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asic Bayesian Methods

. Glickman and David A. van Dyk

this-chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a
‘analysis are the likelihood function, which reflects information about the parameters
d in: the data, and the prior distribution, which quantifies what is known about the
‘before observing data. The prior distribution and likelihood can be easily combined
e posterior distribution, which represents total knowledge about the parameters after
atd hdve been observed. Simple summaries of this distribution can be used to isolate quantities
rest and ultimately to draw substantive conclusions. We illustrate each of these steps of a
ayesian analysis using three biomedical examples and briefly discuss more advanced
Tuding prediction, Monte Carlo computational methods, and multilevel models.

sm several competing moroow of thought. In music, for example, some
posets have been guided by the rules of Romanticism, Impressionism, or
onality in %éﬂowsm their work; in art, painters have at various periods fol-

EHmm of Cubism, Expressionism, or Dadaism with widely &mmmzzm
) ight assume that a scientific discipline such as statistics is immune
losophical divides. Interestingly, this is not the case. Statistics, as a
consists of two main competing schools of thought: The frequentist
approach to statistical inference, and the Bayesian approach. The
a:mnnmﬁ approach, which includes hypothesis testing and confidence inter-
WO om the main modes of inference, has been the main framework for

. _n33 Methods in Molecular Biofogy, vol. 404: Topics in Biostatistics
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most of the techniques discussed thus far in this book. We discuss the cmEnm
of the Bayesian approach in this chapter.

The underlying difference between the Bayesian and frequentist approaches
to statistical inference is in the definition of probability. A frequentist views
probability as a long-run frequency. When a mﬁaﬁoms st asserts that the Hﬁo_uml
bility of a fair coin tossed landing heads is 4, he means that in the long rum;
over repeated tosses, the coin will land heads sm;m the time. In contrast, a Bay
sian, who will also surely say that the probability a coin lands heads is 4, is
expressing a degree of belief that the coin lands heads, perhaps arguing that
based on the symmetry of the coin there is no reason to think that one side is

‘more likely to come up than the other side. This definition of probability is
usually termed subjective probability. Whereas, in practice, a frequentist use
probability to express the frequency of certain types of data to occur over
repeated trials, a Bayesian uses probability to express belief in a statement m_uoE
unknown quantities.

These definitions have profound impact on a framework for statistical infé
ence. Because a Bayesian uses subjective probability, he can describe unce
tainty of a statement about an unknown parameter in terms of probability. A
frequentist cannot. So, for example, it is legitimate for a Bayesian to conclud
as a result of a data analysis that an interval contains a parameter of intere
with 95% probability. A frequentist, in contrast, will use probability to mmmonw
how often the calculations that produce an interval will cover the wmﬂmamaa 0
interest in repeated samples. For instance, frequentist 95% confidence interval
have the property that, in the long run, 95% of such intervals will cover:th
parameters being estimated. But, unfortunately for the frequentist, once ase
of data is observed and an interval is computed, the frequentist concept of ﬁ_.d@
ability is no longer relevant. Further, when a Bayesian is evaluating two co
peting hypotheses about an unknown parameter, he can calculate the ?.o_uw_um_
of each hypothesis given observed data and then choose the hypothesis ‘Wi
the greater probability. A frequentist, on the other hand, cannot use wno_ung
in such a direct way, and instead will approach the problem asymmetricall
and ponder the long-run frequency under one of the hypotheses of mme_E
data as extreme or more extreme than what was observed.

This chapter describes the basics of Bayesian statistics. We begin by anmon_u
ing the main ingredients of a Bayesian analysis. In this discussion, we exple
how to obtain the posterior distribution of model parameters and how to awﬁ:
useful model summaries and predictions for future data. We then Q@Bocmﬁﬁ
an application of the Bayesian approach to multilevel models, using ﬁoﬁ
Carlo simulation as a computational tool to obtain model summaries.

1, Formulate a probability model for the data.
2. Decide on a prior distribution, which quantifies the uncertainty in the values of
the unknown model parameters before the data are observed.
3. Observe the data, and construct the likelihood function (see Section 2.3) based on
the data and the probability model formulated in step 1. The likelihood is E.mn
combined with the prior distribution from step 2 to determine the posterior dis-
tribution, which quantifies the uncertainty in the values of the unknown model
parameters gffer the data are observed. N
-4, Summarize important features of the posterior distribution, or calculate quantities
of interest based on the posterior distribution. These quantities oonmﬁin statistical
outputs, such as point estimates and intervals.

We discuss each of these steps in turn in Sections 2.1-2.4. .

