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Abstract. In recent years, there has been an avalanche of new data in observa-
tional high-energy astrophysics. Recently launched or soon-to-be launched space-
based telescopes that are designed to detect and map ultra-violet, X-ray, and γ-ray
electromagnetic emission are opening a whole new window to study the cosmos.
Because the production of high-energy electromagnetic emission requires temper-
atures of millions of degrees and is an indication of the release of vast quantities of
stored energy, these instruments give a completely new perspective on the hot and
turbulent regions of the universe. The new instrumentation allows for very high
resolution imaging, spectral analysis, and time series analysis; the Chandra X-ray

Observatory, for example, produces images at least thirty times sharper than any
previous X-ray telescope. The complexity of the instruments, of the astronomical
sources, and of the scientific questions leads to a subtle inference problem that re-
quires sophisticated statistical tools. For example, data are subject to non-uniform
stochastic censoring, heteroscedastic errors in measurement, and background con-
tamination. Astronomical sources exhibit complex and irregular spatial structure.
Scientists wish to draw conclusions as to the physical environment and structure
of the source, the processes and laws which govern the birth and death of planets,
stars, and galaxies, and ultimately the structure and evolution of the universe.

The California-Harvard Astrostatistics Collaboration is a group of astrophysi-
cists and statisticians working together to develop statistical methods, computa-
tional techniques, and freely available software to address outstanding inferential
problems in high-energy astrophysics. We emphasize fully model-based statisti-
cal inference; we explicitly model the complexities of both astronomical sources
and the data generation mechanisms inherent in new high-tech instruments, and
fully utilize the resulting highly structured models in learning about the underlying
astronomical and physical processes. Using these models requires sophisticated sci-
entific computation, advanced methods for statistical inference, and careful model
checking procedures.
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Here we discuss the broad scientific goals of observation high-energy astro-
physics, the specifics of the data collection mechanism involved with the Chan-

dra X-ray Observatory, current statistical methods, and the Bayesian models and
methods that we propose. We illustrate our statistical strategy in the context
of several applied examples, including the estimation of hardness ratios, spectral
analysis, multiscale image analysis, and reconstruction of the distribution of the
temperature of hot plasma in a stellar corona. This paper was presented at the
Case Studies in Bayesian Statistics Workshop 7 held at Carnegie Mellon University
in September 2003.

Keywords: Background Contamination, Censoring, Chandra X-ray Observatory,
Chi Square Fitting, Count Data, Contingency Tables, Deconvolution, Differen-
tial Emission Measure, EM-type Algorithms, Frequency Evaluations, Richardson-
Lucy, Hardness Ratios, Hubble Space Telescope, Image Analysis, Log-Linear Mod-
els, Markov chain Monte Carlo, Measurement Errors, Multiscale Methods, Sam-
pling Distributions, Smoothing, Prior Distribution, Point Spread Function, Pos-
terior Predictive Checks, Power Law, Poisson Models, Spectral Analysis, Timing
Analysis

1 Astrostatistics

The disciplines of statistics and astronomy have long and mingled histories. Indeed,
it was Babylonian astronomers who appear to have been the first to tackle the funda-
mental statistical problem of estimating parameters from observational data. Although
nothing has survived to indicate what methods these ancient astronomers used, it is
clear that they incorporated a compromise between their observations and their need
for computation (Neugebauer 1951; Plackett 1958). Thousands of years later, toward
the end of the sixteenth century, the Danish astronomer Tycho Brahe used the arith-
metic mean to eliminate measurement error in his measurements of the locations of stars
and planets (Plackett 1958). The development of least squares regression in the second
half of the eighteenth century is also owed largely to the ingenuity of astronomers and
the statistical challenge of the astronomical problems of the day (Stigler 1986). When
looking over the expanse of history the anomaly appears to be the relatively recent
divergence of the two disciplines; the current flurry of collaboration among statisticians
and astronomers appears as an overdue renaissance.

As noted by Connors (2003), Bayesian (or more generally, model-based) ideas have
helped to fuel this renaissance. In the 1970’s, new electronic recording devices triggered
new questions on how to handle the ‘inverse’ problem: the characteristics of the new
detectors were known but the sky was not. In statistical terms, understanding the
detectors means that given the characteristics of astronomical source, astrophysicists
knew what to expect in the data that the detector would produce; ideally this could
be formalized into a likelihood function. The ‘inverse’ problem was to reconstruct
the model parameters (i.e., the sky) from the observed data. Albert Bijaoui (1971a;
1971b), used a new electronic camera (instead of the traditional photographic plates)
to try to measure the star counts in the dense stellar cluster M13. His analysis was
inspired by the physicist Ed Jaynes’s insistence that the treatment of probability in
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measurements and inference be as rigorous as that in statistical mechanics. His work
also influenced radio astronomers using the new ‘interferometer’ telescopes. From a more
traditional statistical point of view, Richardson (1972) and Lucy (1974) were also very
influential. They proposed an EM algorithm for computing the maximum likelihood
(ML) estimate for Poisson image reconstruction; Lucy went further to suggest that
maximum a posteriori (MAP) estimates might be better behaved. (Like many others
before them, Richardson and Lucy’s EM algorithm predate the general formulation of
EM by Dempster, Laird, and Rubin, 1977; see Meng and van Dyk, 1997.) The utility
of such model-based methods was demonstrated to astronomers when Richardson and
Lucy’s algorithm was used to account for the out-of-focus mirror on The Hubble Space
Telescope. This was a dramatic illustration of the power of careful data analysis to
improve scientific inference, even when the usual solution of building more powerful
telescopes to gather better data is unavailable.

Indeed, as the Hubble incident illustrates, the complexity of the newest generation
of telescopes has led to more intricate data collection mechanisms that require sophis-
ticated data analysis technique; these instruments have thus fueled the renaissance of
astrostatistics. Take for example, the Space Interferometry Mission1 (SIM). This instru-
ment is scheduled to be launched in 2009 and is designed to measure the direction to an
astronomical source with much higher accuracy than is now available. Among the sta-
tistical challenges posed by SIM is the allocation of the observation protocol to optimize
information. SIM measurements are expected to be precise enough to detect the stellar
wobble caused by an orbiting Earth-like planet. Because these measurements are very
time consuming, they must be carefully allocated and precisely timed; Bayesian meth-
ods to dynamically update observing protocols to optimize the expected information are
being developed by Loredo and Chernoff (2003). A rather different challenge is posed
by the Sloan Digital Sky Survey2 (SDSS), an on going, Earth-based, multi-wavelength
survey of 10,000 square degrees of the sky. Upon completion of one fifth of the sur-
vey, SDSS data already included 5 × 107 detectable objects. This rich data set allows
for careful investigation of the large scale structure in the distribution of galaxies, the
structure of our Milky Way Galaxy, and the detection of new types of objects. The data
mining, data reduction, classification, and computational challenges in this project are
evident and an area of active interdisciplinary work among astronomers, statisticians,
and computer scientists (Strauss 2003; Nichol et al. 2003). These are but two examples
among the many large-scale missions in astronomy and astrophysics that offer fertile
ground for statisticians interested in methodological development; we discuss a third
example, The Chandra X-ray Observatory3 (Chandra), at length in this article. Each of
the many missions pose unique statistical challenges that span the breath of statistical
science and offer scientific insight across the breath of astrophysics. Readers interested
in learning more about various areas of current work in astrostatistics should consult
the three volumes edited by Feigelson and Babu (1992; 1997; 2003) which chronicle the
Statistical Challenges in Modern Astronomy Conferences4. Another current resource

1URL: http://sim.jpl.nasa.gov
2URL: http://www.sdss.org
3URL: http://chandra.harvard.edu
4URL: http://www.astro.psu.edu/SCMA

http://sim.jpl.nasa.gov
http://www.sdss.org
http://chandra.harvard.edu
http://www.astro.psu.edu/SCMA
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is the upcoming special issue of Statistical Science (2004, Number 2) edited by Chris
Genovese and Larry Wasserman and devoted to topics in astrostatistics. Just this week
SLAC hosted a conference on statistical problems in Particle Physics, Astrophysics, and
Cosmology5 (Lyons et al. 2004).

This article describes the work of the California-Harvard Astrostatistics Collabo-
ration in developing methodology, algorithms, and software for the analysis of high-
resolution X-ray data. Current effort is focused on the data obtained with the state-
of-the-art X-ray telescope known as The Chandra X-ray Observatory, but many of the
new techniques apply directly to other current and upcoming high-energy missions in
astrophysics such as X-ray Multi-Mirror-Newton (XMM-Newton)6, Constellation-X7,
Micor-Arcsecond X-ray Imaging Mission (MAXIM)8, Generation-X9, and The Gamma
Ray Large Area Space Telescope (GLAST)10. In Section 2 we describe the mission and
scientific objectives of Chandra, the instrument and data collection mechanism that
were designed to meet these objectives, and typical data analytic goals and methods. In
Section 3, we focus on a large class of such analyses, which involve deconvolution; in par-
ticular, we describe the model-based and Bayesian techniques that we have developed
to accomplish more reliable results and illustrate these results with several examples of
applications to Chandra data. Concluding remarks appear in Section 4.

