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Abstract

We introduce a set of new Markov chain Monte Carlo algorithms for Bayesian analysis of the
multinomial probit model. Our Bayesian representation of the model places a new, and possibly
improper, prior distribution directly on the identi0able parameters and thus is relatively easy to
interpret and use. Our algorithms, which are based on the method of marginal data augmentation,
involve only draws from standard distributions and dominate other available Bayesian methods
in that they are as quick to converge as the fastest methods but with a more attractive prior
speci0cation. C-code along with an R interface for our algorithms is publicly available.1
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1. Introduction

Discrete choice models are widely used in the social sciences and transportation stud-
ies to analyze decisions made by individuals (see, e.g., Maddala, 1983; Ben-Akiva and
Lerman, 1985). Among such models, the multinomial probit model is often appealing
because it lacks the unrealistic assumption of independence of irrelevant alternatives of
logistic models (see, e.g. Hausman and Wise, 1978). Despite this appeal, the model is
sometimes overlooked because model 0tting can be computationally demanding owing
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1 R is a freely available statistical computing environment that runs on any platform. The R software
that implements the algorithms introduced in this article is available from the 0rst author’s website at
http://www.princeton.edu/∼kimai/.

0304-4076/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2004.02.002

mailto:kimai@princeton.edu
mailto:dvd@ics.uci.edu
http://www.princeton.edu/~kimai/


312 K. Imai, D.A. van Dyk / Journal of Econometrics 124 (2005) 311–334

to the required high-dimensional integrations. Recent advances in Bayesian simulation,
however, have shown that Gibbs sampling algorithms based on the method of data
augmentation can provide reliable model 0tting (Geweke et al., 1994). Hence, the de-
velopment of eFcient Markov chain Monte Carlo (MCMC) algorithms has been a
topic of much recent work; see, e.g., McCulloch and Rossi (1994), Chib et al. (1998),
Nobile (1998), McCulloch et al. (2000), Nobile (2000), and McCulloch and Rossi
(2000).
The basic computational strategy of the proposed MCMC methods is to identify an

underlying set of Gaussian latent variables, the relative magnitudes of which deter-
mines the choice of an individual. Because the natural parameterization of this model
is unidenti0able given the observed choice data, a proper prior distribution is required
to achieve posterior propriety. As proposed by McCulloch and Rossi (1994), a Monte
Carlo sample of the identi0able parameters can then be recovered and be used for
Monte Carlo integration in a Bayesian analysis. A complication involved in this proce-
dure is that the prior distribution for the identi0able model parameters is determined as
a byproduct. Inspection (e.g., via simulation) is therefore required to determine what
prior distribution is actually being speci0ed and how sensitive the 0nal results are to
this speci0cation.
To improve the computational performance of McCulloch and Rossi’s (1994) algo-

rithm (but without addressing the diFculties in the prior speci0cation), Nobile (1998)
introduced a “hybrid Markov chain.” This hybrid is quite similar to the original algo-
rithm but adds an additional Metropolis step to sample the unidenti0able parameters
and appears to dramatically improve the performance (i.e., mixing) of the resulting
Markov chains. We illustrate that the improved mixing of Nobile’s hybrid method
seems to be primarily for the unidenti0able parameter—the gain for the identi0able
model parameters is much smaller, at least in terms of the autocorrelation of their
Monte Carlo draws. Nonetheless, Nobile’s method has an advantage over McCulloch
and Rossi (1994) in that it can be less sensitive to starting values. In addition to this
clari0cation of the improvement oKered by Nobile’s method, we point out an error
in Nobile’s derivation which can signi0cantly alter the stationary distribution of the
resulting Markov chain and thus hamper valid inference.
A second computational innovation was introduced by McCulloch et al. (2000) and

aims to address the diFculties with prior speci0cation (but without addressing the
computational speed of the algorithm). In particular, this proposal speci0es a prior
distribution only on the identi0able parameters and constructs a Markov chain that
0xes the unidenti0able parameter. Unfortunately, as pointed out by McCulloch et al.
(2000) and Nobile (2000), the resulting algorithm can be much slower to converge
than either the procedure of McCulloch and Rossi (1994) or of Nobile (1998).
To clarify comparisons among existing algorithms and the algorithms we introduce,

we specify three criteria: (1) the interpretability of the prior speci0cation, (2) the
computational speed of the algorithm, and (3) the simplicity of implementation. Our
comparisons among the three existing algorithms appear in Table 1, which indicates
that none of the algorithms dominates the others.
The primary goal of this article is to introduce new algorithms that perform better

than the existing algorithms when evaluated in terms of these three criteria. That is, our
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Table 1
Ranking three MCMC algorithms for 0tting the multinomial probit model in terms of the interpretability of
the prior speci0cation, computational speed as measured by the autocorrelation of the Monte Carlo draws,
and simplicity of implementation

CriteriaAlgorithm
Prior Speed Simplicity

McCulloch and Rossi (1994) Besta

Nobile (1998) Bestb

McCulloch et al. (2000) Best

aThe algorithms of both McCulloch and Rossi (1994) and McCulloch et al. (2000) require only draws
from standard distributions; the latter is, however, more involved.

bAlthough the gain in terms of the autocorrelation of the identi0able parameters is small, the sampler in
Nobile (1998) when compared with that of McCulloch and Rossi (1994), can be less sensitive to starting
values.

algorithms are at least as good as the best of the three existing algorithms when mea-
sured by any of the three criteria. In particular, our algorithms are as fast as Nobile’s
(1998) algorithm, are not particularly sensitive to starting values, do not require a
Metropolis step, directly specify the prior distribution of the identi0able regression
coeFcients, and can handle Nat prior distributions on the coeFcients.
The second goal of this article is to use the framework of conditional and marginal

data augmentation (Meng and van Dyk, 1999; van Dyk and Meng, 2001) in order
to illuminate the behavior of the various algorithms. In particular, using unidenti0able
parameters within a Markov chain is the key to the substantial computational gains
oKered by marginal augmentation. Thus, it is no surprise that eliminating the uniden-
ti0able parameters slows down the algorithm of McCulloch et al. (2000). Likewise,
under this framework, Nobile’s somewhat subtle error is readily apparent. It is also ex-
pected that the procedure of Nobile (1998) has better convergence properties than the
procedure of McCulloch and Rossi (1994), at least for the unidenti0able parameters.
The remainder of the article is divided into 0ve sections. In Section 2 we brieNy

review the multinomial probit model and introduce our prior speci0cation. The method
of marginal data augmentation is reviewed and illustrated in the context of the multi-
nomial probit model in Section 3, which concludes with the introduction of our new
algorithms. In Section 4, we present the results of both theoretical and empirical investi-
gations, which compare our algorithms with others in the literature. More sophisticated
computational examples appear in Section 5. Section 6 gives concluding remarks and
two appendices present some technical details.

