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Ever-increasing computational power, along with ever–more sophisticated statistical computing techniques, is making it possible to fit
ever–more complex statistical models. Among the more computationally intensive methods, the Gibbs sampler is popular because of its
simplicity and power to effectively generate samples from a high-dimensional probability distribution. Despite its simple implementation
and description, however, the Gibbs sampler is criticized for its sometimes slow convergence, especially when it is used to fit highly
structured complex models. Here we present partially collapsed Gibbs sampling strategies that improve the convergence by capitalizing on a
set of functionally incompatible conditional distributions. Such incompatibility generally is avoided in the construction of a Gibbs sampler,
because the resulting convergence properties are not well understood. We introduce three basic tools (marginalization, permutation, and
trimming) that allow us to transform a Gibbs sampler into a partially collapsed Gibbs sampler with known stationary distribution and faster
convergence.
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1. INTRODUCTION

The ordinary Gibbs sampler (Geman and Geman 1984) be-
gins with the joint posterior distribution of a set of unknown
quantities and updates groups of these quantities by sampling
them from their conditional distributions under the joint pos-
terior distribution. Each quantity is generally updated exactly
once in each iteration. The partially collapsed Gibbs (PCG)
sampler replaces some of these conditional distributions with
conditional distributions under some marginal distributions of
the joint posterior distribution. This strategy is useful because it
can result in samplers with much better convergence properties,
and it is interesting because it may result in sampling from a set
of incompatible conditional distributions; that is, there may be
no joint distribution that corresponds to this set of conditional
distributions.

Our technique can be viewed as a generalization of blocking
(Liu, Wong, and Kong 1994) in that the resulting conditional
distributions sometimes can be combined to form a Gibbs sam-
pler that is a blocked version of the original sampler. In such
cases, we can recover a set of compatible conditional distribu-
tions and an ordinary Gibbs sampler by combining steps. This
is not always possible, however, and some PCG samplers may
be composed only of draws from incompatible conditional dis-
tributions. In this regard, PCG samplers constitute a general-
ization of the Gibbs sampler, in that ordinary Gibbs samplers
are constructed using the conditional distributions of some joint
distribution. Because both blocking and collapsing (Liu et al.
1994) are special cases of PCG, our methods can be viewed
as a generalizing and unifying framework for these important
and efficient methods. Like blocked and collapsed samplers,
PCG samplers dominate their parent Gibbs samplers in terms
of their convergence and maintain the target posterior distribu-
tion as their stationary distribution.

To transform a Gibbs sampler into a PCG sampler, we use
three basic tools. The first tool, marginalization, entails mov-
ing a group of unknowns from being conditioned upon to being
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sampled in one or more steps of a Gibbs sampler; the marginal-
ized group can differ among the steps. Second, we may need
to permute the steps of the sampler to use the third tool, trim-
ming sampled components from the various steps that can be re-
moved from the sampler without altering its Markov transition
kernel. Marginalization and permutation both trivially maintain
the stationary distribution of a Gibbs sampler, and both can ef-
fect the convergence properties of the chain; marginalization
can dramatically improve convergence, whereas the effect of a
permutation is typically small. Trimming, on the other hand,
is explicitly designed to maintain the kernel of the chain. Its
primary advantage is to reduce the complexity and the compu-
tational burden of the individual steps. It is trimming that intro-
duces incompatibility into the sampler.

Although our methods are motivated by computational chal-
lenges in applied problems in astronomy and multiple impu-
tation, to save space here we focus on our methods and their
properties. Interested readers can find detailed applications in
our technical paper (Park and van Dyk 2008).