2 The Chandra X-ray Observatory

2.1 Mission and Science

Early X-ray Astronomy. William Herschel first discovered electromagnetic waves out-
side the visible spectrum in 1799. He and his sister Caroline were building the best
telescopes in the world and using them to study the Sun. Herschel made an astonishing
discovery: He found that a significant proportion of the Sun’s heat is emitted beyond
its spectrum’s red end, a region that is not visible to the naked eye. Herschel called this
infra-red light, ‘invisible light’. In contrast to the infra-red, where the wave-nature was
clear, the discovery of X-rays and γ-rays came out of the study of ionizing particles11.
In 1895 when Wilhelm Röntgen first observed a highly penetrating form of radiation
that he called X-rays, it was not clear whether they were ‘photons’ (electromagnetic
radiation with no intrinsic mass) or very speedy particles of matter (usually nuclear
particles; electrons, positrons; and more exotic elementary particles such as muons and
neutrinos). It was not until 1912 that X-ray were conclusively shown to be very short

5The Phystat 2003 Conference was was held in Menlo Park, California, September 8–11,
2003; the theme was Statistical Problems in Particle Physics, Astrophysics and Cosmology, URL:
http://www-conf.slac.stanford.edu/phystat2003

6URL http://xmm.vilspa.esa.es
7URL: http://constellation.gsfc.nasa.gov
8URL: http://maxim.gsfc.nasa.gov
9URL: http://generation.gsfc.nasa.gov

10URL: http://www-glast.stanford.edu
11An ionized atom does not have all of electrons attached to their shells. An ionizing particle and

ionizing radiation cause atoms to ionize.

http://www-conf.slac.stanford.edu/phystat2003
http://xmm.vilspa.esa.es
http://constellation.gsfc.nasa.gov
http://maxim.gsfc.nasa.gov
http://generation.gsfc.nasa.gov
http://www-glast.stanford.edu
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wavelength electromagnetic waves, and thus a higher energy form of light. Indeed, the
first astrophysical X-ray and γ-ray detectors were analogous to flying Geiger counters,
with metal tubes on the front, and special layers around the sides to warn when charged
particles impinged on them.

Since ‘ionizing radiation’ is absorbed by the Earth’s thick atmosphere, ‘black light’
(ultraviolet radiation) and higher energy radiation such as X-rays and γ-rays from space
cannot be viewed from the Earth’s surface. Although this is a distinct advantage for life
on Earth, it poses a difficulty for X-ray astronomers. X-ray detectors must be placed
above the Earth’s atmosphere. Initial efforts were hoisted up with balloons and rockets;
Friedman (1960) gives a nice review of the first 15 years of these flights. The early
instruments mainly detected the Sun and the Earth’s own upper atmosphere, which
glows when hit by streams of energetic charged particles. The first detection of X-rays
outside the solar system came in 1962, when a small rocket carried an X-ray detector
into space; it operated for only a few minutes, but was able to detect the first known
X-ray emission outside our solar system: both an apparent diffuse glow and an enhanced
brightness toward the center of the Galaxy (Giacconi et al. 1962).

In 1970, the first satellite devoted to imaging the sky in X-rays, Uhuru, was launched
into a low Earth orbit (at about 500 km). (‘Uhuru’ is the Swahili word for ‘freedom’;
Uhuru was launched from Kenya.) Uhuru surveyed the entire sky and discovered many
new X-ray objects, such as X-ray binaries, supernova remnants, galaxies, and diffuse
emission from clusters of galaxies. Still, Uhuru and her later sisters (Ariel V, The Orbit-
ing Solar Observatories (OSO), The High-Energy Astronomy Observatories-1 (HEAO-
1), etc.) were proportional counters—more sensitive than the earliest flying ‘Geiger
counters’, but much the same idea. This is a reminder of the fundamentally Poisson
nature of the signal of interest. High-energy astrophysics “comes in lumps,” as Feyn-
man says of photons in his famous introductory physics lecture; Feynman meant that
photons are discrete packages of energy, are countable, and are therefore intrinsically
Poissonian.

Such detectors register X-rays but provide the location of the photon source only with
very large error. The spatial resolution of these early detectors was roughly equivalent
to looking through an array of paper-towel tubes (with no imaging optics). Imaging
detectors were not available until much later. Even for the Sun, a very bright X-
ray source, there were no telescopes12 until Skylab was launched in 1973, and then
astronauts were required to operate the telescope; see Noyes (1982). The first fully
imaging X-ray telescope designed for the much fainter extra-solar X-ray emission was
the Einstein Observatory (HEAO-2). Launched in 1978, it had an angular resolution of
a few arc-seconds, a field of view of tens of arcminutes, and a sensitivity that was several
hundred times greater than was available with previous missions. Einstein provided,
for the first time, the ability to distinguish point sources, extended objects, and diffuse
emission.

12Telescopes are more than simple detectors. They include imaging optics that refract or reflect pho-
tons so that the objects being viewed are magnified and focused onto the detector. With a conventional
Earth-based telescope, the detector is generally either a camera or a human eye.
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Many of the discoveries made by the early X-ray missions13 motivated the devel-
opment of new technologies for obtaining higher quality data. The concept of The
Chandra X-ray Observatory, for example, was conceived of at the time of the Einstein
mission. It was difficult at that time, however, to imagine the scientific leap forward
that such a high quality X-ray telescope would provide. (See Tucker and Tucker (2001)
for the history of X-ray astronomy leading up to the design, construction, and launch
of Chandra.)

Current Scientific Objectives. The sky in X-rays looks very different from that in opti-
cal. X-rays are the signature of accelerating, energetic charged particles, such as those
accelerated in very strong magnetic fields, extreme gravity, explosive nuclear forces,
or strong shocks. Thus, X-ray telescopes can be used to study nearby stars (like our
Sun) with active coronae, the remnants of exploding stars, areas of star formation, re-
gions near the event horizon of a black hole, very distant but very turbulent galaxies,
or even the glowing gas embedding a cosmic cluster of galaxies. X-ray emission from
these diverse objects is also diverse. The spectra (i.e., the distribution of the energies
of the photons that a source radiates) can vary dramatically; for instance, a typical
star like our Sun radiates about a million times more energy in visible light than in
X-rays, whereas strong X-ray sources like cataclysmic variables can produce thousands
of times more energy in X-rays than in visible light. This is a striking example of how
a spectrum, i.e., the distribution of the energy of the photons that the source radiates,
can vary dramatically between objects. These spectra give insight into many aspects
of cosmic X-ray emitters: their composition, their density, and the temperature/energy
distribution of the emitting material; any chaotic or turbulent flows; and the strengths
of their magnetic, electrical, or gravitational fields. The spatial distribution of the emis-
sion is also key; it reflects physical structures in an extended source, for example, the
distribution of point sources embedded in a diffuse galactic emission, jet emission or
indication of an outflow of hot matter, the shape of the remnant of a supernova ex-
plosion, and structures created by gravitational lenses. Some sources exhibit temporal
variability or periodicity that might result from rotation, eclipses, magnetic activity
cycles, or turbulent flow of matter into a deep gravity well. Thus, instrumentation that
can precisely measure the energy, location, and arrival time of X-ray photons enables
astrophysicists to extract clues as to the underlying physics of X-ray sources.

Chandra observations, for example, have helped us to understand black holes in
stellar binary systems with matter flowing toward their gravitational potential (known
as accreting black hole X-ray binaries). Such black holes are visible to Chandra because
of material nearby that flows into the black hole potential and releases its gravitational
energy in the form of X-ray radiation. If there is no matter close to a black hole we
would not see any emission; such black holes are truly black.

Chandra also helps us understand the nuclei of active galaxies—galaxies in which
the central regions dominate the luminosity of the entire galaxy. Quasars, improbably
distant and highly luminous X-ray emitters, are located at galactic nuclei and are seen

13URL: http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/alphabet.html

http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/alphabet.html
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as point sources in X-rays. Most of their energy is released within a region which is only
about 0.005% of the size of the entire Milky Way; this region is too small to be resolved
even by optical telescopes. Quasars are thought to be powered by the gravitational
energy released by matter accreting onto a supermassive black hole. How the accretion
flow proceeds is still an unanswered question. X-ray emission can, however, provide
clues as to the accretion process, giving limits to the available fuel, to the temperature
and density within the accreting matter, and to the ionization state14 of the nearby
gas. Mapping the distribution of the X-ray emission in the vicinity of a quasar provides
information about the environment in which quasars reside. How this environment
reacts to the luminous quasar can be studied in X-rays and this study provides insights
into the power associated with jets and hot matter flowing out from the quasar (see
Figure 1). X-ray jets emanating from many quasars that were discovered by Chandra
indicate velocities within a few percent of the speed of light and high-energy particles
existing at enormous distances from the quasar (hundreds of kiloparsec or millions of
light years)15. How the jet is created and collimated (i.e., kept very narrow) over
such large distances and where the acceleration of the jet particles occurs are questions
currently being studied with Chandra.

Chandra observations of clusters of galaxies provided the first good quality temper-
ature maps of the emitting hot plasma on very fine (arcsecond) scales. X-ray emission
that was previously thought to be smooth can now be seen to consist of structures
and different shapes. The shapes and sizes of these structures as well as the borders
between them give clues as to the underlying physical processes, such as the heating
and cooling of the gas, and in turn the evolution of the entire cluster. The shape of hot
structures (buoyant bubbles) and their location within the cluster provide information
as to the characteristic epoch during which the central galaxy harbored an active nu-
cleus and gives important energy constraints. A Chandra image of the Perseus Galaxy
Cluster, which illustrates the fine temperature maps that are available and the complex
structures in these massive clusters, appears in Figure 2.

Similar studies can be performed in normal galaxies like the Milky Way. In these
galaxies we can study the mechanisms which heat the interstellar gas to temperatures of
several million degrees and often form galactic scale outflows extending for several kilo-
parsecs (i.e., several thousand light years) away from the galactic center and enrich the
intergalactic space. Chandra also allows the detection of large numbers of discrete X-ray
sources associated with supernova remnants, and accreting black-hole or neutron star
X-ray binaries 16. Investigation of their temporal and spectral properties can provide
insight into the populations of black-holes and neutron stars in galaxies.

