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Partially Collapsed Gibbs Samplers:
Illustrations and Applications

Taeyoung PARK and David A. VAN DYK

Among the computationally intensive methods for fitting complex multilevel mod-
els, the Gibbs sampler is especially popular owing to its simplicity and power to ef-
fectively generate samples from a high-dimensional probability distribution. The Gibbs
sampler, however, is often justifiably criticized for its sometimes slow convergence,
especially when it is used to fit highly structured complex models. The recently pro-
posed Partially Collapsed Gibbs (PCG) sampler offers a new strategy for improving the
convergence characteristics of a Gibbs sampler. A PCG sampler achieves faster con-
vergence by reducing the conditioning in some or all of the component draws of its
parent Gibbs sampler. Although this strategy can significantly improve convergence,
it must be implemented with care to be sure that the desired stationary distribution is
preserved. In some cases the set of conditional distributions sampled in a PCG sampler
may be functionally incompatible and permuting the order of draws can change the sta-
tionary distribution of the chain. In this article, we draw an analogy between the PCG
sampler and certain efficient EM-type algorithms that helps to explain the computa-
tional advantage of PCG samplers and to suggest when they might be used in practice.
We go on to illustrate the PCG samplers in three substantial examples drawn from our
applied work: a multilevel spectral model commonly used in high-energy astrophysics,
a piecewise-constant multivariate time series model, and a joint imputation model for
nonnested data. These are all useful highly structured models that involve computa-
tional challenges that can be solved using PCG samplers. The examples illustrate not
only the computation advantage of PCG samplers but also how they should be con-
structed to maintain the desired stationary distribution. Supplemental materials for the
examples given in this article are available online.

Key Words: AECM algorithm; Astrophysical data analysis; ECME algorithm; In-
compatible Gibbs sampler; Marginal data augmentation; Multiple imputation; Spectral
analysis.

1. INTRODUCTION

The development of Markov chain Monte Carlo (MCMC) methods over the past twenty
years has revolutionized modern applied statistics, and has particularly influenced and
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popularized Bayesian methods. More complex models that explicitly aim to incorpo-
rate application-specific stochastic features of a data generation mechanism are becoming
more prevalent as a direct result of these sophisticated computational tools. Implementing
MCMC samplers, however, is a nuanced business that often is as much a matter of intuition
and art as it is a matter of science. Predicting the convergence characteristics of a sampler
without making the large investment that is required to implement the sampler is often
an impossible task. Indeed, accessing the convergence of a sampler after it has been im-
plemented requires subtle diagnostics, and it is not difficult to be fooled into prematurely
concluding that a sampler has fully explored a distribution.

Fortunately, much work has been devoted to developing practical strategies that serve to
improve the convergence characteristics of MCMC samplers. In the context of Gibbs sam-
pling, it is well known that blocking or grouping steps (Liu, Wong, and Kong 1994), nesting
steps (van Dyk 2000b), collapsing or marginalizing parameters (Liu 1994; Meng and van
Dyk 1999), incorporating auxiliary variables (Besag and Green 1993), certain parameter
transformations (Gelfand, Sahu, and Carlin 1995; Liu 2003; Yu 2005), and parameter ex-
pansion (Liu and Wu 1999) can all be used to improve the convergence of certain samplers.
Many of these strategies took their cue from or are analogous to similar techniques that are
known to speed the convergence of EM-type algorithms (e.g., van Dyk and Meng 2001,
2009; Gelman et al. 2008). The EM algorithm (Dempster, Laird, and Rubin 1977) can be
used to compute the posterior mode of the parameters by embedding the sampling distrib-
ution under the model into a joint distribution of the model parameters and a set of “latent
variables” or “missing data” and performing iterative calculations based on the resulting
conditional distributions of the parameters given the missing data and of the missing data
given the parameters.

Collapsing and marginalization methods offer an example of the relationship between
efficient EM-type algorithms and methods for improving the convergence of the Gibbs
sampler. These methods integrate the joint posterior distribution of the unknown quanti-
ties, including unknown parameters, latent variables, and missing data, over some of these
unknown quantities to construct a marginal posterior distribution under which a new col-
lapsed Gibbs sampler is built (Liu 1994). In the context of EM algorithms, on the other
hand, it is well known that the rate of convergence is improved by reducing the missing
data in the model formulation, that is, by integrating the joint distribution over a portion
of the missing data and deriving a new faster EM algorithm on the marginal distribution
(Meng and van Dyk 1997; van Dyk 2000a). Of course, such strategies are generally only
useful when the marginal distribution allows for the construction of simple closed form
Gibbs samplers or EM algorithms.

Variants of the EM algorithm have been developed to take advantage of the basic idea
behind marginalization even when a closed form EM algorithm is not available on the
marginal distribution. The ECME algorithm (Liu and Rubin 1994), for example, allows
one group of parameters to be updated using conditional distributions from the joint dis-
tribution and a second group to be updated using conditional distributions of the marginal
distribution of the model parameters. The second group of parameters is updated by com-
pletely marginalizing out the latent variables and missing data and using a conditional dis-
tribution of the resulting marginal distribution. A generalization of the ECME algorithm,
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known as the AECM algorithm (Meng and van Dyk 1997), allows each of several groups
of the parameters to be updated using conditional distributions of different margins of the
joint posterior distribution. Relative to the collapsing strategy described in the previous
paragraph, both the ECME and AECM algorithms can be described as partially collapsed
methods in that they do not fully marginalize out any component of the missing data but
rather marginalize out different components in different parts of the algorithm. This is
the basic strategy that we aim to apply to the Gibbs sampler in this article. Because both
the ECME and AECM algorithms have proved successful in a variety of applications, we
expect from the onset that the resulting samplers will also exhibit improved convergence
properties.

Van Dyk and Park (2008) developed the theory and methods necessary to apply this
strategy when using a Gibbs sampler. The partially collapsed Gibbs (PCG) sampler re-
places some of the conditional distributions of an ordinary Gibbs sampler with conditional
distributions of some marginal distributions of the target joint posterior distribution. As
with EM-type algorithms, this strategy is useful because it can result in algorithms with
much better convergence properties and it is interesting because it may result in sampling
from a set of incompatible conditional distributions. That is, there may be no joint dis-
tribution that corresponds to this set of conditional distributions. Although van Dyk and
Park (2008) outlined the necessary methodology for the PCG sampler, their work contains
only one simplified toy example. The primary goal of this article is to illustrate how the
PCG sampler is used in real examples and to demonstrate the computational advantage
of the strategy. In particular, we illustrate how the PCG sampler can be used to fit a mul-
tilevel spectral model commonly used in high-energy astrophysics, a piecewise-constant
multivariate time series model, and a joint imputation model for nonnested data. These
are all useful models that the authors came across in their applied work and that involve
computational challenges that can be solved using PCG samplers.