2. MOTIVATING EXAMPLES

To illustrate PCG samplers, we consider the simple random-
effects model given by

yij = ξi + εij , for i = 1, . . . , k and j = 1, . . . , n, (1)

where ξi
iid∼ N(μ, τ 2) and εij

iid∼ N(0, σ 2) are independent with
yij observation j in group i, n the number of units in each
group, ξi the mean of group i, μ the mean of the group means,
τ 2 the between group variance, σ 2 the within-group variance,
and τ 2 and σ 2 presumed known. From a Bayesian perspective,
we are interested in the joint posterior distribution p(ξ ,μ|Y)

computed under the flat prior distribution p(μ) ∝ 1, where
ξ = (ξ1, ξ2, . . . , ξk) and Y = {yij , i = 1, . . . , k, j = 1, . . . , n}.
To fit this random-effects model, we can use a prototype two-
step Gibbs sampler that iterates between the following two
steps:

Sampler 1
Step 1. Draw ξ (t) from p(ξ |μ(t−1),Y),
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where

ξi |μ(t−1),Y
ind∼ N

(
nτ 2Ȳi· + σ 2μ(t−1)

nτ 2 + σ 2
,

τ 2σ 2

nτ 2 + σ 2

)

for i = 1, . . . , k.

Step 2. Draw μ(t) from

p
(
μ|ξ (t),Y

) = N

(∑
i ξ

(t)
i

k
,
τ 2

k

)
,

with Ȳi· = ∑n
j=1 Yij /n being the mean of the observations in

group i. We emphasize that this is a toy example introduced for
illustrative purposes; there is no need for Gibbs sampling when
both the between and within group variances are known.

In the case of a two-step Gibbs sampler, the geometric rate of
convergence is the same as the lag-one autocorrelation; in Sam-
pler 1, the lag-one autocorrelation is the shrinkage parameter,
σ 2/(nτ 2 + σ 2). To illustrate the potentially slow convergence
of Sampler 1, we simulate test data with μ = 0, σ = 10, and
τ = .1 when there are n = 10 observations in each of k = 10
groups. The test data are fit by running Sampler 1 with 5,000 it-
erations; the resulting lag-one autocorrelation for μ is .999. The
first row of Figure 1 presents the output of Sampler 1 and illus-
trates the poor mixing and high autocorrelations of the subchain
for μ and the strong posterior correlation of μ and ξ1.

To improve the convergence of a Markov chain constructed
with a Gibbs sampler, we can replace a conditional distribution
of the original Gibbs sampler with a conditional distribution of
a marginal distribution of the target distribution. Throughout
this article, such a conditional distribution that conditions on
fewer unknown components is referred to as a reduced condi-
tional distribution. Reduced conditional distributions are condi-
tional distributions of a marginal distribution of the target joint
distribution. In the random-effects model, we consider the mar-
ginal distribution p(μ|Y) = ∫

p(ξ ,μ|Y) dξ of the target dis-
tribution p(ξ ,μ|Y). We replace step 2 of Sampler 1 with the
trivial “conditional” distribution of this marginal distribution.
This substitution yields the following sampler:

Sampler 2
Step 1. Draw ξ (t) from p(ξ |μ(t−1),Y).
Step 2. Draw μ(t) from

p(μ|Y) = N

(∑
i

∑
j yij

nk
,
nτ 2 + σ 2

nk

)
.

Here step 2 simulates μ directly from its marginal posterior
distribution. The advantage of this strategy is clear: We imme-
diately obtain independent draws of μ from the target poste-
rior distribution. But the two conditional distributions used in
Sampler 2, p(ξ |μ,Y) and p(μ|Y), are incompatible and im-
ply inconsistent dependence structure. Even in this simple case,
the incompatible conditional distributions improve the conver-
gence of the sampler, but at the expense of the correlation struc-
ture of the target distribution. Indeed, because μ(t) is sampled
independently of ξ (t), the Markov chain has stationary distribu-
tion p(ξ |Y)p(μ|Y) rather than p(ξ ,μ|Y). This is illustrated in
the second row of Figure 1, which confirms that the subchain
for μ converges immediately to its target marginal distribution,
but the correlation structure between μ and ξ1 (and all of ξ ) is
lost.

There is an obvious solution. Sampler 2 first draws ξ from its
conditional posterior distribution p(ξ |μ,Y) and then draws μ

from its marginal posterior distribution p(μ|Y), rather than vice
versa. By simply exchanging the order of the steps, we regain
the correlation structure of the target distribution. The resulting
Gibbs sampler iterates between two steps:

Sampler 3
Step 1. Draw μ(t) from p(μ|Y).
Step 2. Draw ξ (t) from p(ξ |μ(t),Y).