14 The ionization state of a gas determines which elements are ionized and how many of their electrons
are missing.

15URL: http://hea-www.harvard.edu/XJET/index.cgi
16Like black holes, neutron stars are remnants of collapsed stars. Because the collapsed star was less

massive, however, neutron stars do not collapse indefinitely. Degenerate neutron pressure stops the
collapse but not before the electrons of the atoms are forced into the atomic nuclei where they combine
with protons to form neutrons and thus a neutron star. Neutron star X-ray binaries are stellar binary
systems with matter flowing toward the gravitational potential of the neutron star. As in black hole
X-ray binaries, the material falling into the neutron star release its gravitational energy in the form of
X-ray radiation that may be visible to Chandra.

http://hea-www.harvard.edu/XJET/index.cgi
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Figure 1: The Distant Quasar PKS 1127-145. The jet of outflowing hot matter toward
the upper left of the color image is clearly visible. The jet is believed to be formed by
gas swirling around a supermassive black hole. The length of the jet indicates that the
explosive activity is long lived; the knots in the jet indicated that the activity is inter-
mittent. (Image Credit: NASA/CXC/A.Siemiginowska(CfA)/J.Bechtold(U.Arizona),
Bechtold et al. (2001), Siemiginowska et al. (2002))

With Chandra’s high-angular-resolution X-ray data astronomers can obtain temper-
ature and chemical composition maps and study the velocity structures of the expanding
gas in supernova remnants. This allows for tracing the history of this gas since the su-
pernova explosion and is critical to our understanding of the evolution of a star and
the final moments just before the supernova explosion. It also allows the study of the
acceleration of cosmic rays and the production of heavy elements which are important
for the creation of life.

Here we have described only a few examples of how the observations made possible
with X-ray telescopes inform and develop our understanding of the physical world.
Uhuru provided the first substantial observational evidence for the existence of black
holes and showed that our galaxy is peppered with collapsed stars that radiate most
of their energy as X-rays. More generally X-ray astronomy helps to explain the life
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Figure 2: Core of the Perseus Galaxy Cluster. This is a temperate map of the galaxy
cluster; red, green, and blue represent low, medium, and high temperatures, respectively.
The map is constructed using the energies of the emitted photons. The dark region in
the upper right of the image is a smaller galaxy that is falling into the central galaxy;
it appears dark because gas in the galaxy absorbs X-rays. The bright blue spot in the
center of the image is due to X-ray emission from hot gas falling into a giant black hole
at the center of the super galaxy, Perseus A. The dark regions above and below the black
hole are thought to be buoyant magnetized bubbles of energetic particles produced by
energy released in the vicinity of the black hole. Each of these dark regions is large
enough to contain a galaxy half the diameter of our Milky Way galaxy. The white line
at the bottom of the image represents one arcminute, a distance of about 100,000 light
year. (Credit: NASA/IoA/Fabian et al. (2000).)

cycle of stars, galaxies, and cluster of galaxies. The nature of the evidence that X-
ray observations provide the many areas of astrophysical research is beyond the scope
of this article. Here we only hope to give the reader a taste of the importance of X-
ray astronomy in the exploration of the universe and to motivate the instrumentation
on board Chandra, the classes of data the instruments provide, and the data analysis
methods that we employ.
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2.2 Data Collection and Instrumentation

Chandra took its place along side The Hubble Space Telescope and The Compton Gamma-
ray Telescope as part of NASA’s Great Observatories when it was launched by the Space
Shuttle Columbia in July 1999. Chandra is by far the most precise X-ray telescope ever
produced; it is able to produce images that are over thirty times sharper than those
available from previous X-ray telescopes.

Detectors and Gratings. There are two detectors aboard Chandra; one is a high spatial
resolution microchannel plate detector (the High Resolution Camera, or the HRC),
and the other is an imaging spectrometer with higher spectral resolution (the Advanced
CCD Imaging Spectrometer, or ACIS). Both instruments are essentially photon counting
devices, and register the arrival time, the energy, and the (two-dimensional) direction
of arrival of incoming photons. Because of instrumental constraints, each of the four
variables is discrete; the high resolution of Chandra means that the discretization is
much finer than was previously available. For example, spectral data collected with
ACIS have over 1024 energy bins, known as channels. (ACIS spectra have intrinsic
resolutions of E

∆ E ≈ 30− 50.) The ACIS detector is composed of 10 CCDs, each of
which has 1024× 1024 pixels for spatial data; the pixels are 0.5 arcseconds wide. The
timing resolution is generally dictated by the CCD frame readout time, which is of
the order of 2-3 seconds. The HRC nominally has more spatial sampling resolution
with pixels of size 0.13 arcseconds, and very high temporal resolution (16 µs) but has
virtually no spectral resolution, ( E

∆ E ≈ 1). Because the data that is collected with
either detector is discrete, it can be compiled into a four-way table of photon counts.
Spectral analysis focuses on the one-way marginal table of energy data, spatial analysis
or imaging on the two-way marginal table of sky coordinates, and timing analysis on
the one-way table of arrival times.

It is possible to use one of two diffraction gratings with either of the two detectors. A
diffraction grating is placed in the beam of X-rays and diffracts the photon by an angle
that depends on the photon wavelength. (The wavelength of a photon is proportional
to the reciprocal of its energy.) One of the two gratings, the High-Energy Transmission
Grating Spectrometer (HETGS), is designed for high-energy X-rays; the other, the
Low-Energy Transmission Grating Spectrometer (LETGS), is designed for low-energy
X-rays. If Chandra is focused on a point source, such as a star, and a grating is in place
the energy of the photons can be recovered from the locations where they are recorded
on the detector. Thus, the gratings greatly increase the spectral resolution of both of
the detectors. Because the spectral resolution obtained with gratings is dominated by
the size of the image, however, the advantage of the grating for spectral analysis is
diminished for more extended sources, such as nebula. Because the gratings also refract
about 90% of the photons away from the detector, they are ordinarily only used with
bright sources.

Measurement Errors. The data gathered with Chandra, although high-resolution, present
a number of statistical challenges to the astronomer. Chandra focuses X-rays with mir-
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rors. Because the mirrors do not focus perfectly, images are blurred. The so-called point
spread function characterizes the probability distribution of a photon’s recorded pixel
location relative to its actual sky coordinates. Unfortunately, the shape of the scatter
distribution varies across the detectors; it is symmetric and relatively tight in the cen-
ter and becomes more asymmetric, irregular, and diffuse toward the edge. The scatter
distribution can also vary with the energy of the incoming photon. Due to detector
response, the energy of a photon is also subject to “blurring”; there is a distribution of
potential recorded energies given the actual energy of a particular photon. Generally
we refer to the blurring of the sky coordinates and/or energy as the instrument effect.

Combining the instrument effects for energy and for sky coordinates results in three
dimensional blurring of the photon characteristics. Given the sky coordinates and energy
of a photon, there is a distribution of the recorded sky coordinate pixel and recorded
energy bin. Thanks to careful calibration, this distribution can be tabulated on a grid
of values of the true sky coordinates and true photon energy. Since there are, for
example, 4096×4096 pixels on the detector and 1024 energy bins, the resulting blurring
six dimensional hyper-matrix can have over 2.9 × 1020 cells. (Here we use a grid of
true sky coordinates and photon energies that is as fine as the detector resolution,
i.e., 2.9 × 1020 ≈ (4096 × 4096 × 1024)2.) Clearly some simplification is required. For
spectral analysis using a small region of the detector, the blurring of energies is more-or-
less constant, which results in a reasonably sized (1024× 1024) matrix. Thus, utilizing
sparse matrix techniques results in efficient computation for marginal spectral analysis.
Spatial analysis often involves only a subset of the pixels, reducing the dimension of
the problem. One strategy is to assume the blurring matrix is constant across a large
number of pixels and energy bins; thus, we might divide the energy bins into 4 groups
and the pixels into 16 groups and assume that the instrument effect is constant in each
of the resulting 64 cells. This strategy aims at computational feasibility with the hope
that the compromise in precision is minor. A careful analysis of this trade off has yet
to be tackled.

Stochastic Censoring. Another complication for data analysis involves the absorption
of photons and the so-called effective area of the telescope. Depending on the energy of
a photon, it has a certain probability of being absorbed, for example by the interstellar or
intergalactic media between the source and the detector. Effective area is a characteristic
of the telescope mirrors, but has similar consequences for the data. The mirrors on
Chandra reflect the X-rays to focus them on the detector. Unfortunately, high-energy
photons do not reflect uniformly or simply. Each X-ray has a certain probability of
being reflected away from the detector or being absorbed by the telescope mirrors.
Since this probability depends on the energy of the photon, the probability that a
photon is recorded by the detector depends on its energy. This process results in non-
ignorable missing data; both absorption and the effective area of the instrument must
be accounted for to avoid bias in fitted spectra and images.

Background Contamination. The data are also degraded by background counts—X-ray
photons which arrive at the detector but do not correspond to the source of interest.
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In spectral analysis, a second data set is collected that is assumed to consist only of
background counts. For example, background counts might be collected around, but
some distance away from the source in a region of space that contains no apparent X-ray
sources. After adjusting for exposure time and the area in which the background counts
are collected relative to that in which the source counts are collected, it is standard
practice to directly subtract the counts observed in the background exposure from those
observed in the source exposure; the result is analyzed as if it were a source observation
free of background contamination. This procedure is clearly questionable, especially
when the number of counts per bin is small. It can lead to the rather embarrassing
problem of negative counts and has unpredictable results on statistical inference. A
better strategy is to model the counts in the two observations as independent Poisson
random variables, one with only a background intensity and the other with intensity
equal to the sum of the background and source intensities (Loredo 1992; van Dyk 2003)

Pile-Up. A final degradation of the data is known as pile-up and poses a particularly
challenging statistical problem. Pile-up occurs in CCD X-ray detectors when two or
more photons arrive at the same location on the detector (i.e., in an event detection
island, which consists of several pixels) during the same time frame (i.e., time bin). Such
coincident events are counted as a single higher energy event. The event is lost altogether
if the total energy goes above the on-board discriminators. Thus, for bright sources pile-
up can seriously distort the count rate, the spectrum, and the image. Accounting for
pile-up is inherently a task of joint spectral-spatial modeling. A diffuse extended source
may have no appreciable pile-up because the count rate is low on any one area of the
detector. A point source with the same marginal intensity, however, may be subject to
severe pile-up because most of the counts land in the same area of the detector. Even
given the spatial structure of the source, the degree of pile-up depends on the source
intensity. Thus, pile-up can make overall source intensity difficult to measure. Model
based methods for handling pile-up are discussed in Kang et al. (2003); see also Davis
(2001).