The main goal of a typical Bayesian statistical analysis is to obtain the pos-
rior distribution of model parameters, The posterior distribution can best be
mderstood as a weighted average between knowledge about the parameters
before data is observed (which is represented by the prior distribution) and the
nformation about the parameters contained in the observed data (which is
. presented by the likelihood function). From a Bayesian perspective, just about
afly inferential question can be answered through an appropriate analysis of the
osterior distribution. Once the posterior distribution has been obtained, one
; .n.nonﬁﬁo point and interval estimates of parameters, prediction inference
or future data, and probabilistic evaluation of hypotheses. Predictive inference
‘the topic of Section 2.5.

1. Data Models

" The first step in a Bayesian analysis is to choose a probability Eom.m_ for the
data. This process, which is analogous to the classic approach of nwcomEm adata
model, involves deciding on a probability distribution for the data if the parame-
ters were known. If the »n data values to be observed are y,, . . . , ¥, and the vector
of unknown parameters is denoted 6, then, assuming that the observations are
made independently, we are interested in choosing a probability function p(y;| 7))
for the data (the vertical bar means “conditional on” the quantities to the right). In
tuations where we have extra covariate information, x;, for the ith case, as in
_,,o.mammﬁos models, we would choose a probability function of the form p(y;|.x;, &).

When the data are not conditionally independent given the parameters and covari-
s, we must specify the joint probability function, p(y1, . . ., YulXy, . . . Xy ).

Example 1

_A random sample of 300 women aged 60-69 years whose immediate fami-
es have had histories of cancer are to be screened for breast cancer. Let y; be
1.if woman i has a positive test, and 0 if not, fori =1, ..., 300. Let & be Eo
wovmcw_wﬁw that a randomly selected woman aged 60-69 years with a family

2. Fundamentals of a Bayesian Analysis
A typical Bayesian analysis can be outlined in the following steps.
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history of cancer has a positive breast cancer screening. Then an mmwao_uamﬁ
model for the data is to assume that the y; independently follow a Bernoulli

distribution with probability 6, that is,
pil6) = 0(1 - o'
fori=1,..., 300.

Example 2

A random sample of 50 men with a history of cardiovascular disease enters
a study on LDL (low-density lipoprotein) cholesterol. Let y; be the LDL mr.o-
lesterol level (in mg/dL) for man i, i = 1, ..., 50. A reasonable probability

meodel for LDL cholesterol levels is a normal distribution. We can assume that -

the y; are independently normal with unknown common mean gy and variance
0. The probability function for y, is given by

p(ylu0%)= %aé?@ﬂtvw\mqpv

fori=1,...,50.

2.2, Prior Distribution

Once the data model (probability model) is chosen, a Bayesian analysis
requires the assertion of a prior distribution for the unknown model parameters
_The prior distribution can be viewed as representing the current state of knowl--
edge, or current description of uncertainty, about the model parameters prior
to data being observed. . k
Approaches to choosing a prior distribution divide into two main categories.

The first approach involves choosing an informative prior distribution. With this ”

strategy, the statistician uses his knowledge about the substantive problem
perhaps based on other data, along with elicited expert opinion if possible, to
construct a prior distribution that properly reflects his (and experts’) beliefs.

about the unknown parameters. The notion of an informative prior distribution -

may seem at first to be overly subjective and unscientific. In response to this
concern, it should be pointed out that the selection of a data model, which a fre-

quentist needs to make, is also a subjective choice, so that frequentist analyses

are not devoid from subjectivity either. Furthermore, it can be argued that if extra:

information or knowledge about the model parameters exists prior to observing

data, it would be unscientific not to incorporate such information into a data

analysis. For example, in a study measuring the weight of preterm births, it’
would be sensible to incorporate into the prior distribution that the “prior proba--
bility” of a mean birth weight above 151b is negligible. Another criticism by:
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frequentists of using informative prior distributions is that two Bayesian statisti-
‘cians are likely to use two different prior distributions, which leads to two dif-
ferent sets of inferences for the same scientific problem. Again, it is reasonable
to respond to this criticism by pointing out that when frequentists use different
data models on the same data, conclusions will be different as well. From a
Bayesian point of view, a prior distribution is part of the overall statistical model,
o that two Bayesian statisticians selecting different prior distributions is analo-
gous to two frequentist statisticians choosing two different data models.