Sampler 3 comprises two incompatible conditional distrib-
utions and converges quicker than Sampler 1, while maintain-
ing the correlations of the target distribution. Of course in this
case, the PCG sampler (Sampler 3) is simply a blocked ver-
sion of Sampler 1; steps 1 and 2 combine into a single indepen-
dent draw from the target distribution. As we show, however,
PCG samplers can be more general than blocked Gibbs sam-
plers when there are more than two steps. The bottom row of
Figure 1 illustrates the fast convergence of the subchain for μ

and the correct correlation structure of μ and ξ1.
We now consider a more complex four-step prototype Gibbs

sampler with target distribution p(W,X,Y,Z). As the number
of components in a Gibbs sampler increases, so do the ways
to construct PCG samplers; here we focus on an example in
which partial collapse does not correspond with blocking. Gen-
erally this situation is even more complicated when the sampled
component are vectors, in that we may marginalize out certain
subvectors; see Park and van Dyk (2008). We begin with the
Gibbs sampler that iterates among the following steps:

Sampler 4
Step 1. Draw W from p(W|X,Y,Z).
Step 2. Draw X from p(X|W,Y,Z).
Step 3. Draw Y from p(Y|W,X,Z).
Step 4. Draw Z from p(Z|W,X,Y).

Suppose that it is possible to directly sample from p(Y|X,Z)

and p(Z|X,Y), which are both conditional distributions of∫
p(W,X,Y,Z) dW. By replacing steps 3 and 4 with draws

from these two distributions, we are partially collapsing W out
of Sampler 4. But substituting the conditional distributions of a
marginal distribution of the target distribution into a Gibbs sam-
pler may result in a transition kernel with unknown stationary
distribution. This is illustrated by the loss of correlation struc-
ture that occurs when using Sampler 2; see the last column of
Figure 1. Nevertheless, we hope to capitalize on the potential
computational gain that partial collapse offers. Thus our goal
is to formalize a procedure that allows us to introduce partially
collapsed steps while ensuring that the target stationary distri-
bution is maintained. We illustrate our strategy in this example
and formalize it in Section 3.

Moving components in a step of a Gibbs sampler from be-
ing conditioned on to being sampled can improve the conver-
gence characteristics of the sampler. This neither alters the sta-
tionary distribution of the chain nor destroys the compatibil-
ity of the conditional distributions. For example, based on the
available reduced conditional distributions, we can sample W
jointly with Y in step 3 and with Z in step 4; for example, W
and Y can be sampled jointly by first sampling from P(Y|X,Z)

and then from P(W|Y,X,Z), both of which are assumed to be
tractable. The resulting Gibbs sampler iterates among the fol-
lowing steps:
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Figure 1. Comparison of three samplers for the simple random-effects model. The first two columns show the mixing and autocorrelations
of the subchain for μ; the last column shows the correlation structure between μ and ξ1. The three rows represent the ordinary Gibbs sampler
(sampler 1), the Gibbs sampler resulting from the inappropriate substitution of a reduced conditional distribution (sampler 2), and the PCG
sampler (sampler 3).

Sampler 5
Step 1. Draw W� from p(W|X,Y,Z).
Step 2. Draw X from p(X|W,Y,Z).
Step 3. Draw (W�,Y) from p(W,Y|X,Z).
Step 4. Draw (W,Z) from p(W,Z|X,Y).

In each step we condition on the most recently sampled value
of each variable that is not sampled in that step. Thus in step 2,
we condition on the W = W� drawn in step 1. The output com-
prises the most recently sampled values of each variable at the
end of the iteration, that is, W drawn in step 4, X drawn in
step 2, Y drawn in step 3, and Z drawn in step 4. Here and
elsewhere a superscript “�” designates an intermediate quantity
that is sampled but is not part of the output of an iteration. Sam-
pler 5 is a trivial generalization of what is typically considered
an ordinary Gibbs sampler, with W sampled more than once
during an iteration. This sampler may be inefficient, in that it
draws W three times in each iteration. But removing any two
draws from the iteration necessarily affects the transition ker-
nel, because the first draw is conditioned on in the next step and

the third draw is part of the output of the sampler. As Figure 1
illustrates, such changes to the transition kernel can destroy the
correlation structure of the stationary distribution or otherwise
affect convergence of the chain.