2.3 Data Analytic Goals and Statistical Methods

Broadly speaking, analysis of Chandra data falls into three categories: spectral analysis,
spatial analysis or imaging, and timing analysis. Each of these categories has specific
scientific goals and poses statistical challenges. In this section, we discuss each type of
analysis in turn and conclude with a discussion of the possibility of modeling the joint
distribution of these variables.

Spectral Analysis. The energy spectrum of an astronomical object can reveal important
information as to the composition, temperature, and relative velocity of the object. For
example, when an electron jumps down from one energy shell (i.e., quantum state) of an
atom to another, the energy of the electron decreases. This energy is radiated away from
the atom in the form of a photon with energy equal to the difference of the energies of
the two electron shells. Because these energy differences are unique to each element, the
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energy spectrum is the cosmic fingerprint of the elements that compose the source. It
is from studying stellar spectra that astronomers learn that stars are composed mostly
of hydrogen with some helium and traces of heavier elements such as oxygen, nitrogen,
and carbon. Thus, spectral analysis is the cornerstone of X-ray astronomy.

Chandra’s capacity for high resolution spectra means that it has a much finer dis-
cretization of energy than previous instruments. This results in an overall increase in
the number of energy channels and leads to lower observed counts in each channel.
(Chandra also has powerful mirrors that collect many more photons per unit time than
previous instruments. This, however, allows astronomers to investigate many dimmer
sources, which even with the powerful mirrors of Chandra result in few photon counts
overall.) With few counts per bin, the Gaussian assumptions that might have been
appropriate for data from older instruments are often inappropriate for Chandra data.
For example, in so-called minimum χ2 fitting (Lampton et al. 1976) one estimates the
model parameter, θ, by computing

θ̂ = argminθ

L
∑

l=1

{nl − ml(θ)}2

σ2
l (θ)

, (1)

where L is the number of energy channels, nl is the observed count in energy channel
l, ml(θ) is the expected count in channel l as a function of the model parameter θ, and
σ2

l (θ) is proportional to the sampling variance of nl. The model for the expected counts
per channel, ml(θ) is generally parameterized in terms of quantities of specific scientific
interest; this model accounts for the instrument effects and the effective area of the in-
strument as well as absorption. Because of the Poisson nature of the data, σ2

l (θ) is often
taken to be nl or ml(θ). It is obvious from its functional form that the right-hand side of
(1) is an implicit Gaussian assumption. With large photon counts in each energy chan-
nel, this assumption is reasonable, and χ2 fitting is essentially ML estimation. However,
the intrinsically low-count data from high-resolution instruments such as Chandra are
not approximately Gaussian; thus, parameter estimates and error bars computed with
χ2 fitting may not be trustworthy. To avoid this problem, astronomers often group the
energy channels until there is a large enough count in each group to justify Gaussian
assumptions. Doing so, however, reduces the information in the data and produces a
less precise energy spectrum. In order to take advantage of the information that the
new class of instruments provides, a method of analysis is needed that does not rely on
large-count Gaussian assumptions (Siemiginowska et al. 1997; van Dyk et al. 2001).

Spectral emission lines are local features in the spectrum and represent extra emis-
sion of photons in a narrow band of energy. These features are used to model the
emission resulting from electrons falling to a lower energy shell in a particular ion.
Thus, emission lines are important in the investigation of the composition of a source.
The Doppler shift of the location of a known spectral line (such as a particular hydrogen
line) can also be used to determine the relative velocity of a source. Thus, determining
the precise location of emission lines is a critical task; it is common for astronomers
to conduct a formal hypothesis test as to whether a particular emission line should be
included in a model. Unfortunately, the likelihood ratio test, or a Gaussian approxima-
tion thereof, is routinely used for this purpose. Since the intensity of emission lines are
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generally constrained to be positive, the null hypothesis of no emission line is on the
boundary of the parameter space. Thus, the standard asymptotic reference distribution
of the likelihood ratio test does not apply and more sophisticated methods are needed
for testing such hypotheses. See Protassov et al. (2002) for a Bayesian approach based
on posterior predictive p-values.

Image Analysis. Unlike spectral analysis, spatial analysis or image analysis does not
benefit from models that are parameterized in terms of quantities of specific scientific
interest; this is because the spatial structure of the source can be highly irregular.
Although some are simple point sources (i.e., delta functions) or collections of point
sources, many are composed of diffuse nebula that have no particular predictable struc-
ture. Nonetheless the images contain valuable information as to the structure and
evolution of X-ray sources.

A standard method of image analysis is Poisson image reconstruction—i.e., ML
estimation under an independent Poisson model for the photon counts in each pixel
that accounts for both the point spread function and background contamination. In
astrophysics this image reconstruction method is known as the Richardson-Lucy Method
(Richardson 1972; Lucy 1974). An attractive feature is that no assumptions are made
about the underlying structure in the source. The downside of the lack of structural
assumption is that the reconstructed image may be of low quality. The model is fit using
an EM algorithm that is generally stopped before convergence because at convergence
the reconstruction is often very grainy. An alternative strategy, which we explore in
Section 3.4, is to quantify the prior belief that the reconstructed image should be smooth
into a formal prior distribution. (There are many other less model-based methods
such as variants of kernel smoothers that are in common use. Although such ad hoc
smoothing routines can produce beautiful images, it is difficult to identify their inherent
model assumptions, to quantify their fitting errors, or to access their reliability.)

Timing Analysis. Most astronomers use a few standard descriptive methods to han-
dle light curves, i.e., time series data. Fourier transforms and ‘folding’ or ‘binning’
data on a known or a supposed period are common methods for periodic (Leahy et al.
1983; Gregory and Loredo 1992) or quasi-periodic sources (van der Klis 1997). Light
curves that vary irregularly are often thought to be ‘shot noise’ (i.e., composed of in-
dividual pulses or flares with a sharp rise and slow decay), transitions between two
or more quasi-stable states, or indicators of chaotic processes such as a lumpy accre-
tion flow. Auto-correlations or cross-correlations (across multiple energy bands) are
popular (with the shot-noise decay rate related to the autocorrelation function), but
how best to characterize aperiodic light-curves is a significant open question. A re-
lated question is how to quantitatively compare two light-curves from possibly similar
sources or the same source measured during different time periods. Over the past
decade this has brought interesting non-parametric methods into the field, including
chaos and fractal analyses (Perdang 1981; McHardy and Czerny 1987; Lochner et al.
1989; Meredith et al. 1995; Kashyap et al. 2002), wavelet-based methods (Slezak et al.
1990; Kolaczyk and Dixon 2000), newer change-point methods such as Bayesian Blocks
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(Scargle 1998), and more general Poisson and multiscale analyses (see the Time Series
Analysis section of Babu and Feigelson 1997; Young et al. 1995; Kolaczyk and Nowak
1999; Nowak and Kolaczyk 2000). Many of these multiscale methods are now finding
their way into imaging analyses (Kolaczyk and Dixon 2000; Nowak and Kolaczyk 2000;
Willett et al. 2002, see also Section 3.4).

Joint Analysis. These three types of analysis are almost always embarked upon sepa-
rately. For example, analysis of how the energy spectrum varies across an extended
source are only conducted in an ad hoc fashion, perhaps by dividing the image into
two or three regions and modeling the spectra separately in each region. In addition to
the scientific questions of understanding how the composition, temperature, and rela-
tive velocity vary across the source, there are statistical reasons for joint analysis. For
example, if the spectrum varies across a source, the absorption rate and the instrumen-
tal effects related to the point-spread function and the detector response may vary as
well; this varying censoring rate biases an image analysis that ignores the spectrum.
Similar concerns arise for pile-up: The effect of pile-up on a spectrum depends on the
source brightness and it is very different for point sources and diffuse extend sources.
It becomes even more unpredictable in a varying source, in which the source intensity
changes with time, thus modifying the amount of pile-up. Joint analysis of Chandra
data is an important topic that is as of yet largely unexplored.

3 Bayesian Deconvolution

Because of the nature both of the instrumentation and of the astronomical sources
themselves, deconvolution methods play a key role in the analysis of Chandra data.
The point spread function, for example, means that each detector pixel count in an
image is the sum of a number of counts, each of which corresponds to a pixel on the
source. Our goal is to sort each of the detector counts into their proper pixel, that
is the pixel where they would be recorded if the point spread function were a delta
function. Of course, this is a lofty and unattainable goal. Instead, we use Bayesian
methods to reconstruct the most probable origin of each photon and to quantify the
error in the deconvolved image. Similar concerns arise because of the blurring of the
energy in spectral analysis and because of background counts being added to source
counts. In this section we outline four examples of Bayesian deconvolution of Chandra
data. The four cases differ in their complexity and the degree and quality of the prior
information that is available. In some cases the prior information takes the form of a
neatly parameterized model and in others it is simply a vague notion of smoothness in
the reconstructed image. We begin with a simple example, where standard Bayesian
techniques lead easily to new methods that offer a dramatic improvement over standard
practice.
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3.1 A Simple Low-Resolution Example: Hardness Ratios

Scientific Motivation and Models. A hardness ratio is the coarsest description of a
spectrum—the ratio of the expected counts in the lower energy end of the spectrum and
the expected counts in the higher energy end. The lower energy end of the spectrum
is called the soft end, while the high-energy end is called the hard end; hence the name
hardness ratio. As we discussed in Section 2.1, the shape of, for example, a stellar
spectrum is informative as to the physical processes of the star. Thus, even a coarse
measure like the hardness ratio can be used to categorize X-ray sources.

Computing hardness ratios is a deconvolution problem because both the hard and
soft counts are contaminated with background. Formally, XS = ηS + βS and XH =
ηH + βH , where X represents the observed counts, which is a convolution of the source
counts, η, and the background counts β; the subscripts S and H represent soft and
hard counts, respectively. The source and background counts in both energy bands are
unobservable independent Poisson random variables,

ηS ∼ Poisson(µS) and ηH ∼ Poisson(µH ) (2)

and
βS ∼ Poisson(ξS) and βH ∼ Poisson(ξH), (3)

marginally, XS ∼ Poisson(µS + ξS) and XH ∼ Poisson(µH + ξH). In this notation,
the hardness ratio is ρ = µS/µH . Background observations are used to help identify
the background parameters, ξS and ξH . These counts are taken, for example, from
an annulus around the source of interest and modeled as independent Poisson random
variables, BS ∼ Poisson(cξS) and BH ∼ Poisson(cξH), where B represents the counts
from the background observation and c is a known constant that accounts for differences
in the exposure area and the exposure time of the source and background observation.