The remainder of the article is divided into five sections. We begin in Section 2 by
reviewing the motivation behind and basic strategies for PCG samplers. Sections 3–5 illus-
trate the implementation and computational advantage of PCG samplers in a sequence of
three examples. Section 3 details the dramatic improvement in mixing that can be obtained
using PCG samplers to fit a multilevel spectral model commonly used in high-energy astro-
physics. The second example is described in Section 4 and illustrates how partial collapse
makes intractable sampling steps tractable with the expectation of quicker convergence.
Section 5 presents the third example where the data structure intrinsically suggests PCG
sampling strategies. Concluding remarks are given in Section 6.

2. PARTIALLY COLLAPSED GIBBS SAMPLERS

Van Dyk and Park (2008) described three basic tools that can be used to transform a
Gibbs sampler into a PCG sampler. The first tool is marginalization which involves mov-
ing a group of unknowns from being conditioned upon to being sampled in one or more
steps of a Gibbs sampler; the marginalized group can differ among the steps. Second, we
may need to permute the steps of the sampler to use the third tool, which is to trim sampled
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components from the various steps that can be removed from the sampler without altering
its Markov transition kernel. Marginalization and permutation both trivially maintain the
stationary distribution of a Gibbs sampler and both can affect the convergence properties
of the chain; marginalization can dramatically improve convergence, whereas the effect of
a permutation is typically small. Trimming, on the other hand, is explicitly designed to
maintain the kernel of the chain. Its primary advantage is to reduce the complexity and the
computational burden of the individual steps. It is trimming that introduces incompatibil-
ity into the sampler. In this section we use a simple schematic example to illustrate how
the three tools are used and conclude with a review of the theoretical properties of PCG
samplers. Details can be found in van Dyk and Park (2008).

We begin with the four-step Gibbs sampler:

Step 1: Draw W from p(W|X,Y,Z),

Step 2: Draw X from p(X|W,Y,Z),
(Sampler 1)

Step 3: Draw Y from p(Y|W,X,Z), and

Step 4: Draw Z from p(Z|W,X,Y),

and suppose it is possible to directly sample from p(Y|X,Z) and p(Z|X,Y), which are
both conditional distributions of

∫
p(W,X,Y,Z) dW. If we were to simply replace Steps

3 and 4 with these conditional draws we would have no direct way of verifying that the
stationary distribution of the resulting chain is the target joint distribution, p(W,X,Y,Z).
Thus, we use the three basic tools to reap the computational gains of partial collapse while
ensuring that the resulting chain maintains the target distribution as its stationary distribu-
tion.

The first tool is marginalization. It allows us to move W from being conditioned upon
to being sampled in Steps 3 and 4:

Step 1: Draw W� from p(W|X,Y,Z),

Step 2: Draw X from p(X|W,Y,Z),
(Sampler 2)

Step 3: Draw (W�,Y) from p(W,Y|X,Z), and

Step 4: Draw (W,Z) from p(W,Z|X,Y).

In each step we condition on the most recently sampled value of each quantity that is
not sampled in that step. The output of the iteration consists of the most recently sampled
value of each quantity at the end of the iteration: X sampled in Step 2, Y sampled in Step 3,
and (W,Z) sampled in Step 4. Here and elsewhere we use a superscript ‘�’ to designate an
intermediate quantity that is sampled but is not part of the output of an iteration. Because
W is sampled in multiple steps during an iteration, Sampler 2 is a simple generalization of
an ordinary Gibbs sampler that updates each component once in an iteration. In this regard
Sampler 2 is similar to the alternating subspace-spanning resampling algorithm (Liu 2003);
it updates some components multiple times within each iteration. Marginalization does not
affect the stationary distribution of the chain, but as we discuss later it is the source of the
computational gain of PCG samplers over their parent Gibbs samplers.
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Sampler 2 may be inefficient in that it samples W three times. Removing any two of
the three draws, however, necessarily affects the transition kernel of the chain because the
draw in Step 1 is conditioned on in Step 2 and the draw in Step 4 is part of the output of
the iteration. Because we want to preserve the stationary distribution of the chain, we only
consider removing intermediate quantities whose values are not conditioned upon subse-
quently. Permuting the steps of a Gibbs sampler does not alter its stationary distribution
but can enable certain intermediate quantities to meet the criterion for removal. Thus, per-
mutation is the second basic tool used in constructing a PCG sampler. In particular the
sampler:

Step 1: Draw (W�,Y) from p(W,Y|X,Z),

Step 2: Draw (W�,Z) from p(W,Z|X,Y),
(Sampler 3)

Step 3: Draw W from p(W|X,Y,Z), and

Step 4: Draw X from p(X|W,Y,Z),

has the same stationary distribution as Sampler 2. In Sampler 3, however, the intermediate
draws of W sampled in Steps 1 and 2 are not used in the subsequent steps because a
new value of W is sampled in Step 3. Thus both of the intermediate draws of W can be
removed (or trimmed) from the sampler. Replacing Step 2 in Sampler 3 with a draw from
p(Z|X,Y) is equivalent to blocking Steps 2 and 3 into a joint draw of W and Z from
p(W,Z|X,Y). Thus, using the third basic tool, that is, trimming the two intermediate
quantities and combining Steps 2 and 3, we derive Sampler 4:

Step 1: Draw Y from p(Y|X,Z),

Step 2: Draw (W,Z) from p(W,Z|X,Y), and (Sampler 4)

Step 3: Draw X from p(X|W,Y,Z).

Because removing the intermediate quantities does not affect the transition kernel of
the chain, Sampler 4 has the same stationary distribution as Sampler 3 which we know
has the target stationary distribution. Thus, by carefully using the three basic tools, we
are guaranteed to arrive at a PCG sampler with the desired stationary distribution. We
emphasize that Sampler 4 is not a Gibbs sampler per se. The three conditional distributions
that are sampled are incompatible and permuting the order of the draws may alter the
stationary distribution of the chain.

Using the basic tools sometimes leads to conditional distributions that can be combined
to form a set of compatible conditional distributions. (This type of combination of steps
occurred when we combined Steps 2 and 3 of Sampler 3 after trimming Step 2 to form
Step 2 of Sampler 4.) When some conditional distributions are combined and the resulting
set of conditional distributions remains compatible, the PCG sampler is simply a blocked
version of its parent Gibbs sampler. As Sampler 4 illustrates, however, this does not always
occur. In this regard PCG sampling can be viewed as a generalization of blocking.