2. The multinomial probit model

The observed multinomial variable Yi is modeled in terms of a latent variable Wi =
(Wi1; : : : ; Wi;p−1) via

Yi(Wi) =

{
0 if max(Wi)¡ 0

j if max(Wi) =Wij ¿ 0
for i = 1; : : : ; n; (1)
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where max(Wi) is the largest element of the vector Wi. The latent variables is modeled
as

Wi = Xi� + ei; ei ∼ N(0; �) for i = 1; : : : ; n; (2)

where Xi is a (p− 1) × k matrix of observed covariates with 0xed k × 1 coeFcients,
�, and �=(�‘m) is a positive de0nite (p−1)× (p−1) matrix with �11 =1. Averaging
over Wi, we 0nd p(Yi | �; �), the multiplicative contribution of Yi to the likelihood.
The constraint on �11 is made to be sure the model parameters (�; �) are identi0ed.
In particular, consider

W̃ i = �Wi = Xi�̃ + ẽ i ; ẽ i ∼ N(0; �̃) for i = 1; : : : ; n; (3)

where � is a positive scalar, �̃= ��, and �̃= �2� is an unconstrained positive de0nite
(p−1)×(p−1) matrix. Since Yi(Wi)=Yi(W̃ i), the parameter � is unidenti0able. (Even
with this constraint on �11, (�; �) may be unidenti0able without certain conditions on
X and Y ; see Keane (1992), Chib et al. (1998), and Speckman et al. (1999).)
Our analysis is based on the Bayesian posterior distribution of � and � resulting

from the independent prior distributions

� ∼ N(�0; A−1) and p(�)˙ |� |−(�+p)=2[trace(S�−1)]−�(p−1)=2; (4)

subject to �11 = 1, where �0 and A−1 are the prior mean and variance of �, � is the
prior “degrees of freedom” for �, and the matrix S is the prior scale of �; we assume
the 0rst diagonal element of S is one.
The prior distribution on � is a constrained inverse Wishart distribution. In particular,

beginning with �̃ ∼ invWishart(�; S̃) and transforming to �2 = �̃11 and �= �̃=�̃11 we
0nd

p(�; �2)˙ |�|−(�+p)=2 exp
[
− �20
2�2

trace(S�−1)
]
(�2)−[�(p−1)=2+1]; (5)

subject to �11 =1, where �20 is a positive constant, S̃=�20S; �̃=(�‘m), and the Jacobian
adds a factor of �p(p−1)−2. (The inverse Wishart distribution is parameterized so that
E(�̃) = (�− p)−1S̃.) Thus, the conditional distribution of �2 given � is

�2 |� ∼ �20 trace(S�
−1)=�2�(p−1); (6)

and integrating (5) over �2 yields the marginal distribution of � given in (4). Thus,
p(�) is the distribution of �̃=�̃11, where �̃ ∼ invWishart(�; S̃). Because the inverse
Wishart distribution is proper if �¿p− 1, p(�) is proper under this same condition.
To approximate E(�), we note

E(�) = E
(

1
�̃11

�̃
)

≈ E(�̃)=E(�̃11) = S; (7)

where the approximation follows from a 0rst-order Taylor series expansion. Finally, by
construction, the prior variance of � decreases as � increases, as long as the variance
exists.
Combining (4) and (5) and transforming to (�̃; �̃) yields �̃| �̃ ∼ N(

√
�̃11�0; �̃11A−1)

with �̃ ∼ inv Wishart(�; S̃). McCulloch and Rossi (1994) on the other hand suggest
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�̃ | �̃ ∼ N(�0; A−1) with �̃ ∼ inv Wishart(�; S̃). As we shall demonstrate, this seemingly
minor change has important implications for the resulting algorithms.
Our choice of prior distribution is motivated by a desire to allow for both informative

and diKuse prior distributions while maintaining simple and eFcient algorithms. We
can set A = 0 for a Nat prior on � or choose small values of A when little prior
information is available. Neither the method of McCulloch and Rossi (1994) nor of
Nobile (1998) allows for a Nat prior on �. A prior distribution on � is generally not
meant to convey substantive information but rather to be weakly informative and to
provide some shrinkage of the eigenvalues and correlations (McCulloch et al., 2000).
The prior distribution for � speci0ed by (4) should accomplish this with small degrees
of freedom (�¿p− 1 for prior propriety).

3. Conditional and marginal augmentation

3.1. Data augmentation algorithm

The data augmentation (DA) algorithm (Tanner and Wong, 1987) is designed to
obtain a Monte Carlo sample from the posterior distribution p(�;W |Y ) by iteratively
sampling from p(� |W; Y ) and p(W | �; Y ). (In this discussion, Y may be regarded as
generic notation for the observed data, � for the model parameters, and W for the
latent variables.) The samples obtained with the DA algorithm form a Markov chain,
which under certain regular conditions (e.g., Roberts, 1996; Tierney, 1994, 1996) has
stationary distribution equal to the target posterior distribution, p(�;W |Y ). Thus, after
a suitable burn in period (see Gelman and Rubin, 1992; Cowles and Carlin, 1996,
for discussion of convergence diagnostics) the sample obtained with the DA algorithm
may be regarded as a sample from p(�;W |Y ). The advantage of this strategy is clear
when both p(� |W; Y ) and p(W | �; Y ) are easy to sample, but simulating p(�;W |Y )
directly is diFcult or impossible.
In the context of the multinomial probit model, computation is complicated by the

constraint �11 = 1, i.e., p(�; � |W; Y ) is not particularly easy to sample directly. The
methods introduced by McCulloch and Rossi (1994), Nobile (1998), and McCulloch
et al. (2000) are all variations of the DA algorithm which are designed to accommodate
this constraint in one way or another. In this section, we introduce the framework of
conditional and marginal augmentation which generalizes the DA algorithm in order
to improve its rate of convergence. From this more general perspective, we can both
derive new algorithms with desirable properties for the multinomial probit model and
predict the behavior of the various previously proposed algorithms.