Inference and Computation. Hardness ratios are typically estimated from data using
a simple technique based on the methods of moments. The soft source count, ηS for
example, can be estimated by XS − BS/c and the hardness ratio by

ρ̂ =
XS − BS/c

XH − BH/c
. (4)

The delta method can then be used to compute error bars for the estimated ratio.

Although we might expect this standard method to exhibit reasonable frequentist
properties with large counts, hardness ratios are often used to describe weak sources
with very low counts. Hardness ratios are attractive summaries of the spectrum for such
sources because more sophisticated spectral analysis is not possible. It is not uncommon
for either or both of the hard and soft counts to be zero; for example, a catalog of sources
from a visible light survey conducted with Hubble may be studied with Chandra. Some
of these sources will not show up at all in the X-ray survey—i.e., both the hard and
soft X-ray counts are zero. In this case, it is evident and simulation studies verify (see
Figure 3) that the method of moment and the delta method are inadequate. Because
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no reliable statistical methods are available, astrophysicists either give up or calculate
incorrect (one-sided) intervals.

Fortunately, more sophisticated Bayesian methods are readily available. We wish
to summarize the posterior distribution, p(ρ|XS , XH , BS , BH), perhaps using proper
prior information for the model parameters (µS , µH , ξS , ξH). Since hardness ratios are
often computed on a survey of sources, we might formulate the prior distribution hi-
erarchically and model the distribution of the model parameters across sources in the
population. For simplicity of presentation, we ignore these issues here and simply use
a flat prior distribution on the model parameters; see Park et al. (2004) for a more
complete presentation.

To evaluate the posterior distribution of ρ, we begin with the posterior distribution

p(µS , µH |XS , XH , BS , BH) =

{∫

p(µS , ξS |XS , BS)dξS

} {∫

p(µH , ξH |XH , BH)dξH

}

.

(5)
The independence of the hard and soft counts allows us to factor the joint posterior
distribution of the model parameters into a soft and a hard component. If we use flat
prior distributions, the integrand corresponding to the soft component is proportional to
the product of the Poisson likelihoods of XS ∼ Poisson(µS +ξS) and BS ∼ Poisson(cξS),
likewise for the integrand corresponding to the hard component. The two integrals in
(5) are available in closed form, which gives us the joint posterior distribution of µS

and µH is closed form. We can then transform via, say, ρ = µS/µH and Q = µSµH

and (numerically) marginalize to obtain the posterior distribution of ρ. Computing this
distribution on a grid, we can easily compute the MAP estimate and HPD interval.
Such summaries of the posterior distribution of log(ρ) might be more informative from
a statistical point of view. If the posterior mean and equal-tail intervals are desired, it is
an easy task to construct an MCMC sampler based on the method of data augmentation.
If ηS and ηH are treated as missing data, the required complete conditional distributions
are all Gamma and Binomial distributions. Thus, a simple sampler is readily available.

We emphasize that this example is not meant to illustrate sophisticated statistical
methods but rather to show how simple and straightforward Bayesian techniques can
readily solve outstanding statistical problems in astrophysics. In the next several sec-
tions, we show how these same ideas can be used to develop new methods for unlocking
high-resolution Chandra data.

3.2 High Resolution Deconvolution Methods

To deconvolve high-resolution Chandra data, we must account not only for background
contamination, but also for instrument effect (i.e., blurring) and the effective area of the
instrument. The data consist of an L × 1 vector of counts; these may be pixel counts
from an image, counts from a set of energy channels, or counts from the set of bins
constructed by crossing the image pixels with energy channels. Generally we refer to
these as the counts in the detector bins or the detector counts. This is to distinguish these
counts from the idealized counts that we would observe with a perfect instrument—i.e.,
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Figure 3: Sampling Distributions of Different Types of Hardness Ratios for High Counts
(left column, µS = µH = 30, ξS = ξH = 0.1, and c = 100) and Low Counts (right col-
umn; µS = µH = 3, ξS = ξH = 0.1, and c = 100). The top two panels correspond to
the simple hardness ratio, ρ = µS/µH , denoted R=S/H in the figure; the middle two
panels correspond to the color, log10(ρ), denoted C=log10(S/H) in the figure; the bot-
tom two panels correspond to the fractional difference, (µH − µS)/(µH + µS), denoted
HR=(H-S)/(H+S) in the figure. The black histogram outline is the sampling distri-
bution of the method of moments estimators derived with a Monte Carlo simulation.
The mode of the Monte Carlo distribution is marked by the red dashed line and the
arithmetic mean of the sampled values by the blue dot-dashed line. The brown curves
are Gaussian distributions centered on the true value, marked by a solid brown line,
with standard deviation computed using the delta method and evaluated at the true
parameter values. That the Gaussian approximation to the sampling distribution fails
in low-count scenarios is evident.
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an instrument without blurring, with constant effective area, and without background
contamination. We refer to the idealized counts as the counts in the ideal bins or the
ideal counts and emphasize that ideal counts are necessarily missing data. There is no
need for the number of ideal bins and detector bins to be the same; indeed, they are
generally not the same for spectral analysis. Thus, we suppose the ideal unobserved
data are a J × 1 vector of ideal counts.

We quantify the effective area of the detector as a vector of probabilities, one for each
ideal bin; the effective area of ideal bin j is the probability that a photon that arrives
at the detector corresponding to ideal bin j is recorded. We tabulate the effective area
as a diagonal J × J matrix, A, with diagonal elements equal to these probabilities. If a
photon arriving at the detector and corresponding to ideal cell j is recorded, it may be
recorded in one of several detector bins. This is because of the instrument effect (i.e.,
blurring). We tabulate the instrument effect in an L × J matrix, P = (plj), where plj

is the probability that a photon corresponding to ideal bin j that is recorded by the
detector is counted in detector bin l. Thus, the columns of P are probability vectors.
The expected background count in each detector cell is an L× 1 vector that we denote
ξ = (ξ1, . . . , ξL)>

We can now formulate the mean structure of our high-resolution deconvolution model
as

λ = PAµ + ξ, (6)

where λ = (λ1, . . . , λL)> is the vector of expected detector counts and µ = (µ1, . . . , µJ )>

is the vector of expected ideal counts. Our goal is to reconstruct or deconvolve the
expected ideal counts, µ, from the observed data: L independent Poisson counts,
Xl ∼ Poisson(λl) for l = 1, . . . , L. In some cases we also have a background obser-
vation, Bl ∼ Poisson(cξl), for l = 1, . . . , L and some known c.

Solving (6) via maximum likelihood is a standard Poisson image reconstruction prob-
lem that can be handled with an EM or an EM-type algorithm that treats the ideal
counts as missing data (Shepp and Vardi 1982; Vardi et al. 1985; Lange and Carson
1984; Fessler and Hero 1994; Meng and van Dyk 1997). A similar computational strat-
egy can be used to construct MCMC samplers based on the method of data augmen-
tation. Generally, however, we wish to include some form of prior information or prior
constraints on µ. Markov random fields are a common and general strategy for incor-
porating a smoothing prior on µ; the resulting MAP estimate can be computed using
similar computational techniques. Here we discuss different strategies by examining
three applications of (6) to modeling Chandra data. We begin with a highly structured
parameterized model for µ that is used for spectral analysis. We then discuss a multi-
scale smoothing prior that is used for image analysis, and conclude with hierarchical
application of (6) that aims to explore the temperature distribution a stellar corona via
ultra-high-resolution spectral analysis.
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3.3 Spectral Analysis

In a spectral model, we describe the distribution of the photon energies emanating from
a particular source. In the context of (6), we aim to express µj as a function of Ej , the
energy of ideal energy bin j. In a typical spectral model this function has three basic
components: a continuum term, spectral lines, and absorption features. The photons
that are emitted from the source are a mixture of photons from the continuum and from
several emission lines. Because of absorption, either at the source or between the source
and the detector, not all of these photons reach the telescope.

The continuum is formed by thermal (heat) radiation from the hot center of stars to
the cold space that surrounds them or by non-thermal processes in relativistic plasmas.
The continuum is modeled using a smooth parametric form; several important forms
can be expressed as log linear models, linear in a transformation of energy. A power
law continuum, for example, can be written αEγ

j , the log of which is a linear in log(Ej),
where α and γ are unknown model parameters. Emission lines, discussed in Section 2.3,
appear as narrow ranges of energy with more counts than would be expected from the
continuum. Emission lines are modeled as narrow Gaussian or Lorentzian distributions
or as delta functions that are added to the continuum; in statistical terms this can be
formulated as a finite mixture model. Finally, because absorption of photons occurs
independently across the photons, absorption is represented by a multiplicative factor
that represents the complement of the censoring probability. Like the continuum, some
absorptions models can be represented by a generalized linear model, in this case with
complementary log-log link and a Bernoulli model. Combining the continuum, emission
lines, and absorption terms we can express the spectral model as

µj =

{

δjf(θC, Ej) +
K

∑

k=1

θE
k pE

jk

}

g(θA, Ej), (7)

where δj is the width of ideal energy bin j, f(θC, Ej) represents the continuum with
parameter θC, K is the number of emission lines, θE

k represents the expected ideal count
due to emission line k, pE

jk is the proportion of emission line k that falls into ideal

energy bin j, and g(θA, Ej) represents the absorption model with parameter θA—i.e.,
1 − g(θA, Ej) is the probability that a photon with energy Ej is absorbed, and, thus,
not observed. We can also parameterize pjk , for example, in terms of the location and
width of the Gaussian line profile. Here superscripts C, E, and A represent ‘continuum’,
‘emission lines’, and ‘absorption features’, respectively. This model was introduced
and illustrated by van Dyk et al. (2001); Sourlas et al. (2003), Sourlas et al. (2004),
and van Dyk and Kang (2004) give further applications. Hans and van Dyk (2003) and
van Dyk and Hans (2002) present generalized linear models to account for absorption
features.

