, α
′
)

dψ̃1, (C.2)
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where we use a tilde accent on p to emphasize that it represents the density of
ψ̃1 rather that of ψ1. Rewriting p̃ using the change of variable formula, (C.2) is
equal to∫

p
{
D−1

α′,1(ψ̃1)
∣∣ ψ′

2, ψ
′
3

} ∣∣ J(ψ̃1|α′)
∣∣ p

(
ψ2

∣∣ ψ̃1, ψ
′
3, α

′
)

p
(
ψ3

∣∣ ψ̃1, ψ2, α
′
)

dψ̃1,

(C.3)
where J(ψ̃1 | α) is the Jacobian of the inverse transformation D−1

α,1(ψ̃1), or 1 if ψ̃1

is discrete. Finally, by changing the variable of integration via ψ?
1 = D−1

α′,1(ψ̃1),
and by the independence of ψ and α given Y , (C.3) can be written as∫

p
(
ψ?

1 | ψ′
2, ψ

′
3

)
p

(
ψ2 | ψ?

1, ψ
′
3

)
p (ψ3 | ψ?

1, ψ2) dψ?
1, (C.4)

which is the Markovian transition kernel of the corresponding standard Gibbs
sampler.

C.2. Proof of Lemma 1

Proof. By Fatou’s lemma,∫
π∞(ξ′)K∞(ξ | ξ′)dξ′ =

∫
lim

m→∞
πm(ξ′)Km(ξ | ξ′)dξ′

≤ lim
m→∞

∫
πm(ξ′)Km(ξ | ξ′)dξ′

= lim
m→∞

πm(ξ) = π∞(ξ)

for every ξ. Because
∫ ∫

π∞(ξ′)K∞(ξ | ξ′)dξ′dξ =
∫

π∞(ξ)dξ = 1, the weak
inequality must be an equality and thus

∫
π∞(ξ′)K∞(ξ | ξ′)dξ′ = π∞(ξ).

C.3. Proof of Corollary 2

Proof. The transition kernel for Mm(ψ) is p(ψ1 | Y, ψ−1)Km{ψ−1 | ψ′
−1}, where

the second term is the transition kernel for Mm(ψ−1), as described in Corollary 1.
It follows that Mm(ψ) is Markovian for each m and that limm→∞ p(ψ1 | Y, ψ−1)
Km{ψ−1 | ψ′

−1} is a proper transition kernel if limm→∞Km{ψ−1 | ψ′
−1} is.

C.4. Proof of Theorem 2

Proof. To simplify notation we suppress conditioning on Y and assume that
P = 3. Then the marginal transition kernel of (ψ−1, α

?) with α? the draw of α
from STEP 1, Km{ψ−1, α

? | ψ′
−1}, can be written as∫

p̃m

(
ψ̃1, α

?
∣∣ ψ′

2, ψ
′
3

)
pm

(
ψ2, α

??
(3), α

c
(3)

∣∣ ψ̃1, ψ
′
3

)
pm

(
ψ3, α(3)

∣∣ ψ̃1, ψ2, α
c
(3)

)
dψ̃1dα??

(3)dα, (C.5)
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where the accent on p̃ emphasizes that this is the conditional density of ψ̃1

rather than ψ1. Integrating out α??
(3), replacing p̃m(ψ̃1, α

? | ψ′
2, ψ

′
3) with pm(α?)

pm{D−1
α?,1(ψ̃1) | ψ′

2, ψ
′
3} |J(ψ̃1 | α?)|, and changing the variable of integration via

ψ?
1 = D−1

α?,1(ψ̃1) in (C.5), yields

pm(α?)
∫

pm

(
ψ?

1 | ψ′
2, ψ

′
3

)
pm

{
ψ2, α

c
(3) | Dα?,1(ψ?

1), ψ
′
3

}
pm

{
ψ3, α(3)

∣∣ Dα?,1(ψ?
1), ψ2, α

c
(3)

}
dψ?