3.2. Working parameters and working prior distributions

Conditional and marginal augmentation (Meng and van Dyk, 1999; van Dyk and
Meng, 2001) take advantage of unidenti0able parameters to improve the rate of
convergence of a DA algorithm. In particular, we de0ne a working parameter to be
a parameter that is not identi0ed given the observed data, Y , but is identi0ed given
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(Y;W ). Thus, �11 is a working parameter in (2); equivalently � is a working parameter
in (3). (The matrix �̃ is identi0able given W̃ , as long as n¿p− 1.)
To see how we make use of the working parameter, consider the likelihood of

�= (�; �),

L(� |Y )˙ p(Y | �) =
∫
p(Y;W | �) dW: (8)

Because there are many augmented-data models, p(Y;W | �), that satisfy (8) the latent-
variable model described in Section 2 is not a unique representation of the multino-
mial probit model. In principle, diKerent augmented-data models can be used to con-
struct diKerent DA algorithms with the diKerent properties. Thus, we aim to choose
an augmented-data model that results in a simple and fast DA algorithm and that is
formulated in terms of an easily quanti0able prior distribution.
Since � is not identi0able given Y , for any value of the working parameter, �,

L(� |Y ) = L(�; � |Y )˙
∫
p(Y;W | �; �) dW; (9)

where the equality follows because � is not identi0able and the proportionality follows
from the de0nition of the likelihood. Thus, we may condition on any particular value
of �. Such conditioning often takes the form of a constraint; e.g., setting �11 = 1 in
the multinomial probit model.
Alternatively, we may average (9) over any working prior distribution for �,

L(� |Y )˙
∫ [∫

p(Y;W | �; �)p(� | �) d�
]
dW; (10)

where we may change the order of integration by Fubini’s theorem. Here we specify
the prior distribution for � conditional on � so we can specify a joint prior distribution
on (�; �) via the marginal prior distribution for �. The factor in square brackets in
(10) equals p(Y;W | �) which makes (10) notationally equivalent to (8); i.e., (10)
constitutes a legitimate augmented-data model.
The diKerence between (10) and (8) is that the augmented-data model, p(Y;W | �),

speci0ed by (10) averages over � whereas (8) implicitly conditions on �; this is made
explicit in (9). Thus, we call (9) and the resulting DA algorithms conditional augmen-
tation and we call (10) and its corresponding DA algorithms marginal augmentation
(Meng and van Dyk, 1999).
We expect the conditional augmented-data model, p(Y;W | �; �), to be less diKuse

than the corresponding marginal model,
∫
p(Y;W | �; �)p(� | �) d�—this is the key to

the computational advantage of marginal augmentation. Heuristically, we would like
p(W | �; Y ) to be as near p(W |Y ) as possible so as to reduce the autocorrelation in
the resulting Markov chain—if we could sample from p(W |Y ) and p(� |W; Y ) there
would be no autocorrelation. Thus, p(W | �; Y ) should be as diKuse as possible, up to
the limit of p(W |Y ). Since p(W | �; Y ) = p(Y;W | �)=p(Y | �) and p(Y | �) remains
unchanged, this is accomplished by choosing p(Y;W | �) to be more diKuse, which is
the case with marginal augmentation using a diKuse working prior distribution.
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Formally, Meng and van Dyk (1999) proved that, starting from any augmented-data
model, the following strategy can only improve the geometric rate of convergence of
the DA algorithm.

Marginalization strategy
Step 1: For � in a set A, construct a one-to-one mapping D� of the latent variable

and de0ne W̃ = D�(W ). The set A should include some �I such that D�I is the
identity mapping.
Step 2: Choose a proper working prior distribution, p(�) that is independent of �,

to de0ne an augmented-data model as de0ned in (10).

In the context of the multinomial probit model the mapping in Step 1 is de0ned in
(3), i.e., W̃ i =D�(Wi) = �Wi for each i with �I = 1 and A = (0;+∞). Thus, if we
were to construct a DA algorithm using (3) in place of (2) with any proper working
prior distribution (independent of �) we would necessarily improve the geometric rate
of convergence of the resulting algorithm.
The samplers introduced by McCulloch and Rossi (1994) and Nobile (1998) as

well as the ones we introduce in Section 3.4 use marginal augmentation but do not
fall under the Marginalization strategy because � and � are not a priori independent.
Nevertheless, marginal augmentation is an especially promising strategy because using
(3) to construct a DA algorithm can be motivated by the diFculties that the constraint
�11 = 1 impose on computation (McCulloch and Rossi, 1994). In practice, we 0nd
that these samplers are not only much easier to implement but in many examples also
converge much faster than the sampler of McCulloch et al. (2000), which does not
use marginal augmentation.

3.3. Sampling schemes

In this section we describe how marginal augmentation algorithms are implemented
and for clarity illustrate their use in the binomial probit model. There are two basic
sampling schemes for use with marginal augmentation, which diKer in how they handle
the working parameter and can exhibit diKerent convergence behavior. Starting with
� (t−1) and (� (t−1); �(t−1)), respectively, the two schemes make the following random
draws at iteration t:
Scheme 1: W̃ (t) ∼ p(W̃ | � (t−1); Y ) and � (t) ∼ p(� | W̃ (t); Y ),
Scheme 2: W̃ (t) ∼ p(W̃ | � (t−1); �(t−1); Y ) and (� (t); �(t)) ∼ p(�; � | W̃ (t); Y ).

Notice that in Scheme 1, we completely marginalize out the working parameter while
in Scheme 2, the working parameter is updated in the iteration.
For the binomial model, �̃= �2 and �=� and we use the prior distribution given in

(4) with �0 = 0 and working prior distribution given in (6). The algorithms described
here for the binomial model are a slight generalization of those given by van Dyk and
Meng (2001) for binomial probit regression; they assume p(�) ˙ 1, while we allow
� ∼ N(0; A−1).
The 0rst step in both sampling schemes is based on

Wi | �; Yi ∼ TN(Xi�; 1; Yi); (11)
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where TN(�; �2; Yi) speci0es a normal distribution with mean � and variance �2 trun-
cated to be positive if Yi = 1 and negative if Yi = 0. Since W̃ i = �Wi, the 0rst step of
Scheme 2 is given by

W̃ i | �; �2; Yi ∼ TN(�Xi�; �2; Yi): (12)

For Scheme 1, we draw from p(W̃ ; �2 | �; Y ) and discard the draw of �2 to obtain a
draw from p(W̃ | �; Y ). That is, we sample

p(W̃ i | �; Yi) =
∫
p(W̃ i | �; �2; Yi)p(�2 | �) d�2 (13)

by 0rst drawing �2 ∼ p(�2 | �) and then drawing W̃ i given �; �2, and Yi as described
in (12). In this case, p(�2 | �) = p(�2), i.e., �2 ∼ �20=�

2
� .