In general, we consider removing only draws of intermediate
quantities from a sampler, because removing draws of any part
of the output quantities and replacing output quantities with cor-
responding intermediate quantities necessarily alters the transi-
tion kernel and may affect the stationary distribution. Moreover,
we only remove draws of intermediate quantities if removing
them from the iteration does not affect the transition kernel.
Permuting the steps of a Gibbs sampler does not alter its sta-
tionary distribution, but sometimes allows us to meet the cri-
teria for removing redundant draws. In the case of Sampler 5,
such permutation yields a Gibbs sampler that iterates among the
following:

Sampler 6
Step 1. Draw (W�,Y) from p(W,Y|X,Z).
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Step 2. Draw (W�,Z) from p(W,Z|X,Y).
Step 3. Draw W from p(W|X,Y,Z).
Step 4. Draw X from p(X|W,Y,Z).

Here the first two draws of W correspond to intermediate
quantities that are not conditioned on and are not part of the
output. This permutation alters the transition kernel while main-
taining the stationary distribution, and allows us to remove the
two redundant draws of W without changing the transition ker-
nel. Removing the intermediate quantities W� from Sampler 6
yields a PCG sampler that iterates among the following:

Sampler 7
Step 1. Draw Y from p(Y|X,Z).
Step 2. Draw Z from p(Z|X,Y).
Step 3. Draw W from p(W|X,Y,Z).
Step 4. Draw X from p(X|W,Y,Z).

We can block steps 2 and 3 in Sampler 7 into a joint draw
from p(W,Z|X,Y), thereby yielding the following:

Sampler 8
Step 1. Draw Y from p(Y|X,Z).
Step 2. Draw W from p(W,Z|X,Y).
Step 3. Draw X from p(X|W,Y,Z).

The three conditional distributions in Sampler 8 remain in-
compatible, however. Thus this PCG sampler does not simply
correspond to a blocked version of Sampler 4. This illustrates
that partial collapse is a more general technique than blocking.

The resulting PCG sampler (i.e., Sampler 8) is not an ordi-
nary Gibbs sampler; permuting its draws may result in a kernel
with unknown stationary distribution. As in this case, however,
we can sometimes verify that a PCG sampler is valid in that the
resulting stationary distribution is equal to the target distribu-
tion. Still, because the removal of intermediate quantities intro-
duces incompatibility, removal must be done with great care.

3. BASIC TOOLS

Here we present three basic tools for constructing PCG sam-
plers. Unless marginalized quantities are removed from the iter-
ation with care, the resulting chain may not converge properly.
Thus the tools are designed to ensure that the resulting PCG
samplers converge quickly to the target distribution. We discuss
the three tools—marginalization, permutation, and trimming—
in the order that they are applied. Of these, trimming must be
done with care, because it has the potential to alter the chain’s
stationary distribution. Figure 2 presents a flowchart delineating
how the basic tools are applied to an ordinary Gibbs sampler to
construct a PCG sampler with the same stationary distribution.
In the following sections, we closely examine each component
of the flowchart in Figure 2.

3.1 Marginalization

We aim to construct a PCG sampler with stationary distribu-
tion p(X), where X is a vector quantity that we partition into J

subvectors, X = (X1,X2, . . . ,XJ ). Consider the sequence of
index sets J = {J1,J2, . . . ,JP }, where Jp ⊂ {1,2, . . . , J }
for p = 1,2, . . . ,P such that

⋃P
p=1 Jp = {1,2, . . . , J }. Let J c

p

be the complement of Jp in {1,2, . . . , J } and XJp be the col-
lection of components of X corresponding to the index set Jp ,
that is, XJp = {Xj : j ∈ Jp}. Step p of a P -step Gibbs sampler
can be written as follows:

Step p. Draw X (t)
Jp

from p(XJp |X (t−1)
J c

p
), for p = 1,2,

. . . ,P ,

where X (t−1)
J c

p
consists of the most recently sampled values of

each component of XJ c
p

. This is a Gibbs sampler that uses
compatible conditional distributions, where some components
of X may be updated in multiple steps; thus it is not an ordinary
Gibbs sampler.