The benefit of using PCG samplers is more efficient convergence. Van Dyk and Park
(2008) showed that sampling more components in any set of steps of a Gibbs sampler (i.e.,
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marginalization) tends to improve the convergence of the chain.1 Rather than detailing
these technical results, we illustrate the computational gain empirically in several exam-
ples. The example in Section 3, for example, shows a fast converging PCG sampler whose
parent Gibbs sampler sticks at its starting value. Another potential advantage is illustrated
in Section 4 where a conditional draw of the parent Gibbs sampler is intractable but the
PCG sampler is easy to implement. We now turn to these empirical illustrations.

3. MULTILEVEL SPECTRAL MODEL IN HIGH-ENERGY
ASTROPHYSICS

The data for our first example are collected to explore the distribution of the energies
of photons emanating from the quasar PG 1634+706 (Park, van Dyk, and Siemiginowska
2008). (These datasets are available in the online supplemental materials folder to this
article on the JCGS webpage.) The distribution can be formulated as a finite mixture dis-
tribution composed of a continuum term, which is a smooth function across a wide range
of energies, and an emission line, which is a local feature highly focused on a narrow band
of energies. Because photons are counted in a number of energy bins, the expected Poisson
counts in energy bin j are modeled as

�j(θ) ≡ fj (θ
C) + λπj (μ,σ 2) for j = 1, . . . , J, (3.1)

where θ is the set of model parameters, fj (θ
C) is the expected continuum counts in bin

j , θC is the set of free parameters in the continuum model, λ is the expected line counts,
and πj (μ,σ 2) is the proportion of an emission line with mean μ and variance σ 2 falling
into bin j , which can be modeled with a narrow Gaussian distribution or a delta func-
tion. In this article, a power law model is used to describe the continuum term, that is,

fj (θ
C) = αCE

−βC

j , where θC = (αC,βC) represent the normalization and photon index
of the power law continuum, respectively, and Ej is the energy of bin j . Because the
spectral data are subject to stochastic redistribution, stochastic censoring, and background
contamination, we consider a more refined model. In particular, the observed photon counts
and background photon counts in detector channel l are modeled with independent Poisson
distributions,

Ysrc l ∼ Poisson

(∑
j

Mlj�j (θ)uj (θ
A) + θB

l

)
and

(3.2)
Ybkg l ∼ Poisson(κθB

l ) for l = 1, . . . ,L,

where Yobs = {(Ysrc l , Ybkg l ), l = 1, . . . ,L} denotes a collection of the observed source and
background counts, Mlj is the probability that a photon that arrives with energy corre-
sponding to bin j is recorded in channel l, uj (θ

A) is the probability that a photon with
energy corresponding to bin j is not absorbed and is parameterized by θA, θB

l is a Poisson

1In particular, van Dyk and Park studied the forward operator F0 induced by Fh(X′) = E{h(X(1))|X(0) = X′} on
the Hilbert space {h : Eπ {h(X)} = 0,varπ {h(X)} < ∞}. The spectral radius of F0 typically governs the conver-
gence of the Markov chain (Liu 2001). Van Dyk and Park derived a bound on this spectral radius and showed that
their bound can only be reduced when more components are sampled in any step of a Gibbs sampler.
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intensity of the background counts in channel l, and κ is a known correction factor to adjust
for the difference between source and background exposures. In this article, the absorption
probability is modeled as uj (θ

A) = dj exp(−θAX(Ej )), where dj is the known effective
area of bin j and X(Ej ) is a tabulated value (Morrison and McCammon 1983). The finite
mixture and data generation process can be described by a hierarchical structure of miss-
ing data and a Gibbs sampler can be constructed to fit the model (van Dyk et al. 2001). In
particular, the set of missing data Ymis is decomposed into (Ymis 1,Ymis 2), where Ymis 1

is the unobserved Poisson photon counts with expectation given in (3.1) and Ymis 2 is the
unobserved mixture indicator variable for each of these counts under the finite mixture
model given in (3.1).

3.1 DELTA FUNCTION EMISSION LINES

When an emission line is assumed to be narrow enough to fall within one energy bin
of the detector, the narrow emission line can be modeled with a delta function; σ 2 in (3.1)
is set to zero. In this case, however, the Gibbs sampler breaks down because the resulting
subchain for μ does not move from its starting value, regardless of what the starting value
is. This happens because the mixture indicator variable for the delta function emission
line is zero for all of the energy bins but the one containing the previous iterate of the
line location, and thus the next iterate of the line location is necessarily the same as the
previous iterate. The only possibility for the line location to change is for no photons to
be attributed to the line, a highly unlikely possibility even for a weak emission line. To
improve convergence, we consider two variants of a PCG sampler constructed by partially
marginalizing over the entire missing data or part of the missing data; we call the two PCG
samplers PCG I and PCG II.

PCG I is constructed in the following way. In Figure 1(a), we begin by building a par-
ent Gibbs sampler using a set of complete conditional distributions of the target posterior
distribution, p(Ymis, θ |Yobs), where θ can be partitioned into θ = (ψ,μ) with μ being the
location parameter for a delta function line and ψ being all the model parameters except
the line location parameter. Each conditional distribution in Figure 1(a) follows a stan-

Figure 1. Deriving PCG I for the multilevel spectral model with a delta function emission line. The resulting
sampler in (e) is a blocked version of the parent Gibbs sampler in (a).
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dard distribution, but the parent Gibbs sampler does not converge because of the effective
absorbing state for μ. The convergence characteristics can be improved by marginalizing
all of the missing data, Ymis, in Step 3 as is done in Figure 1(b). Although the resulting
marginalized distribution is tractable (see below), the missing data sampled in Step 3 are
part of the output quantities and cannot be removed from the sampler. Permuting the sam-
pling steps as in Figure 1(c) allows us to remove Y�

mis from Step 1 of Figure 1(c) without
affecting the transition kernel because Y�

mis is not part of the output quantities and is not
conditioned upon in subsequent steps. The removal of the redundant marginalized quanti-
ties results in PCG I in Figure 1(d).

The marginalized distribution in Step 1 of Figure 1(d) draws μ from

μ ∼ Multinomial
(
1;{p(μ|ψ,Yobs)|μ=Ej

, j ∈ J
})

, (3.3)

obtained by evaluating the observed posterior distribution at the midpoint of energy bin.
Thus, we impose the natural resolution of the data on μ. Because Steps 1 and 2 in Fig-
ure 1(d) can be combined into p(Ymis,μ|ψ,Yobs), the PCG sampler corresponds to a
blocked version of the original Gibbs sampler in Figure 1(a); see Figure 1(e).