The second step in both sampling schemes is accomplished by sampling from p(�;
�2 | W̃ ; Y ); with Scheme 1 we again discard the sampled value of �2 to obtain a draw
from p(� | W̃ ; Y ). To sample from p(�; �2 | W̃ ; Y ), we 0rst transform to p(�̃; �2 | W̃ ; Y ),
then we sample from p(�2 | W̃ ; Y ) and p(�̃ | �2; W̃ ; Y ), and 0nally we set �=�̃=�. Thus,
for both sampling schemes we sample �2 | W̃ ; Y ∼ [

∑n
i=1(W̃ i−Xi�̂)2+�20+�̂

�A�̂]=�2n+�
and �̃ | �2; W̃ ; Y ∼ N[�̂; �2(A +

∑n
i=1 X

�
i Xi)

−1], where �̂ = (A +
∑n

i=1 X
�
i Xi)

−1∑n
i=1

X�
i W̃ i.
Although both Schemes 1 and 2 have the same lag-1 autocorrelation for linear com-

binations of � (t), the geometric rate of convergence of Scheme 1 cannot be larger
than that of Scheme 2 because the maximum correlation between � and W̃ cannot
exceed that of (�; �) and W̃ (Liu et al., 1994). Thus, we generally prefer Scheme
1. As we shall see, this observation underpins the improvement of the hybrid Markov
chain introduced by Nobile (1998); McCulloch and Rossi (1994) uses Scheme 2, while
Nobile (1998) uses Scheme 1 with the same augmented-data model. Because we use
a diKerent prior distribution than Nobile, both sampling schemes are available without
recourse to a Metropolis step; see Section 4.2 for details.

3.4. Two new algorithms for the multinomial probit model

We now generalize the samplers for the binomial model to the multinomial probit
model. The resulting Gibbs samplers are somewhat more complicated and, as with other
algorithms in the literature, require additional conditional draws. We introduce two
algorithms, the 0rst with two sampling schemes, which are designed to mimic Schemes
1 and 2. Because of the additional conditional draws, however, they do not technically
follow the de0nitions given in Section 3.3; thus, we refer to them as “Scheme 1” and
“Scheme 2”; see van Dyk et al. (2004) for discussion of sampling schemes in multistep
marginal augmentation algorithms.
On theoretical grounds we expect, and in our numerical studies we 0nd, that

“Scheme 1” outperforms “Scheme 2.” Thus, in practice, we recommend “Scheme 1” of
Algorithm 1 always be used rather than “Scheme 2.” We introduce “Scheme 2” pri-
marily for comparison with the method of McCulloch and Rossi (1994) since both use
the same sampling scheme, but with diKerent prior distributions. Likewise, “Scheme
1” uses the same sampling scheme as Nobile’s method (1998), again with a diKerent
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prior distribution; see Section 4.2 for details. In both sampling schemes of Algorithm
1, we assume �0 = 0. We relax this constraint in Algorithm 2 but this may come at
some computational cost; we expect Algorithm 1 (Scheme 1) to outperform Algorithm
2. Thus, we recommend Algorithm 2 only be used when �0 �= 0.

We begin with Algorithm 1, which is composed of three steps. In the 0rst step we
sample each of the components of Wi in turn, conditioning on the other components of
Wi, the model parameters, and the observed data. Thus, this step is composed of p−1
conditional draws from truncated normal distributions. Then, we compute W̃ i = �Wi

with �2 drawn from its conditional prior distribution for “Scheme 1” and with the value
of �2 from the previous iteration for “Scheme 2.” Step 2 samples � ∼ p(� |�; W̃ ; Y ).
Finally, Step 3 samples (�2; �) ∼ p(�2; � | �; (W̃ − Xi�̃); Y ) and sets Wi = W̃ i=� for
each i. Details of Algorithm 1 appear in Appendix A.
To allow for �0 �= 0, we derive a second algorithm, which divides each iteration

into two steps:
Step 1: Update (W;�) via (W (t); �(t)) ∼ K(W;� |W (t−1); �(t−1); �(t−1)), where K

is the kernel of a Markov chain with stationary distribution p(W;� |Y; �(t−1)).
Step 2: Update � via �(t) ∼ p(� |Y;W (t); �(t); (�2)(t)) = p(� |Y;W (t); �(t)).

Step 1 is made up of a number of conditional draws, which are speci0ed in Appendix A.
We construct the kernel in Step 1 using marginal augmentation with an implementation
scheme in the spirit of Scheme 1; we completely marginalize out the working parameter.
By construction, the conditional distribution in Step 2 does not depend on (�2)(t). In
fact, Step 2 makes no use of marginal augmentation; it is a standard conditional draw.
We introduce an alternative augmented-data model to be used in Step 1, replacing (3)
with

W̃ i = �(Wi − Xi�) = ẽ i ; ẽ i ∼ N(0; �̃) for i = 1; : : : ; n: (14)

Because W̃ i is only used in Step 1, where � is 0xed, it is permissible for W̃ i to depend
on �. The details of Algorithm 2 appear in Appendix A.

3.5. The choice of p(�2|�)

As discussed in Section 3.2, the computational gain of marginal augmentation is a
result of a more diKuse augmented-data model, which allows the Gibbs sampler to
move more quickly across the parameter space. Thus, we expect that the more diKuse
the augmented-data model, the more computational gain that marginal augmentation
will oKer. This leads to a rule of thumb for selecting the prior distribution on the
unidenti0able parameters—the more diKuse, the better. With the parameterization of
p(�2 |�) given in (6), only �20 is completely free; changing � or S eKects the prior
distribution of � and, thus, the 0tted model. (In our numerical studies, we 0nd that the
choice of �20 has little eKect on the computational performance of the algorithms.) To
the degree that the practitioner is indiKerent to the choice of p(�), values of � and S
can be chosen to increase the prior variability of �2 and simultaneously of �, i.e., by
choosing both � and S small. As discussed by McCulloch et al. (2000), however, care
must be taken not to push this too far because the statistical properties of the posterior
distribution may suKer.
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4. Comparisons with other methods

The algorithms introduced here diKer from those developed by McCulloch and Rossi
(1994), Nobile (1998), and McCulloch et al. (2000) in terms of their prior speci0cation
and sampling schemes. In this section we describe these diKerences and the advantages
of our formulation; we include a number of computational comparisons involving bi-
nomial models to illustrate these advantages. More sophisticated, multinomial examples
appear in Section 5.