Prior information for the various parameters in (7) can often be quantified in terms
of semi-conjugate prior distributions. Because this spectral model is highly structured,
little prior information may be necessary—especially for relatively bright sources. For
some parameters, however, such as the locations of the emission lines, prior informa-
tion is nearly always helpful. Fortunately, such prior information is often scientifically
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Figure 4: Supernova Remnant DEM L71. The color image on the left is an X-ray
image obtained with Chandra; that on the right is a Hubble optical image. The X-
ray image exhibits the smooth irregular structure that is typical of extended sources.
(Image Credit: X-ray: NASA/CXC/Rutgers/Hughes et al. (2003) Optical: Rutgers
Fabry-Perot.)

forthcoming. For example, there are key spectral lines that might be expected in a
particular spectrum. Nonetheless, the predictability of the structure in typical spectra
is a powerful resource in this Poisson reconstruction problem.

3.4 Imaging

Irregular Structure. Reconstruction of X-ray images is more challenging because their
structure is much less predictable than that of X-ray spectra. We illustrate this by
examining several Chandra images. Figure 4 shows an X-ray image (left panel) and
an optical image (right panel) of the supernova remnant DEM L71. The color scheme
in the X-ray image is a representation of the energy of the photons: red corresponds
to lower energy X-rays, green to midrange energies, and blue to high energies. The
X-ray image reveals a hot inner cloud of glowing iron and silicon surrounded by an
outer blast wave; the blast wave is also visible in the optical image17. Spectral analysis
reveals that this super nova resulted from an exploding white dwarf star. This type of
super nova results when a white dwarf pulls too much material off a nearby companion,
becomes unstable, and is blown apart in a thermonuclear explosion. The Chandra image
in Figure 4 illustrates the smooth but irregular features that can appear in extended
X-ray images.

17URL: http://xrtpub.harvard.edu/photo/2003/deml71/index.html

http://xrtpub.harvard.edu/photo/2003/deml71/index.html
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Figure 5: The Galaxy NGC 6240. The color image on the left is a Hubble optical
image; that on the right is a Chandra X-ray image. In addition to smooth irregu-
lar structure, the X-ray image reveals two point sources, which are active giant black
holes. The Chandra image was compiled using Gaussian smoothing of the raw data.
We illustrate Bayesian methods for reconstructing this image. (Image Credit: X-ray:
NASA/CXC/MPE/Komossa et al. (2003); Optical: NASA/STScI/R.P.van der Marel
& J.Gerssen.)

In addition to smooth extended features, X-ray may include one or more bright point
sources. This is illustrated in Figure 5 and Figure 6. Both figures represent galaxies; the
same color scheme is used for the X-ray images as in Figure 4. Figure 5 illustrates both
optical (left-hand panel) and X-ray (right-hand panel) images of NGC 6240, a galaxy
that is the product of the collision of two smaller galaxies. The X-ray image reveals
two bright point sources which are giant active black holes. Figure 6 is an X-ray image
of M 83, and, is peppered with point sources that are believed to be neutron stars and
black holes.

Basic Model. The figures illustrate not only the irregular structure that is typical of
extended sources, but also the need to allow for bright point sources in the image. To
accomplish this, we parameterize the expected ideal counts as

µj = θES
j +

K
∑

k=1

θPS
k pjk , (8)

where θES
j is the expected ideal count in pixel j due to the extended source, K is the

number of point sources, θPS
k is the expected ideal count from point source k, and pjk

is the expected proportion of the expected ideal count for point source k that falls into
ideal bin j. Here the superscripts ES and PS represent ‘extended source’ and ‘point
source’, respectively.



van Dyk, et al. 211

Figure 6: The Galaxy M83. This color image is dominated not by its smooth extended
source but by its numerous neutron stars and black holes which appear as point sources.
(Image Credit: NASA/CXC/U.Leicester/U.London/R.Soria & K.Wu.)

Multiscale Model and Smoothing Prior Distribution. Model (8) does not yet incorpo-
rate smoothness into the extended source. To do this, we use a version of Nowak and
Kolaczyk’s (2000) multi-scale model (see also Kolaczyk (1999)). As a simple example of
how this is done suppose we have a 4× 4 grid of ideal pixels, with ideal counts xij from
the extended source in pixel (i, j). We emphasize that these counts are not observed,
but we can, nonetheless, hierarchically formulate our model in terms of the ideal counts.
Here we use two indexes to identify each of the counts; the first identifies a quadrant of
the image, the second a sub-quadrants of each quadrant. Because we are considering a
4×4 grid of pixels, this is enough to identify each pixel; see the bottom diagram in Fig-
ure 7. We model the xij as independent Poisson random variables, xij ∼ Poisson(θES

ij ).
Let x++ =

∑

ij xij be the sum of the pixel counts for the image and xi+ =
∑

j xij be
the sum of the pixel counts for each of the four quadrants; see Figure 7. We can rewrite
the joint distribution of the pixel counts in terms of conditional distributions given the
lower-resolution counts (i.e., the quadrants total counts and image total count),

p(x11, . . . , x44|θES) =

{

∏

i

p(xi1, . . . , xi4|xi+, θES)

}

p(x1+, . . . , x4+|x++, θES)p(x++|θES),

(9)
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Low Resolution

x++
x++ ∼ Poisson(λ)

λ ∼ Gamma{(α0, β1)

↓
x1+ x2+

x3+ x4+

x,+|x++ ∼ Multinomial(π1)
π1 ∼ Dirichlet{(a1, a1, a1, a1)}

↓
x11 x12 x21 x22

x13 x14 x23 x24

x31 x32 x41 x42

x33 x34 x43 x44

xi,|xi+ ∼ Multinomial(π2i)
π2i ∼ Dirichlet{(a2, a2, a2, a2)}

↓
...

High Resolution

Figure 7: A Multi-Scale Parameterization. The top layer represents the Poisson model
and prior distribution for the total of the ideal counts. Each subsequent layer splits the
cells of its parent layer into four parts. We model these splits using multinomial distri-
butions with Dirichlet prior distributions. Since the hyper-parameters of the Dirichlet
distributions are all equal, the prior distributions tend to shrink the multinomial split
probabilities toward equal splits, which in turn favor smoother image reconstructions
at each level of resolution.

where θES = {θES
ij }. The first five terms in (9) are multinomial distributions; the last

term is a Poisson distribution. Specifically, we write

x++ ∼ Poisson(θES
++), (10)

(x1+, . . . , x4+)|x++ ∼ multinomial(π1), for i = 1, . . . , 4, (11)

and
(xi1, . . . , xi4)|xi+ ∼ multinomial(π2i), (12)

where θES
++ =

∑

ij θES
ij and the parameters of the multinomial distributions are simple

transformations of θES. This is a simple and standard reformulation of the model. The
reason we consider this reformulation is that it allows us to easily specify a prior dis-
tribution that favors smooth reconstructions. In particular, the prior distribution π1 ∼
Dirichlet{(a1, a1, a1, a1)} shrinks the fitted expected quadrant counts toward equality,
i.e,. a smooth image at this level of resolution. The larger a1 is the smoother the re-
construction is at this resolution. Similarly, we specify π2i ∼ Dirichlet{(a2, a2, a2, a2)},
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using the same hyper-parameter for each multinomial at this level of resolution. We,
however, use different hyper-parameters at different levels of resolution, allowing for
differing amounts of smoothing.

For large images, the idea is completely analogous, but notationally more tedious;
with a 256× 256 image, there are eight hyper-parameters. Nowak and Kolaczyk (2000)
suggest strategies for the user to set the hyper-parameters. We explore another op-
tion, by fitting the hyper-parameters given a common hyper-prior distribution, al ∼
gamma(b0, b1), where only b0 and b1 are set by the user.18

Future Work. There are a number of outstanding statistical issues in this model. Per-
haps most important is the character of the point spread function. As we have men-
tioned, P is known to vary significantly across the detector. Even at a fixed location
on the detector the components of P are measured with error. A simulation is used to
generate P, which introduces both Monte Carlo error and systematic error since, for
example, the simulation requires specification of the unknown spectrum of the image.

Other challenges involve components in the structure of the image. As we discuss
and illustrate in the example below, astrophysicists often would like to test for structures
such as point sources, jets, or loops of hot gas in the image. One possible strategy is
to generalize (8) by adding additional structures. For example, a jet often appears as a
string of clumps extending from a source, which we might model using a set of bivariate
Gaussians with a constraint on their mean structure. Formal tests can be constructed
using the posterior predictive distribution of the LRT statistic under the simpler model.
We suspect that the power of these tests will depend on the relative smoothness of the
extended source and model feature. These issues are discussed below in the context of
an example.

The model in (8) is introduced by van Dyk and Hans (2002); the multi-scale prior
distribution is introduced by Esch (2003) and Esch et al. (2004). We now turn to an
application of the model; other applications and simulations can be found in Esch et al.
(2004).

Example: Reconstruction of NGC 6240. The X-ray image of NGC 6240 in Figure 5
is smoothed via a Gaussian kernel, a standard smoothing method in high energy astro-
physics. The original data appear in the first frame of Figure 8, where brighter pixels
represent higher counts. (This and the other representations of NGC 6240 in this section
are plotted on the log scale.) Methods based on kernel smoothers are generally preferred
to Richardson-Lucy (i.e., computing the ML estimate under the Poisson image recon-
struction model) because they return much smoother and visually appealing images.
Richardson-Lucy reconstructions of NGC 6240 appear in the bottom row of Figure 8;
the reconstructions result from running the Richardson-Lucy algorithm starting from a
smooth image for 20 and 100 iterations, respectively. These reconstructions are much

18The actual prior distribution is somewhat more complicated; it involves a mixture of priors that
vary the origin of the multiscale representation. See the rejoinder and Esch et al. (2004) for details.
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grainer than the image produced by Gaussian kernel smoothing, and become grainer as
the algorithm proceeds.