In PCG I, sampling μ involves additional evaluation of the posterior distribution which
can be computationally demanding because of the large dimensional blurring matrix M =
{Mlj }. To avoid this computational expense, we devise the PCG II sampler. This sampler
is derived exactly the same as PCG I except that PCG II marginalizes over only part of
the missing data, i.e., Ymis 2; see Figure 2. After trimming the redundant intermediate
quantities from the sampler, PCG II is given by Figure 2(d). In this case, the resulting
set of conditional distributions are incompatible and cannot be combined. Thus, PCG II
does not correspond to a blocked version of the parent Gibbs sampler in Figure 2(a). The
marginalized distribution in Step 1 of PCG II draws μ from the multinomial distribution,

μ ∼ Multinomial
(
1;{p(μ|Ymis 1,ψ,Yobs)|μ=Ej

, j ∈ J
})

, (3.4)

and the multinomial probabilities are computed as in (3.3). By conditioning on Ymis 1,
however, we avoid accounting for M, and significantly improve the speed of Step 1.

Figure 2. Deriving PCG II for the multilevel spectral model with a delta function emission line. The resulting
sampler in (d) is composed of incompatible distributions and is not a blocked version of the parent Gibbs sampler
in (a).
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Because PCG I marginalizes to a greater degree, we expect it to exhibit better con-

vergence characteristics than PCG II; see theorem 1 of van Dyk and Park (2008). This

is weighed against the extra computation and cost per iteration of (3.3) relative to (3.4):

Each iteration of PCG I is about 10 times slower in computation time than that of PCG II.

To empirically compare the computational performance, we use data for the X-ray spec-

trum of the high redshift quasar PG 1634+706 (Park, van Dyk, and Siemiginowska 2008).

We run multiple chains of 10,000 and 100,000 iterations each with overdispersed starting

values for PCG I and PCG II, respectively. The first two rows of Figure 3 compare the

Figure 3. Comparing different samplers for spectral analysis. The top two rows show output from the PCG
samplers, PCG I and PCG II, constructed for the spectral model with a delta function emission line. In this case,
the parent Gibbs sampler does not converge, so that we omit its comparison. The bottom two rows compare the
PCG and Gibbs samplers constructed for the spectral model with a Gaussian emission line. The first two columns
show the mixing and autocorrelation plots for μ that are used to compare the convergence of different schemes.
The last column presents a joint posterior distribution of μ and logλ for a delta function emission line and a joint
posterior distribution of μ and σ 2 for a Gaussian emission line.
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two PCG samplers that fit a delta function emission line in terms of their mixing, auto-
correlation, and posterior distribution. After we detect convergence using the R̂1/2 statistic
(Gelman and Rubin 1992), we collect the 10,000 posterior draws of μ and λ from the mul-
tiple chains to produce the joint posterior distribution given in the last column of Figure 3.
As expected, PCG I exhibits quicker convergence than PCG II, but neither of the PCG
samplers has difficulty jumping among the multiple modes.

3.2 GAUSSIAN EMISSION LINES

Depending on the resolution of an X-ray detector and the true width of an emission line,
the emission line may occupy more than one energy bin in the observed spectrum. To model
an emission line with appreciable width, a Gaussian distribution can be used in place of a
delta function. The Gibbs sampler constructed for fitting the Gaussian emission line profile
may exhibit slow convergence because of the multimodal posterior distribution of the line
location (Park, van Dyk, and Siemiginowska 2008). Thus, we consider marginalizing over
all of the missing data when we sample the Gaussian line location and width parameters.
This strategy results in a PCG sampler that we call PCG III and its derivation is presented
in Figure 4.

As shown in Figure 4(a), we first construct a parent Gibbs sampler to sample from the
target distribution p(Ymis, θ |Yobs), where θ is now partitioned into θ = (ψ,μ,σ 2), with
μ being the location of the Gaussian line, σ 2 being the variance of the Gaussian line, and
ψ being the remaining model parameters. The convergence of the parent Gibbs sampler
can be improved by sampling the missing data along with μ and σ 2 in Steps 3 and 4,
respectively, as shown in Figure 4(b). To make the multiply sampled quantities redundant
in the sampler, we permute the steps in Figure 4(c) and remove the redundant quantities in
Figure 4(d). Finally, Steps 2 and 3 are blocked, yielding the PCG sampler in Figure 4(e).

Figure 4. Illustration of deriving PCG III for the multilevel spectral model with a Gaussian emission line. The
resulting sampler in (e) is composed of incompatible distributions and is not a blocked version of the parent Gibbs
sampler in (a).
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This sampler is composed of incompatible conditional distributions and is not a blocked
version of the parent Gibbs sampler in Figure 4(a).

To implement the marginalization in Step 2 of Figure 4(d), the parameter space for
σ 2 is treated as discrete. That is, σ 2 is taken to follow a multinomial distribution with
probabilities evaluated on an equally spaced grid, in the same manner as with μ in (3.3).

The bottom two rows of Figure 3 compare the PCG III and parent Gibbs sampler con-
structed for the spectral model with a Gaussian emission line. These two samplers are run
to fit the X-ray spectrum of quasar PG 1634+706, each with 10,000 and 100,000 itera-
tions, respectively. Comparing the first two columns indicates that the PCG sampler has
much quicker convergence than the Gibbs sampler, showing faster mixing and less auto-
correlations. After ensuring convergence using multiple chains, we plot the joint posterior
distribution with the 10,000 posterior draws of μ and σ 2 collected from the multiple chains.
As confirmed in the last column of Figure 3, the Gibbs sampler requires more iterations to
explore the entire surface of the joint distribution as fully as with PCG III.

4. JOINT SEGMENTATION OF MULTIVARIATE TIME
SERIES DATA

The MCMC sampler provided by Dobigeon, Tourneret, and Scargle (2007) to fit the so-
called joint segmentation model for Poisson time series data from multiple signals in astro-
physics is an example of a PCG sampler. The model is designed to detect and characterize
structure in two or more related Poisson time series. For the joint segmentation problem,
Dobigeon, Tourneret, and Scargle (2007) constructed a Bayesian hierarchical model and
proposed a Gibbs sampling strategy for model fitting. The MCMC sampler used to jointly
segment the time series data from multiple signals is, however, a PCG sampler, not a Gibbs
sampler per se. In fact, as we describe below, the parent Gibbs sampler for this model is
degenerate and is not feasible to run. This is why Dobigeon, Tourneret, and Scargle (2007)
devised an MCMC sampler that is Gibbs-like but is constructed with incompatible condi-
tional distributions. They did not recognize the sampler as a PCG sampler or confirm that
its stationary distribution is the target posterior distribution.