An ordinary Gibbs sampler updates each (vector) compo-
nent of X only once in an iteration. In our notation this cor-
responds to the case where J is a partition of {1,2, . . . , J }.
At the other extreme, suppose that there exists an index k such
that k ∈ Jp for each p. In this case Xk is drawn in each step
and is never conditioned on; we say that Xk has been (com-
pletely) collapsed out of the Gibbs sampler. Thus we can refor-
mulate the Gibbs sampler in terms of the marginal distribution∫

π(X1,X2, . . . ,XJ ) dXk , without altering its kernel.
The first step in constructing a PCG sampler is to marginalize

some components of X out of some steps of the sampler. To do
this, we replace Jq with J̃q for one or more q ∈ {1,2, . . . ,P },
where Jq is a proper subset of J̃q . That is, in step q , we move
some components of X from being conditioned on to being
sampled. As we show later, the marginalization can improve
the convergence properties of the Gibbs sampler; see Section 4
for the theory on the improved rate of convergence. Then step
q is conditional on fewer components of X:

Step q . Draw X (t)

J̃q
from p(XJ̃q

|X (t−1)

J̃ c
q

).

Marginalizing out some components of X alters the transi-
tion kernel, but not the stationary distribution for X or the com-
patibility of the conditional distributions. The improved rate of
convergence of the sampler is attributed mainly to marginaliza-
tion.

3.2 Permutation

In the case of a P -step Gibbs sampler, the steps can be
reordered into P ! possible permutations. Permuting the com-
patible conditional distributions of a Gibbs sampler typically
changes its transition kernel and interchanges intermediate
quantities with output quantities, while maintaining the station-
ary distribution of the chain. Our goal in permuting the steps is
to arrange them so that as many of the marginalized components
as possible are intermediate quantities that are not conditioned
on in subsequent steps.

Permutation of the steps may affect the convergence of a
sampler, but its influence is typically small compared with that
of marginalization (van Dyk and Meng 1997). In this article
we tend to ignore the effect of permutation on convergence; we
are interested in permutations merely, because they can allow
removal of some intermediate quantities.

3.3 Trimming

By trimming, we mean discarding a subset of the components
that were to be sampled in one or more steps of a Gibbs sam-
pler. In the P -step Gibbs sampler, for example, trimming the
marginalized components of X in step q yields the following:

Step q . Draw X (t)
Jq

from p(XJq |X (t−1)

J̃ c
q

).
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Figure 2. Flow diagram for deriving a PCG sampler from an ordinary Gibbs sampler. (∗) As many components should be marginalized in as
many steps as possible. (∗∗) Intermediate draws should only be trimmed if they are not conditional on in subsequent draws.

The reduced conditional distribution sampled in this step typ-
ically is not compatible with the other conditional distributions
sampled in the sampler. In particular, because Jq ∪ J̃ c

q is not
equal to J (i.e., Jq is a proper subset of J̃q ), this conditional
distribution is not defined on the same space as the conditional
distributions of the original sampler. Thus trimming introduces
incompatibility into the conditional distributions of a PCG sam-
pler. This means the resulting PCG sampler may no longer be
a Gibbs sampler per se, because Gibbs samplers are generally
expected to be constructed with compatible conditional distrib-
utions. Unlike in a Gibbs sampler, permuting the steps of a PCG
sampler may result in a new Markov transition kernel with an
unknown stationary distribution. Nonetheless, trimming is ad-
vantageous, because each iteration is less computationally de-
manding. Indeed, trimming may render an intractable sampling
step tractable (see Park and van Dyk 2008).

We emphasize that trimming must be done carefully, because
it has the potential to alter the stationary distribution of the
chain. Intermediate quantities may be conditioned on in subse-
quent draws. Thus we can trim only intermediate quantities that
are not conditioned on if we hope to maintain the transition ker-

nel. Trimming intermediate quantities that are conditioned on in
subsequent steps can affect the transition kernel and the corre-
lation structure of the stationary distribution. Thus care must
be taken when trimming intermediate quantities to maintain the
stationary distribution.