The final frame of Figure 8 is the posterior mean of the image, µ, under the multi-
scale prior distribution. We use a gamma prior distribution with shape parameter 2 and
scale parameter equal to 0.01 for the multi-scale hyperparameters (a1, . . . , a8); there are
eight hyperparameters for this 256× 256 image because 256 = 28. To reduce sensitivity
of the final result to the choice of coordinates in the multi-scale prior distribution, at
each iteration we randomly select a pixel that is treated as the origin in the multi-
scale specification. The image shown here was generated from a single Markov chain of
3000 total iterations, discarding the first 1000. We know, by subsequently examining
Gelman and Rubin’s (1992) statistics from two independent chains, that convergence
was sufficiently attained (all R̂ statistics for image intensities and smoothing parameters
less than 1.1) in less than 300 iterations; hence we are quite comfortable in claiming
convergence for the single chain.

The resulting reconstruction is clearly much smoother than the Richardson-Lucy
reconstructions and does not require the user to decide when to stop the algorithm
to avoid an over-fitted reconstruction. Relative to the image fit with Gaussian kernel
smoothing, our reconstruction preserved much more structure in the image. Notice, for
example, the loop of hot gas in the upper right quadrant of our reconstruction. This
loop also appears in the optical image produced by Hubble, but has been completely
smoothed out by the Gaussian kernel. To sharpen the comparison with the Hubble
image, Figure 9, overlays the optical image (in red) first with the original data and
second with our reconstruction (both in blue). Our reconstruction of the X-ray image
matches up very well with the optical image. Although optical and X-ray images often
highlight different structures in the source and therefore need not match up, the fact
that they do match in this case is a strong validation of our reconstruction.

One of the primary benefits of using model-based methods for image reconstruction
is that they not only provide a reconstructed image but also measures of error on the
reconstruction. In the Bayesian setting, we not only have a posterior mean, but also the
variance or quantiles of the posterior distribution. Figure 10 is an attempt to summarize
the high dimensional posterior distribution of µ. The first frame in the second row of
Figure 10 is our significance map, where the intensities in the image are generated by
dividing the posterior mean by the posterior standard deviation; the colormap in the
image is black for all intensities less than three. Thus, only the brightest pixels as
measured by the pixel posterior standard deviations appear. The second frame in the
second row is the same except that a threshold of just one pixel posterior standard
deviations is used; thus, more pixels are lit up. These significance maps reflect an effort
to determine which structures in the reconstructed image represent physical structures
in NGC 6240. The loop of hot gas in the upper right quadrant of the image, for example,
appears in both the one standard deviation and the three standard deviation significance
maps. The larger loop to the left of the image only appears dimly in the one standard
deviation map. Thus, we are more confident that the former loop represents a physical
structure in NGC 6240 than we are of the latter loop.
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We can also summarize the variability in the posterior disturbing for µ by construct-
ing a data cube, where the first two-dimensional data array is the first simulation of µ

from the MCMC sampler and the subsequent two-dimensional arrays correspond to the
subsequent simulations of µ. We can then view the data-cube as a movie that proceeds
through the sequence of draws generated by the MCMC sampler. Significant struc-
tures in the image appear consistently through the film, while less significant structures
appear to flicker on and off.

Formally testing for the presence of features in an image poses a significant chal-
lenge. The significance maps are only a crude approximation; they rely on the marginal
posterior standard deviation of each pixel intensity. The use of the standard deviation
is difficult to justify if the marginal distributions are not roughly symmetric, which they
may not be in low intensity regions of the image. Physical structures such as loops or
jets are represented by complex combinations of pixel intensities. Since these intensi-
ties are likely to be correlated in the posterior distribution, independent evaluation of
the marginal distributions of the pixel intensities may not suffice. Standard statistical
techniques such as posterior predictive p-values (Gelman et al. 1996) do not appear to
solve the problem because the model for the extended source is so flexible. The multi-
scale model allows for loops and jets and it is not clear how to constrain the model to
eliminate such structures in a “null” model. Clearly the posterior distribution of µ is
the right summary of the information in the data, but works needs to be done to parse
this summary into useful scientific information.

3.5 Reconstruction of a Differential Emission Measure

Exploring the Physical Enviornment of a Stellar Corona. As a final example, we show
how we can use (6) to explore the distribution of the temperature of the matter in a
stellar corona; this distribution is known as the differential emission measure (DEM).
The corona is the outermost layer of a stellar atmosphere and contains very low-density
(about 109 particles/cm−3) and very hot (> 106 K) heavily ionized gas. Figure 11
illustrates the solar corona by imaging the Sun in three wavelengths of light19. The first
panel is an optical image taken on March 29, 2001 of a portion of the Sun and illustrates
the largest sunspot group to appear in a decade; at its peak, this group was over ten
times the size of Earth. The second and third panels illustrate an extreme ultraviolet
image and an X-ray image of the same region of the Sun, respectively. Although in
visible light the sunspots appear as dark areas against the bright surface of the Sun, they
light up in the extreme ultraviolet. The X-ray image shows large loops of glowing plasma
arching above the sunspot group. The reason that the images look so different is that
they are actually revealing different layers of the Sun’s atmosphere. The visible photons
originate from the photosphere, the lowest and coolest layer at about 5000 degrees
Kelvin, the extreme ultraviolet image reveals the chromosphere/transition region which
is above the photosphere and hotter at 10–100 thousand degrees Kelvin. Finally, the
X-rays originate from the solar corona that is even higher and is even hotter—at least
a million degrees Kelvin.

19URL: http://antwrp.gsfc.nasa.gov/apod/ap010419.html

http://antwrp.gsfc.nasa.gov/apod/ap010419.html
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The X-ray image in Figure 11 illustrates the complex structure in the intensity of
the X-ray emission across the solar corona. The structure of the emission is a tracer
of temperature and density in the corona. (The visible image also reveals temperature
structure; the sunspots are much cooler than their surroundings. X-ray images, however,
are not useful for viewing the temperature structure of the relatively cool photosphere.)
Figure 12 illustrates the relative abundance of matter in a region of the solar corona
with high sunspot activity as a function of temperature; this is a plot of the solar DEM
in an active region. Figure 13 is the same plot, but in a region with no sunspot activity.
Notice that there is relatively less very hot matter in the quiet region of the solar corona.

Although impressive images of the solar corona are available from the Solar & He-
liospheric Observatory (SOHO)20, very little is known about the temperature structure
of stellar coronae. The stars being very distant, their disks cannot be resolved with the
resolution of even the best existing telescopes. We can, however, infer their structures
indirectly by examining the temperature structure. There are clues in the emission lines
of stellar X-ray spectra that can be unlocked using prior information obtained from de-
tailed quantum mechanical computations and ground-based laboratory measurements.
A stellar corona is made up of various ions which can be recognized in a spectrum by
their identifying emission lines. If the corona is relatively hot, we expect the emission
lines that correspond to more energetic quantum states to be relatively strong. Thus,
the relative strength of the emission lines corresponding to a particular ion carries in-
formation as to the temperature of the source.

Model Formulation. Unlocking this information is equivalent to solving a Poisson im-
age reconstruction problem of the type formulated in (6). Suppose a stellar corona were
composed completely of a single ion at a particular temperature. Quantum physical
calculations can predict exactly which emission lines are possible and the relative prob-
ability that an emitted photon appears in each of the possible lines; this is a multinomial
probability vector. The same can be done if the relative abundance of the various ions is
known by simply mixing the multinomial distributions with weights equal to the relative
abundance of the ions. As a starting point in practice, we use the relative abundance
of ions in the solar corona. Thus, for a given temperature and for a large set of emis-
sion lines, we have the probability that an emitted photon falls into each line. This
probability vector can be computed for each value of temperature on a grid of possible
coronal temperatures (equally spaced on the log10 scale). We compile these vectors into
a J×M emissivity matrix, P, where J is the number of possible emission lines, and M is
the number of temperature values in the grid. (The emissivity matrix can be compiled
using the Atomic Database (ATOMDB)21 provided by the Chandra X-ray Center.)

Using data collected with Chandra’s HRC with a grating in place (LETGS), we
can obtain independent Poisson counts from tens of thousands of lines. (These are
actually counts in very narrow energy bins that often contain two or more lines. This,
however, poses no conceptual problem. It simply means that the instrumentation is

20 URL: http://sohowww.nascom.nasa.gov
21URL: http://cxc.harvard.edu/atomdb/ (Smith et al. 2001)

http://sohowww.nascom.nasa.gov
http://cxc.harvard.edu/atomdb/
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at a lower resolution than the theoretical calculations and we must sum sets of rows
of the emissivity matrix.) Because of the continuum, each count is actually a mixture
of a line count and continuum count; for the moment we ignore the continuum. The
expected count for each of the lines are collected into a vector, µ. This is the expected
ideal count, because we are not yet accounting for the instrument effect, the effective
area of the instrument, absorption, or background contamination. We wish to compute
the expected count corresponding to each of the temperature bins. Recall that the
temperature is not constant across the corona; see Figure 11. We compile the expected
counts in each temperature bin into the vector µT; this is our representation of the
DEM.

The ML estimate of µ can be computed by solving

µ = PµT, (13)

which is a simplified version of (6). In practice, the vector µ has tens of thousand
of components, while µT has fewer than 100. We might expect this to be a very
simple inversion, since there are far more data points than unknown parameters, but
the information in the line counts for the DEM is very sparse: P can be nearly singular
and the ML estimate can be very poorly behaved. Bayesian methods and informative
prior information for µT are needed.

Because very little is known about the shape of the DEM, we impose simple smooth-
ing prior distributions. We again implement the multi-scale prior distribution described
in Section 3.4, this time in one dimension; we replace the multinomial and Dirichlet
distributions with binomial and beta distributions, respectively.