1dα. (C.6)

By Fatou’s lemma and condition (i), the limit as m → ∞ of the integral in (C.6)
is ∫

p
{
ψ?

1 | ψ′
−1

}
K∞{ψ−1, α | Dα?,1(ψ?

1), ψ
′
−1}dψ?

1dα. (C.7)

By condition (ii), we may replace α? under the integral by the identity value, a0.
Thus, in the limit α? and ψ−1 are independent, the kernel, K∞{ψ−1 | ψ′

−1} is the
proper distribution given in (C.7) with α? replaced with a0, and this kernel is
identical to that resulting from implementing the PMG sampler with p∞(α), but
with STEP 1 replaced with ψ̃1 ∼ p{ψ̃1 | Y, ψ′

−1, α = a0}.

C.5. Proof of Corollary 3

Proof. To simplify notation we again suppress conditioning on Y and assume
that P = 3. Then the marginal transition kernel of (ψ, α?) with α? the draw of
α from STEP 1, Km{ψ, α? | ψ′

−1}, can be written as∫
p̃m

{
Dα,1(ψ1), α?

∣∣ ψ′
2, ψ

′
3

} ∣∣ J−1{Dα,1(ψ1) | α}
∣∣

×pm

{
ψ2, α

??
(3), α

c
(3)

∣∣ Dα,1(ψ1), ψ′
3

}
pm

{
ψ3, α(3)

∣∣ Dα,1(ψ1), ψ2, α
c
(3)

}
dα??

(3)dα, (C.8)

where the accent on p̃ emphasizes that this is the conditional density of ψ̃1

rather than ψ1. Integrating out α??
(3) and replacing p̃m(ψ̃1, α

? | ψ′
2, ψ

′
3) with

pm(α?) pm{D−1
α?,1(ψ̃1) | ψ′

2, ψ
′
3} |J(ψ̃1 | α?)| in (C.8), yields

pm(α?)
∫

pm

[
D−1

α?,1{Dα,1(ψ1)} | ψ′
2, ψ

′
3

] ∣∣ J {Dα,1(ψ1) | α?}J−1{Dα,1(ψ1) | α}
∣∣

×pm

{
ψ2, α

c
(3) | Dα,1(ψ1), ψ′

3

}
pm

{
ψ3, α(3)

∣∣ Dα,1(ψ1), ψ2, α
c
(3)

}
dα. (C.9)

By Fatou’s lemma and condition (i) of Theorem 2, the limit as m → ∞ of the
integral in (C.9) is∫

pm

[
D−1

α?,1{Dα,1(ψ1)} | ψ′
2, ψ

′
3

] ∣∣ J {Dα,1(ψ1) | α?}J−1{Dα,1(ψ1) | α}
∣∣

×K∞{ψ−1, α | Dα,1(ψ1), ψ′
−1}dα. (C.10)
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By condition (iii), we may replace α? under the integral by the identity value,
a0. Thus, in the limit α? and ψ1 are independent, the kernel, K∞{ψ | ψ′

−1} is the
proper distribution given in (C.10) with α? replaced with a0, and this kernel is
identical to that resulting from implementing the PMG sampler with p∞(α), but
with STEP 1 replaced with ψ̃1 ∼ p{ψ̃1 | Y, ψ′

−1, α = a0}.

To verify that condition (iii) implies condition (ii) of Theorem 2, we apply
the change of variable ψ?

1 = D−1
α?,1{Dα,1(ψ1)} in the density given in (C.10); the

Jacobian of the transformation is
∣∣ J−1{Dα?,1(ψ?

1) | α?} J{Dα?,1(ψ?
1) | α}

∣∣ .