Consider multivariate time series data that are composed of photon counts from multiple
signals observed in a number of equally spaced time bins. We assume that the data for
each signal are generated from a Poisson process with constant intensity within each time
block. The time blocks in turn are constructed by sequentially combining the time bins, as
illustrated in Figure 5 and detailed below. This joint segmentation model has advantages
over a segmentation model for a single signal because we can impose prior knowledge as
to the correlation structure of the joint probability for the time block changes of different
signals.

To formalize the model, we assume photons from each signal arrive following an inde-
pendent inhomogeneous Poisson process, that is,

Yst
ind∼ Poisson(λsb)

for s = 1,2, . . . , S, t = 1,2, . . . , T , b = 1,2, . . . ,Bs, (4.1)
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Figure 5. Block indicator matrix for multivariate time series data. The block indicator vector of signal s with
T = 10 time bins and Bs = 3 time blocks is illustrated at the top. In the case of multiple signals, a S × T block
indicator matrix is considered, as shown at the bottom. When the time bins are blocked by the solid lines, for
example, we have (z12, z13, z14) = (0,1,0), (z22, z23, z24) = (0,0,1), and (zS2, zS3, zS4) = (1,0,0). Note that
the indicator variables for the first and the last time bins are all fixed at 0 and 1, respectively, to match the row
sum with the number of time blocks of the corresponding row; thus, only the middle T − 2 indicators are free for
each signal.

where Yst denotes the photon counts from signal s that fall into time bin t and λsb repre-
sents the expected photon counts per bin from signal s in time block b. In words, photons
from each of the S signals are recorded in T equally spaced time bins which are grouped
into Bs (≤ T ) time blocks for signal s. The Poisson intensities are modeled hierarchically,
that is,

λsb|γ iid∼ �(1, γ ) for s = 1,2, . . . , S, b = 1,2, . . . ,Bs, (4.2)

where γ is the rate parameter, that is, λ ∼ �(α,β) if p(λ) ∝ λα−1e−βλ. For notational
convenience, we consider an index set of time bins that are combined into time block b

of signal s, that is, Bsb ⊂ {1,2, . . . , T } is the collection of time bin indexes in block b for
signal s. The sets {Bsb, b = 1,2, . . . ,Bs} for signal s are disjoint with union {1,2, . . . , T }.

Fitting the Poisson intensity would be greatly simplified if the time blocks, B =
{Bsb, s = 1,2, . . . , S, b = 1,2, . . . ,Bs}, were known. This leads naturally to a Gibbs-
type setup. In particular, we consider an S × T indicator matrix of block change points,
Z = (z1, z2, . . . , zT ) where zt = (z1t , z2t , . . . , zSt )


 for each t , and Z is treated as miss-
ing data. The variable zst = 1 if there is a change point to a new time block at bin t for
signal s, and 0 otherwise. We set the indicator variables of the first and the last bins as
zs1 = 0 and zsT = 1 for each signal s so that each row sum corresponds to the number of
time blocks for the signal s, that is,

∑T
t=1 zst = Bs . Figure 5 graphically illustrates how

the indicator variables Z determine the time blocks. As a simple illustration, the block in-
dicator vector of signal s with T = 10 time bins and Bs = 3 time blocks is shown at the



PARTIALLY COLLAPSED GIBBS SAMPLERS 295

top of Figure 5. The bottom of Figure 5 illustrates the S × T matrix Z. Because zst is a
binary variable, each column vector zt has 2S possible configurations of 0 and 1, which are
denoted by cl for l = 1,2, . . . ,2S . For example, in the case of S = 2, we have c1 = (0 0)
,
c2 = (1 0)
, c3 = (0 1)
, and c4 = (1 1)
. The probability of zt corresponding to each
configuration cl is represented by pl = P(zt = cl ), and P is the set of the probabilities, that
is, P = {pl, l = 1,2, . . . ,2S} with

∑2S

l=1 pl = 1.
Under the conjugate Dirichlet prior distribution on P and a flat prior distribution on

logγ , the posterior distribution of the unknown quantities is given by p(Z,P, γ,λ|Yobs).
Because of the conjugate choice of its prior distribution, P can be analytically integrated
out of the posterior distribution. Thus, we begin with a parent Gibbs sampler with target
distribution equal to the marginal distribution, p(Z, γ,λ|Yobs) = ∫

p(Z,P, γ,λ|Yobs) dP.
The parent Gibbs sampler is illustrated in Figure 6(a). Unfortunately, this Gibbs sam-
pler cannot be implemented because (Z,λ) belongs to a space, {0,1}S×T × ∏S

s=1 �Bs+ ,
whose dimension depends on the unknown time blocks {Bs, s = 1,2, . . . , S}: the distrib-
ution p(zt |z−t , γ,λ,Yobs) is degenerate because the dimensionality of λ is specified by
the number of time blocks in each time series, where z−t = (z1, . . . , zt−1, zt+1, . . . , zT ).
To resolve this problem, we devise a PCG sampler that replaces p(zt |z−t , γ,λ,Yobs) with
p(zt |z−t , γ,Yobs) that integrates out the parameter vector whose dimension depends on Z.
Figure 6 illustrates the transformation of the parent Gibbs sampler into the PCG sampler.
Starting with the parent Gibbs sampler in Figure 6(a), in Steps 1 through (T −2) each zt is
sampled given (z−t , γ,λ,Yobs) and follows a degenerate multinomial distribution. In Fig-
ure 6(b), we avoid these degenerate draws by jointly sampling λ in Steps 1 through (T −2)
along with a component of Z. Because p(γ |Z,λ,Yobs) is conditional on the intermediate

Figure 6. Deriving a PCG sampler in the joint segmentation model for multivariate time series data.
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quantity λ� sampled in Step (T −2), we cannot completely remove the additionally sam-
pled quantities from the sampler. To make the extra draws of λ redundant, p(γ |Z,λ,Yobs)

and p(λ|Z, γ,Yobs) are interchanged in the sampler shown in Figure 6(c). After the per-
mutation, trimming the intermediate quantities yields the PCG sampler in Figure 6(d). The
conditional distribution of zt given (z−t , γ,Yobs) is still a multinomial distribution which
depends only on γ and belongs to a space with a fixed dimension. As a result, the PCG
sampler is feasible to implement with the expectation of faster convergence whereas the
parent Gibbs sampler in Figure 6(a) breaks down due to the degenerate draws. Finally, we
may block Steps (T −2) and (T −1) into p(zT −1,λ|z−(T −1), γ,Yobs), but the resulting set
of conditional distributions in Figure 6(e) remains incompatible and the resulting MCMC
sampler is not a Gibbs sampler per se. Dobigeon, Tourneret, and Scargle (2007) used the
PCG sampler shown in Figure 6(e). They, however, did not recognize that the sampler
is not a Gibbs sampler or that permuting the order of its steps would alter its stationary
distribution.