" The second main approach to choosing a prior distribution is to construct a
noninformative prior distribution that represents ignorance about the model
parameters. Besides noninformative, this type of distribution is also called
objective, vague and diffuse, and sometimes a reference prior distribution.
Choosing a noninformative prior distribution is an attempt at objectivity by
acting as though no prior knowledge about the parameters exists before observ-
ing the data. This is implemented by assigning equal probability to all values
of the parameter (or at least approximately equal probability over localized
tanges of the parameter). The appeal of this approach is that it directly addresses
the criticisms of informative prior distributions as being subjectively chosen.
..n some cases, there is arguably a single best noninformative prior distribution
for a given data model, so that this prior distribution can be used as a default
option, much like one might have default arguments in compiter programs.
Unfortunately, noninformative prior distributions are not without their prob-
ems either. First, because there are various commonly accepted criteria for

constructing noninformative prior distributions, it is rare that, for a given data
~model, all these criteria produce the same unique noninformative prior distribu-
tion. Second, some common methods for constructing noninformative prior

istributions, such as always assuming a uniform distribution for a parameter,
esult in an interesting inconsistency. Any method for constructing a noninfor-

‘mative prior distribution ought to be invariant to the measurement scale of the

parameter; if, for example, the method of constructing a noninformative prior

distribution is applied to a data model with parameter 8, and then applied to

the same model reparameterized with parameter 17 = log(6), it would be desir-

able that the distributions on € and 7 were representing equivalent probabilistic

information. It turns out that this is a difficult criterion to satisfy (one approach

[

constructed to satisfy this invariance criterion is Jeffrey’s rule, which works

well with one-parameter data models but with mixed results for multiparameter
models). Finally, many commonly used methods for constructin g a noninforma-

tive prior distribution result in probability functions that integrate to infinity,

usually called improper disibutions, and are not formally probability distribu-

tions. Luckily, for many problems, having an improper prior distribution still

allows for a coherent Bayesian analysis.
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In general, if an objective prior distribution is desired, one defensible strategy -
is to construct a relatively uniform proper (i.e., integrates to 1) prior distribution.
If the information contained in the data is supposed to be the main determining
factor in producing statistical inferences (as it should be), then we should expect
that the choice among a range of relatively flat prior distributions will not make
much of a difference. On the other hand, if the choice of a relatively flat prior
distribution does matter, this may be an indication that the data conveys little
information about the parameter of interest, and it may be appropriate to rethink
the form of the data model, or to collect additional data. :

Example 1 (Continued)

Recall that 81s the probability a randomly selected woman, aged 6069 years
with a family history of cancer, has a positive breast cancer screening. Accord-
ing to the American Cancer Society, roughly 3.6% of women aged 60-69 years
develop invasive breast cancer, so that we may form an informative prior dis-
tribution for @ that reflects this information. A flexible choice of a prior distribu-
tion for a Bernoulli probability is 8~ Beta(c, B), that is, Ghas a Beta distribution
with specified parameters ¢ and B. The probability function is given by

I+ p)
() T'(B)

where I'() represents the Gamma function.! The mean of a Beta distribution is.
o/ + f3). The value & -+ 3 has an interpretation as the amount of information
about @ viewed as a sample size. For the cancer screening problem, the choice -
6 ~ Beta(0.36, 9.64) is sensible, as this distribution has a mean of 0.36/0.36 +
9.64) = 0.036, the estimate given by the American Cancer Society, and the

p(8la,B) = 0" (1-6)y"

information represented by this distribution is equivalent to that in 0.36 + 9.64

= 10 data values. A plot of the probability function is given in Figure 1. Note
 that the greatest probability under this distribution of @ is concentrated around
very low values, which is meant to reflect our initial belief that a value of 8
much larger than 0.1 or 0.15is not very plausible. With an eventual sample of
500 observations, the data is about 50 times more informative than the prior
distribution. :

Example 2 (Continued)

For studying LDL cholesterol levels, we assume a noninformative prior dis-
tribution for the mean 4 and variance 6 of the normal data model. A strategy

! The Gamma function is closely related to the factorial function: For a positive
integer n, I'(n) = (n — 1)!. For more details about the Gamma function, see (1).
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w0
—

0.0 0.2 0.4 0.8 0.8 1.0
0

Fig. 1. Probability function for the Beta(0.36, 9.64) distribution.

hat can often be employed for models with multiple parameters is to consider
each parameter separately and form the joint prior distribution as a product of
the several independent distributions. .

The most common noninformative choice for a location parameter, such as
‘amean (or a regression coefficient), is to assume an improper uniform distribu-
on over the entire real line. Thus we assume

p=1

for —ee < 1 < co even though this function does not integrate over the range.
We further assume, independently, that the prior distribution for ¢? is the
improper probability function

p(o?) = /6%,

- By a change-of-variables argument from elementary calculus, this distribution
~on ¢” corresponds with a uniform distribution on log(o®) over the entire real
line. Besides having the appeal of placing a uniform distribution over a para-
meter that has been transformed to take values over the entire real line, as with
i1, this prior distribution also recognizes that extremely large values of o? are
less believable a priori than are small values. A uniform distribution on
the untransformed variance, ¢ in contrast, asserts that a variance between
1,000,000 and 1,000,001 is as likely a priori as a variance between zero and
-one, which is not particularly believable. We therefore assume an improper
joint prior distribution for (4, 6*) equal to ,

P, 6% = p(ip(o?) = 1-(1/6) = 1/0™



that do not depend on 6, and then in the final step determine the normalizing
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2.3, From the Likelihood to the Posterior Distribution

Once the data has been observed, the likelihood function, or simply the
likelihood, is constructed. The likelihood is the joint probability function of the
data, but viewed as a function of the parameters, treating the observed data as
fixed quantities. Assuming that the data values, y = (v, ..., ¥,) are obtained
independently, the likelihood function is given by

ra
L(B13) = p(O)L(B]y) = mmﬂ%%wﬂ

oc %tc.maﬁ— - @vm.ma .QE.Q — mvmmm o Q_w.uaﬁ _ Qumf.m&.