4.1. Prior speci$cation of McCulloch and Rossi (1994)

Rather than the prior distribution we used in (4), McCulloch and Rossi (1994)
suggest

�̃ ∼ N(�̃0; A−1) and �̃ ∼ invWishart(�; S) (15)

which, as they noted, results in a rather cumbersome prior distribution for the identi0-
able parameters, (�; �). In particular, (15) results in the marginal prior distribution for
� is given by

p(�)˙
∫

| �11A | 1=2|�|−(�+p+1)=2 exp
{

−1
2
[(

√
�11� − �0)�A(

√
�11� − �0)

+ trace(S�−1)]
}

d�: (16)

Because (16) is not a standard distribution, numerical analysis is required to determine
what model is actually being 0t. Since (15) does not allow for an improper prior on �,
proper prior information for � must be included and must be speci0ed via (16). The
motivation behind (15) is computational; the resulting model is easy to 0t.
The more natural interpretation of our choice of p(�; �) comes with no computational

cost. To illustrate this, we compare the algorithm developed by McCulloch and Rossi
(1994) with our Algorithm 1 using a data set generated in the same way as the data
set in Example 1 of Nobile (1998). This data set, with a sample size of 2000, was
generated with a single covariate drawn from a Uniform (−0:5; 0:5) distribution, and
�=−√

2. Again, following Nobile (1998) we use the prior speci0cation given in (15)
with �̃0 =0, A=0:01, �=3, and S=3 when running McCulloch and Rossi’s algorithm.
When running our algorithms, we use the prior and working prior distributions given
in (4) and (6) with �0 = 0, A= 0:01, �= 3, S = 1, and �20 = 3.
Fig. 1 compares both sampling schemes of Algorithm 1 with the method of

McCulloch and Rossi (1994). As in Nobile (1998), we use two starting values: (�; �)=
(−√

2;
√
2) and (�; �)=(−2; 10) to generate two chains of length 3000 for each of the

three algorithms. 2 The contour plots represent the joint posterior distributions of the
unidenti$able parameters, (�̃; �) and demonstrate that both the method of McCulloch
and Rossi (1994) and Scheme 2 are sensitive to the starting value. Although at station-
arity Schemes 1 and 2 must have the same lag-one autocorrelation for linear functions

2 Since we aim to investigate convergence, the chains were run without burn-in in this and later examples.
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Fig. 1. Comparison of the two marginal augmentation schemes of Algorithm 1 with the algorithm of
McCulloch and Rossi (1994) using the 0rst binomial probit example of Nobile (1998). The two sets of
starting values are (�; �)= (−√

2;
√
2) and (�; �)= (−2; 10), respectively. The plots are produced with 3000

draws for each chain and illustrate that although Scheme 1 is less sensitive to the choice of starting value,
in this example, the algorithms seem equivalent for the identi0able parameter. (The scale for � in the plots
in the 0rst column is diKerent from that in the other columns. This is due to a diKerence in the working
prior distribution in the diKerent samplers.)
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of the parameter, an advantage of Scheme 1 is that it, like the method of Nobile (1998),
can be far less sensitive to the starting values. This seems to be a general advantage
of Scheme 1 over Scheme 2, in that both the method of Nobile (1998) and Algorithm
1 (Scheme 1) are less sensitive to starting values than the method of McCulloch and
Rossi (1994) and Algorithm 1 (Scheme 2); in the following section, we show that the
methods of Nobile (1998) and McCulloch and Rossi (1994) are examples of Scheme 1
and Scheme 2, respectively, but using the prior in (15). These diKerences do not persist
for the identi$able parameter in this example; Schemes 1 and 2 appear equivalent in
terms of �= �̃=�. (In Section 4.2, however, we 0nd that Scheme 1 is less sensitive to
starting values than Scheme 2 for the identi$able parameters. In another example in
Section 5, we 0nd that Algorithm 1 (“Scheme 1”) is less sensitive to starting values
than any of the existing algorithms.)

4.2. The sampling scheme of Nobile (1998)

Nobile (1998) suggested a simple adaptation of the method of McCulloch and Rossi
(1994) which aims to improve the computational performance, but uses the same prior
distribution. In this section, we show that the diKerence between the two methods
is that one uses Scheme 1 and the other uses Scheme 2. Although this explains the
computational gain of Nobile’s algorithm, we also 0nd that this gain is not nearly as
dramatic as it might at 0rst seem. Finally, we point out an error in Nobile (1998) that
eKects the stationary distribution of the sampler and thus compromises valid inference.
To avoid technical details, our discussion is in the context of the binomial model.
In the binomial case, an iteration of McCulloch and Rossi’s (1994) sampler reduces

to
Step 1: Draw W̃ i ∼ p(W̃ i | �̃; �̃; Y ) independently for i = 1; : : : ; n.
Step 2: Draw �̃ ∼ p(�̃ | W̃ ; �̃; Y ).
Step 3: Draw �̃ ∼ p(�̃ | W̃ ; �̃; Y ).

Because of the choice of the prior distribution, the joint distribution, p(�̃; �̃ | W̃ ; Y )
is not easy to sample directly and thus it is split into Steps 2 and 3. Aside from
this complication, this algorithm is an example of Scheme 2; the model and working
parameters are drawn in Step 2 and Step 3 and both are conditioned on in Step 1.
Nobile (1998) modi0ed this sampler by adding one more step:
Step 4: Sample (�̃; �̃) along the direction in which the likelihood is Nat.

With the same caveat, Nobile’s algorithm is an example of Scheme 1. If we could
combine Steps 2 and 3 into a joint draw of (�̃; �̃) ∼ p(�̃; �̃ | W̃ ; Y ), transforming to
(�; �) would accomplish the second draw of Scheme 1. Secondly, Step 4 is equivalent
to sampling (�̃; �̃) ∼ p(�̃; �̃ |�; �; Y ) because �; �, and Y determine the value of the
likelihood. But this in turn is equivalent to sampling �2 ∼ p(�2 |�; �; Y ), since given
(�; �), �2 is the only free parameter in (�̃; �̃). Now,

p(�2 |�; �; Y )˙p(�2; �; � |Y )˙ p(Y | �2; �; �)p(�2; �; �)
= p(Y | �; �)p(�2; �; �); (17)
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and so Step 4 is equivalent to drawing �2 ∼ p(�2 |�; �; Y ) = p(�2 |�; �): Thus, Steps
4 and 1 combine into sampling (�2; W̃ ) ∼ p(�2; W̃ | �; �; Y ) and discarding �2, which
is equivalent to the 0rst step of Scheme 1.
The fact that Nobile’s adaptation amounts to replacing Scheme 2 with Scheme 1

explains why it improves the convergence of the resulting Markov chain. (The extra
conditioning required here does not eKect this result; see van Dyk et al., 2004.) Unfor-
tunately, using McCulloch and Rossi’s (1994) prior speci0cation, Nobile’s extra step
is not in closed form. Thus, he recommends using a Metropolis–Hastings step with
jumping rule