Future Work. The model that we have described thus far is a simplified version of what
is required for useful application in practice. For example, we are ignoring the contin-
uum in our representation of the expected ideal counts in (13). A full analysis of the
continuum would include a continuum emissivity matrix that quantifies how the DEM
is manifested in the distribution of the energy of continuum emission. We are also not
fully accounting for the data generation mechanism; in order to account for instrument
response, the effective area of the instrument, and background contamination µ must
be substituted into (6) yielding a nested convolution model. This illustrates the power
of the modular/hierarchical approach—one can add another layer to the model fairly
simply. This will be important when we incorporate the effect of uncertainties in the
emissivity matrix, P; this matrix is only known with limited precision and its compo-
nents are measured with correlated error. Another important outstanding extension to
the model is to parameterize the stellar ion abundances; our emissivity matrix assumes
solar abundances.

Example: DEM Reconstruction of Capella. One of the challenging aspects of DEM
reconstruction from a statistical point of view is the near singularity of the dispersion
matrix, P. To illustrate this point, we begin with a simulation study that uses our best
approximation of the emissivity matrix, P, but uses simulated data from a known DEM,
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µT. The simulation is based on model (13); it does not account for the continuum or
the processes described in (6). The emissivity matrix (obtained from ATOMDB version
1.3) has 33,795 emission lines ranging 1.15 to 2715 Ångstrøms (Å) and 50 temperature
bins; as is typical with grating data, we parameterize energy in terms of its reciprocal,
wavelength, using Angstroms for the unit of length. For the simulation, we select
8,905 emission lines by taking the subset ranging from 5 to 25Å; the 8,905 emission
lines are contained in 1,600 bins of equal width in units of wavelength (0.0125 Å).
For convenience in the context of the hierarchical binomial splitting in the multiscale
smoothing model, we expanded the partition of temperature bins into 64 = 26 bins
using linear extrapolation.

Figure 14 shows the results from four simulations corresponding to four known
DEMs; the values of the DEM, µT, used to generate each of the datasets are repre-
sented by dotted lines. The MAP estimate of the DEM is illustrated using each of three
multi-scale prior distribution for each of the four data sets. The prior distributions
are specified in terms of the split probabilities at each level of resolution; we use the
same conjugate beta(α, α) prior distribution at each level. The three prior distributions
correspond to: (1) flat prior distributions with α = 1, (2) moderate shrinking prior dis-
tributions with α = 2, and (3) strongly shrinking prior distributions with α = 3. The
EM algorithms used to compute the MAP estimates were started with a flat DEM and
run until convergence, as measured by the increase in the log of the posterior density
evaluated at two consecutive iterates relative to the value evaluated at the first of the
two iterates; convergence was called when this quantity was less than 10−5. The results
appear in Figure 14 and show that stronger prior distributions help significantly in the
reconstruction of the smooth underlying DEM. In these simulations, the data are such
that we only expect reliable results for 5.5 < log(T ) < 7.5. Thus, we focus on this
range when evaluating the reconstructions. We emphasize that even with 26,005 energy
bins, the ML estimates are not satisfactory and the prior suspicion of a smooth DEM
is helpful in achieving acceptable results.

The same models can be fit via MCMC to compute the posterior mean of µT and
to access its posterior variability. This time we use a larger range of emission lines; we
select 26,005 emission lines by taking the subset ranging from 3 to 180Å; this corre-
sponds to 14,160 bins each of width 0.0125Å. To accommodate the larger dataset we
use a stronger prior distribution—the conjugate beta prior distribution with α = 10.
Figure 15 illustrates the result for simulations 3 and 4. Starting from a flat DEM for
each dataset we ran the Markov chain for 300,000 iterations, saving every 100th draw,
for a total sample size of 3000 draws, of which the final 2000 were used for Monte
Carlo integration. Figure 15 compares µT with its posterior mean and componentwise
95% posterior intervals for both data sets. Again in the range 5.5 < log(T ) < 7.5, the
reconstructions are very good.

Finally we attempt to estimate the DEM of the X-ray bright star, Capella. The
raw spectrum of Capella collected with the HRT using the LETGS diffraction grat-
ing appears in Figure 16, which illustrates the many emission lines that compose the
spectrum. We select 7,741 emission lines by taking the subset ranging from 6 to 20Å;
this corresponds to 1,120 bins of width 0.0125Å. In our reconstruction, we include a
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continuum term that is assumed known up to a normalizing constant and account for
the processes described in (6); we include a term for background contamination that is
also assumed known up to a normalizing constant. We compute the MAP estimate of
the DEM using the EM algorithm, again starting from a flat DEM, and using the same
convergence criterion as in the simulation study; α was set to three in the beta prior
distributions. The model was also fit via MCMC. The posterior distribution of µT is
summarized by its posterior mean and componentwise 95% posterior intervals in Fig-
ure 17. An important advantage of our model-based approach is a principled method for
assigning errors to the fitted DEM. No previous attempt to reconstruct a stellar DEM
has addressed uncertainty in the fitted DEM and the atomic data—indeed, this is the
first method to perform global fits to the spectrum that uses all the pieces of available
information in terms of the individual line emissivities, that allows for conceptually easy
enhancements to include errors in atomic databases, and that allows for the inclusion
of prior information (see also Kashyap and Drake 1998).

4 Discussion

In his seminal 1979 paper introducing the likelihood ratio to astrophysicists, Webster
Cash began by remarking,

As high-energy astronomy matures, experiments are producing data of higher
quality in order to solve problems of greater sophistication. With the ad-
vent of the HEAO satellites, the quality of X-ray astronomy data is being
increased again, and it is important that the procedures used to analyze the
data be sufficiently sophisticated to make the best possible use of the results.

Cash’s statement applies as well today as it did twenty-five years ago. The sophisticated
equipment on board the Chandra X-ray Observatory offers a giant leap forward in the
quality of spectral, spatial, and temporal data available to high-energy astrophysicists.
Unlocking the information in this data, however, requires equally sophisticated statisti-
cal tools and methods. In the realm of sophisticated space observatories, Chandra is just
the tip of the iceberg. Planned or proposed missions for high-energy detectors include
Constellation-X, GLAST, XMM, and Generation-X. Although the lessons learned from
Chandra will surely inform the design of these instruments and, one day, the analysis
of their data, new challenges will certainly be encountered. High-energy astrophysics
and other areas in astronomy offer many statistical challenges and fertile ground for
statisticians and scientists interested in developing statistical tools and methods.
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Figure 8: Richardson-Lucy Reconstruction of NGC 6240. The upper left color image
shows the original Chandra dataset. The upper right image illustrates the posterior
mean reconstruction, showing two sources in the middle, surrounded by extended loops
of hot gas. In the second row are the Richardson-Lucy reconstructions, stopped at 20
and 100 iterations, respectively. The Richardson-Lucy restorations under smooth the
image, aggregating the intensity into E‘clumps’ in the image.
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Figure 9: Comparing X-ray and Optical Images of NGC 6240. The figure shows a color
overlay of the Hubble optical image first with the raw Chandra data and second with the
posterior mean reconstruction. There is a strong correlation in the extended structures
in the optical and X-ray bands, which provides additional verification for the posterior
mean result.
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Figure 10: Significance Maps for the Reconstruction of the X-ray Image of NGC 6240.
The first row illustrates the raw data and the posterior mean reconstruction; the lower
two images are the significance map, thresholded at three and one standard deviation,
respectively. The significance maps indicate, for example, that the loop of hot gas in the
upper right quadrant of the reconstructed image appears to be a feature in the source.
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Figure 11: The Sun. The three images are, from top to bottom, optical, extreme
ultraviolet, and X-ray images. The X-ray image illustrates the complex gradient of
X-ray intensity and the corresponding temperature gradient across the solar corona. A
stellar DEM is a representation of the distribution of the temperature of matter in a
stellar corona. (Image Credit: SOHO - MDI / EIT Consortia, Yohkoh / SXT Project.)
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Figure 12: The Solar DEM in an Active Region. This is a plot of the relative abundance
of matter in a region of the solar corona with high sunspot activity as a function of the
log (base 10) of the temperature of the matter. The plot can be compared with that in
Figure 13, which plots the solar DEM in a quiet region of the Sun.
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Figure 13: The Solar DEM in a Quiet Region. This is a plot of the relative abundance
of matter in a region of the solar corona with no sunspot activity as a function of the
log (base 10) of the temperature of the matter. The plot can be compared with that in
Figure 12, which plots the solar DEM in an active region of the Sun.
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Figure 14: Fitted DEMs from the Simulation Study. Four DEMs were used to generate
one data set each and appear as dotted lines in the plots. The MAP estimate of the DEM
was computed using each of three prior distributions for each of the data sets; the MAP
estimates are plotted as solid lines. The results improve with more heavily smoothing
prior distributions. The fits are quite good in the reliable range of 5.5 < log(T ) < 7.5
with the highly smoothing prior distributions. The vertical scales are in units of 1017.
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Figure 15: Error Bars for the Fitted DEMs from the Simulation Study. The dashed
lines in the two plots represent the DEM that was used to generate the data; the solid
line is the posterior mean of the DEM under a beta prior distribution with α = 10; the
shaded area represents componentwise 95% posterior intervals for the DEM. Note that
for the reliable region of 5.5 < log(T ) < 7.5, the DEM is very close to its posterior mean
and is included in the posterior intervals.
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Figure 16: The Raw Spectrum of Capella (α Aur). This high resolution spectra was
collected using Chandra’s HRC with the LETGS diffraction grating. The first panel
magnifies the low-wavelength end of the spectrum. Notice the numerous emission lines
that compose the spectrum; several important emission lines are labeled.
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Figure 17: The Fitted DEM of Capella. The two plots represent the original scale
and the log scale of the DEM, respectively. The solid line is the posterior mean of
the DEM under a beta prior distribution with α = 3, and the shaded area represents
componentwise 95% posterior intervals for the DEM. The dotted line in the bottom
plot is another DEM reconstruction of Capella by Dupree et al. (1993) using a different
statistical method and a data set obtained at a different time epoch. Since the DEM
varies over time, we expect the DEM corresponding to the two data sets to differ.



236 Deconvolution in High-Energy Astrophysics