Qno.iﬁ — mvm.ﬂ u QKQ _ %vwmo

Note that the normalizing constant in the prior distribution was dropped as
it does not depend on 6. Rather than determine the normalizing constant analy-
tically, we notice that the final expression is proportional to a Beta distribution
‘with parameters o = 14.36 and 8 = 295.64, so that the posterior distribution
must be

i

L1Y)=pi i) = [ p(16).
i=1
I'(330)
T'(14.36)I"(295.64)

..Hrcm. the posterior distribution is 8ly ~ Beta(14.36, 295.64).

pOly)= g1336(] _ gyt

In the Bayesian framework, all of the information about 8 coming directly from.
the data is contained in the likelihood. Values of the parameters that correspond.
with the largest values of the likelihood are the parameters that are most sup--
ported by the data.

To obtain the posterior distribution, p{8ly), the probability distribution
of the parameters once the data have been observed, we apply Bayes’
theorem: ”

Example 2 (Continued)

~ Inthe LDL cholesterol study, suppose the 50 LDL cholesterol measurements
”mnm taken. The likelihood is the product of 50 normal probability functions:
p@)P®1y) _ HOL®|y)
p(O)p(y16)d6 p(y)

p(@ly) = .ﬁ o p(@)L(B]y)

30 50 i
Ly, o?|y) = SEEF 0%)= E,\|r|||mm§|c~__ -1 26%)
SERE

where “o<” means “is proportional to” (i.e., that the expressions are equal when
the right-most term is multiplied by a normalizing constant that doesn’t depend
on ). Operationally, therefore, it is straightforward in principle to obtain the
posterior distribution: Simply multiply the prior distribution by the likelihood,
and then determine the constant (not depending on ) that forces the expression
to integrate to 1. An effective strategy for computing the posterior distribution :
is to drop multiplicative constants from the prior distribution and likelihood

.an_sm y IIM: \y; and §* = MW 2.y —¥)* be the sample mean and vari-

ance, respectively, the likelihood can be rewritten in a more useful form as

1

(2mo
1
T (2mot)ys

constant. L o: 0 _ Y v

% eeh M@. uy [20° w

=1

Example 1 (Continued) exp (495" +50(u - ) [20%).

Suppose, for the breast cancer screening study, 14 of the 300 women wwu ;
positive tests. Thus 14 women have y; = 1, and the remaining 286 have y, = 0.
The likelihood is therefore given by

- We again use the standard choice of noninformative prior distribution on the
parameters of a normal model, p(i,.0%) = 1/6% With this choice of prior dis-
tribution, the posterior distribution can be computed as follows:

1 _ _
p %eﬁ-z@m+mo€.,.§£mqs

oc (07 )55 exp(—495%/202)- Meﬁ Tt -7 /2(c/V50 VJ.

300
L@y) =[] 6" 1 -0y =6"1-0y™. plgt, 6% y) o< p(u, 6™ )L, 67|y} o« —
i=1

The posterior distribution is proportional to the product of the Beta prior dis
tribution (with parameters o = 0.36 and 8 = 9.64) and the likelihood,



328 , Glickman and van Dyk

The second term in the above expression, as a function of 4 with the appropriate

constant, is a normal distribution with mean y and variance o%50. The first’
term, with the appropriate constant, is an inverse-)° distribution; this means -
that 1/0® has the more familiar chi-square distribution. The posterior &MEU:L :

tion ,so:v o?ly) therefore factors into a marginal posterior distribution of ¢?,
,cﬁo. |ly), which is inverse-x?, and a conditional posterior distribution of g given
o’, p(ul 6°y), which is normal. A marginal posterior distribution specifies the
posterior distribution for a subset of the model parameters without regard: 0
the other parameters. A conditional posterior distribution, on the other hand, i
the posterior distribution of a subset of the parameters subject to the other
parameters having specified values.