J (�′ | �) = 1
�
exp
(

−�′

�

)
(18)

derived from �′=� ∼ exp(1). The acceptance probability of the Metropolis–Hastings
rule is

R=
p(�′ | �; �)
p(� | �; �)

J (� | �′)
J (�′ | �) : (19)

When deriving the explicit form of R, Nobile correctly notes that since the likelihood
has the same value at � and �′, only the prior needs to be included in the 0rst factor of
R. Unfortunately, he replaces (�; �) with (�̃; �̃) in (19). Since the likelihood need not
be the same at (�; �̃; �̃) and (�′; �̃; �̃), the resulting value of R is incorrect; a correction
appears in Appendix B.
Fig. 2 illustrates the eKect of this correction on posterior simulation using a data set

concerning latent membranous lupus nephritis supplied by M. Haas. The data include
the measurements of 55 patients of which 18 were diagnosed with the latent membra-
nous lupus. To predict the occurrence of the disease, we 0t a binomial probit model
with an intercept and two covariates, which are clinical measurements related to im-
munoglobulin G and immunoglobulin A, two classes of antibody molecules; see Haas
(1998) for scienti0c background. The histograms show that without the correction,
Nobile’s algorithm does not appropriately sample from the target distribution.
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Fig. 2. Comparison of Nobile’s algorithm (with and without correction) using the lupus data. The graphs
compare 50,000 posterior draws of our correction (shaded histogram) with Nobile’s original algorithm (out-
lined histogram), while the solid line represents the true posterior distribution.
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In order to investigate the overall gain of adding Step 4 to the method of McCulloch
and Rossi (1994), we consider the second binomial example in Nobile (1998). This
example is the same as the example in Section 4.1 except that the covariate is generated
from a Bernoulli(0.5) distribution and we use �=5=

√
2 to generate the data. The same

prior distributions and sample size of 2000 were used as is in Section 4.1. For this data
set the likelihood is not informative, indeed the maximum likelihood estimate does not
exist and a proper prior distribution for � is required for posterior propriety. Thus, this
example, serves as a diFcult case for testing the various algorithms.
We compare the methods of McCulloch and Rossi (1994) and Nobile (1998) (with

correction) with Algorithm 1 (Scheme 1) by generating two chains of length 20,000
starting from (�; �) = (5=

√
2;

√
2) and (�; �) = (5; 5). Fig. 3 compares the sample gen-

erated with the 0rst chain of each of the three algorithms with the target posterior
distribution and illustrates the autocorrelation. The time-series plots for both chains
generated with each algorithm are displayed in Fig. 4. Figs. 3 and 4 illustrate that for
both identi$able and unidenti$able parameters, the algorithm of McCulloch and Rossi

Fig. 3. Comparison of the algorithms of McCulloch and Rossi (1994) and Nobile (1998) (with correction),
with Algorithm 1 (Scheme 1) using the second binomial probit example of Nobile (1998). The algorithm of
McCulloch and Rossi (1994) is more sensitive to starting values than the other two algorithms; the starting
value used here is (�; �) = (5; 5). However, there is little diKerence between the algorithms in terms of the
autocorrelation of the identi0able parameter.
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√
2) and (�; �) = (5; 5), respectively. A dashed vertical line shows the iteration where the

two chains of Algorithm 1 (Scheme 1) coalesced; the other two algorithms did not coalesce exactly. In this
example, the algorithm of McCulloch and Rossi (1994) is more sensitive to starting values than the other
two algorithms, even when measured in terms of the identi0able parameter, �.

(1994) is most sensitive to the starting value. However, in terms of the autocorrelation
for the identi$able parameter, �, the eKect of the additional Metropolis step is small.
The 0gures also illustrate that Algorithm 1 (Scheme 1) performs at least as well as the
algorithm of Nobile (1998) and outperforms that of McCulloch and Rossi (1994) with
respect to both identi0able and unidenti0able parameters. With regard to the identi0able
parameters, Algorithm 1 (Scheme 1) is less sensitive to the starting values; in fact,
the two chains generated with this algorithm coalesced after about 5000 iterations.
Unlike Nobile’s algorithm, the computational gain of our algorithm comes without the
computational complexity of a Metropolis step and without the inferential complexity
of a prior speci0ed on the unidenti0able parameters.

4.3. Prior speci$cation of McCulloch et al. (2000)

A second adaptation of the method of McCulloch and Rossi (1994) was intro-
duced by McCulloch et al. (2000). Rather than focusing on computational performance,
McCulloch et al. (2000) aimed to introduce a more natural prior speci0cation. In par-
ticular, they formulated a prior distribution on the identi0able parameters as

� ∼ N(�0; A−1); � ∼ N(�0; B−1) and ! ∼ invWishart("; C); (20)
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described in Figs. 3 and 4.

where �, (p− 2) × 1 and !, (p− 2) × (p− 2) are submatrices of � de0ned by

�=

(
1 ��

� !+ ���

)
:

This prior speci0cation is useful in practice because like our speci0cation, it allows
analysts to specify an informative or Nat prior distribution on the identi0able parameter,
�. As noted by McCulloch et al. (2000) and Nobile (2000), however, the resulting
sampler can be ineFcient. In contrast, our algorithms allow the same Nexibility in
the prior speci0cation on the identi0able parameter of interest, �, without incurring
computational cost.
To illustrate the computational advantage of our algorithms over that of McCulloch

et al. (2000), we use the same data set, prior distributions, and sampling strategy as
in Section 4.2. Fig. 5 shows the marginal posterior distribution, time-series plot, and
the autocorrelation plot for the regression coeFcient as in Fig. 4. The 0gure supports
our theoretical expectation and empirical 0ndings in the literature that this algorithm
can be very sensitive to starting values and can exhibit very high autocorrelation.