D. The Optimal Sampler for the Logistic Mixed Model

Here we verify that the marginal slice sampler given in Section 4.3 for the lo-
gistic mixed model has the target posterior distribution as its stationary distribu-
tion. Because the sampler is constructed by nesting PMG samplers within a larger
Gibbs sampler, we need only verify the limiting kernel for each of the PMG sam-
plers. We consider a sequence of transition kernels, Kω{b,k, βk, τ

2
k | b′,k, β

′
k, (τ

2
k )′},

constructed using a two-step PMG sampler with complete conditional distributions
corresponding to the standard slice sampler, α(1) = α(2) = αk, and working prior
distribution, α ∼ N(0, ω2I), with I the identity matrix. We verify that the sta-
tionary distribution of the transition kernel, limω→∞Kω{b,k, βk, τ

2
k | b′,k, β′

k, (τ
2
k )′},

is p(b,k, βk, τ
2
k ); here and throughout the appendix we suppress conditioning on Y ,

V , and the components other than the kth of β and each bi. We use Corollary 3
and must verify condition (i) of Theorem 2 and condition (iii) of Corollary 3.
We begin by explicitly deriving the stochastic mapping of CYCLE k of STEP 2.
SUBSTEP1: Sample b̃,k, αk | βk, τ

2
k by independently sampling α?

k ∼ N(0, ω2) and
b?
i ∼ TN{0, τ2

k , L(bik), U(bik)} for each i, where

L(bik) = max
j:(yij−1/2)xij>0

{
logit(vij) − Sij,−k

xijk
− βk

}
,

U(bik) = min
j:(yij−1/2)xij<0

{
logit(vij) − Sij,−k

xijk
− βk

}
,

with TN{µ, σ2, L, U} denoting a N(µ, σ2) distribution truncated to the interval
(L,U), Sij,−k =

∑
l 6=k xijl(βl+bil), and xijl represents component l of xij . Finally,

set b̃,k = b?
,k+α?

k; here we use a star in the superscript to indicate an intermediate
quantity. In the limit the distribution of α?

k becomes improper; we show, however,
that the limiting transition kernel does not depend on α?

k.
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SUBSTEP 2: Sample (β̃k, αk, τ
2
k ) | b̃,k; for finite ω this has density,

pω(β̃k, τ
2
k , αk | b̃,k)

∝
∏
ij

(
I

[
vij ≤ g−1{x′

ij(β + bi)}
] )yij

(
I

[
vij > g−1{x′

ij(β + bi)}
] )1−yij

×(τ2
k )−(νk+m)/2−1 exp

[
− 1

2τ2
k

{
m∑

i=1

(b̃ik−b̃·k)2+m(b̃·k−αk)2+νkτ
2
k,0

}
−

α2
k

2ω2

]
,

where b̃·k = (1/m)
∑m

i=1 b̃ik. Clearly, pω(β̃k, τ
2
k , αk | b̃,k) → p∞(β̃k, τ

2
k , αk | b̃,k)

as ω → ∞, where p∞ represents the conditional distribution under the limiting
improper prior distribution, p(ω) ∝ 1. This satisfies condition (i) of Theorem 2.
We can simulate p∞(β̃k, τ

2
k , αk | b̃,k) by sampling

τ2
k ∼

(
m∑

i=1
(b?

ik−b?
·k)

2+νkτ
2
k,0

)
χ2

m+ν0−1

, δ?
1 ∼N(b?

·k,
τ2
k

m
), and δ?

2 ∼ Unif(L(βk), U(βk)),

and setting αk = δ?
1 + α?

k, and β̃k = δ?
2 − α?

k, where

L(βk) = max
{i,j;(yij−1/2)xij>0}

{
logit(vij) − Sij,−k

xijk
− b?

ik

}
,

U(βk) = min
{i,j;(yij−1/2)xij<0}

{
logit(vij) − Sij,−k

xijk
− b?

ik

}
.

We complete the iteration by transforming back to the original parameterization,
βk = β̃k+αk = δ?

1+δ?
2 and bik = b̃ik−αk = b?

ik−δ?
1 for each i. Because (b,k, βk, τ

2
k )

does not depend on α?
k, condition (iii) of Corollary 3 is satisfied and we have the

desired result.
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