In this example, the joint posterior distribution can be written

plu, @*ly) = p(a*ly)p(ul &% y)

where 0”ly ~ Inv-4*(49, 5) (i.e., 4950 has a chi-square distribution on 49
degrees of freedom), and il o?, y ~ N(§, 6%/50). Once the sample mean and
sample variance have been computed from the data, these values can be su
stituted in to obtain the actual distributions. It is also worth noting that ¢ oms
be integrated out of the joint posterior density to obtain the marginal womﬁo:g.
density of i, which is

11y ~ tyg(F, 5%50),

that is, a 7-distribution with 49 degrees of freedom that is centered at yand H@m;
caled by s/~50

2.4, Posterior Summaries

Once the posterior distribution has been determined, inferential oono_:mwo%
can be summarized with an appropriate analysis. Point estimates of parameters
are commonly computed as the mean or the mode (i.e., highest point) of the
posterior distribution. Interval estimates can be calculated by producing the end:

points of an interval that correspond with specified percentiles of the posterior

distribution. For example, a 95% central posterior interval involves computin
the 2.5%-ile and 97.5%-ile of the posterior distribution. Probabilities of com:
peting composite hypotheses can be evaluated by calculating their posterior
probability, that is, the probability of the hypotheses based on the @omﬁomﬁ
distribution.

Example 1 (Continued)

With a posterior distribution for the probability of a positive breast cancer.

screening of Beta(14.36, 295.64), we can compute informative inferential sum-
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maries about 6. The posterior mean and posterior mode are the two most
common point estimates for a parameter. For a Beta distribution with parame-
ters ¢ and f3, the mean is o/(x + ), and the mode is (&t — 1)/(ex+ B— 2). The
posterior mean estimate of 8 is therefore

E(8ly) = 14.36/(14.36 + 295.64) = 0.0463.
The posterior mode estimate of &, the most “believable” value of 6, is
Mode(Bly) = (14.36 — 1)/(14.36 + 295.64 — 2) = (.0434,

‘To construct a 95% central posterior interval for 8, we need to find the
m@waoﬁzmﬁ percentiles of the Beta(14.36, 295.64) distribution. Analytically,
s involves evaluating the integral _%Am_ ¥)d8 = 0.025 and solving for ¢ to
..EmE the lower end point of the interval, and similarly for the upper end point.
sing statistical software (like R or S-Plus, SAS, Stata, SPSS, etc.), the per-
centiles can easily be evaluated numerically. The 2.5%-ile and the 97.5%-ile
of the posterior distribution are computed to be 0.0259 and 0.0723, respectively,
o that the 95% central posterior interval for 6 is (0.0259, 0.0723). There is a
.95 posterior probability that 8 lies in this interval.

Suppose for health policy reasons that it is important to know whether
8> 0.05. We can translate the question into a posterior probability computation

P(6 > 0.05]y)= a p(8ly)do.

0.05

Rather than attempting to evaluate HEm Beta integral analytically, we can evalu-
ate it numerically using statistical software. The probability from the Beta
osterior distribution is computed to be 0.351, which implies that the probabil-
ty 8< 0.05 is 0.649. Thus we may conclude that it is more likely than not that
8<0.05.

Example 2 (Continued)

. We computed the joint posterior distribution of i and ¢, the mean and vari-
nce of the normal model, in the LDL cholesterol study. This posterior distribu-
ion depends on the data through the sample mean and sample variance of the
0 measurements, 7 and 5%, respectively. Now suppose that upon observing the
measurements, we compute y= 110 and s* = 100. From a Bayesian perspective,
the posterior distribution is a complete summary of what we know about the
arameters, both from the data and-—as quantified via the prior distribution—
rom other sources of information. In this case, we can plot the posterior dis-

tribution and use the plots to quantify what we understand about the unknown



230 | ~ Glickman and van Dyk Basic Bayesian Methods

331

. 5. m - The posterior predictive distribution can be computed using the equation
| o pO1Y=[ p(310)p(8] y)d6
1 g = which makes the often appropriate assumption that future data is independent
. . 2] f Past data mou.&nos& on the parameters. Thus, integrating the product of the
| 5 M ta H.ﬁomﬂ distribution with the posterior distribution with respect to the model
g = g) tameters produces the posterior predictive distribution, which can then be
| S mmarized for predictive inferences, v
8 g 2 _
T T T T < . T ) ! H o i
106 108 ﬂo 12 114 106 :_m 114 50 Xample 2 (Continued)

Fig. 2. The posterior distribution of parameters of LDL cholesterol levels. The thre
figures depict the 2-dimensional joint posterior distribution of the mean and variance
of LDL cholesterol in the population of men. A contour plot of the joint distribution
and plots of both of the marginal distributions are given, : Pyl »)= .-. ._. PO, o¥)p(p, o.p_ y)dudeo?