5. Multinomial examples

In this section, we compare the computational performance of Algorithm 1 (us-
ing both sampling schemes) and Algorithm 2 with the algorithms of McCulloch and
Rossi (1994), Nobile (1998) (with correction), and McCulloch et al. (2000) using four
multinomial examples including two simulations and data from two empirical studies.
Although the computational performance of the algorithms we propose is clearly an im-
portant consideration, we emphasize that other considerations are at least as important.
We have demonstrated that, like the methods of McCulloch et al. (2000), our algo-
rithms allow the practitioner to directly specify the prior distribution of the identi0able
regression coeFcients, can handle Nat prior distributions on the regression coeFcients,
and do not require a Metropolis step. Even so, our algorithms are at least as good
as any of the available algorithms in terms of their computational properties. In the
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many examples that we have considered none of the other algorithms exhibit better
autocorrelation or are less sensitive to starting values than our proposals, and, as we
shall soon illustrate, in some cases our algorithms exhibit much better computational
properties than their competitors.
Our 0rst multinomial example is taken from McCulloch et al. (2000) and is also

used in McCulloch and Rossi (1994). A three choice model with one covariate is used
to generate a data set of size 100 with parameters values (�; �22; $) = (−√

2; 2; 12 ); the
covariate is generated from a Uniform (−0:5; 0:5) distribution. We follow the prior
speci0cation of McCulloch et al. (2000) whenever possible. For our three samplers,
we use (4) and (6) with �0 =0, A=0:01, �=6, S= I and �20 =�. For the algorithms of
McCulloch and Rossi (1994) and Nobile (1998), we use (15) with �̃0 = 0, A = 0:01,
�= 6, and S = �I . Finally, for the algorithm of McCulloch et al. (2000), we use (20)
with �0 = 0, A= 0:01, �0 = 0, B−1 = 1

8 , " = 5, and C = 21
8 .

We generate a single chain of length 50,000 starting from (�; �22; $) = (1; 1; 1), for
each of the six algorithms. To ensure the accuracy of our computer code, we compare
draws from each sampler with bivariate marginal posterior distributions computed us-
ing direct numerical integration. 3 Autocorrelation plots for each model parameter using
each of the six samplers appear in Fig. 6. As expected, the algorithm of McCulloch
et al. (2000) is the slowest, while the algorithm of Nobile (1998) performs slightly
better than that of McCulloch and Rossi (1994). Our algorithms perform as well com-
putationally as any other available method. As expected, Algorithm 1 (Scheme 1)
exhibits the best convergence of the methods we propose.
Although the results are not reported here due to space limitations, we replicated

the six choice simulation of McCulloch and Rossi (1994) using Algorithm 1 (Scheme
1) and the samplers of McCulloch and Rossi (1994) and Nobile (1998). The results
regarding the relative performance of the samplers is con0rmed in this simulation.
Although the lag-1 autocorrelations of the algorithm of Nobile (1998) are generally
lower than those of Algorithm 1 (Scheme 1), the autocorrelations of the latter sampler
diminish more quickly than those of the former. The algorithm of McCulloch and
Rossi (1994) is slower than both Algorithm 1 (Scheme 1) and the algorithm of Nobile
(1998).
We also studied computational performance using two data examples. In the 0rst, we

0t the multinomial probit model to survey data on voter choice in Dutch parliamentary
elections using Algorithm 1 (Scheme 1) and the samplers of McCulloch and Rossi
(1994), Nobile (1998), and McCulloch et al. (2000). The data include four choices
and 20 covariates (with 3 intercepts); this data set is described in detail by Quinn
et al. (1999). When using our sampler we specify the prior distribution with �0 = 0,
A=0:01I , �=6, S = I and �20 = �; when using the algorithms of McCulloch and Rossi
(1994) and Nobile (1998), we use �̃0 = 0, A = 0:02I , � = 6, and S = �I . These two
prior distributions specify the same distribution on �̃ and roughly the same prior mean
and variance on �. Finally, when using the algorithm of McCulloch et al. (2000), we
use �0 = 0, A= 0:01I , �= 6, �0 = 0, and B−1 = I . This prior speci0cation is the same
for � as the prior distribution used with our algorithm and similar for �.

3 These 0gures are available from the authors upon request.
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Using each of the three samplers, we generate a single chain of length 50,000 starting
from �=0 and �=I . The resulting posterior distributions agree substantively with those
results reported in Quinn et al. (1999). Fig. 7 compares the lag 100 autocorrelations of
all the model parameters. Judging from this 0gure, Algorithm 1 (Scheme 1) exhibits
smaller autocorrelation than the other three algorithms. In this example, the algorithms
of McCulloch and Rossi (1994) and McCulloch et al. (2000) outperform that of Nobile
(1998), although this pattern reverses if we place a more informative prior distribution
on the coeFcients.
In the 0nal example, we 0t the multinomial probit model to data on consumer choice

in market research. In particular, we use data on purchases of liquid laundry detergents
by 2657 households in the Sioux Falls, South Dakota market that are analyzed by
Chintagunta and Prasad (1998). In this data set, we have six national brands (Tide,
Wisk, EraPlus, Surf, Solo, and All) and hence p = 6. The data also include the log
price for each brand, which we use as a covariate. The data set is described in more
detail by Chintagunta and Prasad (1998). We also estimate the intercept for each brand
separately, yielding the total of 6 coeFcients to be estimated. We use the same prior
speci0cation as in the previous example.
For each of the three samplers, we generate three chains of length 10,000 with the

same three sets of starting values for �. For �, we use the identity matrix as the
starting value for all chains. Fig. 8 presents time series plots of selected parameters
for all four algorithms. The 0gure shows that Algorithm 1 converges much quicker
than the other three algorithms do. For example, the price coeFcient, the parameter of
substantive interest, converges after 1000 iterations for Algorithm 1 whereas the same
parameter can require 4000–8000 draws to converge with the other algorithms. We
originally ran the four algorithms with another starting value. The resulting chains do
not appear in Fig. 8 because the algorithms of McCulloch and Rossi (1994) and Nobile
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Fig. 8. Time series plots of the draws of selected parameters using the four algorithms to 0t the detergent
brand choice data. The 0gure shows the three chains for the price coeFcient, a variance parameter, and
a correlation coeFcient. Algorithm 1 converges much faster than the algorithms of Nobile (1998) (with
correction), McCulloch and Rossi (1994), and McCulloch et al. (2000).



K. Imai, D.A. van Dyk / Journal of Econometrics 124 (2005) 311–334 331

(1998) were extremely slow to converge, taking about 60,000 and 80,000 draws, respec-
tively, to converge. Even with this starting value, our algorithm again converged in un-
der 1000 draws. In terms of the autocorrelations of the draws upon convergence in this
example, Algorithm 1 performs better than the algorithm of McCulloch et al. (2000)
and about the same as the algorithms of McCulloch and Rossi (1994) and Nobile
(1998).