We conduct a simulation study for the piecewise-constant multivariate time series
model. In this simulation study, we assume S = 2 signals are observed, each with T = 100
time bins. In the interior T − 2 = 98 time bins, we set three block change points (t = 20,
50, and 80) for the first signal and one block change point (t = 50) for the second sig-
nal: zst = 1 for (s, t) ∈ {(1,20), (1,50), (1,80), (1,100), (2,50), (2,100)}, and 0 other-
wise. Thus, we have B1 = 4 time blocks for the first signal and B2 = 2 time blocks for
the second signal. Using γ = 0.1, we simulate the Poisson intensities for the correspond-
ing time blocks, that is, (λ11, λ12, λ13, λ14) = (3.9,19.3,7.3,11.7) for the first signal and
(λ21, λ22) = (10.8,15.9) for the second signal, and generate test data under the model in
(4.1). The top two panels in Figure 7 show the test data for the two signals along with the
true Poisson intensities used to simulate the data. Because the parent Gibbs sampler in Fig-
ure 6(a) is degenerate, the bottom four rows of Figure 7 present output only from the PCG
sampler. The convergence of the PCG sampler is examined by computing the R̂1/2 statistic
for the model parameters with the two chains of 1000 iterations. The output is based on
1000 draws from the second halves of the two chains. The two panels in the second row
of Figure 7 present the posterior mean of block change points for the two signals and con-
firm that the true block change points are well estimated by the PCG sampler. Mixing and
autocorrelation plots are shown in the bottom three rows of Figure 7, which illustrate the
quick convergence of selected model parameters (γ , λ11, and λ21). The horizontal lines in
the mixing plots represent the true values of the parameters, which are well covered by the
posterior draws.

This simulation study is done using R. The R code for implementing the PCG sampler
used to fit the joint segmentation model for multivariate Poisson time series data is available
in this article’s supplemental materials folder on the JCGS webpage.

5. JOINT IMPUTATION MODEL FOR NONNESTED DATA

Our last example deals with a joint imputation model used to create imputations for a
multivariate response variable that is observed on misaligned partitions. For the joint im-
putation model, we construct a PCG sampler by taking advantage of the misaligned data
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Figure 7. Simulated data and output from the PCG sampler in the multivariate time series model. The top two
panels show the observed counts of the two signals with a representation of the expected counts (solid lines). The
panels in the second row show the posterior mean of the block indicator matrix Z for two signals. The bottom
three rows show the mixing and autocorrelation plots of selected model parameters (γ , λ11, and λ21), which
illustrate the fast convergence of the PCG sampler. The solid horizontal lines in the mixing plots represent the
true values of the model parameters used to simulate the data.
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Figure 8. Illustration of a misaligned data structure in a hypothetical state. The highest resolution partition
(i.e., the set of communities) is combined into lower resolution partitions (i.e., the sets of counties and agen-
cies) that are not aligned. Each component of a bivariate response variable associated with the highest reso-
lution partition is aggregated to one of the two lower resolution partitions. Only the county and agency level
data are observed; the community level data are missing. For example, when a bivariate response variable on
n = 6 communities is given by {(Zi1,Zi2), i = 1,2, . . . ,6}, the first component is aggregated to J = 3 counties
(Y11 = Z11 + Z41, Y21 = Z21 + Z51, and Y31 = Z31 + Z61) and the second component is aggregated to K = 2
agencies (Y12 = Z12 + Z22 + Z32 and Y22 = Z42 + Z52 + Z62). The joint imputation model creates imputa-
tions for the response variable that is missing on the lower resolution partitions, that is, Ỹ11 = Z11 + Z21 + Z31,
Ỹ21 = Z41 + Z51 + Z61, Ỹ12 = Z12 + Z42, Ỹ22 = Z22 + Z52, and Ỹ32 = Z32 + Z62.

structure and reparameterization. A fixed geographical region is often divided into several
different levels of political partitions. In the United States, for example, the country is se-
quentially divided into states, into counties, and partially into cities. In this case, one of
the partitions generally contains or is completely nested within others. Unlike the United
States, however, Germany is composed of different nonnested geographic partitions, that is,
states, counties, agencies, and communities. The set of communities is the highest resolu-
tion partition, the sets of counties and agencies are lower resolution partitions each of which
consists of several communities, and each state is divided into both counties and agencies.
The two partitions between states and communities do not generally nest one within the
other; see Figure 8. In this example, we consider such misaligned partitions of a certain
state. A multivariate response variable is associated with each community but observed
only at the level of either the counties or the agencies. That is, only certain partial sums
of each component of the multivariate response variable are available on one of the two
lower resolution partitions. Here we assume additivity of the data because they are gener-
ally cumulative counts. A difficulty arises when some components of the response variable
are observed on a certain lower resolution partition (e.g., the counties), and the other com-
ponents are observed on a different lower resolution partition (e.g., the agencies), which
neither contains nor is nested within the first partition. Given the observed data, our joint
imputation method aims to create joint imputations for the multivariate response variable
that is missing on the lower resolution partitions, properly accounting for its correlation
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structure. Figure 8 illustrates simplified misaligned partitions where the communities are
grouped into either counties or agencies, but the two lower resolution partitions are not
nested within each other; details are given below.

For clarity, we consider a simplified joint imputation model as follows. At the commu-
nity level, we have a bivariate response variable that is denoted by Z = (Z1,Z2) where
Z1 = {Zi1, i = 1,2, . . . , n} and Z2 = {Zi2, i = 1,2, . . . , n} with n being the number of
communities in a particular state. There is also a set of covariates X that is fully observed
at the community level. Due to the additivity assumption, a variable observed at the com-
munity level can be aggregated to recover the corresponding variable at both the county
and agency levels. Thus, the covariates are available on all of the levels of the partition. To
simplify modeling of the correlation structure, we assume that the community level data
follow a bivariate Gaussian distribution, so that our complete-data model is given by(

Zi1

Zi2

)
ind∼ N2

((
X


i β1

X

i β2

)
,�

)
for i = 1,2, . . . , n, (5.1)

where Xi is a p × 1 vector of known covariates in community i, β1 and β2 are p × 1

vectors of coefficients, and � = (σ 2
1 σ12

σ12 σ 2
2

)
denotes the 2 × 2 covariance matrix with σ 2

1

and σ 2
2 being residual variances for Zi1 and Zi2, respectively, and σ12 being the resid-

ual covariance between Zi1 and Zi2. The model in (5.1) allows us to explicitly account for
the correlation structure of the bivariate response variable and easily can be generalized
for a multivariate response variable. The set of communities is partitioned into J disjoint
counties and into K disjoint agencies. Let Jj be the set of indices of the communities
that are nested within county j , for j = 1,2, . . . , J . Then, we have Jj ⊂ {1,2, . . . , n}
such that