= [0l p(a? ppiuii?, yyapdo,

can .cm shown that with the normal distribution for y,
womﬁno_ﬁ distribution for U given ¢, and the inverse
distribution for o2, the integral is evaluated to

parameters. A contour plot of the joint posterior distribution appears in the firs
panel of Figure 2. The next two panels represent the marginal posterior distri
butions of f and o7, respectively. These distributions represent our knowledg
about likely values of the mean and variance of LDL cholesterol levels in thi
particular population of men. Judging from the posterior distribution of u, the
mean LDL cholesterol level is about 110 plus or minus about four. The posterio
distribution of ¢ tells us how much the level varies among men: The variang
appears to be about 100 but could be as low as 60 or as high as 175. Noti
that the posterior distribution of ¢” is slightly skewed toward the right. Lookin;
at the joint distribution, the mean and variance appear to be uncorrelated. T

means that inference about particular values of M does not have a relationshj
to our inference about values of o°.

the normal conditiona]
-x* marginal posterior

50~-57 Y
oc [ 14 YN
PO1Y) ﬁﬁ_@mei\mew

lich is a t-distribution on 49 degrees of freedo v
: m centered at § and
th a scale parameter of /2 (1+1/n) . (In our example, 7= 110, s* = 100, and

_>Eu=nmmc: to Multilevel Models
1. Monte Carlo Methods

2.5. Predictive 9.34.&::.@3

One of the benefits of the Bayesian approach is that predictive inference:i
a straightforward computation once the posterior distribution has been obtained
Suppose we have observed datay = (y,, . .., y,), and we would like to make
prediction about a future observation y. From an analysis of the data, we havs
obtained p(@1y), the posterior distribution. We are interested in making proba.
bilistic statements about an unobserved y, so that we want to compute the POs;
terior predictive distribution of y. The posterior predictive distribution is writtel
as p(y | ). Note that we are not interested in conditioning on parameter values;
but that we only want to condition on what we have observed: the previo
data, .
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“useful. Although we cannot plot the joint posterior distribution or even compute
the high-dimensional integrations that are required to evaluate the marginal
posterior distributions of low-dimensional quantities of scientific interest, we
may be able to acquire a Monte Carlo sample from the posterior distribution.
That is, although we cannot produce plots analogous to those in Figure 2, we
can produce scatter plots and histograms analogous to those in Figure 3. From
these representations of the Monte Carlo sample, we can construct statistical
inferences for unknown quantities of scientific interest, even in highly complex
models. This strategy is illustrated in a more complex setting in Section 3.2.

There are a variety of techniques available for acquiring a Monte Carlo
sample from a given posterior distribution. Perhaps the most important class of
such techniques is known as Markov chain Monte Carlo (MCMC). Tt was the
m@&owaoi of MCMC in the statistical literature, starting in the late 1980s,
that greatly expanded the class of models that can be fit using Monte Carlo
echniques. An important example of MCMC is the Gibbs sampler. Rather than
directly acquiring a Monte Carlo sample from the posterior distribution, the
Gibbs sampler cycles through a set of conditional posterior distributions, sam-
ling from each distribution conditional on the most recent draw of the remain-
ng parameters. Because the conditional distributions involve a smaller number
of unknown parameters, they tend to be simpler to simulate. Carefully designed
Gibbs samplers allow highly complex models to be divided into a sequence of
impler more standard models, all of which can be fit using standard Bayesian
statistical techniques. The iterative nature of the Gibbs sampler (and other
MCMC techniques) means that it can be sensitive to starting values, and its
Monte Carlo nature means that convergence diagnostics can be subtle. Here,
we have only scratched the surface of the numerous technical issues involved
n designing, implementing, and detecting convergence of MCMC samplers.
Nonetheless, interpreting the scientific results is done in much the same way
as with the Monte Carlo methods described here. Readers interested in learning
more about this important class of Bayesian computational methods are directed
‘to the references in Section 4 and the citations therein.

-3.2. Multilevel Models

The power of Monte Carlo sampling in conjunction with Bayesian methodol-
ogy is that it allows us to fit models that are explicitly designed to capture the
complexity of any given data generation mechanism. We often accomplish this
by hierarchically combining a series of simple models into a single more appro-
riate model. In this section, we illustrate this strategy in an extended example.
Ithough this example is relatively simple by current standards, we hope that
it will give the reader a flavor for how multilevel models are constructed and
for the power of combining Monte Carlo sampling with Bayesian methods.

As an introduction to Monte Carlo methods, we return to the LDL cholesterol -
study.

Example 2 (Continued)

Monte Carlo methods are simulation-based methods. With a specified prob-
ability distribution, a typical Monte Carlo simulation involves a computer
program generating multiple plausible values from the distribution. In Bayesian
data analysis, this generally involves acquiring a sample from the posterior (of
posterior predictive) distribution. In Figure 3, we compare a Monte Carlo
sample from the posterior distribution with the three plots of the posterior dis-
tribution given in Figure 2, The key here is that we can draw the same infer:
ences regarding ¢ and ¢ from either the plots of the Monte Carlo sample of
from the plots of the posterior distribution itself. In addition to the qualitative
descriptions discussed in Section 2.3, we can compute posterior means by
averaging over the Monte Carlo sample or compute a 95% central interval, by
computing the 2.5%-ile and 97.5%-ile of the Monte Carlo sample.