4. PARTIALLY COLLAPSED GIBBS THEORY

To discuss the effect of partial collapse on convergence, we
introduce some technical concepts concerning Markov chains.
We follow the notation of Liu (2001, sec. 6.7). Let L2(π) de-
note the set of all functions h(X) such that

∫
h2(X)π(X) dX <

∞. This set is a Hilbert space with inner product 〈h,g〉 =
Eπ {h(X)g(X)}, so that ‖h‖2 = varπ (h). For a general Markov
chain MX = {X(0),X(1), . . .} with transition kernel K(X(1) =
X|X(0) = X′), we define the forward operator F on L2(π) for
MX by

Fh(X′) =
∫

h(X)K(X|X′) dX = E
{
h
(
X(1)

)|X(0) = X′}.
Let L2

0(π) = {h : Eπ {h(X)} = 0,varπ {h(X)} < ∞}. This is also
a Hilbert space with the same inner product and is invariant
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under F. We define F0 to be the forward operator on L2
0(π)

induced by F. If we define the norm of this forward operator
by ‖F0‖ = suph ‖F0h(X)‖ with the supremum taken over h ∈
L2

0(π), then it can be shown that

‖F0‖ = sup
h∈L2

0(π)

(
varπ

[
E
{
h
(
X(1)

)|X(0)
}])1/2

= sup
h∈L2

0(π)

{
Eπ

([
E
{
h
(
X(1)

)|X(0)
}]2)}1/2 = ρ

(
X(1),X(0)

)
,

where ρ(ϑ,ϕ) as the maximum correlation of ϑ and ϕ,

ρ(ϑ,ϕ) = sup corr{h(ϑ), g(ϕ)}
= sup

h : var{h(ϑ)}=1

(
varπ

[
E{h(ϑ)|ϕ}])1/2

,

where the first sup is over all nonconstant scalar functions h

and g with finite variance (see, e.g., Liu et al. 1994). Here the
maximum autocorrelation ρ(X(1),X(0)) is computed under the
stationary distribution of MX, and also is denoted by ρ(MX).

The spectral radius of F0, r(F0), typically governs the con-
vergence of MX (Liu 2001) and is related to the norm

by limn→∞ ‖Fn
0‖1/n = r(F0) and

(2)
by the inequality r(F0) ≤ ‖F0‖.

Along with the relationship between the maximum autocorre-
lation of MX and ‖F0‖, (2) justifies using ‖F0‖ in the analysis
of the convergence behavior of MX.

Consider the P -step Gibbs sampler described in Section 3.
We define a p-step–lagged Gibbs sampler for p = 0,1, . . . ,P −
1, as the Gibbs sampler with iteration that begins with step
p + 1, cycles through the steps in the same order as in the orig-
inal sampler, and ends with step p. The forward operators of
the P p-step–lagged Gibbs samplers (with p = 0,1, . . . ,P −1)
have the same spectral radius, which we call r ; however, they
may have different norms and maximum autocorrelations. We
denote the maximum autocorrelation ρ(MX) of the p-step–
lagged chain by ρp for p = 0,1, . . . ,P − 1. By (2), we have

r ≤ min
p∈{0,1,...,P−1}ρp, (3)

where we introduce minp∈{0,1,...,P−1} ρp as the cyclic-permuta-
tion bound on the spectral radius. Later we show that by mar-
ginalizing a component of X in step p + 1 (i.e., the first step of
the p-step–lagged Gibbs sampler), we reduce ρp , thereby re-
ducing the bound given in (3) on the spectral radius. This leads
to the following result.

Theorem 1. Sampling more components of X in any set of
steps of a Gibbs sampler can only reduce the cyclic-permutation
bound on the spectral radius of that Gibbs sampler.