⋃J
j=1 Jj = {1,2, . . . , n} and Jj ∩ Jk = ∅ for j �= k, and the cardinality of

Jj is |Jj | = nj with n = ∑J
j=1 nj . Likewise, we define by Kk the set of indices of the

communities that are nested within agency k for k = 1,2, . . . ,K , so that |Kk| = mk and
n = ∑K

k=1 mk . Here, we assume that the first component of the bivariate response variable
is observed only on the counties and the second component only on the agencies. That is, let
Y1 = {Yj1, j = 1,2, . . . , J } denote the first component of the bivariate response variable
observed on J counties and Y2 = {Yk2, k = 1,2, . . . ,K} denote the second component ob-
served on K agencies. Because of the additivity of the variables, Yj1 consists of the sum of
the nj values of Zi1 for county j , that is, Yj1 = ∑

i∈Jj
Zi1 for j = 1,2, . . . , J . Likewise,

Yk2 consists of the sum of the mk values of Zi2 for agency k, that is, Yk2 = ∑
i∈Kk

Zi2

for k = 1,2, . . . ,K . Thus, the observed data consist of Yobs = (Y1,Y2), and the missing
data are denoted by Ỹ1 = {Ỹk1, k = 1,2, . . . ,K} and Ỹ2 = {Ỹj2, j = 1,2, . . . , J }, where
Ỹk1 = ∑

i∈Kk
Zi1 and Ỹj2 = ∑

i∈Jj
Zi2. Once we impute the bivariate response variable

Z, the missing response variable on the lower resolution partitions, Ỹ = (Ỹ1, Ỹ2), can be
recovered by aggregating the imputed community-level variable Zimp = (Zimp 1,Zimp 2).

Figure 8 presents a simplified example where n = 6 communities are combined into ei-
ther J = 3 counties or K = 2 agencies, and both lower resolution partitions are misaligned.
In this example, the observed data consist of the first component aggregated to the coun-
ties and the second component aggregated to the agencies: Y11, Y21, Y31, Y12, and Y22. On
the other hand, the first component aggregated to the agencies and the second component
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Figure 9. Deriving a PCG sampler in the joint imputation model for nonnested data.

aggregated to the counties are not observed and must be imputed: Ỹ11 = Z11 + Z21 + Z31,
Ỹ21 = Z41 + Z51 + Z61, Ỹ12 = Z12 + Z42, Ỹ22 = Z22 + Z52, and Ỹ32 = Z32 + Z62.

In the joint imputation model, the posterior distribution of the unknown quantities is
given by p(Z1,Z2,β1,β2,�|Yobs) under the conjugate noninformative prior distribution
on (β1,β2,�). We can create multiple imputations for (Z1,Z2) by running a parent Gibbs
sampler constructed using the conditional distributions in Figure 9(a). To improve the con-
vergence of the parent Gibbs sampler, we capitalize on some marginal distributions of the
target distribution that are suggested by the misaligned data structure. In Figure 9(b), we
sample Z2 along with Z1 in Step 1, and (Z1,Z2) along with β1 and β2 in Steps 3 and 4,
respectively. Permuting the conditional distributions in Figure 9(c) leaves the additionally
sampled quantities unused in the subsequent steps of the sampler. Thus, we can safely
remove these intermediate draws from the sampler, which yields a PCG sampler in Fig-
ure 9(d). Finally, the six steps in Figure 9(d) can be blocked into the three incompatible
steps in Figure 9(e). Details are given in the Appendix.

To illustrate the improved convergence of the PCG sampler over the parent Gibbs
sampler, a simulation study is conducted as follows. First, we assume n = 120 commu-
nities in a single state, and we construct the counties and agencies by combining every
nj = 5 communities and every mk = 8 communities, respectively. This means that there
are J = 120/5 = 24 counties and K = 120/8 = 15 agencies. Then, under the model in
(5.1), we generate test data Z = (Z1,Z2) on n = 120 communities using covariates, X,
generated from N(0,52), the regression coefficients, β1 = (β01, β11)


 = (1 0.5)
 and
β2 = (β02, β12)


 = (1 0.2)
, and the covariance matrix, � = ( 1 1.8
1.8 4

)
. The observed data

Yobs = (Y1,Y2) are constructed by taking the partial sums of every five Z1 variables and
every eight Z2 variables, respectively. After running two chains each with 2000 iterations,
the convergence of both the parent Gibbs sampler and PCG sampler is examined by com-
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Figure 10. Comparison of the parent Gibbs sampler and PCG sampler devised for the joint imputation model
with nonnested data. The first two columns correspond to the parent Gibbs sampler and the last two columns the
PCG sampler. The first row shows the quantile–quantile plots for true community-level data Z and the imputed
community-level data Zimp. The convergence characteristics of selected model parameters (β11, σ 2

1 , and σ12)
are compared using the mixing and autocorrelation plots. The PCG sampler has much quicker convergence than
the parent Gibbs sampler. The solid horizontal lines in the mixing plots represent the true values of the selected
model parameters.

puting the R̂1/2 statistic for all model parameters. Because all the R̂1/2 statistics are less
than 1.1, our inference is based on 2000 draws from the second halves of the two chains for
each sampler. Figure 10 compares the two samplers in terms of mixing and autocorrelation;
the first two columns correspond to the parent Gibbs sampler, and the last two columns the
PCG sampler. The top four panels in Figure 10 present the quantile–quantile plots for the
test data, Z, and imputed data, Zimp, under both the parent Gibbs sampler and PCG sam-
pler. Because the data in each of the quantile–quantile plots follow a 45◦ line, they illustrate
that our imputations created by both samplers are very close to the test data. In the bottom
three rows of Figure 10, the convergence characteristics are compared between the parent
Gibbs sampler and PCG sampler for the selected model parameters (β11, σ 2

1 , and σ12). It
is evident that the posterior draws of the model parameters obtained by the PCG sampler
exhibit faster mixing behavior and lower autocorrelations than those obtained by the parent
Gibbs sampler, so that the PCG sampler outperforms the parent Gibbs sampler.
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This simulation study is done using R. The R code for implementing the PCG sampler
used to create joint imputations for a bivariate response variable that is observed on mis-
aligned partitions is available in this article’s supplemental materials folder on the JCGS
webpage.