Example 2 is a simple illustration with only two parameters. This makes it
easy to visually examine the joint posterior distribution and to compute the
marginal posterior distributions of the parameters of interest. In more complex:
settings, however, the dimension of the unknown parameter may be much
larger. In image analysis (e.g., functional magnetic resonance imaging), for
cxample, there may be an unknown image intensity in each of a large number
of pixels or voxels. In such settings, there may be hundreds or thousands of
unknown parameters. It is in such settings that Monte Carlo methods are so
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Fig. 3. A Monte Carlo sample from the posterior distribution of parameters of LD]
cholesterol fevels. A Monte Carlo sample is compared with each of the 3 plots givet
in Figure 2. The Monte Carlo sample carries the same information about the posterio
distribution as the analytically computed plots.
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Table 1

- In Example 1, we used prior i 10D ili
Data for the 16 Litters of Rats in the Treatment Group P ushe prior information & fo the probabillty of breast

cancer to set the values of o and B. In this case, however, o and B are fit to the

Litter ata to describe the distribution of the survival probabilitics. Because ¢ and 3,
= oth restricted to be positive, are treated as model parameters, we must decide
1 E R ’
. 1 2 3 4 5 6 7 89 1011 1213 14 15 1 on prior distributions for these 2 parameters. Here we choose independent
Size 12 11 10 9 1 10 10 9 9 5 9 7 10 6 10 oninformative prior distributions that are uniform on log(c) and log(B). As in

Surviving 12 11 10 9 10 9 9 8 8 4 7 4 5 3 3 .0

| | Example 2, this corresponds with prior distributions that are proportional to
The litter sizes and the number of pups surviving the 21-day lactation period are recorded .

reciprocal, that is, p(a, ) = 1/ap. .
.nogﬁasm the two parts of the specification of the data model with the prior
tibution leads to a 3-level model. In particular; the statistical model can be

ulated as a Beta-binomial model (3) with noninformative prior distribution
ollows:

Example 3

In an experiment described by Weil (2), 32 pregnant female rats were divide evel 1: ;| 6, ~ Binomial(n,, 8) fori=1,..., 16.
into 2 groups. In the control group, the mothers were fed a control diet durin Level 2: 6,1 @, B~ Beta(or, B) fori=1,.. ., 16.
pregnancy and lactation. In the second group, the mothers’ diets wete treate vel 3: pa, B) o< 1o,
with a chemical. The number of pups in each litter that survived 4 days wa: .
recorded as the litter size. Of these, the number that survived the 21-day lact;
tion period were also recorded. For our purposes, we consider only the treat
ment group and investigate how the probability of 21-day survival varies amon
the litters in this population and fit the probability of survival for each o
the 16 observed treatment litters. The data for the treatment litters appear i
Table 1, which records the size of each litter (number of pups that survive fo
4 days) and number of these that survive for 21 days.

We begin by formulating a probability model for the data. For cach litter
let n; be the size of the litter and y; be the number of pups that survive the 2
day lactation period. We assume the pups within each liiter have equal probab
ity of survival and use a binomial distribution to model the number that survive
In particular, we assume y;| 8, ~ Binomial(n,, &), that is, .

With the data model, prior distribution, and observed data in hand, we con-
truct and compute the posterior distribution as described earlier. We acquire a
Monte Carlo sample from the joint posterior distribution of (8, . . . » B, 0, B).
igure 4 represents the Monte Carlo sample from the marginal posterior

_om_.z posterior posterior distribution posterior distribution
distribution of alpha of beta

R,

umw_ (1- m_.vc:\.vi.
Yi

ﬁ@._._@_vﬂﬁ

1.5
i

Because we believe the survival rates vary among the litters, we allow 6.t
depend on i. The distribution of the 8, is of primary. interest in this study (it
particular, we may be interested in how the distribution is affected by the tre
ment). Therefore we introduce a probability model for the 6, As discussed
Example 1, the Beta distribution is particularly well suited for modeling pro
abilities. Thus, we assume 6, ~ Beta(et, §). The parameters o and § determin
the shape, mean, and variability of the Beta distribution and thus of the surviva
probabilities among litters in the treatment group. :

02 03 04 05
1.0
1

L 0
=]

0.0 0.1
0.0

: Fig. 4. A Monte Carlo sample from the H.o,:: posterior distribution of o and B
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Litter 13 Litter 16