It remains only to show that marginalizing a component
of X in step p + 1 reduces ρp . Because step p + 1 is the
first step of the p-step–lagged Gibbs sampler, we evaluate
the effect of marginalizing a component of X in step p + 1
on ρp . This is because the following theorem evaluates the
effect of marginalization in the first step of a Gibbs sam-
pler. To illustrate the computational advantages of the par-
tial collapse, we consider the generic P -step Gibbs sampler
introduced in Section 3, from which we marginalize some

components of X in step 1. We wish to compare two se-
quences of index sets and their resulting transition kernels;
namely (XJ1 ,XJ2 , . . . ,X JP

) and its kernel K(X|X′) and
(XJ̃1

,X J̃2
, . . . ,X J̃P

) and its kernel K̃(X|X′), where Jp =
J̃p for p = 2, . . . ,P , but XJ1 = {x1} and XJ̃1

= {x1,x2} with
X = (x1,x2,x3). Here (x1,x2,x3) is an alternate partition of
X = (X1,X2, . . . ,XJ ) introduced to simplify notation in the
theorem, that is, J1 ⊂ J̃1 ⊂ {1,2, . . . , J }, where both subsets
are proper subsets, x1 = {Xj : j ∈ J1}, x2 = {Xj : j ∈ J̃1 \J1},
and x3 = {Xj : j ∈ J̃ c

1 }. In words, the two sequence of index
sets represent identical samplers, except in step 1, where more
components of X are drawn in the Gibbs sampler with kernel
K̃(X|X′). In this case we have the following result.

Theorem 2. Sampling more components of X in the first step
of a Gibbs sampler improves the resulting maximal autocorre-
lation, ρ(MX).

Proof. Let h be an arbitrary function of X with mean 0 and
finite variance under stationarity, that is, h ∈ L2

0(π) with π the
stationary distribution of X; then

Ẽ{h(X)|x′
3} =

∫
h(X)K−1(X|x1,x2,x′

3)

× p(x1,x2|x′
3) d�−1 dx1 dx2, (4)

where Ẽ represents expectation with respect to K̃(X|X′),
K−1(X|X′) is the transition kernel implied by step 2 through
step P of either sampler, and �−1 = (XJ2 , . . . ,XJP

) is the
set of components updated in step 2 through step P , which may
include multiple copies of certain components of X. Now the
right side of (4) can be written as

Ẽ{h(X)|x′
3}

=
∫ {∫

h(X)K−1(X|x1,x′
2,x′

3)p(x1|x′
2,x′

3) d�−1 dx1

}

× p(x′
2|x′

3) dx′
2

= Eπ

[
E{h(X)|x′

2,x′
3}|x′

3

]
,

where the inner expectation is with respect to K(X|X′). Thus

Eπ

([̃
E{h(X)|x′

3}
]2) = Eπ

{(
Eπ

[
E{h(X)|x′

2,x′
3}|x′

3

])2}
≤ Eπ

{
Eπ

([
E{h(X)|x′

2,x′
3}

]2|x′
3

)}
= Eπ

([
E{h(X)|x′

2,x′
3}

]2)
.

But because varπ [h(X)] is the same for both kernels, the max-
imal autocorrelation induced by K̃(X|X′) is bounded above by
that of K(X|X′).

This shows that the computational advantages can be achiev-
ed by successively marginalizing over the components of X in
any single step of a Gibbs sampler. Thus repeatedly applying
Theorem 2 provides the theoretical basis for the improved con-
vergence of PCG samplers.
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5. CONCLUDING REMARKS

In this article we have presented efficient Gibbs sampling
techniques developed by generalizing the composition of the
conditional distributions in Gibbs samplers. Unlike ordinary
Gibbs samplers, PCG samplers use incompatible conditional
distributions to improve the convergence characteristics of the
samplers. This generalization comes at a price; the condi-
tional distributions that compose a PCG sampler must be per-
formed in a certain order to maintain the target stationary dis-
tribution. We have introduced three basic prescriptive tools—
marginalization, permutation, and trimming—and showed how
applying sequentially these tools can transform a Gibbs sampler
into a PCG sampler. The resulting PCG sampler may comprise
a set of incompatible conditional distributions and generally ex-
hibits superior convergence characteristics. This strategy was

illustrated in the fitting of three models stemming from our ap-
plied work in astronomy and multiple imputation (Park and van
Dyk 2008).

[Received July 2007. Revised January 2008.]
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