6. CONCLUDING REMARKS

In this article, we discuss the relationship between the EM algorithm and the Gibbs
sampler with respect to efficient computational strategies, and describe the recently pro-
posed PCG sampler as a stochastic counterpart to the ECME and AECM algorithms. Using
different data augmentation schemes in the conditional maximization steps of the ECM al-
gorithm (Meng and Rubin 1993) corresponds to constructing each sampling step of the
Gibbs sampler by using different marginal distributions of a target distribution. This may
result in conditional distributions that are functionally incompatible. The PCG sample cap-
italizes on this incompatibility to improve convergence while maintaining the common
target stationary distribution.

PCG samplers that are composed of incompatible conditional distributions are illus-
trated by three examples with substantive computational challenges. In the first example,
the Gibbs sampler exhibits very slow convergence and, in the extreme, it does not converges
to the target posterior distribution. In this case, the PCG sampler dramatically improves the
convergence of its parent Gibbs sampler by marginalizing missing data out of some con-
ditional distributions. The second example illustrates the convenience of the PCG sampler
by showing its ability to avoid the need of jumping between spaces of different dimen-
sions. By marginalizing over a certain parameter vector whose dimension is not fixed, the
PCG sampler avoids use of reversible jump MCMC algorithm (Green 1995). Although this
marginalization results in a set of incompatible conditional distributions, the PCG sampler
maintains the target stationary distribution as its parent Gibbs sampler. In the last example,
the misaligned data structure makes it easy to find a set of incompatible conditional distri-
butions. Taking advantage of these incompatible distributions, the PCG sampler provides
faster convergence than its parent Gibbs sampler.

APPENDIX: IMPLEMENTING THE PCG SAMPLER IN
FIGURE 9(d)

In this appendix, we describe the details of the sampling steps of the PCG sampler for
fitting our joint imputation model for nonnested data. The marginalized distributions in
Steps 1, 2, and 3 of the PCG sampler in Figure 9(d) can be obtained by making use of
the misaligned data structure and reparameterization. Due to the additivity of variables, it
is easy to obtain the joint distribution of the (J + K) × 1 vector of (Y1,Y2), which is a
multivariate Gaussian distribution given by(

Y1

Y2

)
∼ NJ+K

((
X


1 β1

X

2 β2

)
,

(
ϒ11 ϒ12

ϒ21 ϒ22

))
, (A.1)
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where X1 = {∑i∈Jj
Xi , j = 1,2, . . . , J } is a p × J matrix of known covariates for coun-

ties, X2 = {∑i∈Kk
Xi , k = 1,2, . . . ,K} is a p × K matrix of known covariates for agen-

cies, and
(ϒ11ϒ12
ϒ21ϒ22

)
is a (J + K) × (J + K) covariance matrix between Y1 and Y2 which is

a function of �. Based on the likelihood in (A.1), the conditional distribution in Step 1 of
the PCG sampler in Figure 9(d) is

p(β1|β2,�,Yobs) ∝ p(β1,β2, σ
2
1 ,ψ2

2 ,ψ12|Yobs) · (σ 2
1 )−2

= Np(β̂1, σ
2[X1�11X


1 ]−1), (A.2)

where ψ2
2 = σ 2

2 /σ 2
1 , ψ12 = σ12/σ

2
1 , (σ 2

1 )−2 is the Jacobian of the transformation

(σ 2
2 , σ12) �→ (ψ2

2 ,ψ12),
(�11�12
�21�22

) = σ 2
(ϒ11ϒ12
ϒ21ϒ22

)−1
, and β̂1 = [X1�11X


1 ]−1(X1�11Y1 +
X1�12[Y2 − X


2 β2]). Due to symmetry, the marginalized distribution in Step 2 of
the PCG sampler in Figure 9(d) can be derived using the reparameterization of ψ2

1 =
σ 2

1 /σ 2
2 and ψ21 = σ12/σ

2
2 . In Step 3, we make a county-wise update of Z1, for exam-

ple, {Zi1, i ∈ Jj }. When we arbitrarily drop one component Zl1 out of {Zi1, i ∈ Jj },
the remaining components along with Yj jointly follow a multivariate Gaussian dis-
tribution. Thus, it is easy to compute p({Zi1, i ∈ Jj , i �= l}|β1,β2,�,Yobs) which is
also a multivariate Gaussian distribution. We sequentially draw each component of
{Zi1, i ∈ Jj , i �= l} = {Zs1, s = 1,2, . . . , nj − 1} from the corresponding conditional
distributions that factorize p({Zi1, i ∈ Jj , i �= l}|β1,β2,�,Yobs), and finally we set
Zl1 = Yj − ∑

i∈Jj ,i �=l Zi1. More specifically, the conditional distribution for the sth com-
ponent, p(Zs1|Z11, . . . ,Z(s−1)1,β1,β2,�,Yobs), is an extended skew-normal distribu-
tion (Azzalini 2005) because p(Zs1,Zs2|Z11, . . . ,Z(s−1)1,β1,β2,�,Yobs) is a bivariate
Gaussian distribution and Zs2 is truncated above at an upper bound that is implied by Y2.
That is, we draw Zs1 from the extended skew-normal distribution,

Zs1 ∼ μs + νs SN(α, τs) for s = 1,2, . . . , nj − 1, (A.3)

where μs = X

s β1 + (Yj − 1{s>1}

∑s−1
i=1 Zi1 − ∑

i∈Jj
X


i β1)/(nj − s + 1), νs = σ 2
1 (nj −

s)/(nj − s + 1), Z ∼ SN(α, τ ) if Z follows an extended skew-normal distribution with
shape parameter α and upper bound τ , that is, p(Z) = φ(−Z)�(τ

√
1 + α2 − αZ)/�(τ),

where φ(·) and �(·) are the pdf and cdf of a standard Gaussian random variable, re-

spectively, α = σ12/

√
σ 2

1 σ 2
2 − σ 2

12, and τs is approximated by the standardized value of∑
i∈Jj

Ẑi2, where Ẑi2 = Yk2/mk is the maximum likelihood estimate for Zi2 when i ∈ Kk .

SUPPLEMENTAL MATERIALS

Datasets for the quasar PG 1634+706: Archive containing the data and calibration files
used for the spectral analysis in Section 3. (quasardata.tar.gz, GNU zipped tar file)

R code for joint segmentation: R code for the PCG sampler used to fit the piecewise-
constant multivariate time series model in Section 4. (pcg1.r, R file)

R code for joint imputation: R code for the PCG sampler used to create joint imputations
of a bivariate variable that is observed on misaligned partitions as described in Section 5.
(pcg2.r, R file)
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