Litter 4
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prabability of survival (8,)

Onf
00 02 04 06 08 1.0
probability of survival (84¢)

L
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00 02 04 08 08 1.0
probability of survival (843)

Fig. 5. Histograms of the Monte Carlo sample of the survival probabilities of 3

of the litters. The solid circles on the horizontal axis of each of the histograms represent

the sample proportion of the pups that survived in that litter. Notice that in all 3 cases
the histograms have their centers of mass a bit off of the sample proportion, in the
direction of the fitted population mean of (.74, This is known as shrinkage: the posterior
mean “shrinks” from the sample proportion toward the fitted population mean.

distribution of & and 3, and Figure 5 represents a sample from the marginal
posterior distributions of 6,, 6,3, and 6. In this case, the plots in Figure 5
are more relevant because the parameters are more easily interpreted: they are
the marginal posterior distributions of the survival probabilities for 3 of the
litters.

Comparing the three plots in Figure 5, it is clear that the survival probabili-
ties vary among the litters, To explore this further, we can acquire a Monte

Carlo sample from the predictive distribution of the survival probability of -

another litter. A histogram of this Monte Carlo sample appears in the first panel
of Figure 6. This distribution accounts for both the variability among the litters
and the uncertainty in the distribution of the survival probabilities. These two
variance components correspond with the variability among the histograms in
Figure 5 and the uncertainty in « and f illustrated in Figure 4, respectively.
The final histogram in Figure 6 is a Monte Carlo sample from the posterior
predictive distribution of the number of surviving pups for an additional litter
of size 10. This distribution accounts for both the variability in 8 as represented
by the first histogram in Figure 6 and for the binomial variation of pup
survival. :

We can fit the survival probabilities of each of the 16 litters by averaging

over the Monte Carlo sample of each of these 16 parameters. The results, along
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posterior predictive
distribution of theta

posterior predictive
distribution of y with n=10

0.30

Q.20

0.10

[ S

0.00

0.0

1.0

G 2 4 6 8 10
number of surviving pups

02 04 06 08
probability of survival
Fig. 6. Monte Carlo samples from the posterior predictive distribution. The first
histogram represents a sample from the predictive distribution of the survival probabii-
ity of another litter from this population. The second histogram corresponds with a
sample from the predictive distribution of the number of surviving pups from this

- additional litter, given that the litter is of size 10,

~with the sample proportion of surviving pups in each litter, appear in Table 2.
Notice that in each case, the fitted probability is between the sample proportion
-and the expected survival probability of a new litter, 0.74. Although the sample
‘proportion is the standard estimate of the survival probability for a single litter,
like all statistical estimates, these have error because of the variable nature of
~-binomial data. Because we are simultaneously fitting the population distribution
- of survival probabilities, we have some information as to the direction of the
-estimates’ error. The Bayesian estimate is an average of the population mean
and the sample proportion. As the size of the litter increases, this average is
weighted more heavily toward the sample proportion. These fitted values are
often called shrinkage estimates because they “shrink” the fitted probability
from the sample proportion toward the population mean. Shrinkage is automatic

Table 2
Shrinkage -
Litter
12 3 4 5 6 7 & 9 1 11 12 13 14 15 16
Sample 100 100 100 100 091 050 090 089 089 080 078 057 050 050 030 000

096 09 095 095 088 087 087 086 086 078 077 061 055 057 038 0.8

The sample proportion of surviving pups and the fitted probability of survival are recored for each of the L6 litters. Each of the
ed values is between the population mean (0.74) and the sample proportions for the particular litter.
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when the Bayesian posterior distribution is used to generate statistical
estimates.

4, Other Resources

In this chapter, we have introduced only the most basic aspects of Bayesian.
modeling, methods, and computation. There are a number of accessible treatises.
on Bayesian methods that interested readers might refer to, including Gelman
and others (4) and Carlin and Louis (5), both of whom offer excellent

Overview of Missing Data Techniques

introductions.
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+In the previous 16 chapters, you have been presented with a variety of

ethods and techniques for analyzing data in order to make valid inference. In
iese previous chapters, a common assumption concerning the validity of the
techniques has been that there is complete data available on all units measured
the experiment or study. The goal of this chapter is to present an overview
-of what can be done when this assumption is violated and missing data occurs
n observations in an experiment or study.

.Missing data frequently arise in the course of research studies. This phenom-
:on though rarely intended, can have <m5:mm impact on the ability of inves-
tigators to draw proper conclusions concerning the relevance of their data.
Often, the existence of missing data itself is not the issue that is of most impor-
ance, but rather understanding the mechanism that led to data being missing
is most relevant. If one can understand the mechanisms that led to data being
missing, then often appropriate analytical strategies can be used to handle its
occurrence. This chapter will introduce basic concepts concerning approaches
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