6. Concluding remarks

When comparing statistical methods, computational performance should nearly al-
ways be a less important criterion than the choice of model speci0cation. In the con-
text of the multinomial probit model, we expect methods which place a prior dis-
tribution directly on the identi0able parameters to be easier to use and more readily
able to reNect available prior information in practice. Thus, we agree completely with
the approach of McCulloch et al. (2000), which sacri0ces computational eFciency in
order to accommodate a more attractive model speci0cation. Of course, as some of
the examples is McCulloch et al. (2000) illustrate, in extreme cases computational
concerns can render a model practically untenable. In some fortunate situations, how-
ever, algorithms exist that allow for attractive model speci0cations while also main-
taining eFcient computation. As has been demonstrated in the literature, the method
of marginal augmentation is a useful tool for 0nding such algorithms. Thus, this arti-
cle uses marginal augmentation to accomplish what Nobile (2000) hoped for when he
remarked,

Perhaps some ingenuity is needed to devise a sampling Markov chain which uses
[the prior of McCulloch et al. (2000)] and has good mixing properties.

Although our prior distribution is not that of McCulloch et al. (2000), in terms
of each of the three criteria used to compare the algorithms in Table 1, we believe
the algorithms we recommend are equal to the best available methods. We specify an
easy-to-use prior distribution on the identi0able model parameters and our algorithms
require only draws from standard distributions. In our numerical comparisons, these
advantages come without computational cost; overall the performance of the methods
we recommend is better than any other method in terms of both autocorrelation and
insensitivity to starting values. It would seem that sometimes there is such a thing as
a free lunch!
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Appendix A. Details of two new algorithms

In this Appendix, we give details of Algorithms 1 and 2 for the multinomial pro-
bit model. We begin with Algorithm 1 with starting value � (0) = (�(0); �(0)) and for
“Scheme 2,” �(0) = 1 and proceed via the following three steps at iteration t:

Algorithm 1. Step 1: For each i and each j=1; : : : ; p−1 draw W ∗
ij given W ∗

i;−j; �
(t−1),

and Y , where

W ∗
i;−j = (W ∗

i1; : : : ; W
∗
i; j−1; W

(t−1)
i; j+1 ; : : : ; W

(t−1)
i;p−1) (A.1)

exactly as described in Section 3 of McCulloch and Rossi (1994). (McCulloch and
Rossi (1994) use the symbols � and � for the unidenti$ed parameters, i.e., our �̃ and
�̃. In this step W ∗ should be generated using the identi$ed parameters, so notationally
this is equivalent to McCulloch and Rossi (1994).) For “Scheme 1” draw (�2)∗ from
p(�2 | �; �) = p(�2 |�) as given in (6) and set W̃ ∗

ij = �∗W ∗
ij . For “Scheme 2” set

W̃ ∗
ij = �(t−1)W ∗

ij .
Step 2: Draw �̃∗ and (�2)∗ given W̃ ∗ and �(t−1),

(�2)∗ ∼ {∑n
i= 1(W̃

∗
i −Xi�̂)�(�(t−1))−1(W̃ ∗

i −Xi�̂) + �̂�A�̂+trace[S̃(�(t−1))−1]}
�2(n+�)(p−1)

;

(A.2)

where

�̂=

[
n∑
i=1

X�
i (�(t−1))−1Xi + A

]−1 [ n∑
i=1

X�
i (�(t−1))−1W̃ ∗

i

]
;

�̃∗ ∼ N


�̂; (�2)∗

(
n∑
i=1

X�
i (�(t−1))−1Xi + A

)−1

 ; (A.3)

and set �(t) = �̃∗=�∗.
Step 3: Finally, draw �̃(t) given �(t) and (W̃ ∗

i − Xi�̃∗), for i = 1; : : : ; n via

�̃∗ ∼ InvWishart

[
n+ �; S̃ +

n∑
i=1

(W̃ ∗
i − Xi�̃∗)(W̃ ∗

i − Xi�̃∗)�
]
; (A.4)

set �(t) = �̃∗=�̃∗
11 and W (t)

ij = W̃ ∗
ij=
√
�̃∗
11 for each i and j, and for “Scheme 2” set

(�2)(t) = �̃∗
11.

Here, superscript stars indicate quantities that are intermediate and not part of the
Markov chain, (W (t); �(t); �(t)) and (W (t); �(t); �(t); �(t)) for “Scheme 1” and “Scheme
2”, respectively.

We now give the details of Algorithm 2.
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Algorithm 2. Step 1a: Draw W ∗
ij just as in Step 1 of Algorithm 1. Then draw (�2)∗

from p(�2 | �; �) = p(�2 |�) as given in (6) and set W̃ ∗
ij = �∗(W ∗

ij − Xi�(t−1)).
Step 1b: Draw �̃∗ given W̃ ∗ and �(t−1),

�̃∗ ∼ InvWishart

[
n+ �; S̃ +

n∑
i=1

W̃ ∗
i (W̃

∗
i )

�
]
; (A.5)

and set �(t) = �̃∗=�̃∗
11.

Step 1c: Set

W (t)
i =

1√
�̃∗
11

W̃ ∗
i + Xi�(t−1) for each i: (A.6)

Step 2: Finally, draw �(t) given �(t) and W (t)

�(t) ∼ N


�̂;

(
n∑
i=1

X�
i (�(t))−1Xi + A

)−1

 ; (A.7)

where

�̂ =

[
n∑
i=1

X�
i (�(t))−1Xi + A

]−1 [ n∑
i=1

X�
i (�(t))−1W (t)

i + A�0

]
:

(Again superscript stars are used to indicate intermediate quantities.)

Appendix B. Nobile’s Metropolis–Hastings acceptance rate

To compute the correct acceptance rate for Nobile’s (1998) Metropolis–Hastings
rule, we 0rst derive the target distribution,

p(� | �; �)˙ p(�; �; �) (B.1)

˙ �−(�(p−1)−k+1) exp
{

−1
2

[
(�� − �̃0)�A(�� − �̃0)

+
1
�2

trace(S�−1)
]}

: (B.2)

Thus,

R=
p(�′ | �; �)
p(� | �; �)

J (� | �′)
J (�′ | �)

= exp
{

−1
2

[
�2��A�(c2−1)−2��̃�

0 A�(c−1)+
1
�2

trace(S�−1)
(

1
c2

−1
)]}

× c−(�(p−1)−k+2) exp
(
c − 1

c

)
; (B.3)

where c= �′=�. This diKers from the value computed by Nobile (1998) by a factor of
c−(2−k−p(p−1)=2).
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